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ABSTRACT OF THE DISSERTATION 

 

Modelling and Optimization of Smart Mobility Systems 

with Agent Envy as a Paradigm for Fairness and Behavior 

 
By 

 
Daisik Danny Nam 

 
Doctor of Philosophy in Civil Engineering 

 
University of California, Irvine, 2018 

 
Professor R. Jayakrishnan, Chair 

 

Smart Urban Mobility in the future demands a paradigm shift. Transportation supply needs 

to be designed to incorporate individual-level preferences in an era of readily-available 

information about other users and network performance. It is, therefore, reasonable to 

expect that an individual would have information to compare his/her transportation 

allocation with other users. For individuals having the same goal (e.g., the shortest path to 

the destination from the same departure location and time), the peer to peer comparison 

may induce ‘envy’ if the user perceives his/her assigned travel option to be worse than that 

of his/her peers. 

 

In turn, a user may adjust his/her travel options until he/she does not feel envy. This concept 

is an extension of the well-known travel behavior assumption called “User Equilibrium”. 

Existing behavior models, however, do not allow users to compare their allocations with 
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others on an individual basis. Furthermore, it is assumed that users have perfect information 

about their own alternative and all users are homogeneous.  A smart mobility system of the 

future may also include users who are not human but machines such as logistics, an 

autonomous vehicle that may have programmed behavior, and thus they too can be 

considered “agents” in our analysis. 

 

This dissertation is dedicated to modeling a smart mobility system which accounts for 

individual level of allocation. Mobility systems that include connected, autonomous, and 

subscribed components to various extents will all qualify as smart systems in this context.  

More specifically, we focus on the optimization of the allocation problem to achieve both 

system-wide efficiency and minimum envy among individuals. We consider envy to be an 

important allocation aspect in the transportation system. Maximizing the efficiency of a 

system necessarily brings about some level of unfairness where some users (or agents) are 

allocated to inferior alternatives. When agents having superior alternatives can compensate 

the envy of groups having inferior alternatives, an envy-free state can be achieved—which 

can be shown to be Pareto efficient state. Using a combination of pricing and incentives, we 

propose an optimization model to arrive at this new equilibrium. 

 

This research has significant contributions in that the proposed model provides a framework 

to combine system-wide objectives with individual users’ utility objectives. Furthermore, we 

consider user heterogeneity, which has not been researched in the general area of 

transportation assignment. The proposed optimization model can be applied to pricing 
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strategies both for commercial and public agencies, who have real-time information about 

customer characteristics and system performance. 

 

Numerical results from running our optimization on both illustrative and real networks 

show that the proposed model converges to both envy-free and system optimum states with 

appropriate allocation and pricing schemes. Our findings show that the proposed smart 

mobility system technically works efficiently without governmental subsidy since the 

budget-balance mechanism trades off credits among users. In addition, the level of user 

heterogeneity affects the amount of credits charged or disbursed. 

 

 

Two roads diverged in a wood, and I—  

I took the one less traveled by,  

And that has made all the difference.  

 
 

Robert Frost: The Road Not Taken 

 

https://en.wikipedia.org/wiki/Robert_Frost
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Chapter 1 

1.1 Introduction 

In the most basic terms, traffic can be understood as the result of the complex interplay 

between transportation supply (roads) and transportation demand (people’s desire to 

travel). Transportation supply is distinctive in that it is a static service that cannot be stocked 

or transferred in the spatial and temporal dimensions, whereas travel demand is dynamic 

and takes place over space and time. In popular areas, demands are so high that 

infrastructure cannot service all of the demand, while in other areas, many streets and 

freeways lie underutilized. This imbalance occurs because travelers on the road remain 

isolated from their environment and are only capable of estimating their individual, short-

term benefits of transportation (quite inaccurately at times, though it only degrades the 

system further). 

 

Since there are physical limitations to the supply of infrastructure that can be added to the 

transportation system, our vision is of a smart and dynamic city mobility system that is able 

to respond to travel demands and more evenly distribute it over space and time. The 

engineering and scientific community has been building vital advancements—such as 

Autonomous and Connected vehicles that interact with the Internet of Things—that have 

been crucial in making this vision a reality. 
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Connected and Autonomous Vehicles (CAVs) can mitigate traffic congestion to some extent 

by increasing effective road capacity by virtue of lowering reaction time and other operating 

characteristics. However, congestion is still expected to be a pervasive problem in the future 

if we rely only upon improved vehicle performance. Even more exciting changes are to come 

that can tackle ever-increasing traffic congestion, for which we must look beyond improved 

vehicle performance. 

 

Figure 1.1 Driverless Car of the Future 

Source: An advertisement for “America’s Electric Light and Power Companies,” Saturday Evening Post, 
the 1950s. Credit: The Everett Collection. Referred to: Marc Weber (2014), Computer Science Museum 
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We are inspired by the vintage advertisements for cars in Figure 1, that appeared in 

magazines in the 1950s—a period that is rightly called the Golden Age of American Futurism. 

This advertisement gives us a hint to solve the imbalance of traffic demand. It is not just that 

the family is traveling in an autonomous car; they are also engaging in leisurely activities. It 

suggests to us that they may not be sensitive to their travel times if other factors are in play. 

Perhaps some travelers could yield their shortest path to others if they are compensated 

adequately. The remainder of this chapter explores current efforts to manage demand, builds 

this idea in more depth, and envisions how future transportation systems will efficiently 

control demand patterns. 

 

1.2 Transportation as a Smart Mobility 

Transportation supply has the characteristic that it is shared by users. Transportation supply 

(i.e. roads) publicly provides services to individuals, which broadly can be regarded as 

shared mobility where we all have rights to utilize and responsibilities to maintain. 

 

CAV research focuses on various strategies for such vehicle control as platooning, incident 

signal propagation, signal auction, and variable speed limits. The underlying assumption 

here is that vehicles can exchange information with each other and collaborate with each 

other to achieve certain goals. Here, we extend the potential of CAVs to vehicle routing 

strategies. By exchanging travel information within a peer-to-peer communication protocol, 

vehicles can decide their route and cooperate for a better transportation system (e.g., lower 

emissions), which we define a smart mobility as a smart usage of shared mobility. 
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1.3 A Collaborative Mobility System  

A major cause of congestion is the ‘selfish’ travel behavior of individual drivers. This travel 

behavior has been codified in the form of Wardrop’s 1st Principle, which states that drivers 

continue to minimize their travel time until it cannot be further improved, and thus the travel 

times of all used routes are eventually equal. This condition is called User Equilibrium (UE), 

which corresponds to the Nash Equilibrium in Game Theory. This selfish behavior 

aggravates traffic conditions even if additional infrastructure facilities in the form of new 

lanes are provided, since travelers want to use the newly developed shortest route. To 

complicate matters further, even if we increase capacity to accommodate growing demand, 

there will always be new induced demand. Therefore, to achieve the optimal conditions for 

the system, demand patterns should be more evenly distributed over the available supply. 

However, until the advent of connected and automated vehicles, the only way to do so was 

by means of congestion pricing, which is problematic for various reasons. 

 

Traditionally, solving transportation problems has been regarded as a responsibility of the 

government. However, in the future, the private sector and individuals can also contribute 

to even distribution of traffic congestion. Businesses have an incentive to attract vehicles 

passing by their stores. Let us consider a simple situation of a traveler who has ample time 

to arrive at her destination. The revealed preference of the driver indicates that she tends to 

stop by Starbucks to grab a coffee during longer trips. When a certain part of her route starts 

to get congested, the incentive mechanism could possibly suggest an alternative route which 
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may be just a little longer but also comes with a reward in the form of a Starbucks gift card 

or credit. 

 

1.4 Envy: A Possible Behavior Paradigm for P2P Comparisons in the Future 

Connected and Autonomous Vehicle technology is expected to transform the notion of urban 

transportation systems from simple concrete, steel, and asphalt into a much smarter, 

interactive digital information-based system (Glancy 2013). Wireless communication 

technologies enhance transportation connectivity and allow dynamic data exchange using a 

broad range of advanced systems, which enables transportation systems to be cooperative 

systems (Mike Pina 2012). 

 

Connected systems with open communication will also open up new possibilities for travel. 

One possibility for more extensive use of real-time information is the development of peer-

to-peer (P2P) communication among travelers, which introduce new opportunities of smart 

and collaborative consumption of transportation supply for better efficiency. Interconnected 

travelers can communicate their route decisions to others. Within this peer-to-peer 

communication framework, a real-time demand control system can encourage travelers to 

participate in a collaborative mobility system. Travelers with a greater sense of urgency or a 

high value of time will be willing to pay some amount of money for a faster travel option. 

Unlike current marginal cost pricing strategies, a collaborative mobility system will 

distribute the money obtained from faster route allocations to travelers who are willing to 

yield their priority to others. We can envision several other innovative applications in the 
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context of CAV (Connected and Automated Vehicles) when travelers exchange information 

across the system. In the past, complex negotiations between human drivers were not 

possible due to safety reasons, but in a CAV environment, such ad-hoc collaborative 

negotiations are possible, and even necessary (for example, in disaster routing scenarios or 

in cases of medical emergencies). Furthermore, the autonomous vehicle can communicate 

with other connected vehicles on the road requesting them to yield their route.  

 

Cities of the future necessitate a paradigm shift with the emerging and rapidly changing 

landscape of autonomous vehicles, subscription-based mobility services, connected vehicle 

technologies, and systems integration in the planning of transportation systems. System 

modeling is a necessary tool to study various policy alternatives, due to the complexities of 

such future cities. Unlike traditional top-down approaches for the transportation planning 

process, current and future transportation systems require more detailed and individual 

level of understanding of the various entities that interact with one another in ways that may 

or may not be collaborative. We propose to develop a comprehensive agent-based 

framework for system modeling that is applicable for several smart city contexts of relevance 

with their own associated networks, demand-generation modules, supply-side details, 

business models, vehicles, goods and travelers that encompass the full spectrum of mobility. 

Associated research projects can then study specific topics, such as for example: no rush 

shipping in Logistics, the effects of ride-sharing systems or autonomous vehicles on the 

transit systems, or the system-wide effects of user-side subscription services from 

Transportation Network Companies (TNCs). 
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This research takes a rather broader view of the word “behavior” which is in the title of the 

dissertation.  In decades of past research in the transportation domain, behavior was 

intrinsically considered the response of individuals to the supply and demand conditions 

they experience, rather invariably in an uncontrolled way, or at least not with explicitly 

understood control. On the other hand, as all drivers who have been using navigation 

systems for a decade or more around the world know, their “behavior” in route choice has 

largely become subservient to what the navigation systems show.  In a similar manner, in 

future smart mobility systems, the behavior of users may become increasingly controlled by 

the data availability and the dissemination of information.   

 

It is also possible that the overabundance of data and information may make it humanly 

impossible to analyze and respond to, with native “behavior”.  This leads to the conclusion 

that behavior may become increasingly dependent on what is programmed in the system 

than what is natively the response of the users.  Of course, when the user is a machine, such 

as an autonomous vehicle that is moving without even a traveler controlling it, then the 

behavior is fully a programmed behavior.  In such systems, what paradigm should be used 

for ensuring at least some notions of fairness and societal acceptance?  This research delves 

into such issues and develops a framework of analysis that uses plausible concepts such as 

based on agent envy that are applicable to the smart mobility systems of the future.        
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Chapter 2 

2.1 Efficient Transportation Supply Allocations and envy of users  

A major cause of congestion is the ‘selfish’ travel behavior of individual drivers. This travel 

behavior has been codified in the form of Wardrop’s 1st principle, which states that drivers 

continue to minimize their travel time until it cannot be further improved—thus the travel 

times of all used routes are equal. This equilibrium condition is called User Equilibrium (UE), 

which is also known as Nash Equilibrium. 

 

This selfish behavior aggravates traffic conditions even if additional infrastructure facilities 

in the form of new lanes are provided since travelers want to use the newly developed 

shortest route. To achieve the system optimal condition, demands should be well distributed 

over the available supply. Boyce and Xiong (2004) present graphical examples of how 

drivers are dispersed in a system optimal (SO) state. In the SO condition, dispersing vehicles 

on a network minimizes total travel time of the transportation system. The SO assignment 

inherently lacks desirable equity property because travel time differences among SO routes. 

Although the SO assignment improves the overall social welfare, the travel times among the 

routes in the SO pattern are different. This implies that some guided drivers experience 

unfairness (Roughgarden 2002). 

 

Research in engineering, economics, and even human psychology, is arriving at the 

conclusion that pricing schemes hold the key to change the selfish behavior of drivers and 
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improve efficiencies of transportation system. It is likely that monetary tolls or incentives 

are quite effective in changing drivers’ behavior. Furthermore, recent studies show that 

social and psychological incentives could be used as a substitute for financial rewards. This 

section reviews current research efforts to achieve the SO condition. 

  

2.2 Existing Pricing Schemes for Efficient Allocation of Transportation Supplies  

Various theories have been proposed in the past to achieve system optimum condition—

road pricing theory being a prominent example. This theory finds the optimum condition by 

implementing marginal travel costs, which enables policy makers to collect congestion tolls. 

The amount of toll is the difference between marginal and average travel times (Beckmann, 

McGuire, and Winsten 1956; Small 1992; Dial 1999; L. N. Liu and McDonald 1998; Burris 

2003) . Since 1995, the number of toll roads has been increasing. However, a significant 

proportion of newly constructed toll roads has failed to attract the expected number of 

drivers (Zhou et al. 2009). Furthermore, unfairness is also a primary concern since drivers 

stick to their ‘right’ to free travel on urban roads (Arnott, Palma, and Lindsey 1994), making 

congestion pricing policies politically difficult to implement in cities around the world (H. 

Yang and Zhang 2003; Ben-elia and Ettema 2009; H. Yang and Wang 2011; Y. M. Nie 2012).  

 

Many ideas have been proposed as alternatives for congestion tolls. Yang and Wang (2011) 

devise and mathematically analyze a tradable credit scheme. Their scheme has the following 

features:  

1) Some amount of credit is initially allocated to participants.  
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2) Then, the credit is given to participants who drive congested roads when they contribute 

to improving road efficiency by avoiding the (predefined) congested roads. 

3) Participants can trade this credit in a competitive market. 

 

By assuming all travelers are participants, . Yang and Wang (2011) conclude that the tradable 

credit scheme can guide traffic to have a social optimum pattern. Nie (2012) examines Yang 

and Wang’s tradable credit scheme and focuses on how transaction cost affects the tradable 

mobility credits in both an auction market and a negotiated market. By realizing the fact that 

a tradable credit scheme is more controversial as an infringement of personal freedom than 

congestion toll, Nie (2012) examines how the government offers a proper price including 

transaction cost. The Braess’s Paradox network shown in Figure 2.1 is used to illustrate their 

numerical results. The amount of total credits is calculated by measuring the travel time 

difference between each route. We can find that the toll of each link is determined by the 

difference between travel time of the longest route and the travel time of the current route 

as shown in Table 2.1. The paper designs two types of trading markets. The first being an 

auction market, where each driver purchases credits in the trading market. In contrast, the 

government initially distributes total credits to drivers in the negotiated market. 
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Figure 2. 1 The revised Braess network proposed by Nie (2002) 

Table 2. 1 Initial allocation of credits and link tolls (Nie, 2002) 

 UE solution  SO solution 

Path Flow Time 
Total 
Cost 

Toll  Flow Time 
Total 
Cost 

Toll 
Total 
Toll 

1 0.00 68.57 0.00 0.00  1.79 64.50 115.56 14.50 25.98 

2 3.71 62.29 231.35 0.00  0.75 44.50 33.38 34.50 25.88 

3 2.29 62.29 142.37 0.00  3.46 54.50 188.48 24.50 84.73 

4 0.00 80.00 0.00 0.00  0.00 80.00 0.00 0.00 0.00 

Total 6  373.71   6  337.42  136.58 

Note: Tolls given in the last column are first-best marginal tolls. 

 

 

He et al. (2013) extend Nie (2012)’s research to the mixed user's condition where the 

participants are categorized into two groups: 1) individual travelers and 2) transportation 

firms, such as logistic companies and transit agencies. All of the participants receive an initial 

allocation of credits from the government. The amount of initial allocation is mathematically 

calculated by a mixed equilibrium assignment with system optimum approach. He et al. 

(2013) assume that individual drivers will follow the Wardrop’s 1st principle but users in a 
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transportation firm cooperate among themselves to minimize the firm’s total cost (Cournot-

Nash players). Nie and Yin (2013) and Nie (2015) apply the tradable mobility credit scheme 

to the departure time selection problem for managing rush hour traffic. Drivers not driving 

during the peak hour earn credits by contributing to congestion relief. Moreover, the 

participants driving during the peak hour need credits in order to drive. The participants 

who need more credits can purchase them in a trading market. Tradable credit scheme could 

be an alternative of congestion toll when the credits are reasonably allocated to the 

participants. However, initial allocation is another challenge (He et al. 2013). In addition, Nie 

(2012) pointed out that some people might be restricted to driving a credit-consuming road 

since they cannot purchase the credit with an affordable price. This might create another 

instance of unfairness, which should be carefully considered. 

 

In the past, route guidance and traffic information services have been designed to provide 

shortest route information to their users. However, there are recent studies about route 

guidance to improve the efficiency of transportation systems. Jahn, Mohring, and Schulz 

(2008) proposed a system-optimal routing model by considering unfairness of the routes in 

the system-optimum condition. They find that the system optimum path can sometimes 

result in unreasonably long paths as shown in Figure 2.2. By assuming that only a few drivers 

are willing to sacrifice their time, they suggest the constrained system optimum path where 

drivers are assigned only to “acceptable paths”. Their findings support an argument in Nie 

(2012)’s research that the amount of toll is based on the difference between the travel time 
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of the longest path and the current path. The longest path can be unreasonably longer than 

other routes, thus the total amount of toll increases significantly in a large network. 

 

Figure 2. 2 System optimum without and with restrictions on the length of a path 

Source: Jahn, Mohring, and Schulz (2008) 

 

Bosch et al. (2011) initially propose the concept of social navigation by assuming that some 

drivers could be altruistic. This navigation system provides route information considering 

both the personal preference and social cost. They assume that 40% of drivers select their 

route based on their expectation and 40% of drivers change their route dynamically, and 

20% of people can consider the social cost. The drivers, considering the social cost, change 

their route according to their level of altruism. Djavadian et al. (2014) examine how many 

drivers will follow the recommended guidance according to various factors such as driving 

experience, incentive, and information. They conducted a survey and found that as drivers 

become more familiar with the network, they do not follow the guidelines strictly. In 

addition, a small number of participants drive the longer route even if they do not receive 
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any compensation. As expected, they found that there is a high participation rate of social 

navigation when the drivers were well informed and well rewarded. 

 

Pan et al. (2012) propose proactive vehicle re-routing strategies. Recognizing that the 

system cannot force the drivers to select the longer path, they suggest several re-routing 

strategies to avoid congestion. Among them, the Entropy Balanced k Shortest Paths (EBkSP), 

which balance the traffic load with multiple paths, could meaningfully improve the overall 

congestions. R. Liu et al. (2014) employ Pan et al. (2012)’s EBkSP to develop a participatory 

navigation system, which is called “Themis”. Themis predicts future traffic flow and speed. 

This information is used to make people drive less popular routes by showing a score. The 

score is calculated by considering the average estimated time of arrival and popularity of a 

route. According to the authors, however, the intuitive meaning of the score is hard for the 

drivers to understand. 

 

Many researchers conceptually give their opinion that providing incentives will contribute 

to changing travelers’ behavior.(E. T. Verhoef, Nijkamp, and Rietveld 1996; Roughgarden 

2002; Boyce and Xiong 2004; Jahn, Mohring, and Schulz 2008; Zhou et al. 2009; Ben-elia and 

Ettema 2009; Ben-Elia, Tillema, and Ettema 2010; Bosch et al. 2011; H. Yang and Wang 2011; 

Y. M. Nie and Yin 2013; Hu et al. 2014; Djavadian et al. 2014; Kumar 2015). The relationship 

between toll and incentive can be likened to the “Carrot or Stick” idiom. Findings in 

psychology literature such as Ben-elia and Ettema (2009) and Ben-Elia, Tillema, and Ettema 

(2010) show that an incentive scheme brings about better outcomes than punishment.  They 
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also showed that a reward scheme can be effectively used to manage travel demand from a 

survey test for “Spitsmijden (Dutch for peak avoidance)” in the Netherlands. They show that 

participants change their commuting schedule to avoid peak hour when they earn rewards. 

Ben-Elia, Tillema, and Ettema (2010) and Kumar (2015) analyze the behavioral changes 

from the “Yeti phone rewards”. Desirable behavior changes are not sustained when 

participants receive a “Yeti phone” which is the participants’ ultimate purpose. Thus, both 

studies show the impacts of incentives and insist that the incentive should be consistently 

provided since the desirable behavior changes from incentives do not persist when 

incentives are no longer provided.  

 

Chiu(2014)  proposes an active travel demand management system. This is the patent for 

the “Metropia” which is a company servicing a mobile app-based transportation information. 

The algorithm suggests several departure time windows to the users. The suggested 

departure time is to contribute to relieving traffic congestions by incentivizing the users to 

change to a non-congested travel time window. Once a user selects a desired traffic time 

window, the M-time-dependent minimal marginal cost path algorithm produces M routes. 

The incentive-offering algorithm may also leverage the user's preferences stored by the 

system. As their travel time decreases by choosing the suggested departure time window 

(i.e., the less congested times), greater incentives are rewarded to the users. Hu et al. (2014) 

apply Chiu’s active demand management platform, which is called “Smartrek”, to 36 

commuters in Los Angeles. Their incentive scheme changes 60% of participants travel 

behavior. They also found that the travelers who change their departure schedule with 
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following the suggested route save their travel time significantly by 20.12%. The travelers 

who only change their departure time reduce their travel time by 19.40%. The travelers who 

only follow the guided route save their travel time by approximately 10.0%.  

