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Abstract
Climate change is reorganizing the planet's biodiversity, necessitating proactive man-
agement of species and habitats based on spatiotemporal predictions of distributions 
across climate scenarios. In marine settings, climatic changes will predominantly mani-
fest via warming, ocean acidification, deoxygenation, and changes in hydrodynamics. 
Lophelia pertusa, the main reef-forming coral present throughout the deep Atlantic 
Ocean (>200 m), is particularly sensitive to such stressors with stark reductions in 
suitable habitat predicted to accrue by 2100 in a business-as-usual scenario. However, 
with new occurrence data for this species along with higher-resolution bathymetry 
and climate data, it may be possible to locate further climatic refugia. Here, we syn-
thesize new and published biogeographic, geomorphological, and climatic data to 
build ensemble, multi-scale habitat suitability models for L. pertusa on the continental 
margin of the southeast United States (SEUS). We then project these models in two 
timepoints (2050, 2100) and four climate change scenarios to characterize the occur-
rence probability of this critical cold-water coral (CWC) habitat now and in the future. 
Our models reveal the extent of reef habitat in the SEUS and corroborate it as the 
largest currently known essentially continuous CWC reef province on earth, and also 
predict abundance of L. pertusa to identify key areas, including those outside areas 
currently protected from bottom-contact fishing. Drastic reductions in L. pertusa cli-
matic suitability index emerged primarily after 2050 and were concentrated at the 
shallower end (<~550 m) of the regional distribution under the Gulf Stream main axis. 
Our results thus suggest a depth-driven climate refuge effect where deeper, cooler 
reef sites experience lesser declines. The strength of this effect increases with cli-
mate scenario severity. Taken together, our study has implications for the regional and 
global management of this species, portending changes in the biodiversity reliant on 
CWC habitats and the critical ecosystem services they provide.

K E Y W O R D S
climate change, cold-water coral, coral reef, deep-sea, habitat suitability model, Lophelia 
pertusa, species distribution model
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1  |  INTRODUC TION

Climate change is affecting global biodiversity by reorganizing 
species distributions. Spatial refugia (sensu Keppel & Wardell-
Johnson, 2012) from climate change can dictate complex distribu-
tional legacies, which leave behind evidence of faunal origins and 
climate-induced fluctuations by selecting for resilience or by creat-
ing faunal patchworks through extirpation (Carpenter et al., 2001; 
Fernandez et al.,  2021; Horne,  1999; McClain & Hardy,  2010). 
Therefore, locating and protecting refugia from additional human 
pressures is imperative to climate-smart management that is pro-
active against future changes in biodiversity (Arafeh-Dalmau 
et al., 2021; Queirós et al., 2021).

In the marine realm, climate change manifests primarily through 
warming, acidification, deoxygenation, and alterations in hydrody-
namics affecting food supply (Doney et al., 2012; Levin & Bris, 2015). 
In surface waters, models predict large expanses with either novel 
or disappearing climates by 2100 (Dixon et al.,  2022; Lotterhos 
et al.,  2021), yet little is known about no-analogue climates in 
the deep ocean (>200 m depth) where most of the planet's habit-
able area exists. However, in situ trends (Desbruyères et al., 2016; 
Johnson et al.,  2014; Meinen et al.,  2020), and climate models 
(Morato et al.,  2020; Sweetman et al.,  2017) suggest rapid ocean 
change will accumulate at the seafloor this century. Many deep-sea 
ecosystems may soon experience oceanographic conditions with 
only distant spatial or temporal analogues. This can cause mobile 
species' distributions to move deeper toward cooler waters (Chaikin 
et al.,  2021; Pinsky et al.,  2013) and reorganization and compres-
sion of ecological communities (Chu & Tunnicliffe, 2015; Gasbarro 
et al., 2019; Mora et al., 2013; Sato et al., 2017). The temporal scales 
of ocean change make it less likely that slow-growing sessile species 
will be able to track their climatic niche via larval dispersal.

Amongst the most at-risk taxa are cold-water corals (CWCs), 
which form the basis for Vulnerable Marine Ecosystems including 
coral reefs and gardens (FAO, 2009). Lophelia pertusa (proposed re-
vision to Desmophyllum pertusum; Addamo et al., 2016) is the most 
well-known reef-building coral in the deep ocean. It is found in every 
major ocean basin and as an autogenic habitat engineer creates coral 
reefs and carbonate mounds of varying sizes that are formed over 
thousands of years by generations of coral growth/death leading 
to mound build-up by coral skeleton and baffled sediment (Raddatz 
et al., 2014). This species has a long pelagic larval duration, and these 
planktotrophic larvae readily cross density gradients and may even 
spend time in the photic zone, suggesting an ability to disperse over 
great distances (Larsson et al., 2014; Strömberg & Larsson, 2017).

