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Abstract

Novices often experience great difficulty learning new
domains. Thus, understanding how best to scaffold
novice problem solving has potentially tremendous im-
portance for learning in formal domains. In this pa-
per, we present results from an experimental study that
compared learning outcomes of students solving intro-
ductory programming problems in three different learn-
ing environments. This range of environments varies in
two ways. First, the notations used in the environments
vary between diagrammatic and textual. More impor-
tantly, the environments differ in the cognitive activities
students are led to perform while solving problems, such
as prediction of intermediate results and noting future
goals to achieve. This experiment demonstrated that
environments that scaffold more of the important cogni-
tive activities lead to superior performance, regardless of
whether the environments are textual or diagrammatic.

Introduction

Although learning by doing is generally viewed as supe-
rior to more passive learning situations, learning by solv-
ing problems can also give novices significant difficulties.
This has led a great deal of cognitive science research
to focus on methods for scaffolding novices in their at-
tempts to master new knowledge. To create effective
learning environments, designers must focus upon the
strategies novices use during problem solving. Students
might learn simple procedures from instruction, but this
knowledge is often fragile (Merrill & Reiser, 1993). Ide-
ally, students need to have more than rote procedures
for solving problems — they need to have a causal un-
derstanding of why particular sequences of actions are
effective (cf., Ohlsson & Rees, 1991).

Merrill and Reiser (1993) developed a theory of prob-
lem solving and learning that described understanding
in a domain in terms of the process in the world that
captures the structure and causality of a domain. Mas-
tery of the process in the world enables novices to ex-
plain why some event took place. To be most effective,
students must envision and reason about the situations
represented in a problem rather than simply attempt to
construct a sequence of actions that produces an answer.
For example, arithmetic word problems may require rea-
soning about the connections between the mathematical
relationships and real world situations (Fuson & Willis,
1988). This type of understanding allows students to
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Table 1: The principles embodied in reasoning-congruent
learning environments

e Render invisible behavior visible.
— Make students’ own reasoning explicit by having them
make predictions of behavior,
— Render behavior visible by allowing student to access
normally invisible states.

e Support incremental planning and use of environment as
note pad.

— Minimize the translation process from the students’ in-
ternal plans to the external representation of the solu-
tion.

— Have the structure of a partial solution remind the stu-
dents of where they are in their solution plan and the
search space of the domain.

— Allow students to focus on subproblems on the way to
solving the entire problem, thereby avoiding premature
commitment and exploiting independence of subgoals.

e Lead students to engage in more effective strategies.

— Proactively guide problem solving by encouraging stu-
dents to use a more profitable set of tools for solving
problems.

constrain their problem solving search to reconstruct
procedures when they are forgotten or confused and re-
cover from errors more readily (Payne, 1988).

Processes in the world are hard to acquire be-
cause they are often invisible or incompletely accessi-
ble (Collins, 1990). Mastery of the process in the world
arises from cognitive activities novices perform to ren-
der it visible and to elaborate causes and effects. These
activities might include prediction and explanation of fu-
ture states (cf., Chi, Bassok, Lewis, Reimann, & Glaser,
1989), notation of future problem solving goals (cf., Sin-
gley, 1990), and connecting the formal notations with
the situation in the world the problem embodies (Fu-
son & Willis, 1988; Nathan, Kintsch, & Young, 1992;
White, 1993). The use of such appropriate strategies,
called solution processes enables students to acquire the
necessary mastery of the process in the world (Merrill &
Reiser, 1993).

Merrill and Reiser (1993) argued that problem solving
environments called reasoning-congruent learning envi-
ronments can support novices acquiring effective solu-
tion strategies and support their access to and under-



standing of the process in the world. Merrill and Reiser
(1993) presented six pedagogical goals of reasoning-
congruent learning environments (see Table 1), and dis-
cussed several environments that exhibit one or more of
these principles. Most of these environments are graph-
ical in nature, such as a graphical geometric proof di-
agram (Koedinger & Anderson, 1993), a diagrammatic
system for categorizing arithmetic word problems (Fu-
son & Willis, 1988), and a graphical LISP programming
tutor (Reiser, Kimberg, Lovett, & Ranney, 1992). This
might lead one to wonder if any beneSts of reasoning-
congruent learning environments are simply due to the
graphical nature of the external representation used by
students. Indeed, some of our principles are more effec-
tively achieved using properties of graphical notations,
such as spatial organization of the workspace. In fact,
many designers of learning environments and other com-
puter systems have assumed that graphical user inter-
faces make learning easier for novices. However, careful
examinations of the outcomes of various graphical rep-
resentations such as flowcharts for programming (Shnei-
derman, 1980) or data flow languages for logic (Green,
Bellamy, & Parker, 1987; Green, Petre, & Bellamy, 1991)
have found that graphics per se does not lead to higher
performance on various tasks including comprehension
or creation of objects. In our view, a graphical repre-
sentation is not of itself sufficient to create a more effec-
tive learning environment. Instead, the critical issue is
structuring the interactions to provide the guidance and
support for the cognitive activities effective for problem
solving in the domain.