 

Zhou et al. (2009) point out that constructing more toll roads may not necessarily contribute 

to reducing overall road congestion, which was the main purpose of providing a new road in 

the first place. To promote toll road usages and to increase system efficiency, the authors 

propose an incentive strategy for truck drivers to make them drive toll roads when the toll 

roads are not fully utilized. 

 

The research mentioned above focuses on the effectiveness of monetary incentives. 

However, there are opposite findings that the financial form of incentive may not be effective 

to change the drivers’ behavior (See review of Riggs and Obispo (2015). In other words, 

social and psychological forces can replace the role of financial rewards and Riggs’s findings 

indicate that financial incentives are not always effective. Interestingly, Djavadian et al. 

(2014) examined the effectiveness of people’s social responsibility and incentive for “Social 

navigation”. From an experimental study, they found that various factors (altruism, 

familiarity with the current route, uncertainty associated with the social route, bounded 

rationality) affect the driver’s behavior changes following the guidance. 
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2.3 Illustrative Examples of Current Pricing schemes  

This section illustrates some existing pricing schemes and finds the possible pricing schemes 

that accommodate both tolls and incentives. Figure 2.3 is the hypothetical network for the 

different pricing cases, which is a simple transportation network with two routes connecting 

two nodes, each with their own travel characteristics and costs. The link performance 

function consists of a free-flow travel time and increased travel time according to the link 

flow. 

  

Figure 2. 3 A simple two routes network 

We can simply find the UE solution that the travel times of route a (ca) is identical to the 

travel times of route b (c𝑏). In addition, the SO solution can be found that both routes have 

the same marginal cost travel time (𝑀𝐶𝑎 = 𝑀𝐶𝑏). 

MCi = 𝑐𝑖(𝑥𝑖) + 𝑥i𝑐′(𝑥𝑖) (2.1) 

Figure 2.4 visually solves the UE and SO solution for the network. (Note that the path volume 

of route b is flipped in the graph.) As can be seen, the travel time of both routes in UE 

condition are equilibrated at 40 minutes (c𝑈𝐸). Its total travel time is 80,000. The total travel 

Route b

Route a

𝑐𝑎 =   +     𝑥𝑎
𝑐𝑏 =   +     𝑥𝑏

 = 𝑥𝑎 + 𝑥𝑏 =     
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time of the SO solution is 79,500 minutes, which is less than that of UE. However, there is a 

travel time difference between two routes. In the SO condition, the optimum travel time of 

route a (ca
∗) is 37 minutes. However, the other route has a longer travel time (cb

∗) at 42 

minutes. 

 

Figure 2. 4 Illustrative solutions for UE and SO 

Pigou (1920) and Knight (1924) introduce a marginal cost-based toll strategy, hereafter we 

call it first-best toll. The amount of toll is the second term of the marginal cost (Eq 2.2) 

𝜏𝑖 = 𝑥𝑖𝑐′(𝑥𝑖) (2.2) 

 

UE

SO= UE with marginal cost

𝜏𝑏 𝜏𝑎

𝑐𝑎
∗

𝑐𝑏
∗

𝑐𝑈𝐸

    e  
    e  
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Efficient transportation systems with various travel options can be achieved with pricing 

characteristics that are different. Examples with various routes with different travel times 

are shown in Table 2.1. For the SO condition, The first-best toll strategy charges tolls to both 

routes. The toll for Route 𝑎 is the equivalent amount of 27 mins and the toll of other route is 

22 minutes.  

Instead of charging tolls to all routes, the second-best toll strategy design a system that both 

tolled routes and untolled routes exist for equity reason, since it is generally acceptable to 

provide free routes to road users (E. T. Verhoef, Nijkamp, and Rietveld 1995; E. T. Verhoef, 

Nijkamp, and Rietveld 1996; Steimetz, n.d.; H. Yang and Zhang 2003; and Rouwendal and 

Verhoef 2004). 

For the routes in Figure 2.4, the second-best toll strategy only levies to the shortest path 

users at the amount of 5 minutes and the longer route is free. For the Incentive cases, on the 

other hand, the longest users earn incentives of 5 minutes. It is noteworthy that the price 

difference between the two paths in the three strategies is 5 minutes. This pattern implies 

that pricing can be any value as long as the price difference among SO routes is equivalent to 

the marginal travel time difference between routes. More interestingly, the marginal travel 

time difference is the same with the travel time difference.  
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Table 2. 2 Comparisons of different pricing strategies 

Type 𝐭𝐚 𝐭𝐛 𝐩𝐚 𝐩𝐛 Total 
Travel Time 

0. No strategy (UE) 40.0 40.0 N/A N/A 80,000 

1. First best 37.0 42.0 +27.0 +22.0 79,500 

2. Second-best 37.0 42.0 +5.0 Zero 79,500 

3. Incentive 37.0 42.0 N/A - 5.0 79,500 

4. Toll & Incentive 37.0 42.0 any  any 79,500 

 

2.4 Findings and Distinctive Differences from Previous Research 

To increase the efficiency of a system, some people need to yield their priority, which implies 

that improving overall efficiency should accompany various options. For example, the path 

travel times of an origin and destination might vary if we want to minimize the total costs of 

a system. When the system forces people to give away their priority, it raises immediate 

concerns regarding fairness. Congestion pricing imposes a toll to the drivers who want to 

drive fast, but some people cannot use the toll roads because they cannot afford the toll. 

Tradable credit schemes try to solve the unfairness problem by initially allocating some 

amount of credits to individuals and allow individuals or firms to trade credits. Tradable 

credit schemes, however, cannot escape a fundamental criticism that they restrict the 

human’s basic right of moving, since some people need to purchase credits to move. 

Furthermore, it is hard to find a concrete and fair way to distribute the credits by a 

government agency.  
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There are other efforts to change travelers’ behavior through route guidance. Some research 

makes the unreasonable assumption that people can be altruistic in that they yield their 

shortest path to others. Monetary incentives can be a way to make drivers behave according 

to a system optimum pattern by compensating their inconvenience. Social responsibility and 

individual’s preference also play a role in changing travelers’ behavior, underscoring our 

contention that individual travel choice is complex and is affected by a number of factors, 

both qualitative and quantitative.  

 

From previous research, we infer that various preferences, including monetary incentives, 

affect individuals’ travel decisions. This research attempts to describe these various 

preferences by introducing the idea of perceived utility. We realize that there are different 

individual groups with various characteristics. “Social nudge” affects some people to be 

altruistic, some travelers consider that arriving at their destination as soon as possible is 

their main priority, trip preferences of some individuals rely on their trip purpose, and some 

might be willing to change their route when they can get rewards. The success of this strategy 

is dependent on individuals’ participation.  
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Chapter 3  

3.1 Agent-based Envy Model  

This chapter presents the methodology used to model agent-based envy behavior for a traffic 

assignment problem. It includes a review of the limitation of aggregated-behavior models to 

highlight the importance of agent-based modelings for efficient and fair allocation of 

transportation supply. It also addresses methods for implementing the “Envy” concept, 

which is a well-known theory, often described using “a fair cake-cutting problem” in 

Economics. We extend the envy optimization to transportation network problems. 

 

The cornerstone of criticism of traditional transportation problems is the idea that 

macroscopic modeling is based on a representative agent that simplifies the behavior of 

travelers. It is evident that transportation demand comprises heterogeneous users—they 

value their travel property (e.g., time) differently according to their travel distance, income, 

arrival time, and trip type. A macroscopic model, however, mainly overlooks these demand 

characteristics by focusing only on the supply side of massive infrastructure. In addition, 

agents are assumed to recognize full information of supply conditions based on their 

experiences. With the assumption that the behavior of system users is homogeneous, an 

aggregate model concludes that a system provides an equal allocation to all users (UE) or a 

system can restrict users’ behavior for an optimum condition (SO) by imposing marginal 

costs. The bottom line of aggregated models is the assumption that all users are unilaterally 

selfish in their travel with the representative yardstick. Its equality condition can be arguable 
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in that actual agents do not satisfy the given allocation when their preferences are not 

homogeneous. Some research efforts take this heterogeneity into account by introducing 

multiclass commodities for categorized demands (Meng, Liu, and Wang 2012; Arnott, Palma, 

and Lindsey 1994). Even introducing multiple groups could consider the degree of 

heterogeneity in the demand model, however, macroscopic modeling still assumes that an 

indexed traveler in a group represents all travelers in the same group (Arnott, 1994). 

However, transportation systems have features that are more complex. Technically, an 

aggregated model can also define the number of groups as much as the number of 

populations, it looks unfeasible in terms of computation complexity. 

 

Agent-based models have practicality in analyzing and forecasting complex transportation 

systems. In the context of modeling transportation in future cities, agents refer to any 

autonomous entities within transportation systems. Examples are business travelers, 

private drivers for shopping, truck drivers, shippers, public agencies, and connected and 

autonomous vehicles. 

 

Although agent-based models have been studied, inferring the behavior of agents at the 

micro-level has been difficult. A new paradigm can be imagined if we can collect data to 

calibrate a model at the individual level in the future. From Peer-to-Peer (P2P) information 

exchanges, a system operator might design a mechanism allowing users to compare their 

selected options with others’. Privacy issues could deter this mechanism from real-world 

applications. However, it becomes feasible when current information exchange techniques, 
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such as connected vehicles and encrypted currencies, are available. For example, we can 

imagine future transportation systems wherein connected vehicles cooperate with each 

other by exchanging their travel option through encrypted private information—meaning 

that only such permitted information as destination, route, and preferred arrival time can be 

accessed. 

 

In this chapter, we are interested in how individuals respond to given transportation 

systems when we consider travelers’ different standards for their travel property. If we 

assume that users’ travel propensities are not anonymous and a system operator routes 

travelers, we are also interested in how agents feel mistreated when they compare their 

given allocations to that of others. 

 

3.2 Notations and Definition of Variables 

This section addresses some notations and definitions. Our research scope covers 

optimization techniques for a network-wide transportation assignment problem and envy 

minimization. For a better understanding of how the proposed method works, this chapter 

focuses on a static version of the optimization problem. Based on this chapter, we will extend 

this optimization technique to the dynamic case in Chapter 6. 

 

First, the level of detail of the problem is set to an agent. Let 𝐼 be the set of agents. Each agent 

𝑖 traveling from origin 𝑟 to destination 𝑠 has path 𝑘. This differs from aggregated models in 

that the unit of the path of aggregated models is OD flow itself, which is equivalent to the 
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total number of agents in an OD pair. This agent-level problem also comes with a path binary 

for k, 𝑓𝑖,𝑘
𝑟𝑠 of an individual. Link flow 𝑥𝑎 is aggregated by a route-link binary 𝛿𝑖,𝑎,𝑘

𝑟𝑠  ; this binary 

is a unit value if link a has been utilized for path k of an agent 𝑓𝑖,𝑘
𝑟𝑠. A link performance function 

that indicates the relationship between link flow (𝑥𝑎) and link travel time is monotonically 

increasing with respect to traffic flow. 

  

The heterogeneity of travelers is considered using their valuation function (Vi)of travel 

property (e.g., travel time, 𝜃𝑖). An agent compares his/her travel option with that of others 

based on his/her standard and feels envious 𝑒𝑖j to others’ if his/her travel option is worse 

off. A detailed explanation will be addressed in the next section. 

 

The summary of notations employed throughout the chapter is as shown in Table 3.1. 
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Table 3. 1 Notations 

𝑖 an agent 𝑖 ∈ I 

𝑟, 𝑠 origin 𝑟 ∈ 𝑅 and destination 𝑠 ∈ 𝑅 

𝑘 a path 𝑘 in a path set of an origin and destination pair  

𝑎 a link 𝑎 ∈ 𝐴 

𝜃𝑖  value of time of an agent 𝑖 (generated from a distribution) 

𝑝𝑖 price term for an agent 𝑖 

𝑒𝑖𝑗 

envy function of an agent 𝑖 relatively felt to trip information (e.g., time and price) 

of an agent j 

 

V𝑖𝑗  

valuation function for an agent 𝑖 relatively evaluate to trip information (e.g., time 

and price) of an agent j  

𝛿𝑖,𝑎,𝑘
𝑟𝑠  

route-link binary  

(if link 𝑎 is used for route 𝑘 of 𝑟, 𝑠, 𝑖, then 1, otherwise 0) 

𝑓𝑖,𝑘
𝑟𝑠 

path 𝑘 binary of an agent 𝑖 of an OD pair 𝑟, 𝑠  

(if route 𝑘 is used by 𝑖, then 1, otherwise 0) 

x𝑎 traffic volume of link 𝑎 

𝑡𝑎 travel time of link 𝑎 (convex and non-decreasing function of x𝑎,  𝑡𝑎 = 𝑡𝑎(x𝑎) 
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3.3 Envy and Agent-level Envy Comparisons 

For transportation system management, our main interest is in maximizing the efficiency of 

a system given the supply. On the other hand, from a social justice point of view, fair 

allocation of supply to demand is also a pivotal issue. Both terms conflict with each other; 

therefore, a solution satisfying both is unlikely to be achieved. For example, expected 

allocations for maximizing system efficiency indicates that the supply should be allocated 

unequally to different agents, but it is almost impossible to impinge upon the agents’ freedom 

to select their travel option. Thus, a strategy for maximizing efficiency with various options 

is nonetheless poorly applied in an actual world because of unfair variances of alternatives. 

SO routing strategies in transportation assignment problems are examples. Generally, SO in 

moderate traffic is accompanied by unfair problems in that the quality of allocation is 

inequitable.  

 

It is evident that an agent feels disgruntled if a system manager guides an agent to an 

allocation that is distinctively slower than that of others. The level of feeling of unfairness 

might be different according to the agent’s valuation of an allocation. Thus, our approach 

considers the individual level of symmetric comparisons of agents’ own yardsticks at the 

individual level. Recognizing the heterogeneity of individual travelers, we can minimize the 

system-wide envy level. 

 

To design agent-level transportation systems, we propose to use the concept of “Envy”, 

which is a theory from Economics, as a new paradigm for fairness, efficiency, and behavior. 
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With the possible technology of peer-to-peer data exchange, it is not difficult to imagine how 

individuals behave regarding their transportation options or how a system manager designs 

transportation systems. When an agent can access other agents’ route information, an agent 

might make their best effort to minimize the equality gap with others’. A system service 

manager could become concerned with this user’s behavior. On the other hand, a system 

manager might prefer to design a system maximizing efficiency or profit. The best strategy 

is to design a system that achieves optimum efficiency while not intruding on users’ freedom 

of selection. 

 

In the 1940s, Envy was initially employed for a fair division problem by economists and 

mathematicians (Barbanel 2005). Gamow and Stern (1958) introduce the Envy-Free (EF) 

theory in the context of the fair cake-cutting problem. Envy-Free implies that each agent 

believes that their allocation is greater than or at least the same the share of others; each 

player, in turn, is satisfied with an allocated piece of cake according to their preference. Thus, 

an EF region exists if there is a certain level of heterogeneity of preference. Varian (1974)  

uses Envy to design a fair allocation system. He defines fair allocation in terms of Equity, 

Envy, and Efficiency. Here are the definition and its relationships. 

 

“If, in a given allocation, agent i prefers the bundle of agent j to his own, we will say i Envies j. 

If there are no envious agents at allocation x, we will say x is equitable. If x is both Pareto 

Efficient and Equitable, we will say x is Fair.” 
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As we discussed, our research interest is to find the optimum (Efficient) allocation of 

transportation supply while agents believe their allocation is equitable; this interest is in line 

with Varian’s definition of Fairness. 

 

To implement Envy theory in the transportation domain, we define agents’ behavior as 

follows: 

Definition 3.1. Each agent has his/her own preference 𝜃𝑖  to travel options (e.g., value of 

time) and these preferences are heterogeneous. 

 

Definition 3.2. The distribution of valuation is known to a system manager and the 

distribution is not necessarily based on certain well-known distributions, such as a normal 

distribution. However, the output of the valuation function is always non-negative according 

to the positive allocations. 

 

Definition 3.3 An agent compares his/her travel option with others’ only who are in the 

same travel property (i.e. origin and destination). 

 

Definition 3.4. An agent( 𝑖 ∈ 𝐼𝑟𝑠) feels envy when he/she finds that an option given to or 

selected by other travelers (𝑗 ∈ 𝐼𝑟𝑠) provides a higher value than his/her current selection 

(Eq 1). 

 𝑒𝑖𝑗 = (𝑉𝑖𝑗(𝜃𝑖 , 𝑡𝑗)  − 𝑉𝑖𝑖(𝜃𝑖, 𝑡𝑖))δ𝑖𝑗   ∀ 𝑖 , 𝑗 , 𝑖 ≠  𝑗, 𝑖 , 𝑗 ∈ 𝐼𝑟𝑠  (3.1) 

 where δ𝑖𝑗  is 1 if “Envy” is positive and zero otherwise  
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This definition ensures privacy for travelers because a system is not necessary to expose 

other vehicles’ personal information (e.g. value of time). This implies that an agent is 

indifferent to other agents’ preferences. In other words, it does not matter for an agent to 

identify how rich other agents are, what their trip purposes are, or how urgent they are. An 

agent evaluates its envy based on its interpretation. An agent judges its envy by comparing 

others’ options using their own criteria (Definition 3.1). In this study, the value of time is 

used, but it can be extended to various normalizers such as the value of emotion. We can 

interpret Eq (3.1) that an agent does not feel envy when its valuation is higher than that of 

others; thus, envy of i to j (𝑒𝑖𝑗) is always non-negative. 

 

Definition 3.5. Agent’s greedy behavior to the shortest path  

In addition to mutual envy comparisons among agents, an agent feels envious (𝑒𝑖𝑠) if its 

allocation is worse than that of the shortest path. This definition is equivalent to the basic 

assumption of UE. Similar to Definition 3.1 and Definition 3.4, envy is evaluated based on an 

agent’s valuation. Interestingly, this definition is in line with the objective function for a 

solution of a gradient descent projection for assignment models that is used for a path-based 

traffic assignment algorithms (Jayakrishnan et al. 1994). This finds an equilibrium solution 

by comparing a route with the shortest path and adjusting traffic loads to the path. 

 𝑒𝑖𝑠 = (𝑉𝑖𝑠(𝜃𝑖 , 𝑡𝑠)  − 𝑉𝑖𝑖(𝜃𝑖 , 𝑡𝑖))δ𝑖𝑠  ∀ 𝑖 , 𝑗 , 𝑖 ≠  𝑗 (3.2) 

 where δ𝑖𝑗  is 1 if “Envy” is positive and zero otherwise 
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Definition 3.6. Agents change their travel option until they do not feel envious of others’ 

(envy minimizer). 

This is based on a different behavioral assumption than employed in traditional static or 

dynamic traffic assignment models. Static traffic models postulate that day-to-day travel 

experiences make agents have full information about traffic after certain periods that affects 

route choice decisions, that converge at a certain equilibrated level. This assumption is valid 

for the situation where agents rely on such static traffic information as paper maps, and even 

digital maps without real-time traffic information. With the availability of real-time traffic 

information (mobile applications, radio, digital maps, and Variable Message Signs) dynamic 

traffic assignments imply User Optimum behavior assumption, i.e., that a traveler makes a 

route decision based on current traffic condition. Our future vision is drawn on Connected 

Autonomous Vehicles (CAVs) and block-chain technology to facilitate the possibility of peer-

to-peer travel information exchanges, which enable travelers to compare their option with 

that of others. In turn, an agent changes a travel option until it feels comfortable with the 

other agents’ allocation. 

 

The optimization of social welfare for maximizing efficiency and minimizing envy is our 

research interest; for the feasible optimization problem, we relax the definition of envy (3.1) 

to equation (3.3), and (3.4). 

 ij ije My  ∀ 𝑖 , 𝑗 , 𝑖 ≠  𝑗 (3.3) 
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∀ 𝑖 , 𝑗 , 𝑖 ≠  𝑗 (3.4) 

  

When we consider valuation as a multiplicative function of both a value of time ( i ) and 

travel time( it ), Eq (3.3) is simplified as Eq (3.5) and Eq (3.6). These equations deal with each 

agent’s heterogeneity (i.e., valuation of time, 𝜃𝑖) and it is worthy to note again that envy is 

evaluated differently by point of view. As shown in Eq (3.6), other agents’ value of time or 

their level of envy does not matter to an agent i. 

 −𝜃𝑖𝜇𝑖 + 𝑒𝑖𝑗  ≥  −𝜃𝑖𝜇𝑗    (3.5) 

 𝑒𝑖𝑗  ≥  −𝜃𝑖( 𝑗 − 𝑡𝑖)   (3.6) 

 

3.4 Allocated System Efficiency with Envy Minimization (ASEEM) 

Now, let us have an example. There are two roads from a node to a destination. There are 

two agents, and each should select one of two routes. The travel time of each route (𝑡𝑎) is a 

function of link flow (𝑥𝑎) as follows. 
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𝑡𝑎  =  + 𝑥𝑎 𝑡𝑎 =  +   5𝑥𝑎 

 

Each agent has a different preference for travel time. Here, the unit of the valuation function 

is regarded as price, thus agent i’s value of time is 2.0-unit price per time, which is twice that 

of agent j. 

 

𝑉i = −   𝑡, 𝑉𝑗 = −   𝑡 

 

It is evident that both users aim to use the shortest path. However, if two agents use the same 

route, the used route is no longer the shortest path and total travel time becomes high. 