Notable L. pertusa reefs have been found in the South Atlantic 
on seamounts (Bridges et al.,  2021), on the Brazilian (Cavalcanti 
et al., 2017), and west African margin (Hanz et al., 2019; Hebbeln 
et al., 2020); in the North Atlantic off of Florida (Reed et al., 2006) 
and Greenland (Kenchington et al.,  2017), Norway (Fossa 
et al., 2002), Canada (Buhl-Mortensen et al., 2017), the UK (Howell 
et al., 2011), and the Mediterranean (Carlier et al., 2009; Freiwald 
et al., 2009; Mastrototaro et al., 2010). These mounds can cluster 

into large mound provinces covering up to thousands of square ki-
lometers in areas where oceanographic conditions allow, including 
in the Gulf of Mexico (Hebbeln et al., 2014; Roberts & Kohl, 2018), 
Northeast Atlantic (Dullo et al.,  2008; Flögel et al.,  2014; Howell 
et al., 2011; Kenyon et al., 2003; Masson et al., 2003) and Northwest 
Atlantic (Reed et al., 2006). These CWC mounds and the living reefs 
that often top them are remarkable both in their spatial extent and 
their functioning as important hotspots of biodiversity (Henry & 
Roberts, 2017; Roberts et al., 2006) and nutrient recycling (Cathalot 
et al., 2015; van Oevelen et al., 2009). Thus, accurate predictions of 
their expanse are needed to improve our understanding of the func-
tion of ecosystem services of the global ocean.

The Blake Plateau is a large depositional feature on the Southeast 
US (SEUS) margin, shaped by the influence of the Gulf Stream and 
associated eddies. Vibrant CWC ecosystems flourish underneath 
the Gulf Stream due to elevated currents and pulses of fresh phy-
todetritus to the seafloor (Mienis et al., 2014). Since 2018, numer-
ous research and exploratory expeditions to CWC habitats in this 
region have built upon historical baseline surveys (Reed et al., 2006; 
Stetson et al.,  1962) with mapping efforts revealing the largest 
nearly continuous mound province on Earth with tens of thousands 
of apparent CWC mounds extending over approximately 700 km 
from offshore Florida to Virginia (Sowers, 2020), including a remark-
able coral reef complex over 200 km in total length off of Charleston, 
South Carolina herein referred to as the “Richardson Reef Complex” 
(Figure  1). Coral rubble appears to be the dominant substrate on 
even the smallest mounds in the region, indicating CWC habitabil-
ity at some point in the Holocene, if not currently. It is unknown 
how many of the mounds are topped with living coral and, if so, how 
much.

These sites face imminent climate threats, as climate change 
causes the Gulf Stream to deliver increasingly warm and acidic sub-
tropical waters to their depth range (~400–900 m) (Saba et al., 2016) 
but potentially at lower velocities (Boers, 2021; Caesar et al., 2021), 
simultaneously lowering the rate of food delivery to less optimal lev-
els. However, all CWC ecosystems of this region may not be affected 
equally by climatic changes, as many shallower sites near the shelf 
break sit directly underneath the Gulf Stream's velocity core while 
deeper sites on the eastern Blake Plateau are affected more inter-
mittently by Gulf Stream meanders. Paleoecological reconstructions 
of past climates from a Cape Lookout coral mound indicate that 
CWCs in the SEUS proliferated most recently following hydrographic 
changes in the Gulf Stream system ~7 kya that changed the ocean-
ographic conditions experienced by CWCs (Matos et al., 2015), sug-
gesting that these ecosystems are sensitive to changes in climate.

Here, we present a novel biogeographic, geomorphological, 
and climatic data synthesis to build ensemble, multi-scale habi-
tat suitability models for Lophelia pertusa. We project these mod-
els onto the present-day SEUS margin and two future timepoints 
(2050, 2100) under four climate change scenarios to character-
ize the extent of critical CWC ecosystems in the region and test 
several hypotheses regarding their future. First, our models test 
whether the smallest of the coral mounds mapped in the region 
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7110  |    GASBARRO et al.

are likely to contain L. pertusa, and whether terrain with high hab-
itat suitability index (HSI) scores will be concentrated on one or 
more landforms associated with these mounds (i.e., peaks, ridges, 
and slopes). We also test whether greater declines in climatic suit-
ability index (CSI) scores occur in more severe emissions scenar-
ios, and whether the time of emergence for notable declines in 
CSI will be before 2050. Finally, we test for regional disparities 
in climate change outcomes by depth, predicting that shallower 
populations will face greater CSI and abundance declines due to 
their proximity to the Gulf Stream, with deeper sites serving as 
spatial climate refugia with more modest changes. We also cal-
culate climate change velocities to test this depth-disparity hy-
pothesis, predicting higher velocities at shallower seafloor depths 
and isotherm trajectories will show a general trend toward deeper 
locations. Taken together, our results provide timely information 
required for both mitigation and adaptive spatial management of 
these ecosystems and the critical services they provide.

2  |  MATERIAL S AND METHODS

2.1  |  Occurrence data

L. pertusa occurrence points were generated from submersible dive 
imagery from 11 dives completed in 2018–19 (Table  S1.1). Dive 
video was annotated for Lophelia presence and georeferenced by 
timestamp. Additional presence points were downloaded from the 
NOAA Deep-sea Coral Research & Technology Program database 
(v102020; https://deeps​eacor​aldata.noaa.gov/). Points with loca-
tion error >1000 m were removed, which generally excludes older, 
less reliable records (e.g., trawl records) that likely have lower fidel-
ity to gridded environmental data. All points falling within a grid cell 
were merged to curtail pseudoreplications.

