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Improved Prognosis of Treatment Failure in Cervical Cancer
with Nontumor PET/CT Radiomics

Tahir I. Yusufaly', Jingjing Zou?, Tyler J. Nelson®, Casey W. Williamson *, Aaron Simon®*, Meenakshi Singhal®,
Hannah Liu® , Hank Wong3 , Cheryl C. Saenz’, Jyoti Mayadev3’4, Michael T. McHale’, Catheryn M. Yashar4,
Ramez Eskander’, Andrew Sharabi’*, Carl K. Hoh®, Sebastian Obrzut®, and Loren K. Mell**

!Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore,
Maryland; *Department of Family Medicine and Public Health and Department of Mathematics, University of California San Diego,
La Jolla, California; >Center for Precision Radiation Medicine, La Jolla, California; *Department of Radiation Medicine and Applied
Sciences, University of California San Diego, La Jolla, California; > Department of Obstetrics, Gynecology and Reproductive Sciences,
Division of Gynecologic Oncology, University of California San Diego, La Jolla, California; and ®Department of Radiology, Division
of Nuclear Medicine, University of California San Diego, La Jolla, California

Radiomics has been applied to predict recurrence in several disease
sites, but current approaches are typically restricted to analyzing
tumor features, neglecting nontumor information in the rest of the
body. The purpose of this work was to develop and validate a model
incorporating nontumor radiomics, including whole-body features, to
predict treatment outcomes in patients with previously untreated
locoregionally advanced cervical cancer. Methods: We analyzed 127
cervical cancer patients treated definitively with chemoradiotherapy
and intracavitary brachytherapy. All patients underwent pretreatment
whole-body '®8F-FDG PET/CT. To quantify effects due to the tumor
itself, the gross tumor volume (GTV) was directly contoured on the
PET/CT image. Meanwhile, to quantify effects arising from the rest of
the body, the planning target volume (PTV) was deformably registered
from each planning CT to the PET/CT scan, and a semiautomated
approach combining seed-growing and manual contour review gener-
ated whole-body muscle, bone, and fat segmentations on each PET/
CT image. A total of 965 radiomic features were extracted for GTV,
PTV, muscle, bone, and fat. Ninety-five patients were used to train a
Cox model of disease recurrence including both radiomic and clinical
features (age, stage, tumor grade, histology, and baseline complete
blood cell counts), using bagging and split-sample-validation for fea-
ture reduction and model selection. To further avoid overfitting, the
resulting models were tested for generalization on the remaining 32
patients, by calculating a risk score based on Cox regression and
evaluating the c-index (c-index > 0.5 indicates predictive power).
Results: Optimal performance was seen in a Cox model including 1
clinical biomarker (whether or not a tumor was stage IlI-IVA), 2 GTV
radiomic biomarkers (PET gray-level size-zone matrix small area low
gray level emphasis and zone entropy), 1 PTV radiomic biomarker
(major axis length), and 1 whole-body radiomic biomarker (CT bone
root mean square). In particular, stratification into high- and low-risk
groups, based on the linear risk score from this Cox model, resulted in
a hazard ratio of 0.019 (95% Cl, 0.004, 0.082), an improvement over
stratification based on clinical stage alone, which had a hazard ratio of
0.36 (95% Cl, 0.16, 0.83). Conclusion: Incorporating nontumor radio-
mic biomarkers can improve the performance of prognostic models
compared with using only clinical and tumor radiomic biomarkers.
Future work should look to further test these models in larger, multiin-
stitutional cohorts.
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deiomics is the application of machine learning methods to
extract clinically useful information from medical imaging datasets,
with an emphasis on systematic, high-throughput mining of “big
data” (I/—4). Radiomics classifiers have been previously found to
enhance prognostic modeling for lung (5,6) and head and neck (7,8)
cancers. Recently, this approach has also been applied to cervical
cancer, where it has been observed that various radiomic features of
the tumor periphery and vascular invasion from PET/MRI are prog-
nostic for locoregional recurrence (9-/7). However, PET/MRI
machines are not always accessible, particularly in underresourced
settings, compared with more established PET/CT techniques (/6).