Although this condition promises envy-free allocation, we cannot say this is the desired 

traffic pattern. In addition, this example cannot have a UE condition since demand is a unit 

value. This is an important property and will be addressed by Lemma 3.1. To minimize total 

travel time (SO), two agents must use different routes. Here, we can imagine how we allocate 

the route to agents to minimize the total level of envy. Allocating route 1 to agent 1 comes 

with -4 unit price and he/she values that the other’s option is -5. In turn, agent 1 will not feel 

envious of agent 2 according to Eq (3.1). But, agent 2 will envy at the amount of 0.5 unit price. 

On the other hand, when we distribute route 1 to agent 2 and route 2 to agent 1, the level of 

envy of agent 1 is 1 unit price. This case will bring twice the envy of the previous 

combination. 
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We can generalize the example by introducing a multi-objective optimization problem; we 

call it Allocated System Efficiency with Envy Minimization (ASEEM). Its objective function 

consists of three objectives: efficiency, equity, alternative availability; as Eq (3.7). Here, 

efficiency is considered as minimizing the total travel time of the entire system. We consider 

equity by minimizing the sum of envy of an agent. Here, the equity term might be 

overweighed according to the number of agents if we sum all the envy values of an agent’s 

comparisons. This overweight problem can be tackled by the setting of 𝛽  coefficient. 

However, we reduce redundancy of the envy term by only calculating maximum envy of 

agents among envy sets from individually symmetrical comparisons, we can reduce 

redundancy of the envy term. This is consistent with the Minimax approaches for envy 

optimizations (Dall’Aglio and Hill 2003; Fleurbaey 2008). Here, 𝛼,  𝛽 ,  𝛾  are weight 

parameters. When 𝛼 =  , the goal of optimization becomes standard minimax envy-

minimizing optimization. On the other hand, 𝛽 =   𝑎𝑛𝑑 𝛾 =  , brings the results of SO 

assignment problem. Lastly, 𝛾 is used to incorporate behavior that every agent desires the 

fastest travel option as Definition 3.4. 

 

Min   j = 𝛼∑ x𝑎𝑡𝑎𝑎∈𝐴 (x𝑎) +𝛽∑ m 𝑥
𝑖≠𝑗

{𝑒𝑖𝑗}𝑖∈𝐼 + 𝛾∑ eis𝑖∈𝐼  (3.7) 

 

Below are the constraints for this problem. Note that this problem is a mixed integer linear 

programming, which is computationally complex. 

The optimization is subject to: 
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 ∑ −𝑡𝑎𝛿𝑖,𝑎,𝑘
𝑟𝑠 𝜃𝑖𝑘∈𝐾 + 𝑒𝑖𝑗 ≥  ∑ −𝑡𝑎𝛿𝑗,𝑎,𝑘′

𝑟𝑠 𝜃𝑖𝑘′∈𝐾   ∀ 𝑖,  j ∈ 𝐼,  i ≠ 𝑗 (3.7a) 

 x𝑎  =  ∑ ∑ ∑ 𝑓𝑖,𝑘
𝑟𝑠𝛿𝑖,𝑎,𝑘

𝑟𝑠
𝑘𝑖𝑟𝑠   ∀  s, i ∈ 𝐼, 𝑘 ∈ 𝐾𝑟𝑠 (3.7b) 

 q𝑟𝑠 = ∑ 𝑓𝑖,𝑘
𝑟𝑠

𝑘   ∀ 𝑘 ∈ 𝐾𝑟𝑠 (3.7c) 

 𝑓𝑖,𝑘
𝑟𝑠 ≥    ∀ 𝑖 , 𝑗 , 𝑘 (3.7d) 

  ≤ 𝑒𝑖𝑗 ≤ 𝑒𝑚𝑎𝑥  ∀ 𝑖 ,  𝑗 ,  𝑖 ≠  𝑗 (3.7e) 

 

Eq (3.7a) is a function for addressing both route choice behavior and envy comparisons. An 

OD pair (rs) has multiple paths. If function k path in the path set of OD pair is selected by 

agent i, a route binary 𝛿𝑖,𝑎,𝑘
𝑟𝑠  is a unit value, otherwise it is zero. Similarly, 𝛿𝑗,𝑎

𝑟𝑠  is a unit value 

if an agent j selects k’ path. Eq (3.7b) and Eq (3.7c) are similar with mathematical 

formulations for static traffic assignment models. We can define boundary rationality of 

travel time of agents by setting the allowable level of envy for the system by defining 

maximum allowable envy (𝑒𝑖𝑗) in Eq (3.7e). In other words, a traveler regards his/her travel 

with the best selection if travel time is within a boundary. In addition, a system manager can 

find the solution for the best allocation under the definition of their fairness level.  

If we define 𝑒𝑖𝑗  as a very small value near zero, the optimization results in either User 

Equilibrium or All or Nothing assignment. With the proper value of 𝛼 , 𝛽 , and 𝛾  we can 

generalize the state of UE as Lemma 3.1. 

 

Lemma 3.1 (An agent always wants the shortest path regardless of their valuation) 

𝑒𝑖𝑗 > −𝜃𝑖(𝑡𝑗 − 𝑡𝑖) iff 𝜇𝑗 > 𝜇𝑖for all i, j (3.8) 
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Lemma 3.2. (UE Compatibility regardless of heterogeneity) 

With the objective function for the minimized total travel time and fair allocations, 

regardless of heterogeneity of agents’ valuation, the envy constraint only allows the 

objective function to be bounded to the solution of UE. 

Proof: 

 𝑒𝑖𝑗 = −𝜃𝑖(𝑡𝑗 − 𝑡𝑖) for all i, j    (3.9) 

 𝑒𝑖𝑗  =  ϵ    𝑖𝑓𝑓    𝑡𝑗 ≅ 𝑡𝑖    (3.10) 

This solution finds the User Equilibrium condition when we define envy-freeness ( 𝑒𝑖𝑗 =  ) 

or very small value (ϵ). This process can be interpreted as that a traveler changes their route 

until their travel time is less or equal than that of other travelers. 

 

An interesting finding from Lemma 3.1 is that even though there are heterogeneous travelers 

in terms of travel time preferences (e.g. the value of time), without discrimination of pricing 

or other factors, all travelers act in a selfish manner which is equivalent to Wardrop’s 1st 

Principal or Nash Equilibrium. The solution has the same total travel time no matter how the 

value of times by travelers are heterogeneous. In the UE condition, where all travelers’ travel 

time becomes the same (𝑡𝑗 = 𝑡𝑖), envy i to j is always zero.  

 

 Lemma 3.3 The objective value of agent-based modeling is higher than continuous flow 

models because of unit variable characteristics. 

Proof:  
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This formulation is based on an agent’s behavior, thus it does not always guarantee UE 

solutions coming from continuous demand curve. In an agent-based model, it is evident that 

path flow cannot be divided into a decimal value. Instead, path flows are always an integer 

value. In this case, various travel options might strongly bind to the same allocation. Thus, it 

is necessary to relax the UE constraint in continuous variable models to meaningfully small 

positive value. Here, we denote it as Epsilon (ε). 

 

Lemma 3.4(Group Envy-Family Envy Problem) 

Agents in the same route group do not feel envious toward each other.  

Proof:  

Eq (3.6) can be extended to prove this lemma. As long as an agent i receives the same 

allocation (𝑡𝑖) as the other agent j (𝑡𝑖), agent i does not feel envy. 

This can be regarded as a family cake-cutting problem with optimum distributions. There 

are various alternatives to the allocation of an efficient transportation system. For example, 

say K is the path set for OD pairs, and its number of alternatives is always lower than or at 

least equal to the number of participants. Furthermore, an agent belongs to one of the 

alternative groups. Thus, we can interpret this case as group envy.  

 

Lemma 3.5 (Shortest path group- No Envy) 

In the solution, no one in the shortest path group feels envious. 

Proof:  
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Eq (1) indicates that 𝑒𝑖𝑗  =   if 𝑉𝑖𝑖 ≥ 𝑉𝑖𝑗. Since a travel time is always negative to an 

agent’s utility, a non-shortest path travel time is always longer than the shortest 

path. 

 𝑒𝑖𝑗 = 𝑚𝑎𝑥(−𝜃𝑖(𝑡𝑗 − 𝑡𝑖),  )   (3.11) 

 

Lemma 3.6 (Controlling envy for CSO or SO) 

We can design the system optimum status by relaxing envy.  

Proof:  

By allowing agents to feel envious,  ≤ 𝑒𝑚𝑎𝑥  a system can expect a better efficient 

transportation system (Constrained System Optimum, CSO) and if allowable envy is 

set to be high enough, we can get the system optimum (SO) solution. 

 

  ≤ 𝑒𝑖𝑗 ≤ 𝑒𝑚𝑎𝑥  ∀ 𝑖 , 𝑗 , 𝑖 ≠  𝑗 (3.12) 

 

Lemma 3.7 Envy is minimized in the state of allocative efficiency 

Proof:  

Lloret-Batlle (2017)’s definition  “A social choice function is allocative efficient if ∀𝜃 ∈

𝛩, 𝑘(𝜃) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛:  𝑘(𝜃) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘∈𝐾

∑ 𝑣𝑖(𝑘, 𝜃𝑖)
𝑛
𝑖=1  “. This 

implies that efficiently allocated resources according to individual’s valuation 

minimizes total envy. For example, allocating shortest path to agents who have high 

valuation and vice versa provides a system to have minimum envy. A simple example 

shown in the beginning of section 3. 4 is enough to prove this condition. 
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3.5 Numerical Example 

We examine the proposed ASEEM in the well-known Braess’ paradox network with the 

associated Link Performance Functions (LPFs) as in Table 3.2. In this chapter, we assume 

that LPFs are linear functions for the solvability of the resulting Mixed Integer Linear 

Programming problem. We admit that linear functions cannot handle the nature of well-

known non-linear functions that characterize congestion effects. Although this chapter will 

focus only on the characteristics of ASEEM, nonlinear programming approaches for ASEEM 

models will be examined in Chapter 5.  

  

 

Figure 3.  1 Braess’ Paradox Network 

We design a hypothetical network by referring to the network used in Nie (2012). As shown 

in Figure 3.1, there are five links in Brass Network and their LPFs are assumed to be non-

negative and increasing functions according to the flow. A continuous path flow set 

assumption requires demand for an OD for Nie’s network necessarily to be large in order to 

produce integer path flows. The main reason for using small demand is because 

representative flow patterns can be identified with the continuous demands. The mechanism 

of our research, however, is based on agent-based modeling, in which demands cannot be 
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disseminated into decimal values. Furthermore, testing characteristics of the proposed 

model with the small number of agents limits its analytical experiments as being delved in 

Lemma 3.3. We can increase the number of agents in an OD pair. However, the increased 

number will result in different path travel time, which confuses the comparative analysis. 

Thus, we modify the LPFs by introducing scale factors in LPFs.  

 

Figure 3.1 and Table 3.2 indicate the configurations of the hypothetical network. In addition, 

Table 3.3 shows path sets of the network. There are three paths and the shortest path in free-

flow conditions is Path #3 (B-E) which takes 30 time-units. The longest path (a-c) takes 50 

time-units. But, as more vehicles select a route, longer travel time will result since travel time 

is a function of link volume. 

 

Table 3. 2 Link characteristics of the Braess' Paradox Network 

ID Head Tail LPF 

A 1 2  a = 5𝑥𝑎/𝜔 

B 1 3  b =   + 𝑥𝑏/𝜔 

C 2 4  c = 5 + 𝑥𝑐/𝜔 

D 2 3  d =   + 𝑥𝑑/𝜔 

E 3 4  e = 5𝑥𝑒/𝜔 
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Table 3. 3 Path set of the Braess' Paradox Network (from 1 to 4) 

Path Link Sequence Free flow time 

1 a-c 50 

2 a-d-e 40 

3 b-e 30 

 
To examine the characteristics of the proposed method, initially, we generate agents whose 

a valuation function for time differs according to their travel preferences. In here, we 

consider that a travel time variable is the sole effective factor for agents’ decisions. 

We set the total number of agents to be 24 and their value of time is generated from a 

truncated normal distribution. The mean value and standard deviation for the normal 

distribution are $1/time unit and 0.3 respectively. Since the value of time cannot be negative 

or zero (Small 1992), we convert those generated values to a small number, say $ 0.001 /time 

unit.  

 

Table 3.4 indicates the results of standard traffic assignments of both UE and SO. The total 

travel time of UE is 1494.9 and SO is 1349.7. Note that these continuous models produce 

decimal values of flow, which is incompatible with agent-based models. Our models are 

based on individual- level decisions; thus, optimal values of total travel times for both UE 

and SO are higher than that of continuous models as shown in Table 3.4. UE of agent-based 

models can be achieved if we interpret travel time gaps of paths are within a small range (0.8 

time unit). In contrast, as shown in both Tables 3.4 and 3.5, alternatives of SO in both models 

have travel time gaps. There are three paths. The shortest path in Table 3.4 takes 44.5 time-
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units, which is 19.75 time units faster than the longest route and is faster than the second 

shortest route by an amount of 10.25. The gap between the second shortest path and the 

longest path is 9.50 time-units.  

Table 3. 4 Braess Paradox Network (UE and SO, continuous models) 

 UE SO 

Path ID Flow Time Total Path Cost (TPC) Flow Time Total Path Cost (TPC) 

1 0 - - 7.2 64.5 462.3 

2 14.9 62.3 925.4 3.0 44.5 133.5 

3 9.1 62.3 569.5 13.8 54.5 753.9 

Total Travel time'  1494.9   1349.7 

 

Table 3. 5 Braess Paradox Network (UE and SO, agent-based models) 

 UE SO 

Path ID Flow Time Total Path Cost (TPC) Flow Time Total Path Cost (TPC) 

1 0 - - 7 64.25 449.8 

2 15 62.5 937.5 3 44.5 133.5 

3 9 62.3 560.7 14 54.75 766.5 

Total Travel time'  1498.2   1349.8 
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As our objective function consists of three sub objectives, we examine how different 

combinations of weights affect the entire systems. We examine four cases as shown in Table 

3.6. Case (A) is examines how an agent’s greedy behavior aggravates the entire 

transportation system as defined in Definition 3.4. By decreasing γ from 1.00 to zero, we can 

understand that taking less account into the greed behavior of a system plays a role in 

reducing total travel time and inducing agent’s envy. Case (B) equally divides weights into 

thirds. Case (C) put more weight on the total travel time objective instead of greedy behavior. 

Case (D) and (E) are configured by disregarding γ. Case (E) is only of the minimization of 

total travel time. 

Table 3. 6 Cases for Analysis on the effectiveness of weights for objectives 

Case 

Weights for objectives 

α β γ 

A 0.00 0.00 1.00 

B 0.33 0.33 0.33 

C 0.50 0.25 0.25 

D 0.50 0.50 0.00 

E 1.00 0.00 0.00 
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Figure 3.2 indicates the relationship between allowable envy and total travel time. Standard 

deviation of agents’ valuation is assumed to be 0.2 in this case. We compare several scenarios 

by changing the weights of the objective function (Eq 7). Recap that the total travel time of 

UE and SO are 1,498.2 and 1,349.8 respectively. Travel time of All or Nothing (AoN) is 1,824. 

Generally, larger allowable envy (𝑒𝑚𝑎𝑥) settings, lower the total travel time. Significantly 

later allowable envy settings can find the SO condition. An extremely small value of 𝑒𝑚𝑎𝑥 

results in All or Nothing (AoN) assignments in the case of (A) and (B). This condition is based 

on the characteristics of an agent-based model. Note that the path travel times of the UE 

condition in the given network are 62.5 and 62.3 respectively. There are 0.2 travel time unit 

gaps. 

 

Figure 3.2 (a) shows the effectiveness of 𝑒𝑚𝑎𝑥 according to the weight configurations of the 

multiple components of the objective function. Interestingly, only taking the envy to the 

shortest time into account brings the status of UE and AoN assignments (Case (A)). The 

solution of the small 𝑒𝑚𝑎𝑥 value brings only AON in Case (A). Greater than 0.2 of 𝑒𝑚𝑎𝑥 finds 

the UE solution. All cases show UE solution by the certain threshold of 𝑒𝑚𝑎𝑥. As weighing less 

on the greedy behavior objective components (β  nd γ), the total travel time decreases.  
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Figure 3.  2 Performance by allowable envy and objective functions 

 

The range of the total travel time between UE and SO is regarded as the constrained system 

optimum (CSO). Case (B), (C), and (D) fall into this status over the certain threshold of 𝑒𝑚𝑎𝑥. 

However, SO condition is only guaranteed in Case E. In other words, by setting weight 

parameters to α =  , β =  ,  nd γ =  , a system can find the system optimal solutions with 

the setting of sufficient maximum allowable envy. Here, it is noteworthy to take a look at how 

envy is induced among those cases. Figures 3.2 (b) and (c) indicate how efficient 
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transportation systems lead to unfairness in terms of the sum of maximum envy. As 

expected, a high level of unfairness accompanies SO status from Case E. This is in line with 

the relaxed boundary rationality enabling an efficient system (Literature). The small amount 

of allowable envy achieves UE condition. If it is very small or equal to zero, it becomes 

equivalent to the results of AoN the assignment. UE and AoN solutions are envy free, but not 

efficient systems. 

 

In contrast to Case E in Figure 3.2 (b), Figure 3.2 (c) shows that the objective functions of 

Cases (B), (C), and (D) have a capability of controlling both inefficiency and unfairness to 

certain levels but not to an optimum. From the comparisons between Cases (B), (C) and (D), 

we can infer that a lower weight of γ can result in better solutions for both efficiency and 

fairness. Furthermore, the differences among Cases (C) and (D) are related to β  nd γ. Case 

D puts more importance on envy between agents by disregarding envy for the shortest path. 

From our experience, we arrive at the best combination, for the hypothetical network, that 

considering only total travel time and envy among agent (Case (D)) results in the condition 

that total travel time is optimal and envy is minimized. 

 

In Case (D), we can observe Allocation Efficiency (Lemma 3.7). Table 3.5 is an example of the 

case in which 𝑒𝑚𝑎𝑥 =20, which is relatively large. The sum of maximum envy of this setting 

is 8.50 and Total travel time is at 1349.8. The shortest path (Path ID: 2) is assigned to agents 

having higher valuations (2.0 unit-time to 1.5) and the longest path (Path ID:1) is allocated 
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to the lowest VOT group. Other cases, which put less weight on envy among agents, do not 

come with minimized envy and their results do not show Allocation Efficiency. 

 
Table 3.7 indicates the results of Case D. 

Table 3. 7 Examination of ASEEM 

Path ID Flow Time Total Path Cost (TPC) VOT range 

1 7 64.25 449.8 0.5-0.001 

2 4 44.5 133.5 2.0-1.5 

3 13 54.75 766.5 1.5-0.5 

   1349.8  

 

3.6 Discussion 

In this chapter, we designed an agent-based transportation model with an envy minimization 

scheme. Furthermore, we propose a new paradigm of traveler’s behavior by incorporating 

characteristics of CAVs and P2P data exchanges with the future block-chain 

implementations. We employed envy mechanisms to develop a network optimization model. 

The proposed model has another contribution in that heterogeneity of travelers are 

significantly modeled, which traditional models assume it to be homogeneous. 

 

We assume that a system manager finds the best path allocation of OD demand when she/he 

knows the distribution of valuation of time. The objective function for a system is designed 
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to maximize efficiency and minimize envy among agents. This multi-objective goal is tested 

by various weights of each component of the objective function.  

 

Results show that if a system manager does not consider equity in the system, it may induce 

significant envy. A system manager might design his/her objective function to minimize envy 

by setting β and γ to positive values; then, it will deter a system from the system optimum 

status and such systems cannot be a solution for envy-free. 

 

From the experiments, we also find that envy exists, even though a system manager sets the 

objective for envy minimization. This suggests implementing pricing schemes to design a 

system where system efficiency is maximized while no agent feels unfairness. Chapter 4 will 

address a model with a pricing scheme. 
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Chapter 4 

4.1 Allocated System Efficiency with Envy Minimized Price Matching (ASEEM-PM) 

As we have analyzed in Chapter 3, an efficient system intrinsically accommodates envy. 

Although ASEEM minimizes the sum of maximum envy of agents, it is almost impossible to 

achieve Envy-Free allocations; this signifies the importance of introducing a pricing scheme. 

In other words, pricing or incentivizing plays a significant role in attracting agents to follow 

alternative traffic patterns that minimize envy. To accommodate pricing, we introduce 

pricing terms to Eq (3.2) as displayed in Eqs (4.1)-(4.3) . The pricing term can take any value 

(toll, incentive, or free), but the system needs to find its appropriate amount. Eq (4.2) can 

also be represented using the resources, a value of time, and pricing terms. 

 𝑒𝑖𝑗 = (𝑉𝑖𝑗(𝜃𝑖 , 𝑡𝑗 , 𝑝𝑗)  − 𝑉𝑖(𝜃𝑖 , 𝑡𝑖, 𝑝𝑖))𝛿𝑖𝑗   ∀ 𝑖 , 𝑗 , 𝑖 ≠  𝑗 (4.1) 

 where  δ𝑖𝑗  is 1 if “envy” is positive and zero otherwise  

 

As the same with Eq (3.4) and Eq (3.5), we relax Eq (4.1) to Eqs (4.2) – (4.3) 

  𝜃𝑖𝑡𝑖 + 𝑒𝑖𝑗 − 𝑝𝑖  ≥  𝜃𝑖𝑡𝑗  −𝑝𝑗  (4.2) 

 𝑒𝑖𝑗  ≥  𝜃𝑖( 𝑗 − 𝑡𝑖) + 𝑝𝑖 − 𝑝𝑗    (4.3) 

 

Note that this solution cannot be solved without a budget constraint; i.e., Eq (4.4). This sets 

a criterion of how pricing terms are formulated. Setting budget equal to zero means budget-

balanced where the money collected from shorter allocation users is distributed to other 

agents.   
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 ∑ 𝑝𝑖
𝑖∈𝐼𝑟𝑠

= 𝐵𝑟𝑠  (4.4) 

 

Since a budget constraint is related to pricing terms, budget 𝐵 should be carefully defined. 

