
UC Berkeley
Research Reports

Title
Development of A Path Flow Estimator for Inferring Steady-State and Time-Dependent
Origin-Destination Trip Matrices

Permalink
https://escholarship.org/uc/item/3nr033sc

Authors
Zhang, Michael
Nie, Yu
Shen, Wei
et al.

Publication Date
2008-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3nr033sc
https://escholarship.org/uc/item/3nr033sc#author
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

June 2008

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation, and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Final Report for Task Order 5502

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Development of A Path Flow Estimator for
Inferring Steady-State and Time-Dependent
Origin-Destination Trip Matrices

UCB-ITS-PRR-2008-10
California PATH Research Report

Michael Zhang, Yu Nie, Wei Shen, Ming S. Lee,
Sarawut Jansuwan, Piya Chootinan,
Surachet Pravinvongvuth, Anthony Chen, Will W. Recker

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

Development of A Path Flow Estimator for Inferring

Steady-State and Time-Dependent Origin-Destination

Trip Matrices

Michael Zhang, Yu Nie and Wei Shen
Department of Civil & Environmental Engineering

University of California, Davis

Ming S. Lee, Sarawut Jansuwan, Piya Chootinan,
Surachet Pravinvongvuth and Anthony Chen

Department of Civil and Environmental Engineering
Utah State University

Will W. Recker

Department of Civil and Environmental Engineering
University of California, Irvine

Final Report for TO 5502

ABSTRACT

Reliable origin/destination (O-D) data are critical to many applications in

transportation planning, design and operations. Because of the high costs of and

challenges in obtaining reliable O-D trip matrices from surveys or other direct sampling

methods, estimating O-D trip tables from a readily available data source, traffic counts,

provides an attractive, economical alternative. This project investigates one such an

estimation method and implements it in a user-friendly software tool called Visual PFE

TD. The developed O-D estimation tool can be used to obtain both static and dynamic

O-D trip tables for traffic simulation studies, project evaluations, and transportation

planning in a more streamlined and less time-consuming manner. For example, it has

been used to obtain an initial seed matrix for Paramics' O-D estimator to speed up the

latter’s O-D estimation process.

A logit path flow estimator (LPFE) originally proposed by Michael Bell (1995) is

adopted in this research for inferring both steady and time-dependent O-D trip tables.

LPFE is chosen because: 1) it incorporates the logit-based route choice model while

avoiding several difficulties encountered in the conventional bi-level formulation; 2) it

avoids the difficult dynamic traffic assignment problem through decomposes the dynamic

O-D estimation problem into a sequence of static problems, yet takes into account of

queuing by linking the static problems across time with residual queues which can be

carried over from one period to subsequent periods; and finally, 3) it has been validated

in a number of scenarios as a potential tool to determine O-D flows and path travel times

in various transportation networks.

In this research, we extended the original LPFE formulation and improved the

efficiency of solution algorithms, implemented both steady-state and time-dependent

LPFE in an object-oriented programming (OOP) framework, tested the performance of

LPFE using synthetic data and quantify the accuracy and reliability of its O-D trip table

estimates. We also developed Visual PFE and Visual PFE-TD, the graphic user

interfaces (GUI) for both static and time-dependent LPFE.

Our test case studies show that LPFE is able to produce path flows and O-D travel

demands that accurately match traffic counts under the logit traffic assignment

assumption. We also found that information reflecting the spatial structure of travel

demands (e.g., a historical O-D table) is of great value to the improvement of the quality

of O-D trip estimates, and that LPFE can still produce satisfying estimates even when

traffic counts are only available on a small portion of links, as long as such structural

information is maintained in the base O-D table.

EXCUTIVE SUMMARY

This final report documents the research effort for extending and implementing the

time-dependent Logit Path Flow Estimator (TD-LPFE) and its software product: Visual

PFE TD. TD-LPFE estimates time-dependent O-D trip matrices from traffic counts and

historical O-D matrices, and Visual PFE TD provides a user friendly input-output

interface to visualize, analyze and present the estimated trip tables and related statistics

from TD-LPFE. In this research, we have

1. extended the LPFE to include measurement errors and historical O-D information

2. developed efficient, object oriented C++ codes for the TD-LPFE algorithm

3. investigated the effects of algorithm parameters, measurement errors, prior O-D

information and network topology on the performance of LPFE and TD LPFE

4. developed a user-friendly graphical user interface for LPFE and TD LPFE

5. prepared a user manual and workbook for the developed software tool

The developed software tool can easily estimate O-D trip tables of large networks in a

reasonable amount of time (in the order of minutes), and with Visual PFE TD the data

preparation and results analysis times can also be significantly reduced.

The tool is most useful for planners and traffic engineers who deal with large

networks with a coarse time-resolution (greater than 15 minutes), because of the way TD

LPFE models traffic flow (it assumes trips complete within one time interval. This is also

the main reason making TD LPFE computationally so efficient). The outputs from this

tool may not be appropriate for high resolution simulation studies that require a time

resolution less than 15 minutes. One can, however, combine this tool with O-D

estimation tools that often come with the high fidelity simulation software (such as the

O-D estimator in Paramics) to yield O-D trip tables with a higher time-resolution. Our

experience indicates that with a seed O-D provided by TD-LPFE, Paramics’s O-D

estimator can obtain a good O-D trip table(s) in a much shorter time than with a seed O-D

obtained from a planning model.

 The above limitation of TD LPFE can only be removed through the incorporation

of a finer traffic flow model that tracks the growth and decay of vehicular queues in a

more realistic manner. But this would require a full-blown dynamic network loading

model that destroys the simple modeling structure of LPFE, which could considerably

increase the computational complexity of the estimation problem. Nevertheless, such an

approach is worth investigating because it can provide higher resolution trip matrices

(e.g., O-D trip tables in every minute) that can directly be used in micro-simulation

studies.

 Where to make traffic measurements and how many locations to make them are

also important topics that need to be addressed in future O-D estimation research. Our

investigation indicates that if chosen properly, a small set of measurements can produce

as good O-D demand estimates as a much larger set. It would therefore be of considerable

economic interest if one can develop a selection procedure that optimizes the estimation

results with a minimal set of measurements.

TABLE OF CONTENTS
Chapter 1. Introduction.. 1

Chapter 2. Related Literature ... 4

2.1 Notation and preview.. 4

2.2 Static O-D Estimation ... 6

2.3 Intersection-Oriented Dynamic O-D Estimation Models 8

2.4 Network-Oriented Dynamic O-D Estimation ... 10

2.5 Summary ... 14

Chapter 3. LPFE: Formulation and Algorithm... 15

3.1 Logit Traffic Assignment Model .. 15

3.1.1 The static case... 15

3.1.2 The time-dependent case .. 18

3.2 Logit Path Flow Estimator .. 20

3.2.1 The static case... 20

3.2.2 The time-dependent case... 21

3.2.3 Extended LPFE... 22

3.3 Solution Algorithms.. 27

3.3.1 Solve E-LPFE-SUB... 28

3.3.2 A descent direction... 32

3.3.3 Column generation .. 34

3.3.4 Time-dependent case... 35

Chapter 4. An Object-Oriented Implementation... 39

4.1 Class Hierarchy... 39

4.2 Class Description .. 42

4.3 Class Library and Its Usage .. 58

4.3.1 Use mat.lib in programming.. 58

4.3.2 A console interface... 59

Chapter 5. Visual PFE – TD: A GIS-Based Decision Support System for

Time-Dependent Origin-Destination Trip Table Estimation 61

5.1 What is Visual PFE-TD? .. 61

5.2 Key Features ... 62

5.2.1 Estimation GUI... 62

5.2.2 Network Maps ... 64

5.2.3 OD and Path Tables ... 65

5.2.4 Link Flow Scatter Plots .. 67

5.2.5 Report Document .. 68

5.2.6 Network Editing ... 69

5.2.7 Scenario Comparison .. 69

5.2.8 Windows Help .. 70

5.3 Technical Specification... 71

5.3.1 LPFE... 71

5.3.2 The ArcViewShapefile Read/Write OCX ... 72

5.3.3 ESRI MapObjects .. 74

5.3.4 FarPoint Spread .. 74

Chapter 6. Case studies .. 75

6.1 Evaluation Framework.. 75

6.2 Algorithmic Settings ... 77

6.3 The Impact of Network Topology .. 81

6.3.1 The case with a tree network ... 83

6.3.2 The case with a linear network.. 85

6.3.3 The case with a ring network... 86

6.3.4 The case with a derived general network.. 88

6.4 The Impact of Additional Inputs... 90

6.4.1 Effects of measurement location and the number of measurement

locations on estimation performance ... 91

6.4.2 The effects of historical O-D flows(50%)... 94

6.5 The effects of Measurement Errors... 96

6.5.1 Measurement errors of O-D flows.. 96

6.5.2 Measurement errors of link flows... 101

6.6 Considering Measurement Errors in LPFE... 104

6.6.1 Considering errors of the base O-D table ... 104

6.6.2 Considering errors of link measurements ... 107

6.7 The time-dependent case... 109

Chapter 7. Conclusions... 113

7.1 Major Findings Regarding the Performance of LPFE 113

7.2 Future Work .. 114

Bibliography ………………………………………………………………….. 116

Appendix I: File formats

Appendix II: Visual PFE - TD 1.0 User Manual

Appendix III: Visual PFE® 1.0 A Quick Start Tutorial

LIST OF TABLES
Table 4.1 A guideline for the selection of algorithm objects.. 59

Table 5.1 LPFE Output Text Files to Shapefiles .. 72

Table 5.2 LPFE Output Files to Spread Tables .. 74

Table 6.1 RMSE_ODs for hypothetical historical O-D flow trip tables........................... 97

Table 6.2 RMSE_Links for hypothetical measured link flows....................................... 102

LIST OF FIGURES
Figure 4.1 A class hierarchy tree .. 40

Figure 4.2 A sample C++ code using mat.lib ... 59

Figure 4.3 A example lpfe.par file .. 60

Figure 5.1 Multiple Document Interface .. 62

Figure 5.2 Algorithm Input Window .. 63

Figure 5.3 Parameter Input Window... 64

Figure 5.4 Network Map... 65

Figure 5.5 OD Table Window .. 66

Figure 5.6 Path Table Window ... 67

Figure 5.7 Scatter Plot Window.. 68

Figure 5.8 Report Window ... 69

Figure 5.9 Scenario Comparison Window.. 70

Figure 5.10 Windows Help ... 70

Figure 5.11 Visual PFE - TD Software Components ... 71

Figure 5.12 Shapefiles and Network Map Layers .. 73

Figure 5.13 Shapefiles and the Scatter Plot Layers .. 73

Figure 6.1 Evaluation framework ... 76

Figure 6.2 Yang and Meng’s network .. 78

Figure 6.3 O-D trip table... 78

Figure 6.4 Scenarios with different n (10,001.0,10,001.0 ==== znzbnε) 79

Figure 6.5 Scenarios with different ε (10,001.0,10,1000 ==== znzbnn) 80

Figure 6.6 Scenarios with different bn)10,001.0,001.0,1000(==== znzn ε 80

Figure 6.7 Scenarios with different z & zn (10,001.0,1000 === bnn ε) 81

Figure 6.8 Basic types of network topology ... 82

Figure 6.9 A tree network ... 83

Figure 6.10 True O-D trip table .. 83

Figure 6.11 Estimated O-D flow profile for the tree network .. 84

Figure 6.12 Estimated link flow profile for the tree network ... 84

Figure 6.13 A linear network .. 85

Figure 6.14 True O-D trip table .. 85

Figure 6.15 Estimated O-D flow profile for the linear network 85

Figure 6.16 Estimated link flow profile for the linear network .. 86

Figure 6.17 Ring network ... 87

Figure 6.18 True O-D trip table .. 87

Figure 6.19 Estimated O-D profile for the ring network .. 87

Figure 6.20 Estimated link flow profile for the ring network... 88

Figure 6.21 A derived general network .. 89

Figure 6.22 True O-D trip table .. 89

Figure 6.23 O-D estimation profile for the derived network .. 89

Figure 6.24 Estimated link flow profile for the derived network 90

Figure 6.25 The Dallas-Fort Worth network .. 91

Figure 6.26 TDCs for different sets of measurements .. 92

Figure 6.27 RMSE_ODs for different sets of measurements ... 93

Figure 6.28 RMSE_Links for different sets of measurements ... 93

Figure 6.29 TDCs for different link sets with and without historical O-D data 94

Figure 6.30 RMSE_ODs for different link sets with and without historical O-D data 95

Figure 6.31 RMSE_Links for different link sets with and without historical O-D data... 95

Figure 6.32 TDCs for scenarios with different historical O-D flow errors 98

Figure 6.33 RMSE_ODs for scenarios with different historical O-D flow errors............ 99

Figure 6.34 RMSE_Links for scenarios with different historical O-D flow errors 100

Figure 6.35 TDCs for scenarios with different link flow errors 102

Figure 6.36 RMSE_ODs for scenarios with different link flow errors........................... 103

Figure 6.37 RMSE_Links for scenarios with different link flow errors......................... 103

Figure 6.38 TDCs for scenarios with different settings.. 105

Figure 6.39 RMSE_ODs for scenarios with different settings 106

Figure 6.40 RMSE_Links for scenarios with different settings 107

Figure 6.41 TDCs for scenarios with different settings.. 108

Figure 6.42 RMSE_ODs for scenarios with different settings 108

Figure 6.43 RMSE_Links for scenarios with different settings 109

Figure 6.44 A time-dependent demand pattern... 110

Figure 6.45 RMSE_Links at different time intervals.. 111

Figure 6.46 RMSE_ODs at different time intervals ... 112

Figure 6.47 Accumulation and dissipation of queues on link 307 and 428.................... 112

CHAPTER 1. INTRODUCTION 1

Chapter 1. Introduction

Reliable origin/destination trip data are critical to many applications in

transportation planning, design and operations. In freeway corridor management, for

example, time-of-day ramp metering algorithms require the knowledge of

origin/destination flow fractions, and adaptive ramp control strategies often need to know

origin/destination flow in order to distribute expected flow reductions from a bottleneck

to various metered ramps upstream. Because "true" O-D data are rarely, if ever, directly

obtainable in practice, their estimation from limited observations of traffic conditions on

the network has been the subject of many research efforts. Traditionally, O-D trip

matrices are derived from household or roadside surveys. However, survey-based

approaches have two major limitations: they are labor intensive and costly to obtain, and

they often fail to capture temporal demand pattern changes. The latter is particularly

detrimental to devising effective real-time traffic management strategies for relieving

traffic congestion. These limitations of the survey-based approach have spurred a stream

of research that focused on inferring (static or dynamic) O-D matrices from traffic counts

in parts of the network. This latter approach provides a faster and cheaper alternative to

household or roadside surveys, and can produce estimates of time-dependent O-D trip

tables. It can also incorporate historical O-D trip data from other sources such as surveys

to improve its estimates.

Conventional O-D estimation methods concern only static matrices representing

O-D trips made over a relatively long time period, within which traffic condition is

assumed to be at steady-state. Accordingly, steady-state O-D matrices are estimated from

average link traffic counts of that period. Static O-D data cannot provide the temporal

variations in traffic demand within the designated analysis period, thereby not adequate

for dynamic applications such as traffic simulation, integrated control systems etc.

However, unlike its steady-state counterpart, the methods for estimating dynamic O-D

data are still in its infancy. In part this is due to the difficulty in obtaining accurate

CHAPTER 1. INTRODUCTION 2

historical dynamic O-D data. Yet to develop a reliable dynamic traffic assignment model

is a more challenging, in some sense unresolved issue. Consequently, most existing

dynamic estimation methods either focus on small networks to rule out route choices or

assume that time-dependent travel times can be obtained from a surveillance system or

from a simulation model to help “assign” traffic onto the network. Furthermore, the

introduction of the time dimension adds computational complexity to the solution of the

O-D estimation problem in real size networks.

In view of these limitations, a logit path flow estimator (LPFE) originally proposed

by Bell (Bell & Shield 1995) is adopted in this research for inferring both steady and

time-dependent O-D trip tables. LPFE is selected for several reasons. First, LPFE

incorporates the logit-based route choice model but avoids the analytical and

computational difficulties of pursuing equilibrium flow patterns by bi-level programming.

Second, LPFE decomposes the dynamic O-D estimation problem into a sequence of static

problems, and links these static problems across time with queues which can be carried

on from one period to subsequent periods. This approximation does not require any

dynamic network traffic flow/assignment model, but is still capable of capturing temporal

demand fluctuations and one of the most important dynamic traffic phenomena, queuing.

Last but not least, LPFE has been validated in a number of scenarios as a potential tool to

determine O-D flows and path travel times in various transportation networks (Bell &

Shield 1995, Bell, Shield, Busch & Kruse 1997, Bell & Grosso 1998).

In this research we

• extend the original LPFE formulation and improves the efficiency of its solution

algorithms: Bell's original LPFE assumes that link travel times are independent of

traffic volumes and all input data is free of measurement errors. Moreover, the model

does not account for historical O-D data and/or section-related measurements derived

from vehicle re-identification techniques (e.g., automatic vehicle location, video

detectors). The extended LPFE formulation proposed in this research overcomes

these limitations. Both the iterative balancing algorithm (IBA) and the method of

successive averages (MSA) are employed to solve the extended LPFE. We combine

these algorithms with a column-generation technique to avoid enumerating paths.

Heuristics are applied to accelerate the identification of the optimal path set and to

CHAPTER 1. INTRODUCTION 3

improve the overall convergence performance.

• implement both steady-state and time-dependent LPFE as well as the corresponding

logit traffic assignment models: an object-oriented programming (OOP) framework

is adopted to enhance the reusability and flexibility of computer codes. Two existing

C++ class libraries developed at UC Davis, TNM and MAT, are used as a starting

point of implementation. This reduces programming efforts because TNM contains

well-defined network objects while MAT provides supports for programming both

general and network-specific optimization problems. Our implementation consists of

17 subclasses derived from MAT.

• test and validate LPFE using synthetic and real data and quantify the accuracy and

reliability of O-D trip table estimates: various scenarios are set up to examine the

impact of 1) the choice of measurement locations, 2) additional inputs, such as

historical O-D data and subpath information obtained from section-related

measurements, 3) measurement errors, and 4) network topology. Based on numerical

experiments, guidelines are drawn for the applicability and optimal setting of LPFE

under different circumstances. Discussions on future research are also given.

• develop a graphic user interface (GUI) for LPFE: A LPFE GUI was built using

Microsoft Visual Basic and commercially available software component. The end

result, Visual PFE and Visual PFE-TD, is an integrated software suite that combines

the Path Flow Estimator (PFE) with other software components to facilitate the

estimation, visualization, and refinement of Origin-Destination (OD) trip tables with

user-friendly Graphical User Interfaces (GUI).

This report is organized into six chapters. Chapter 2 reviews the steady-state and

time-dependent O-D estimation methods. Chapter 3 introduces the mathematical

formulations and solution algorithms of the original LPFE and its extension. An

object-oriented programming framework of LPFE as well as implementation details is

provided in Chapter 4 and Chapter 5 describes the Graphic User Interface (GUI) of LPFE.

Numerical experiments are reported in Chapter 6. Finally, Chapter 7 provides

conclusions and recommendations for future research.

CHAPTER 2. LITERATURE REVIEW 4

Chapter 2. Related Literature

O-D matrix estimation methods were first developed in a static context. They

estimate “average” O-D trip rates using the average traffic counts over a relatively long

period (such as a morning or evening peak). Two problems dominate the research efforts

in the static O-D estimation: modeling traveler's route choice behavior in the presence of

congestion and ensuring a unique solution in a highly under-determined system. In the

dynamic context, existing estimation methods can be roughly categorized into two classes

based on the type of road topology they apply to: intersection-oriented and

network-oriented. Intersection-oriented methods assume the complete information for all

the origin (entry) and destination (exit) counts thus are often applied to handle isolated

intersections or a fraction of freeways.

2.1 Notation and preview
Consider a transportation network , where and),(ANG N A are the sets of

nodes and links respectively. Let R and represent the set of origins and destinations

respectively, the set of paths joining an OD pair , and a positive traffic

demand associated with O-D pair . Each directed link

S

rsK rs rsq

rs Aa∈ is associated with a

positive travel time as a convex and non-decreasing function of link flow t ax a x a .

For any path , its travel time is calculated as (where

if path k uses link , and 0 otherwise) and its flow is denoted by

k ∈ Krs
ka

rsaa
rs
k tc ,δ∑= rs

a,k 1

a frs
k . For

simplifying notation, we also use],...,,...,,[21 na xxxx=x to represent a vector of link

flows. Similarly, and c f denote vector of path travel times and flows respectively.

It is known that a stable and unique link flow pattern can be predicted from a

traffic assignment model, given appropriate assumptions on the traveller's route choice

behavior. For example, if travellers always try to minimize their own travel costs and

have perfect information, the resulting stable flow pattern is a

∗x

user equilibrium (UE)

CHAPTER 2. LITERATURE REVIEW 5

pattern. Thus a relationship between O-D trip table q and flow pattern x ∗ can be

established as follows:

 (2.1)
∑

r

∑
s

prs
a qrs x a

∗,∀a

where denotes the proportion of trips between O-D pair using link . In

matrix notation, Equation 2.1 becomes

a
rsp rs a

 (2.2)
Pq x∗

 P is termed as assignment matrix because it is determined from a traffic

assignment. If we assume the relationship depicted in Equation 2.2 holds in a real world,

q can be inferred from an observation of x (e.g., traffic counts measured at loop

detectors), denoted as . Note that we have

∗

x̄

 (2.3) x̄ x∗

where is a vector representing measurement errors. This is the basic idea of O-D

estimation from traffic counts.

Another way to relate observed link flows to O-D demands is using path flows as an

intermediate. We have the following two relationships for an equilibrium flow pattern

 : x∗

 (2.4)
∑

r

∑
s

∑
k

f rs
k rs

a,k x a
∗ ∀ ∈ A, k ∈ Krs a

 (2.5)
∑

k

f rs
k qrs ∀k ∈ Krs

or in matrix notation

 (2.6) Δf x∗

 (2.7) Mf q

O-D estimation methods based on Equations 2.6 – 2.7 are often termed as path flow

estimators (PFE).

CHAPTER 2. LITERATURE REVIEW 6

2.2 Static O-D Estimation
According to ways in which an assignment matrix is determined, static O-D

estimation methods can be classified into proportional-assignment methods and

equilibrium-assignment methods. If traffic congestion in a network is minor, i.e., travel

time is roughly independent of changes in traffic flow, the assignment matrix is assumed

to be exogenously determined and obtained by means of some proportional assignment

procedures, which can for example be a simple all-or-nothing (AON) assignment or a

more advanced stochastic assignment. The earlier research efforts based on the

proportional-assignment assumption were credited to Willumsen (1981), for introducing

the entropy maximization approach, Van Zuylen (1980) for using the concept of

minimizing information, and Cascetta (1984) for casting the problem in a generalized

least squares framework. Many researchers, such as Bell (1983, 1991a), McNeil and

Hendrickson (1985), Brennigner-Gthe et al. (1989), Lo et al. (1996), proposed

improvements and/or conducted tests along the line of proportional assignment.

However, as congestion gets heavier in the network, the proportional-assignment

assumption no longer holds. In this case the assignment matrix can no longer be

determined exogenously. Instead, a traffic assignment model has to be incorporated to

ensure that designated equilibrium conditions are satisfied for the estimated traffic flow

pattern. In other words, the estimation of the assignment matrix itself is embedded into

the O-D estimation process.

The first equilibrium-assignment O-D estimation model, due to Nguyen (1977), is to

find an O-D matrix that regenerates the observed travel costs (hence observed traffic

counts) when assigned onto the network in a user-optimal fashion. However, the solution

of Nguyen's model may not be unique since the optimization problem is not strictly

convex with respect to O-D demands. In other words, there exist many possible O-D trip

matrices that produce the same set of link flows. Consequently, a priori information,

often in the form of a target O-D table (e.g., an outdated O-D table from a survey), has to

be used to lead to a unique solution. A great deal of research work has been focused on

introducing a secondary optimization problem to incorporate such a priori information.

The O-D estimation problem thus has a natural bilevel structure, where the secondary

optimization program forms the upper level problem (leader) while the traffic assignment

CHAPTER 2. LITERATURE REVIEW 7

problem the lower level problem (follower). The objective of the secondary optimization

is either minimizing the least squares distance between the estimated and target O-D

matrices (Turnquist & Gur (1979), LeBlanc & Farhangian (1982); Sheffi(1985); Yang et

al. (1992), Yang (1995)), or maximizing an entropy function that leads to the most likely

O-D matrix (Jornsten & Nguyen (1980); Fisk & Boyce (1983); Nguyen (1984); Fisk

(1988); Yang, Sasaki, Iida & Asakura (1992)). While the above formulations used

deterministic user equilibrium conditions, Yang et al. (2001) extended the bilevel

programming formulation to include the stochastic user equilibrium (SUE). The major

drawbacks of these bilevel programming formulations, based on either UE or SUE

principles, are the inherent difficulty of obtaining global optimum, and the computational

inefficiency for large-scale networks (iteratively solve the traffic assignment problem).

Path flow estimator (PFE), in which path flows instead of O-D demands are treated

as solution variables, was introduced in order to resolve the analytical and computational

difficulties of the bilevel formulation. Sherali et al. (1994) proposed the first path flow

estimator formulated as a linear programming problem. User-equilibrium route choice

behavior is considered in the method. The path decomposition of O-D flows that

reproduce the observed link flows are directly determined by a column generation

procedure such that the resulting O-D matrix is the closest to a target one. Using a

stochastic user-equilibrium assumption, Bell (1997) extended Sherali's model to a logit

path flow estimator (LPFE) that seeks to maximize the path entropy and assign trips on

least cost paths simultaneously. LPFE relaxes the assumption that all link counts should

be available by associating each unmeasured link with an explicit capacity constraint. We

shall explore the properties of LPFE in great detail in Chapter 3. Nie and Lee (2002)

suggested replacing the column generation procedure of linear PFE (Sherali, Sivanandan

& Hobeika 1994) by a K-shortest path ranking (KSPR) algorithm that determines UE

paths (columns) exogenously. This scheme ``decouples" linear PFE into two simple and

relatively separate components. Nie, Zhang and Recker (2005) incorporated this

decoupled structure into a generalized least squares (GLS) framework to develop a GLS

path flow estimator. The method is attractive due to its computational advantage and

convenience of analyzing estimation errors. However, to determine UE paths the method

requires that all link traffic counts be available and of sufficient accuracy, which is not

CHAPTER 2. LITERATURE REVIEW 8

often realizable in real world applications.

2.3 Intersection-Oriented Dynamic O-D Estimation Models
The idea of estimating “dynamic” O-D trip tables originated from a series of

pioneering work of Cremer and Keller (1981, 1984, 1987), in which time-dependent

traffic counts were first employed to transform the underdetermined static model to an

over-determined dynamic model. The goal of this type of dynamic models are to identify

the time-varying demand split parameters (or turning proportions) that represent O-D

flows at intersections or along a small section of a freeway. In the Cremer-Keller

intersection model, the sequence of O-D flows and exit flows are assumed to be

dependent on the time-varying patterns of entry flows through a linear relationship.

Different algorithms have been proposed to solve this intersection-oriented dynamic

model. Among the competing methods are the nonrecursive approach, such as the

cross-correlation method (Cremer & Keller 1987), the constrained ordinary least squares

method (Cremer & Keller 1987, Sherali, Arora & Hobeika 1997), the iterative maximum

likelihood technique (Nihan & Davis 1989), and the fixed point method (Nihan &

Hamed 1992) on one hand, and the recursive approach, such as the method of recursive

estimation (Cremer & Keller 1987), the recursive least squares (RLS) (Nihan & Davis

1987), and the Kalman filter (Cremer & Keller 1987, Nihan & Davis 1987) on the other

hand. Nihan and Davis (1987) showed all recursive methods relate to a family of

recursive prediction error (RPE) techniques and later Nihan and Davis (1989) compared

RPE with the iterative maximum likelihood method.

Bell (1991b) made the first attempt to extend the Cremer-Nihan model on more

general networks. Two approaches are proposed to permit the distribution of travel times

to span a number of different intervals. The first approach, which is suggested to be

suitable for single intersections and small networks, assumes that travel times follow

geometrical distributions and makes use of the platoon dispersion model. The second

approach makes no specific assumption about the form of the travel time distribution thus

can be applied for larger networks such as freeway sections. Both approaches adopt a

constrained weighed least squares method and are solved sequentially.

Chang and Wu (1994) generalized Bell's model to consider vehicle travel times

between each O-D pairs more realistically. The decision parameters include not only the

CHAPTER 2. LITERATURE REVIEW 9

time-dependent O-D split parameters but also the dynamic assignment parameters. The

latter is closely related to the time-dependent link travel time and introduced to define the

proportion of the previous intervals' O-D flows that arrive at any given exits during some

future interval. The introduction of dynamic assignment parameters significantly

increases the number of state variables to be estimated. Thus, a simplification is made to

assume that all vehicles that reach exit s during time t are distributed within intervals

 , where n denotes the number of time intervals that the travel time between

O-D pair at time t will cover (If is not an integer, another interval is added to

remove rounding errors). To estimate dynamic travel time (hence generate proper

assignment factors), the authors proposed a simple two-step method based on the simple

speed-density-volume relationship. This further requires the information about mainline

traffic counts to be available. An extended Kalman filtering procedure is used to solve the

nonlinear dynamic system but no guarantee is made to satisfy the necessary constraints

on the estimated variables. The travel time computation procedure in the Chang and Wu

model seems to be too simplistic to be realistic for congested freeway corridors. Also, the

assumption that travel time between any O-D pair will not span more than two intervals

is very restrictive.

t − nrs
t

rs
t

rs nrs
t

Wu and Chang (1996) further revised their earlier model to include constraints

established through screenlines. A scrrenline is a hypothetical cut that divides the

network into two parts. The basic idea of the modified model comes from the assumption

that most vehicles from origin i , arriving at the screenline during interval , should

embark during some intervals knowable from travel time estimation. Consequently, the

fundamental measurement equation relates the screenline flows to O-D flows and time

lag factors. Since one can choose as many screenlines as possible for a given urban

network, sufficient constraints can be obtained for a more reliable estimation. Later

Chang and Tao (1996) extended the concept of screenline to cordon line for more general

networks. The measurement equation used in this model is similar to that in Chang & Wu

(1994) but the dynamic assignment parameter is assumed to be known. A Kalman filter is

again used to estimate the state during each time interval and as their limited results have

shown, up to 20% improvements have been observed over the basic scenario by using

cordon lines. The Chang and Tao model does not address how the assignment matrix

t

CHAPTER 2. LITERATURE REVIEW 10

might be obtained, a question that any estimation model for general networks (which the

proposed model claimed to be) cannot ignore. Constructing cordon lines arbitrarily raises

another serious feasibility issue, namely, how the entry and exit flows for all these cordon

lines should be observed.