In this paper, we describe an experiment designed
to test the effectiveness of learning environments based
upon the reasoning-congruence principles. We exam-
ine novices learning to program in LISP from one of
three environments that differ in the degree to which
they achieve the principles of reasoning-congruent learn-
ing environments. We will also attempt to disentangle
some of the benefits of reasoning-congruence from the
issue of graphical versus text-based representations. We
expect environments that are more effective in imple-
menting the principles of reasoning-congruent learning
environments to help students more easily master the
target domain, independent of whether the interface is
graphical or text-based. In the next three sections, we
describe the learning environments used in this study.

Description of the GIL environment

GIL (Graphical Instruction in LISP) is an interactive
learning environment that helps students learn program-
ming using a diagrammatic representation designed ac-
cording to the principles of reasoning-congruent learn-
ing environments (Reiser et al., 1992). The first section
of the GIL curriculum concerns basic list manipulation
functions. It is important to lead students to focus on
the behavior of each individual operator in a solution, so
they can understand how each operator contributes to
the final outcome (Merrill & Reiser, 1993). One useful
way of focusing students’ attention upon solution opera-
tors is to encourage them to make predictions of the op-
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erator's expected behavior, thereby highlighting knowl-
edge gaps when a prediction is incorrect. In the interme-
diate products curriculum in GIL, we require students to
make predictions of the input and output values of each
step in a solution. Upon request, GIL tests these infer-
ences. Students can ask GIL to apply their partial or
complete solution to the input data. GIL evaluates the
student’s solution graphically, highlighting each function
as it is examined, darkening each link as the data passes
along it to the next function, and indicating any errors
found.

The next phase of the GIL curriculum introduces vari-
ables in addition to arithmetic functions, logical func-
tions, and predicates. Students now build solutions using
variables that can take a variety of different values in-
stead of working with specific data values. Students still
build reasoning chains connecting functions to achieve
some output, but students do not record intermediate
values while constructing the solution. The important
predictions of expected behavior now occur whenever
students test a program. When a student tests a pro-
gram, GIL asks for a value for each variable, and then
asks the student to predict the solution's output with
those inputs. After the test is completed, GIL reminds
the student of the prediction, thereby facilitating expla-
nation of incorrect predictions, and allows students ac-
cess to intermediate states via a virtual probe that can
inspect values input to or output from any function.

The next portion of the GIL curriculum concerns con-
ditional processing, performing different actions depend-
ing upon the values of tests. In traditional LISP, these
tests and actions are indicated by ordering within paren-
theses. In GIL they are indicated by test and action
boxes into which students build programs just as they
did in the variables portion of the curriculum.

GIL’s notation, shown in Figure la, is designed to
achieve all six principles of reasoning-congruent learn-
ing environments. We predict that this will lead GIL
students to better understand the behavior of objects
in the domain, and thus exhibit better problem solving
than other environments that do not achieve the princi-
ples as completely.

Description of the SE environment

In contrast to GIL’s graphical notation and the prob-
lem solving behaviors centered around the use of this
notation, the second learning environment, SE (Struc-
tured Editor) uses the traditional text form of the lan-
guage (Figure 1b). One of the major difficulties students
face in learning to program concerns the need to focus
on the syntax of expressions while trying to plan a so-
lution. SE, like other syntax-directed editors, scaffolds
some of the syntactic operations that are difficult for
novices. In SE, students construct solutions by selecting
functions, variables, or constants from a menu. SE con-
strains students to place functions and variables only in
legal locations, providing cues to those locations as stu-
dents drag the cursor across components of the program.
SE also requires students to place the right parenthesis
of a function call in a legal location, thus preventing un-
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Figure 1: Examples of a problem in all three learning environments used in the study. (a) A test of a GIL solution,
with a prediction and a use of the probe (on the right side). (b) A student working on the same problem in VSE,
testing a solution. Already evaluated portions of the solution are darkened, and the current expression is boxed. (c)

A completed solution from SE.

balanced parentheses. Functions and their arguments
are not treated as a sequence of characters, but rather
as unitary objects. Students can perform any editing
operation upon an individual function or a function plus
its arguments with a single key click, rather than op-
erating on individual characters. SE also automatically
redisplays the students’ solutions using indentation to re-
flect the current structure, a technique known as pretty
printing. Finally, SE was designed to allow students to
work outside-in (placing new functions as arguments to
current functions) or inside-out (wrapping new functions
around current functions) as desired.