The solution might be unfeasible if a system manager sets a budget B to be positive and price 

terms to be an incentive (negative 𝑝𝑖). If 𝑝𝑖 is positive, agent i should pay for their allocation, 

which might be considered as a toll. In contrast, negative pricing term implies that agent i 

will receive incentives for their allocation. 

 

We can also prevent abusive behavior where an agent travels only for incentives as Eq (4.5)  

 𝜃𝑖𝜇𝑖  ≥  𝑝𝑖 ∀ 𝒊 ∈ 𝑰 (4.5) 

 

By restricting the toll and incentive amount as a policy, a system manager can control 

maximum payments for allocations as Eq (4.6). If a manager wants to implement a sole 

incentive scheme, she/he can set 𝑝𝑚𝑎𝑥 to be negative. Similar, for a congestion toll scheme, a 

positive 𝑝𝑚𝑖𝑛  find the optimal congestion pricing with the consideration of user’s 

heterogeneity and of minimization of their envy.  

 𝑝𝑚𝑖𝑛 ≤ 𝑝𝑖 ≤  𝑝𝑚𝑎𝑥 ∀ 𝒊 ∈ 𝑰 (4.6) 

 

 

Let us assume that a system manager can provide a subsidy for this system, then, a budget 

constraint becomes a negative value. Enough amount of funding allows a system to provide 
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an incentive to agents who are willing to yield their fast option. This implies free-taxi or 

transit services that are currently under spotlight as shared-mobility. However, an incentive 

strategy does not always have pros since induced demands and abusive behavior will be 

caused by free cakes. This will be addressed in section 4.2. In addition, this objective function 

can find the solution for the second-best strategy where roads without a toll exist. 

 

Finally, the purpose of the objective function is to find the optimal pricing scheme to achieve 

both UE and efficient transportation system under the constraints of budget and maximum 

allowable envy.  

Min   j = 𝛼∑ x𝑎𝑡𝑎𝑎∈𝐴 (x𝑎) +𝛽∑ m 𝑥
𝑖≠𝑗

{𝑒𝑖𝑗}𝑖∈𝐼 + 𝛾∑ eis𝑖∈𝐼  (4.7) 

subject to: 

 ∑ −𝑡𝑎𝛿𝑖,𝑎,𝑘
𝑟𝑠 𝜃𝑖𝑘∈𝐾 + 𝑒𝑖𝑗 −  𝑝𝑖 ≥  ∑ −𝑡𝑎𝛿𝑗,𝑎,𝑘′

𝑟𝑠 𝜃𝑖 − 𝑝𝑗𝑘′∈𝐾   ∀ 𝑖,  j ∈ 𝐼,  i ≠ 𝑗 (4.7a) 

 x𝑎  =  ∑ ∑ ∑ 𝑓𝑖,𝑘
𝑟𝑠𝛿𝑖,𝑎,𝑘

𝑟𝑠
𝑘𝑖𝑟𝑠    i  ∈ 𝐼, 𝑘 ∈ 𝐾𝑟𝑠 (4.7b) 

 𝑞𝑟𝑠 = ∑ ∑ 𝑓𝑖,𝑘
𝑟𝑠

𝑘 i  ∈𝐼   ∀  s, ∀ 𝑘 ∈ 𝐾𝑟𝑠 (4.7c) 

 𝑓𝑖,𝑘
𝑟𝑠 ≥    ∀ 𝑖 , 𝑘 (4.7d) 

 ∑ 𝑓𝑖,𝑘
𝑟𝑠

𝑘∈K =     ∀ 𝑖, ∀  s (4.7e) 

  ≤ 𝑒𝑖𝑗 ≤ 𝑒𝑚𝑎𝑥  ∀ 𝑖 ,  𝑗 ,  𝑖 ≠  𝑗 (4.7f) 

 𝑝𝑚𝑖𝑛 ≤ 𝑝𝑖 ≤  𝑝𝑚𝑎𝑥  ∀ 𝑖 (4.7g) 

 ∑ 𝑝𝑖𝑖∈𝐼𝑟𝑠 = 𝐵𝑟𝑠  ∀  s (4.7h) 

 𝜃𝑖𝜇𝑖  ≥  𝑝𝑖  ∀ 𝑖 ∈ 𝐼 (4.7i) 
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4.2 Characteristics of ASEEM-PM 

This section addresses the characteristics of ASEEM-PM.  

 

Lemma 4.1 (Compatibility to traffic assignment strategies) 

We can design the system optimum status by relaxing envy and pricing.  

Proof:  

Table 4.1 shows the relationship between control variables and the status of traffic 

assignment assumptions. With very small envy in the amount of 𝜀 , the model 

converges to the results of All or Nothing (AoN) or User Equilibrium assignment. 

Pricing policy can promote a more efficient system while envy is restricted to a small 

amount. Finally, allowing maximum pricing to be large-enough can achieve the status 

of system optimum and no one is likely to complain about his/her travel option, which 

is the status of Envy-Free. It is also equivalent to the Perceived UE (PUE) that is UE 

with respect to agent’ goal of achieving minimum of both travel time and toll. 

  

Table 4. 1 Compatibility to traffic assignment strategies 

𝒆𝒎𝒂𝒙 𝒑𝒎𝒂𝒙=0 |𝒑𝒎𝒂𝒙| is small |𝒑𝒎𝒂𝒙| is large enough 

𝜺 AoN, UE CSO, Envy SO & PUE, Envy-free 

Small CSO, Envy CSO, Envy - 

Large enough SO, Envy SO, Envy - 
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This implies that a pricing scheme can play a pivotal role in the system design for both 

efficiency and equity. From the assumption of bounded rationality, we can allow a system to 

have better efficiency (CSO) but it could not be optimal (SO). Furthermore, bounded 

rationality admits that agents feel envious. If maximum allowable envy is set too high, the 

designed system could lose confidence from participants since induced envy will frustrate 

agents who follow the given guidelines. If a system forces people to unfair options without 

enough compensation, an equity problem will be significantly raised, which cannot be a 

sustainable scheme. Thus, we can conclude that the pricing scheme is an important feature 

of the proposed system. Now, we need to know how to define proper pricing. 

 

Lemma 4.2 (Pricing strategy depends on the budget and pricing range)  

The proposed model finds the best toll and incentive amounts based on the optimization. 

The pricing policy depends on the setting of the budget and allowable maximum envy. As can 

be seen in Table 4.2, the proposed model can be designed to incorporate situations where a 

government wants either to distribute subsidy or to charge operational costs for the system. 

Table 4.2 indicates how the budget affects configurations of the pricing scheme. First, both 

tolls and incentives will be features of a system in the budget-balanced case since the 

collected tolls are transferred as compensation to the other agents.  

 

From this characteristic, we can also infer that excessive funds will result in a situation where 

every agent gets payments from his/her travel, which will be unlikely to happen or 
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undesirable in terms of abusive behavior. A significant portion of agents will unnecessarily 

travel under this condition, which induces extra demand from abusive behaviors.  

 

A proper amount of funding will help the system to differentiate payments: some will pay 

and others will get payments. There exists a condition that only detoured agents get 

incentives under the funding condition. In contrast, if a system manager sets his/her model 

for excessive profit, all agents will be required to pay for their travel, which is similar to the 

marginal cost toll strategy. A system manager can even design a pricing scheme similar to 

the second-best toll where only some portion of routes are charged—others being free. 

 

Table 4. 2 Relationship between budget and pricing policy 

Budget, B 𝒑 ≥ 0 𝒑𝛜IR 𝒑 ≤ 0 

Subsidy (--) N/A Incentives Incentives 

Subsidy (-) N/A Toll, Incentives Incentives 

Balanced (0) N/A Toll, Incentives N/A 

Profit (+) Toll Toll, Incentives N/A 

Profit (++) Toll Toll N/A 

 

Figure 4.1 visualizes the details of the relationships among variables addressed in Table 4.2. 

If we assume there are two agents and two routes in the system and they must select one of 
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the routes; say agent 1 selects a faster route then agent 2 is forced to select a slower route. 

The x-axis represents the budget. Each agent’s price is determined by budget as shown in 

Figure 4.1. In other words, this diagram shows how an individual gets payments or is charged 

under the budget setting by a system manager. Positive price means toll and negative is for 

incentives. For a simple explanation, this diagram is drawn with the assumption that agents’ 

valuation is the same, thus the price gap among agents is equal to the gap of allocations.  

 

  

 

Figure 4. 1 Relationship between pricing and budget 
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A feasible budget range for ASEEM-PM that both payments and tolls exist is shown as a 

shaded rectangle in Figure 4.1. In the budget-balanced case (a), the sum of prices equals to 

zero; agent 1 who selects a faster option would pay a toll that transfers to agent 2 in 

compensation for her/his inconvenience. There is no brokerage or system operational cost 

or profit. A system can manage those costs by increasing the budget. At point (c), agent 1 will 

be charged the amount of (c). Agent 2 will still be free of charge, which is to the Second-best 

toll (Rouwendal and Verhoef 2004; E. T. Verhoef 2002; E. T. Verhoef, Nijkamp, and Rietveld 

1996; E. T. Verhoef 2004; Steimetz, n.d.; E. Verhoef, Nijkamp, and Rietveld 1995; H. Yang and 

Zhang 2003). Both agents should pay for their travel if budget is set to be greater than (c). 

On the other hand, if a subsidy is available from either government or commercial sector, the 

amount of payment for agent 1 will be smaller. At point (b), agent 1 will not pay for the 

shortest path, but agent 2 will get an incentive for their longer route. Excessive budget lower 

than (b) would make a situation that every agent gets incentives for their journey.  

 

Lemma 4.3 (Allocation Efficiency with pricing) 

When agents’ valuation is ordered decreasingly, allocation efficiency with pricing is 

envy-free if and only if: 

High VOT – assigned to the shortest path and pay tolls 

Low VOT – assigned to the longest path - pay less tolls or receive rewards 

Proof:  

Proof of this lemma is nothing but the proof for the allocation efficiency theorem in 

Lloret-Batlle and Jayakrishnan (2016), showing that envy-freeness is achieved if and 



57 

 

only if the allocation is monotonously decreasing and the price is a function of valuation 

of individual and allocation difference. Our problem reinterprets the monotonously 

decreasing allocations into increasing travel time allocation. And an agent’s valuation, 

θ = (θ1,⋯ , θ𝑛,), is decreasing order 

a) Travel time is monotonous increasing 
𝑡1 ≤ ⋯ ≤  𝑛 (4.7) 

 

b) The prices follow from this expression: 

∀i ∈  I, p𝑖 =∑𝛼𝑖
𝑘≤𝑖

, 𝛼𝑖 ∈ ℜ, 𝛼𝑘 ∈ [−θ𝑘−1(𝑡𝑘 − 𝑡𝑘−1), −θ𝑘(𝑡𝑘 − 𝑡𝑘−1)] ∀𝑘 >   (4.8) 

 

Proof. Condition a): From the envy comparison constraints Eq (4.2), we can derive Eq 

(4.9c’). According to the valuation order (i < j), 𝜃𝑖  is always greater or equal than 𝜃𝑗 . 

Thus,  𝑗  is always greater or equal than  𝑖. 

𝐸𝐹 ⇒ Eq (4 7):  

−𝜃𝑖 𝑖 − 𝑝𝑖 ≥ −𝜃𝑖 𝑗 − 𝑝𝑗 (4.9a) Envy comparisons from P2P 

communications −𝜃𝑗 𝑗 − 𝑝𝑗 ≥ −𝜃𝑗 𝑖 − 𝑝𝑖  (4.9b) 

−𝜃𝑖 𝑖 − 𝑝𝑖 + 𝜃𝑖 𝑗 + 𝑝𝑗 ≥    (4.9a’) Reorder of Eq 4.9a 

−𝜃𝑗 𝑗 − 𝑝𝑗 + 𝜃𝑗 𝑖 + 𝑝𝑖 ≥    (4.9b’) Reorder of Eq 4.9b 

−(𝜃𝑖 − 𝜃𝑗)  𝑖 +(𝜃𝑖 − 𝜃𝑗)  𝑗 ≥0 (4.9c) 4.9a’+4.9b’ 

−(𝜃𝑖 − 𝜃𝑗)(  𝑖 −  𝑗)  ≥0 (4.9c’) Reorder of Eq 4.9c 
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Proof. Condition b)  

𝐸𝐹 ⇒ Eq (4 8):  

−𝜃𝑗( 𝑗 −  𝑖) + 𝑝𝑖 ≥ 𝑝𝑗  (4.9d) Reorder of Eq 4.9b’ 

Set 𝑝1 = 𝛼1 (4.9e)  

−𝜃2( 2 −  1) + 𝛼1 ≥ 𝑝2 (4.9f)  

−𝜃3( 3 −  2) + 𝛼2 ≥ 𝑝3 (4.9g)  

−𝜃𝑛( 𝑛 −  𝑛−1) + 𝛼𝑛−1 ≥ 𝑝𝑛 (4.9h) Generalization of (f, g) 

𝛼𝑛−1 ≥ 𝑝𝑛 + 𝜃𝑛( 𝑛 −  𝑛−1) (4.9i) Since  𝑛 −  𝑛−1 ≥  ,  hen 𝛼𝑛−1 ≥ 𝑝𝑛 

 

𝐸𝐹 ⇒decreasing pricing order: as shown in Eq (4.9i), 𝛼𝑛−1is always equal to or greater 

than 𝑝𝑛 since  n −  n−1 , θn−1 are positive values. This property reserves that the pricing 

is also a decreasing order. It is easy to infer that the higher valuation groups pay more 

with the faster route. Interestingly, in the budget balanced case, the pricing scheme 

where a higher valuation group pays more, and a lower valuation group is assigned to 

the longer paths and receives incentive.  

 

Furthermore, from Eq (4.8), we can note that an agent n-1 can pay the price difference 

as large as the perceived amount of travel time difference of the next agent k, 

−θn−1( n −  n−1). And agent n is acceptable the minimum price gap to the upper agent, 

−θn( 𝑛 −  n−1). This is the subsequent procedure; we can find the price pattern as Eq 

(4.10): 

i < j  nd  i <  j :  − θi( i −  j) + ∑ 𝛼kk≤i > pj  > −θj( i −  j) + ∑ 𝛼kk≤i   (4.10) 
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Lemma 4.4 (No price discrimination in the same path group) 

Agents in the same group pay tolls or get incentives at the same amount in the minimized 

envy condition. In other words, if tolls differ by agents in the same path group, the envy 

increases, thus each group becomes to have the same price in the envy minimization. 

Proof) Similar to Lemma 3.3. Agents in the same path group have identical travel time; 

the envy-free condition is achieved if and only if prices of agents are the same. 

 

Lemma 4.5 Pareto efficiency with the budget balanced constraint 

Proof) When we define a budget-balanced condition that the sum of toll and incentives 

is zero, it can be interpreted as that an agent who does not feel envy for allocations 

compensates agents who feel envy to others’. This definition can be regarded as “Pareto 

Efficiency” 

 
4.3 Numerical experiments 

In this section, we evaluate our proposed pricing scheme (ASEEM-PM) and check the 

properties that we have mathematically examined. There are various factors that affect the 

proposed model such as the distribution of valuation, a configuration of weights of an 

objective function, maximum allowable envy, and maximum willingness to pay. We found 

that considering both total travel time and the sum of maximum envy brings the best result 

while excluding the weight for greedy for the shortest path. Thus, overall, we set weights as 

Case (D) in Section 3. 5( α =   5, β =   5,  nd γ =     ). Similarly, the total number of agents 

is 24 and Braess’s Paradox Network has been implemented. 
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4.3.1 Effectiveness of 𝐞𝒎𝒂𝒙 and 𝐩𝒎𝒂𝒙 

First, we allow the ASEEM-PM to find the level of envy and price with p𝑚𝑎𝑥 set to infinity. 

Agents’ valuation parameter is randomly drawn from a normal distribution with mean is 

equal 1.0 and standard deviation 0.3. As shown in Table 4.3, ASEEM-PM leads to the best 

scenario that minimizes Total Travel Time (TTT) and Total Max Envy (TME). As pricing 

scheme controls unfairness coming from the efficient system, it achieves Envy-Free 

condition. Since SO assignment does not deal with heterogeneity, we assume that an agent’s 

valuation is monotone as 1 time-unit. Although the ASEEM model devises the optimal 

solution by allocating longer travel time paths to agents whose valuation are low, it comes 

with envy. We also assume that a system manager does not want the system to be profitable 

or to be funded, meaning budget-balanced to zero. 

Table 4. 3 Results of ASSEM-PM and its comparisons with other models 

Model Total Travel Time Total Maximum Envy 

UE 1494.9 - 

SO without toll 1349.7 282.0 

Congestion pricing 1349.8 21.16 

Second-Best Toll 1349.8 11.48 

ASEEM 1380.0 8.5 

ASEEM-PM 1349.8 0.0 
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Table 4.4 indicates comparisons of allocated path and credits. There are only two paths in 

the results of UE assignment and its travel time is equilibrated at 62.3. The SO model has 

three paths and its travel time gaps to the shortest path are 20 for path1 and 10 for path 3: 

there are equivalent gaps to maximum envy relative to the shortest path. Path flows of both 

SO and UE are continuous variables, whereas the ASEEM models are agent-based models, 

restricts path flows of both models to integer variables. 

 

Table 4. 4 Path-level comparisons among models 

Type 
Travel time (Vol) Pricing Max (Envy) 

R1 R2 R3 R1 R2 R3 R1 R2 R3 

UE 
62.3 

(14.9) 

62.3 

(9.1) 
- - - - 0 0 0 

SO 
64. 5 

(7.2) 

44.5 

(3.0) 

54.5 

(13.8) 
- - - 20 0 10 

Congestion 

Pricing 

64.25 

(7) 

44.5 

(3) 

54.75 

(14) 
14.25 34.50 24.75 0.0 0.0 2.58 

Second- Best 

Toll 

64.25 

(7) 

44.5 

(3) 

54.75 

(14) 
0 19.75 9.5 0.0 0.0 1.58 

ASEEM 
59.0 

(6) 
- 

57.0 

(18) 
- - - 1.50 - 0.0 

ASEEM-PM 
64.25 

(7) 

44.5 

(3) 

54.75 

(14) 
-7.73 14.91 0.67 0.0 0.0 0.0 
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ASEEM does not find the minimized travel time solution and has two paths separated by 

time-unit gaps of 2. However, the maximum envy felt by agents in the longer path group 

(path 1) is 1.5. This is because the maximum envy is bounded to the value of an extreme 

agent in the path group. This property will be utilized in Chapter 5 for reducing the 

complexity of the proposed algorithms. Finally, the pattern of path flows of ASEEM-PM is 

close to the SO solution. The slight differences come from the characteristics of an agent-

based model.  

 

As can be seen in Table 4.4, ASEEM-PM does not induce envy. Varying prices or incentives, 

according to allocation and travel time gap and heterogeneity, control the system to be Envy-

Free. The shortest path group pays tolls at the amount of 14.91 and the second path groups 

also pay tolls but small at the amount of 0.67. Those collected tolls are used to compensate 

the length of path groups’ inconvenience, which compromises their envy. Interestingly, the 

allocated efficiency is also observed in the ASEEM-PM (Lemma 4.2). The shorter paths are 

allocated by categorization of valuation of time. This makes sense in that agents who have 

higher valuation of time pay for their shortest travel time and agents who are not sensitive 

to travel time are willing to yield their shortest option to others with the compensation. 

 
 
With the assumption that the valuation of agents is randomly sampled from ~N (1, 0.3), we 

examine all possible combinations of the setting of allowable envy and maximum willingness 

to pay. The maximum travel gap among the path of the hypothetical network is 20 time-units. 

Thus, we set the range of both e𝑚𝑎𝑥and p𝑚𝑎𝑥 from zero to 20. From our prior tests, we found 
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that objectives are significantly sensitive to e𝑚𝑎𝑥and p𝑚𝑎𝑥 adjacent zero: so we use a more 

dense-sampling in this range. We vary the interval due to the slow convergence of a solution. 

The variables are discretized with 0.1 interval from 0 to 1.5, 0.5 interval from 1.5 to 5.0, and 

1.0 interval by 20. 

 

Figure 4.2 visualizes the effectiveness of e𝑚𝑎𝑥 and p𝑚𝑎𝑥. Extreme small value of envy without 

pricing comes with the result of AoN. This is also an Envy-Free solution but the worst usage 

of transportation supply. By relaxing e𝑚𝑎𝑥  and p𝑚𝑎𝑥 , ASEEM-PM is able to find the 

equivalent solution to UE condition. We can also observe a transitional region between UE 

and SO. It is also known as Constrained System Optimal (CSO). But it comes with envy if 

pricing is not introduced. It is interesting to find waves in Envy objectives (right). These 

waves happen when improved travel time is not controlled by enough pricing. At the same 

total travel time, increasing p𝑚𝑎𝑥 lowers the total maximum envy. Finally, combinations with 

enough e𝑚𝑎𝑥  and p𝑚𝑎𝑥  allow ASEEM-PM to achieve our goal-maximized efficiency and 

fairness. Although we set e𝑚𝑎𝑥 and p𝑚𝑎𝑥 to be very large, say infinity, pricing is bounded to 

a certain value. We will discuss this property in Section 4.3.2. 
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Figure 4. 2 Pattern of ASEEM-PM under different combination of 𝐞𝒎𝒂𝒙 and𝐩𝒎𝒂𝒙 

 
 

  

UE & Envy  FreeAoN & Envy  Free

SO & Envy  Free

CSO

UE & Envy  Free

AoN & Envy  Free
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4.3.2 Relationship between maximum willingness to pay and heterogeneity 

The heterogeneity of agents is of critical importance in the mechanism of the proposed 

method. Figure 4.3 shows the histograms of generated individuals for various standard 

deviations. Note that we can observe the increasing number of the smallest bin as being 

generated by negative values replaced by the smallest value as defined in Definition 3.2. 