2.4 Network-Oriented Dynamic O-D Estimation
Network-oriented dynamic O-D estimation methods focus on extending the

modeling concept of static O-D estimation by assuming the knowledge of a dynamic

assignment matrix and (often) historical dynamic O-D trip tables. A fundamental

estimation relationship is of the similar form described by Equation (2.1), which reads:

},...,1{,,,,
, ThtSsRrxpq ah
ta
hrs

t
rs

tsr

∈∈∈∀= ∗∑∑∑ (2.8)

 where prs,h
a,t

 denotes the proportion of the demand occupying link a during

time interval . Unlike the steady-state relation defined by Equation (2.1), Equation(2.8)

reflects the contributions of O-D flows embarking during prior intervals to link counts in

later intervals. The determination of dynamic assignment factors

qrs
t

h

prs,h
a,t

 calls for a reliable

dynamic traffic assignment (DTA) model in general. However, no existing dynamic O-D

estimation method incorporates an assignment model as in static cases, mainly because a

DTA model that is widely accepted does not exist. Instead, the dynamic assignment

matrix need to be determined externally, often by assuming dynamic link travel times can

be obtained from either simulations or observations.

The first known work along this line is due to Willumsen (1984), who proposed to

extend the entropy maximization method to handle time-dependent traffic counts.

Simulation-based models (e.g., CONTRAM and SATURN) were suggested to establish

the relationship between time-varying O-D demands and link flows.

Okutani (1987) proposed a network-oriented dynamic estimation method based on

Kalman filtering, which is suitable for on-line application. The measurement equation is

defined in the same way as the fundamental equation 2.8. The transition equation given in

Okutani's model is autoregressive, taking the following form:

 (2.9) t
rs

l
sr

sr
rs

sr

t

ptl

t
rs qltfq ε+= ′′

′′

′′−=

+ ∑∑∑),(1

CHAPTER 2. LITERATURE REVIEW 11

where p is the number of lagged O-D flows assumed to affect the O-D flows in interval

 , and t 1 f rs
r′s′t, l reflects qr′s′

l
 on q . is the random error. Okutani applies a

standard linear Kalman filter to get optimal estimates for O-D flows sequentially.

Okutani's original paper does not describe how dynamic assignment matrices might be

obtained. Furthermore, as Ashok & Ben-Akiva (1993) argued, the use of autoregressive

transition equation 2.9 makes it hard to “capture the complex structure of activities that

result in the spatial and temporal pattern of trip making”.

rs
t1

rs
t

Cascetta et al. (1993) suggested an optimization framework for estimating dynamic

O-D flows, which can be viewed as an extension of classic static O-D estimators.

Equation (2.8) is employed to describe the basic measurement relation and a target O-D

matrix is assumed to get a unique solution. Cascetta et al's model takes the following

form:

 (2.10) mind1q, q̄ d2x, x∗q ≥ 0

 where q̄ is the target O-D flows, x and represent the estimated (from

Equation (2.8)) and observed link volumes, respectively. Different distance functions will

lead to estimators

x∗

q̂ (the optimal solution of (2.10)) with different statistical properties.

For example, log-likelihood function and generalized least squares (GLS) function will

respectively lead to a maximum likelihood estimator and an GLS estimator. Two

different estimators are presented to address different applications. A simultaneous

estimator, designed for off-line application, infers in one step the entire set of

time-dependent O-D flows by using link traffic counts from all time intervals. On the

other hand, a sequential estimator derives the O-D flows for a given time interval by

using both previous O-D estimates and the current and previous traffic counts. The

sequential estimator is suitable for on-line application because its computation time is

relatively modest and it is able to make use of a priori estimated O-D matrices.

Cascetta et al. (1993) further showed that the dynamic assignment matrix could be

determined by a two-step stochastic route choice model. In the first step, fractions of

time-dependent paths are given by a discrete choice model. Second, path flows are

mapped onto links using a dynamic network loading (DNL) procedure, hence producing

a stochastic dynamic assignment matrix. However, the authors did not address how to

CHAPTER 2. LITERATURE REVIEW 12

determine a path set used in the discrete path choice model. Moreover, their DNL model

still assumes the knowledge of the dynamic link travel times. That is, the time-dependent

link travel times through the whole network have to be completely observable. If this is

impossible, the authors noted that a DTA model may provide substitutes. As mentioned

before, however, this is not yet feasible for large networks.

Ashok and Ben-Akiva (1993) proposed an improved version for Okutani's approach.

Instead of using the Okutani's autoregressive specification for O-D flows (Equation (2.9)),

Ashok and Ben-Akiva introduced the notion of deviation from target O-D flows and

reformulate the transition equation as follows:

t
rs

l
sr

l
sr

sr
rs

sr

t

ptl

t
rs

t
rs qqltfqq ε+−=− ′′′′

′′

′′−=

++ ∑∑∑))(,(11 (2.11)

 Obviously, by imposing the target O-D flows (often coming from historical

estimates), the estimates can avoid the risk of losing structural information about trip

patterns. Based on the Kalman filter technique, the approach provides both real-time

estimation and predictions. The determination of the assignment matrix in the Ashok and

Ben-Akiva's model follows the idea from Cascetta et al. (1993), namely, either an

entirely observable network or a DTA model has to be available.

In a subsequent work, Ashok (1996) indicated that the assignment matrix itself is an

estimate whose random errors should not be ignored. This is because an assignment

matrix is obtained from random variables such as link travel times and path fractions. It

was shown that the estimator will become biased and inconsistent if this issue is not

correctly addressed. In order to remedy the problem, a revised procedure is presented to

take the stochastic assignment matrix into account. Treating all assignment factors as

decision variables is not acceptable because it considerably increases the computational

load. These authors thus provided a simplification in which only t p state equations

are used. To determine the state augmentation required to transform this stochastic

formulation to the standard transition and measurement equations, the method has to

estimate each state variable as many times as the size of the lag when applying a Kalman

filter procedure. Most recently, Ashok and Ben-Akiva (2000) suggested an alternative

approach defining the state-vector by deviation of departure rates from each origin and

the shares headed to each destination. Except its transition equation, this approach has a

CHAPTER 2. LITERATURE REVIEW 13

similar framework as those proposed previously by Ashok and Ben-Akiva (1993).

Ashok and Ben-Akiva (1993, 1996, 2000) reported encouraging results in several

case studies and filed tests, and indicated that their method turned out to be robust. When

attempting to implement Ashok-Ben-Akiva approaches for comparison purpose, however,

Sherali et al. (2001) discovered that the matrix needed to be inverted in updating the

Kalman gain matrix is always singular. As Sherali et al (2001) pointed out, the failure

might be a result of violating some Kalman filter assumptions in the application. This

observation called for special attention in checking data requirements and verifying

standing assumptions when implementing Kalman filters in practice.

Sherali and Park (2001) proposed a dynamic path flow estimator, which describes

the relationship between dynamic O-D flow and link flows as follows:

∑
r

∑
s

∑
k
∑

t

f rs
ktrs,h

a,kt x ah
∗ ∀a ∈ A, k ∈ Krs, t, h ∈ 1, . . . , T

 (2.12)

∑
k

f rs
kt qrs

t ∀k ∈ Krs, t ∈ 1, . . . , T
 (2.13)

where f rs
kt is associated with the path flow departs along path during time interval ,

while if link a is occupied during time interval due to path flow

k t

rs,h
a,kt 1 h frs

kt ,

and 0 otherwise.

Sherali et al.'s dynamic PFE is formulated as a constrained least squares (CLS)

problem which seeks to determine a set of time-dependent shortest path flows that

reproduce the observed link counts as closely as possible. Specifically, Sherali et al's CLS

estimation model reads

min 1
2 ∑

t1

T

∑
a∈A

∑
k
∑

t

f rs
ktrs,h

a,kt − x̄ ah
∗ 2 ∑

k
∑

t

T

crs
ktf rs

kt

 (2.14)

 subject to

 (2.15) f rs
kt ≥ 0 ∀k ∈ K, t

where K denotes all paths existing between all O-D pairs. The second term in the

objective function, a weighted total system cost, helps guide the solution toward more

likely efficient paths. A path generation algorithm is devised to solve the optimization

CHAPTER 2. LITERATURE REVIEW 14

problem iteratively. The algorithm begins with solving a restricted master problem based

on an initial choice of a set of O-D paths, then attempts to augment the master problem

with paths from time-dependent shortest path search upon a time-space expanded

network. The method will terminate and claim an optimum if no new time-dependent

shortest path can be found. Dynamic link travel times are assumed to be known inputs

thus not modelled in Sherali et al.'s work (2001). This is true for all existing

network-oriented dynamic O-D estimation methods. Other limitations of this method

include the requirement for a complete observation of all link flows (which is typically

not available in reality), and its inability to take into account observation errors.

2.5 Summary
Although many approaches have been proposed to solve the O-D trip table

estimation problem, the validity and applicability of most approaches to large-scale

networks remain to be investigated. Particularly, existing dynamic O-D estimation

methods are far from producing satisfactory results on real-sized networks. Above all, the

determination of dynamic assignment matrices is separated from the O-D estimation

process, thus the estimated flow pattern is not necessarily consistent with the network

state that yielded the observed travel times.

Compared with existing dynamic O-D estimation methods, Bell's time-dependent

LPFE (TDLPFE) seems much more tractable because it transforms the dynamic problem

into static problems. TDLPFE is not a true “dynamic” model in the sense that all trips are

assumed to complete within each time interval. However, the transition of queues across

time periods makes it capable of capturing the queuing phenomenon, one of the most

important characteristics of dynamic traffic. The research approach described in the

following chapters thus use LPFE to develop a software tool for deriving both

steady-state and time-dependent O-D trip tables to support various applications.

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 15

Chapter 3. LPFE: Formulation and
Algorithm

The O-D estimation problem is closely interrelated with the traffic assignment

problem, since outputs of one problem serve as inputs to the other. Thus, we shall first

review the corresponding traffic assignment model before turning to logit path flow

estimator.

3.1 Logit Traffic Assignment Model
Static traffic assignment models based on Wardrop's principles (1952) can be

classified into deterministic and stochastic ones. The latter recognizes that travellers are

unlikely to have perfect information about network conditions and stipulates that

travelers choose the minimum cost path with certain probability. Stochastic traffic

assignment models can further be classified as multinomial logit and multinomial probit

assignment models. Probit models are theoretically sound but incur great computational

obstacles that hinder its application, particularly for large networks: it requires either

Monte Carlo techniques or path enumeration (e.g. Daganzo & Sheffi 1977, Powell &

Sheffi 1982). On the other hand, the logit model is known to have some undesirable

properties (such as the IIA property) but is much more tractable both analytically and

computationally, therefore is the favored probability model used in stochastic traffic

assignment.

3.1.1 The static case
The most widely used logit stochastic user equilibrium (SUE) model is due to Fisk

(1980), who added a scaled path entropy term into the objective function of the

Beckmann formulation of DUE (Deterministic User Equilibrium, Beckmann, McGuire &

Winsten 1956). Fisk's model takes the following mathematical form:

[FSUE]

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 16

))1(ln(1)(min
0

−+ ∑∑∑∫∑ rs
k

rs
k

ksr
a

x

a

ffdwwta

θ
 (3.1)

 subject to

∑

k

f k
rs qrs ∀r ∈ R, s ∈ S, k ∈ Krs

 (3.2)

∑
r

∑
s

∑
k

f k
rsa,k

rs x a ∀a ∈ A, k ∈ Krs, r ∈ R, s ∈ S
 (3.3)

 f k
rs ≥ 0 ∀k ∈ Krs, r ∈ R, s ∈ S (3.4)

where is called a dispersion parameter which represents traveller's sensitivity to path

costs. It is shown that the optimality condition of this mathematical program is equivalent

to the logit path choice model, i.e.,

Pk

rs
exp−k

rs
∑k exp−k

rs
,∀r ∈ R, s ∈ S, k ∈ Krs

 (3.5)

where Pk
rs is the probability of travellers between O-D pair rs use path k , and k

rs is

travel cost on path k . Note that in FSUE k
rs equals to the path travel time ck

rs . Unlike

its deterministic counterpart, the optimal SUE path solution is unique because the

Hessian matrix is strict positive definite with respect to path flow.

Fisk's original logit model assumes that the link cost function)(⋅at is an increasing

function of link flow. Because travel times given by such functions remain finite

whenever link flows are finite, the model may predict unrealistically high link flows

(sometimes well exceed the physical capacities of roads). This problem can be resolved

by introducing explicit capacity constraints into the formulation, and the Lagrangian

multipliers associated with these new constraints can be interpreted as queuing delay

caused by insufficient road capacities. Bell (1997) took this approach but assumed that

the link travel cost is constant and delay only exists on links operating at capacity. Bell's

logit assignment model reads

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 17

min∑
a

t ax a 1
 ∑

r

∑
s

∑
k

f k
rsln f k

rs − 1

 (3.6)

 subject to Equations 3.2 to 3.4, and

 x a ≤ Ca ,∀a ∈ A (3.7)

 Note that Ca denotes the capacity of link a and t a represents a constant travel

time (cost) on link a , which is independent of link flows. By using the link-path

relationship 3.3, the model can be expressed in path flows only, as shown below

min∑
r

∑
s

∑
k

f k
rsck

rs 1
 ∑

r

∑
s

∑
k

f k
rsln f k

rs − 1

 (3.8)

 subject to Equation 3.4, 3.2 , and

∑

r

∑
s

∑
k

f k
rsa,k

rs ≤ Ca ,∀a ∈ A
 (3.9)

where ck
rs is the travel time on path k . We can further simplify the model using matrix

notation as follows:

[BSUE]

min〈f, c 1

〈f, lnf − I

 (3.10)

 subject to

 Δf ≤ C (3.11)

 Mf q (3.12)

 f ≥ 0 (3.13)

where 〈a, b aTb , Δ and M are m n and l n matrices, respectively, with

m, n and l are numbers of links, paths and O-D pairs respectively. Ignoring the

nonnegative constraints, the optimality conditions of Bell's logit model can be written as

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 18

1

lnf c 〈Δ, − 〈M, 0
 (3.14)

 C − Δf ≥ 0 (3.15)

 〈, C − Δf 0 (3.16)

 ≥ 0 (3.17)

 q − Mf 0 (3.18)

 Note that and are vectors of Lagrangian multipliers associated with

constraints 3.11 and 3.12, respectively. Conditions 3.14 and 3.17 provides the logit path

choice model as of 3.5. However, the path cost k
rs in 3.5 now has the following form

k
rs ∑

a

t a aa,k
rs

 (3.19)

where a is the Lagrangian multiplier, interpreted as the equilibrium queuing delay on

link a .

3.1.2 The time-dependent case
 Although the introduction of capacity constraints rules out link flows beyond

capacities, it also reduces the feasible solution set that under some situations a feasible set

may be empty, particularly in congested networks. An alternative is to model queues

directly. The idea is to restrict link flow from exceeding the (weighted) sum of link

capacity and queue, rather than just capacity itself. By not imposing any limit on queue

length, one ensures that the feasible solution set is always non-empty, i.e., there is always

at least one feasible solution. The formulation of this revised model reads,

[RBSUE]

min〈f, c 1

〈f, lnf − I 0. 5〈v, D−1v

 (3.20)

 subject to 3.12 (nonnegative constraints are ignored) and

 Δf ≤ C v (3.21)

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 19

where v is a vector of link queues, D is a diagonal matrix as follows:

D

C1 0

 0

0 0 Cm

 Note that the quadratic term is added into the objective function value in order to

discourage the spreading of queues. RBSUE assumes that some traffic stays in queues at

the end of the analysis period, which conflicts with the assumption that all trip be

completed in steady-state assignment models. Nevertheless, as we shall see soon, the

existence of such ``residual" queues makes it possible to model the carryover of

congestion across time using steady-state assignment models. The optimality conditions

of RBSUE include Equations 3.14, 3.17, 3.18, and

 C − Δf v ≥ 0 (3.22)

 〈, C − Δf v 0 (3.23)

 D−1 v (3.24)

 Equation 3.24 simply states that the equilibrium queue is equal to the equilibrium

delay times the capacity.

In the time-dependent case, a sequence of steady-state RBSUEs is used to

approximate the temporal traffic evolution. Specifically, residual queues generated in

previous periods must be processed in subsequent periods. The temporal overloading of

links is captured because the effective link capacity may be reduced by residual queues

from predecessor periods. Let v t−1 represent the vector of equilibrium queues generated

at time t − 1 , we have the following time-dependent model

[TD-BSUE]

min〈ft , ct 1

〈ft , lnft − I 0. 5〈vt , D−1 vt

 (3.25)

 subject to

 Δft ≤ C vt − vt−1 (3.26)

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 20

 Mft qt (3.27)

 Each time period of a dynamic assignment problem is thus represented by a

steady-state assignment problem as described by TD-BSUE, where the subscript t

denotes the index of time period. The structure of TD-BSUE is similar to RBSUE except

that residual queues from the last time period appears in the right hand side of Constraints

3.21. As mentioned, the role of qt−1 is to reduce link capacity in the current period. This

approximation roughly captures the temporal flow propagation since the residual queues

are processed before the new arrivals, and new queues are only formed when the reduced

capacities are exceeded.

3.2 Logit Path Flow Estimator
Now we turn to the formulation of the logit path flow estimator (LPFE). LPFE

derives path flows (hence an estimation of O-D demands) using a mathematical program

similar to logit assignment models in structure. The major difference is that in logit

assignment models path flows are so chosen that conservative conditions hold for each

O-D pair, whereas in LPFE the selected path flows have to reproduce observed link

flows.

3.2.1 The static case

Note that in reality only a subset of link flows can be measured. The observed and

unobserved link set are denoted as Ao and Au respectively, with A Au Am .

Traffic counts are only available on links in Am . For any link a ∈ Au , the free flow

link travel time and the link capacity are assumed to be known. Corresponding to the

partition of link set, the vector of link capacities C can be divided into Co and Cu .

Further, path-link incident matrix Δ can be divided into Δo and Δu .

The logit path flow estimator is formulated as a mathematical program as follows:

[LPFE]

min〈f, c 1

〈f, lnf − I

 (3.28)

 subject to

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 21

 Δo f x̄o (3.29)

 Δu f ≤ Cu (3.30)

 where x̄o is a vector of observed link flows. The KKT conditions of LPFE are

1

lnf c 〈Δu , − 〈Δo , 0
 (3.31)

 Cu − Δu f ≥ 0 (3.32)

 〈, Cu − Δu f 0 (3.33)

 ≥ 0 (3.34)

 Δo f − x̄o 0 (3.35)

 Again, the multipliers associated with capacity constraints, , can be interpreted

as the equilibrium queuing delay. Moreover, the optimality condition 3.31 yields to the

logit path choice Model 3.5. However, k
rs is defined differently using multipliers

k
rs ∑

a

t aa,k
rs ∑

a u

a ua u,k
rs − ∑

a o

a oa o,k
rs

 (3.36)

3.2.2 The time-dependent case
The time-dependent LPFE can be formulated using a similar approach described in

Section 3.1.2, namely, residual queues are explicitly added into the objective function and

capacity constraints such that congestion effects can be carried over from one time

interval to others. At time t , TD-LPFE is formulated as

[TD-LPFE]

min〈ft , ct 1

〈ft , lnft − I 0. 5〈vu

t , Du
−1 vu

t
 (3.37)

 subject to

 Δu ft ≤ Cu vu
t − vu

t−1
 (3.38)

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 22

 Δo ft x̄o
t

 (3.39)1

 where x̄o
t is the vector of observed link flows at time period t , vu

t is the vector

of queues on unobserved links at t . For each time period, TD-LPFE seeks a path flow

pattern that satisfies the logit path choice model and replicates observed link flows

simultaneously, while taking into account of the queues accumulated in previous time

intervals. The entropy term encourages trips to spread across paths while the quadratic

term discourages queuing.

Let t and t be the multipliers associated with constraints 3.38 and 3.39, the

optimality conditions of TD-LPFE are expressed as

1

lnft ct 〈Δu ,t − 〈Δo , t 0
 (3.40)

 Cu − Δu ft vu
t − vu

t−1 ≥ 0 (3.41)

 〈t, Cu − Δu ft vu
t − vu

t−1 0 (3.42)

 t ≥ 0 (3.43)

 Δo ft − x̄o
t 0 (3.44)

 Du
−1 vu

t t (3.45)

3.2.3 Extended LPFE
Several extensions to the original LPFE are presented in this section. We shall use

the static case to illustrate the major ideas.

First of all, the link travel time is assumed in the original LPFE to be the sum of a

constant link traversal time and a queuing delay (which is positive so long as links

operate at their capacities). This assumption accords with many real-world observations,

particularly on arterial streets where intersection control dealy dominates the delay

experienced by drivers. On freeways, however, queuing delay may not fully account for

all congestion effects. It is thus useful to treat link traversal time as flow dependent

1 This conservation equation assumes that all trips depart from an assignment interval also complete within that time
interval.

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 23

through an appropriate link performance function. When considering flow-dependent link

traversal times, the term related path costs in the objective function of LPFE is replaced

with an integral expression as in Fisk's model:

min∑

a

0

xa
t awdw 1

〈f, lnf − I

 (3.46)

subject to Equations 3.29, 3.30 and path-flow incidence relationship 3.3.

Using measurement constraints such as (3.29) implies extreme confidence on the

quality of link observations. However, measurement errors are unavoidable in real

applications. Ignoring these errors can of course lead to inaccurate estimation. More

severely, inconsistent link flow patterns (e.g., flow conservation law might be violated

due to such errors) can be introduced, thereby leading to possibly no feasible solution.

The problem can be addressed in different ways. A commonly used approach is to

consider link measurements in the objective function as follows:

min∑
a

0

xa
t awdw 1

 〈f, lnf − I 〈Δo f − x̄o , T−1Δo f − x̄o

 (3.47)

 subject to Equations 3.30.

where T is the covariance matrix of link measurements. Although this approach

incorporates measurement errors naturally, it may introduce numerical instabilities in the

logit path choice model. Note that the exponential of link measurement mismatch

(Δo f − x̄o) can lead to very large path flows. Such a problem arises often in the earlier

stage in a numerical solution procedure. An alternative is to change constraints so that the

link counts fall into a range of values rather than equal to an exact value, i.e.,

min∑

a

0

xa
t awdw 1

〈f, lnf − I

 (3.48)

 subject to Equation 3.30, and

 Δo f ≤ 〈x̄o , Io o (3.49)

 Δo f ≥ 〈x̄o , Io − o (3.50)

 where Io , o , and o are all |Ao ||Ao | diagonal matrices, and

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 24

Io

1 0

 0

0 0 1

,o

o
1 0

 0

0 0 o
|Ao |

, o

o
1 0

 0

0 0 o
|A o|

,o ≥ 0, o ≥ 0

 Note that o
a o and o

a o reflect the confidence level of measurements on link

ao ∈ Ao . Obviously, a more reliable link measurement will constrain the observed flow

within a smaller tolerance, while a less reliable measurement will allow a large error

range.

The original LPFE does not exploit existing O-D information in its formulation.

However, quite often a historical O-D table maintains useful structural information about

O-D flow patterns that can greatly improve estimation quality. Moreover, the direct

observation of O-D flows becomes increasingly feasible thanks to recent technological

innovations (e.g., section-related measurement based on vehicle re-identification).

Although such observations can only cover a small portion of O-D entries in most cases,

the up-to-date information provided by them can still be of great help. To account for

available O-D information, we assume that a partial O-D table q̄o exists, which is

obtained from either a historical O-D table, or real-time section-related measurements.

Recall that in assignment problems, O-D demands q are related to path flows f

through conservation law

 q Mf

 For a partially available O-D table, we have the following relationship

 q̄o M of (3.51)

where M o contains rows of M that correspond to observed O-D entries. Adding 3.51

into LPFE as constraints will enforce the estimated flow pattern to replicate these

additional observations. However, given the O-D measurements may contain errors, it is

better to introduce confidence levels as in link measurements. Thus, the following

constraints will be considered:

 M o f ≤ 〈q̄o , Jo o (3.52)

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 25

 M o f ≥ 〈q̄o , Jo − o (3.53)

 Similarly, Jo , o , and o are lo lo diagonal matrices (lo is the number

of observed O-D entries)

Jo

1 0

 0

0 0 1

,o

o
1 0

 0

0 0 o
lo

,o

o
1 0

 0

0 0 o
lo

, o ≥ 0,o ≥ 0

 Finally, note that in the original LPFE, travel times on measured links contain no

queuing delay because the capacity constraints of these links are not considered in

estimation problems. This causes miscalculation of path costs and in turn the problem of

path flow estimation. To address this issue, not only traffic counts, but also queuing delay

needs to be measured. The observed link travel times (free flow travel time plus observed

delay) should be considered as constant over the estimation process. Although measuring

queuing delay directly is far more difficult than measuring traffic counts, it is possible, as

Bell noted, to calculate the queuing delay by use of an appropriate delay formula2

Now we are ready to present the extended LPFE in its complete form:

[E-LPFE]

min ∑

a∈Au

0

xa
t awdw ∑

a∈Ao

t̄ a x a 1

〈f, lnf − I

 (3.54)

 subject to Equations 3.30, 3.49, 3.50, 3.52, and 3.53.

where t̄ a denotes the observed travel time on link a , which consist of a travel time

component without delay and a delay component.

The Kuhn-Tucker conditions of this extended formulation are

1

lnf c̄ 〈Δu , 〈Δo , − 〈Δo ,− 〈Δo , − 〈Δo , − 0
 (3.55)

 Cu − Δu f ≥ 0 (3.56)

 〈, Cu − Δu f 0 (3.57)

2 The Webster's formula was used for that purpose in Bell et al. (1997)

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 26

 〈x̄o , Io o − Δo f ≥ 0 (3.58)

 〈, 〈x̄o , Io o − Δo f 0 (3.59)

 〈x̄o , Io − o − Δo f ≤ 0 (3.60)

 〈−, 〈x̄o , Io − o − Δo f 0 (3.61)

 〈q̄o , Jo o − M of ≥ 0 (3.62)

 〈, 〈q̄o , Jo o − M o f 0 (3.63)

 〈q̄o , Jo − o − M of ≤ 0 (3.64)

 〈−, 〈q̄o , Jo − o − M o f 0 (3.65)

 ≥ 0, ≥ 0,− ≥ 0, ≥ 0, − ≥ 0 (3.66)

 ,,−, , − are multipliers associated with corresponding constraints, and c̄

are path travel times containing measured link travel times, i.e.,

c̄k

rs ∑
a∈Ao

t̄ aa,k
rs ∑

a∈Au

tax aa,k
rs

 (3.67)

 Similarly, path costs used in the logit choice model take the following form

̄k

rs c̄k
rs ∑

a∈Au

aa,k
rs ∑

a∈Ao

a,k
rs − ∑

a∈Ao

−a,k
rs

 (3.68)

 The model extensions developed so far can be easily extended to the

time-dependent case. For the sake of complexness, the formulation of the extended

TD-LPFE is given below

[E-TD-LPFE]

min ∑
a∈Au

0

a
t

t a
t wdw ∑

a∈Ao

t̄ a
t x a

t 1
 〈ft , lnft − I 0. 5〈vu

t , Du
−1 vu

t

 (3.69)

 subject to Equation 3.38 and

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 27

 Δo ft ≤ 〈x̄o
t , Io o

t (3.70)

 Δo ft ≥ 〈x̄o
t , Io − o

t (3.71)

 M oft ≤ 〈q̄o
t , Jo o

t (3.72)

 M oft ≥ 〈q̄o
t , Jo − o

t (3.73)

 Again, the model E-TD-LPFE will be solved once for each time interval, and the

residual queue vu
t is updated based on the queue from the last period vu

t−1 . For the first

time interval (t 1),it is assumed that vu
0 0.

We close this section by mentioning that the total demand of an O-D entry is not

fully observable even with recent surveillance techniques. Quite often, only a subset of

vehicles has the proper equipment for the identification purpose. Consequently, what is

actually available for estimation models is not the O-D flow itself, but the so-called O-D

split fraction, i.e., proportions of traffic departing from an origin heading towards a

certain destination. Thus, constraints 3.53 and 3.52 should be replaced by what describes

such proportional relationship among O-D entries. Obviously, such relationship can be

expressed in a linear equation, e.g.,

Sf 0

 However, these constraints may pose numerical difficulties in applying algorithms

like the iterative balancing algorithm because its right hand side is zero (remember ln0

has no definition). We leave this to further research.

3.3 Solution Algorithms
We only present algorithms for solving E-LPFE and E-TD-LPFE in this section. But

the presented algorithm can solve logit assignment problems with minor modifications

since the two problems have similar structure (above all, they are all based on the logit

path choice model). We will first deal with a sub-problem of E-LPFE (E-LPFE-SUB),

which assumes that all paths have been determined and all link travel times are fixed

(flow independent). Then we will relax these assumptions by introducing a column

generation procedure and a decent direction. Finally we tackle the time-dependent case.

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 28

3.3.1 Solve E-LPFE-SUB

 When all used paths and link travel times are known, we obtain a sub-problem of

E-LPFE, which reads

[E-LPFE-SUB]

min〈f, c̄ 1

〈f, ln f − I

 (3.74)

 subject to 3.30, 3.49, 3.50, 3.52, and 3.53.

Note that we use c̄ instead of c because some link travel times are measured

values. There exist a number of descent direction algorithms for solving a nonlinear

program like E-LPFE-SUB (e.g., the Frank-Wolfe algorithm). However, the complex

constraint structure involved in E-LPFE-SUB makes it unappealing to use those classical

procedures. The iterative balancing algorithm (IBA) offers a promising alternative by

directly exploiting the Kuhn-Tucker conditions (Equations 3.55 to 3.66). The major steps

of the algorithm are summarized below:

ALGORITHM IBA

Step 0 Initialization. Set −∞====== −+−+ κννλλµ ,0,0,0,0,0 .