In addition, radiomic analyses in oncology have investigated the
predictive information encoded in tumor features, whereas nontumor
features, particularly those related to whole-body structures such as
bone, bone marrow, fat, muscle, and other organs, have been less
studied, although it is worth mentioning a notable recent exception
(19), where PET bone marrow features predicted treatment outcome
in locally advanced cervical cancer. More generally, such whole-
body features may be associated with immune system function,
thereby influencing cancer outcomes (20,21). For example, sarcope-
nia is associated with the release of inflammatory cytokines, such as
tumor necrosis factor and interleukin-6 (22), and is a putative
marker of disease severity and predictor of outcomes in women
with cancer (23,24). Along the same lines, obesity and inflamed adi-
pose tissue are known to impact systemic inflammatory markers and
alter the tumor microenvironment (25). Such observations indicate
the potential of whole-body imaging, and more generally nontumor
features, to provide additional prognostic information beyond that
available from tumor features alone. Whole-body PET/CT, with its
relatively low cost and widespread availability, is an example of an
imaging modality that could provide such information in a cost-
effective manner.

Presently, risk-stratification in cervical cancer predominantly
depends on clinical examination and standard imaging evaluations.
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Treatment failures are common, particularly in patients with loco-
regionally advanced disease, where rates of disease progression
may be 30% or more (26). Improved methods to risk-stratify
patients with cervical cancer are needed, to appropriately select
patients for intensive treatment approaches and identify patients
who may selectively benefit from novel therapeutic strategies,
such as immunotherapy (27). We therefore sought to determine
whether nontumor radiomic features associated with treatment out-
comes could be identified in cervical cancer patients undergoing
treatment with chemoradiotherapy and imaged using whole-body
PET/CT.

MATERIALS AND METHODS

Study Design, Population, and Sampling Methods

The University of California San Diego institutional review board
approved this retrospective cohort study and the requirement to obtain
informed consent was waived. We initially identified 245 patients with
newly diagnosed, previously untreated, biopsy-proven locoregionally
advanced (stage IB-IVA) carcinoma of the cervix treated with chemo-
radiotherapy at our institution between April 2006 and September
2019. We included patients who underwent pretreatment 'SF-FDG
PET/CT (PET/CT) and treatment with intensity-modulated radiation
therapy (IMRT) followed by intracavitary brachytherapy, resulting in
a final cohort of 127 patients (Fig. 1).

The 127-patient cohort was divided into a training set of 95 patients
(75%) and a test set of 32 patients (25%), with 23 and 7 events,
respectively. The choice of a 75-25 split was made on the basis of a
desire to maintain a sufficient number of events in the training set to
be able to adequately train radiomics-based predictors while still keep-
ing enough events in the test set to validate the models. It is important
to note that this choice is somewhat arbitrary and, therefore, any con-
clusions made from model training and validation must be carefully
assessed for robustness using extensive bootstrap resampling methods.

Model training and validation consisted of 4 steps region-of-interest
(ROI) definition and feature extraction in the entire cohort, identification

of robust features in the training set, forward stepwise feature selection
from the subset of robust features, and model validation based on com-
parison of c-indices in the training set and test set. The primary outcome
was time from diagnosis to first instance of locoregional or distant can-
cer recurrence, or censoring, whichever occurred first.

PET/CT Imaging Methods

The pretreatment PET/CT images were acquired on analog Discov-
ery (GE Healthcare) machines, with CT images constructed using fil-
tered backprojection reconstruction for 512 X 512 X 1 voxels and
PET images constructed with 1 of 2 settings: ordered-subset expecta-
tion maximization (OSEM) reconstruction, with 20 subsets and 2 itera-
tions, using a 4.0-mm gaussian filter cutoff, a 128 X 128 matrix, and a
lutetium-yttrium oxyorthosilicate (LYSO) crystal; or OSEM recon-
struction with time-of-flight measurements and point-spread function
modeling (VUE Point FX; GE Healthcare), with 24 subsets and 2 iter-
ations, using a 5.0-mm gaussian filter cutoff, a 192 X 192 matrix, a
9 X 6 LYSO crystal, and Sharp iterative reconstruction quantitation.

ROI Definitions

We generated ROI segmentations using the workflow illustrated in
Figure 1. Three clinical experts manually contoured the gross tumor
volume (GTV) for each patient based on the presence of focal hyper-
metabolic activity within the cervix as well as CT-based anatomic evi-
dence of the primary mass lesion. Grossly involved lymph nodes were
not included in the GTV for this study. Additionally, a planning target
volume (PTV) consisting of the gross tumor, cervix, uterus, parame-
tria, and pelvic lymph nodes, with a 5- to 15-mm planning margin,
were defined on the simulation CT scan by the treating radiation
oncologist (5 different radiation oncologists in total), then registered
to the whole-body PET/CT using deformable image registration imple-
mented in MIM Maestro (MIM Software Inc.) (28).