 

Figure 4. 3 Histograms of the value of time for generated agents 

 

Figure 4.4 shows a comprehensive set of results on the effectiveness on p𝑚𝑎𝑥 variable while 

𝑒𝑚𝑎𝑥 is fixed to be a large number. Pricing is related to the heterogeneity of agents, so this 

figure analyzes the effectiveness of p𝑚𝑎𝑥  and heterogeneity together. We categorize the 

heterogeneity of agents’ valuation into two groups. Left figures (a and c) visualize the 

Mean 1.0, Std 0.1 Mean 1.0, Std 0.3

Mean 1.0, Std 0.5 Mean 1.0, Std 0.7
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scenarios having a relatively small standard deviation. Right (b and d) are for the relatively 

large standard deviation groups.  

 

As can be seen in Figure 4.4 (a) and (b) provided enough value of p𝑚𝑎𝑥  we can find the 

optimal solution for both the minimum total travel time and minimum total max envy. 

Specifically, small p𝑚𝑎𝑥  settings result in significant envy regardless of the level of 

heterogeneity. Furthermore, it does not find the optimal solution for the minimized total 

travel time. This justifies the role of pricing schemes that charges enough tolls and distribute 

collected tolls to the other agents.  

 

Another general pattern is that greater heterogeneity can bring higher efficiency in a lower 

maximum payment setting as we compare graph (a) and (b). As higher heterogeneity in 

Figure 4.3 (a), small amounts of maximum willing to pay find better efficiency. Figure 4 4 (b) 

also shows the same pattern. Sheffi (1985) shows that higher perception error for travel time 

could lead travelers to not use the shortest path and a more substantial variance of 

perception could distribute travel along paths that travelers regard as their best. Although 

we do not consider agents’ perception error, our solution shows similar results with the 

heterogeneity of valuation of time for agents.  

 

Maximum willing to pay over 12 time-units bound to 11.9 time-unit for σ =    . Other 

heterogeneity cases, i.e., σ =    ,    ,  nd   5  are bounded 12.79, 14.91, and 16.97, 

respectively. This pattern implies that heterogeneity contributes efficiency with the lower 
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maximum payments. However, the optimization problem with the high heterogeneity (σ =

  7) does not find the solution where total travel time is lower than the user equilibrium 

condition, (we will address this condition in more detail in Section 4.3.3.). 

 

Figure 4. 4 Performance with respect to maximum payment and heterogeneity 
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4.3.3 Relationship between heterogeneity and budget 

This section analyzes heterogeneity in more detail. This examination relaxes the p𝑚𝑎𝑥 and 

e𝑚𝑎𝑥  to be large enough, that p𝑖  and e𝑖𝑗  control the results of optimizations. Figure 4.5 

visualizes the relationship between heterogeneity and objective values. 

 

From the solutions, we can infer that while budget constraints do not affect the minimization 

of total travel time, heterogeneity is an effective factor. Both the travel time and sum of envy 

is effectively regulated under moderate heterogeneity. However, results for heterogeneities 

over 0.5 standard deviations seem unstable. It is highly likely that the optimization might not 

find the optimum solution in both total travel time and sum of envy. We expect that large 

heterogeneity make the optimization problem too complex to solve in the existing solvers. It 

is worth restating that the proposed method is a mixed integer linear programming.  

 

The numerical example, Braess’s Paradox Network, has three binary variables relating to 

paths. In addition, there are individual-level envy comparisons, that associates N × N −   

constraints. Pricing terms also increase complexity. We employ Gurobi solver that solves 

MILPs heuristically. There are different modes for exploring the MILP search tree and we can 

increase the number of iterations for optimization. These settings help to find the better 

solution; however, our experiments could find the optimum solution that meets our 

expectation for the objective value. Chapter 5 will address this problem by reducing the 

problem sizes while not losing of generality of the proposed scheme (ASEEM-PM).  
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Figure 4. 5 Performance with respect to budget and heterogeneity 

 
In addition, pricing distribution among paths might be of critical importance to a system 

manager and users. Moreover, price variations according to the heterogeneity are also 

matters of interest. Table 4.5 shows total transaction amounts according to both budget and 

heterogeneity. As addressed in Figure 4.5. all heterogeneity cases, except for the case of that 

standard deviation of valuation is higher than 0.7, have the same traffic pattern. R2 is the 

shortest path and R1 is the longest path. As addressed in Chapter 2.3, the pricing differences 

among paths for homogeneous valuation are the same to travel time gaps regardless of 

budget. Higher heterogeneity is related to increase the pricing gaps. 

 

Generally, the fastest route path group (R2) tends to increase their willingness to pay as 

heterogeneity increases. It is also observed that incentives for the slowest route path group 
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(R1) get lower by heterogeneity. We can infer that the mean value of valuation of the shortest 

group increases by heterogeneity, which implies that agents in this group put more weight 

on travel time and are more willing to pay for their shortest time. Similarly, the mean value 

of valuation for agents in the longest group might be lower, which are less sensitive to travel 

time and follow the longest route by smaller incentives. Interestingly, the second shortest 

group (R2) might pay for their shorter travel time, but not always. 

 

Subsidizing (budget) also affects groups pricing and total transaction cost. Total transaction 

cost (TTC) is computed as Eq (22).  

 𝑇𝑇𝐶 =  ∑∑|𝑝𝑖
𝑟s|

𝑖∈𝐼𝑟s

  (22) 

 

When a manager operates this system for his/her profit, the shortest path group will pay 

more, and the slowest group will get less paid than the budget balanced case (B =  ). This 

also affects the amount of total transaction cost. 

 

Intuitively, a subsidy helps decrease the total amount of transacted price. Our experiments, 

however, find that high subsidy can also increase total transaction cost under high 

heterogeneity conditions. The hypothetical network has this case and mostly happens in the 

transitions of pricing. For example, in budget-balanced case (B=10), total transaction cost 

decreases as heterogeneity grows until 0.3 but then increases again. We guess that this 

condition occurs because of the second group (R3) where pricing changes from tolls to 

incentives in the subsidy cases (B>0). 
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Table 4. 5 Path-level pricing comparisons by heterogeneity and budget 

Budget 
Heterogeneity 

pricing 
Total Transaction 

R1 R2 R3 

-20 0 -7.18 12.57 2.32 120.48 

 0.1 -6.94 13.58 1.99 117.22 

 0.3 -6.47 15.56 1.33 110.62 

 0.5 -6.53 17.78 0.89 111.47 

 0.7 -4.32  3.92 97.67 

-10 0 -7.59 12.16 1.91 116.31 

 0.1 -7.50 13.22 1.63 115.05 

 0.3 -7.32 15.32 1.09 112.46 

 0.5 -6.42 17.14 0.25 99.89 

 0.7 -4.85  3.56 97.06 

0 0 -8.01 11.74 1.49 112.15 

 0.1 -7.77 12.74 1.16 108.85 

 0.3 -7.74 14.93 0.67 108.35 

 0.5 -6.84 16.73 -0.17 100.45 

 0.7 -5.09 
 

3.15 93.06 

10 0 -8.43 11.32 1.07 107.98 

 0.1 -8.19 12.32 0.74 104.70 

 0.3 -8.15 14.49 0.26 104.12 

 0.5 -7.26 16.35 -0.59 108.111 

 0.7 -5.68  2.73 92.07 

20 0 -8.84 10.91 0.66 103.81   

 0.1 -8.75 11.96 0.38 102.53 

 0.3 -8.57 14.07 -0.16 104.44 

 0.5 -7.68 15.94 -1.01 115.62 

 0.7 -6.10  2.31 89.56 
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4.3.4 Insensitivity of solution optimality on the chosen random distribution 

The symmetry characteristics of the normal distribution might be a reason for the optimality 

of solution. To test the impact of the symmetry characteristic on the final solution, we also 

evaluate the proposed method with another random probability distribution. However, it is 

noteworthy that the chosen distribution of valuation of time in the previous case might also 

be asymmetric since we manually converted some generated negative values to a small 

positive value. This happens when the standard deviation setting is high.  

 

Figure 4. 6 Lognormal distribution with different sigma 

Here, we examine a lognormal distribution for agent’s valuation of time with different 

settings. A lognormal distribution is also a continuous random distribution where the 

random variable is lognormally distributed. Thus, the lognormal distribution only takes 

positive values which is reasonable assumption for valuation of time. In addition, the 

𝜇 0.0,  0.1

𝜇 0.0,  0.7

𝜇 0.0,  0.3

𝜇 0.0,  0.5
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parameters for the lognormal distribution are μ  nd σ, which are the mean of logarithmic 

value and standard deviation of logarithmic value, respectively. As can be seen in Figure 4.6, 

a higher value of σ of the lognormal distribution results in an asymmetric distribution. 

 

Figure 4.7 shows the result for the case where agents are randomly sampled from this 

distribution. The results show similar patterns as in the normal distribution case. An 

appropriate value of the maximum willingness to pay (p𝑚𝑎𝑥) setting can find the optimal 

solution for both efficiency of total travel time and fairness in terms of envy. 

 

 

Figure 4. 7 Maximum payment and heterogeneity (lognormal distribution) 
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4.3.5 Limitation on computational complexity 

As discussed, our model is based on a mixed integer linear programming which is known to 

be computationally complex. It is evident that our optimization has a significant number of 

constraints. In addition to constraints with respect to traffic assignment-such as origin-

destination demand, path volumes, and path travel time, Peer to Peer alternative 

comparisons- add complexity since n agents compare the matched option of n-1 agents, 

which consist of n x (n-1) envy comparison variables. An objective for total max envy 

accompanies with the Min-Max optimization technique, meaning that the constraints include 

finding an individual level of maximum envy. There are also Budget constraints. 

Furthermore, binary variables for route choices of agents add to complexity. 

 

The complexity of the proposed method is tested with the ASEEM-PM and the configuration 

of weights in the objective function is α =   5, β =   5, γ =    . We generate various number 

of agents (from 6 to 35) in the hypothetical network (Braess’s Paradox network). Due to the 

demand scale parameter (𝜔), as defined in Chapter 3, travel time of all links remains the 

same regardless of demand. There are three routes as Table 4.4. the value of p𝑚𝑎𝑥 and e𝑚𝑎𝑥 

are relaxed to very large number. As can be seen in Figure 4.6, computation time 

exponentially increases by the number of agents. 

 

 

 



75 

 

 

Figure 4. 7 Computing complexity of ASSEM-PM 

4.4 Discussion 

This chapter introduces a pricing scheme, ASEEM-PM, as an extended version of ASEEM so 

that agents in the optimized system do not feel envious to others. The shortest path group in 

the optimized system can travel faster than the UE condition and even faster than other path 

groups. Their convenience actually comes from the other group’s inconvenience, say longer 

travel time. The travel time of the inconvenient group can be either longer or shorter than 

UE. No matter what an agent compares to his/her travel time of UE, it will be true that an 

agent feels unfair when she/he compares his/her resource to the shortest group. This 

condition justifies that the agents of the shortest path group pay and the other agents get 

rewarded. When money collected from the shortest path group compensates to the non-

shortest path group, they might feel less unfair. However, when the shortest path group pays 

too much than they think reasonable, they might feel the system unreasonable. In turn, they 

will not select the recommended alternative that a system finds as most efficient.  
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We formulate ASEEM-PM’s mathematical objective function and constraints, considering 

heterogeneity in valuation for time and optimized transportation systems. The solution finds 

the optimal price where nobody feels envious of others’ while achieving efficient 

transportation condition. From this solution, we can regard an optimized system to be a fair 

and efficient transportation system. Although we have contributions in that the proposed 

method can deal with heterogeneity of agents, finds the ideal condition in both the efficiency 

and fairness, and computes the optimal prices for each group, one pivotal limitation lies on 

the scalability. 

 

The individual level of alternative comparisons requires almost polynomial number of 

constraints, n ×  (n −  ). The mathematical formulation even includes binary variables for 

paths. Our numerical experiences indicate the processing time increases exponentially by 

the number of agents. More computational time is required by larger number of route 

alternatives. This limitation deters the proposed method to implement in real problems.  

 

From the numerical examples and examinations of the characteristics of the ASEEM-PM, we 

have come up with ideas to simplify the complexity, which motivates us to develop a 

decomposing the problem sets and reduce the number of comparisons among agents. 

Lemma 3.4 is an example in that we can remove the envy comparison constraints for agents 

in the same path group because agent in the same group do not feel envious toward each 

other.   
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Chapter 5 

5.1 Decomposition Method for ASEEM-PM: Overview 

This chapter outlines a heuristic method to apply the proposed ASEEM-PM model for actual 

real-world applications, where the network size, the number of agents, and heterogeneity 

are large enough. Designing a service focusing on travelers’ behavior at an individual level 

requires complex computations. As discussed in Chapter 4, ASEEM-PM is unlikely to be a 

candidate framework for real-world applications, since it arrives at the optimal solution in 

reasonable time only if the number of agents in the system are small. Solving a problem 

where the system contains 50 agents takes more than half an hour on a sufficiently powerful 

desktop computer. One of the main reasons for this limitation is that Mixed Integer Linear 

Programming methods are used to solve the problem. Furthermore, the problem is also 

restricted to a linear objective function and linear constraints, an assumption not valid for 

realistic transportation scenarios that have non-linear characteristics  

 

To solve this problem, we develop a heuristic method using properties of ASEEM and 

ASEEM-PM. The first approach is to decompose the Mixed Integer Linear Programming into 

a set of a known traffic assignment problem and a linear programming problem. 

Furthermore, we reduce the problem size by eliminating constraints. We introduce the 

heuristic algorithm in this section and evaluate its performance on two hypothetical 

networks.  
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5.2 Heuristic algorithm for ASEEM-PM 

The mathematical formulation for ASEEM-PM consists of three main objectives: total travel 

time, the sum of maximum envy of agents, and the sum of envy to the shortest path. The 

optimal condition of the solution would be that all objectives no longer improve. If the sum 

of maximum envy and the sum of envy to the shortest path are minimized to optimum no 

matter what the given traffic condition, both objective functions can be optimal. The envy-

free pricing (𝑝) in ASEEM-PM calculates optimal pricing to find the envy-free condition. 

Lemma 4.1 and the experiments in Chapter 4 show that relaxing the maximum envy (𝒆𝒎𝒂𝒙) 

and the maximum pricing setting (𝒑𝒎𝒂𝒙) can ensure the system optimum and Envy-free 

conditions. This characteristic motivates us to decompose the multi-objectives into two 

pieces and to solve them sequentially. In other words, we can redesign the ASEEM-PM to 

have two steps: 1) identifying the desirable traffic condition for a given demand and supply, 

2) calculating the optimum pricing to warrant envy-free condition. 

 

This decomposition simplifies the ASEEM-PM significantly. The solution of the first objective 

does not need to consider the agent’s heterogeneity for the value of time. This implies that 

the system-wide goal in this step is to identify the minimized total travel time that is not 

affected by agents’ different preference to travel time, as shown in Lemma 5.1. 

 

Lemma 5.1 (Agents’ heterogeneity on valuation of time does not affect the 

minimization of total travel time) 
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Proof) The first term of the objective function (Eq 4.7) only takes into account the sum of the 

total travel time of each link, which is identical to the total path travel time of agents. 

 

Secondly, Step 2 finds the envy-free condition for P2P envy comparisons. It is unnecessary 

for this step to be iterative since the pricing scheme finds the condition that the second 

objective is equal to zero based on the results from Step 1. The static version of the heuristic 

algorithm eliminates the third objective (the envy to the shortest path) from the scope since 

the results from aggregate a traffic assignment model in Step 1 do not deliver a unique path 

flow. Unique path flows can be reorganized by considering OD paths and agent’s 

heterogeneity. However, the reorganization requires dynamic movements of each OD pair. 

Instead of designing the property in this algorithm, this chapter focuses on the potential of 

the heuristic approach to solve the ASEEM-PM problem. The unique path property will be 

addressed in the dynamic solution in Chapter 6. 

 
5.3.1 Desirable Travel Pattern 

The first objective of ASEEM-PM is formulated as an agent level problem, as shown in Eq (4.7) 

We can select formulations (4.7(b)-(e)) that only affect traffic conditions for Step1. Variables 

in the selected equations are independent of the agent’s different preferences of travel time 

(𝜃𝑖), which allows an aggregate traffic assignment model to be the best candidate. 

 

Equation (5.1) and its constraints represent the mathematical formulations of an aggregate 

traffic assignment model for the efficiency of urban transportation systems. This is 
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maximized according to Wardrop’s 2nd principle, also as known as “system optimal” or 

“social Wardrop equilibrium”, where traffic is well distributed over the network.  

Min   j = ∑ x𝑎𝑡𝑎𝑎∈𝐴 (x𝑎) = ∑ ∫ 𝑚𝑐𝑎(𝑣𝑎)
𝑥a
0𝑎∈𝐴 dv (5.1) 

 

subject to: 

 x𝑎  =  ∑ ∑ 𝑓𝑘
𝑟𝑠𝛿𝑎,𝑘

𝑟𝑠
𝑘𝑟𝑠     𝑘 ∈ 𝐾𝑟𝑠 (5.1a) 

 𝑞𝑟𝑠 = ∑ 𝑓𝑘
𝑟𝑠

𝑘   ∀  s, ∀ 𝑘 ∈ 𝐾𝑟𝑠 (5.1b) 

 𝑓𝑘
𝑟𝑠 ≥    ∀  𝑘 ∈ 𝐾𝑟𝑠,  ∀  s (5.1c) 

 

There are possible assignment models to solve for System Optimum state, such as 

Mathematical programming (MP), traditional traffic assignment models (such as the Frank-

Wolfe algorithm), and path-based assignment model (Gradient Projection or the 

disaggregate simplicial decomposition (DSD) algorithm). 

 

The choice of a proper model is of critical importance because Step 2 entails knowledge of 

path-level flows and travel time information, which will be utilized in the agent-level envy 

comparisons. MP and Frank-Wolfe algorithms remove the path-level flow variables from the 

objective functions and constraints; consequently, the tradition models do not make use of 

path flow and travel time. Thus, we select the path-based traffic assignment model in our 

approach. 
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Two algorithms have received significant attention in path-based traffic assignment 

literature: the disaggregate simplicial decomposition (DSD) algorithm and the gradient 

projection (GP) algorithm. The GP algorithm outperforms DSD in terms of the faster 

convergence to an optimal solution since GP avoids expensive line searches (Chen, Lee, and 

Jayakrishnan 2002). Thus we will utilize the GP algorithm (Jayakrishnan et al. 1994), to solve 

the problem in Step 1. 

 

The GP algorithm iteratively solves the assignment problem by enumerating and eliminating 

paths. The path information also accompanies with flow and travel time information. In 

contrast to solving the mathematical problem by using the Frank-Wolfe algorithm, the GP 

algorithm redefines the problem by focusing on the demand constraints (Eq 5.1b). Eq 5.2 

reformulates the constraints to include the path flow variables. The path flows of the shortest 

path are the results of the operation of the gradient projection in the non-shortest path flows. 

Accordingly, the demand constraint is eliminated in the constraint set. 

 

f𝑘̅
𝑟𝑠 = 𝑞𝑟𝑠 − ∑ 𝑓𝑘

𝑟𝑠

𝑘∈𝐾𝑟𝑠,𝑘≠𝑘̅

 (5.2) 

 

The objective function is also reorganized to include the demand constraints and path flows 

(Eq 5.3). Note that the reformed formulation is a convex program with only the non-

negativity constraints of the set of non-shortest path flows for all OD pairs (Eq 5.3a). 
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min 𝑍̃( 𝑓) (5.3) 

subject to:  

                                     𝑓𝑘
𝑟𝑠 ≥   ∀k ∈ K, k ≠ k̅, ∀ s (5.3 a) 

where 𝑓is the non-shortest path flow. 

 

The GP algorithm finds a solution with successive moves in the descent direction as a Newton 

approximation of the objective function. The path flows are updated according to Eq 5.4. 

fk
rs(𝑛 +  ) = m x ( , fk

rs(𝑛) −
𝛼

𝑠𝑘
𝑟𝑠(𝑛)

(𝑑𝑘
𝑟𝑠(𝑛) − 𝑑𝑘̅

𝑟𝑠(𝑛)) (5.4) 

where 𝛼 is the step size, and  𝑠𝑘
𝑟𝑠(𝑛) is a scaling factor based on the second derivative Hessian 

of the objective function. Note that,  𝑠𝑘
𝑟𝑠(𝑛)  is calculated by removing overlapped links 

between the non-shortest path and shortest path (marginal cost-based travel time). In 

addition, the objective function is a convex and non-decreasing function, so the scaling is 

diagonal and positive. 𝑑𝑘
𝑟𝑠,𝑛 and 𝑑𝑘

𝑟𝑠,𝑛 are the first derivative of the objective function with 

respective to a path volume of the non-shortest path (𝑓𝑘
𝑟𝑠,𝑛) and of the shortest path (𝑓𝑘̅

𝑟𝑠,𝑛) 

as shown in Eq (5.5). This expression is equivalent to the marginal path travel time.  