Abundance (=% cover) data were generated from one-minute 
video segments during the above dives. Video segments were cho-
sen where the submersible was transecting the seafloor and image 

F I G U R E  1  (a) Lophelia pertusa sites (white points) and coral Habitat Area of Particular Concern (hatched area) on the SEUS margin 
overlain on high-resolution bathymetry compilation of Sowers (2020). Notable seafloor features on the deep, eastern portion Blake Plateau 
are outlined (dashed boxes) and include the (b) Richardson Reef Complex (c) Central Plateau Mounds (with additional inset highlighting many 
small mounds) and (d) Blake Plateau Knolls sites. Note the different depth scales used for each inset to highlight local geomorpholo (e.g., 
mounds) [Colour figure can be viewed at wileyonlinelibrary.com]
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quality was high (i.e. not obscured by the submersible or water 
column turbidity). Five random screenshots were taken for each 
segment by selecting random numbers between 1 and 60 (1 rep-
resenting the first second of the 1-minute segment), and then 50 
random points overlain on each screenshot in ImageJ software using 
a custom-written macro. Points falling on live Lophelia were counted, 
giving an estimate of percent cover for each screenshot and mean/
standard deviations for each segment. In total, 516 segments were 
used to train abundance models (Table S1.1).

2.2  |  Terrain and climate data

We used the bathymetric dataset covering much of the Blake Plateau 
generated by Sowers (2020) to create bathymetric terrain variables 
at the highest available resolution for this area (3.5 × 10−4° or ~35 m). 
Slope, aspect [both cosine (N-S) and sine (E-W)], three types of cur-
vature, fine (100 m) and broad-scale (1000 m) bathymetric position 
indices (BPI) comprised the initial set of terrain variables (Table 1). 
BPI was calculated with an inner radius of one cell. All terrain varia-
bles were generated from the bathymetric data with Benthic Terrain 
Modeler v3.0 (Walbridge et al., 2018) in ESRI Arcmap version 10.8. 
In addition, we used a ‘bathymorphon’ (underwater landform) clas-
sification scheme (Sowers,  2020) of valley, flat, slope, ridge, and 
peak bathymorphons post-hoc to test whether L. pertusa occurrence 
probability was higher on particular bathymorphons. This classifi-
cation was achieved using the Bathymetry- and Reflectivity-based 
Estimator for Seafloor Segmentation (Masetti et al., 2018) using an 
inner and outer radius of one and six cells, respectively, and a flat-
ness parameter of 1.5°.

A number of variables were used to model climatic suitabil-
ity for L. pertusa (Table  S1.2). Global Atmosphere/Ocean General 
Circulation Model data were downloaded in four-dimensional (X, Y, 
depth, time) netCDF format from the Earth System Grid Federation 
as either monthly or annual means. All data come from Climate 
Model Intercomparison Project 6 (CMIP6; Eyring et al., 2016), which 
includes higher-resolution models than those used to build basin-
scale models for L. pertusa based on CMIP5-era data (e.g., Morato 
et al., 2020). CMIP6 data included the variables pH, mean dissolved 
oxygen, and export carbon from the high-resolution implemen-
tation of the Max Planck Institute's MPI-ESM1-2 model (Müller 
et al., 2018). Bottom temperature data were available from several 
modeling groups and thus a multi-model ensemble was used (see 
Table S2 for climate metadata).

CMIP6 models used in this study were forced under Shared 
Socioeconomic Pathways (SSPs). These SSPs range from the SSP1-
2.6 “Sustainable Future” to the SSP5-8.5 “Business As Usual” sce-
narios with two intermediate pathways (SSP2-4.5, SSP3-7.0). The 
SSPs incorporate revised emission and land use pathways than 
those in the Representative Concentration Pathways of CMIP5 
(see O'Neill et al., 2016; Riahi et al., 2017). Data for each SSP were 
averaged into current (1995–2014), mid-century (2031–2050), 
and end-of-century (2081–2100) timepoints, giving a rough es-
timate of the time of emergence for suitability changes. Climate 
Data Operators (Schulzweida,  2019) was used to convert data 
from each model to annual means where necessary, re-grid from 
curvilinear to lat/long grids, and to extract bottom-most (= ben-
thic) data at their native resolution (Table S1.2). These data were 
cropped and re-gridded at 0.007° (~700 m) for the SEUS using bi-
linear interpolation.

TA B L E  1  Variables included in habitat suitability models

Variable Short_name Type
Nominal 
resolution Units Reference(s)

Depth Depth Terrain 35 m m Sowers (2020)

Bathymorphon Bathymorph Terrain 35 m Landform Sowers (2020)

Slope Slope Terrain 35 m ° —

BPI_1000m BPI_1000m Terrain 35 m — —

BPI_100m BPI_100m Terrain 35 m — —

Aspect (sin) Aspect_sin Terrain 35 m ° —

Aspect (cos) Aspect_cos Terrain 35 m ° —

Curvature (general) Curv_gen Terrain 35 m — —

Curvature (plan) Curv_plan Terrain 35 m — —

Curvature (profile) Curv_prof Terrain 35 m — —

Temperature Temp Climate 7–50 km °C Müller et al. (2018); Gent 
(2020); Roberts (2017); 
Alexander et al. (2020)

pH pH Climate 50 km pH Müller et al. (2018)

Dissolved oxygen DO Climate 50 km μmoL L−1 Müller et al. (2018)

Export carbon Expc Climate 50 km mol m−2 s−1 Müller et al. (2018)