For whole-body ROI segmentations, we used a semiautomated ap-
proach combining seed-growing (29) and manual editing for muscle
contours (Fig. 2). Seed-growing settings were defined as follows: bone —
lower bound: 100 Hounsfield units (HU), upper bound: 1,129 HU, tendril
diameter: 1 cm, filling level: none; fat — lower
bound: —157 HU, upper bound: —123 HU,

127 cervical cancer
patients treated
with IMRT + brachy
chemoradiotherapy

N

Whole-body + Planning
PET/CT CT w/PTV
Seed-growing Manual Deformable
autosegmentation GTV image
w/manual refinement contouring registration

— T =

Whole-body
PET/CT w/muscle,
bone, fat, PTV and

GTV ROIs

Radiomic feature extraction

tendril diameter: 3 cm, filling level: medium;
muscle — lower bound: —23 HU, upper bound:
142 HU, tendril diameter: 3 cm, filling level:
medium. Additionally, to differentiate skeletal
muscle from other smooth or cardiac muscle,
further manual editing of the muscle contour
was performed. To do this, an exclusion region
was generated consisting of internal organs
interior to the rib cage and body wall, extend-
ing craniocaudally from the trachea to the
vagina, and laterally to encompass the breasts
(and implants, if present), lungs, and mediasti-
nal contents at the thoracic level, the abdominal
organs at the abdominal level, and the repro-
ductive organs at the pelvic level. The psoas
muscles were included in the muscle volume
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rather than in the exclusion region.

Feature Extraction

Radiomics features were extracted using the
PyRadiomics (30) software package (version
3.0). For each of the 5 structures (GTV, PTV,

bones, muscle, and fat), we calculated all non-

FIGURE 1.

1088

Workflow for patient sampling, segmentation, and extraction of high-throughput radio-
mic features for downstream analysis. BMI = body mass index; Brachy = Brachytherapy; IMRT =
intensity-modulated radiation therapy; PET/CT = '®F-FDG PET/CT; ROI: region of interest.

redundant features available in PyRadiomics.
PyRadiomics can calculate up to 111 features
for a given contour and image (17 shape,
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features that were significantly associated
with recurrence. Feature reduction was acc-
omplished through a “bagging” procedure
(36). Each bag consisted of a random subset
of 57 patients from the training set, with the
“out-of-bag” sample consisting of the remain-
ing 38 patients from the training set. For each
of the 974 features, we used the bagged
subset to train a univariate Cox proportional
hazards model, with a single regression coef-
ficient. This process was repeated for 1,000
different bagging subsets, resulting in a 974 X
1,000 matrix of feature coefficients. From
this matrix, 99% ClIs for each of the 974
coefficients were computed. A feature was
defined as robust if the 99% CI excluded
zero, indicating a statistically significant as-

Muscle

FIGURE 2. Sample output from autosegmentation of whole-body bone, fat, and muscle contours

(with manual muscle contour refinement).

19 first-order, 24 gray level correlation matrix [GLCM], 16 gray level
run-length matrix [GLRLM], 16 gray level size-zone matrix [GLSZM],
14 gray level difference matrix [GLDM], 5 neighboring gray tone dif-
ference matrix [NGTDM]). Of these, 4 shape features can be excluded
for redundancy reasons: voxel volume, which is just an approximation
of mesh volume, and compactness 1, compactness 2 and spheric dispro-
portion, all of which are completely determined by sphericity. Two
first-order features can similarly be ignored: total energy, which is
completely determined by the energy and the mesh volume, and the
SD, which is just the square root of the variance. Finally, 2 GLCM fea-
tures, dissimilarity and homogeneity 2, are likewise deprecated as they
are equal to the difference average and inverse difference moment,
respectively.