Step 1 Iteratively check constraints and update path flows.

Step 1.1 Calculate path flow f according to Equation 3.55. Set x̃ Δf, q̃ Mf

Step 1.2 For each link a ∈ Au , compute e ln x̃ a − lnCa

If e 0 , set a a e . Update f , x̃ and q̃ , if |e| , set |e| .

Step 1.3 For each link a ∈ Ao , compute e ln x̃ a − ln x̄ a1 a

If e 0 , set a
 a

 e . Update f , x̃ and q̃ , if |e| , set |e| .

Step 1.4 For each link a ∈ Ao , compute e ln x̃ a − ln x̄ a1 − a

If e 0 , set a
− a

− − e . Update f , x̃ and q̃ , if |e| , set |e| .

Step 1.5 For each O-D pair rs for which the target O-D information exists

Compute e ln q̃rs − ln q̄rs1 rs

If e 0 , set rs
 rs

 e . Update f , x̃ and q̃ . If |e| , set |e| .

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 29

Step 1.6 For each O-D pair rs for which the target O-D information exists

Compute e ln q̃rs − ln q̄rs1 − rs

If e 0, set rs
− rs

− − e . Update f , x̃ and q̃. If |e| , set |e| .

Step 2 Convergence test. If , stop; otherwise, return to Step1.

Apparently, IBA sequentially checks and fixes the violations of the Kuhn-Tucker

conditions (3.56 to 3.66) while maintaining the relationship dictated by the logit path

choice model (Equation 3.55).

Proposition 3.1 If E-LPFE-SUB has a non-empty feasible set, algorithm IBA

converges to its optimal solution.

Proof: First, note that the Lagrangian associated with E-LPFE-SUB is

Lf,,,−, , − 〈f, c̄ 1

〈lnf, lnf − I 〈Δu f − C, 〈Δo f − 〈Io o , x̄o ,

− 〈Δo f − 〈Io − o , x̄o ,− 〈Δo f − 〈Jo o , q̄o , − 〈Δo f − 〈Jo − o , q̄o , −

 Let f∗ be a vector satisfying the first of the Kuhn-Tucker conditions 3.55, then we

replace f in Lf,,,−, , − with f∗ , which now is a function of Lagrangian

multipliers. According to Saddle point theorem, the Lagrangian is minimized with respect

to primal variables f , maximized with respect to dual variables (multipliers), thus we

have

Lf∗,,,−, , − ≤ Lf∗,∗,∗,−∗, ∗, −∗

 To show the convergence of the algorithm, we take derivatives of the Lagrangian

with respect to

∂Lf∗,,,−, , −
∂

 〈 1

lnf∗ c̄ 〈Δu , 〈Δo , − 〈Δo ,− 〈Δo , − 〈Δo , −, ∂f
∗

∂
 Δu f∗ − C

 Using the relationship 3.55, we obtain

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 30

∂Lf∗,,,−, , −
∂

 Δu f∗ − C

 For any link a ∈ Au , if ∑ r∑ s∑k a,k
rs f k

rs Ca , the constraint is inactive, so

a should remain equal to 0; Otherwise, the derivative of Lf∗,,,−, , − with

respect to a is positive. Thus, to maximize Lf∗,,,−, , − , a should

increase. From 3.55 we know that the increase of a will reduce the corresponding path

flows, and hence the value ∑ r∑ s∑k a,k
rs f k

rs
. Apparently, to increase

Lf∗,,,−, , − as much as possible, we should increase a such that

∑ r∑ s∑k a,k
rs f k

rs Ca , but not beyond. It is easy to verify that the adjustment made in

Step1.2 of the IBA algorithm exactly achieves this. The similar argument can be applied

to other constraints. As the algorithm always increases Lf∗,,,−, , − it

converges provided there exists a feasible solution. This completes the proof.

However, in practice there are situations where E-LPFE-SUB does not have a

feasible solution thus algorithm IBA would not converge. According to Bell (Bell et al.

1997), the major ones are

1. Traffic counts of one or more links belonging to Ao are not consistent with

capacities of one or more links belong to Au .

2. Traffic counts of some links belong to A0 are mutually inconsistent.

3. Existing path set does not cover one or more counted links.

Such situations arise as a result of either errors in traffic counting, the inconsistence

between steady-state assumption and dynamic traffic behavior, or an inappropriate path

set. Algorithm IBA offers a natural way to identify the infeasibility of constraints. Note

that the multipliers associated with the problematic constrains would be tending to

infinity. To fix the incorrectness of the path set is relatively easy (it can be done by

generating more paths or deleting those inappropriate). However, other causes of

infeasibility are much difficult to address. Since in reality one may never obtain an input

which is fully consistent, it is important to have the algorithm tolerate minor constraint

inconsistencies. Another issue that Algorithm IBA does not address is the violation of

slackness conditions like 3.57. Since the constraints are examined sequentially, it is

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 31

possible that an active constraint becomes inactive when checking other constraints,

which produces the violation of slackness conditions (while the constraint is inactive, the

corresponding multipliers remain positive). We present a revised iterative balancing

algorithm (RIBA) to resolve these problems.

ALGORITHM RIBA

Step 0 Initialization. Set 0, 0,− 0, 0, − 0, −, 1. 0 .

Step 1 Set 0 . Iteratively check constraints and update path flows.

Step 1.1 Calculate path flow f according to Equation 3.55. Set x̃ Δf, q̃ Mf

Step 1.2 For each link a ∈ Au , compute e ln x̃ a − lnCa

If e ≥ 0 , set a a e ; otherwise, if 0 , set a a e .

Update f , x̃ and q̃ , if |e| , set |e| .

Step 1.3 For each link a ∈ Ao , compute e ln x̃ a − ln x̄ a1 a

If e 0 , set a
 a

 e ; otherwise, if a
 0 , set a

 a
 e .

Update f , x̃ and q̃ , if |e| , set |e| .

Step 1.4 For each link a ∈ Ao , compute e ln x̃ a − ln x̄ a1 − a

If e 0 , set a
− a

− − e ; otherwise, if a
− 0 , set a

− a
− − e .

Update f , x̃ and q̃ , if |e| , set |e| .

Step 1.5 For each O-D pair rs for which the target O-D information exists

Compute e ln q̃rs − ln q̄rs1 rs

If e 0 , set rs
 rs

 e ; otherwise, if rs
 0 , set rs

 rs
 e

Update f , x̃ and q̃ . If |e| , set |e| .

Step 1.6 For each O-D pair rs for which the target O-D information exists

Compute e ln q̃rs − ln q̄rs1 − rs

If e 0 , set rs
− rs

− − e ; otherwise, if rs
− 0 , set rs

− rs
− − e .

Update f , x̃ and q̃ . If |e| , set |e| .

Step 2 Convergence test

Step 2.1 If / , stop; otherwise, go to Step2.2.

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 32

Step 2.2 If | − 0/0 | , set . return to Step1.

Note that is the step size while is a positive scalar smaller than 1. is set as

1 at the beginning, then reduced by applying whenever the two consecutive iterations

do not lead to sufficient decrease of , the convergence indicator. Further, when the

violation of slackness conditions are detected, associated multipliers are reduced so as to

reactivate the constraints.

3.3.2 A descent direction

In this section, we relax the assumption that all link travel times are fixed. Instead,

the travel time on link a ∈ Au are treated as an increasing function of the link flow x a .

In this case, algorithm RIBA cannot directly obtain the optimal solution since a subset of

travel times are flow dependent. However, the following proposition shows that RIBA

can be used to provide a descent direction.

Proposition 3.2 Assume that a path set is predetermined for E-LPFE. Let f0 be a

feasible path flow pattern, and the associated path cost is c0 . If f∗ solves E-LPFE-SUB

(in which c̃ is replaced by c0), then f∗ − f0 provides a descent direction for E-LPFE

at f0 .

Proof: Let zf denote the objective function of E − LPFE . To show f∗ − f0 is a

descent direction, we need to show

〈∇zf0, f∗ − f0 0

 This equals to

〈c0 1

lnf0 , f∗ − f0 0 〈c0 , f∗ 1

〈f∗, lnf0 〈c0 , f0 1

〈f0 , lnf0

 (3.75)

 Now let yf 〈f, lnf. yf is a strictly convex function because its Hessian is

always positive definite for any f 0. Thus, we have the following

yf∗ yf0 ∇yf0f∗ − f0 〈f∗, lnf∗ 〈f∗, lnf0 f∗ − f0

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 33

 When f∗ → f0 , we obtain 〈f∗, lnf∗ 〈f∗, lnf0 . Incorporate this relationship into

3.75, we have

〈c0 , f∗ 1

〈f∗, lnf∗ 〈c0 , f0 1

〈f0 , lnf0

 This is apparently satisfied since f∗ is an optimal solution of E-LPFE-SUB,

which should achieve the minimum objective function value. End of proof.

Thus, the optimal solution to E-LPFE can be obtained by iteratively solving

E-LPFE-SUB and moving along the resulted descent direction. We proceed to present a

descent direction algorithm in which the Golden-section line search is used to find a

suitable step size.

ALGORITHM DDAG3

Step 0 Initialization. Set iteration index i 0,)0(,0 aaa ttAax =∈∀= uAa∈∀, .4

Call Algorithm RIBA to obtain f0 .

Step 1 Find the descent direction. Update link travel times based on fi , then call

Algorithm RIBA to obtain a new path flow pattern, denoted as gi . Set search

direction di gi − fi .

Step 2 Find step size .

Step 2.1 Initialization. Set ,2/)15(,0.0 −=== Gbl 0.1,1 =−= uGa .
Compute za zfi adi , zb zfi bdi
Step 2.2 If za zb , l a, a b, b Ga 1 − Gu, else
u b, b a, a Gb 1 − Gl. Compute za , zb .
Step 2.3 If u − l b − a , return Step2.2; otherwise if za zb ,
 a , else b , go to Step3 .

Step 3 Move along search direction. Set fi1 fi di . If |fi1 − fi | , stop;

otherwise, set i = i + 1, return to Step1.

In Algorithm DDAG, we terminate the procedure when the two consecutive iterates

are sufficiently close.

3 Stands for Descent Direction Algorithm with Golden-section line search
4 Travel times on links belong to oA are measured thus not computed from link performance functions.

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 34

3.3.3 Column generation
So far a path set (hence the path-link incidence matrix Δ) is assumed to be

predetermined. Ideally, all existing paths should be enumerated before hand. This is of

course computationally prohibitive even for a network of modest size. In fact, a great

portion of available paths would remain unused in a complex, congested network.

Different strategies have been suggested to set up a ``proper" path set, of which the most

famous one is due to Dial (1971) , who proposed to reduce the original network into an

acyclic one containing only “efficient” links. As we have noticed, however, a

predetermined path set may introduce inconsistent constraints. Thus, it is desirable to

generate paths iteratively only when they becomes needed, based on the diagnostic

information obtained from previous iterations. This is known as column generation

because the columns of path-link incidence matrix Δ are generated as the iterations

progresses.

A shortest path algorithm is commonly used to generate new paths. However, the

calculation of shortest paths is not necessarily based on travel times. In logit path flow

estimators, for example, the paths that might help remove inconsistency of constraints

should be given high priority. This can be achieved by arbitrarily decreasing/increasing

link travel times so that the shortest path algorithm would be in favor/disfavor the choice

of paths containing associated links. This idea is exhibited in the following column

generation algorithm (CGA).

ALGORITHM CGA

Step 0 Initialization. Set iteration index i 0, x a 0∀a ∈ A, t a t a0,∀a ∈ Au .

Compute shortest paths for all O-D pairs, and build path-link incidence matrix

Δ accordingly. Set Ki as the number of shortest paths.

Step 1 Solve the restricted master problem (RMP). Call Algorithm DDAG to get the

current path and link solutions.

Step 2 Column generation

Step 2.1 Update link costs. For each link a ∈ Au , t a t ax a
i a

i .

For each link a ∈ Ao , if x̄ a1 − a ≤ x a ≤ x̄ a1 a, t a t̄ a ;

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 35

else if x a x̄ a1 a , t a t̄ a ; else t a maxt̄ a − −, 0.

Step 2.2 Compute shortest paths for all O-D pairs based on updated link travel

times t , expand the matrix Δ with new paths.

Step 3 Convergence test. Set i i 1, calculate the current number of shortest paths

Ki . If |Ki − Ki−1/Ki−1 |, stop; otherwise, return to Step 1.

Algorithm CGA terminates when the number of new generated paths is small

enough, implying that the matrix Δ is not changing much with the few new columns. In

Step2.1, link travel times are modified by the corresponding multipliers. For unmeasured

links, this means that the queuing delay is taken into consideration. On measured links,

link costs are reduced by − when the estimated link flow is less than the lower bound

of the traffic count. Conceivably, this link is more likely to be selected by a shortest path

algorithm in the next round since its cost may be significantly lowered. Note that we

restrict the link travel times to be non-negative to avoid creating negative cycles that

would cause the shortest path search to fail.

One could also use a K-shortest path algorithm to generate new paths. That is, in

each iteration, not only the shortest path, but the second, third,..., and Kth shortest paths

are generated for each O-D pair. Although the K-shortest path algorithm is more

computationally demanding, it may accelerate the stabilization of Δ thereby improve

the overall convergence speed of Algorithm CGA.

3.3.4 Time-dependent case

Now we turn to the solution algorithms for E-TD-LPFE. As in the steady case, we

first assume that link travel times are fixed and the matrix Δ is given for each time

interval t . Similarly, iterative balancing algorithm can be used to sequentially examine

Kuhn-Tucker conditions. However, in this case, we need to deal with an additional

optimal condition, the relationship between queue and delay (Equation 3.45). The revised

iterative balancing algorithm for the time-dependent case(RIBATD) is given as below.

ALGORITHM RIBATD

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 36

Step 0 Initialization. Set t
 0, t

− 0, t
 0, t

− 0, −, 1. 0 . Set

vt max0, vt−1 C ,t 〈D−1 , vt

Step 1 Set 0 . Iteratively check constraints and update path flows.

Step 1.1 Calculate path flow ft according to Equation 3.55. Set

x̃t Δft , q̃t Mft

Step 1.2 For each link a ∈ Au , compute s 1 Ca /Ca v a
t − v a

t−1,

e ln x̃ a
t − lnCa v a

t − v a
t−1/s

If e ≥ 0, set a
t a

t e ; otherwise, if a
t 0, set a

t a
t e .

Update f , x̃ and q̃. Set v a
t Caa

t . If |e| , set |e| .

Step 1.3 For each link a ∈ Ao , compute e ln x̃ a
t − ln x̄ a

t 1 a
t

If e 0, set a,t
 a,t

 e; otherwise, if a,t
 0, set

a,t
 a,t

 e .

Update ft , x̃t and q̃t , if |e| , set |e| .

Step 1.4 For each link a ∈ Ao , compute e ln x̃ a
t − ln x̄ a

t 1 − a
t

If e 0, set a,t
− a,t

− − e; otherwise, if a,t
− 0, set a,t

− a,t
− − e .

Update ft , x̃t and q̃t , if |e| , set |e| .

Step 1.5 For each O-D pair rs for which the target O-D information exists

Compute e ln q̃t
rs − ln q̄t

rs1 rs
t .

If e 0, set rs,t
 rs,t

 e; otherwise, if rs,t
 0, set rs,t

 rs,t
 e

Update ft , x̃t and q̃t . If |e| , set |e| .

Step 1.6 For each O-D pair rs for which the target O-D information exists

Compute e ln q̃t
rs − ln q̄t

rs1 − rs
t

If e 0, set rs,t
− rs,t

− − e; otherwise, if rs,t
− 0, set rs,t

− rs,t
− − e .

Update ft , x̃t and q̃t . If |e| , set |e| .

Step 2 Convergence test

Step 2.1 If / , stop; otherwise, go to Step2.2.

Step 2.2 If | − 0/0 | , set . return to Step1.

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 37

Note that RIBATD and RIBA are very similar (ignoring the time index t in

RIBATD) except in Step0 and Step1.2. In Step0, the queue in the current time period is

initialized according to the queue left over from the last time interval. If the residual

queue exceeds the capacity, the initial value of v t should be such set that s in Step1.2

is always positive.

Proposition 3.3 Assuming that link travel times are fixed and the matrix Δ is given

for each time interval t , algorithm RIBATD converges to the optimal solution of

E-TD-LPFE provided a feasible solution exists.

Proof: the arguments used in the proof of Proposition 3.1 can be applied here in

general. We only need to show that the adjustment made in Step1.2 of RIBATD ensures

the increase of the Lagrangian. First, note that e ln x̃ a
t − lnCa v a

t − v a
t−1 is an

over-adjustment because it would make the adjusted link flow, x̃a
t Ca v a

t − v a
t−1 .

However, since v a
t is increased accordingly, the constraint is inactive after the

adjustment. The desirable update thus should be

 a
t a

t ln x̃ a
t − lnCa v a

t − v a
t−1

 (3.76)

where v a
t denotes the queue length after the adjustment. However, it is not easy to

directly determine a
t since a

t and v a
t are mutually dependent. The difficulty

can be overcome by making use of the concaveness of the log function. Note that the

following inequality holds

lnCa v a
t − v a

t−1 lnCa v a
t − v a

t−1
v a

t − v a
t

Ca v a
t − v a

t−1

 Thus, we can replace − lnCa v a
t − v a

t−1 in 3.76 by the right hand side of the

above inequality. After some simple algebra, we obtain

a
t a

t ln x̃ a
t − lnCa v a

t − v a
t−1/1 Ca

Ca v a
t − v a

t−1

 The above inequality implies that the adjustment (the second term on the right hand

side) is smaller than the maximum possible value. However, it effectively avoids

CHAPTER 3. LPFE: FORMULATION AND ALGORITHM 38

over-adjustment and ensures convergence. Apparently, Step1.2 of RIBATD employs this

reduced adjustment. This completes the proof.

There exist other methods to update a
t and v a

t according to Equation 3.76.

The method of successive averages (MSA), for example, can be fitted as follows:

ALGORITHM MSATD

Step 0...

Step 1...

Step 1.2 For each link a ∈ Au , if Ca v a
t−1 x̃ a

t , v a
t v a

t−1 x̃ a
t − Ca ;

else, v a
t 0.

Compute v a
t v a

t /i v a
t i − 1/i, e ua

t − v a
t /Ca , ua

t v a
t /Ca .

Update f , x̃ and q̃. If |e| , set |e| .

Step 2...

Since MSATD is the same as RIBATD except in Step1.2, we ignore the other steps

in the above description to save space. The convergence of MSA is well known thus its

proof is not repeated here.

Algorithm DDAG and CGA presented earlier can be applied to handle

flow-dependent link travel times and path generation in the time-dependent case. The

only difference is that in DDAG, either Algorithm RIBATD or MSATD (not RIBA)

should be called to produce a sub-problem solution.

Finally, an algorithmic framework accommodating multiple time intervals is given

as follows:

ALGORITHM MTI
Step 0 Initialization. Set t 0, vt 0 .

Step 1 Solve the steady-state problem. Set t t 1, call Algorithm CGA to obtain

ft , vt , compute estimated O-D matrix q̃t according to ft .

Step 2 if t ≥ T , stop; otherwise, return Step1.

where T is the total number of time intervals.

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 39

Chapter 4. An Object-Oriented
Implementation

The algorithms described in the last chapter are implemented using an

object-oriented programming (OOP) design. Compared to the conventional programming

approaches, an OOP design is preferable because

 OOP provides a clear modular structure to define abstract data types (objects)

that encapsulate data and functions operating on it.

 OOP enhances the reusability of programs through the use of inheritance and

polymorphism.

 OOP provides a good framework for code libraries where supplied software

components can be easily adopted and modified by the programmer.

The reusability and extensibility of the OOP design make it easy to maintain and

upgrade the developed PFE software tool as needs arise (e.g., when new

formulations/algorithms need to be implemented). An OOP-based PFE tool also provides

great convenience and flexibility for developing graphical user interfaces.

We shall first present the overall class hierarchy of our implementation and then go

through the details of classes. Finally we will explain how the classes can be complied as

a class library and discuss its potential usage.

4.1 Class Hierarchy
The hierarchy of the implemented classes is demonstrated in Figure 4.1. As shown,

all subclasses are derived from the generic class GEN_IA, which provides a framework

for implementing general iterative algorithms. Among others, GEN_IA imposes a loop

structure that consists of three fundamental components: initialization, main operation

and convergence test.

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 40

GEN_IA

TNM_IA

LOGWRAP_RMP

TNM_LOGWRAP

TNM_ODE TNM_MPEN

TNM_LODE

TNM_LODE_TD
CSTAP_B

MPFE_MC MPFE_DC

MPFE_DC_MC

CSTAP_B_TD

TNM_LPFE

LPFE_RQ

LPFE_RQ_MSA LPFE_RQ_IBA

TNM_LTAP

LTAP_RQ

LTAP_RQ_MSA LTAP_RQ_IBA
Figure 4.1 A class hierarchy tree

The first derived class of GEN_IA, TNM_IA, lays a foundation for developing

network-related algorithms. The most important function of TNM_IA is to offer its

subclasses an access to network objects defined in a C++ class library called TNM1.

TNM defines both static and dynamic network objects and provides numerous functions

to solve a variety of network problems, including shortest and K-shortest path problems,

maximum flow problems, path enumeration, dynamic shortest path problems, stochastic

routing problems, and dynamic network loading (simulation). This significantly reduces

the programming task involved in this project, for many required functions (e.g., the

calculation of shortest/K-shortest paths in the column generation algorithm) have been

defined in TNM.

Subclass TNM_MPEN deals with the following mathematical program which can be

regarded as a composite of logit traffic assignment models and path flow estimators,

1 TNM is developed by Professor H. M. Zhang’s research group at UC Davis in an independent research effort.

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 41

min 1

〈f, lnf − I 〈c, f

 (4.1)

 subject to

 Mf q Flow conservation conditions (4.2)

 Δf ≤ C Capacity constraints (4.3)

〈x̄o , Io − o ≤ Δo f ≤ 〈x̄o , Io o Link flow measurements (4.4)

〈q̄o , Jo − o ≤ M o f ≤ 〈q̄o , Jo o O-D flow measurements (4.5)

 Apparently, only a subset of constraints should be considered in a particular

problem. Further, we may need to include travel costs in the objective function in one

problem, but need not in another. The derived classes of TNM_MPEN aim at realizing

such polymorphism. Specifically, TNM_MPEN itself does not consider constraints 4.2 and

exclude travel costs in the object function (0. 0). MPEN_MC uses the same

constraints but consider travel costs. On the other branch, both MPEN_DC and

MPEN_DC_MC include the flow conservation constraints, with 0. 0 in the former

and 1.0 in the latter. Further, subclasses TNM_LPFE and TNM_LTAP explicitly set up the

constraint structure for assignment and O-D estimation problems respectively, thus serve

as base classes for the two types of problems. TNM_LPFE actually implements Algorithm

RIBA for E-LPFE-SUB discussed in Section 3.3.1. Derived from TNM_LPFE, LPFE_RQ

deals with the logit path flow estimator with residual queues, the formulation used in the

time-dependent case. LPFE_RQ's two subclasses, LPFE_RQ_MSA LPFE_RQ_IBA,

implement Algorithms MSATD and RIBATD respectively. A similar design applies to

the subclass TNM_LTAP and its derived classes, which solve corresponding assignment

problems.

Subclass LOGWRAP_RMP implements Algorithm DDAG to handle the

flow-dependent link travel times. LOGWRAP_RMP is able to deal with most formulations

discussed in the last chapter provided a correct sub problem solver is selected. For

example, to solve E-LPFE-TD with the method of successive average, the sub problem

solver of DDAG should be an LPFE_RQ_MSA object. TNM_LOGWRAP provides a

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 42

general wrapper for performing column generation, and requires an object of

LOGWRAP_RMP to solve the sub problem.

TNM_ODE is a base class for general O-D estimation problems. This subclass contains

functions specific to O-D estimation problems, particularly input-output (I-O) functions

such as reading measured link traffic counts from disk files and preparing estimation

reports. Derived from TNM_ODE, TNM_LODE is further specified to target logit path flow

estimators. TNM_LODE can be regarded as the outmost wrapper of LPFE objects,

containing an object of TNM_LOGWRAP as an internal solver and providing necessary I-O

supports. TNM_LODE_TD implements the framework described in Algorithm MTI for

solving time-dependent LPFE, and overriding the I-O functions accordingly to meet the

need of processing multiple time-intervals. Similarly, CSTAP_B and CSTAP_B_TD are

outmost wrappers for steady-state and time-dependent logit traffic assignment problems

(BSUE and TD-BSUE in Section 3.1.2), respectively.

4.2 Class Description
This section provides implementation details of all classes. Note that the class

members of minor importance are not presented here.

__

CLASS GEN_IA PARENT CLASS: N/A

Data Members:

 GEN_IA*subProblem - a pointer of a sub problem.

 GEN_IA* auxProblem - a pointer of an auxiliary problem.

 double OFV - objective function value.

 int curIter - current iteration index.

 double stepSize - current step size.

 float cpuTime - consumed CPU time.

 int ziggIter - the number of iterations of

 “no-improvement”. “No-improvement”

 means that an expected improvement (i.e.,

 an adequate decrease of OFV) is not

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 43

 achieved.

 int badIter - the number of iterations during which OFV

 changes opposite to the expected direction.

 double convIndicator - an indicator of convergence

 double ziggIndicator - an indicator of ``no-improvement".

 int maxMainIter - maximum number of iterations permitted.

 double convCriterion - a threshold value that is used to determine

 convergence.

 double ziggCriterion - a threshold value that is used to determine

 no-improvement.

 int maxZiggIter - maximum permitted number of

 no-improvement iterations.

 int maxBaditer - maximum permitted number of bad

 iteration.

 double lineSearchAccuracy - required accuracy in line search.

 int maxLineSearchIter - maximum permitted number of line search

 double stepSizeLB - the minimum permitted step size

Constructor

 Void GEN_IA() - an empty default constructor

 Return - none.

Attributes:

 bool ReachMaxIter() - test if the maximum number of iterations is

 attained

 Return - a boolean value

 bool ReachMaxBad() - test if the maximum number of bad iterations

 is attained

 Return - a boolean value

 bool ReachAccuracy() - test if required convergence criterion is

 achieved

 Return - a boolean value

 bool ReachZigg() - test if no-improvement happens

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 44

 Return - a boolean value

 bool ReachMaxZigg() - test if maximum number of no-improvement

iterations is attained a boolean value

 bool ReachError() - test if an error is encountered, a boolean value

 bool ReachUser() - test if the solution process is terminated

 externally (most likely by a terminal user)

 Return - a boolean value

 Bool ReachUser() - test if the solution process is terminated

 externally (most likely by a terminal user)

 Return - a boolean value

Operations:

 TERMFLAGS Solve() - the underlying operation. Call this function to

 solve the optimization program associated with

 the class.

 Return - The termination reason of the solution process

 int SolveSubProblem() - solve the sub problem. OFV will be

 automatically updated using the OFV obtained

 from sub problem.

 Return - 0 if solving succeeds, 1 otherwise.

 int SolveAuxProblem() - solve the auxiliary problem.

 Return - 0 if solving succeeds, 1 otherwise.

 int ExportPar(parFile) - write algorithmic parameters (e.g.,

 maxMainIter, convCriterion etc.) into a file

 named parFile.alg

 Return - 0 if succeeds, 1 otherwise

 string parFile - a string specifying the output file name.

 int ReadPar(parFile) - reading parameters from a disk file named

 parFile.alg

 Return - if succeeds, 1 otherwise

 string parFile - a string specifying the input file name.

 void ImportDynamicMem(rhs) - import data members pertinent to the

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 45

 solution process (such as OFV,

 convIndicator etc.) from a given

 algorithm object.

 Return - none.

 GEN_IA *rhs - a pointer to a GEN_IA object.

 intBisecSearch() - search step size using the bisection method.

 Return - 0 if descent, 1 otherwise.

 void GoldentSearch() - search step size using Golden method.

 Return - none.

Overridables:

 int Build(inFile, outFile, format) - build the algorithm object, including

 reading required input data, allocating

 memory and open I-O files. An

 algorithm object must be ``built" before

 its Solve function can be called.

 Return - 0 if building succeeds; a non-zero

 number otherwise.

 string inFile - input file name.

 string outFile - the output file name.

 ENUM format - an enumeration type that describes input file

 format.

 int Build(rhs) - build the algorithm object from an existing

 object. It is often used to build a sub problem

 according to its host object.0 if building

 succeeds; a non-zero number otherwise.

 GEN_IA rhs - a pointer to an GEN_IA object.

 void Initialize() - initialize the solution process. It must be

 overridden in derived classes.

 Return - none

 void ComputeOFV() - compute the objective function value, update

 OFV accordingly.

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 46

 Return - none

 void MainLoop() - define major operations of the solution

 process. It must be overridden in derived

 classes.

 Return - none

 bool Terminate() - test if the solution process should be

 terminated.

 Return - a boolean value

 void PreProcess() - this function is called before Initialize() in the

 solution process. It is used to accommodate

 some special building/initialization

 operations.

 Return - none

 void PostProcess() - this function is called after the solution process

 is terminated.

 Return - a boolean value

 int Report() - write solutions obtained from Solve() into disk

 files.

 Return - 0 if succeeds; a non-zero value otherwise

 int PrePareReport() - Open report files and write headers. It must be

 called before Report().

 Return - 0 if succeeds; a non-zero value otherwise

 int CloseReport() - Close report files.

 Return - 0 if succeeds; a non-zero value otherwise

__

CLASS TNM_IA PARENT CLASS:: GEN_IA

Data Members:

 TNM_SNET* network - a pointer of a TNM_SNET object. TNM_SNET is

 a static network class defined in TNM. This

 network object is initialized in the overridden

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 47

 Build() function.

 double costScalar - a positive scalar to re-scale link travel times.

 ENUMl pf - an enumeration type of link performance

 functions.

Constructor:

 void TNM_IA() - an empty default constructor.

 Return - none.