Note: All terrain variables were derived from [1]. Variables selected for final models are in bold.
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CMIP6 bottom temperature data for the SEUS were compared to 
data from Alexander et al.  (2020)’s dynamically downscaled model 
data that covered the study area with comparable data for the his-
torical and 2100 business-as-usual scenarios at a higher native res-
olution (see Supplementary Materials 2). We chose to not include 
the Alexander et al., (2020) temperature data in the models due to 
the differences in methodology and native resolution between these 
and CMIP6 data, and thus used the Alexander et al., (2020) data to 
explore possible biases in the CMIP6 data for the region. We did, 
however, use these data to calculate distance-based climate change 
velocity, i.e. the distance to the geographically closest thermal an-
alogue in the SEUS in the year 2100 using the R package ‘VoCC’ 
(Molinos et al., 2019) due to its higher native resolution. A climate 
tolerance of 0.25°C and margin-wide search radius was used to find 
analogous cells. Thermal trajectories were overlain on the velocity 
map to visualize isotherm movements.

2.3  |  Habitat suitability and abundance modeling

Variables with Variance Inflation Factors >5 and/or highly correlated 
(Pearson's R > 0.9) variables were sequentially removed before the 
modeling process to minimize multicollinearity (Figure  S3.1). The 
final variable set (Table  1) still included a few correlated variables 
(temperature, pH, O2) that were included in the model for their eco-
logical relevance to L. pertusa (Brooke et al., 2013; Georgian, DeLeo, 
et al., 2016; Hennige et al., 2014).

A multi-scale framework was used to model the distribution 
of L pertusa to incorporate the variation in the species' ecological 
response to both terrain and climate at relevant scales. That is, we 
captured the fine-scale (~35 m) landscape morphology that is funda-
mental to predicting CWC distributions by proxying hydrodynamics 
(Rengstorf et al., 2013), while separately modeling climatic suitability 
at a downscaled resolution (~700 m). Suitability of both terrain and 
climate is a prerequisite for L. pertusa presence, and so decreasing 
the terrain resolution to match the climatic data would smooth over 
important information and decrease model precision (Miyamoto 
et al., 2017). The climatic niche of L. pertusa was first constructed 
for the whole of the North Atlantic on the native resolution grid, 
then projected onto each scenario climate grid for the SEUS (n = 9), 
as the entirety of their niche was not represented in the SEUS. For 
example, pH is relatively high in the region. Thus, SEUS data would 
not capture a lower limit for L. pertusa suitability and a model trained 
solely on current SEUS climatology would not predict an influence 
of pH declines in future scenarios, despite the known relevance of 
pH in this range to the species' distribution and survival (Davies 
et al.,  2008; Georgian, DeLeo, et al.,  2016; Hennige et al.,  2020; 
Lunden et al., 2014; Morato et al., 2020). Thus, there may be regional 
variability in L. pertusa climate-stressor tolerance in the SEUS that 
was not captured in our models (e.g., Georgian, Dupont, et al., 2016).

Suitability scores were computed with one regression [Generalized 
Linear Models (GLM)] and two machine-learning algorithms [Random 
Forest (RF), Gradient Boosting Machines (GBM)]. For both the terrain 

and climate models, three presence/background replicates were run 
with 10,000 pseudoabsences each selected from <1000 km from 
presence points. This distance was chosen to reflect this species' 
capability of long-distance dispersal (Strömberg & Larsson,  2017). 
Models were evaluated with repeat split-sample cross validation (70–
30 testing/training splits). Five evaluation runs were computed for 
each pseudoabsence set and algorithm combination for a total of 45 
models for each of terrain and climate. Response curves were gen-
erated according to Elith et al.  (2005) and inspected for biologically 
plausible responses for each algorithm. Then, we calculated ensemble 
means and variances from model runs across algorithms to minimize 
individual model biases (Buisson et al., 2010). Individual and ensemble 
model discrimination accuracy was assessed with True Skill Statistic 
(TSS; Lawson et al.,  2014) and area under the Receiver Operating 
Characteristic (ROC) metrics. Relative variable importance in the 
models was estimated by the variable randomization approach rec-
ommended by Guisan et al., (2017). In addition, the degree to which 
the models make predictions outside of the environmental enve-
lope of present-day L. pertusa was assessed using the Extrapolation 
Detection Tool of Bouchet et al. (2020).

Projected scenario climatic suitability index scores were com-
pared to scores from the present-day model and suitability scores 
at known L. pertusa sites were regressed against depth to test the 
hypothesis that the deepest, eastward sites containing L. pertusa 
may act as climate refugia. The combined terrain-climatic suitability 
scores were then used to model the areal percent cover for each sce-
nario using the Random Forest regression as in Hill et al., (2017). All 
computations were performed in R version 4.0.5 (R Core Team, 2021) 
on Temple University's High-Performance Computing server cluster. 
The R packages ‘biomod2’ (v. 3.5.1; Thuiller et al., 2020) and ‘ran-
domForest’ (Liaw & Wiener,  2002) were used for terrain/climatic 
suitability and abundance modeling, respectively.

3  |  RESULTS

3.1  |  Terrain suitability

GBM, GLM, and RF runs were incorporated into the ensemble terrain 
model, with TSS and ROC scores showing excellent discrimination ca-
pacity (both >0.9 on average) in recreating the L. pertusa distribution 
(Figure 2). Broad (1 km) BPI, slope, and depth were respectively the 
most important variables in the models, with high BPIs and slopes fa-
vored along with a depth range of ~200–900 m (Figure 3).