These redundancy restrictions result in 193 total features per struc-
ture, including 13 shape features and 90 each of CT-based and PET-
based intensity features (17 first-order, 22 GLCM, 16 GLRLM, 16
GLSZM, 14 GLDM, 5 NGTDM), resulting in 965 radiomic features.
All CT images were resampled, using B-spline interpolation (the
default for PyRadiomics), to a 0.98 X 0.98 X 2.5 mm resolution, and
all PET images were resampled to a 5.47 X 5.47 X 3.27 mm resolu-
tion, based on the lowest resolutions of PET and CT images in the data-
set. Radiomic features were extracted using a 25 HU fixed bin width
for CT and a 0.5 SUV fixed bin width for PET, based on recommenda-
tions from previous radiomic studies (3/-34). Notably, choosing the
highest resolution PET and CT dimensions results in anisotropic vox-
els, which previous studies have shown can influence some features,
particularly those related to texture matrices (35). Future work system-
atically assessing how results change with voxel geometry, as well as
with use of alternative spline interpolation schemes, is merited. Never-
theless, to the extent that using a consistent choice of settings identifies
robust predictors, any findings from this study remain valuable and
accessible to the broader community, as long as users make sure to
exactly reproduce the extraction settings that are used here.

We also extracted 9 baseline clinical features: age at diagnosis (y),
body mass index (kg/m?), tumor histopathology (adenocarcinoma vs.
squamous cell carcinoma), stage (I-II vs. III-IVA), and baseline com-
plete blood counts (white blood cells [k/wL], neutrophils [k/wL],
hemoglobin [g/dL], and platelets [k/pL]), resulting in 974 candidate
features for prediction.

Feature Reduction
To prevent model overfitting and numeric instability due to noise,
we first sought to confine our initial set of 974 features to a subset of

PET/CT CervicaL CANCER RADIOMICS  *

sociation with outcome, for a P value cutoff
of 0.01. This process resulted in a final set
of robust features (hereafter, candidate bio-
markers) from the initial feature set. A table
of univariate hazard ratios and Cls resulting from this procedure is
shown in the Supplemental Table 1 (supplemental materials are avail-
able at http://jnm.snmjournals.org), for all the clinical features as well
as for all robust radiomic biomarkers.

TABLE 1
Sample Characteristics for Training and Test Sets

Characteristic Training set Test set
n (no. of events) 95 (23) 32 (7)
Stage (n)
1A 2 2%) 0
B 23 (24%) 10 (31%)
A 7 (7%) 3 (9%)
1B 32 (33%) 9 (28%)
A 3 (8%) 0
B 16 (17%) 5 (16%)
Inc 6 (6%) 2 (6%)
IVA 6 (6%) 1 (4%)
VB 0 2 (6%)
Histology (n)
Adenocarcinoma 3 (24%) 12 (38%)
Squamous carcinoma 2 (76%) 20 (62%)
Clinical features*
Age (y) 50.6 (13.7) 49.0 (12.9)
BMI (kg/m?) 29.0 (6.5) 28.3 (6.8)
Baseline WBC (k/pL) 8.23 (3.26)  7.98 (3.46)
Baseline ANC (k/pL) 5.39 (2.75) 5.45 (3.17)
Baseline hemoglobin (g/dL) 11.6 (1.8) 11.3 (1.5)
Baseline platelet count (k/uL) 288 (79) 279 (109)

*Data for clinical features are mean, with SD in parentheses.
BMI = body mass index; WBC = white blood cell count;
ANC = absolute neutrophil count.
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FIGURE 3. Bootstrap averaged out-of-bag (OOB) c-indices during
model training, as a function of the number of biomarkers successively
added in the forward stepwise selection. Data are shown for selection on
only nonradiomic biomarkers (there is only 1, stage, so the stepwise selec-
tion trivially stops after 1 round), selection on stage and GTV radiomic bio-
markers, and selection on all biomarkers. As the pool of biomarkers
available for selection increases, the average OOB c-index at each round
likewise increases, and the stepwise selection takes more rounds to reach
an optimum. These results suggest that tumor radiomic information, as
encoded in the GTV features, adds predictive power beyond that available
with just TNM staging, and that off-tumor radiomic information, as
encoded in all the other non-GTV features, further adds predictive power
beyond that.

Forward Stepwise Feature Selection and Final Model Selection
and Validation

We next sought to identify an optimal subset of candidate biomarkers
to include as variables in a final Cox model. Potential model variables
were selected from the candidate biomarkers using forward stepwise
selection. We ran 100 split-sample validations for a model that included
a candidate biomarker that we were considering adding to our model.
We generated the corresponding 95% CI for each of the model coeffi-
cients, as well as the corresponding average out-of-bag c-indices. Addi-
tional biomarkers were included in the final model, if they increased the
out-of-bag c-index while also maintaining model stability (i.e., the 95%
CI for the coefficient estimates for all the model covariates excluded 0).
This process was iteratively repeated until either the c-index peaked or
there were no more biomarkers that could be stably added. To isolate the
effects of tumor radiomic features, and thereby assess the added value of
nontumor radiomic information, we repeated the stepwise selection con-
sidering only clinical and GTV radiomic biomarkers.