 
𝑑𝜏
𝑟𝑠𝑘,𝑛 =

𝜕𝑍

𝜕ℎ𝜏
𝑟𝑠𝑘,𝑛

=∑∑𝑚𝑐𝑎
𝑛

𝑎𝑡

∙ δ𝜏  
 sk ∀ 𝑟𝑠𝑘, ∀ 𝜏 ∈  𝑇 (5.5) 

As GP process eliminates the path violating non-negativity constraint Eq (5.3 a), the max 

function is defined as Eq (5.4), which is theoretically the orthogonal projection to positive 

orthant in Gradient Projection algorithm 
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5.3.2 Agent-based Envy Minimization for a Given SO Traffic Pattern 

Once the previous step has identified the desired travel pattern, the next step finds the 

optimum pricing that minimizes agent’s envy. The second objective focuses on envy, and the 

constraints sets consist of OD path travel time and its price at the agent level. An agent 

measures envy by comparing the allocations with others’ if and only if the agents belong to 

the same origin and their destinations group (Definition 3.3). The proposed heuristic utilizes 

this local comparison property, making the local objective set for each OD pair independent. 

In this manner, the decomposition method solves the complete problem efficiently. 

Furthermore, the proposed heuristic does not include the agent-level of path-link binary 

variables (𝛿𝑖,𝑎,𝑘
𝑟𝑠 ), accordingly, the problem is no longer a mixed integer programing problem. 

With the given path travel time and volume from Step 1, this problem becomes a simpler 

linear optimization problem. We choose constraints (Eq 4.7 (a), (f)-(i)) that are related to 

the envy minimization for an OD pair, as Eq (5.6). 

 

Min   j = ∑ m 𝑥
𝑖≠𝑗

{𝑒𝑖𝑗}𝑖∈𝐼  (5.6) 

subject to: 

 −𝑡𝑘,𝑖
𝑟𝑠𝜃𝑖 + 𝑒𝑖𝑗 −  𝑝𝑖

𝑟𝑠 ≥  − 𝑡𝑘,𝑗
𝑟𝑠 𝜃𝑖 −  𝑝𝑗

𝑟𝑠  ∀ 𝑖,  j ∈ 𝐼𝑟𝑠,  i ≠ 𝑗, ∀  s (5.6a) 

 𝑒𝑖𝑗 ≥    ∀ 𝑖 ∈ 𝐼, , ∀  s (5.6b) 

 𝑝𝑚𝑖𝑛
𝑟𝑠 ≤ p𝑖

𝑟𝑠 ≤  𝑝𝑚𝑎𝑥
𝑟𝑠   ∀ 𝑖 ∈ 𝐼, , ∀  s (5.6c) 

 ∑ 𝑝𝑖𝑖∈𝐼𝑟𝑠 = 𝐵𝑟𝑠  ∀  s (5.6d) 

  𝑟𝑠
∗ ∈ m x

𝑡𝑟𝑠
∑ −𝑡𝑘,𝑖

𝑟𝑠𝜃𝑖𝑖   ∀  s (5.6e) 
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where, 𝑡𝑘,𝑖
𝑟𝑠  is path travel time of path 𝑘 for Origin (𝑟) and Destination (𝑟) for agent 𝑖. 𝑡𝑘,𝑗

𝑟𝑠 in Eq 

(5.6a) is the other agent 𝑗 who agent 𝑖 compares their allocation with. Similarly, 𝑝𝑖
𝑟𝑠 is the 

pricing for agent 𝑖 and 𝑝𝑗
𝑟𝑠 is for the comparison target (agent 𝑗). The system manager can 

regulate the minimum pricing 𝑝𝑚𝑖𝑛
𝑟𝑠  and the maximum pricing 𝑝𝑚𝑎𝑥

𝑟𝑠   This setting affects the 

total maximum envy but the mathematical programming procedure solves the problem to 

minimize the total maximum envy. Additionally, we relax 𝑝𝑚𝑖𝑛
𝑟𝑠  and 𝑝𝑚𝑎𝑥

𝑟𝑠  to negative infinity 

and positive infinity to make the problem envy-free.  

 

Here, the second step requires a procedure that converts the aggregated path flow pattern 

to the agent level. The path information from the prior step only contains travel time and its 

path flow over total OD flow. For this conversion, we utilize Allocation Efficiency (Lemma 3.7 

and Lemma 4.3) that is the result of a complete problem. It is proven that AE minimizes the 

total maximum envy. To consider this property, the generated agents, based on the known 

distribution, are allocated according to the sorted order of AE (Eq 5.6e). In other words, OD 

paths enumerated by travel time are allocated to agents in order of valuation, meaning that 

the shortest path is assigned to the agents having a high valuation in the simulation.  

 

The final results of the entire problem will come with the travel options following the system 

optimum pattern, which contain information of travel time and its price (either toll or 

incentive). In an actual application, an agent has all route options and finds an alternative 

that does not bring envy, which is essentially the same traffic pattern found in Step 1.  
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5.3 Reducing problem size by the characteristics of ASEEM-PM 

Section 5.2 addressed the decomposition method for ASEEM-PM. Although it strives to 

simplify the original complex problem, the method of Step 2 finds the objective by comparing 

N to N-1 envies. Therefore, it is still computationally complex, and we need to design 

methods to find more efficient methods without loss of generality. This section introduces 

the method to reduce the problem size using the characteristics of ASEEM and ASEEM-PM. 

 

First of all, Lemma 3.4 (Group Envy-Family Envy problem) helps eliminate a significant 

number of comparison constraints. Although the SO status has more paths than UE, its 

number is definitely less than OD demand, meaning that each path flow (nk) is more than 

unit value. In practice, there is a limited number of paths in an OD pair, say less than five. 

Furthermore, ASEEM-PM does not have a price difference in the same path group (Lemma 

4.4). These two properties make the p2p envy comparisons in the same path group 

redundant. Accordingly, we can remove nk × (𝑛𝑘 −  ) constraints. 

 

More interestingly, Lemma 5.2 states that the amount of pricing is determined by extreme 

valuation in each group and budget allows the p2p comparisons to be path group 

comparisons.  
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Lemma 5.2 (Amount of Credit determined by extreme values in each group and 

budget) 

Proof)  

Let i, j are paths of an OD path group (𝑖, 𝑗 ∈ K𝑟𝑠 ) and agent 𝑎 belongs to one of the 

paths and path travel time follows as  i < 𝑡𝑗 . 𝜃𝑖
𝑎 represents the valuation of agent 𝑎 in 

path 𝑖 , 𝜃𝑖
−  is the agent having the lowest valuation in path 𝑖 . 𝜃𝑖

−  and 𝜃𝑖̅  are for the 

highest valuation and the representative valuation (such as mean, 85 percentiles, and 

etc.), respectively. We generalize envy in Eq (4.1) to the path level comparison as Eq 

(5.7), where 𝑒𝑖𝑗
𝑎  is the envy that agent 𝑎 in path 𝑖 feel to path 𝑗. 

𝑒𝑖𝑗
𝑎 ≥ m x(−𝜃𝑖

𝑎(𝑡𝑗 − 𝑡𝑖) − (𝑝𝑗 − 𝑝𝑖),  )   (5.7) 

 

The possible envy-free pricing (𝑒𝑖𝑗
𝑎=0) with the 𝜃𝑖̅ is Eq (5.8) 

𝑝𝑖 =  𝜃𝑖̅(𝑡𝑗 − 𝑡𝑖) +pj (5.8) 

We replace 𝑝𝑖 in Eq (5.8) with Eq (5.6), then, we can find Eq (5.9) 

𝑒𝑖𝑗
𝑎 ≥ m x ((−𝜃𝑖

𝑎 + 𝜃𝑖̅)(𝑡𝑗 − 𝑡𝑖),  )  (5.9) 

 For the shortest path group (𝑖), agent 𝑎 feels envy to j (𝑒𝑖𝑗
𝑎 ) if agent 𝑎’ valuation 

𝜃𝑖
𝑎 is higher than 𝜃𝑖̅ . Thus, the envy-free condition is achieved only if the 

representative valuation for a price for path 𝑗 is set to be the minimum valuation (𝜃𝑖
−) 

among agents in path group 𝑖. This finding is in line with Mayet and Hansen (2000). 

The pricing for the shortest path where every agent in path 𝑖 does not feel envy is Eq 

(5.10). Eq (5.11) also implies that the shortest path group is willing to pay more than 

the other group at the amount of the perceived time difference of the representative 
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agent (𝜃𝑖
−). When the pricing is higher than this value, some agents in the group feel 

envious. Eq (5.11) 

𝑝𝑖 ≤  𝜃𝑖
−(𝑡𝑗 − 𝑡𝑖) +pj (5.10) 

𝑝𝑖 − pj ≤  𝜃𝑖
−(𝑡𝑗 − 𝑡𝑖)  (5.11) 

 

For agent 𝑏 in the longest path group (𝑗), we reformulate Eq (5.9) to the agent 𝑏’s 

point of view as Eq (5.12). Since 𝑡𝑖 − 𝑡𝑗  is negative, an envy free condition is achieved 

only if 𝜃𝑗
𝑏is equal to or higher than 𝜃𝑗̅. Similarly, 𝜃𝑗

𝑏 should be the maximum valuation 

in the path group j, which implies that price for path j is set based on the agent who 

has the highest valuation, Eq (5.13). 

𝑒𝑗𝑖
𝑏 ≥ m x ((−𝜃𝑗

𝑏 + 𝜃𝑗̅)(𝑡𝑖 − 𝑡𝑗),  )  (5.12) 

𝑝𝑗 ≥  𝜃𝑗
+(𝑡𝑗 − 𝑡𝑖) +pi (5.13) 

 

We can also extend this to multiple paths case. 

Let i, j, k ∈ K𝑟𝑠 and  ∈ Ii
𝑟𝑠, b∈ I𝑗

𝑟𝑠, 𝑎𝑛𝑑 c ∈ Ik
𝑟𝑠 and  i ≤ 𝑡𝑗 ≤ 𝑡𝑘 

A pricing range for envy-free exists for each path group is as shown in Eq (5.14) to Eq 

(5.16) 

pi ≥ 𝜃𝑖
−(𝑡𝑗 − 𝑡𝑖) + pj ≥ 𝜃𝑖

−(𝑡𝑘 − 𝑡𝑖) + pk  (5.14) 

𝜃𝑗
+(𝑡𝑗 − 𝑡𝑖) + pi ≤ 𝑝𝑗 ≤  𝜃𝑗

−(𝑡𝑘 − 𝑡𝑖) + pk  (5.15) 

pk ≤  𝜃𝑘
+(𝑡𝑘 − 𝑡𝑗) + pj  ≤ 𝜃𝑘

+(𝑡𝑘 − 𝑡𝑖) + p𝑖  (5.16) 
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The position of maximum valuation or minimum valuation is determined by the portion of 

the group among total OD volume. Furthermore, the portion of groups is identified by system 

optimum assignments (Step 1). From Lemma 5.2, we can infer that an agent in a paying group 

makes an effort to minimize their payment and an agent in an incentivized group does 

his/her best to maximize incentives. This means that the system estimates the optimum 

price by considering compensation to agents assigned to an inferior alternative and the 

optimization finds a solution to be bounded to the first agent (having θi
+) in the alternatives 

group. 

 

From Lemma 5.2, we prove that the pricing for path 𝑘  is determined by the extreme 

valuations in the group. For the mathematical problem, we generalize the equations from Eq 

(5.134) to Eq (5.16) into the two constraints (5.17 to 5.18). Here, 𝑒 𝑘𝑘′
− is the envy that agent 

having the lowest valuation in k path group feels to the path group k’. 𝑒 𝑘𝑘′
+  is the envy for the 

agents having the highest valuation. Thus, if those agents located at the extreme valuation in 

a path group do not feel envy, every agent in the same path group also does not feel envy. 

 𝑒 𝑘𝑘′
− ≥  − 𝜃𝑘

−(𝑡𝑘′
𝑟𝑠 − 𝑡𝑘

𝑟𝑠) −  (𝑝𝑘′
𝑟𝑠 −  𝑝𝑘

𝑟𝑠)  ∀ k, k′ ∈ 𝐾𝑟𝑠 , k ≠ k′ (5.17) 

 𝑒 𝑘𝑘′
+ ≥  − 𝜃𝑘

+(𝑡𝑘′
𝑟𝑠 − 𝑡𝑘

𝑟𝑠) −  (𝑝𝑘′
𝑟𝑠 −  𝑝𝑘

𝑟𝑠)  ∀ k, k′ ∈ 𝐾𝑟𝑠 , k ≠ k′ (5.18) 

 

We also set the budget constraints for the mathematical formulation. The given proportion 

from Step 1 fixes the number of agents 𝑛𝑘in a path group k, thus budget constraint for OD 

pair 𝑟𝑠 is as Eq (5.19) 
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 ∑ 𝑛𝑘𝑝𝑘𝑘∈𝐾𝑟𝑠 = 𝐵𝑟𝑠   (5.19) 

 

Eq (5.20) shows the entire mathematical formulation for Step 2. The peer to peer envy 

comparisons, which requires N × (N −  )  computations, is simplified to the path-level 

comparisons. If there are k existing paths in an OD pair, its computation complexity becomes 

2 × K × (K −  ) . Usually, the number of OD paths is indeed not high in real-world; 

consequently, the decomposed heuristic method can be computationally efficient.  

 

Min   j = ∑ m 𝑥
𝑖≠𝑗

{𝑒𝑘𝑘′}k∈𝐾𝑟𝑠  (5.19) 

subject to: 

 −𝑡𝑘
𝑟𝑠𝜃𝑘

− + 𝑒 𝑘𝑘′
− −  𝑝𝑘

𝑟𝑠 ≥  − 𝑡𝑘′
𝑟𝑠𝜃𝑘

+ −  𝑝𝑗
𝑟𝑠  ∀ k, k′ ∈ 𝐾𝑟𝑠 , k ≠ k′ (5.19a) 

 −𝑡𝑘
𝑟𝑠𝜃𝑘

+ + 𝑒 𝑘𝑘′
+ −  𝑝𝑘

𝑟𝑠 ≥  − 𝑡𝑘′
𝑟𝑠𝜃𝑘

+ −  𝑝𝑗
𝑟𝑠  ∀ k, k′ ∈ 𝐾𝑟𝑠 , k ≠ k′ (5.19b) 

 𝑒𝑘𝑘′
− ≥  , 𝑒𝑘𝑘′

+ ≥    ∀ k, k′ ∈ 𝐾𝑟𝑠 , k ≠ k′ (5.19c) 

 𝑝𝑚𝑖𝑛
𝑟𝑠 ≤ p𝑘

𝑟𝑠 ≤  𝑝𝑚𝑎𝑥
𝑟𝑠   ∀ 𝑖 ∈ 𝐼 (5.19d) 

 ∑ 𝑛𝑘𝑝𝑘𝑘∈𝐾𝑟𝑠 = 𝐵𝑟𝑠   (5.19e) 

  𝑟𝑠
∗ ∈ m x

𝑡𝑟𝑠
∑ −𝑡𝑘,𝑖

𝑟𝑠𝜃𝑖𝑖   ∀  s (5.19f) 
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5.4 Numerical Example 

5.4.1 Evaluation Environment 

In this section, we compare the proposed decomposition method with a standard 

mathematical programming technique. For the base case of the mathematical programming 

problem, we set the weights of the objective function as Case D in Section 3.5 (α =   5, β =

  5,  nd γ =    ). The number of agents is a significant factor affecting the mathematical 

problem (Eq 4.7). The individual level of route-link binary incident matrix adds complexity 

(𝛿𝑖,𝑎,𝑘
𝑟𝑠 ). The proposed method devises to reduce the computation complexity, as explained in 

the previous section. The first approach (GP+Peer to Peer Envy comparisons) is to eliminate 

𝛿𝑖,𝑎,𝑘
𝑟𝑠  by decomposing the full problem into two steps: 1) GP for identifying SO traffic pattern, 

and 2) finding the agent-level envy-free pricing solution. The first approach still remains a 

NP-hard problem which requires a non-polynomial time for the P2P envy comparisons. The 

second approach that we propose simplifies the NP hard problem by leveraging the 

characteristics of ASEEM-PM. 

 

For the evaluation, we use Python 3.56 (64bit) with Gurobi solver 8.10. The computing 

processor is Intel® Core™ i7-6800k @ 3.40Ghz with 32.0 GB memory. Since the given solver 

(Gurobi) can only solve mixed-integer linear programming problems in which the objective 

function and its constraints consist of linear and non-decreasing equations, we test the 

performance on the Braess’s Paradox Network.  
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5.4.2 Processing time 

Figure 5.1 indicates the comparisons of the processing time. The mathematical programming 

(MILP) spends about 1600 seconds for 36 agents, which is unlikely to be a candidate 

application. For Figure 5.2 (a), the first decomposed method (GP+P2P Envy comparisons) 

reduces the processing time significantly. It only takes about 0.20 seconds for the 36 agents 

case. However, the processing time still exponentially increases the number of agents 

increases, typically O(n2). The proposed heuristic enables the problem to be O(n), and only 

takes 0.057 seconds for 36 agents and 0.06 seconds for 200 agents.  

 

 

Figure 5. 1 Comparisons of processing time with respect to the number of agents 

 

5.4.3 Performance on solving the optimum 

We evaluate whether the proposed solution finds the exact solution for ASEEM-PM. 

Table 5.2 indicates the results of the total travel time and total max envy with respect to the 

various number of agents. For the six agent cases, all methods find the exact solution where 
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both the total travel time and total maximum envy are minimum. However, with the 

increased number of agents, MILP does not find the optimum solution. For example, the 10 

agents case shows that the total travel time is 564.80, which is higher than 562.60 for the SO 

travel time. Also, for all cases with more than 20 agents, envy-free state is not achieved, and 

even the travel time is not an optimum. MILP is generally solved using the Branch and Bound 

algorithm. A significant number of integer variables make the optimization problem difficult 

to solve since memory and solution time exponentially increase. This is due to the fact that 

integer values for the variables result in many combinations needed to be checked. Although 

Gurobi solver can handle a large number of integer variables by heuristically presolving, 

cutting planes, and parallel processing, it still cannot find the optimal solution. Even when 

our method finds an optimum solution, there are possible cases where the total travel time 

is not an optimum. In the process of conversion from an aggregate model to agents-based 

model, our method rounds up the continuous value. Sometimes, the rounded values are not 

the solution to the optimum. There are some green dots and cyan “x” 

 markers higher than the optimum travel time in Figure 5.2. It implies that a simple rounded 

function can have not an optimum solution. However, the deviation from optimum is not 

significant and this deviation rarely occurs when the number of agents is higher. Therefore, 

we do not develop further steps to find the optimum solution in those cases. 
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Table 5. 1 Comparisons of objective values for models 

 Total Travel Time Total Max Envy 

Total Agents MILP GP+P2P Proposed MILP GP+P2P Proposed 

6 339.00 339.00 339.00 0.00 0.00 0.00 

10 564.80 562.60 562.60 0.00 0.00 0.00 

15 845.60 844.40 844.40 0.00 0.00 0.00 

20 1127.60 1125.20 1205.70 0.36 0.00 0.00 

25 1409.92 1406.56 1406.56 0.03 0.00 0.00 

30 1691.20 1687.20 1687.20 0.63 0.00 0.00 

35 1973.03 1968.63 1968.63 1.43 0.00 0.00 

40 - 2249.45 2249.45 - 0.00 0.00 

50 - 2811.84 2811.84 - 0.00 0.00 

60 - 3374.30 3374.30 - 0.00 0.00 

70 - 3936.60 3936.60 - 0.00 0.00 

80 - 4498.90 4498.90 - 0.00 0.00 

90 - 5061.27 5061.27 - 0.00 0.00 

100 - 5702.98 5702.98 - 0.00 0.00 

150 - 8435.48 8435.48 - 0.00 0.00 

200 - 11247.25 11247.25 - 0.00 0.00 

 

 

Figure 5. 2 Comparisons of objective values with the respect to the number of agents  
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5.4.2 Application 

One significant advantage of the proposed method is that the objective function and its 

constraint set can accommodate a non-linear function if the function is convex and non-

decreasing. This property is essential since the proposed method can depict congestion 

effects where the travel time exponentially increases according to the traffic density or flow 

of a link. This section examines the proposed method on the well-known Sioux-Falls network 

(LeBlanc, Morlok, and Pierskalla 1975), which is not realistic but has been used in various 

network design problems and is available at the Open-source based developer platform 

(https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls).  

 

The hypothetical network consists of 24 zones, 24 nodes, and 76 links. Its total demand is 

360,600 trips from 576 OD pairs. The link performance function follows the traditional BPR 

(Bureau of Public Roads). As can be seen in Eq (5.20), the link performance function in this 

hypothetical network is an increasing and non-negative function. 

 a(𝑥𝑎) = 𝑡0( + 𝛼 (
𝑥𝑎
𝑐𝑎
)
𝛽

) 
(5.19) 

 

Table 5.2 shows the comparisons of results. The Gradient Projection is applied for the 

continuous model, and its output is categorized into UE and SO. The proposed heuristic is 

used for an agent-based model. UE-A is nothing but the converted version of UE. SO has the 

optimum total travel time at 7,194,256 seconds that represents an improvement of 3.82%. 

ASEEM-PM also has a similar ratio of travel time reductions. However, total travel miles 

https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls
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increase for SO and ASEEM-PM. This increase is because the SO assignment distributes 

vehicles over the space. As can be seen in Table 5.2, SO and ASEEM-PM have more path 

counts than the equilibrated traffic condition. 