Broad expanses of habitat with high HSI were predicted by the 
model (Figure 4a), including the ~200 km length of the Richardson 
Reef Complex (Figure  4b), notable mound provinces with many 
mounds topped by live L. pertusa (Figure 4c, d), and ridge and ter-
race features along the southwestern portion of the mapped area 
(Figure 4a). A portion of this habitat fell outside of the South Atlantic 
Fisheries Management Council's ‘Stetson Banks-Miami Terrace 
Habitat Area of Particular Concern’ (HAPC) (Figure  4a). Flats and 
valleys typically had lower HSI scores, while peaks, ridges, and 
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    |  7113GASBARRO et al.

slopes each contained a sizeable portion of the areas with HSI >0.75 
(Figure  5). Peaks, which included the tops of mounds of all size 
ranges shown in Figure 1, generally had the highest HSI.

3.2  |  Climatic suitability

Notable changes in temperature and pH at L. pertusa sites were 
observed in the CMIP6 data by 2100, with more modest changes 

in dissolved oxygen and export carbon (Figure  6). In each sce-
nario besides SSP 1–2.6, all sites with current L. pertusa popula-
tions experienced pH levels below which there is an analogue in 
the present-day SEUS. These conditions are highly unfavorable 
for the species based on the climatic response curves for the N. 
Atlantic (Figure 7). Only RF and GBM runs algorithms were used 
in the ensemble model due to biologically implausible responses 
in the GLM runs (Figure S3.5). Despite this, TSS and ROC scores 
were >0.9 (Figure 2c, d).

F I G U R E  2  Receiver operating characteristic and TSS scores (a, c) and variable importance (b, d) for terrain-based suitability models (a, b) 
and climatic suitability models (c, d) [Colour figure can be viewed at wileyonlinelibrary.com]
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Ensemble projection onto the SEUS showed that almost all of 
the region from the shelf break to 1000 m currently has high climatic 
suitability index (CSI) scores (Figure 8). This was not the case in the 
climate change scenarios, however, which displayed spatiotemporal 
patterns of CSI declines (Figure 9). In the 2050 timepoint, ~20% de-
clines in CSI on the Blake Plateau were apparent near the shelf break 
and appeared regardless of SSP. Lesser CSI declines extended onto 
the Blake Plateau in a similar way in all scenarios, with the southern-
most Blake Plateau a notable exception. At the 2100 timepoint, CSI 
declines were more severe and widespread. Near the shelf break, 
80% declines were projected, and the extent of these declines in-
creased with increasing emissions in the SSPs. In SSP1-2.6, however, 
the spatial extent and severity of these declines was notably lesser 
than the other three scenarios (Figure 9). A spatial pattern emerged 
with CSI declines significantly correlated with depth at both known 
L. pertusa sites (Linear Regression, p < .05; Figure 10a) and peak grid 
cells (Linear Regression, p < .05; Figure 10b). The slope and variance 
explained by this relationship increased in each successively higher 
emissions scenario. At known Lophelia sites the regression slopes (i.e., 
the change in ∆CSI m−1 depth) ranged from −2 × 10−4 in SSP 2–4.5 to 
−5.5 × 10−4 in SSP 5–8.5 while R2 values in those were, respectively, 
0.10 and 0.51; this corresponds to 2 and 5.5% worse respective de-
clines in occurrence probability for every 100 m in depth. At all ‘peak’ 
bathymorphon grid cells (n = 262,822), the regression slopes ranged 
from −2.8 × 10−4 in SSP 1-2.6 to −7.3 × 10−4 in SSP 5–8.5 while R2 
values in those respectively were 0.09 and 0.72; this corresponds to 
2.8 and 7.3% worse respective declines in occurrence probability per 
100 m depth. A notable exception to this pattern occurred in SSP1-
2.6 at known Lophelia sites where the relationship between depth 
and CSI declines were not significant (p > .05).

3.3  |  Abundance of Lophelia pertusa

We found a wide range of coral cover in 1-minute video segments 
from sites on the SEUS margin, ranging from zero to 80.4% cover 
at Blake Plateau Knolls (see Figure 1d). Observed abundances were 
correlated with those predicted by terrain-climate suitability indices 
(RF Regression; p < .01, R2 = 0.51, RMSE = 9.9; Figure 11a). Sites pre-
dicted to have >~20% coral cover cease to exist in SSP5-8.5, but are 
still present in SSP1-2.6 (Figure 11b). The sites retaining relatively 
high cover were concentrated on the eastern Blake Plateau, with 
the Richardson Reef Complex maintaining the largest areal extent of 
high cover while more isolated individual mounds maintained lesser 
abundances (Figure S3.8).

3.4  |  Climate velocity

Climate velocities varied throughout the region, with some of the 
highest velocities occurring near the shelf break where many of 
the shallower L. pertusa sites occur (Figure  12). Here, isotherms 
moved at approximately four kilometers per year (km year−1) from 
2015 to 2100, while isotherms at sites on the eastern Blake Plateau 
(e.g., Richardson Reef Complex, Central Plateau Mounds) moved 
<1 km year−1. Velocities were also lower to the north, with sites off 
Cape Fear and Cape Lookout, Virginia experiencing similarly low ve-
locities. While these sites are predicted to experience severe warm-
ing, they are closer to deep areas, lowering their velocities. Isotherm 
trajectories generally moved toward the eastern Blake Plateau, 
which is predicted to offer a more similar thermal environment to 
what currently occurs at the Lophelia sites <500 m.