Lastly, a Cox model was trained on the entire (n = 95) training set
using the subset of optimal biomarkers selected on each round of for-
ward stepwise selection and evaluated on the unseen test set (n = 32)
to test for generalization and overfitting, based on the c-index. To esti-
mate the uncertainty of the c-index, we generated 100 bootstrap resam-
ples each on both the training and the test sets. The likelihood ratio for
goodness-of-fit while accounting for Bonferroni multiple-hypothesis-
testing corrections as well as the proportional hazards assumption
were both tested using the package “survival” (version 3.2-3) in R
(R Core Team and R Project for Statistical Computing; www.r-project.
org) (37). All P values were 2-sided unless otherwise indicated.

RESULTS

Sample characteristics are given in Table 1. The median follow-
up time was 2.12 y in the training set and 2.42 y in the test set.

Following our feature reduction process, the final feature set in-
cluded 42 candidate biomarkers: 1 clinical biomarker (stage III-IVA
vs. I-II), 9 PTV radiomic biomarkers (6 shape, 1 CT-based, 2 PET-
based), 13 GTV radiomic biomarkers (1 shape, 1 CT-based, 11 PET-
based), 5 muscle radiomic biomarkers (3 shape, 2 CT-based), 10
bone radiomic biomarkers (8 CT-based, 2 PET-based), and 4 fat
radiomic biomarkers (1 shape, 3 CT-based). Supplemental Figure
1 shows a hierarchical clustering dendrogram and labeled heat
map of these biomarkers, based on the cosine similarity distance,
indicating a high degree of collinearity and redundancy.

The forward stepwise selection process resulted in an out-
of-bag c-index that peaked after 5 rounds of feature addition, as
shown in Figure 3. Furthermore, comparison with the correspond-
ing stepwise selection using only the stage and GTV radiomic bio-
markers demonstrated that the prognostic value from nontumor
radiomics was additive to tumor radiomics, as this reduced step-
wise selection peaked after only 3 rounds and at each round had
an out-of-bag c-index consistently lower than the corresponding
c-index that could be obtained when including all biomarkers.

As shown in Figure 4, bootstrap resampling to estimate the
c-index distributions indicated that the 95% ClIs for both the train-
ing- and the test-set c-indices overlapped at all rounds of stepwise
selection. However, it is imperative to note that the Cls, particu-
larly for the test set, are quite substantial due to the small number
of events.

The resulting 5 biomarkers in the model are a categoric bio-
marker that is 0 if the disease is stage I-II and 1 if it is stage III-
IVA (mean: 0.32, SD: 0.47); PTV Major Axis Length (mean:

206 mm, SD: 46 mm); CT bone root mean
square (mean: 1,394.5 HU, SD: 97.5 HU);

PET GTV GLSZM Small Area Low gray

. .
06| i

< .

¥

Sos|

® Test

& Train

® Test

@ Train

Level Emphasis, hereafter SALGLE (mean:
0.045, SD: 0.046); and PET GTV GLSZM
Zone Entropy (mean: 5.16, SD: 1.09). Re-
assuringly, when the stepwise selection is
repeated considering only the subset of
stage and GTV biomarkers, the resulting 3
biomarkers that emerge are the same cate-

® Test

1

Round of stepwise selection Round of stepwise selection

2 3 4 L]
Round of stepwise selection

goric stage biomarker and 2 PET GTV

FIGURE 4. 95% Cils for c-index estimates, on both training and test set data, as a function of the
number of features successively added in the forward stepwise selection. Results are shown for
stepwise selection with stage only (A), stage and GTV biomarkers (B), and all biomarkers (C). The c-
index distributions, from which the 95% CI can be determined, are calculated by bootstrap resam-
pling of both the train and the test data. Circular points indicate median values, and color coded
bounds indicate upper and lower Cl limits, with green corresponding to results for the training set

and red corresponding to results for the test set.
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GLSZM biomarkers that are found in the
full stepwise selection. Model estimates are
displayed in Table 2. The likelihood ratio
for the Cox model using all 5 biomarkers is
1.0E—05, whereas for the Cox model using
only stage and the 2 GTV biomarkers it
is 3.8E—04, both indicating statistically
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TABLE 2
Cox Model Hazard Ratio Estimates