 Table 5. 2 Results of Sioux-Falls Network application 

Index 

Continuous Model Agent-based Model 

UE SO Diff (%) UE-A ASEEM-PM Diff (%) 

Total Travel Time 
(minutes) 

7,480,189 7,194,256 -3.82 7,480,566 7,194,806 -3.82 

Total Travel 
Distances(miles) 

569,853 595,170 4.44 569,861 595,185 4.44 

Path count 682 746 9.38 682 746 9.38 

 

Table 5.3 shows results obtained from ASEEM-PM. Total maximum is minimized to zero 

(Envy free) in ASEEM-PM, which is 137.36 for the UE-A case. Even when UE-A is the 

equilibrated condition in the agent-based model, it has a small amount of travel time gap 

among paths. Without pricing, even efficient allocation of the given allocation for the system 

optimum accompanies envy at the amount of 102,708,01. We calculate the total transaction 

cost by summing up the absolute value of pricings (toll and incentive) of agents. To achieve 

the SO traffic pattern with the given valuation distribution (N( ,    ) , the price that is 

equivalent to 52,412.61 minutes is transacted in this system. Because we assume the budget-

balanced condition in this case study, half of the transaction cost is regarded as tolls for faster 

route users, which compensate for slower route users (incentives) 
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Table 5. 3 Total Maximum Envy and Transaction cost 

Measurement UE-A ASEEM (w/o PM) ASEEM-PM 

Total Travel Time (minutes) 7,480,566 7,194,806 7,194,806 

Total Maximum Envy (minutes) 137.36 102.708.01 0.00 

Total Transaction cost (minutes) 0.00  52412.61 

Max Toll -  9.08 

Min Incentive -  -5.18 

Transaction cost per agent -  0.15 

 

We also examine the proposed method by various demand levels. The demand is scaled from 

36,060 to 721,200 trips. Figure 5.3 indicates that the total travel time improves in all cases. 

In contrast, total travel miles increase. Interestingly, improvements have an upper limit. This 

pattern implies that the SO routing strategy is not able to help a system improve efficiency 

in a low or extremely high demand level case. Figure 5.4 visualizes the speed profile, which 

is calculated by dividing the total traveled miles over to the total traveled hours. As can be 

seen, there is no distinctive travel time difference in the low demand (less 100,000) and the 

high demand (over 400,000).  

 

Figure 5.4 shows the trend of transaction cost per agent by the demand level. The more 

demand, the more congestion, the more transacted amount per agent, which implies that 

there is a valid demand range for the system where the supply of a system is not 

underutilized, or demands are not too excessive. 
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Figure 5. 3 Improvements in Travel time and miles with respect demand 

 

Figure 5. 4 Space Mean Speed with respect to demand 
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Figure 5. 5 Travel time and miles with respect to demand 
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Chapter 6 

6.1 Social Optimum Navigation with Incentives and Costs Schemes (SONICs) 

In the preceding chapters, we detailed the static version of our proposed optimization 

problem. However, for such a system to be implemented in the real world, it would have to 

consider time and space dynamics. Our dynamic routing system is kept flexible by design in 

order to accommodate innovative applications in the future. Our goal is to find socially 

desired solutions in terms of efficiency and fairness. With that in mind, we name this 

framework Social Optimum Navigation with Incentives and Costs Schemes (SONICs). 

 

The details are as follows. First, a user provides their personal profile and basic preferences. 

Then, just like in conventional car navigation systems, the user enters their destination in 

the form of an address or as a place name that could be a selectable Point of Interest (POI). 

Based on the provided information and the estimated distribution of the valuation function, 

the central server finds possible alternatives that include route and pricing information. Note 

that those alternatives are likely to be the system optimum route patterns from 

transportation models and already stored on the server. The server provides the user with a 

list of alternatives. Users are assumed to select the most attractive option that induces 

minimum envy under bounded rational recognition. After driving on the selected route, the 

driver might earn rewards or pay tolls, depending on their choice. 
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To achieve the overall vision of SONICs, this chapter extends the static version of ASEEM-PM 

to dynamic cases. Traffic varies by time of day. Furthermore, as agents travel on their route, 

their envy may differ according to time dynamics (such as traffic conditions). Any pricing 

scheme, therefore, needs to account for this variance. In other words, the actual application 

of the proposed model needs to implement time-space dynamics. Thus, we reformulate the 

proposed ASSEEM-PM model. 

 

We first review basic behavioral assumptions of traffic assignment models and show our 

expectation of future behavior under possible technologies such as P2P communication, 

Block-chain, and agent-level marketing. Static traffic assignment models rely on the 

assumption that all travelers have complete information about their route, and they change 

their route based on their experience. This assumption is likely to be sound when travelers 

only depend on printed maps or their experience. Now that real-time information has 

become readily available, dynamic traffic assignment models assume an optimal traveler’s 

behavior where travelers select the fastest travel option based on current traffic conditions 

(greedy assumption), known as the Dynamic User Optimum (DUO). This assumption is valid 

when we only consider the availability of real-time traffic information. However, we can 

postulate that this is not a system-optimal solution since greedy behavior does not improve 

the efficiency of a system. As for Definition 5.3, we expect that agents in the future will 

exchange their travel information with others as long as the system permits it. Our goals 

regarding dynamic cases are the same as before: maximizing system efficiency while 

minimizing agents’ envy. This chapter will address the following questions: 1) how to find 
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the best alternatives under dynamic traffic demands and conditions, 2) how unfairness is 

evoked by efficient transportation, 3) how to obtain the best pricing policy for minimizing 

envy. 

 

6.2 Formulation and Overview of Solution 

In this section, we present a dynamically allocated system efficiency with envy minimization-

price match (DASEEM-PM), which is a temporal generalization of the multi-objective 

optimization of ASEEM. The formulation of the DASEEM-PM problem is as follows 

 

min𝑍 =  𝛼∑∑𝑥𝑎,𝑡𝑡𝑎,𝑡(𝑥𝑎,𝑡)

𝑎∈𝐴𝑡∈𝑇

+ 𝛽∑m 𝑥
𝑖≠𝑗

{𝑒𝑖𝑗}

𝑖∈𝐼

 (6-1a) 

subject to: 

 𝑞𝜏
𝑟𝑠 = ∑ ∑ ℎ𝑖,𝜏

𝑟𝑠𝑘
𝑘∈𝐾𝜏

𝑟𝑠𝑖∈𝐼   ∀ 𝑟, 𝑠 ∈ 𝑅, 𝜏 ∈ 𝑇𝐷 (6-1b) 

 ℎ𝑖,𝜏
𝑟𝑠𝑘 = [

      𝑖𝑓 𝑝𝑎𝑡ℎ 𝑘 𝑖𝑠 𝑢𝑠𝑒𝑑
       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

  ∀ 𝑖 , 𝜏 (6-1c) 

 ∑ ℎ𝑖,𝜏
𝑟𝑠𝑘

𝑖 =    ∀ 𝑖 , 𝑘 (6-1d) 

 𝑥𝑡𝑎 = ∑ ∑ ℎ𝜏
𝑟𝑠𝑘𝛿𝑖𝑡𝜏𝑎

𝑟𝑠𝑘
𝑟,𝑠,𝑘,𝜏 𝑖  ∈𝐼   ∀ 𝑟, 𝑠 ∈ 𝑅, 𝑖  ∈ 𝐼, 𝑘 ∈ 𝐾𝑟𝑠 (6-1e) 

 𝛿𝑖𝑡𝜏𝑎
𝑟𝑠𝑘 =  𝛹[ℎ𝑖,𝜏

𝑟𝑠𝑘 , ∀𝑖, 𝑟, 𝑠, 𝑘, 𝜏]  ∀ 𝑟, 𝑠 , 𝑞 ∈ 𝑞𝑟𝑠, 𝑘 ∈ 𝐾𝜏
𝑟𝑠, 𝑎 ∈ 𝐴 (6-1f) 

 ∑ −𝑡𝑎𝛿𝑖𝑡𝜏𝑎
𝑟𝑠𝑘 𝜃𝑖𝑟,𝑠,𝑘,𝜏 + 𝑒𝑖𝑗 −  𝑝𝑖𝜏

𝑟𝑠 ≥  ∑ −𝑡𝑎𝛿𝑗𝑡𝜏𝑎
𝑟𝑠𝑘′𝜃𝑖 − 𝑝𝑗𝜏

𝑟𝑠
𝑟,𝑠,𝑘′,𝜏   ∀ 𝑖,  𝑗 ∈ 𝐼,  𝑖 ≠ 𝑗 (6-1g) 

  ≤ 𝑒𝑖𝑗 ≤ 𝑒𝑚𝑎𝑥  ∀ 𝑖 ,  𝑗 ,  𝑖 ≠  𝑗 (6-1h) 

 ∑ 𝑝𝑖
𝑟𝑠𝜏

𝑖∈𝐼 = 𝐵𝑟𝑠𝜏  ∀ 𝑟, 𝑠, 𝜏  (6-1i) 
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Here, 𝑥𝑎,𝑡 and 𝑡𝑎,𝑡(𝑥𝑎,𝑡) are the traffic load of link a at time t and its travel time respectively, 

both of which are aggregated-values of the individual’s path-link incidence matrix. This 

implies that the first objective function is of importance for systemwide travel time 

minimization problem. The second objective function consists of envy comparisons at an 

individual level. In other words, our objective has two components: 1) total travel time and 

2) minimization of the sum of the maximum envy of individual, which allow us to solve two 

objectives in two steps.  

 

Constraints (6-1b) to (6-1f) are reformulated from an aggregated traffic assignment model 

to incorporate a version of dynamic traffic assignment model at the agent level. Instead of 

regarding flow as aggregated behavior, these constraints are formulated to consider each 

agent. For example, Eq (6-1b) is formulated for OD demand conservation which is the sum 

of an agent’s path flow binary ℎ𝑖,𝜏
𝑟𝑠𝑘 The v l e  f  ℎ𝑖,𝜏

𝑟𝑠𝑘is 1 if path 𝑘 for 𝑟𝑠 is used for agent 𝑖 

departing at time 𝜏 as in Eq (6-1c). Consequently, the sum of ℎ𝑖,𝜏
𝑟𝑠𝑘 for agent 𝑖 is a unit value, 

as in Eq (6-1d). The term 𝛿𝑖𝑡𝜏𝑎
𝑟𝑠𝑘  is a path-link variable of an individual 𝑖 whose origin and 

destination are 𝑟 and 𝑠, respectively, her path is 𝑘, departure time is 𝜏, and time to arrive a 

link 𝑎 at time 𝑡, Eq (6-1f). The term 𝛹 represents the calculation for enumerating traveled 

links of a path 𝑘 for agent 𝑖, then converting it to the path to path link incidence matrix (𝛿𝑖𝑡𝜏𝑎
𝑟𝑠𝑘 )  

Link flow at time 𝑡, 𝑥𝑎,𝑡, is the sum of agents passing link 𝑎 at time 𝑡, which is represented in 

Eq (6-1e). 
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Peer to Peer envy comparison constraints are formulated as from Eq (6-1g) to Eq (6-1i). Eq 

(6-1g) addresses envy comparison. It indicates that if agent 𝑖 pays more than agent 𝑗 ( 𝑝𝑖 ≥

𝑝𝑗 ) for the same path travel time, agent 𝑖  feel envious (𝑒𝑖𝑗)  at the amount of the price 

difference. Similarly, if the path travel time of agent 𝑗 is shorter than that of agent 𝑖 without 

price difference (𝑝𝑖 = 𝑝𝑗), agent 𝑖  feels envious (𝑒𝑖𝑗) to agent 𝑗 . It is noteworthy that the 

feeling of envy is only measured by agent 𝑖’s valuation 𝜃𝑖   In Eq (8g), ∑ −𝑡𝑎𝛿𝑖𝑡𝜏𝑎
𝑟𝑠𝑘

𝑟,𝑠,𝑘,𝜏  is the 

path travel time of path 𝑘 for agent 𝑖. Thus, envy in the latter case, can be interpreted as a 

degree of travel time difference as perceived only by agent 𝑖. 

 

Note that the agent-based model with the proposed formulation brings with it a significant 

number of constraints, including the individual level of path binary variables, making the 

problem intractable. Furthermore, this problem has temporal-dynamics, which increases its 

complexity. Similar to the decomposition method discussed in Chapter 5, the problem set of 

the DASEEM-PM model can also be discretized into two steps. First, we find a system 

optimum traffic pattern from a continuous traffic assignment model, i.e., dynamic traffic 

model. Then, we find the appropriate amount of pricing that allows agents not to feel envious 

to others. From this two-step process, we can compute a solution that minimizes both 

objectives. 
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6.3 Identification of systemwide-efficient routes  

6.3.1 Dynamic Assignment for a Dynamic System Optimum Condition 

For a real-world implementation application of the proposed method, it is necessary to 

understand the spatiotemporal dynamics of traffic conditions on the network. Dynamic 

System Optimum Assignment can be a candidate solution to find desirable dynamic traffic 

patterns considering the time constraints of route guidance. Jayakrishnan, Tsai, and Chen 

(1995) develop a methodology to calculate traffic patterns at the link level, showing the 

number of assigned vehicles on links in each time step for DUE or DSO conditions. The 

requirements for our solutions are path-based flow patterns, which will be used in pricing 

schemes. Based on the computed patterns, we can solve the efficient route allocation 

problem with the consideration of pricing trade-off among agents in the same origin-

destination pair. Thus, we develop a path-based system optimum solution by applying a 

Gradient Descent Projection method and a time-dependent network structure. 

   

The fundamental idea that undergirds this research is that the SO/DSO conditions have more 

diverse routes compositions than the corresponding UE condition ((Boyce and Xiong 2004; 

I. Yang 2011). In some cases, we might arrive at the same traffic pattern with greedy routing. 

For SO routes mostly during peak hours, however, the number of routes of an OD pair tend 

to be higher. Furthermore, travel times of some routes are longer than the shortest path’s 

travel time, which are likely not preferred by travelers. Although previous studies on SO 

route guidance assume that drivers are so altruistic that they can yield their shortest route 
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for improving social benefits, we still subscribe to the more realistic assumption that 

travelers are greedy with respect to their travel cost (time and money). Guiding travelers to 

the longer path could be problematic for traditional route guidance systems. 

 

As shown in Chapter 5, an aggregated model can be chosen as a solution for an agent-based 

model. Eq (6.2a)-(6.2e) depict formulations for finding appropriate travel patterns at an 

aggregated level. Dynamic System Optimum can be implemented to find the right amount of 

incentives. The objective of the system is explicit: minimization of total travel time. Eq (6.2) 

is the same formulation as in the UE case except that the link cost function comes not from 

an actual link cost function (𝑓𝑎(𝑤)) but a marginal cost (𝑚𝑐𝑎(𝑤)) function. For the system 

optimum pattern, defining 𝑓𝑎(𝑤) in Eq (6.2a) to be a marginal link cost function implies 

minimization of increased total travel time (marginal cost time) by an additional agent on a 

link. We can reinterpret the SO traffic pattern in which all marginal costs among paths are 

equilibrated, so that the system cannot be better off by an agent’s route switch. Eq (6.2b) and 

(6.2c) show Origin-Destination demand and link flow, respectively. Eq (6.2d) is the OD-path 

link incidence matrix.  

min𝑍 =  ∑∑∫ 𝑚𝑐𝑎(𝑤) 𝑑𝑤
𝑥𝑡𝑎

0𝑎∈𝐴𝑡∈𝑇

 
(6.2a) 

subject to: 

q𝜏
rs = ∑ ℎ𝜏

𝑟𝑠𝑘
𝑘∈𝐾𝜏

𝑟𝑠     ∀  , s ∈ R, τ ∈ TD   (6.2b) 

𝑥𝑡𝑎 = ∑ ℎ𝜏
𝑟𝑠𝑘𝛿𝜏𝑡𝑎

𝑟𝑠𝑘
𝑜,𝑑,𝑘,𝜏     ∀   ∈ T,   ∈ A    (6.2c) 

δ𝜏ta
rsk =  Ψ[ℎ𝜏

𝑟𝑠𝑘 , ∀𝑟, 𝑠, 𝑘, 𝜏]  ∀  , s ∈ R, τ ∈ TD, 𝑘 ∈ 𝑘𝜏
𝑟𝑠,   ∈ A  (6.2d) 

ℎ𝜏
𝑟𝑠𝑘 ≥      ∀  , s ∈ R, τ ∈ TD, 𝑘 ∈ 𝑘𝜏

𝑟𝑠   (6.2e) 
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Here, Eq 6.2b addresses demand conservation constraint of an OD demand. Intuitively, the OD 

demand (q𝜏
rs) is the total sum of path flow (ℎ𝜏

𝑟𝑠𝑘). The term 𝑥𝑡𝑎 in Eq (6.2c) is traffic load (vehicle/mile) 

which is the number of vehicles existing on a link a time. The term  ℎ𝑖,𝜏
𝑟𝑠𝑘 in Eq 6-2c and 6-2d is a 

binary variable for a used path k meaning that if a path k is used, ℎ𝑖,𝜏
𝑟𝑠𝑘 is 1; otherwise it is 0.  

𝛿𝜏𝑡𝑎
𝑟𝑠𝑘 in Eq 6.2d is a value in the time-dependent path-link incidence matrix. 

 

6.3.2 Link Performance Functions 

It is noteworthy that traffic load, 𝑥𝑡𝑎 , differs from traffic flow (vehicle/hour) that is used for 

the static version of the assignment problem. Jayakrishnan, Tsai, and Chen (1995) 

underscore the importance of using Traffic load in Dynamic Traffic Assignment models. We 

employ a modified Greenshields equation, as used by them, for the link performance function. 

As shown in Eq (6.3), link travel time (𝑓𝑎𝑡) is a function of “the number of vehicles in a unit 

length(density)” existing on a link instead of using link flow in a static traffic assignment.  

 
𝑓𝑎
𝑡(𝑘𝑎

𝑡 ) =
𝐿𝑎𝑘𝑗

𝑢𝑚𝑖𝑛𝑘𝑗 + (𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)(𝑘𝑗 − 𝑘𝑎
𝑡 )

 
∀ 𝑎 ∈ 𝐴, 𝐿𝑖𝑛𝑘 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑘𝑎

𝑡 ≤ 𝑘𝑗  (6.3) 

 Where 𝑢𝑚𝑖𝑛 = minimum speed at jam density (ft/sec)  

 𝑢𝑚𝑎𝑥   = free flow speed (ft/sec)  

 𝑘𝑎
𝑡   = density on the link a in time step t (veh/mile)  

 𝑘𝑗,𝑎   = jam density of link a(veh/mile)  

 𝐿𝑎   = length of link a (ft)  

 𝑓𝑎
𝑡(𝑘𝑎

𝑡 )  = travel time of link a at time step t (sec)  
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The original Greenshields model can account for the situation in which density is greater 

than the jammed density. The traffic assignment model that we employ is a dynamic version 

of Gradient Projection which finds an equilibrated traffic condition by implementing an 

iterative traffic assignment procedure. Its initial step is to assign all OD traffic onto the 

shortest path, such as All or Nothing assignment. Intuitively, assigning all demands to one 

route will end up with jammed traffic on that link. Thus, Greenshields model cannot be used 

to represent a realistic traffic condition. To prevent this situation, Jayakrishnan, Tsai, and 

Chen (1995) utilize the modified Greenshields speed-density relationship as a link 

performance function with the minimum speed (8.8 ft/sec, or 6 mph). The choice of their 

link performance function may appear arbitrary at first glance, but its properties are 

amenable for optimization in that this density-based link cost function is monotonically 

increasing, convex, and is twice differentiable, which is sufficient to show that Hessian of the 

resulting objective function is positive definite, i.e. monotonically increasing with respect to 

density. 

 

The link cost function (6.3) is written as f𝑎
𝑡(𝐿𝑎, 𝑘𝑎

𝑡 ), hereafter written as 𝑓𝑎
𝑡( 𝑘𝑎

𝑡 ), since the 

assignment variable is link load, 𝑥𝑎
𝑡 (set of vehicles for origin-destination pairs), which is 

related to density directly as shown in Eq (6.4) 

 
𝑘𝑎
𝑡 =

𝑥𝑎
𝑡

𝑛𝑎𝐿𝑎
 

∀ 𝑎 ∈ 𝐴, 𝑙𝑖𝑛𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  (6.4) 

where 𝑛𝑎, = number of lanes on link a 
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Again, our research interest is to find the system optimized-traffic pattern. As is well-known, 

the formulation of Dynamic System Optimum solution can be found by applying the marginal 

cost function as the link cost function. The marginal cost function is the derivative of total 

cost 𝑥𝑓(𝑘) , vehicles x time, as in Eq (6.5). We can generalize it to the density-cost 

relationship. Because density k is the number of vehicles (x) on a unit length of the link (L), 

we can convert x into L x k, similarly, we can also find that 
𝑑𝑘

𝑑𝑥
=  /𝐿 (Eq 6.6). 