F I G U R E  3  Terrain response curves of Lophelia pertusa from Random Forest model runs. Scores for each model run (lines) and plotted 
across the range of each variable, with higher scores indicating suitability [Colour figure can be viewed at wileyonlinelibrary.com]
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4  |  DISCUSSION

4.1  |  Habitat extent

Our models project a previously underappreciated extent of L. per-
tusa habitat in the SEUS, including outside of the boundaries of pro-
tected areas that are closed to bottom-contact fishing due to the 
presence of CWC habitat (coral HAPC; Figure 1). Although there are 
>50,000 apparent CWC mounds in the roughly 500 km by 100 km 
region of highest suitability index scores—with many predicted to be 
topped with live coral by our models (Figure 4)—the coral mounds 
are predominantly unvisited. Most of the areas highly likely to con-
tain live L. pertusa fell on peak and ridge bathymorphons (Figure 5), 
highlighting the importance of these features for conservation and 
exploration. Future expeditions to the region will help ground-truth 
the models presented in this study. It should be noted that prelimi-
nary versions of these models were used to predict the presence 
of the mounds in Central Plateau Mounds and Blake Plateau Knolls 

F I G U R E  4  (a) Mean terrain-based habitat suitability index (HSI) of the SEUS margin and coral Habitat Area of Particular Concern (hatched 
area). Insets show key areas including (b) the Richardson Reef Complex, (c) the Central Plateau Mounds, and (d) the Blake Plateau Knolls 
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  5  Kernel density estimates of terrain suitability scores 
across different bathymorphons in the SEUS [Colour figure can be 
viewed at wileyonlinelibrary.com]
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areas following the discovery of the Richardson Reef Complex in 
2018, and the predictions were later confirmed on expeditions by 
the NOAA Ship Okeanos Explorer (Table  S1.1). The spatiotemporal 
predictions arising from our models, in conjunction with the differ-
ences observed between bathymorphon types (Figure 5), allow for 
most complete broad-scale characterization of Lophelia habitat in 
the SEUS to date.

4.2  |  Climate-driven distribution changes

Currently, most of the SEUS is has high CSI scores for L. pertusa 
(Figure 8). However, the waters overlying most of the suitable ter-
rain will become oceanographically unfavorable by 2100 (Figure 9) 
with conditions outside of the current climate domain of the species 
(Figure S1.2). Shallower sites near the shelf break will be the first to 
feel climate-induced stress and will experience the most acute long-
term reductions in CSI. These shallow sites retain relatively high CSI 
scores at the 2050 timepoint, however, suggesting that they could 

still be important transitory habitats as the spatiotemporal connec-
tivity of the deep, eastern sites and the shallower sites diminishes. 
The relevance of such transitory habitats remains an open question 
but may prove important with increased temporal resolution in fu-
ture HSM iterations (Huang et al., 2020).

Our results are consistent with the growing consensus on tem-
perature as a major biodiversity driver in the ocean (Doi et al., 2020; 
Hunt et al., 2005; Yasuhara & Danovaro, 2016). The Northwestern 
Atlantic is a warming hotspot (Saba et al.,  2016). Accordingly, our 
models that a warming-driven deepening of the L. pertusa distribu-
tion will occur this century, and that the eastern Blake Plateau sites 
could serve as critical climate refugia. Interestingly, at the 2050 time-
point some CSI declines emerged but notable differences between 
scenarios did not (Figures 8–9). By 2100, the depth-driven refugia 
effect increased with increasing emissions. In fact, SSP1-2.6 was the 
only scenario in which many of the Blake Plateau coral sites retained 
CSI scores >0.7 (Figure 8) and cover of ~20% (Figure 11). This sug-
gests flourishing reef habitats typified by high live coral cover may 
face regional extirpation outside of this best-case scenario.

F I G U R E  6  Change in climatic variables at Lophelia pertusa sites on the SEUS margin (n = 97 on ~700 m grid) [Colour figure can be viewed 
at wileyonlinelibrary.com]
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    |  7117GASBARRO et al.

F I G U R E  7  Climate response of Lophelia pertusa from Random Forest model runs. Scores for each model run (lines) and plotted across 
the range of each variable on the horizontal axis, with scores ranging from 0 (unsuitable) to 1 (suitable) [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  8  Projected climatic suitability index (CSI) of Lophelia pertusa habitat on the Southeast US margin in the present-day (left) and 
four Shared Socioeconomic Pathways (SSPs) in 2050 (top row) and 2100 (bottom row) [Colour figure can be viewed at wileyonlinelibrary.
com]

 13652486, 2022, 23, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16415 by T

em
ple U

niversity School O
f L

a, W
iley O

nline L
ibrary on [03/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


7118  |    GASBARRO et al.