__

CLASS TNM_MPEN PARENT CLASS: TNM_IA

Data Members:

 double theta - The dispersion parameter in logit

 models.

 double costCoef - The coefficient of travel cost term in the

 objective function (i.e., in Equation 4.1).

 vector volConLink - a vector of pointers of TNM_SLINK (defined

 in TNM) objects associated with constraint

 4.4.

 vector capConLink - a vector of pointers of TNM_SLINK (defined

 in TNM) objects associated with constraint

 4.3.

 vector conDest - a vector of pointers of TNM_SDEST (defined

 in TNM) objects associated with constraint

 4.2 or 4.5.

Constructor:

 void TNM_MPEN(theta) - default constructor

 Return - none

 double theta - the dispersion parameter .

Attributes:

 double GetTheta() - Get the dispersion parameter

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 48

 Return -

Operations:

 double -updateFlowPattern(link, shift)Update path and

 link flows based on the change of a multiplier

 made when checking a constraint associated

 with a link.shifted flows.

 ENUM* link - a pointer of a TNM_SLINK (a static link class

 defined in TNM) object.

 double shift - the change of the multiplier at the current

 iteration.

 double UpdateFlowPattern(od, shift) - Update path and link flows based

 on the change of a multiplier

 made when checking a constraint

 associated with an OD pair.

 Return - shifted flows.

 ENUM* oda - pointer of a TNM_SDEST(a static O-D class

 defined in TNM) object.

 double shift - the change of the multiplier at the current

 iteration.

 double GetODIEMuChange(od) - Compute the required change of a

 multiplier associated with a constraint of

 O-D measurement.

 Return - the change of the multiplier.

 ENUM* oda - pointer of a TNM_SDEST object.

 int SetTheta(theta) - Set the dispersion parameter

 Return - 0 if succeeds, non-zero value otherwise.

 double theta - the dispersion parameter

Overridables:

 int InitPathFlow() - Compute path flows using the logit choice

 model based on the initial values of

 multipliers.

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 49

 Return - 0 if succeeds, non-zero value otherwise.

 double GetVolLinkMuChange(link) - Compute the required change of

 a multiplier associated with a

 constraint of link measurement

 Return - the change of the multiplier

 ENUM* link - a pointer of a TNM_SLINK object.

 double GetCapLinkMuChange(link) - Compute the required change of

 a multiplier associated with a

 constraint of link capacity

 Return - the change of the multiplier

 ENUM* link - a pointer of a TNM_SLINK object.

__

CLASS MPEN_MC PARENT CLASS: TNM_MPEN

Constructor:

 void MPEN_MC(theta) - default constructor, in which costCoef is set to

 1.0.

 Return - none

 double theta - the dispersion parameter .

__

CLASS MPEN_DC PARENT CLASS: TNM_MPEN

Constructor:

 void MPEN_DC(theta) - default constructor

 Return - none

 double theta - the dispersion parameter .

Operations:

 void UpdateODMultiplier() -Update path and link flows according to the

 multiplier associated with the flow

 conservation constraint.

 Return - none

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 50

__

CLASS MPEN_DC_MCMPEN_DC

Constructor

 void MPEN_DC_MC(theta) - default constructor, in which costCoef is

 set to 1.0.

 Return - none

 double theta - the dispersion parameter .

__

TNM_LPFETNM_MPEN

Constructor:

 void TNM_LPFE(theta) - default constructor, in which costCoef is set to

 1.0.

 Return - none

 double theta - the dispersion parameter .

__

CLASS LPFE_RQ PARENT CLASS: TNM_LPFE

Constructor:

void LPFE_RQ(theta) - default constructor, in which costCoef is set to

 1.0

Return - none

double theta - the dispersion parameter .

__

CLASS LPFE_RQ_MSA PARENT CLASS: LPFE_RQ

Constructor:

 void LPFE_RQ_MSA(theta) - default constructor, in which costCoef is

 set to 1.0.

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 51

 Return - none

 double theta - the dispersion parameter .

__

CLASS LPFE_RQ_IBA PARENT CLASS: LPFE_RQ

Constructor

 void MPEN_DC_MC(theta) - default constructor, in which costCoef is

 set to 1.0.

 Return - none

 double theta - the dispersion parameter .

__

CLASS TNM_LTAP PARENT CLASS: MPEN_DC

Constructor:

 void TNM_LTAP(theta) - default constructor, in which costCoef is set to

 1.0.

 Return - none

 double theta - the dispersion parameter .

__

CLASS LTAP_RQ PARENT CLASS: TNM_LTAP

Constructor

 void LTAP_RQ - default constructor, in which costCoef is set to

 1.0.

 Return - none

 double theta - the dispersion parameter .

__

CLASS LTAP_RQ_MSA PARENT CLASS: LTAP_RQ

Constructor

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 52

 voidLTAP_RQ_MSA(theta) - default constructor, in which costCoef is

 set to 1.0.

 Return - none

 double theta - the dispersion parameter .

__

CLASS LTAP_RQ_IBA PARENT CLASS: LTAP_RQ

Constructor:

 void LTAP_RQ_MSA(theta) - default constructor, in which costCoef is

 set to 1.0.

 Return - none

 double theta - the dispersion parameter .

__

CLASS LOGWRAP_RMP PARENT CLASS: TNM_IA

Data Members:

 bool isRQ - consider residual queue in the formulation or

 not

 bool isAsn - consider assignment or O-D estimation

 bool isMsLinkTime - consider measured link travel times or not

Constructor:

 void LOGWRAP_RMP(mt, at, t) - default constructor.

 Return - none

 ENUM mt - the type of sub problem.

 ENUM at - the type of solution algorithm (only applies to

 the time-dependent case).

 double t - dispersion parameter.

Attributes:

 bool GetAsn() - Check the type of its subproblemtrue if the

 sub problem is an assignment model.

 bool GetRQ() - Check the type of its subproblemtrue if the

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 53

 sub problem considers residual queues.

 bool IsMsLinkTime() - Check whether or not measured link times are

 considered

 Return - a boolean value

__

CLASS TNM_LOGWRAP PARENT CLASS: TNM_IA

Data Members:

 bool pathEnum - whether or not enumerate all paths.

 int initPath - the number of shortest paths required to

 generate for each O-D pair in initialization.

 int genPath - the number of shortest paths required to

 generate in each iteration.

 int pathNum - the total number of paths generated so far.

Constructor:

 void TNM_LOGWRAP(mt, at, t, ep) - default constructor.

 Return - none

 ENUM mt - the type of subproblem.

 ENUM at - the type of solution algorithm (only applies to

 the time-dependent case).

 double t - dispersion parameter.

 bool ep - whether or not enumerate all paths.

Attributes:

 bool GetPathEnum() - Check if the path enumeration is activated

 Return - a boolean value.

Operations:

 void SetInitPath(n) - Set the value of initPaththe number of paths.

 void SetGenPath(n) - Set the value of genPaththe number of paths.

__

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 54

CLASS TNM_ODE PARENT CLASS: TNM_IA

Data Members:

 bool m_useTarget - whether or not consider O-D measurements

 bool m_useLinkError -whether or not consider link measurement

 errors

 bool m_useTargetError - whether or not consider O-D measurement

 errors

 bool m_useMsLinkTime - whether or not consider link travel time

 measurements.

 vector msLink - a vector of pointers of TNM_SLINK objects

 associated with measured links.

 vector umsLink - a vector of pointers of TNM_SLINK objects

 associated with unmeasured links.

 vector dmdVector - a vector of pointers of TNM_SDEST objects

 associated with measured O-D pairs.

Constructor:

 void TNM_ODE() - default constructor

 Return - none

Operations:

 void EnableTarget(t) - Set the value of m_useTarget

 Return - none

 bool t - true if allow to consider O-D measurements

 void EnableLinkError(t) - Set the value of m_useLinkError

 Return - none

 bool t - true if allow to consider link measurement

 errors

 void EnableTargetError(t) - Set the value of m_useTargetError

 Return - none

 bool t - true if allow to consider link travel time

 measurements

 int GetLinkError(lerFile) - Read link measurement errors from a disk

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 55

 file

 Return - 0 if succeeds, non-zero otherwise

 ifstream lerFile - a file pointer

 int GetTargetError(terFile) - Read O-D measurement errors from a

 disk file

 Return - 0 if succeeds, non-zero otherwise

 ifstream terFile - a file pointer

 double RmsetLink() - compute root mean squares of the measured

 and estimated link flows

 Return - calculated root mean square

 double RmsetOD(type) - compute root mean squares of two specified

 vectors of O-D flows

 Return - calculated root mean square

 enum type - specify two vectors of O-D flows.

Overridables:

 int GetMsLink(oFile) - Read link measurements from a disk file

 Return - 0 if succeeds, non-zero otherwise

 ifstream oFile - a file pointer

 in tGetMsLinkTime(mFile) - Read measured link travel times from a disk

 file

 Return - 0 if succeeds, non-zero otherwise

 ifstream mFile - a file pointer

 int GetTargetOD(tFile) - Read measured O-D flows (or historical O-D)

 from a disk file

 Return - 0 if succeeds, non-zero otherwise

 ifstream tFile - a file pointer

__

CLASS TNM_LODE PARENT CLASS: TNM_ODE

Data Members:

 double** tdDemand - a two dimensional array storing the time-

 dependent O-D table.

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 56

 double** tdLinkVol - a two dimensional array storing the time-

 dependent link flows.

 int timeInterval - the number of time intervals of interest. = 1

 for the steady-state case.

 int curTime - current time interval.

Constructor:

 void TNM_LODE(at, mt, ep, t) - default constructor.

 Return - none

 ENUM at - the type of solution algorithm (only applies to

 the time-dependent case).

 ENUM mt - the type of sub problem.

 bool ep - whether or not enumerate all paths.

 double t - dispersion parameter.

Attributes:

 int GetTimeInterval() - get the total number of time intervals.

 Return - timeInterval

 int GetCurTime() - get the current time intervalcurTime

Operations:

 void EnableMsLinkTimer(m) - set the value of m_useMsLinkTimenone

 bool m - true if allow to consider measured link travel

 times.

 int SaveSol(t) - save the solution at time t into an intermediate

 binary file

 Return - 0 if succeeds, non-zero value otherwise

 bool t - the time index

 int LoadSol(t) - load the solution at time t from a binary file

 into memory

 Return - 0 if succeeds, non-zero value otherwise

 bool t - the time index

__

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 57

CLASS TNM_LODE_TD PARENT CLASS: TNM_LODE

Data Members:

 double** tdTarDemand - a two dimensional array storing the measured

 time-dependent O-D information.

 double** tdLinktime - a two dimensional array storing the measured

 time-dependent link travel times.

Constructor:

 void TNM_LODE_TD(at, ep, t) - default constructor.

 Return - none

 ENUM at - the type of solution algorithm.

 bool ep - whether or not enumerate all paths.

 double t - dispersion parameter.

__

CLASS CSTAP_B PARENT CLASS: TNM_LODE

Constructor:

 void CSTAP_B(at, mt, ep, t) - default constructor.none

 ENUM at - the type of solution algorithm (only applies to

 the time-dependent case).

 ENUM mt - the type of sub problem.

 bool ep - whether or not enumerate all paths.

 double t - dispersion parameter.

__

CLASS CSTAP_B_TD PARENT CLASS CSTAP_B

Constructor:

 void CSTAP_B_TD(at, ep, t)- default constructor

 ENUM at - the type of solution algorithm.

 bool ep - whether or not enumerate all paths.

 double t - dispersion parameter.

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 58

4.3 Class Library and Its Usage
All the twenty one classes can be complied as a static class library (mat.lib) to

facilitate various applications. In this section, we first discuss how to make use of the

class library at a programming level, then introduce two primitive user interfaces

developed based on the library.

4.3.1 Use mat.lib in programming
With the class library prepared, it is easy to write a piece of code to solve either a

logit assignment or an O-D estimation problem. Figure 4.2 provides an example for

solving a steady-state LPFE.

First, the main interface mat.h has to be included to get access to class definitions, as

shown in the first line of Figure 4.2. We also include the interface tnm.h for accessing

another class library TNM, for some of constants and types defined in TNM may also be

used. To solve the steady-state LPFE, we first define and create a corresponding

algorithm object TNM_LODE. Note that four parameters are required to construct a

TNM_LODE (See the class description for the meaning of these parameters). Lines 6 - 8

specify optional parameters, such as the type of link performance function (line 6).

Default values would be used if no value is provided here. Then, the Build function is

called to read files from disk files and allocate memory to handle data. This Build

function requires various input files, depending on the problem type and the network file

format (the details of the input files will be discussed in Appendix A). Once the algorithm

is built successfully, the Solve() function is called to find the optimal solution, followed

by three report functions which together prepare a solution report comprising of several

ASCII files. Finally, the algorithm object is deleted in order to release memory.

The code shown in Figure 4.2 can actually be employed to solve almost all problems

discussed in Chapter 3, provided line 5 is modified to fit in an appropriate object. Table 1

shows a guideline for the selection of objects. TClearly, the object-oriented design

provides a neat programming interface because all complexities have been encapsulated

within objects. This feature is particularly useful when developing user interfaces. In the

following, we develop the interface for the console application..

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 59

Table 4.1 A guideline for the selection of algorithm objects

 Logit traffic assignment Logit path flow estimator
Steady-state CSTAP_B TNM_LODE
Time-dependent CSTAP_B_TD TNM_LODE_TD

1 #include <mat.h>
2 #include <tnm.h>
3 int main()
4 {
5 TNM_LODE *lode = new TNM_LODE(LOGIBA, true, false,0.1);
6 lode->lpf = CSTLK;
7 lode->EnableTarget();
8 lode->EnableTargetError();
9 if(lode->Build("c:\\in", "c:\\out", NETFORT)!=0)
10 {
11 cout<<"\tFail to build an an algorithm object "<<endl;
12 return 1;
13 }
14 lode->Solve();
15 lode->PrepareReport();
16 lode->Report();
17 lode->CloseReport();
18 delete lode;
19 return 0;
20}

Figure 4.2 A sample C++ code using mat.lib

4.3.2 A console interface
The console program named LPFE is originally designed to provide the general

purpose PFE-GUI an external access to classes defined in mat.lib. As mentioned, the

general purpose PFE-GUI is coded using Visual Basic (VB). Although it simplifies the

GIS-related programming, the use of VB makes it a bit more difficult to directly

communicate with mat.lib. The console interface bridges the gap. That is, PFE-GUI first

offers a user-friendly way to prepare input files for the console program, then executes it

to solve specified problems and finally visually displays outputs.

Although it is not convenient, the console program LPFE can also be independently

used for testing purpose. The usage of LPFE is briefly summarized in the following.

- LPFE ?, LPFE h or LPFE H

Print help message. This command will also produce a file lpfe.hlp that explains how

CHAPTER 4. AN OBJECT_ORIENTED IMPLEMENTATION 60

to set up parameters in lpfe.par.

- LPFE n or LPFE N

Create a default lpfe.par file. LPFE.par is a required input file that specifies important

control parameters such as input and output file names, the dispersion factor, etc. It

has to be placed in the same folder as LPFE.exe. Users need to specify the parameters

in this file according to their own needs. Missing the file will lead to running error.

Figure 4.3 shows an example lpfe.par file.

- LPFE a or LPFE A

Create a default algorithm parameter file (.alg). This file include parameters that

affect algorithmic performance. Its details will be explained in Appendix A.

- LPFE ASN or LPFE asn

Perform logit traffic assignment. A hypothetical O-D estimation scenario can be

produced based on assignment results. Specifically, the link flows obtained from

assignment will be used to produce ``observed" link traffic counts required for

estimation problems.

- LPFE EST, LPFE est or LPFE Perform logit O-D estimation.

Input File Name: .\EXAMPLE\est\danet
Input file format: NETDANET2
Output File Name: .\EXAMPLE\est\danet
Retain iteration history: 1
Record link detail: 1
Record path detail: 1
Record path topology: 1
Speed flow function: BPRLK
dispersion parameter: 0.1
cost scalar: 1
algorithme type: IBA
Time dependent: 1
Enumerate all paths: 0
Allow residual queue: 1
Create an estimation scenario: 1
Consider target O-D demands: 1
Consider link observation errors: 1
Consider target O-D errors: 1

Figure 4.3 A example lpfe.par file

CHAPTER 5 VISUAL PFE-TD 61

Chapter 5. Visual PFE – TD: A GIS-Based
Decision Support System for
Time-Dependent Origin-Destination Trip
Table Estimation

5.1 What is Visual PFE-TD?
Visual PFE - TD is a special edition of Visual PFE, an integrated software suite

that combines the Path Flow Estimator (PFE) with other software components to

facilitate the estimation, visualization, and refinement of Origin-Destination (OD) trip

tables with user-friendly Graphical User Interfaces (GUI).

We have already discussed the detailed algorithmic implementations of the Logit

Path Flow Estimator (LPFE) and its console interface in Chapter 4, which operates under

the DOS command prompt with no GUIs and no graphical presentation of the output data.

To expand the capability of LPFE, this special edition of Visual PFE is created to

integrate LPFE with components of Visual PFE.

With Visual PFE - TD, users can:

 Run LPFE with GUIs

 Convert the estimated OD tables to Microsoft Excel Files

 Change the colors and zoom levels of the OD table cells

 Interactively display and query OD desire lines

 Interactively display and query paths between any pair of OD

 Convert the PFE outputs to GIS files (ESRI shapefiles)

 Create thematic maps of network links and traffic analysis zones

 Generate diagnostic scatter plots

 Link the scatter plots to the network for identification of outliers

 Create and edit LPFE networks as text files

CHAPTER 5 VISUAL PFE-TD 62

 Compare different scenarios

5.2 Key Features
Visual PFE - TD is developed with Microsoft Visual Basic.NET. It implements

Microsoft’s Multiple Document Interface (MDI) software architecture, within which

multiple windows forms can be created and viewed within the main window. The main

window is referred to as the MDI parent form and each sub-window opened within the

MDI parent is called a MDI child form. With Visual PFE, a MDI child form can take

on the form of a map, a table, a graphic plot, or a text document. The program functions

are controlled using Graphical User Interfaces (GUI). When multiple result windows

are opened in Visual PFE - TD, the titles of the MDI child windows are formatted in a

way that results of the same network and time period can be identified. Figure 5.1

shows such an example, in which the titles of the OD table, scatter plot, path table, and

report all include the name and the file path of the network (i.e., the title of the fist

window).

Figure 5.1 Multiple Document Interface

5.2.1 Estimation GUI
The process of OD estimation with Visual PFE - TD begins with the Estimation

GUI (see Figures 5.2 and 5.3). Users can use this GUI to set up a LPFE estimation,

CHAPTER 5 VISUAL PFE-TD 63

provided LPFE network data have been prepared. This GUI feeds the user inputs to the

LPFE and the program returns the estimation results to the GUI once estimation is

completed or specific problems are encountered during estimation. The original output

files generated by the LPFE estimation program are all text-based. Visual PFE contains

components that can convert the text files to the GIS and spreadsheet files.

Figure 5.2 Algorithm Input Window

CHAPTER 5 VISUAL PFE-TD 64

Figure 5.3 Parameter Input Window

Once successfully estimated, Visual PFE-TD can present the outputs to the users

with four types of windows forms:

 Network Maps

 OD and Path Tables

 Link Flow Scatter plots

 Estimation Reports

5.2.2 Network Maps

The Network Windows form is divided into the map and the legend areas (Figure

5.4). A layer can be made active by moving mouse cursor over and clicking at the

corresponding title of the map legend. Labels, colors, and charts based on attributes can

be applied to features of the active layer. Drawing order of the layers can also be

CHAPTER 5 VISUAL PFE-TD 65

changed by dragging the layer name up or down in the legend area.

A network map consists of four ESRI Shapefiles, each presented as a map layer:

 Network links: All of the link attributes are stored in this layer, including the

observed and estimated link flows.

 Origins and destinations: The production and attraction of the origins and

destinations are stored in this point layer.

 Desire lines: A desire line represents the flow between a pair of OD. The

desire lines layer is hidden by default. Users can choose to display or hide

them.

 Map boundary points: Two boundary points are included in the network map

to create sufficient margins around the network such that all features of the

network can be displayed within the map window.

Figure 5.4 Network Map

5.2.3 OD and Path Tables
The OD table (see Figure 5.5) is presented as a spreadsheet. The color of each cell

CHAPTER 5 VISUAL PFE-TD 66

can be adjusted based on the value of the OD flow. The size of the cells can also be

adjusted to facilitate visualization of the flow patterns over the entire OD table.

Figure 5.5 OD Table Window

For each cell in the OD table, the locations of the origin and destination and the

magnitude of the OD flow can be graphically presented over the network map by

initiating a dynamic linkage between the OD table and the desire line layer. That is, by

highlighting a particular cell in the OD table, the desire line of that OD pair can be

plotted over the network map with a band that varies by the magnitude of the OD flow

(see Figure 5.5).

The path table is also implemented as a spreadsheet (Figure 5.6). A dynamic

linkage exists between a path table and the corresponding network layer. The location

of a path can be identified and highlighted over the network map by selecting a path in

the Path table and initiating the dynamic linkage to the map.

CHAPTER 5 VISUAL PFE-TD 67

Figure 5.6 Path Table Window

5.2.4 Link Flow Scatter Plots

One of the most common and important diagnostic graphs for the OD estimation

problem is the observed-versus-estimated scatter plot of network link flows (see Figure

5.7). The scatter plot is implemented in Visual PFE-TD as a collection of map layers.

The scatter plot point layer uses the observed value of a link as the X coordinate and the

estimated value as the Y coordinate. A link layer is used to represent the two axes and

other boundary lines delineating the levels of accuracy of the estimation.

CHAPTER 5 VISUAL PFE-TD 68

Figure 5.7 Scatter Plot Window

The scatter plot layer can be linked to the network map to identify the link

location of a particular scatter plot point.

5.2.5 Report Document

The LPFE generates a summary report for every successful estimation. The

estimation report can be viewed via the report document windows form (Figure 5.8).

The document windows is also a text editor with all the regular text editing functions

such as cut, copy, and paste.

CHAPTER 5 VISUAL PFE-TD 69

Figure 5.8 Report Window

5.2.6 Network Editing

After examining the results of a LPFE estimation, users can change attributes (e.g.,

the observed flows) of a network link and export the data back to the original LPFE data

format for another estimation with improved results.

5.2.7 Scenario Comparison
If multiple estimation runs have been done for a network, all of the previous

results can be opened and compared at the same time. The comparison is setup via the

GUI in Figure 5.9.

CHAPTER 5 VISUAL PFE-TD 70

Figure 5.9 Scenario Comparison Window

5.2.8 Windows Help

A standard windows help document (Figure 5.10) is created and built in with

Visual PFE-TD. Users can access instruction of particular tasks via the document.

Figure 5.10 Windows Help

CHAPTER 5 VISUAL PFE-TD 71

5.3 Technical Specification
Visual PFE - TD integrates the LPFE program with three other software

components. The architecture of the system is shown in Figure 5.11.

Figure 5.11 Visual PFE - TD Software Components

The three software components are:

 ArcViewShapeFile OCX

 ESRI MapObjects

 FarPoint Spread

5.3.1 LPFE
The LPFE program operates via the DOS command prompt. If an estimation run

is successfully, the output files generated by the LPFE are in text files. If an estimation

run encounters errors due to incompatible parameter setting, the LPFE program will quit

and error messages will be issued by Visual PFE – TD.

CHAPTER 5 VISUAL PFE-TD 72

5.3.2 The ArcViewShapefile Read/Write OCX
An OCX is an object-oriented software component conforming to Microsoft’s

ActiveX architecture. The OCX was created to easily read or write Arcview Shapefiles

for data conversion purposes. The Shapefile format is a geographic data format published

by ESRI. The ArcViewShapefile Read/Write OCX was created by Ross Pickard in

Wellington, New Zealand and is a shareware made available for download from ESRI

web site.

Visual PFE - TD uses the DLL version of the ArcViewShapeFile to convert the

text files generated by LPFE to Shapefiles. The converted shapefiles can be displayed

with the Visual PFE - TD map component and common GIS software. Table 5.1 shows

the conversion between the LPFE text files to the shapefiles used by Visual PFE.

Table 5.1 LPFE Output Text Files to Shapefiles

LPFE Output File Converted Shapefile
*.lfp Network lines
*.zne OD points
*.est Desire lines
*.lfp Scatter plot points

Visual PFE – TD converts the LPFE output text files to shapefiles. These

shapefiles are stored in the same folder as the input network data. The shapefiles are

used to visually depict the network, the origins, the destinations, and the desire lines.

Figure 5.12 shows a side-by-side view of the list of shapefiles and the legend of the

network map layers. It can be seen that three files (i.e., *.shp, *.shx, and *.dbf) are used

to draw a layer (i.e., ESRI shapefile specification). The name of the layer is the same as

that of the three shapefiles that make up the layer. Each layer name includes reference

to the input network and the feature (i.e., network, od, desire lines, or boundary points) of

the layer.

CHAPTER 5 VISUAL PFE-TD 73

Figure 5.12 Shapefiles and Network Map Layers

Figure 5.13 shows a side-by-side view of the list of shapefiles and legend of the

Scatter Plot layers.

Figure 5.13 Shapefiles and the Scatter Plot Layers

CHAPTER 5 VISUAL PFE-TD 74

5.3.3 ESRI MapObjects
MapObjects is a set of mapping software components that let users add GIS maps

to software applications. MapObjects comprises an ActiveX control (OCX) called the

Map control and a set of over forty-five ActiveX Automation objects. In Visual PFE, a

map control is used to display the shapefiles created by the ArcViewShapeFile

component. The map control facilitates all of the GIS functions for the converted

shapefiles. Another OCX control is added to a map form to display the legends of

different map layers. The legend control is internally connected to the map control. A

layer can be made active through the legend control. On the active layer, labels and

thematic mapping can be applied to features on the layer. For example, networks links

can be varied by colors and width based on estimated link flow. Bar charts can be

applied to display the varying magnitude of production and attraction at the origins and

destinations.

5.3.4 FarPoint Spread

Spread by the FarPoint Technologies is a software component built to Microsoft’s

latest .NET software architecture. Spread is used to create spreadsheet applications.

The strength of Spread is that it facilitates all of the typical spreadsheet functions with a

dimension limitation (1 million columns by 1 million rows) that is unlikely to be violated

by any OD tables. Visual PFE contains codes that process the PFE CSV outputs and

formulate the spreadsheets stored and displayed with Spread. Once a spreadsheet is

created in Spread, it can be saved as a Microsoft Excel file. Table 5.2 shows the

association between the original PFE CSV outputs and the formatted Spread tables.

Table 5.2 LPFE Output Files to Spread Tables

LPFE Output Files Converted Spread Table
*.est OD table
*.pfp Path table

The details of how to use the software are contained in the user manuals in the

Appendix.

CHAPTER 6. CASE STUDIES 75

Chapter 6. Case studies

With the details of LPFE formulation and implementation discussed in previous

chapters, this chapter presents a series of case studies to examine the performance

characteristics of LPFE. We first describe a general evaluation framework in Section 5.1,

followed by numerical experiments that are carefully designed to examine

 how the choice of algorithmic parameters affects performance?

 how different network topologies affect estimation performance?

 how measurement locations and additional inputs (such as partial O-D

information) affect LPFE’s and TD-LPFE’s performance? and

 how input errors influence the quality of O-D estimates?

Note that most numerical studies presented in this chapter are devoted to the static

problem, because the time-dependent LPFE is comprised of a sequence of static LPFEs

and so findings derived from static studies naturally apply to the dynamic case. However,

we shall discuss a dynamic example in the last section that highlights the effect of

carryovers of residual queues across times.

6.1 Evaluation Framework
 Theoretically, the evaluation of the LPFE’s performance requires comparing the

estimated O-D flows to the “true” O-D flows. In reality, however, obtaining “true” O-D

data is extremely difficult. We use a combination of historical and synthetic O-D data in

these cases studies, with an evaluation framework as shown in Figure 6.1.

CHAPTER 6. CASE STUDIES 76

OD estimation

Performance
Evaluation

Performance Indices:
1) Total Demand Captured
2) RMSE of OD Flows
3) RMSE of Link Flows

Estimated OD Flows Estimated Link Flows

Logit Traffic Assignment

Artificial Perturbation

Historical OD Flows

Hypothetical True OD Flows

Hypothetical historical OD Flows

Measured Link Flows

Hypothetical True OD Flows

Hypothetical True Link Flows

True OD Flows

Hypothetical Measured Link Flows

Artificial Perturbation

Hypothetical True OD Flows

True Link Flows

Logit Traffic Assignment

Hypothetical True OD Flows

Hypothetical True Link Flows

Figure 6.1 Evaluation framework

We assume that a “true” O-D trip table is known as a priori. This O-D table can be

established, for example, from existing survey data. With this ``true" O-D table, link

traffic counts are produced from the corresponding traffic assignment procedure (a logit

traffic assignment in our case). Perturbations can be further introduced to emulate

measurement errors. Similarly, one can obtain a ``historical" or ``observed" O-D table by

applying a perturbation to the predetermined O-D table. Using these inputs we can

evaluate the performance of LPFE by comparing the estimated O-D/link flows to those

presumed to be known as true.

The measurements of effectiveness (MOE) adopted in our evaluation framework

include: 1) TDC (total demand captured); 2) RMSE_OD (root mean square error of

estimated OD flows); 3) RMSE_Link (root mean square error of estimated link flows).

Mathematically, These MOEs can be expressed as:

CHAPTER 6. CASE STUDIES 77

TDC (Total Demand Captured)

∑
p1

M
D̄p

∑
p1

M
Dp

 (6.1)

RMSE_OD (RMSE of O-D flows)

∑
p1

M
D̄p − Dp2

M

 (6.2)

RMSE_Link (RMSE of link flows)
∑
k1

N
X̄k − Xk2

N

 (6.3)

where,

 D̄p , p 1,… , M are the estimated O-D flows;

 Dp , p 1,… , M are the true O-D flows;

 X̄k , k 1,… , N are the estimated link flows;

 Xk , k 1,… , M are the true link flows.

TDC measures the percentage that the total true O-D flows are captured by

estimated O-D flows. Thus, a TDC closer to 1 may suggest a better estimate.

RMSE_OD depicts the average variation of the estimated O-D flows with respect to the

``true" values. The smaller the RMSE_OD, the better the spatial structure of travel

demands is captured. Similarly, the value of RMSE_Link measures the extent to which

measured link flows are reproduced by estimated flows.

Finally, to simplify the analysis, all tested scenarios assume that link travel times are

independent of link flows.