SE also allows students to test their solutions. Since
SE students use variables throughout the curriculum,
they enter values for each variable, as described in the
GIL section above. Then SE provides the final output
of the program. Note that SE students are not required
to predict the outcomes of the test, which may result in
SE students not doing so spontaneously, and thus having
more difficulty identifying errors in the solution.

SE is designed to achieve two of the six principles
of reasoning-congruent learning environments. First, it
minimizes the translation between the way students plan
their solutions and how they can be expressed by mini-
mizing the need to focus on syntactic details of a plan’s
implementation. It also provides some support for stu-
dents to work on subproblems independently. Indeed,
in earlier pilot work we found that SE enabled students
to learn LISP more easily than a traditional program-
ming text editor. However, GIL is designed to imple-
ment more of the reasoning-congruent principles than
SE, and in fact we believe GIL is even more effective on
the two principles also present in SE, minimizing trans-
lation from plans to solutions and enabling work on sub-
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problems. Thus, we expect that GIL students will mas-
ter the curriculum with more understanding, and SE stu-
dents will exhibit more difficulty planning their solutions
and recovering from errors.

Description of the VSE environment

The third condition, VSE (Visual Structured Editor)
is a modified version of SE that is designed to achieve
more of the principles of reasoning-congruence than SE,
and was designed to investigate the extent to which we
could construct a reasoning-congruent learning environ-
ment within a text-based environment. Any learning
advantages for students using VSE over students using
SE must be due to the principles of reasoning-congruent
learning environments that VSE achieves, and not from
any differences in graphical and text notations.

VSE, like GIL, is designed to allow students access to
invisible behavior and intermediate states. This princi-
ple is exhibited in the central contrast between the be-
havior of VSE and SE during students’ tests of their
programs. Like GIL, VSE asks students to predict the
outcome of each test (Figure 1c¢). VSE displays the path
of execution of a program during a test, by flashing and
then highlighting each function as it is processed. This
allows students to follow the order of evaluation. Fur-
ther, students can probe the data passed from function
to function, thereby rendering the solution’s invisible be-
havior visible.

VSE is designed to achieve five of the six principles as
completely as we could implement them in a text-based
system. VSE students make predictions, have access to
invisible states, lessened translation loads, the ability to
work on subproblems, and are led to engage in useful ac-



tivities such as prediction of outcomes. However, as sug-
gested earlier, we believe some principles of reasoning-
congruent learning environments can be more effectively
achieved using the spatial layout of a graphical repre-
sentation. Therefore, we expect the performance of VSE
students to be between SE and GIL.

In summary, this experiment compares three environ-
ments that differ in how effectively they achieve the prin-
ciples of reasoning-congruent learning environments. As
an environment more completely attains these principles,
it should lead students to attain the understanding of
the process in the world that needs to underlie students’
procedures.

Method

Subjects. Thirty Northwestern University undergrad-
uates (eight men and 22 women) took part in this study.
All subjects had less than one college course of pro-
gramming experience. Subjects were recruited through
campus advertisements and paid $5 per hour. Subjects
were randomly assigned to a learning environment so as
to balance approximately Math SAT across conditions.
Mean Math SATs were 623, 639, and 618 for SE, VSE,
and GIL subjects respectively.

Materials. Subjects solved 22 problems divided into
three sessions, covering the topics of list manipulation,
logical functions, predicates, and conditional processing.
The textbooks used in the three sessions amounted to
roughly 50 pages of text, and were written in the no-
tation (diagrammatic or textual) students used to solve
problems. A pen-and-paper posttest contained four pro-
gram construction problems, similar in difficulty to those
in the learning sessions, and two debugging problems
requiring students to determine whether a given pro-
gram behaved correctly and, if not, to give an example
of input data for which the program would behave in-
correctly. The posttest used the notation the students
had used during problem solving. Finally, following the
first and third sessions students completed an evalua-
tion questionnaire to assess their attitudes toward the
domain and their performance (Reiser, Copen, Ranney,
Hamid, & Kimberg, 1994).