Biomarker

Hazard ratio (95% Cl)

P (coefficients) P (PH assumption)

Optimal 5-biomarker model*
Stage -1V (vs. I-1)
CT PTV major axis length
CT bone root mean square
PET GTV GLSZM SALGLE
PET GTV GLSZM zone entropy
3-biomarker model®
Stage -1V (vs. I-l)
PET GTV GLSZM SALGLE
PET GTV GLSZM zone entropy

1.65 (1.04, 3.23)
1.97 (1.29, 3.33)
3.39 (1.57, 12.55)
0.15 (0.01, 0.56)
0.38 (0.10, 0.91)

2.01 (1.37, 3.28)
0.18 (0.04, 0.48)
0.54 (0.24, 0.99)

<0.01 0.85
<0.01 0.02
<0.01 0.31
<0.01 0.07
<0.01 0.06
<0.01 0.87
<0.01 0.11
<0.01 0.12

*Cox model hazard ratio estimates from the training set, for the optimal 5-biomarker model, for the endpoint of disease recurrence,
along with P values of the coefficients (all less than 0.01), as well as P values testing the proportional hazards assumption (all greater than

0.01). All model inputs were normalized to the training set SD.

*Corresponding estimates for the 3-biomarker model that results when only considering stage and GTV biomarkers during stepwise

selection.
PH = proportional hazards.

significant goodness-of-fit even when accounting for Bonferroni
multiple-hypothesis-testing corrections. All variables satisfied the
proportional hazards assumption (P > 0.01), and a 1-way ANOVA
test (Supplemental Table 2) indicated that none of the selected
biomarkers have a statistically significant dependence on acquisi-
tion mode or interrater PTV and GTV segmentation variability
(P> 0.05).

The radiomics-based Cox model demonstrates great potential
for prognosis and risk stratification, as demonstrated by the results

1.0

e
)

Sensitivity
o
o

.
n

< All

Stage+GTV - Stage

0 0.2 0.4 0.6 1.0

1 - specificity

0.8

FIGURE 5. Two-year receiver-operating-characteristic curve for model
based on stage only, stage + GTV radiomic biomarkers, and all bio-
markers, evaluated on the entire 127-patient cohort. Solid black line corre-
sponds to an area under the curve of 0.5, indicating no predictive
performance.

PET/CT CervicaL CANCER RADIOMICS  *

shown in Figures 5 and 6. The predicted receiver-operating-char-
acteristic curve for 2-y cancer recurrence, for Cox models both
with and without nontumor radiomic biomarkers, lies above the
diagonal, and the Kaplan—Meier curves stratifying patients into
high- and low-risk groups yields improved hazard ratio estimates
compared with stratification based on early- and late-stage groups.

DISCUSSION

Our results suggest that a radiomics model incorporating nontu-
mor radiomic biomarkers leads to improved prognostic modeling
of cancer recurrence, compared with using clinical and tumor
radiomic biomarkers alone. A novel aspect of our study is the
inclusion of semiautomatable whole-body radiomic features as
candidate biomarkers for outcome prediction. In addition, whereas
much work has been done in identifying CT radiomic biomarkers,
the incorporation of PET radiomics remains relatively challenging
(38—40), due in part to issues related to feature reproducibility (47)
and optimal feature selection in the presence of highly redundant
features (42). The approach we developed here has identified 2
PET-based biomarkers of the GTV that seem to be robustly corre-
lated to outcome.

Limitations of this study include the single-institution data
source and the size of our cohort, with relatively few total recur-
rence events. Despite our extensive efforts to maintain quality con-
trol (Supplemental Table 3 shows the calculated radiomics quality
score (2) for this study) and to cull spurious radiomic features,
given the persistent possibility of model overfitting, future work to
assess the prognostic power of our results on a larger multiinstitu-
tional cohort is needed to validate the particular predictive model
developed in this study. Second, to confine the initial candidate
feature set, we focused on particular whole-body features related
to bone, fat, and muscle, reasoning that these metrics could reflect
variation in patients’ global inflammatory state. Further analysis to
study radiomic features of other organs, including other reticuloen-
dothelial organs (liver, spleen) would be of interest. Further