6.2 Algorithmic Settings
 The performance of LPFE may be substantially affected by several algorithmic

parameters. Thus, it is natural to ask what are the ``optimal" parameters leading to the

CHAPTER 6. CASE STUDIES 78

best performance. To answer this question, we explore the relationship between the

parameters and the LPFE performance using numerical experiments. The major

parameters in consideration include:

 maximum iteration number n . n restricts the maximum number of iterations

for DDAG (the algorithm solving the E-LPFE-SUB problem);

 accuracy . ε defines the stopping criterion for both DDAG (the algorithm

solving the e-LPFE-SUB problem) and CGA(the column generation algorithm).

For narrative convenience, we shall denote the convergence indicator of the i th

iteration of DDAG as k i hereafter. Either algorithm will terminate if k i ≤ ;

 maximum bad iterations bn . bn represents the maximum number of iterations

in which k i k i−1 ;

 zigzagging criterion z and maximum zigzagging iterations zn . z defines the

criterion to count an iteration as a zigzagging iteration, and zn restricts the

maximum number of zigzagging iterations for DDAG. If
|ki−ki−1|

ki−1
 z , the

iteration will be treated as a zigzagging iteration.

A small network taken from Yang and Meng (Yang & Meng 1998) is adopted to

examine the impact of these parameters. The network contains 9 nodes, 14 links, and 9

O-D pairs. Figure 6.2 shows the network topology and Figure 6.3 lists the O-D table. We

use all link flows obtained from assignment as inputs. No additional O-D information is

considered.

Figure 6.2 Yang and Meng’s network Figure 6.3 O-D trip table

CHAPTER 6. CASE STUDIES 79

Figure 6.4- 6.7 show the values of RMSE_Link of various scenarios with different

algorithmic settings. As shown in Figure 6.4, when the number of iteration is larger than

100, resulted RMSE_Link is very small and does not change much, implying that the

observed link flow pattern is reproduced perfectly. Further, to achieve a satisfying link

flow estimate requires that be set to be less than 0.01 (See Figure 6.5. The

performance of LPFE seems not sensitive to the value of bn , as revealed in Figure 6.6.

This is probably due to that this network contains a small number of constraints thus bad

iterations are unlikely to appear. Figure 6.7 illustrates the impact of different

combinations of z and zn . As we can see, for a fixed z , RMSE_Link decreases as zn

increases. However, a very loose setting of z (say 0. 5 or 1. 0) can adversely affect

LPFE's capability to reproduce measured link counts, no matter how many zigzagging

iterations are allowed. In short, for this small network, satisfying results can be obtained

using the following setting: n ≥ 100, 0. 01, bn 1, z 0. 1, zn 5.

0.001

0.01

0.1

1

10

100

1 10 100 1000

maximum iteration number

RM
SE

_L
in

k(
ve

h/
hr

)

Figure 6.4 Scenarios with different n (10,001.0,10,001.0 ==== znzbnε)

CHAPTER 6. CASE STUDIES 80

0.001

0.01

0.1

1

10

100

0.001 0.010 0.100 1.000
accuracy

RM
SE

_l
in

k(
ve

h/
hr

)

Figure 6.5 Scenarios with different ε (10,001.0,10,1000 ==== znzbnn)

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10

maximum bad iterations

RM
SE

_L
in

k(
ve

h/
hr

)

Figure 6.6 Scenarios with different bn)10,001.0,001.0,1000(==== znzn ε

CHAPTER 6. CASE STUDIES 81

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10

maximum zigzagging iterations

RM
SE

_L
in

k(
ve

h/
hr

)
z = 0.01
z = 0.1
z = 0.2
z = 0.5
z = 1

Figure 6.7 Scenarios with different z & zn (10,001.0,1000 === bnn ε)

Although the setting of algorithmic parameters is usually problem-specific, a general

guideline can still be drawn. In most cases, if an estimation result is regarded as

unsatisfying, users should so adjust the algorithmic parameters that LPFE would perform

more DDAG iterations. To achieve this objective, one can try increase n , zn , bn ,

and/or reduce , z . In general, such adjustment helps produce a result better fulfilling

the constraints. However, note that the CPU time increases rapidly with the number of

iterations spent in the sub problem. Thus, users should exercise caution when making

such parameter adjustments, particularly for large-scale problems.

6.3 The Impact of Network Topology
 To study the impact of network topology on O-D estimation results, we focus on

several basic network topologies. Most transportation networks can be considered as a

combination of these basic types. The basic topology types in consideration include: tree,

linear, ring (a special linear type), and the combination of the above three (called a

derived type in our discussion). Figure 5.8 illustrates these basic types.

CHAPTER 6. CASE STUDIES 82

(a) A tree network (b) A linear network

 (c) A ring network (d) A derived network

Figure 6.8 Basic types of network topology

A tree network(Figure 6.8a) can be regarded as a typical network in mono-centric

cities, where people live in the suburbs and work in a central business district(CBD).

Usually, commuters have one primary path to travel from home to the work location. The

linear network (Figure 6.8b) and the ring network (Figure 6.8c) are simplifications to

corridor networks in multi-centric cities. In a linear-type network, the home places and

work places of people locate along a linear arterial road, while in a ring network, major

economic activities happen along a ring arterial road. Finally, a derived network is

usually more complex and contains elements of the above three types of topologies. For

example, the network in the same suburban neighborhood might be a tree-type network,

where people from different local roads drive to the same freeway connecting the

CHAPTER 6. CASE STUDIES 83

suburban neighborhood and the CBD area of the city. Within the CBD area, there might

be either a linear road or ring road connecting all the freeways coming from different

suburban neighborhoods. Again, we assume that all link flows are measured, and no

observed/historical O-D information is available.

6.3.1 The case with a tree network
 The tested tree network is shown in Figure 6.9, which consists of 16 nodes, 15

links, seven origins, and one destination. The number of OD pairs is seven. The true OD

flows are listed in Figure 6.10. Figure 6.11 and Figure 6.12 visualize the estimated O-D

profile and link flow profile. The red points in both plots represent the true values (O-D

flow or link flow), while the blue points represent the estimated values (O-D flow or link

flow). For a perfect estimation, in which true O-D and link flows are exactly reproduced

by estimates, all the red points should overlap the blue points.

Figure 6.9 A tree network Figure 6.10 True O-D trip table

CHAPTER 6. CASE STUDIES 84

Figure 6.11 Estimated O-D flow profile for the tree network

Figure 6.12 Estimated link flow profile for the tree network

CHAPTER 6. CASE STUDIES 85

From Figure 6.11 and Figure 6.12, we observe that both the estimated OD flows and

the estimated link flows equal the true values, with TDC = 100%, RMSE_OD = 0, and

RMSE_Link = 0. That is, a perfect estimation is obtained.

6.3.2 The case with a linear network
 The tested linear network is shown in Figure 6.13. The network consists of 16

nodes (four origins, and four destinations), 15 links, and ten O-D pairs. The true O-D

flows are listed in Table 6.14. The estimated O-D flow profile and link flow profile are

shown in Figure 6.15 and Figure 6.16.

Figure 6.13 A linear network Figure 6.14 True O-D trip table

Figure 6.15 Estimated O-D flow profile for the linear network

CHAPTER 6. CASE STUDIES 86

Figure 6.16 Estimated link flow profile for the linear network

Figure 6.16 shows that the estimated link flow profile replicates exactly the true link

flow profile with RMSE_Link = 0. In addition, the total amount of demand is captured

accurately too, with TDC = 100%. However, Figure 6.15 indicates that there are

discrepancies between the estimated O-D flows and the true O-D flows, with RMSE_OD

= 71.6507. This is expected because for a certain link flow profile in a linear network,

there can be more than one path flow solutions corresponding to it. What LPFE predicts

is just one of the path solutions, which may not be the true one. Such errors are of un

intrinsic nature due to the under-determined property of O-D estimation problems.

6.3.3 The case with a ring network
 The tested ring network is made up of 16 nodes (four origins, and four

destinations), 16 links, and 16 O-D pairs, as illustrated in Figure 6.17. Figure 6.18

provides the true O-D flows. The estimated O-D flow profile and the link flow profile are

shown in Figure 6.19 and Figure 6.20.

CHAPTER 6. CASE STUDIES 87

Figure 6.17 Ring network Figure 6.18 True O-D trip table

Figure 6.19 Estimated O-D profile for the ring network

CHAPTER 6. CASE STUDIES 88

Figure 6.20 Estimated link flow profile for the ring network

Similar observations can be made for the ring network as the linear network, which

is somewhat expected because a ring network is a special type of linear network. Both the

link flow profile and the total amount of demand are predicted accurately, while

estimated O-D flows does not perfectly match “true” O-D flows (with RMSE_OD =

29.5448). This is again due to the fact that the path flow solution in a ring network is

usually not unique.

6.3.4 The case with a derived general network
 The derived network we use for testing is shown in Figure 6.21. There are 30 nodes

(eight origins, and five destinations), 33 links, and 40 O-D pairs in the network. The true

O-D flows are provided in Figure 6.22. The estimated O-D flow profile and link flow

profile are presented in Figure 6.23 and Figure 6.24.

CHAPTER 6. CASE STUDIES 89

Figure 6.21 A derived general network Figure 6.22 True O-D trip table

Figure 6.23 O-D estimation profile for the derived network

CHAPTER 6. CASE STUDIES 90

Figure 6.24 Estimated link flow profile for the derived network

As expected, for a more complex network, the link flow profile and the total amount

of demand are still been accurately estimated, with RMSE_Link = 0, TDC = 100%. Due

to the multiplicity of path flow solutions, deviations are observed between the estimated

O-D flows and true O-D flows, with RMSE_OD = 19.4774.

In summary, for the basic network types we discussed above, LPFE can offer

satisfying link flow estimates and accurately capture the total demands, provided all link

flows are measured. The true O-D flows can not be reproduced exactly if there is more

than one path solution, as for the linear, ring, and derived networks. Obviously, link

traffic counts alone cannot guarantee estimation results of good quality in most cases.

Additional information, such as partial O-D information, is needed in general, and this

will be discussed in the next section.

6.4 The Impact of Additional Inputs
 Starting from this section, we begin to work on a real network, the network of

Dallas and Fort Worth in Texas. The Dallas-Fort Worth network (Figure 6.25) consists of

211 nodes (13 of which are origins and 13 of which are destinations), 481 links (26 of

which are centroid connectors), and 140 O-D pairs. A two-hour static O-D trip table was

CHAPTER 6. CASE STUDIES 91

obtained. When the static O-D estimation is performed, the hourly static O-D flows are

treated as the true O-D flows. The static O-D trip table will further be decomposed to

construct the hypothetical dynamic true O-D flows in the time-dependent case. For

brevity, the O-D trip table is not listed here.

Figure 6.25 The Dallas-Fort Worth network

6.4.1 Effects of measurement location and the number of measurement
locations on estimation performance

 According to the observations made in Section 6.3, LPFE’s capability of

reproducing the true O-D flows depends on network topology. We first examine for this

CHAPTER 6. CASE STUDIES 92

real network whether or not LPFE can provide reasonable results when inputs are ONLY

measured link flows. The different sets of measurements in consideration include:

• flows on all links are measured (number of links: 267)

• flows on congested links are measured (number of links: 45)

• flows on efficient links are measured (number of links: 33)

• flows on freeway links are measured (number of links: 27)

• flows on centroid connectors and freeway links are measured (number of links:

53)

The set of all measured links consists of the links whose volume-capacity ratio is

larger than 0.1. The set of congested links include all the links with volume-capacity ratio

larger than 0.5. Efficient links form a minimal link set covering all the used path. This

link set is designed to capture some information of the spatial structure of the demand.

Freeway links are the links on the freeway connecting the two main OD pairs across the

city. The centroid connectors are the links locating at the entrance/exit of each

origin/destination.

TDC, RMSE_OD and RMSE_link of estimation results corresponding to different

inputs are shown in Figure 6.26, Figure 6.27, and Figure 6.28, respectively.

0

10

20

30

40

50

60

70

80

90

100

all measured
links(267)

congested
links(45)

efficient
links(33)

freeway dummy links &
freeway links(53)

TDC(%)

links(27)

Figure 6.26 TDCs for different sets of measurements

CHAPTER 6. CASE STUDIES 93

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

all measured
links(267)

congested
links(45)

efficient
links(33)

freeway
links(27)

dummy links &
freewaylinks(53)

RMSE_OD (veh/hr)

Figure 6.27 RMSE_ODs for different sets of measurements

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

all measured
links(267)

congested
links(45)

efficient
links(33)

freeway
links(27)

dummy links
 freeway links(53)

RMSE_Link (veh/hr)

&

Figure 6.28 RMSE_Links for different sets of measurements

Figure 6.26 indicates that in most scenarios more than 90% of total demands are

captured, except the scenario where only freeway links are measured (in which TDC =

78.15%). Interestingly, the total demand captured by the scenario with as much as 267

links (all measured links) is not very different from what captured by the scenario with

only 33 links (efficient links), suggesting that LPFE can capture the total demand with a

much smaller number of counting locations than what would be available.

CHAPTER 6. CASE STUDIES 94

Three out of the five scenarios, i.e., scenarios with input set of all measured links,

freeway links, and centroid connectors & freeway links, replicate the link flows quite

well with RMSE_Link no greater than veh/h10 . However, the RMSE_ODs for all the

scenarios are rather high, compared to the average O-D flows (152veh/hr). This is again

due to the existence of multiple path solutions corresponding to an observed link flow

pattern. Moreover, the scenario of efficient links, which originally designed to capture

spatial structure of the demand to some extent, perform the worst instead of the best in

terms of RMSE_ODs.

To summarize, the scenario with input set of all measured links, and the scenario

with input set of centroid connectors & freeway links seem to outperform the other three,

when all the MOEs are taken into account.

6.4.2 The effects of historical O-D flows(50%)
 In this section we introduce historical (observed) O-D data into inputs to improve

the quality of estimates. The historical O-D trip table is generated by randomly

introducing a perturbation with bounds −50%, 50% to each O-D pair (RMSE_OD

between this historical O-D trip table and the true O-D trip table is 110. 41veh/hr). For

comparison purpose, the same O-D trip table is used in combination with all the five link

sets discussed in the last section. The MOEs of estimation results with and without the

observed O-D trip table are shown in Figure 6.29, Figure 6.30, and Figure 6.31.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

all measured
links(267)

congested
links(45)

efficient
links(33)

freeway
links(27)

dummy links
& freeway
links(53)

Without historical OD
With historical OD

TDC(%)

Figure 6.29 TDCs for different link sets with and without historical O-D data

CHAPTER 6. CASE STUDIES 95

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

all measured
links(267)

congested
links(45)

efficient
links(33)

freeway
links(27)

dummy links
& freeway
links(53)

Without historical OD
With historical OD

RMSE_OD(veh/hr)

Figure 6.30 RMSE_ODs for different link sets with and without historical O-D data

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

all measured
links(267)

congested
links(45)

efficient
links(33)

freeway
links(27)

dummy links
& freeway
links(53)

Without historical OD
With historical OD

RMSE_Link(veh/hr)

Figure 6.31 RMSE_Links for different link sets with and without historical O-D data

As indicated by Figure 6.29, by including historical O-D data into the input set, the

TDCs of all the scenarios except the scenario with the input set of efficient links, are

getting even closer to 100 %. Even for the scenario of freeway links only, which

performed unsatisfactorily before (TDC = 78.15 %), the TDC becomes 102.27% with a

CHAPTER 6. CASE STUDIES 96

disturbed historical O-D table.

RMSE_OD is reduced significantly too, with the included historical O-D

information. For all scenarios except the one using efficient links, the RMSE_ODs are all

below 60veh/hr. For the efficient link scenarios, the RMSE_OD also shows a dramatic

drop from 706. 89veh/hr to 343. 23veh/hr (although it is still greater than the

RMSE_OD of the historical O-D flows itself (110. 41veh/hr).

The change of RMSE_Link in presence of O-D information is different: they

increase instead of decrease in all cases. As shown in algorithm IBA for E-LPFE-SUB,

the checking of O-D constraints always follows after that of link constraints. As a result,

the algorithm might favor the consistency of O-D constraints to that of link constraints

In short, the estimation results of all scenarios are substantially improved when a

historical O-D trip table is included as inputs. Note that the estimated result based on

historical O-D trip table and 267 links (all measured links) does not show significant

difference from the result obtained by the historical O-D trip table and 27 links (freeway

links). In other words, for this network, we can get a pretty good estimation result by

making use of a small set of the link counts as well as historical O-D flows. Note that the

historical O-D trip table itself was subject to significant errors (RMSE_OD

 110. 41veh/hr). Yet it does provide important information regarding to the spatial

structure of O-D demands which greatly improves estimation results .

6.5 The effects of Measurement Errors
 In reality, both link flow and O-D flow measurements are subject to errors which

are usually not known exactly beforehand. For example, link traffic counts measured by

detection devices might contain errors caused by calibration inaccuracy, failure of the

device and so on. Further, a historical O-D trip table based on a travel diary survey done

several years ago might be well out-of-date. Hence, the robustness of LPFE in presence

of input errors is an important issue to address. We test the influence of measurement

errors of O-D flows and link flows in subsection 6.5.1 and 6.5.2, respectively. All the

tests use Dallas-Fort Worth network described in section 6.4.

6.5.1 Measurement errors of O-D flows
 Two different link flow sets, i.e., all links, and freeway links, are used to study the

CHAPTER 6. CASE STUDIES 97

influence of measurement errors of historical O-D flows. For clarity link measurement

errors are not considered here. For each link set, we set up 25 scenarios, each associated

with a hypothetical historical O-D trip table with various levels of measurement errors.

These O-D trip tables are generated by randomly applying a perturbation to (which is

bounded from above) the “true” O-D flows. Five upper bounds, namely 10%, 20%, 30%,

40% and 50%, are considered for these perturbations, for each of which we generate five

random O-D tables.

The RMSE_ODs of the hypothetical historical O-D trip tables of all the scenarios

are given in Table 6.1, while MOEs are shown in Figures 6.32, 6.33, and 6.34. It can be

seen from the figures that TDC is insensitive to the change of RMSE_ODs. Note that

TDCs of all the scenarios fall into a narrow interval from 95% to 105%.

Table 6.1 RMSE_ODs for hypothetical historical O-D flow trip tables

CHAPTER 6. CASE STUDIES 98

99.50

99.60

99.70

99.80

99.90

100.00

100.10

100.20

100.30

100.40

0 20 40 60 80 100 120 140 160 180

RMSE of the historical OD (veh/hr)

TD

C
(%

)

(a) all measured links (267) & historical O-D

80

85

90

95

100

105

0 20 40 60 80 100 120 140 160 180

RMSE of the historical OD (veh/hr)

TD
C

(%
)

(b) freeway links (27) & historical O-D

Figure 6.32 TDCs for scenarios with different historical O-D flow errors

CHAPTER 6. CASE STUDIES 99

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200

RMSE of the historical OD(veh/hr)

R
M

SE
 o

f t
he

 e
st

im
at

ed
 O

D
(v

eh
/h

r)

(a) all measured links (267) & historical O-D

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200

RMSE of the historical OD (veh/hr)

R
M

SE
 o

f t
he

 e
st

im
at

ed
 O

D
(v

eh
/h

r)

(b) freeway links (27) & historical O-D

Figure 6.33 RMSE_ODs for scenarios with different historical O-D flow errors

CHAPTER 6. CASE STUDIES 100

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180

RMSE of the historical OD(veh/hr)

R
M

SE
 o

f t
he

 e
st

im
at

ed
 li

nk
 fl

ow
s(

ve
h/

hr
)

(a) all measured links (267) & historical O-D

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180

RMSE of the historical OD (veh/hr)

R
M

SE
 o

f t
he

 e
st

im
at

ed
 li

nk
 fl

ow
s

(v
eh

/h
r)

(b) freeway links (27) & historical O-D

Figure 6.34 RMSE_Links for scenarios with different historical O-D flow errors

CHAPTER 6. CASE STUDIES 101

For RMSE_OD, the red line in Figure 6.34 marks the position where the RMSE_OD

of the historical O-D flows equals the RMSE_OD of the estimated O-D flows. Thus a

point below the red line means that the estimated O-D table is “closer” to the true O-D

table than the target one. As we can see, for both sets, almost all the points lie below the

red line, meaning that LPFE does improve the accuracy of the input O-D trip tables.

Furthermore, when the RMSE_ODs of the historical O-D increase, the RMSE_ODs of

the estimated O-D do not change very much (the RMSE_ODs of the estimated O-D is

less than 60veh/hr in all cases). This seems to suggest that even a very coarse O-D table

is still useful to improve estimation quality so long as it contains the structural pattern of

the O-D demands to be estimated.

The RMSE_Links tend to slightly increase when the RMSE_ODs of the historical

O-D trip table increase, especially for the input set of freeway links. Again, this might be

due to that our algorithm always check link constraints before O-D constrains. However,

compared to the magnitude of average link flows on freeway links (6104veh/hr), the

RMSE_Links (the greatest one is 351veh/hr) are still acceptable.

6.5.2 Measurement errors of link flows
 To study the influence of link measurement errors, 20 sets of hypothetical

measured link flows are generated in a similar way as in the previous section: we assume

all links are measured and only consider four upper bounds, i.e.,

10%,20%,30%,40%. RMSE_Links for all the scenarios are listed in Table. 6.2.

The historical O-D trip table in these scenarios is the same as the one used in Section

6.4.2 OD(RMSE_OD = veh/hr41.110). The MOEs are shown in Figures 6.35, 6.36, and

6.37. T

CHAPTER 6. CASE STUDIES 102

Table 6.2 RMSE_Links for hypothetical measured link flows

95.00

97.00

99.00

101.00

103.00

105.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00

RMSE of the measured link flows (veh/hr)

TD
C

(%
)

Figure 6.35 TDCs for scenarios with different link flow errors

CHAPTER 6. CASE STUDIES 103

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00

RMSE of the measured link flows (veh/hr)

RM
SE

 o
f t

he
 e

st
im

at
ed

 O
D

 (
ve

h/
hr

)

Figure 6.36 RMSE_ODs for scenarios with different link flow errors

0

100

200

300

400

500

600

0.00 100.00 200.00 300.00 400.00 500.00 600.00

RMSE of the measured link flows (veh/hr)

RM
SE

 o
f t

he
 e

st
im

at
ed

 li
nk

 fl
ow

s
(v

eh
/h

r)

Figure 6.37 RMSE_Links for scenarios with different link flow errors

Figure 6.35 shows that TDC is not very sensitive to measurement errors of link

flows. For all scenarios, the TDCs range between 95% to 105%.

Figures 6.36 and 6.37 show that both RMSE_OD and RMSE_Link increase as

measurement errors in link counts increase. However, the RMSEs of estimated O-D

flows in all scenarios are still lower than that of the historical O-D table, illustrating the

robustness of LPFE in the presence of significant link measurement errors.

In summary, LPFE seems to be more sensitive to the link flow errors. When the

CHAPTER 6. CASE STUDIES 104

input of link flows contain significant errors, LPFE may still capture the total demand

well, but often fails to estimate O-D flows accurately. Thus, it is important to minimize

link measurement errors in real applications. Fortunately, in practice it is much easier to

obtain reasonably accurate link flow data than to obtain accurate historical O-D data.

6.6 Considering Measurement Errors in LPFE
 As shown in Chapter 2, LPFE is able to explicitly consider measurement errors of

inputs by replacing the equality constraints with two sets of inequality constraints, which

enlarges the feasible region such that it contains the “true” solution. This section will test

whether or not this strategy helps provide a better solution.

6.6.1 Considering errors of the base O-D table
In this section, we rerun the 25 scenarios set up in Section 6.5.1, but address the O-D

flow errors explicitly in LPFE. The MOEs of the estimation results are shown in Figures

6.38, 6.39, and 6.40. For comparison, the results when input errors are not explicitly

considered are also plotted in those figures.

99.20

99.40

99.60

99.80

100.00

100.20

100.40

0 20 40 60 80 100 120 140 160 180

RMSE of the historical OD(veh/hr)

TD
C(

%
)

100%

Estimated OD(not consider OD flow error)

Estimated OD(consider OD flow error)

c

(a) all measured links (267) & historical OD

CHAPTER 6. CASE STUDIES 105

80

85

90

95

100

105

0 20 40 60 80 100 120 140 160 180

RMSE of the historical OD(veh/hr)

TD
C(

%
)

100%

Estimated OD(not consider OD flow error)

Estimated OD(consider OD flow error)

(b) freeway links (27) & historical OD

Figure 6.38 TDCs for scenarios with different settings

on the consideration of O-D flow errors

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200

RMSE of the historical OD(veh/hr)

R
M

SE
 o

f t
he

 e
st

im
at

ed
 O

D
(v

eh
/h

r)

Historical OD

Estimated OD(not consider OD flow error)

Estimated OD(consider OD flow error)

(a) all measured links (267) & historical OD

CHAPTER 6. CASE STUDIES 106

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200

RMSE of the historical OD(veh/hr)

R
M

SE
 o

f t
he

 e
st

im
at

ed
 O

D
(v

eh
/h

r)

Historical OD

Estimated OD(not consider OD flow error)

Estimated OD(consider OD flow error)

(b) freeway links (27) & historical OD

Figure 6.39 RMSE_ODs for scenarios with different settings

on the consideration of O-D flow errors

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180

RMSE of the historical OD(veh/hr)

R
M

SE
 o

f t
he

 e
st

im
at

ed
 li

nk
 fl

ow
s(

ve
h/

hr
)

Estimated OD(not consider OD flow error)

Estimated OD(consider OD flow error)

(a) all measured links (267) & historical OD

CHAPTER 6. CASE STUDIES 107

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180

RMSE of the historical OD(veh/hr)

R
M

SE
 o

f t
he

 e
st

im
at

ed
 li

nk
 fl

ow
s(

ve
h/

hr
)

Estimated OD(not consider OD flow error)

Estimated OD(consider OD flow error)

(b) freeway links (27) & historical OD

Figure 6.40 RMSE_Links for scenarios with different settings

on the consideration of O-D flow errors

In general these figures suggest that explicitly considering errors of input O-D trip

rates produces worse (rather than better) estimates in terms of RMSE. This observation

seems counterintuitive in the first glance. Recall that the errors of input O-D tables are

considered in our formulation by confining estimated O-D flows within an interval

centered at observed values (the interval length represents the confidence level).

Although this strategy ensures that true OD values are contained within the feasible set of

the optimization program, it enlarges the feasible region thus makes it harder to find the

optimum. Moreover, our algorithm always fixes the infeasibility of a constraint by setting

the estimated value to its boundary. Such adjustment may thus push estimates away from

the “true” O-D trip rates since “true” values are in the interior of the feasible region

instead of on its boundaries.

6.6.2 Considering errors of link measurements
Following similar logic, we in this subsection evaluate the effect of explicitly

considering errors in link counts. The 20 scenarios used in Section 6.5.2 were rerun with

the measurement errors of link flows considered. The MOEs of the estimation results are

CHAPTER 6. CASE STUDIES 108

shown in Figures 6.41, 6.42, and 6.43.

95.00

97.00

99.00

101.00

103.00

105.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00

RMSE of the measured link flows(veh/hr)

TD
C(

%
)

Estimated OD(not consider link flow error)

Estimated OD (consider link flow error)

100%

Figure 6.41 TDCs for scenarios with different settings

on the consideration of link flow errors

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

RMSE of the measured link flows(veh/hr)

R
M

SE
 o

f t
he

 e
st

im
at

ed
 O

D
(v

eh
/h

r)

Estimated OD(not consider link flow error)

Estimated OD (consider link flow error)

Figure 6.42 RMSE_ODs for scenarios with different settings

on the consideration of link flow errors

CHAPTER 6. CASE STUDIES 109

0

50

100

150

200

250

300

350

400

450

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

RMSE of the measured link flows(veh/hr)

R
M

SE
 o

f t
he

 e
st

im
at

ed
 li

nk
 fl

ow
s(

ve
h/

hr
)

Estimated OD(not consider link flow error)

Estimated OD (consider link flow error)

Figure 6.43 RMSE_Links for scenarios with different settings

on the consideration of link flow errors

Similar observations can be made as in the last subsection, that the O-D estimation

results are worse off when link measurement errors are explicitly taken into account. This

is because, again, the algorithm always search the “corners” of a feasible region thus is

likely to miss the “true” values lying in its interior.

6.7 The time-dependent case
The time-dependent LPFE models queuing by considering residual queues. Other

than that, TD-LPFE is essentially the same as the static LPFE. In this section, we set up a

time-dependent estimation scenario using the Dallas-Fort Worth network. The two-hour

O-D demands used for static testing are now divided into 24 time intervals (each is

5-minute long). To illustrate the accumulation and dissipation of queues, these demands

are assumed to be loaded onto network following a unimodal pattern as depicted in

Figure 6.44.

CHAPTER 6. CASE STUDIES 110

06:00 06:16 06:33 06:50 07:06 07:23 07:40 07:56 08:13
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Departure time (Hour:Minute)

D
e
p
a
r
t
u
r
e

f
l
o
w

r
a
t
e

(
v
p
h
)

Demand profile for O-D pair 183 -> 186

06:00 06:16 06:33 06:50 07:06 07:23 07:40 07:56 08:13
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Departure time (Hour:Minute)

C
u
m
u
l
a
t
i
v
e

d
e
p
a
r
t
u
r
e

f
l
o
w

(
v
e
h
) Cumulative Demand profile for O-D pair 183 -> 186

Figure 6.44 A time-dependent demand pattern

As before, we first solve a time-dependent logit traffic assignment model

(TD_BSUE, c.f. Section 3.1.2) to produce time-dependent traffic counts. According to

the observation made in Section 6.4.2, we only employ traffic counts on the freeway links

and consider a historical O-D matrix which is generated by applying an up to 20%

random perturbation over the “true” O-D matrix. Link RMSE at different time intervals

are plotted in Figure 6.45. Clearly, it is easier for TD-LPFE to reproduce the observed

link traffic counts when the demand level is low. The number of used paths is small in

uncongested cases (as in the first few time intervals) and thus they are easy to be

identified by a column generation procedure. When roads get congested, however, more

paths were used and so the difficulty of satisfying all the constraints increases (i.e., it is

easier to get a path set from column generation which differs than the “true” one). Of

course, algorithmic parameters can be finely tuned to achieve a better match of link

traffic counts, as described in Section 6.2. Such adjustment is not included in this

CHAPTER 6. CASE STUDIES 111

experiment.