F I G U R E  9  Change in climatic suitability index (∆CSI) maps for the Southeast US margin in each SSP in 2050 (top row) and 2100 (bottom 
row) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  1 0  Change in climatic suitability index (∆CSI) at (a) Southeast US (SEUS) margin Lophelia pertusa sites on 700 m grid (n = 97) 
and (b) all grid cells classified as peaks on mapped SEUS region (n = 262,822) in each 2100 Shared Socioeconomic Pathway (SSP) scenario 
regressed against depth. Solid and dashed lines represent significant and insignificant linear trends, respectively. [Colour figure can be 
viewed at wileyonlinelibrary.com]
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In other regions, for example, the Mediterranean or Northeast 
Atlantic, losses of L. pertusa could be somewhat compensated by 
the proliferation of Madrepora oculata, which co-occurs at high den-
sities with and is more thermally resilient than L. pertusa (Chapron 

et al., 2021). However, in the SEUS, M. oculata occurrences are sparser 
and growth of this species is unlikely to keep pace with L. pertusa de-
clines. Relaxation of spatial competition from L. pertusa may also pos-
itively impact hexactinellid sponges such as Vazella pourtalesii, which 
grows primarily on coral rubble in the SEUS and is predicted to expand 
its range with climate change (Beazley et al., 2021).

Coral mounds in the northern parts of the region, for example, 
known reefs off Cape Lookout and Cape Fear, Virginia are pre-
dicted to be amongst the sites with the fastest warming. These sites 
also currently experience frequent short-term (i.e., days-to-weeks) 
temperature spikes associated with Gulf Stream dynamics and/or 
downfluxes of surface-waters (Mienis et al., 2014). Although similar 
temperature spikes have been observed at the deeper reefs in the 
region, their lower mean temperatures give them a buffer against 
shorter-term spikes. In 7-day experimental exposures to a tem-
perature increase from 8 to 14°C, corals from the Richardson Reef 
Complex exhibited increased respiration and excretion rates as well 
as higher rates of protein catabolism, indicating a distinct stress re-
sponse, although all of the corals survived (Gómez et al., 2022). The 
incorporation of short-term variability in environmental data into 
models may reveal further vulnerable and/or refuge areas for CWCs 
but is currently beyond the purview of large-scale correlative mod-
els such as the ones we present here.

The deep, eastern Blake Plateau sites are especially notable 
because they may not only be climate refugia, but they currently 
contain thriving reef habitat with the highest coral cover and mega-
faunal biodiversity observed in the SEUS (Table  S1.2; Gasbarro 
et al., unpubl.). This biodiversity may be impacted by our predicted 
declines, as it can correlate with the percent cover of live coral 
(Price et al., 2021; Rowden et al., 2020), although a mix of live and 

F I G U R E  11  (a) Predicted versus Observed Results of Random Forest regression. 1:1 line is shown in black and LOESS smoother in blue. 
(b) The distribution of predicted abundances (=% cover) of Lophelia pertusa in the present-day, SSP5-8.5 and SSP1-2.6 scenarios at the 2100 
timepoint. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  1 2  Climate velocity (distance to nearest thermal analogue 
cell in km year-1 from 2015 to 2100) based off regional ocean model 
data (Alexander et al., 2020). Trajectory lines tracking isotherms from 
each grid cell are overlain and display the general eastward (depthward) 
trajectories that the distribution must follow to track suitable 
isotherms. [Colour figure can be viewed at wileyonlinelibrary.com]
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dead standing coral framework can also foster high biodiversity 
(Cordes et al.,  2008; Mortensen et al.,  1995). The losses of living 
coral we project may also lead to positive feedbacks of declining 
geomorphological complexity, as dead skeleton is more susceptible 
to dissolution and colonization by bioeroding species (Freiwald & 
Wilson, 1998; Hennige et al., 2020), flattening the habitat and mak-
ing it even less suitable for CWC growth. While there was a signif-
icant positive relationship between our abundance predictions and 
those observed, there is a notable amount of variance, particularly 
at high cover values. This may be caused by species interactions or 
finer-scale environmental dynamics not incorporated in the present 
study. Despite these caveats, our models of L. pertusa abundance 
could have further utility when combined with laboratory and/or 
in situ carbon and nitrogen flux measurements to refine first-order 
estimates of the contributions of these ecosystems to margin- and 
even basin-wide functioning (De Clippele et al., 2020, 2021), and to 
better quantify the ecosystem services lost with projected coral de-
clines (Cordes et al., 2021).

Somewhat surprisingly, oxygen and export carbon flux were not 
significant environmental drivers in our models. CWCs may be more 
resilient to deoxygenation if other conditions such as food supply 
are well met (Hebbeln et al., 2020), or oxygen limitation may be a 
regional phenomenon where availability is lower than in the North 
Atlantic, for example, the North Pacific (Auscavitch et al.,  2020; 
Chu et al., 2019). However, low oxygen concentrations have an ef-
fect on L. pertusa metabolic function (Dodds et al.,  2007; Lunden 
et al.,  2014) and the window for metabolically viable habitat will 
be narrowed by deoxygenation and warming in concert (Deutsch 
et al.,  2015; Ern,  2019; Pörtner et al.,  2017). Thus, more research 
is needed into the additive and/or synergistic effects of deoxygen-
ation and warming. Our data suggests that the waters overlying the 
SEUS will remain normoxic until at least 2100, however.