Yusufaly et al. 1091
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FIGURE 6. (A) Kaplan—Meier curve based on stratification into early- and late-stage groups. We also

list a hazard ratio (HR), with 95% Cl and logrank P value. (B) Corresponding Kaplan—Meier curve show-
ing stratification into high- and low-risk groups, based on a stage + GTV radiomic risk score cutoff. The
cutoff that minimizes the P value, by coincidence, happens to be at a value such that the number of
data points in the high- and low-risk groups equals the corresponding number of late- and early-stage
cases. (C) Corresponding Kaplan—Meier curve based on the risk score that fully incorporates stage,
GTV radiomic, and non-GTV radiomic biomarkers. The cutoff is chosen so that the number of data
points in the high- and low-risk groups equals the corresponding number of late- and early-stage cases.
(D) Kaplan—-Meier stratification with the model in C but with the cutoff chosen to minimize the P value.

extensions to this study could include augmenting radiomic infor-
mation with additional molecular-level details, as in radiogenom-
ics (43,44), or more detailed examination of the 3D spatial dose
distribution (45).

The radiomic predictors we have identified in this work all dem-
onstrate relationships to clinically interpretable physiologic infor-
mation as identified in previous studies. The PTV Major Axis
Length is probably the easiest to understand, being approximately
a higher resolution version of tumor stage. A 1-way ANOVA test
found that early- and late-stage patients had different mean values
of this metric with a P value < 1E—05.

We found 2 PET-based metrics, namely the GTV GLSZM
SALGLE, which measures the abundance of small-volume, low-
activity “patches,” and the GTV GLSZM zone entropy (46), a
measure of textural heterogeneity known to be predictive of out-
come. Interestingly, these 2 metrics have a significant, but not per-
fect, negative correlation (p = —0.76). This strong association
suggests that the SALGLE combined with the zone entropy cap-
ture certain specific aspects of metabolic heterogeneity in and
around the tumor microenvironment that are most directly predic-
tive of outcome. Encouragingly, these textural metrics are also
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similar to a class of PET/MRI radiomic
biomarkers that were recently identified
(15) and externally validated (/6) by Lucia
et al. More broadly, this finding is consis-
tent with the established result, both in
radiomics and in the oncology community
more generally, that metabolic heterogene-
ity is predictive of cancer recurrence
(10,47-49).

The final predictor, the CT Bone Root
Mean Square, is probably the most novel
one. We found that although age and skele-
tal muscle volume, as candidate prognostic
factors, did not withstand our feature selec-
tion algorithm, both were strongly associated
with the key bone radiomic metric that did
come through (CT Bone Root Mean
Square). This suggests that the Root Mean
Square CT Bone Number is associated
with age-related degeneration of skeletal
muscle, as occurs in sarcopenia, a known
correlate with inflammation (50,517), which
in turn has been shown to be predictive of
outcome in locally advanced cervical can-
cer when combined with PET metrics (79).
In fact, multiple studies have found that
bone and muscle undergo endocrine cross-
talk (52-54), leading some to even suggest
that sarcopenia in skeletal muscle and
osteoporosis in bones might just be 2 sides
of the same underlying condition (55).

CONCLUSION

In summary, we found that incorporating
radiomic features, including both tumor
and nontumor metrics, improved prognos-
tic modeling of disease recurrence in cervi-
cal cancer patients compared with using
clinical information alone.

QUESTION: Can radiomic models that incorporate pretreatment
nontumor PET/CT features improve the prognosis of treatment
failure in locoregionally advanced cervical cancer patients,
compared with models that use only clinical variables or tumor

radiomic features?

PERTINENT FINDINGS: In a retrospective analysis of a
single-institutional cohort of 127 patients, optimal performance was
seen in a Cox model including 1 clinical staging biomarker, 1 shape
feature of the PTV, 2 PET-based features of the GTV, and 1 CT-based
feature of whole-body bone segmentation. Stratification into

high- and low-risk groups, based on the linear risk score from this
Cox model, resulted in a statistically significant improvement in the
hazard ratio relative to stratification based on clinical stage alone.

IMPLICATIONS FOR PATIENT CARE: These findings indicate
that incorporating nontumor PET/CT radiomic information can
improve prognosis of cervical cancer patients undergoing
standard-of-care treatment and also identify patients who may
benefit from alternative or more intensive treatment regimens.
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