As reported in Figure 6.46, estimated O-D matrices at all time intervals shows

significant improvements over the target matrices. A smaller RMSE implies that these

estimated matrices are closer to the “true” matrices (statistically) compared to target

matrices. Unlike the pattern of link RMSE, such improvements barely fluctuate across

time. Further, a good portion of the total demand was captured in the estimation process

(more than 92% in most cases), and the value of TDC keeps relatively stable at different

time intervals.

Finally, Figure 6.47 shows the change of queue length with time on two selected

links. As seen, the queue appears as temporal demands exceed road capacities (in this

example, starting from time interval 9). These queues are passed to and processed in

subsequent time intervals, and so we observed the gradual accumulation of queues on the

links. When demand level drops back, the residual queues gradually shrink and at last

completely disappear. Moreover, the evolution of queues on link 307 is reproduced quite

accurately by TD-LPFE, as shown in Figure 6.47. However, on link 428, the mismatch

between the estimated and “true” queue evolution pattern is significant. This is not

surprising since link traffic counts are not perfectly reproduced from the estimation.

0 5 10 15 20 25
0

200

400

600

800

1000

Time Interval

R
M
S
E

Link RMSE at different time intervals

Figure 6.45 RMSE_Links at different time intervals

CHAPTER 6. CASE STUDIES 112

Estimated O-D Matrix
Target O-D Matrix

0 5 10 15 20 25
0

20

40

60

80

100

Time Interval

R
M
S
E

RMSE of estimated and target O-D matrices

0 5 10 15 20 25
0

20

40

60

80

100

Time Interval

T
D
C

(
%
)

Total Demand Captured (TDC)

Figure 6.46 RMSE_ODs at different time intervals

"True" queues
Estimated queues

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

Time Interval

Q
u
e
u
e

(
v
e
h
i
c
l
e
)

Time-dependent queues on Link 428

"True" queues
Estimated queues

0 5 10 15 20 25
0

50

100

150

200

250

300

Time Interval

Q
u
e
u
e

(
v
e
h
i
c
l
e
)

Time-dependent queues on Link 307

Figure 6.47 Accumulation and dissipation of queues on link 307 and 428

CHAPTER 7. CONCLUSIONS 113

Chapter 7. Conclusions

Getting travel demands is the starting point of many transportation planning and

operational applications. To supplement the traditional survey approaches, this research

implements and tests a class of methods for estimating both steady-state and

time-dependent travel demands from traffic surveillance data, which can be automatically

collected at relatively low costs and provide up-to-date and time-dependent traffic

information. The path flow estimator (PFE) considered in this research has several

appealing features. First, it formulates the estimation problem as a one-level convex

optimization problem and thus avoids the bi-level programming structure which requires

to repeatedly solve traffic assignment problems and does not ensure global optimality and

convergence. Second, PFE properly takes into account users' route choice behavior

consistent with the stochastic user equilibrium. Finally, PFE provides a reasonable

compromise to cope with traffic dynamics, i.e., decomposing a dynamic problem to a

sequence of static problems through carrying queues over different times. This research

presented several improvements over the original PFE and implemented the algorithms

into a software tool with a friendly GIS-based user interface.

In this chapter, we summarize the major findings of this research, and provide some

thoughts on the follow-up research work.

7.1 Major Findings Regarding the Performance of LPFE
Based on extensive numerical studies, we made the following observations and

findings:

 Improper algorithmic parameter settings may lead to either poor estimation

results or high computational cost. If default parameters do not produce

satisfactory results, users are suggested try greater maximum number of

iterations and maximum number of zigzagging iterations, combined with tighter

CHAPTER 7. CONCLUSIONS 114

accuracy and zigzagging requirements.

 For the basic network (typology) types, LPFE is capable of reproducing

measured link flows and capturing total demands accurately, provided that all

links are measured. For the tree network, the estimated O-D table can perfectly

match the “true” O-D table. For linear, ring and derived networks, the estimated

O-D table cannot reproduce the “true” O-D table mainly due to the existence of

multiple path solutions. Since path solution is usually not unique in most

networks, this type of error seems inevitable if only link flows are used as

inputs.

 Information reflecting the spatial structure of travel demands (i.e., a historical or

observed O-D table) greatly improves estimation quality. Even when traffic

counts are available only on a small set of links (e.g., freeway links), LPFE can

still produce satisfactory results if such structure information is well maintained

in the input O-D table.

 The performance of LPFE is not sensitive to the errors contained in the input

(historical) O-D table. However, as errors of the input O-D table increases, it

becomes harder to reproduce the observed link traffic counts accurately. On the

other hand, LPFE seems more sensitive to measurement errors in link counts.

Nevertheless, LPFE can still make improvement over the input O-D table even if

link measurements are subject to significant errors.

 Explicitly considering measurement errors does not produce better estimation

results. This is mainly due to the fact that the algorithm always searches the

corner points instead of the interior of the enlarged feasible region. Users

therefore do not need to provide error bounds for the traffic counts.

 As shown in the time-dependent case, it becomes more difficult to accurately

reproduce measured link traffic counts as a network gets more congested.

However, the quality of estimated O-D trip rates is not substantially affected by

congestion levels. Further, the formation and dissipation of queues are captured

reasonably well by TD-LPFE.

7.2 Future Work
Our studies indicate that, besides the number of measurement locations, the location

CHAPTER 7. CONCLUSIONS 115

of the loop detectors and the network topology seem to substantially affect the quality of

the estimates. Thus, some guidelines should be established to optimally pick

measurement locations. Such a sensor location problem can be formulated in two ways,

either seeking a deployment plan with a minimum number of sensors to achieve a given

threshold of estimation quality, or given a number of sensors finding a deployment plan

that optimize the estimates.

A major limitation of the implemented PFE is its capability of replicating realistic

dynamic traffic phenomena. After all, time-dependent PFE is essentially a static model.

The simplification employed in PFE, i.e. transforming a dynamic problem into a

sequence of static problems, only works for relatively coarse time resolution (i.e., longer

time intervals). Note that a trip is assumed to complete within the time interval it departs

from the origin and this is true only when the corresponding time period is long enough.

Only a true dynamic traffic flow model can remove this drawback. Nevertheless, in

studies that need a finer time resolution, such as in a micro-simulation application,

TD-LPFE can still be used to obtain an initial estimate of the time-dependent O-D trip

tables, and use these estimates as the base O-D tables can speed up the convergence of

the O-D estimators that come with the simulation tools. We have applied this procedure

to the estimation of O-D tables for Paramics applications and obtained satisfactory

results.

BIBLIOGRAPHY 116

Bibliography

Ashok, K. (1996), Estimation and Prediction of Time-Dependent Origin-Destination Flows, Ph.d

thesis, Massachusetts Institute of Technology, Cambridge, MA.

Ashok, K. & Ben-Akiva, M. (1993), `Dynamic origin-destination matrix estimation and

prediction for real-time traffic management systems', In Proceedings of 12th International

Symposium on the Theory of Traffic Flow and Transportation pp. 465-484.

Ashok, K. & Ben-Akiva, M. (2000), `Alternative approaches for real-time estimation and

prediction of time-dependent origin-destination flows', Transportation Science 34, 21-36.

Beckmann, M., McGuire, C. B. & Winsten, C. B. (1956), Studies in the Economics of

Transportation, Yale University Press, New Haven, Connecticut.

Bell, M. G. H. (1983), `The estimation of an origin-destination matrix from traffic counts',

Transportation Science 17, 198-217.

Bell, M. G. H. (1991a), `The estimation of origin-destination matrices by constrained generalized

least squares', Transportation Research 25B, 13-22.

Bell, M. G. H. (1991b), `The real time estimation of origin-destination flows in the presence of

platoon dispersion', Transportation Research 25B, 115-125.

Bell, M. G. H. & Grosso, S. (1998), `The path flow estimator as a network observer', Traffic

Engineering and Control pp. 540-549.

Bell, M. G. H. & Shield, C. M. (1995), `A log-linear model for path flow estimation',

Proceedings of the Fourth Internatial Conference on the Application of Advance

technologies in Transporation Engineering, Capri pp. 695-699.

Bell, M. G. H., Shield, C. M., Busch, F. & Kruse, K. (1997), `A stochastic user equilibrium path

flow estimator', Transportation Research 5C, 197-210.

Brenninger-Gthe, M., Jrnsten, K. O. & Lundgren, J. T. (1989), `Estimation of origin-destination

matrices from traffic counts using multi-objective programming formulations',

Transportation Research 23B, 257-269.

BIBLIOGRAPHY 117

Cascetta, E. (1984), `Estimation of trip matrices from traffic counts and survey data: a

generalized least squares estimator', Transportation Research 18B, 289-299.

Cascetta, E., Inaudi, D. & Marquis, G. (1993), `Dynamic estimators of origin-destination matrices

using traffic counts', Transportation Science 27, 363-373.

Chang, G.-L. & Tao, X. (1996), `Estimation of dynamic O-D distribution for urban network', In

Proceedings of 13th International Symposium on the Theory of Traffic Flow and

Transportation pp. 1-20.

Chang, G.-L. & Wu, J. (1994), `Recursive estimation of time-varying origin-destination flows

from traffic counts in freeway corridors', Transportation Research 28B, 141-160.

Cremer, M. & Keller, H. (1981), `Dynamic identification of O-D flow from traffic counts at

complex intersections', In proceedings of 8th International Symposium on Transportation

and Traffic Theory .

Cremer, M. & Keller, H. (1984), `A systems dynamics approach to the estimation of entry and

exit O-D flows', In proceedings of 9th International Symposium on Transportation and

Traffic Theory .

Cremer, M. & Keller, H. (1987), `A new class of dynamic methods for the identification of

origin-destination flows', Transportation Research 21B, 117-132.

Daganzo, C. F. & Sheffi, Y. (1977), `On stochastic models of traffic assignment', Transportation

Science 11, 253-274.

Dial, R. B. (1971), `A probabilisitc multipath assignment model that obviates path enumeration',

Transportation Research 5, 83-111.

Fisk, C. S. (1980), `Some developments in equilibrium traffic assignment', Transportation

Research 14B, 243-255.

Fisk, C. S. (1988), `On combining maximum entropy trip matrix estimation with user optimal

assignment', Transportation Research 22B, 66-79.

Fisk, C. S. & Boyce, D. E. (1983), `A note on trip matrix estimation from link traffic count data',

Transportation Research 17B, 245-250.

Jornsten, K. & Nguyen, S. (1980), On the estimation of trip matrix from network data, Technical

Report NITH-MAT-R79-36, Linkoping institute of technology, Linkoping, Sweden.

LeBlanc, L. & Farhangian, K. (1982), `Selection of a trip table which reproduces observed link

BIBLIOGRAPHY 118

flows', Transportation Research 22B, 83-88.

Lo, H. P., Zhang, N. & Lam, W. H. K. (1996), `Estimation of an origin-destination matrix with

random link choice proportions: a statistical approach', Transportation Research 30B,

309-324.

McNeil, S. & Hendrickson, C. (1985), `A regression formulation of the matrix estimation

problem', Transportation Science 19, 278-292.

Nguyen, S. (1977), Estimating an OD matrix from network data: a network equilibrium approach,

Technical Report 60, University of Montreal.

Nguyen, S. (1984), Transportation Planning Models, Edited by M. Florian, Elsevier Science

Publishers, Amsterdam, chapter Estimating origin-destination matrices from observed

flows,pp. 363-380.

Nie, Y. & Lee, D.-H. (2002), `An uncoupled method for the equilibrium-based linear path flow

estimator for origin-destination trip matrices', Transportation Research Record 1783,

72-79.

Nie, Y., Zhang, H. M. & Recker, W. W. (2005), `Inferring origin-destination trip matrices with a

decoupled gls path flow estimator', Transportation Research 39B, 497-518.

Nihan, N. L. & Davis, G. A. (1987), `Recursive estimation of origin-destination matrices from

input/output counts', Transportation Research 21B, 149-163.

Nihan, N. L. & Davis, G. A. (1989), `Application of prediction-error minimisation and maximum

likelihood to estimate intersection o-d matrices from traffic counts', Transportation Science

23, 77-90.

Nihan, N. L. & Hamed, M. M. (1992), `Fixed-point approach to estimating freeway

origin-destination matrices and the e®ect of erroneous data on estimate precision',

Transportation Research Record 1357, 18-28.

Okutani, I. (1987), `The Kalman filtering approach in some transportation and traffic problems',

In Proceedings of 10th International Symposium on Transportation and Traffic Theory pp.

397-416.

Powell, W. B. & Sheffi, Y. (1982), `The convergence of equilibrium with predetermined step

sizes', Transportation Science 16, 45-55.

Sheffi, Y. (1985), Urban Transportation Networks: Equilibrium Analysis with Mathematical

BIBLIOGRAPHY 119

Programming Methods, Prentice Hall, Englewood cli®s, NJ.

Sherali, H. D., Arora, N. & Hobeika, A. G. (1997), `Parameter optimization methods for

estimating dynamic origin-destination trip tables', Transportation Research 31B, 141-157.

Sherali, H. D. & Park, T. (2001), `Estimation of dynamic origin-destination trip tables for a

general network', Transportation Research 35B, 217-235.

Sherali, H. D., Sivanandan, R. & Hobeika, A. G. (1994), `A linear programming approach for

synthesizing origin-destination trip tables from link traffic volumes', Transportation

Research 28B, 213-233. Turnquist, M. & Gur, Y. (1979), `Estimation of trip tables from observed

link volumes', Transportation Research Record 730, 295-303.

Van-Zuylen, J. H. & Willumsen, L. G. (1980), `The most likely trip matrix estimated from traffic

counts', Transportation Research 14B, 281-293.

Wardrop, J. G. (1952), `Some theoretical aspects of road traffic research', Proceedings of the

Institute of Civil Engineers, Part II 1, 325-378.

Willumsen, K. G. (1984), `Estimating time-dependent trip matrices from traffic counts', In

Proceedings of the 9th International Symposium on Transportation and Traffic Theory pp.

397-411.

Willumsen, L. G. (1981), `Simplified transport models based traffic counts', Transportation 10,

257-278.

Wu, J. & Chang, G.-L. (1996), `Estimation of time-varying origin-destination distributions with

dynamic screenline flows', Transportation Research 30B, 277-290.

Yang, H. (1995), `Heuristic algorithms for the bilevel origin-destination matrix estimation

problem', Transportation Research 29B, 231-242.

Yang, H. & Meng, Q. (1998), `Departure time, route choice and congestion toll in a queuing

network with elastic demand', Transportation Research 32(4), 247-260.

Yang, H., Meng, Q. & Bell, M. G. H. (2001), `Simultaneous estimation of the origin-destination

matrices and travel-cost coefficient for congested networks in a stochastic user equilibrium',

Transportation Science 35, 107-123.

Yang, H., Sasaki, T., Iida, Y. & Asakura, Y. (1992), `Estimation of origin-destination matrices

from traffic counts on congested networks', Transportation Research 26B, 417-433.

APPENDIX I 1

Appendix I. File formats

In most cases users will prepare input files through the graphical interface. However,

the format of input files is introduced here for the reference purpose. All input files are

named by a base plus a suffix. For narrative convenience we assume the base is “project”

hereafter.

I.1 Input files for assignment
1. Network files. Two types of network format are accepted: FORT and DANET2.

a FORT type network. In this format, a network is described by two files: project.1

and project.2

(1) project.1 describes network topology as explained in Table I.1. An example is

given in Figure I.1.

(2) project.2 describes O-D information, as described in Table I.2. An example is

shown in Figure I.2.

Table I.1 A description of the file project.1

* LPFE does not use data in Block 2, so users can put any integers there to fill the

places.

APPENDIX I 2

24

 1 2
 3 4

 74 76

76

 1 2 25.90020 1.5000 25.00
 1 3 23.40347 1.0000 25.00

 4 3 17.11052 1.0000 25.00
 4 5 17.78279 0.5000 25.00
 4 11 4.90883 1.5000 25.00

Block 1

Block 2

Block 3

Block 4

Figure I.1 An example of the file project.1

Table I.2 A description of the file project.2

APPENDIX I 3

24

 1 1
 2 24
 ...
 24 510

 528

 2 0.1000
 3 0.1000
 4 0.5000
 5 0.2000
 6 0.3000
 7 0.5000
 8 0.8000
 9 0.5000
 10 1.3000
 11 0.5000
 12 0.2000
 13 0.5000
 14 0.3000
 15 0.5000
 16 0.5000
 17 0.4000
 18 0.1000
 19 0.3000
 20 0.3000
 21 0.1000
 22 0.4000
 23 0.3000
 24 0.1000
 1 0.1000
 3 0.1000

Block 1

Block 2

Block 3

Block 4

Destination node 3 is at
25th row in Block 4. It is
associated with origin 2.

Figure I.2 An example of the file project.2

b DANET2 type network. This format is original designed to address the need of

dynamic application, which describes a network by four files: project.net,

project.lin, project.nod and project.odp.

(1) project.net provides basic parameters, as described in Table I.3. See Figure I.3

for an example.

(2) project.lin describes link information, as described in Table I.4. See Figure I.4

APPENDIX I 4

for an example.

(3) project.nod describes node information, as described in Table I.5. See Figure

I.5 for an example. T

(4) project.odp describes O-D information, as described in Table I.6. See Figure

I.6 for an example.

Table I.3 A description of file project.net

Number of nodes: 130
Number of links: 390
Number of origins: 5
Number of destinations: 15
Number of OD Pairs: 210
Unit Simulation Time (sec): 300
Assignment Horizon (in unit time): 6

Figure I.3 An example of the file project.net

APPENDIX I 5

Table I.4 A description of the file project.lin

 ID Type From To LEN(m) FFS(m/h) Cap(v/h) RHOJ(v/m) Lane
 1 LWRLK 1 2 1 25 1323 171 1
 2 LWRLK 1 11 1 45 1560 164 2
 3 LWRLK 2 1 1 65 1976 175 2
 4 LWRLK 2 3 1 35 1394 175 2
 5 LWRLK 2 12 1 25 1240 176 2
 6 LWRLK 3 2 1 65 2252 178 4
 7 LWRLK 3 4 1 55 1859 176 2
 8 LWRLK 3 13 1 45 1629 175 1
 9 LWRLK 4 3 1 35 1394 171 2
 10 LWRLK 4 5 1 55 1582 166 1
 11 LWRLK 4 14 1 45 1473 173 3
 12 LWRLK 5 4 1 55 1622 166 3
 13 LWRLK 5 6 1 25 1142 180 2
 14 LWRLK 5 15 1 45 1491 175 3

Figure I.4 An example of the file project.lin

APPENDIX I 6

Table I.5 A description of the file project.nod

 ID Type Xcord Ycord
 1 FWJCT 5280 5280
 2 FWJCT 10560 5280
 3 FWJCT 15840 5280
 4 FWJCT 21120 5280
 5 FWJCT 26400 5280
 6 FWJCT 31680 5280
 7 FWJCT 36960 5280
 8 FWJCT 42240 5280
 9 FWJCT 47520 5280
 10 FWJCT 52800 5280
 11 FWJCT 5280 10560
 12 FWJCT 10560 10560
 13 FWJCT 15840 10560

Figure I.5 An example of the file project.nod

APPENDIX I 7

Table I.6 The description of the file project.odp

Origin: 101 14
 104 6 5.0000
 106 6 6.0000
 108 6 5.0000
 110 6 6.0000
 112 6 3.0000
 114 6 1.0000
 116 6 6.0000
 118 6 6.0000
 120 6 9.0000
 122 6 10.0000
 124 6 9.0000
 126 6 5.0000
 128 6 1.0000
 130 6 1.0000
Origin: 103 14
 102 6 11.0000
 106 6 19.0000
 108 6 15.0000
 110 6 19.0000
 112 6 11.0000
 114 6 3.0000

Figure I.6 An example of the file project.odp

APPENDIX I 8

2. Time-dependent demand files project.dmd. Figure I.7 provides an example while

Table I.7 explains how to read it.

Table I.7 A description of the file project.dmd

6 300

Origin: 101
Dest: 104
 0.31250 0.93750 1.25000 1.25000 0.93750 0.31250
Dest: 106
 0.37500 1.12500 1.50000 1.50000 1.12500 0.37500
Dest: 108
 0.31250 0.93750 1.25000 1.25000 0.93750 0.31250
Dest: 110
 0.37500 1.12500 1.50000 1.50000 1.12500 0.37500
Dest: 112
 0.18750 0.56250 0.75000 0.75000 0.56250 0.18750
Dest: 114
 0.06250 0.18750 0.25000 0.25000 0.18750 0.06250
Dest: 116
 0.37500 1.12500 1.50000 1.50000 1.12500 0.37500
Dest: 118
 0.37500 1.12500 1.50000 1.50000 1.12500 0.37500
Dest: 120
 0.56250 1.68750 2.25000 2.25000 1.68750 0.56250
Dest: 122
 0.62500 1.87500 2.50000 2.50000 1.87500 0.62500
Dest: 124
 0.56250 1.68750 2.25000 2.25000 1.68750 0.56250
Dest: 126
 0.31250 0.93750 1.25000 1.25000 0.93750 0.31250
Dest: 128
 0.06250 0.18750 0.25000 0.25000 0.18750 0.06250
Dest: 130
 0.06250 0.18750 0.25000 0.25000 0.18750 0.06250
Origin: 103
Dest: 102
 0.68750 2.06250 2.75000 2.75000 2.06250 0.68750
Dest: 106

Block 1

Block associated
with origin 101

Figure I.7 An example of the file project.dmd

APPENDIX I 9

3. Algorithm parameter file project.alg. This input is optional. If ignored, default values

will be used. Changing parameters in this file may significantly affect the computation

results. To obtain a better converged solution (sometimes users may find the estimated

link flows do not perfectly match observed values, or estimated O-D flows do not match

target O-D flows. In these case, the solution is considered as not well converged.), a

general resolution is to increase maximum allowed iterations (but in general no more

1,000), reduce accuracy, increase maximum allowed bad iterations, increase maximum

allowed zigzagging iterations, or reducing zigzagging criterion. Note that the running

time may grow up quickly as the above adjustments are made for large networks. Figure

I.8 shows an example of the project.alg file.

Maximum allowed iterations(1~1000000): 100
Accuracy(1e-016~1): 0.001
Minimum allowed stepsize(>=1e-009): 0.0001
Desirable Line search accuracy(1e-009~1): 0.001
Maximum allowed line search per iteration(1~1000): 10
Maximum allowed bad iterations(1~1000): 5
Zigzagging criterion(1e-016~1): 0.01
Maximum allowed zigzagging iterations(1~1000): 5

Figure I.8 An example of the file project.alg

I.2 Input files for O-D estimation

1. Network files: just same as those required in Assignment. Note that O-D file is also

needed to provide the structure of O-D matrix. Particularly, O-D demands specified

O-D files (project.2 in FORT and project.odp in DANET2) will be regarded as "true

values".

2. Time-dependent O-D file project.dmd. It is optional in O-D Estimation and used to

provide true values of time-dependent O-D demands.

3. Algorithm parameter file project.alg, same as those required in Assignment.

4. Observation files, consisting of project.obs, project.mlt, project.tar, project.ler,

APPENDIX I 10

project.ter

(1) project.obs provides link traffic counts. This file is REQUIRED for any O-D

estimation problem. See Figure I.9 for an example and Table I.8 for explanation.

(2) project.mlt provides measured link travel times. This file is optional. If ignored,

travel times on measured links may be computed from specified link performance

function. The organization of this file is similar to project.obs thus not repeated.

(the only difference is the traffic counts in .obs is replaced by measured travel times

in .mlt.)

(3) project.tar provides either historical O-D demands or observed O-D data. This file

is optional. See Figure I.10 for an example and Table I.9 for a description.

(4) project.ler specifies the error bounds for link traffic observations. This file is

optional. See Table 10 for a description.

(5) project.ter specifies the error bounds for O-D observations. This file is optional.

The HOMO format of NetName.ter is same as project.ler, thus its description is

ignored here.

APPENDIX I 11

Table I.8 A description of the file project.obs

 271 6

 1 1 2
 9.54 28.62 38.16 38.16 28.62 9.54
 2 1 11
 40.26 120.78 161.04 161.04 120.78 40.26
 3 2 1
 60.75 182.25 243 243 182.25 60.75
 4 2 3
 10.08 30.24 40.32 40.32 30.24 10.08
 6 3 2
 57.375 172.125 229.5 229.5 172.125 57.375
 7 3 4
 30.45 91.35 121.8 121.8 91.35 30.45
 8 3 13
 21.8875 57.4225 75.19 75.19 57.4225 21.8875
 9 4 3
 36.26 106.82 142.1 142.1 106.82 36.26
 10 4 5
 22.275 66.825 89.1 89.1 66.825 22.275
 11 4 14
 5.28 15.84 21.12 21.12 15.84 5.28

Block 1

Block associated
with link 1

Figure I.9 An example of the file project.obs

APPENDIX I 12

Table I.9 A description of the file project.tar

 210 6

 101 104
 3.75 11.25 15 15 11.25 3.75
 101 106
 4.5 13.5 18 18 13.5 4.5
 101 108
 3.75 11.25 15 15 11.25 3.75
 101 110
 4.5 13.5 18 18 13.5 4.5
 101 112
 2.25 6.75 9 9 6.75 2.25
 101 114
 0.75 2.25 3 3 2.25 0.75
 101 116
 4.5 13.5 18 18 13.5 4.5

Block 1

Block assoicate
diwth O-D pair
101 - 104

Figure I.10 An example of the file project.tar

Table I.10 A description of the file project.ler

*HOMO stands for homogeneous error bound, that is, all links have a same error bound.

HETE stands for heterogeneous, meaning that each link has different error bound. The

current version does not support HETE error bound.

Appendix II

Visual PFE - TD® 1.0

 User Manual

June 2006

Visual PFE and Visual PFE – TD are authored at the Utah State University. Copyright
application for Visual PFE and Visual PFE-TD is currently in process. Please do not quote
or reference the names without the authors’ permission.

 1

Table of Contents

Introduction... 4

How to Use this Manual?.. 4
Installing Visual PFE – TD... 5
Graphical User Interfaces ... 6

Multiple Document Interface.. 6
The Main Window .. 7

Main Menu.. 7
Toolbar.. 9

Algorithm and Parameter Input Windows .. 11
Create Shapefiles and Tables Window ... 14
Network Map Window ... 16

Identify Features Window... 18
Label Features Window .. 19
Class Map Window... 20
Bar Chart Window .. 21

Scatter Plot Window ... 22
Link SP to Map ... 23

OD Table Window.. 24
OD Color Window.. 25
Reduced OD Table View.. 26
Link OD Table to Map.. 26
Save an OD Table as Excel File ... 26

Path Table Window... 27
Display Paths .. 27

Report Window... 28
Creating and Editing Text Files .. 29

Scenario Comparison Window ... 29
Windows Help .. 30

Technical Specification... 31
LPFE ... 32
The ArcViewShapefile Read/Write OCX... 32
The Shapefiles of the Network Map and Scatter Plot Windows 33
ESRI MapObjects ... 34
FarPoint Spread... 35

 2

List of Figures

Figure 1 Multiple Document Interface ... 6
Figure 2 Main Window... 7
Figure 3 Toolbar Buttons .. 9
Figure 4 Algorithm Input Window ... 11
Figure 5 Parameter Input Window.. 12
Figure 6 DOS Command Window.. 13
Figure 7 Create Shapefiles and Tables Window... 14
Figure 8 Main Window with Output Windows .. 15
Figure 9 Create Shapefiles Window for Previously Estimated Outputs........................... 15
Figure 10 Network Map Window... 16
Figure 11 Identify Features Window .. 18
Figure 12 Label Features Window.. 19
Figure 13 Class Map Window .. 20
Figure 14 Bar Chart Window.. 21
Figure 15 Scatter Plot Window... 22
Figure 16 OD Table Window ... 24
Figure 17 OD Color Window ... 25
Figure 18 Reduced OD Table View.. 26
Figure 19 Path Table Window .. 27
Figure 20 Report Window .. 28
Figure 21 Scenario Comparison Window... 29
Figure 22 Windows Help .. 30
Figure 23 Visual PFE - TD Software Components .. 31
Figure 24 Shapefiles and Network Map Layers ... 33
Figure 25 Shapefiles and the Scatter Plot Layers ... 34

List of Tables

Table 1 LPFE Output Text Files to Shapefiles ... 32
Table 2 LPFE Output Files to Spread Tables ... 35

 3

Introduction

Welcome to a new dimension in OD estimation.

Visual PFE - TD is a special edition of Visual PFE, an integrated software suite that
combines the Path Flow Estimator (PFE) with other software components to facilitate the
estimation, visualization, and refinement of Origin-Destination (OD) trip tables with
user-friendly Graphical User Interfaces (GUI).

The Logit Path Flow Estimator (LPFE) was developed at the Traffic Lab of University of
California Davis. LPFE facilitates the estimation of time-dependent OD tables. LPFE
operates under the DOS command prompt with no GUIs and no graphical presentation of
the output data. To expand the capability of LPFE, this special edition of Visual PFE is
created to integrate LPFE with components of Visual PFE.

With Visual PFE - TD, users can:

• Run LPFE with GUIs
• Convert the estimated OD tables to Microsoft Excel Files
• Change the colors and zoom levels of the OD table cells
• Interactively display and query OD desire lines
• Interactively display and query paths between any pair of OD
• Convert the PFE outputs to GIS files (ESRI shapefiles)
• Create thematic maps of network links and traffic analysis zones
• Generate diagnostic scatter plots
• Link the scatter plots to the network for identification of outliers
• Create and edit LPFE networks as text files
• Compare different scenarios

How to Use this Manual?
This manual is designed to explain various functions of the software, including
instructions for software installation. Users of the software are referred to the LPFE User
Manual for technical details about the LPFE program and how to prepare the input data.
The LPFE User Manual can be found in the program folder of LPFE.

After installing the program, users are advised to go through the Introduction and the
Graphical User Interfaces sections for knowledge of program functions.

To get an advanced knowledge of the software, users can go through the Technical
Specification section of the manual to get an overview of the software components used
to build the Visual PFE – TD.

 4

Installing Visual PFE – TD

Before installing Visual PFE – TD, the LPFE program needs to be installed first. To
install LPFE, run LPFE_Setup.msi. Follow the instructions of the set up program to
complete the installation.