Procedure. The three sessions of the experiment were
spread over three to nine days, with no more than two
days elapsing between sessions. Students worked inde-
pendently in a cubicle with a computer. Students first
read the initial portion of the textbook introducing LISP
functions. After reading the first brief section, the ex-
perimenter demonstrated the learning environment for
that condition. Students then continued solving prob-
lem sets interspersed with sections of the textbook. Stu-
dents were free to take as long as they wished to solve the
problems, but were required to work on each problem un-
til the solution was correct. The learning environments
recorded every student action and the time at which it
took place, creating a behavioral protocol of all student
problem solving events.
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Results and Discussion

In this section, we address whether learning environ-
ments that conform to the principles of reasoning-
congruent learning environments did in fact facilitate
their students’ problem solving, by analyzing a variety
of measures taken during the learning sessions that in-
dicate difficulty students experienced while solving the
problems. Recall that the three learning environments,
SE, VSE, and GIL, are ordered according to the de-
gree to which the environment achieves the principles
of reasoning-congruent learning environments. We pre-
dict that as the degree of reasoning-congruence increases,
student pedagogical outcomes will improve. To test this
prediction, we employed a linear planned comparison
that tested an increase in effectiveness of problem solv-
ing ordered from SE to VSE to GIL. The central problem
solving measures are summarized in Table 2.

First we considered the time required for students to
complete the problems during the learning phase, called
solution time. This is a rough measure of the amount of
difficulty students had with the problems. As expected,
as the environments increased in reasoning-congruence,
students required less time to complete all problems.
Also, notice that this difference heavily underestimates
the differences between conditions, because tests in GIL
and VSE, with their required predictions and graphics
routines, took much longer than tests in SE.

Another measure of problem solving difficulty is the
number of program elements deleted, because the deleted
elements represent incorrect or unneeded portions of a
solution that had to be removed. Again, as the en-
vironments increased in reasoning-congruence, subjects
required fewer deletes, indicating more focused problem
solving as a result of the reasoning-congruence of the
environment.

One potential concern in evaluating the delete data is
that it is possible in SE and VSE to delete multiple ob-
jects at once (by deleting a function and its arguments),
while in GIL students must separately delete each ob-
ject they wish to remove. Thus, perhaps the reasoning-
congruence effect in number of deletes arises solely be-
cause it was easier to delete large amounts of the code
in SE and VSE than to try to edit what was already on
the screen. If so, then more deletes may indicate dif-
ferences in editing styles rather than differences in the
number of program components that required removal.
To address this, we counted the times that students be-
gan deleting new things, regardless of how many objects
were ultimately deleted in each sequence of deletes. We
defined these delete episodes as one or more contiguous
steps consisting of deletions of objects in the solution.
Students who experienced more difficulty should exhibit
more times during the problems in which they need to
delete part of their programs. As expected, as the en-
vironments increased in reasoning-congruence, students
exhibited fewer episodes in which they deleted parts of
their programs.

Next we considered submitted answers during the ac-
quisition session and the posttest. Again, we found
decreasing problem solving difficulty with increasing



Table 2: Mean Values for the Problem Solving Measures on the Acquisition Session, Posttest, and Evaluation

Questionnaire
Problem Solving Measure  SE
Solution Time (min) 247
Objects Deleted 189
Delete Episodes 99
Submissions Per Problem 4
Errors on Posttest 13

reasoning-congruence of the environment, as measured
by the number of incorrect answers submitted during
the learning session. Although there were many behav-
ioral differences between the three conditions, there were
no significant posttest differences, measured by the min-
imum number of edits required to repair each answer.
Anderson (1983) argued that domain mastery arises out
of solving problems correctly. Since all students in this
study solved all problems correctly, it is not unexpected
that there were no posttest differences. However, the
behavioral differences showed that as students’ environ-
ments became progressively more reasoning-congruent,
they experienced less difficulty attaining an equivalent
level of mastery.

Taken together, these results indicate that the
reasoning-congruence of the environment facilitated stu-
dents’ problem solving. Indeed, even overall solution
time decreased with reasoning-congruence, despite the
more time-consuming nature of the procedure for testing
programs (e.g., specifying predictions, slower graphical
display of the program'’s evaluation). Apparently this is
time worth investing, because it leads to more focused
debugging, as evidenced by the need to repair less of
the programs and fewer incorrect programs submitted
as answers.

Conclusions

These results demonstrate that environments that are
more reasoning-congruent allow students to attain equiv-
alent domain mastery with a large reduction in problem
solving effort. The reduction in problem solving effort
is due to the reasoning-congruent learning environment
students’ mastery of the process in the world — the
understanding of the domain that underlies their pro-
cedures for solving the problems. Reasoning-congruent
learning environments scaffold students’ solution pro-
cesses to enable them to attain this conceptual under-
standing, whereas traditional environments may result
in fragile rote procedures that do not lead to as success-
ful outcomes.
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