Export carbon, on the other hand, will likely decline, particularly 
under the velocity core of the Gulf Stream (Figure 6; Figure S3.4). 
Despite energy availability's pervasive influence on seafloor bio-
diversity (Woolley et al.,  2016), the degree to which CWC distri-
butions are influenced by large-scale export carbon patterns is 
debated (Portilho-Ramos et al., 2022; Raddatz et al., 2014; Roberts 
& Kohl,  2018). In addition, projected declines in open ocean pro-
ductivity may be somewhat alleviated by increasing terrigenous 
carbon inputs (Lacroix et al.,  2021). pH did not have as strong an 
effect on CSI as temperature. Its importance may have been masked 
by the correlation between the two, however (Figure S1.1). In the 
Mediterranean, where temperatures are also high, pH does appear 
to be a critical driver L. pertusa reef persistence (Matos et al., 2021). 
Indeed, there is both in situ and laboratory evidence of ocean acid-
ification affecting the physiology of L. pertusa (Dorey et al., 2020; 
Gómez et al., 2018; Hennige et al., 2014; Kurman et al., 2017) and 
eroding the dead skeleton that forms the basis for their mound hab-
itat (Hennige et al., 2015, 2020).

Our models generalize the climate response of the species from 
the whole of North Atlantic to the SEUS. It is possible that because 
L. pertusa in this region—especially near the shelf break—are already 

exposed to some of the warmest temperatures recorded for this 
species, there may be a degree of acclimatization or adaptation 
as hypothesized in the Gulf of Mexico for acidification (Georgian, 
Dupont, et al., 2016; Kurman et al., 2017) or for hypoxia on the west 
Angolan margin (Hebbeln et al., 2020). Although acclimatization for 
marine calcifiers does not appear to be a viable strategy in shal-
low waters (Comeau et al., 2019), it may be achieved deeper where 
climate change proceeds slower. CWCs at these sites are possibly 
compensated for increased metabolic demand in high temperatures 
by current-driven high food supply. Further slowing (Boers, 2021) or 
eastward movement (Matos et al., 2015) of the Gulf Stream may tip 
this delicate balance.

It is unknown whether climate corridors represented by the cli-
mate velocity trajectories will match dispersal corridors. That is, will 
larvae be able to track the lines in Figure 12b at sufficient speeds 
to allow recruitment to more accommodating habitat, or will the 
western-most populations face extirpation? Particle release models 
of the hexactinellid sponge Vazella pourtalesii, which commonly co-
occurs with L. pertusa, suggest that larval exchange may be partially 
split among the eastern Blake Plateau and the shallower sites on the 
upper shelf (Wang et al., 2021). However, genetic evidence indicates 
that L. pertusa populations on the Blake Plateau are mixed (Morrison 
et al.,  2011), suggesting connectivity whereas Northeast Atlantic 
populations appear to recruit locally with differentiation apparent 
between certain sub-populations (e.g., fjords vs. offshore banks; Le 
Goff-Vitry et al.,  2004). Larval dispersal models incorporating re-
alistic ontogenetic behaviors have shown the connection between 
Lophelia reefs and oil rigs in the North Sea (Henry et al., 2018), and 
may be of use in describing connections between CWC habitat in 
the SEUS. If there is indeed genetic exchange between populations 
and a spatial gradient in the magnitude of climate change, the east-
ern Blake Plateau reefs meet both assumptions of the “deep reef 
refuge hypothesis” that posits mesophotic coral ecosystems can be 
larval sources for shallow reefs (Bongaerts et al., 2010), suggesting 
the potential for an analogous process between CWC habitats sep-
arated by depth. Further studies of community similarity and iden-
tification of distinct faunal assemblages (e.g. Murillo et al.,  2018) 
between reefs in the region could also provide further tests of our 
hypothesized deep reef refuges and the utility of this framework in 
the deep ocean.

Our notable findings of potential climate refugia on the east-
ern Blake Plateau warrant additional protections including the ex-
tension of the HAPC to unprotected mound features (Figure 1), to 
prevent damaging these valuable ecosystems with bottom-contact 
fishing gear. Our study also highlights the utility of regional models 
in refining habitat suitability projections from coarser models (e.g., 
Davies et al., 2008; Morato et al., 2020), and of using multiple cli-
mate scenarios rather than a single business-as-usual scenario that 
is unlikely to occur (Burgess et al., 2022; Meinshausen et al., 2022). 
Indeed, visual comparison of our model outputs with those from 
Morato et al. (2020) suggest that more of the eastern Blake Plateau 
is within the current climatic niche of L. pertusa (Figure S3.11), which 
may also be due in part to our inclusion of additional occurrence 

 13652486, 2022, 23, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16415 by T

em
ple U

niversity School O
f L

a, W
iley O

nline L
ibrary on [03/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7121GASBARRO et al.

locations. Our results corroborate their findings that a business-as-
usual scenario (e.g., RCP 8.5 or SSP 5-8.5) would lead to precipitous 
declines in area on the Blake Plateau that L. pertusa is likely to oc-
cupy. We hope that this iterative refinement of model predictions 
continues as the spatiotemporal resolution of both climatic and map-
ping data increases, potentially revealing more localized refugia and 
aiding in conservation and exploration of the seafloor. Ultimately, 
this will lead to better accounting of the ecosystem services and vul-
nerable marine ecosystems both in US waters and other exclusive 
economic zones. Despite limited evidence that active restoration of 
CWC habitats is possible (Montseny et al., 2021), our results suggest 
that sharply curtailing greenhouse gas emissions is the only reason-
able way in which the extent and health of these ecosystems will be 
maintained into the 22nd century.
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