After LPFE is installed, in the folder where the program files are stored, there is a folder
called Bin. The Bin folder contains the LPFE executable and other Dynamic Linking
library (DLL) files. Before running LPFE from Visual PFE – TD, all of the files in the
bin folder need to be copied and pasted to the data folder where the LPFE input network
text files are stored.

To install Visual PFE, the computer needs to have the Microsoft .NET framework. Many
of the Microsoft Windows programs are developed on the .NET framework. Therefore,
for a computer running Microsoft Windows, it is likely that the .NET framework is
already installed. If the users can not be sure if the computer has the .NET framework or
not, an installation program dotnetfx.exe is included in the Visual PFE – TD installation
CD. Running the program will install the .NET framework on the target computer.

After installing the .NET framework, users can proceed to run the Setup.exe program and
follow the setup instruction to complete the installation.

 5

Graphical User Interfaces

Visual PFE - TD is developed with Microsoft Visual Basic.NET. It implements
Microsoft’s Multiple Document Interface (MDI) software architecture, within which
multiple windows forms can be created and viewed within the main window. The main
window is referred to as the MDI parent form and each sub-window opened within the
MDI parent is called a MDI child form. With Visual PFE, a MDI child form can take on
the form of a map, a table, a graphic plot, or a text document. The program functions are
controlled using Graphical User Interfaces (GUI).

Multiple Document Interface
When multiple result windows are opened in Visual PFE - TD, the titles of the MDI child
windows are formatted in a way that results of the same network and time period can be
identified. Figure 1 shows such an example, in which the titles of the OD table, scatter
plot, path table, and report all include the name and the file path of the network (i.e., the
title of the fist window).

Figure 1 Multiple Document Interface

 6

The Main Window

The Main Window is the MDI parent form of Visual PFE- TD. Figure 2 shows the
program’s main window.

Figure 2 Main Window

Main Menu

There are eight menu items in the main menu of Visual PFE. Each menu item contains
sub-items.

• File: Control functions related to creating, opening, and saving of individual MDI
child forms.

o New: Open a new text editor window, which can be used to create PFE
network text files.

o Open: Open an existing text file in a text document form.
o Save As Excel: Save an OD table as a Microsoft Excel file.
o Save As Text: Save the text file in the text document form.
o Exit: Exit Visual PFE - TD.

• Edit: Control common functions of a text document form.

o Undo: Undo changes to the text file.
o Cut: Cut selected texts and place the content on the system clipboard.
o Copy: Copy selected texts and place the content on the system clipboard.
o Paste: Paste the texts contained on the system clipboard.
o Select All: Select all texts in the text file.

 7

• View: Control the navigation functions of a map window.

o Zoom In: Zoom in
o Zoom Out: Zoom out
o Pan:
o Full Scale

• Table: Control functions related to the table window.

o Open Path Table: Open the path table pertaining to a PFE estimation.
o Open OD Table: Open the path table pertaining to a PFE estimation.
o OD Table Color: Adjust the individual colors of an OD table

• Estimate: Open the LPFE time dependent estimation GUI.

• Diagnose: Control functions designed to diagnose results of PFE estimation.

o Statistics: Open the summary statistics of a PFE estimation with a text
document window.

o Graphs: Open a scatter plot (observed vs. estimated link flow) window of
a PFE estimation.

o Create Shapefiles: Create shapefiles from previously estimated LPFE
results (e.g., *.est).

o Compares: Open multiple MDI child forms pertaining to results of
multiple PFE estimation runs (from different input sets).

• Windows: Organize opened MDI child windows.

o Cascade: Cascade MDI child forms.
o Tile: Tile MDI child forms.

• Help: Provide users with help to Visual PFE

o Visual PFE – TD Help: Open the Visual PFE Windows HTML help file.
o About Visual PFE - TD: Open the Visual PFE copyright form.

 8

Toolbar

There are 19 toolbar buttons (Figure 3) in the Visual PFE - TD. The name of a toolbar
button is shown when the mouse is placed over the button.

Figure 3 Toolbar Buttons

The first five buttons from left are toggle buttons. Only one button can be pressed down
at a time. The toggle button that is pushed down will remain active until another toggle
button is pressed down. The five toggle buttons are:

• Toolbar Button Zoom In : Zoom in a map window or a scatter plot window.

• Toolbar Button Zoom Out : Zoom out of a map window or a scatter plot
window.

• Toolbar Button Pan : Pan a map window or a scatter plot window.

• Toolbar Button Identify : Click at a feature on the active layer of a map or
scatter plot to show information of the feature.

• Toolbar Button Display Link : Relate a point in the scatter Plot to the
corresponding link in the network. When this button is pressed down, click at a
scatter plot point and the focus will be move to the network window with the
corresponding network link highlighted.

Other than the five toggle buttons, rest of the buttons are push buttons. The function of a
push button is activated after the button is pushed. After the function is completed, a
push button returns inactive and does not stay pushed down. The push buttons are:

• Toolbar Button Full Scale : Return the scale of a map window or a scatter plot
window to full scale.

• Toolbar Button Label Features : Activate the Label Setup Window to label
features on the active layer of a map or a scatter plot.

 9

• Toolbar Button Class Map : Activate the Class Map Setup Window to
classify the features on the active layer of a map or a scatter plot using different
colors and symbol sizes.

• Toolbar Button Bar Chart : Activate the Bar Chart Setup Window to create
bar charts for the features on the active layer of a map or a scatter plot based on
the selected values of the feature’s attributes.

• Toolbar Button Clear Postings : Clear all postings (e.g., label, classes, and bar
charts) added to the features of a map or a scatter plot.

• Toolbar Button Table Zoom In : Zoom in a table window.

• Toolbar Button Table Zoom Out : Zoom out a table window.

• Toolbar Button OD Color : Activate the OD Color Setup Window to adjust
the colors of the OD table cells according to the values of the cells.

• Toolbar Button Display Desire Lines : Relate a cell in an OD table to the
corresponding desire lines in the network. If the active cell of the OD table stays
on an internal cell when the button is clicked, the focus will be move to the
network window and the desire line corresponding to the OD pair will be
highlighted. If a cell in the row sum or the column sum is the active cell, one-to-
all or all-to-one desire lines will be highlighted. If the active cell of the OD table
stays on the table total, all of the desire lines will be highlighted.

• Toolbar Button Single Path : Relate a record in the path table to the
corresponding path in the network. When the button is clicked, the path
corresponding to the active row of the Path Table will be highlighted.

• Toolbar Button One to All Paths : When the button is clicked, all the paths
originating from the origin of the active row of the Path Table will be highlighted.

• Toolbar Button All to One Paths : When the button is clicked, all the paths
ending at the destination of the active row of the Path Table will be highlighted.

• Toolbar Button One to One Paths : When the button is clicked, all the paths
beginning at the origin and ending at the destination of the active row of the Path
Table will be highlighted.

 10

• Toolbar Button Clear Track Lines : Clear highlighted lines (e.g., desire lines
and paths).

Algorithm and Parameter Input Windows
To run the LPFE estimation program within Visual PFE – TD, two GUIs are created for
the users to enter parameters of a LPFE estimation run. The first window is the
Algorithm Input window (Figure 4) and the second is the Parameter Input Window
(Figure 5). The first window can be activated by accessing the menu item Estimate/Time
Dependent. After data on the Algorithm Input Window are properly entered, the Next
button will be enabled (i.e., the LPFE input file *.alg is created successfully). If the
parameters entered do not conform to the specification of the LPFE program, users will
be asks to check the numbers on the form. For details about the parameters, please see
LPFE User Manual.

Clicking at the Next button will launch the Parameter Input Window.

Figure 4 Algorithm Input Window

 11

Figure 5 Parameter Input Window

 12

After parameters on the Parameter Input Window are properly entered, Visual PFE – TD
will attempt to create another LPFE input file (i.e., the *.par file) after users click at OK.
If the file is successfully created, the LPFE program will be launched and a DOS
command window will appear (Figure 6). No user intervention is required when the
program is executing. If the LPFE run is not successful, users will receive an error
message prompting them to fix the LPFE network data or change the parameter values.
For details about the LPFE network data and the parameters, please see LPFE User
Manual.

Figure 6 DOS Command Window

 13

Create Shapefiles and Tables Window

A successful LPFE estimation will create output text files that will be converted by
Visual PFE - TD for the visualization of the outputs. Each LPFE estimation produces
OD and link flow estimates for multiple time periods. The Create Shapefiles and Tables
Window (Figure 7) is created to let users choose which time periods and what kinds of
results they want to see. Once the selection is made, multiple windows forms will be
opened for the selected time periods (Figure 8).

The Create Shapefiles Window can be launched for previously estimated outputs, for
which the shapefiles had not been created. To do this, go to the menu item
Diagnose/Create Shapefiles and the Create Shapefiles Window will show up (Figure 9).
Note that a Browse button is placed next to the input network path label. Clicking at the
browse button will enable users to select the data folder in which previously estimated
outputs are stored.

Figure 7 Create Shapefiles and Tables Window

 14

Figure 8 Main Window with Output Windows

Figure 9 Create Shapefiles Window for Previously Estimated Outputs

 15

Network Map Window

The outputs of a LPFE estimation are converted to ESRI Shapefiles for visualization. A
map window is shown in Figure 10. The title of a map window corresponds to the file
name and path of the LPFE estimation output for one particular time period. For
example, the map window in Figure 10 corresponds to the estimation result of time
period 1 based on the input network file called lpfe_ex, which is stored in the folder of
C:\LPFE\Example\EST\. For more details, see Technical Specification.

Figure 10 Network Map Window

A network map consists of four ESRI Shapefiles, each presented as a map layer:

• Network links: All of the link attributes are stored in this layer, including the
observed and estimated link flows.

• Origins and destinations: The production and attraction of the origins and
destinations are stored in this point layer.

• Desire lines: A desire line represents the flow between a pair of OD. The desire
lines layer is hidden by default. Users can choose to display or hide them.

• Map boundary points: Two boundary points are included in the network map to
create sufficient margins around the network such that all features of the network
can be displayed within the map window.

 16

The Network Windows form is divided into the map and the legend areas. The names of
the layers are displayed in the legend area. Note that a layer name is made up by
prefixing the name of the estimation result (e.g., lpfe_ex_t1) with one of the words:
Network, OD, DL, and OD_BOUNDS. See Technical Specification for details.

Basic functions of the map window are adjusted through the map legend:

• Setting the active layer: A layer can be made active by moving mouse cursor
over and clicking at the corresponding title in the map legend. The legend of the
active layer has a line underneath the layer name (see the legend of the network
layer in Figure 10). Labels, colors, and charts based on attributes can only be
applied to features of the active layer. When varying colors are applied to
features of a layer by classes, the legend of the layer will show the colors and the
corresponding values.

• Making a layer invisible: A layer can be made invisible by un-checking the

check box right next to the layer’s name in the legend area (i.e., the desire line
and the boundary points are made invisible in the map window).

• Changing the drawing order: Drawing order of the layers can also be changed

by dragging the layer name up or down in the legend area.

• Adjusting the width of the legend: When a layer’s name is longer than the
default legend width, the border between the map and the legend can be dragged
and moved to accommodate the width of the legend.

 17

Identify Features Window

Attributes of map features can be identified and displayed using the Identify toolbar
button. To identify a particular feature in a layer, first make the layer active by clicking
at the name of the layer in the legend, then press the tool button Identify. The mouse
cursor, when placed above the map window, will change to the information symbol .
Move the mouse cursor to the feature and click at it. The Identify Features Window will
appear with attributes of the form displayed in a spreadsheet (Figure 11).

Figure 11 Identify Features Window

 18

Label Features Window

Features on a map layer can be labeled with attributes of the layer. For example, each
link on the network layer can be labeled with link ID. Feature labeling is set up through
the Label Feature Window (Figure 12). To activate the Label Feature Window, first
make the layer active by clicking at the name of the layer in the legend, then press the
tool button Label Features. Once the form appears, a particular attribute can be selected
for labeling and the font for the label can also be adjusted using the Font button.

Figure 12 Label Features Window

 19

Class Map Window

Features on a map layer can be drawn with different colors and sizes based on values of a
particular attribute of the layer. For example, links on the network layer can be grouped
into five classes based on the values of estimated link flows. Each class of links will be
drawn with the same color and width. Class mapping is set up through the Class Map
Window (Figure 13). To activate the Class Map Window, first make the layer active by
clicking at the name of the layer in the legend, then press the tool button Class Map.
Once the form appears, a particular attribute and the number of classes can be selected.
Users can choose to let the program determine the colors and sizes of the classes by
applying auto color and size. Users can also set up the color and size by applying custom
color and size. To do this, double click the color blocks to set up the color for the lowest
and highest classes. Then, select the symbol sizes for the lowest and highest classes.
After clicking the Apply (custom color and size) button, the program will create for all
classes a graduate color and size transition from the lowest to highest classes.

Figure 13 Class Map Window

 20

Bar Chart Window

Bar charts based on values of a particular attribute of a layer can be created using the Bar
Char Window. Bar charts are best suited for visualizing the variation of production and
attraction at origins and destinations. Note that bar charts are not designed for network
links. Applying bar chats to network links will cause the links to become invisible (i.e.,
links are replaced by the bars). To activate the Bar Chart Window (Figure 14), first make
the layer active by clicking at the name of the layer in the legend, then press the tool
button Chart Map. Once the form appears, clicking at an attribute from the attribute list
box will highlight the attribute. Clicking at an attribute twice will de-highlight the
attribute. Multiple attributes can be selected at the same time. Each attribute will appear
on the map as a bar of varying height (based on the value of the attribute). Users can
choose to let the program determine the colors and sizes of the classes by applying auto
color and size. Users can also set up the height and width of the bars by applying custom
height and width. To do this, simply select the height and width from the two pull down
boxes. After clicking the Create Bar Chart button, the program will create the bar chart
accordingly.

Figure 14 Bar Chart Window

 21

Scatter Plot Window

One of the most common and important diagnostic graphs for the OD estimation problem
is the observed-versus-estimated scatter plot of network link flows. The scatter plot is
implemented in Visual PFE - TD as a collection of map layers. The scatter plot point
layer uses the observed value of a link as the X coordinate and the estimated value as the
Y coordinate. A link layer is used to represent the two axes and other boundary lines
delineating the levels of accuracy of the estimation.

The scatter plot points, the axes, and the markers are actually shapefiles and presented in
a map window. Thus, functions of a scatter plot window are the same as a map window.
A scatter plot window is shown in Figure 15. Note that the title of the Scatter Plot
Window is created by prefixing the word “Scatter Plot_$” with the title of the
corresponding network Map Window. The title enables the users to associate different
output windows with the corresponding network. When preparing the LPFE network
input network data, please make sure that the character “$” is not used to make up the file
name. A network file with a file name containing the character “$” will cause the
program to malfunction.

Figure 15 Scatter Plot Window

 22

There are three ways to open a Scatter Plot Window:

• Select the Scatter Plot option in the Create Shapefiles and Tables Window.
• When a network map is the active window, go to the menu item

Diagnostic/Graph.
• Go to the menu item Diagnostic/Compare and select from the available scatter

plots.

Link SP to Map

A unique function of the scatter plot is the dynamic linkage between a scatter plot point
and the location of the corresponding link on the map. To use this function, when the
network Map and the Scatter Plot windows are both opened, select the scatter plot point
layer as the active layer. Click the Link SP to Map button, and the corresponding
network link will be highlighted in the Map Window.

 23

OD Table Window

The estimated OD flows between the origins and destinations are generated by LPFE as a
text file (i.e., the *.est file). The Visual PFE- TD program converts the text file and
formats it as a spreadsheet using the Spread software component (see Technical
Specification). A resulting OD table is shown in Figure 16. Note that the title of the OD
Table Window is also created by prefixing the word “O-D_$” with the title of the
corresponding network Map Window.

Figure 16 OD Table Window

There are three ways to open an OD table:

• Select the OD Table option in the Create Shapefiles and Tables Window.
• When a network map is the active window, go to the menu item Tables/Open OD

Table.
• Go to the menu item Diagnostic/Compare and select from the available OD

Tables.

 24

OD Color Window

The cell colors of the OD table can be adjusted using the OD Color Window (Figure 17).
To open the OD Color Window, first make the OD table the active window, go to the
menu item Table/OD Table Color or click at the toolbar button OD Color.

Once the OD Color Window is opened, the values of OD flows are broken down into
four classes. Double click at each color block to set up the color. After clicking at the
Apply button, the cell colors of the OD table will be adjusted accordingly.

Figure 17 OD Color Window

 25

Reduced OD Table View

Once the cell colors are adjusted, the OD table can be reduced to facilitate visualization
of flow patterns of the entire table (Figure 18). The function is useful when comparing
two OD tables of the same network.

Figure 18 Reduced OD Table View

To reduce the OD table view, make the OD table the active window and click at the
Table Zoom Out button. The view can be return back to normal by clicking at the Table
Zoom In button.

Link OD Table to Map

A unique function of the OD table is the dynamic linkage between the OD table and the
location of the corresponding desire lines on the map. To use this function, when the
network Map and the OD Table windows are both opened, click at a cell in the OD table
to make it the active cell, then press down the Display Desire Line button. The
corresponding desire line(s) will be highlighted in the Map Window. If the active cell of
the OD table stays on an internal cell when the button is clicked, the focus will be move
to the network map window and the desire line corresponding to the OD pair will be
highlighted. If a cell in the row sum or the column sum is the active cell, one-to-all or
all-to-one desire lines will be highlighted. If the active cell of the OD table stays on the
table total, all of the desire lines will be highlighted.

Save an OD Table as Excel File

An OD table in Visual PFE – TD can be saved as a Microsoft Excel file. To use this
function, when the OD Table window is opened, go to the menu item File/Save as Excel.
The Save File As dialog box will open for users to enter a desired file name for the Excel
File.

 26

Path Table Window

The estimates of path flows between origins and destinations are also generated by LPFE
as a text file (i.e., the *pfp file). Similar to the OD tables, the Visual PFE- TD program
converts the path text file and formats it as a spreadsheet using the Spread software
component (see Technical Specification). A resulting path table is shown in Figure 19.
Note that the title of the Path Table Window is also created by prefixing the word
“Paths_$” with the title of the corresponding network Map Window.

Figure 19 Path Table Window

To open a path table, when the corresponding network map is the active window, go to
the menu item Tables/Open Path Table.

Display Paths

If users want to see the location of a particular path or paths, the Display Path toolbar
buttons can be used. To use this function, when the network map and the path table
windows are both opened, click at a cell in the path table to make it the active cell. There
are four options to display paths:

• Toolbar Button Single Path: When the button is clicked, the path corresponding
to the active row of the Path Table will be highlighted.

• Toolbar Button One to All Paths: When the button is clicked, all the paths
originating from the origin of the active row of the Path Table will be highlighted.

• Toolbar Button All to One Paths: When the button is clicked, all the paths ending
at the destination of the active row of the Path Table will be highlighted.

 27

• Toolbar Button One to One Paths: When the button is clicked, all the paths
beginning at the origin and ending at the destination of the active row of the Path
Table will be highlighted.

Report Window
Every LPFE estimation generates a text file, documenting summary statistics of the
estimation. The estimation statistics of the estimation can be viewed in Visual PFE – TD
using the Report Window (Figure 20).

Figure 20 Report Window

There are three ways to open a Report Window:

• Select the Report option in the Create Shapefiles and Tables Window.
• When a network map is the active window, go to the menu item

Diagnostic/Statistics.
• Go to the menu item Diagnostic/Compare and select from the available reports.

 28

Creating and Editing Text Files

A Report Window is actually a rich text box that can serve as a text editor. User can use
the Report Window to edit or create LPFE input network data. To edit an existing text
file, go to the menu item File/Open and select one of the LPFE input text files. To create
a new file, go to the menu item File/New and a blank Report Window will be opened as a
text editor. The menu item Edit contains common text editing tools such as Undo, Cut,
Copy, Paste, and Select All. Once a new network data text file is created, the file can be
saved by going to the menu item File/Save Text. The Save As dialog box will open for
users to enter a desired file name for the text file.

Scenario Comparison Window
If multiple estimation runs have been done for a network, all of the previous results can
be opened and compared at the same time. The comparison is setup via the GUI in
Figure 21.

Figure 21 Scenario Comparison Window

 29

To compare different results, click at the Browse button and go to the folder where all
estimation results are stored. Once the data folder is selected, all available results will be
shown in the corresponding list boxes. Select from the lists and click OK. All the
selected result items will be open in corresponding windows.

Note that the available networks and scatter plots are shapefiles. Only those created in
the Create Shapefiles and Tables Window can be open for comparison. If the network or
scatter plots for a particular time period is never created, it will not be available in the list
box. However, the OD tables and reports are text files and they are available for every
time period of a LPFE estimation. The text files of the selected OD tables will be
converted to a spreadsheet on the fly.

Windows Help
A standard windows help document (Figure 22) is created and built in with Visual PFE.
Users can access instruction of particular tasks via the document. To access the Help
document, go to the menu item Help/Visual PFE – TD Help. The Help document will be
open for user to search for particular information. There are also Help buttons placed on
various GUIs. Click at these buttons will also open a particular topic of the Help
document.

Figure 22 Windows Help

 30

Technical Specification

Visual PFE - TD integrates the LPFE program with three other software components.
The architecture of the system is shown in Figure 23.

Figure 23 Visual PFE - TD Software Components

The three software components are:

• ArcViewShapeFile OCX
• ESRI MapObjects
• FarPoint Spread

 31

LPFE

The LPFE program operates via the DOS command prompt. If an estimation run is
successfully, the output files generated by the LPFE are in text files. If an estimation run
encounters errors due to incompatible parameter setting, the LPFE program will quit and
error messages will be issued by Visual PFE – TD.

The ArcViewShapefile Read/Write OCX
An OCX is an object-oriented software component conforming to Microsoft’s ActiveX
architecture. The OCX was created to easily read or write Arcview Shapefiles for data
conversion purposes. The Shapefile format is a geographic data format published by
ESRI. The ArcViewShapefile Read/Write OCX was created by Ross Pickard in
Wellington, New Zealand and is a shareware made available for download from ESRI
web site.

Visual PFE - TD uses the DLL version of the ArcViewShapeFile to convert the text files
generated by LPFE to Shapefiles. The converted shapefiles can be displayed with the
Visual PFE - TD map component and common GIS software. Table 1 shows the
conversion between the LPFE text files to the shapefiles used by Visual PFE.

Table 1 LPFE Output Text Files to Shapefiles

LPFE Output File Converted Shapefile
*.lfp Network lines
*.zne OD points
*.est Desire lines
*.lfp Scatter plot points

 32

The Shapefiles of the Network Map and Scatter Plot Windows

Visual PFE – TD converts the LPFE output text files to shapefiles. These shapefiles are
stored in the same folder as the input network data. The shapefiles are used to visually
depict the network, the origins, the destinations , and the desire lines. Figure 24 shows a
side-by-side view of the list of shapefiles and the legend of the network map layers. It
can be seen that three files (i.e., *.shp, *.shx, and *.dbf) are used to draw a layer (i.e.,
ESRI shapefile specification). The name of the layer is the same as that of the three
shapefiles that make up the layer. Each layer name include reference to the input
network and the feature (i.e., network, od, desire lines, or boundary points) of the layer.

Figure 24 Shapefiles and Network Map Layers

 33

Figure 24 shows a side-by-side view of the list of shapefiles and legend of the Scatter
Plot layers.

Figure 25 Shapefiles and the Scatter Plot Layers

ESRI MapObjects
MapObjects is a set of mapping software components that let users add GIS maps to
software applications. MapObjects comprises an ActiveX control (OCX) called the Map
control and a set of over forty-five ActiveX Automation objects. In Visual PFE, a map
control is used to display the shpafiles created by the ArcViewShapeFile component.
The map control facilitates all of the GIS functions for the converted shapefiles. Another
OCX control is added to a map form to display the legends of different map layers. The
legend control is internally connected to the map control. A layer can be made active
through the legend control. On the active layer, labels and thematic mapping can be
applied to features on the layer. For example, networks links can be varied by colors and
width based on estimated link flow. Bar charts can be applied to display the varying
magnitude of production and attraction at the origins and destinations.

 34

FarPoint Spread

Spread by the FarPoint Technologies is a software component built to Microsoft’s latest
.NET software architecture. Spread is used to create spreadsheet applications. The
strength of Spread is that it facilitates all of the typical spreadsheet functions with a
dimension limitation (1 million columns by 1 million rows) that is unlikely to be violated
by any OD tables. Visual PFE contains codes that process the PFE CSV outputs and
formulate the spreadsheets stored and displayed with Spread. Once a spreadsheet is
created in Spread, it can be saved as a Microsoft Excel file. Table 2 shows the association
between the original PFE CSV outputs and the formatted Spread tables.

Table 2 LPFE Output Files to Spread Tables

LPFE Output Files Converted Spread Table
*.est OD table
*.pfp Path table

 35

Appendix III

Visual PFE® 1.0

A Quick Start Tutorial

June 2006

Visual PFE and Visual PFE–TD are authored at the Utah State University. Copyright
application for Visual PFE and Visual PFE-TD is currently in process. Please do not quote
or reference the names without the authors’ permission.

 1

A Quick Start Tutorial

This tutorial is designed to give users the essential instruction to begin using Visual PFE

for OD estimation in a timely fashion. The tutorial uses step-by-step examples to help

users become familiar with the GUIs and the functions of the program. At the end, an

example is provided to show users how to prepare the input network data.

In this tutorial, you will learn how to:

• Estimate OD trip tables for a particular network

• Navigate through the Map and Scatter Plot Windows

• Post on Features of a Layer

• Manage OD Tables

• Visualize Paths

• View Reports and Text Files

• Edit Networks

• Compare Previously Estimated Results

• Create Networks

 2

Example 1: Estimate OD Tables for a Particular Network

In this example, you are given a PFE network named 9GRD, which consists of three

separate text files: 9GRD.pfe, 9GRD.pfx, and 9GRD.pfp (You will learn how to create

these three files in the final example).

How to Run a PFE Estimation

To estimate an OD table for the 9GRD network:

1. Open the Visual PFE program, select menu item Estimate/Static to open the Static

PFE Estimation GUI (see Figure 1).

Figure 1 Estimate/Static

2. On the Estimation GUI, click at the Browse button to find the folder

“PFE_workbook\3_Exercise_3\9GRD.pfe”,

3. Enter “1.50” for Dispersion Parameter,

4. Select “5,000” for Max. Iteration,

5. Select “4” (⇒ 0.0001) for Convergence level,

 3

6. Select Manual Adjustment (Figure 2) (to use measurement errors specified in the

input files),

7. Click “OK” to run PFE estimation.

Figure 2 Manual Adjustment

8. After the run is completed, the dialog box informing the status of the estimation

appears (Figure 3).

Figure 3 Status of Estimation

 4

Remarks:

If errors occur during the estimation, the dialog box will inform the users the specific

errors and the suggested solution. At the end of this example, technical notes about the

estimation methods, the parameters, and the potential error messages are provided for

your reference. For complete coverage of the technical details on PFE, please refer to the

PFE Workbook.

9. Visual PFE will display the network and estimated O-D trip table (Figure 4).

 Figure 4 Network and Estimated O-D Trip Table

10. Open the scatter plot and the estimation report (Figure 5).

a. Make the network map window the active window (click on the title bar of the

map window),

b. Select Diagnose >> Statistics,

c. Select Diagnose >> Graphs,

d. Select Windows >> Tile

 5

Figure 5 The Scatter Plot and the Estimation Report

By now, you have completed the estimation process for the given 9GRD network. All of

the output components are generated and displayed in corresponding windows. After

reviewing the notes about PFE parameters, you will learn functions of each individual

output window in the next examples.

 6

What are the Static PFE Estimation Parameters?

In order to perform the estimation using the static PFE, five input parameters are
required.

1. Network: name of the main PFE network file (*.pfe) including full path of the

directory (simply browse for location of the file).
2. Dispersion parameter: cost-sensitivity in the logit SUE model. It indicates how

sensitive the road users are to the travel cost. A small value of “dispersion
parameter” (e.g., between 0.01 and 1.00) is usually recommended to prevent the
numerical problem of the algorithm. It is however important to calibrate this
parameter to properly reflect the behavior of road users (before the estimation).

3. Max. Iteration: the maximum number of iterations allowed for the adjustment of path
flows to match observed link volumes. The default value (recommended) is set at
1,000. Note that the algorithm could terminate before 1,000 iterations if it reaches
convergence. The maximum iteration allowed to set is 100,000.

4. Convergence: the criterion used for terminating the PFE. The program will check for
the maximum change of balancing factors. If the maximum change is less than the
convergence criterion, the program will be terminated. The convergence value of 10-4
is recommended to obtain a reasonable solution within a reasonable computational
time. A more strict convergence criterion (e.g., smaller value – <10-4) can also be
used, of course, with the expense of higher computational time.

5. Method to handle inconsistency: the method for handling the inconsistency of traffic
data (e.g., traffic counts, etc.) in the estimation. In the static PFE, there are three
options available:

5.1. Manual adjustment allows the users to manually specify the error for each

individual observation (i.e., percentage error) through the first PFE network file
(*.pfe).

5.2. Uniform adjustment uniformly specifics the same measurement error across all
observations. Percentage error (e.g., 5%) needs to be specified by the user in the
provided text box (see Figure 3). Noted that:

o The value of percentage error must be positive and could be greater than 100
percent if highly inconsistent data are expected. If this option is selected, the
error bounds specified in the input file (*.pfe) will be disregarded.

o Large measurement errors (e.g., > 50 percent) could be employed in the
estimation to ensure the existence of feasible solution and fast convergence
(i.e., ease to obtain the solution),

o However, it was observed that an unreasonably large measurement error
could lead to the underestimation of travel demand in the network (Chen et
al., 2004) 1 . A balance between solution quality and computational time
requirement should be cautiously considered.

1 Chen, A., Chootinan, P., Recker, W., and Zhang, H.M. 2004. Development of a Path Flow Estimator for
deriving steady-state and time-dependent origin-destination trip tables. California PATH Research Report,
UCB-ITS-PRR-2004-29.

 7

5.3. Heuristic adjustment utilizes the information (e.g., the difficulty of matching
individual observations) obtained after the estimation process to automatically
adjust (expand) the error bounds and re-estimates.

What are the PFE Return Codes?

A set of return codes has been developed to report possible sources of error and possible
remedies for the execution of PFE.

Code Description Solution

0 Program is terminated successfully. -

1 At least one of the required inputs is missing. • Check the existence of input files
(input folder)

2 Size of the working network exceeds capacity
of the program; current capacity is 5,000 nodes,
10,000 links, 500 zones, and 250,000 OD pairs

-

3 Dispersion parameter (cost sensitivity) is too
high, which is not suitable for the current unit
of travel cost of the working network.

• Consider the reduction of
dispersion parameter

4 Path building mechanism fails (e.g., impossible
to build paths passing through some observed
links).

• Check the locations of problematic
traffic counts,

• Check network connectivity, or
• Provide paths in the input to cover

such observation

5 The execution exceeds the maximum number
of iterations specified by the user. By
examining the trend of convergence, the
algorithm seems to diverge.

• Enlarge the measurement errors

6 The execution exceeds the maximum number
of iterations specified by the user. By
examining the trend of convergence, the
algorithm, however, seems to converge.

• Enlarge the measurement errors,
or

• Increase the maximum number of
iterations

Remarks:
o With the return codes 1, 2, and 3, PFE outputs will not be created.
o The estimation result is meaningful only when the program is terminated with the

return code 0.
o With the return codes 4, 5 and 6, the outputs are however created so that the user can

review the problem associated to the estimation through the map, scatter plot, etc.

 8

Example 2: Navigate through the Network Map and Scatter Plot Windows

In this example, we will begin start the example by working with the Map and Scatter

Plot windows created in example 1.

How to Make a Window Active

1. Click at the title bar of the Network Map Window to make it the active window (see

Figure 6). The map window should appear on top of every other opened window. See

for yourself how the titles of the OD table, scatter plot, path table, and report all

include the name and the file path of the network (i.e., the title of the fist window).

Figure 6 Active Window

 9

How to Make a Layer Active

2. You can make the layer 9GRD_NETWORK active by clicking at the title of in the

legend area. A thin line will appear underneath the layer name in the legend,

indicating the current active layer (Figure 7).

Figure 7 Legend and Active Layer

How to Make a Layer Invisible

3. You can make a layer invisible by un-checking the check box next to the name of the

layer in the legend. For example, un-checking the legend of the 9GRD_NETWORK

layer will make the layer invisible. Checking the legend of the

9GRD_DESIRELINES will make the desire lines visible. Once you see how this

work, return the map to the original setting (make desire lines invisible and the

network links visible) (Figure 8).

 10

Figure 8 Invisible/Visible Layer

 11

How to Increase the Legend Width

4. Sometimes you may have a map layer with a long file name that does not fit in the

initial legend width. You can increase the width of the legend by clicking at the

border bar between the legend and the map (the mouse cursor will turn into a east-

west double arrow). Moving the border bar while holding the mouse button will move

the border bar to the desired direction (Figure 9).

Figure 9 Increase of Legend Width

 12

How to Navigate through the Network Map (Zoom In, Zoom Out, Pan, Full Scale, and

Identify Features)

5. Click at the toolbar button Zoom In . Click at a point on the map where you want

to zoom in (the mouse cursor will appear as a magnifying glass.) and drag a rectangle

with the mouse cursor. The rectangle will be the extent to which the map will be

zoomed in. Once you are satisfied with the extent of the rectangle, release the mouse

button. The map will be zoom in accordingly (Figure 10).

 Figure 10 Navigation through the Network Map

6. While the map is zoomed-in, you can move the displayed portion of the map to

another spot by pressing down the toolbar button Pan . Clicking at the map then

will turn the mouse cursor to a palm symbol. Moving the mouse cursor while holding

down the mouse button will allow you to move the map window to another spot on

the network.

 13

7. To zoom out, click at the toolbar button Zoom Out . The map will be zoomed out

by a certain proportion. If you are not satisfied with the scale, click at the button again

will further reduce the map scale.

8. If you want to return the map to the original full scale of the network map, simply

press the Full Scale button .

9. If you are interested in finding out the attribute of a particular map feature, you can

use the toolbar button Identify . To do this, first make the feature layer the active

layer by clicking at the name of the layer in the legend. A line underneath the layer

name will appear in the legend. Press down the Identify button (the mouse cursor

will turn into the information symbol . Click at a feature of the layer will open the

Identify Feature Window, showing all the attributes of the feature identified (Figure

11).

Figure 11 Identify Features

 14

How to Navigate through the Scatter Plot Window (Display Link)

A scatter plot has the same form as a network map window. The navigation functions for

the network map also apply to the scatter plot window. The only exception is that a

scatter plot has one exclusive function, the Display Link toolbar button , which

allows users to see the location of the link for which a scatter plot point represents. To

use this function:

10. Make the scatter plot window the active window by clicking at the title bar of the

scatter plot window.

11. Make the 9GRD_SCATTERPLOT layer the active layer by clicking at the name of

the layer in the legend area.

12. Press down the Display Link button . Move the mouse cursor over the scatter

plot and click at a particular scatter plot point.

13. The network map window will automatically appears on top and become the active

window with the corresponding link highlighted (Figure 12).

Figure 12 Display Link Features

 15

How to Clear Track Lines

14. To clear the magenta highlight from the map, when the network map window is the

active window, press the Clear Track Lines button . The button also applies to the

magenta highlights on desire lines and paths.

 16

Example 3 Feature Postings

With Visual PFE, you can place three types of postings on features of a map layer based

on the values of the features. The postings apply to both the network map window and

the scatter plot windows. The three types of postings are:

• Label

• Class Map

• Bar Chart Map

Placing of all three postings require setting an active layer.

How to Label Features of a Layer

1. Make the layer of the features active

2. Press down the Label Feature button . The Label Feature Window will open

(Figure 13).

3. Once the form appears, a particular attribute can be selected for labeling and the font

for the label can also be adjusted using the Font button.

4. Click the Apply button the labels will be placed next to the features on a map (Figure

14).

Figure 13 Label Features

 17

Figure 14 Label of Link ID

How to Clear Labels

5. To clear the labels, press the Clear Postings button . The function applies to all

three types of postings.

Remarks:

When a scatter plot shows up, the scatter plot axis layer and the marker layer are already

labeled with the appropriate labels. Press down the Clear Postings button will clear these

labels as well. To restore the original setting, just label the axis layer with the attribute

“NAME” and the marker layer with “VALLUE” again.

After a particular posting is cleared from a map, the legend is reset. To place another

posting, you need to remember to set the active layer again (Figure 15).

 18

Figure 15 Scatter Plot Axis Layer

How to Create a Class Map

6. Make the layer active by clicking at the name of the layer in the legend, then press the

tool button Class Map. The Class Map Window will appear (Figure 16).

 19

Figure 16 Class Map Features

7. Once the form appears, select a particular attribute from the numeric fiend and select

the number of classes.

8. To let the program determine the colors and sizes of the classes, click at the Apply

button in the Auto Color and Size panel (Figure 17).

 20

Figure 17 Auto Color and Size Class Map

9. To set up the color and size by applying custom color and size, double click at the

color blocks to set up the colors for the lowest and highest classes. Then, select the

symbol sizes for the lowest and highest classes. After clicking the Apply (Custom

Color and Size) button, the program will create for all classes a graduate color and

size transition from the lowest to highest classes (Figure 18).

Remarks:

After a class map is generated, the legend will be reset. To place another posting, you

need to remember to set the active layer again.

 21

Figure 18 Custom Color and Size Class Map

How to Clear a Class Map

10. To clear the labels, press the Clear Postings button . The function applies to all

three types of postings.

Remarks:

After a class map is cleared, the legend is reset. To place another posting, you need to

remember tot set the active layer again.

How to Create a Bar Chart Map

11. Make the layer active by clicking at the name of the layer in the legend, then press the

tool button Chart Map. The Bar Chart Window will appear (Figure 19).

 22

Figure 19 Bar Chart Feature

12. Once the form appears, clicking at an attribute from the attribute list box to will select

and highlight the attribute. Clicking at an attribute twice will de-select the attribute.

Multiple attributes can be selected at the same time.

13. Select the height and width from the two pull down boxes.

14. Click at the Create Bar Chart button. The program will create the bar chart

accordingly (Figure 20).

 23

Figure 20 Bar Chart Window

How to Clear a Class Map

15. To clear the labels, press the Clear Postings button . The function applies to all

three types of postings.

Remarks:

After a class map is cleared, the legend is reset. To place another posting, you need to

remember tot set the active layer again.

Bar charts are best suited for visualizing the variation of production and attraction at

origins and destinations. Note that bar charts are not designed for network links.

Applying bar chats to network links will cause the map to be entirely filled with bars and

the network links will become invisible (i.e., links are replaced by the bars).

 24

Example 3 Manage OD Tables

After a successful PFE estimation, the OD table will be opened automatically by the

program.

How to Open an OD Table

If a previously opened OD table window is now closed and the users wish to see it again,

there are two ways to open an OD table:

1. When the network map is the active window, go to the menu item Tables/Open OD

Table to open the corresponding OD table.

2. If no network window is opened, go to the menu item Diagnostic/Compare and select

from the available OD Tables (Figure 21).

Figure 21 OD Table Window

Note that when the OD table is opened, the view is reduced so the color pattern of the

entire table can be viewed without using the scrolling bars.

 25

How to Enlarge the OD Table View

3. Make the OD table the active window.

4. Click at the toolbar button Table Zoom In . The OD Table will return to the

normal view (Figure 22).

Figure 22 The Enlarged OD Table

How to Reduce the OD Table View

5. To reduce the view of the OD table again, simply press down the toolbar button Table

Zoom Out . The OD table view will be reduced again.

The default color scheme for the OD table cells is gray (for cells = 0) and red for cells

>0). Users can adjust the colors of the cells using the OD Color Window.

How to Adjust the Colors of the OD Cells

6. Make the OD table the active window

7. Go to the menu item Table/OD Table Color or click at the toolbar button OD Color

. The OD Table Color Window will open (Figure 23).

 26

Figure 23 OD Table Color Feature

8. On the OD Color Window, the values of OD flows are broken down into four classes.

Double click at each color block to set up the color.

9. Click at the Apply button. The cell colors of the OD table will be adjusted

accordingly (Figure 24).

Figure 24 The Adjusted OD Table Color

 27

How to Display Desire Lines via the OD Table

The desire line layer is typically made invisible on the network map, because they tend to

obstruct the view of the network links. Visual PFE is built with a unique function for

users to view desire lines via the OD Table. To use this function:

10. Make sure both the network Map and the OD Table windows are both opened.

11. Click at a cell in the OD table to make it the active cell (the cell will be encircled with

faint dash lines).

12. Press down the Display Desire Line toolbar button . The corresponding desire

line(s) will be highlighted in the Map Window. If the active cell of the OD table

stays on an internal cell when the button is clicked, the focus will be move to the

network map window and the desire line corresponding to the OD pair will be

highlighted (Figure 25).

 28

Figure 25 Display of Desire Line via OD Table

13. If a cell in the row sum or the column sum is the active cell, one-to-all or all-to-one

desire lines will be highlighted (Figure 26).

 29

Figure 26 Desire Lines from Row Sum or Column Sum

14. If the active cell of the OD table stays on the table total, all of the desire lines will be

highlighted (Figure 27).

 30

Figure 27 Desire Lines from Table Total

How to Clear the Desire Lines

15. To clear the magenta highlight from the map, when the network map window is the

active window, press the Clear Track Lines button . The button also applies to the

magenta highlights on links and paths.

The OD Table Window in Visual PFE is managed using the software component Spread.

The table itself is a spreadsheet and can be saved as a Microsoft Excel file.

 31

How to Save an OD Table as Excel File

16. Make the OD Table window the active window

17. Go to the menu item File/Save as Excel.

18. The Save File As dialog box will open for users to enter a desired file name for the

Excel File (Figure 28).

Figure 28 Save OD Table as Excel File

 32

Example 5 Visualize Paths

The estimates of path flows between origins and destinations are also generated by PFE

as a text file (i.e., the pthsum.csv file). Similar to the OD tables, the Visual PFE program

can convert the path text file and formats it as a spreadsheet.

How to Open a Path Table

1. Make the corresponding network map the active window

2. Go to the menu item Tables/Open Path Table. The path will open accordingly

(Figure 29).

Figure 29 Path Table

How to Display Paths

3. Make sure that both the network map and the path table windows are opened.

4. Make the path table the active window. Click at a cell in the path table to make it the

active cell. There are four options to display paths:

a. Toolbar Button Single Path : When the button is clicked, the path

corresponding to the active row of the Path Table will be highlighted (Figure 30).

 33

Figure 30 Display of Single Path

b. Toolbar Button One to All Paths : When the button is clicked, all the paths

originating from the origin of the active row of the Path Table will be highlighted

(Figure 31).

 34

Figure 31Display of All Paths

c. Toolbar Button All to One Paths: When the button is clicked, all the paths ending

at the destination of the active row of the Path Table will be highlighted (Figure

32).

Figure 32 Display of All to One Paths

d. Toolbar Button One to One Paths: When the button is clicked, all the paths

beginning at the origin and ending at the destination of the active row of the Path

Table will be highlighted (Figure 33).

 35

Figure 33 Display of One to One Paths

How to Clear the Paths

19. To clear the magenta highlight from the map, when the network map window is the

active window, press the Clear Track Lines button . The button also applies to the

magenta highlights on links and desire lines.

Remarks:

On a large network, the number of paths can be so substantial such that tracking links in

all the paths becomes an extremely time consuming operation. The one-to-all and the all-

to-one path tracking may actually fail when the number of links making up all the paths

exceeds the limitation of the software. When this happens, users will be informed that

the limitation is reached and be advised to use the one-to-one path option instead.

 36

Example 6 View Report and Text Files

Every PFE estimation generates a text file, documenting summary statistics of the

estimation. The estimation statistics of the estimation can be viewed in Visual PFE using

the Report Window (Figure 34).

Figure 34 Report Window

How to Open a Report Window

1. Make the network map the active window.

2. Go to the menu item Diagnostic/Statistics.

A Report Window is actually a rich text box that can serve as a text editor. User can use

the Report Window to edit or create PFE input network data.

How to View and Edit Text Files

To edit an existing text file, go to the menu item File/Open and select one of the PFE

input text files (e.g., 9GRD.pfe). The file will be opened with a report window (Figure

35).

 37

Figure 35 File/Open Text

3. Go to the menu item Edit and try all of the common text editing functions: Undo, Cut,

Copy, Paste, and Select All.

4. When you are done with editing, go to the menu item File/Save Text (Figure 36).

 38

Figure 36 File/Save Text

Remarks:

An input PFE network consists of three files (*.pfe, *.pfp, and *.pfx). Editing the

network data as text files requires a thorough understanding of the data structure of all

three files. The next example shows how to edit attributes of a network using the GUIs.

For more details on editing and creating PFE input networks, please see the PFE

Workbook.

How to Create New Text Files

5. To create a new file, go to the menu item File/New and a blank Report Window will

be opened as a text editor.

 39

Example 7 Edit Networks

After examining the estimation results, users can change attributes (e.g., the observed

flows) of the network and export the data back to the original PFE data format for another

estimation with improved results.

How to Edit Network Attributes

1. Make the network map the active window

2. Make the “Network” layer the active layer

3. Click at the toolbar button Identify and move the mouse cursor over the map.

4. Select the link on which the attributes are to be changed

Figure 37 Edit Network Attributes

5. Double click at a cell on the form to highlight the cell (Figure 37). Change the value

of the highlighted cell.

6. Click at the “Update” button to register the value change.

 40

7. After the Close button is clicked, users will be prompted for final confirmation of the

change. Answer “Yes” will save the change to the database (i.e., the shapefile *.dbf

will be changed). Otherwise, the change is discarded.

8. To export the network data (*.dbf) to a different set of PFE input files (*.pfe, *.pfp,

and *.pfx), go to menu item Network/Export.

9. Save the edited network in a different name (e.g., 9GRDx.pfe).

Remarks:

Open a File Explorer window and observe for yourself if all three PFE files are created in

the data folder specified. You can also go to File/Open and open the newly exported

*.pfe file and see if the change is correctly written to the file.

 41

Example 8 Compare Scenarios

If multiple estimation runs have been done for a network, all of the previous results can

be opened and compared at the same time. To compare different results:

How to Compare Previously Estimated Results

1. Make sure all of the previously opened output windows are now closed (to avoid file

sharing violation).

2. Go to the menu item Diagnose/Compare. The Compare Estimated Networks Window

will open (Figure 38).

Figure 38 Compare Estimated Networks

3. On the window, click at the Browse button and go to the folder (e.g., the folder

/PFE_Wookbook/7_exercise_7) where all estimation results are stored. Once the data

folder is selected, all available results will be shown in the corresponding list boxes.

4. Select from the lists and check the types of results to be compared.

 42

5. Click at the OK button. All the selected result items will be open in corresponding

windows (Figure 39).

Figure 39 Compared Result

Example Create PFE Networks

Creating network input data for PFE requires an understanding of the data format. A

detailed description of the data specification can be found in the User Manual of Visual

PFE. Technical notes about the data files are provided at the end of this example for your

reference. Visual PFE includes tools for users to build the input data from dBase files.

The dBase data format (*.dbf) can be prepared through any software with database

capability (e.g., Microsoft® Excel).

What Data are Required to Create PFE Networks?

Visual PFE network creating tool requires the following three data files to create PFE

network.

• Network topology file

• Trip table structure file (optional)

 43

• Path-specific file (optional)

The three input files must be in the dBase data format (*.dbf). The first input file is

mandatory while the other two files are optional. If the structure of trip table (i.e., the

second file) is not provided, it will be determined through topology of the network. That

is, all feasible (connected) pairs of origin and destination will be included. Similarly, if

there is no specific path to be included, the path list in the third PFE network file (*.pfp)

will be empty.

How to Prepare the Input dBase Data

1. Use a spreadsheet (Excel) to open the network topology file (9GRD.dbf), the trip

table structure table (9GRDOD.dbf), and the user-specified paths (9GRD_Path.dbf)

files in the folder …\PFE_workbook\2_Exercise_2\. Examine the structure of the

input data tables (Figure 40).

 44

Figure 40 Input dBase Data

Remark: Here, it is assumed that the target O-D volumes are unknown, so put –1.00

(minus one) as the target value. Only the structure of O-D trip table (to be estimated) as

shown in Table 1 is known.

Number of nodes defining
path

Figure 41 Input Path Data
Remark: Here, it is assumed that there are two paths that the user may particularly want

to include into the estimation. The first path traverses nodes 1, 2, 11, 4 while the second

path traverses nodes 1, 3, 13, 5, 6 (see Figure 41 and Figure 42).

 45

1 2 11

3

13

12

5

4

6

Path 1

Path 2
 Figure 42 Paths in 9GRD Network

How to Create a PFE Network

2. Close the files and the spreadsheet once you are done reviewing them. Open Visual

PFE, go to the menu item Network/Create. (see Figure 43) Enter the followings:

• Network Topology File:“…\PFE_workbook\2_Exercise_2\9GRD.dbf”

• Trip Table Structure File: “…\PFE_workbook\2_Exercise_2\9GRDOD.dbf”

• User-specified Path File: “…\PFE_workbook\2_Exercise_2\9GRD_Path.dbf”

• The largest node ID of TAZs: “6”

• Name of network: “9GRD”

• Location of network being created: “…\PFE_workbook\2_Exercise_2”

 46

Figure 43 Creat Network Feature

3. In Visual PFE, go to menu item File/Open and open the *.pfe, *.pfp, and *.pfx files

you just created.

 47

The *.pfe File

9
1 1 3 1 -143.678615 59.922371
2 4 5 2 -143.658615 59.922371
3 6 7 3 -143.678615 59.902371
4 8 8 4 -143.638615 59.902371
5 9 9 5 -143.658615 59.882371
6 0 0 6 -143.638615 59.882371
7 10 10 11 -143.638615 59.922371
8 11 13 12 -143.658615 59.902371
9 14 14 13 -143.678615 59.882371

14
1 1 2 1 280.00 1.00 2.00 0.15 4.00 124.00 0.00
2 1 3 1 290.00 1.00 1.50 0.15 4.00 137.00 0.00
3 1 8 1 280.00 1.00 3.00 0.15 4.00 109.00 0.00
4 2 7 1 280.00 1.00 1.00 0.15 4.00 77.00 0.00
5 2 8 1 600.00 1.00 1.00 0.15 4.00 467.00 0.00
6 3 8 1 500.00 1.00 2.00 0.15 4.00 212.00 0.00
7 3 9 1 400.00 1.00 1.00 0.15 4.00 295.00 0.00
8 4 6 1 300.00 1.00 1.00 0.15 4.00 50.00 0.00
9 5 6 1 220.00 1.00 1.00 0.15 4.00 165.00 0.00

10 7 4 1 300.00 1.00 2.00 0.15 4.00 77.00 0.00
11 8 4 1 500.00 1.00 1.50 0.15 4.00 303.00 0.00
12 8 5 1 700.00 1.00 1.00 0.15 4.00 400.00 0.00
13 8 6 1 250.00 1.00 2.00 0.15 4.00 85.00 0.00
14 9 5 1 350.00 1.00 1.00 0.15 4.00 295.00 0.00

N
ode 1 - 9

Link 1 - 14

Required node data (see format in the manual)

Required link attributes (see format in the manual)

Old node IDs

Figure 44 PFE File

Remarks:

There are 9 nodes and 14 links as stated. IDs of intermediate nodes (nodes 11, 12, 13)

were renumbered after the IDs of TAZs immediately. Nodes 11, 12, and 13 were

renumbered to 7, 8, and 9 respectively. (see Figure 44)

The *.pfx (based on the trip table structure file entered)

3
1 1
2 4
3 7
9

1 4 -1.00 0.00 First OD pair of Origin 1
2 5 -1.00 0.00
3 6 -1.00 0.00
4 4 -1.00 0.00 First OD pair of Origin 2
5 5 -1.00 0.00
6 6 -1.00 0.00
7 4 -1.00 0.00 First OD pair of Origin 3
8 5 -1.00 0.00
9 6 -1.00 0.00

O
D

 pair 1 - 9

Required OD data (see
format in the manual)

 48

Remarks:

If you left the trip table structure empty in the Create Network Window and the PFE

determine the structure of the *.pfe file, the result will look like the one in the following

figure.

*.pfx (determined through network topology)

5
1 1
2 6
3 9
4 12
5 13

13
1 2 -1.00 0.00
2 3 -1.00 0.00
3 4 -1.00 0.00
4 5 -1.00 0.00
5 6 -1.00 0.00
6 4 -1.00 0.00
7 5 -1.00 0.00
8 6 -1.00 0.00
9 4 -1.00 0.00
10 5 -1.00 0.00
11 6 -1.00 0.00
12 6 -1.00 0.00
13 6 -1.00 0.00

O
D

 pair 1 - 13

1 2 11

3

13

12

5

4

6

Path 1

Path 2

Figure 45 PFX file and Paths on Network

Based on network topology, nodes 4 and 5 can also be the origin. The total number of

origin nodes increases from 3 to 5. Similarly, the number of possible O-D pairs is 13

(compared to 9 O-D pairs specified in the 9GRDOD.dbf). (see Figure 45)

 49

*.pfp (the path file of the created network)

2
1 3 1 4 10
2 4 2 7 14 9

Serie of links defining path

Number of links on the path

Number of paths specified

Remarks:

If there is no path specified by the user (e.g., leave the “User-specified Path” file blank),

the 9GRD.pfp file will contain “0” as the number of paths specified, and the list of paths

will be empty. Path 1-4-10, which is defined by a link sequence, is equivalent to Path 1-

>2->7(11)->4 defined by a node sequence. “7” is the new ID of node “11”. (see

Figure 46)

1 2 11

3

13

12

5

4

6

Path 1

Path 2
 Figure 46 Paths Data

 50

What are the PFE Input Data Files?

PFE requires three input files (*.pfe, *.pfx, and *.pfp) as listed below to perform the
estimation.

• pfe-file – describes network topology (i.e., connectivity), contains link
characteristics and observed link volumes,

• pfx-file– describes the skeleton (structure) of O-D trip table to be estimated as
well as target O-D volumes (if available), and

• pfp-file – defines a certain set of routes that the user may particularly want to
include into the estimation.

Common network data listed below are utilized to prepare these PFE input files.

Node-related information

• Node’s ID
• X-coordinate of node
• Y-coordinate of node

Link-related information

• Starting node of link
• Ending node
• Functional class of link

Remark: the highest (maximum) functional class, defined by the user, must be

reserved for centroid connectors. This is required for path-building purpose.

• Link capacity
• Free-flow speed
• Link length
• Two parameters of BPR link cost function, α and β respectively

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅+×=

β

α 1.0 time travelflow-free timetravel
itylink capac
elink volum

• Observed link volume
• Measurement error of traffic count (e.g., percentage error – ±5%)

O-D related information

• ID of origin node
• ID of destination node

 51

• Target O-D flow (if available)
• Confidence of target value (if target O-D flows are available)

User-specified path information

• List of paths
• Number of nodes defining path
• A sequence of nodes defining paths (from the origin to the destination)

Description of a Sample Network

The sample grid network (9GRD), depicted in Figure 1, consists of 9 nodes and 14 links.

There are 6 traffic analysis zones (TAZs); all shaded nodes (nodes 1 through 6), and 9 O-

D pairs. To synthesize observed traffic volumes, it is assumed that the true O-D trip table

is available as shown below (Table 1). Network characteristics and synthesized link

volumes are summarized in Table 2.

Table 1. True trip table for 9GRD network

From/To 4 5 6
1 120 150 100
2 130 200 90
3 80 180 110

Table 2. Link characteristics and observed volumes

A Node B Node Capacity Speed Length Observed
volume

1 2 280.00 1.00 2.00 124.00
1 3 290.00 1.00 1.50 137.00
1 12 280.00 1.00 3.00 109.00
2 11 280.00 1.00 1.00 77.00
2 12 600.00 1.00 1.00 467.00
3 12 500.00 1.00 2.00 212.00
3 13 400.00 1.00 1.00 295.00
4 6 300.00 1.00 1.00 50.00
5 6 220.00 1.00 1.00 165.00

11 4 300.00 1.00 2.00 77.00
12 4 500.00 1.00 1.50 303.00
12 5 700.00 1.00 1.00 400.00
12 6 250.00 1.00 2.00 85.00
13 5 350.00 1.00 1.00 295.00

 52

Node and Link Numbering Scheme

Node numbering scheme must follow the requirement of Visual PFE as stated below.

TAZs (origins or destinations) “must” be numbered with a smaller ID compared to
all other intermediate nodes (e.g., road intersections)

Similarly, links also need to be numbered according to a certain scheme (format) stated in

the manual. By recognizing the fact that the formats required by Visual PFE are quite

restrictive and laborious to prepare for real applications, “network-creating tool”, being

illustrated next, was also developed to assist the creation of PFE network. The

minimum requirement for this tool is that network nodes “must” be numbered

according to the node-numbering scheme mentioned above.

Example

Consider the sample network in Figure 47,
 All shaded nodes, which are either origins or destinations, are numbered from 1 to 6,

which are smaller than IDs of all other intermediate nodes (nodes 11 through 13).

 The user may also be renumbered TAZs in many different ways (see below) as long

as the required numbering scheme is satisfied.

 The O-D structure (see Table 1) must be consistent with node IDs defined by the

user.

2 4 11

3

13

12

1

6

5

2 6 11

1

13

12

5

3

4
Figure 47 Example Network

Remark: gap in the sequence of node IDs for TAZs should be avoided as much as
possible.

 53

	11_AppII_Manual.pdf
	 Introduction
	How to Use this Manual?
	 Installing Visual PFE – TD
	 Graphical User Interfaces
	Multiple Document Interface
	The Main Window
	Main Menu
	 Toolbar

	Algorithm and Parameter Input Windows
	 Create Shapefiles and Tables Window
	Network Map Window
	 Identify Features Window
	 Label Features Window
	 Class Map Window
	Bar Chart Window

	 Scatter Plot Window
	Link SP to Map

	 OD Table Window
	 OD Color Window
	 Reduced OD Table View
	Link OD Table to Map
	Save an OD Table as Excel File

	Path Table Window
	Display Paths

	Report Window
	 Creating and Editing Text Files

	Scenario Comparison Window
	Windows Help

	 Technical Specification
	 LPFE
	The ArcViewShapefile Read/Write OCX
	 The Shapefiles of the Network Map and Scatter Plot Windows
	ESRI MapObjects
	 FarPoint Spread

	12_AppIII_Tutorial.pdf
	 A Quick Start Tutorial
	Example 1: Estimate OD Tables for a Particular Network
	How to Run a PFE Estimation
	 What are the Static PFE Estimation Parameters?
	What are the PFE Return Codes?

	 Example 2: Navigate through the Network Map and Scatter Plot Windows
	How to Make a Window Active
	How to Make a Layer Active
	How to Make a Layer Invisible
	How to Increase the Legend Width
	How to Navigate through the Network Map (Zoom In, Zoom Out, Pan, Full Scale, and Identify Features)
	How to Navigate through the Scatter Plot Window (Display Link)
	How to Clear Track Lines

	 Example 3 Feature Postings
	How to Label Features of a Layer
	How to Clear Labels
	How to Create a Class Map
	How to Clear a Class Map
	How to Create a Bar Chart Map
	How to Clear a Class Map

	 Example 3 Manage OD Tables
	How to Open an OD Table
	How to Enlarge the OD Table View
	How to Reduce the OD Table View
	How to Adjust the Colors of the OD Cells
	How to Display Desire Lines via the OD Table
	How to Clear the Desire Lines
	How to Save an OD Table as Excel File

	Example 5 Visualize Paths
	How to Open a Path Table
	How to Display Paths
	How to Clear the Paths

	 Example 6 View Report and Text Files
	How to Open a Report Window
	How to View and Edit Text Files
	How to Create New Text Files

	 Example 7 Edit Networks
	How to Edit Network Attributes

	 Example 8 Compare Scenarios
	How to Compare Previously Estimated Results

	Example Create PFE Networks
	What Data are Required to Create PFE Networks?
	How to Prepare the Input dBase Data
	How to Create a PFE Network
	 What are the PFE Input Data Files?

	Description of a Sample Network
	Node and Link Numbering Scheme