 𝒎𝒄 =  
𝒅𝒙∙𝒇(𝒌)

𝒅𝒙
  

         =
𝒅𝒌

𝒅𝒙
∙
𝒅𝒙∙𝒇(𝒌)

𝒅𝒌
  

 (6.5) 

  

Here,  𝑥𝑎 = 𝑛𝑎𝐿𝑎𝑘𝑎,    let 𝑛𝑎𝐿𝑎 = 𝐿,   and 
𝑑𝑘

𝑑𝑥
=  /𝐿 

 (6.6) 

 

From Eq (6.5) and (6.6), we can infer that the marginal cost is the sum of link travel time and 

the marginal congestion effects (𝑘𝑓′(𝑘) ) 

 𝑚𝑐 =
1

𝐿
∙
𝑑𝐿∙𝑘∙𝑓(𝑘)

𝑑𝑘
  

         =
𝑑𝑘∙𝑓(𝑘)

𝑑𝑘
  

 
          = 𝑓(𝑘) + 𝑘𝑓′(𝑘)  

 (6.7) 

 

Note that the marginal cost function includes the first derivative of a link cost function. MC 

can be interpreted as the added cost when an additional vehicle entering a link contributes 

to the total travel time. The term 𝑓′(𝑘) is the additional travel time on a link when unit 

density increases and computed as Eq (6.8). 
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f ′(k) =  

𝑘𝑗 ∙ 𝐿(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)

(𝑘𝑗 ∙ 𝑢𝑚𝑎𝑥 + 𝑘 ∙ (𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛))
2 

 (6.8) 

 

6.3.3 Time-dependent networks 

A dynamic network can be regarded as a set of multiple static networks interconnected in 

time and space. Jayakrishnan, Tsai, and Chen (1995) propose the terms s_link and d_link to 

represent dynamic characteristics of the traffic. As a vehicle drives on a s_link 𝑎 (a static 

network), it traverses multiple dynamic links whose traffic conditions differ in timesteps 

according to the traffic load at time step t. Link travel time of link 𝑎 for a traveler entering 

the link at 𝑡𝑒𝑛𝑡𝑒𝑟 is the sum of travel time of d_link at t (Eq 6-5). Here, exit time (𝑡𝑒𝑥𝑖𝑡) for the 

traveler is the cumulative time of link traversal times. Figure 6.1 illustrates a vehicle entering 

link 𝑎 at timestep t and exiting that link at timestep t+4.  
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Figure 6. 1 The relationship between s_link and its dynamic link (d_link) 

Link exit time can be calculated by iteratively checking the current location of a vehicle (set 

of vehicles) entering at time t. Once, the vehicle’s location exceeds the length of a link at time 

step t+n, n can be regarded as a traveled time of a vehicle. This property determines the link 

exit time 𝑡𝑒𝑥𝑖𝑡 in calculating total the travel time spent in link a. Here, we can also define an 

important property of the minimum link length. 

 

Definition 6.1. The minimum link length requirement 

The length of link a, 𝐿𝑎, must be longer than the travel distance of a free flow condition (Eq 

6.9). 

 𝐿𝑎 ≥ 𝑢𝑚𝑎𝑥 ∙   ∀ 𝑎 ∈ 𝐴 (6.9) 

t-1 𝑡+1 t+2 𝑡+3 t+4 t+5

𝑓𝑎 
𝑡 𝑓𝑎 

𝑡+1 𝑓𝑎 
𝑡+2 𝑓𝑎 

𝑡+3 𝑓𝑎 
𝑡+ 

𝑡𝑎−1,  

𝑑𝑎 
𝑡

𝑑𝑎 
𝑡+1

𝑑𝑎 
𝑡+2

𝑑𝑎 
𝑡+3

𝑑𝑎 
𝑡+ 

a

𝑎 −  

𝑎 +  

t

𝑓𝑎 +1
𝑡+ 

𝑑𝑎+1 
   

𝑑𝑎−1 
   

𝑑𝑎+1 
   

(a) s_link (static network) (b) d_link (dynamic representation)
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If the link length is shorter than the minimum distance, a vehicle can skip the following 

dynamic link, therefore travel time at time t of link a cannot be calculated.  

 

Definition 6.2. The total travel distance of link a with dynamic link 

Once a vehicle finishes traveling on link a, it is evident that the sum of total travel distance 

equals the total link length (Eq (6.10)). However, we need to carefully consider travel time 

and its travel distance in System Optimum assignments, which will be detailed in Definition 

6.5 and Lemma 6.1. 

 

∑ 𝑑𝑎
𝑡

𝑡𝑒𝑥𝑖𝑡

𝑡=𝑡𝑒𝑛𝑡𝑒𝑟

= 𝐿𝑎 

where, 

𝑑𝑎
𝑡 = 𝑢𝑛

𝑡 ∙ 𝑓𝑎
𝑡  

∀ 𝑎 ∈ 𝐴 (6.10) 

 

Definition 6.3. travel time (s_d link) and travel distance at time t 

Here, travel time at t, 𝑓𝑎
𝑡 , is less than or equal to the time interval (Eq (6.11)) since the 

maximum travel time of a vehicle in a time interval t is the length of the time interval. Once 

the link travel time is larger than time interval, the traffic condition follows the next time 

step. This condition of less travel time might only be applied when a vehicle enters or exits a 

link; otherwise, it is equal to the time interval.  

 𝑓𝑎
𝑡 = min(𝑓𝑎

𝑡(𝑥𝑎
𝑡 ),  ) ∀ 𝑎 ∈ 𝐴 (6.11) 
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Definition 6.4. Total travel time of a link with various traffic conditions 

It is noteworthy that a vehicle experiences different traffic conditions in different time steps 

under congestion. This time dynamics can be incorporated into our model if we discretize 

traffic conditions in terms of time steps. In Figure 6.1, a vehicle experiences different traffic 

conditions in 5 timesteps (from t to t+4). Its total travel time can be calculated as eq (6.12).  

 

𝑓𝑎 = ∑ 𝑓𝑎
𝑡(𝑘𝑎

𝑡 )

𝑡𝑒𝑥𝑖𝑡

𝑡=𝑡𝑒𝑛𝑡𝑒𝑟

  

∀ 𝑎 ∈ 𝐴 (6.12) 

It is possible for a vehicle to enter a link in the middle of a time slot as 𝑓𝑎
𝑡=𝑡𝑒𝑛𝑡𝑒𝑟  in Figure 6.1. 

In the same manner, exit time points might also lie in the middle of a time step. Definition 6.4 

addresses time dynamics of travel time and travel distance for a vehicle traversing a link. 

 

Table 6. 1 An example of the s_d link table 

  
Clockin 

𝑓𝑎
𝑡   

Travel 
time 

  
Clockout 

time interval t 

ts2 ts3 ts4 ts5 ts6 ts7 ts8 

7 3.0 10.0 10.0 2.6       25.6 32.6 

15   5.0 10.0 10.0 5.2     30.2 45.2 

23     7.0 10.0 10.0 6.8   33.8 56.8 

25     5.0 10.0 10.0 9.2   34.2 59.2 

35         5.0 10.0 10.0 31.0 66.0 

42           8.0 10.0 28.0 70.0 

 

Lemma 6.1. The discrepancy between link travel time and marginal travel time  

Though previous research has shown that SO assignments can be done by employing a 

marginal cost function as a link cost function, it is theoretically reasonable only for a static 
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assignment because this does not consider time dynamics (e.g., a link entering time and exit 

time). Even when previous research studies have considered this time dynamics, the details 

are often overlooked. This section recapitulates the importance of the discrepancy and 

describes a methodology to handle the time dynamics of SO. In the regime of non-free flow 

traffic condition, a marginal link cost (time) is always higher than or equal to the actual link 

travel time. It is unnecessary for UE assignments to consider this discrepancy. Using a 

marginal cost function for a link exit time, however, might bring unreasonable results when 

an actual arrival time of a vehicle differs from the estimated arrival time, resulting in a 

vehicle being assigned to an incorrect dynamic link. As addressed in Definition 6.3, the travel 

time of s_link consists of a set of dynamic link travel time, and the s_d link matrix stores the 

actual travel time of the s_link in a dynamic form. 

 

Definition 6. 5. Static-dynamic-time specification table (s_d_𝒕 link table) 

As a vehicle enters a link at time t and travels along with the link during some time periods, 

we can calculate the proportion of each time slot during the journey of a link as Eq (6.13). 

For example, a vehicle entering a link at the beginning of time slot 𝑡 and exiting a link at end 

of time slot 𝑡 + 5 has its travel evenly distributed during 𝑡 to 𝑡 + 5. If a vehicle arrives at link 

a the middle of time slot 𝑡, the first time slot (𝑡) takes a lower proportion of the travel. We 

define the link and time-spent proportion as s_d_𝑡 link table (𝜙𝑙 
𝑡 , Eq (6   )), This table stores 

information about how d_link is connected to the s_link in addition to exit time step. Table 

6.1 shows an example of s_d_t link table. We can easily expect that the summation of each 

row is a unit value. Let us assume that a time interval is 10 seconds. A vehicle approaching a 
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link at 7 seconds (Clockin)in a simulation clock that is time step 1 (𝑡𝑖𝑛), exits link at 37 seconds 

(Clockout). It travels a link for 30 seconds, but it takes 4 simulation time steps from 1(𝑡𝑖𝑛) to 

4 (𝑡𝑜𝑢𝑡). The Table 6.1 also indicates First-In-First-Out (FIFO) property of a link supply and 

demand. 

 
𝜙𝑙 
𝑡 = 

𝑓𝑎
𝑡

∑ 𝑓𝑎
𝑡′

𝑡′∈[𝑡𝑖𝑛,𝑡𝑜𝑢𝑡]

 
∀ 𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇 (6.13) 

Table 6. 2 An example of a dynamic ϕ table 

  𝜙𝑙 
𝑡    

 time step  

Clockin ts2 ts3 ts4 ts5 ts6 ts7 ts8 Sum 

7 0.1 0.4 0.4 0.1       1.0 

15   0.2 0.3 0.3 0.2     1.0 

23     0.2 0.3 0.3 0.2   1.0 

25      0.1 0.3 0.3 0.3   1.0 

35         0.2 0.3 0.3 1.0 

42           0.3 0.4 1.0 

 

Definition 6.6. Redefinition of Dynamic Marginal cost  

From the s_d_t link table, we can synchronize the actual link exit time. Marginal cost can be 

computed by considering how a vehicle contributes to congestion at each time step. It is the 

summation of the product of marginal cost of a time slot and its respective proportion as 

shown in Eq (6.9). From this equation, we can preserve the conservation of link flow without 

loss of generality of actual travel time. This marginal cost of path information is used in the 

lower problem in the proposed GP-based Bi-Level programming for DSO. 

 
Mc𝑎

𝑡 = ∑ 𝜙𝑙 
𝑡 ∙ mc𝑎

𝑡

𝑡∈[𝑡𝑖𝑛,𝑡𝑜𝑢𝑡]

 
∀ 𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇 (6.13) 
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6.3.4 GP-based Bi-Level programming formulations for DSO 

This section shows the proposed algorithm to solve the Dynamic System Optimum problem 

by using a Dynamic Traffic Assignment model. Jayakrishnan, Tsai, and Chen (1995) propose 

a bi-level programming approach for the efficient solution of DTA problem. Yang (2011) 

introduces a simulation-based DTA problem and employ the Gradient Projection (GP) 

algorithm. We develop a method to find the pattern of system optimum assignment by 

integrating the above two methods, as shown in Figure 6.2. 

 

Figure 6. 2 GP-based Bi-Level programming formulations for DSO 

Step 1-4 
Update

step size ( )

Start

Step 1-0: initialization
- AON assignment, 𝑞𝜏

𝑟𝑠 ∈  , 𝑖 =  ,  =  0

- Initialize dynamic path, link set:s path 𝑘𝑟𝑠
𝜏  

Step 1-1(Upper): Direction finding with marginal path cost function
- Update dynamic link travel time, marginal cost

𝑠𝑙𝑖𝑛𝑘
𝑡 , 𝑚𝑐𝑙𝑖𝑛𝑘

𝑡 , s 𝑑 𝑚𝑎𝑡𝑟𝑖𝑥, 𝑎𝑛𝑑

- Find the dynamic shortest path :s 𝑑 𝑝 𝑚𝑎𝑡𝑟𝑖𝑥(δ𝜏ta
rsk )

Step 1-2(Lower): Gradient Projection

Step 1-2-2: Move
- Set the new path flow for 𝜏, r, s, k

Step 1-3 Convergence Test
Converged? or 𝑖 > 𝑖𝑐𝑟𝑖

Step 2:DASEEM-PM

no

yes

Step 1-2-1: update s_path set and its derivative length
- update s_path sets: 𝐾𝑟𝑠

𝜏 = {𝐾𝑟𝑠
𝜏 ,𝑘𝑟𝑠

𝜏 } for ∀ 𝜏, r, s
- update the first derivative length(𝑓′𝑟𝑠

𝜏 )
- update the second derivative length, 𝑓′′𝑟𝑠

𝜏 , for all the path k in 𝐾𝑟𝑠
𝜏



116 

 

Before introducing the bi-level programming framework, we reformulate the DSO problem 

for solving the problem using GP algorithm. A static version of GP algorithm is proposed in 

Jayakrishnan et al. (1994). They introduce a new objective function (6.14), consisting of only 

non-shortest path flows instead of link flow. Recall that we use the term “load” instead of 

“flow”. The problem constraints are focused only on the non-negativity of path loads. 

 Min 𝑍̃( ℎ̃)  (6.14) 

 Subject to:   

 ℎ̃ ≥     

 

The objective function includes demand constraints (Eq 6.1b). These are reordered for the 

algorithm, as shown in Eq (6.15). It considers the least marginal cost path flow (ℎ̃𝑖,𝜏
𝑟𝑠𝑘̅) that is 

the rest of total flow (ℎ̃𝑖,𝜏
𝑟𝑠𝑘) with respect to the non-least marginal cost path. 

 

 ℎ̃𝜏
𝑟𝑠𝑘̅ = 𝑞𝑟𝑠

𝜏 − ∑ ℎ̃𝜏
𝑟𝑠𝑘

𝑘∈𝐾𝑟𝑠
𝜏

𝑘≠𝑘̅𝑟𝑠
𝜏

  ∀  sτ (6.15) 

where 𝐾𝑟𝑠
𝜏  is the set of non-least marginal cost path and 𝑘̅𝑟𝑠

𝜏  s the least marginal cost path of 

an OD pair (𝑟𝑠) departing at timestep 𝜏.  

 

With the consideration of time-dynamics and its dynamic links, we divide the GP algorithm 

into a bi-level programming problem. The upper problem (Step 1-1) finds a time-dependent 

shortest path of OD pairs in each iteration. This process generates the relationship between 

a static link (s_link) and its associated dynamic links (d_link), which connects the upper 

problem to lower problem. The shortest path tree is associated with s_d_t table of links, 
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which will define the s_d_p incidence value (δ𝜏ta
rsk) for the lower problem. Eq (6.16) indicates 

the objective function and its constraints for the DSO problem. Note that this is for an origin, 

a destination, and a departure time. As seen in Eq (6.16), a path for each OD is the minimum 

marginal cost path, which is consistent with SO routing literature (Jayakrishnan, Tsai, and 

Chen 1995; Bosch et al. 2011; I. Yang 2011; Djavadian et al. 2014). 

 

 
Min ∑ ∑ 𝑚𝑐𝑎

𝑡

(𝑖,𝑗=𝑎)∈𝐿𝑡

δ𝜏  
 sk 

∀ 𝑟𝑠𝜏 (6.16) 

 subject to:   

 

∑∑ 𝛿𝑗𝑖
𝜏

𝑗∈ 𝑡<𝑡𝑖

−∑∑ 𝛿𝑖𝑗
𝜏

𝑗∈ 𝑡>𝑡𝑖

= {
                 𝑖 = 𝑠     
                  𝑖 ≠ 𝑟, 𝑠 
−              𝑖 = 𝑟    

 

∀ 𝑖,  j ∈ 𝐼,  i ≠ 𝑗 (6.16a) 

 𝜏𝑖 = 𝜏𝑟 + ∑ ∑ 𝑓
𝑖𝑗
𝜏

(𝑖,𝑗)∈𝐿𝜏 δ𝜏  
 sk ∀  s, i  ∈ 𝐼, 𝑘 ∈ 𝐾𝑟𝑠  (6.16.b) 

 

In the second step (Step 1-2), from the identified least marginal cost path, the GP algorithm 

updates the path-sets (Step 1-2-1) and makes successive moves (1-2-2) in every iteration in 

the gradient direction that is the minimum of the Newton approximation of objective 

function, Eq (6.17). The direction for any path flow can be obtained from the gradient 

difference between non-shortest path and shortest path, and the move size is determined by 

the second derivative of the objective function with respect to path flows of a non-shortest 

path. The non-negative constraints form the feasible space of path loads of dynamic OD pairs. 

Once a move is infeasible, it bounds to the constraint boundary that is zero.  
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ℎ̃𝜏
𝑟𝑠𝑘,𝑛+1 = m x ( , ℎ̃𝜏

𝑟𝑠𝑘,𝑛 −
𝛼𝑛

𝑠𝜏
𝑟𝑠𝑘,𝑛

(𝑑𝜏
𝑟𝑠𝑘,𝑛 − 𝑑𝜏

𝑟𝑠𝑘̅,𝑛) ∀ 𝑟𝑠𝑘, ∀ 𝜏 ∈  𝑇 (6.17) 

 where 

𝑠𝜏
𝑟𝑠𝑘,𝑛  =  ∑∑

𝜕𝑚𝑐𝑎
𝑛

𝜕𝑥𝑎
𝑛

𝑎𝑡

δ𝜏  
 sk  −    ∑∑

𝜕𝑚𝑐𝑎
𝑛

𝜕𝑥𝑎
𝑛

𝑎𝑡

∙ δ𝜏  
 sk ∙ δ𝜏  

 sk̅ 
∀ 𝑟𝑠𝑘, ∀ 𝜏 ∈  𝑇 (6.17a) 

 

A brief explanation of the equations follows. More details can be found in Yang (2011). The 

term 𝑑𝜏
𝑟𝑠𝑘,𝑛 is the first derivative of the objective function with respect to a path flow variable 

(ℎ𝜏
𝑟𝑠𝑘,𝑛) as shown in Eq (6.18). This expression is equivalent to the marginal path travel time.  

 
𝑑𝜏
𝑟𝑠𝑘,𝑛 =

𝜕𝑍

𝜕ℎ𝜏
𝑟𝑠𝑘,𝑛

=∑∑𝑚𝑐𝑎
𝑛

𝑎𝑡

∙ δ𝜏  
 sk ∀ 𝑟𝑠𝑘, ∀ 𝜏 ∈  𝑇 (6.18) 

 

Likewise, 𝑠𝜏
𝑟𝑠𝑘̅,𝑛 is the second derivative length of the objective function that can be computed 

by differentiating Eq (6.18) with respect to a path flow variable. Since it consists of marginal 

costs, the second derivative length is the sum of derivatives of marginal costs on a path in a 

Beckmann-transformed objective function with integrals. Furthermore, 𝑠𝜏
𝑟𝑠𝑘̅,𝑛 is a diagonal 

positive-definite Hessian matrix since the marginal cost function is non-negative and 

increasing convex function. Note that the second derivative of objective function takes 

overlapped links between the non-shortest path and shortest path into account by 

eliminating those links that are physically connected.  

 

 

(Step 1-3 Convergence test) 
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The iterative bi-level framework bases its convergence on statistical measurements. The 

measurements are associated with the nodal arrival intervals in the Upper and Lower 

Problems. Root Mean Squared Error (RMSE) can be a candidate, as shown in Eq (6.19). 

However, it is vulnerable with respect to the scale of the entire travel time. Hence, we employ 

relative root mean squared error (R_RMSE) as shown in Eq (6.20). 

 

RMSE =  √
∑ ∑ ∑ (𝛼𝜏

𝑟𝑖 − 𝛽𝜏
𝑟𝑖)2𝑖∈𝑁𝑟𝜏

𝛤
 ∀ 𝑟𝑠𝑘, ∀ 𝜏 ∈  𝑇 (6.19) 

 where 

𝛼𝜏
𝑟𝑖 is the nodal arrival time of the UP 

 𝛽𝜏
𝑟𝑖 is the nodal arrival time of the LP 

𝛤is the total number of the nodal arrival estivates (Eq 6.19 b) 

∀ 𝑟𝑠𝑘, ∀ 𝜏 ∈  𝑇 (6.19a) 

 𝛤 = 𝑅 × 𝑇 × ( −  )  (6.19b) 

 

 
RRMSE = 

RMSE

(
∑ ∑ ∑ 𝛼𝜏

𝑟𝑖
𝑖∈𝑁𝑟𝜏

𝛤
)
  

 (6.19b) 

 

Since our interest is in the path-level optimization problem in which all path costs are 

equilibrated, we also consider the other criterion that is based on the path level definition of 

equilibrium. Equilibrium in routing means that every route in the same origin and 

destination and departure time has the same travel cost. In system optimum, marginal costs 

of all routes are within a reasonable range. We adopt the relaxed duality gap (RDG, Eq (6.20)), 

as employed by Yang (2011).  
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RDG =  
∑ ∑ ∑ ∑ ℎ𝜏

𝑟𝑠𝑘,𝑛 ∙ m x( ,𝑚𝑐𝜏
𝑟𝑠 − 𝑚𝑐̅̅ ̅̅ 𝜏

𝑟𝑠 ∙ ( + 𝜔))𝑘∈𝐾𝜏
𝑟𝑠𝑠𝑟𝜏

∑ ∑ ∑ 𝑞𝜏
𝑟𝑠 ∙𝑠𝑟𝜏 − 𝑚𝑐̅̅ ̅̅ 𝜏

𝑟𝑠    (6.20) 

 

Here, 𝜔  is the boundary rationality factor (  ≤ ω <  ), which relaxes travel time 

differences. This factor assumes that travelers tolerate some travel time differences. 

Similarly, a system can be indifferent to some level of marginal cost differences among paths. 

If ω is set to be zero and the convergence criterion of RDG is almost zero, the proposed 

algorithm attempts to find the perfect system optimized solution. Vice versa, a large value of 

ω relaxes the problem in which higher total travel time is achieved than in the SO condition. 

In our study, ω is set to be zero. 

 

(Step 1-4: update step-size)  

GP algorithm is an iterative solution that is an approximate version of the Newton method, 

which has a positive step-size modifier (hereafter, step-size). Taking a proper step size 

affects the convergence to the optimum and the convergence rate. The step-size can be a 

constant or an adaptive value. Jayakrishnan, Tsai, and Chen (1995) define 𝛼 as a constant 

value of 1 from experience. Chen, Zhou, and Xu (2012) introduce a self-adaptive function 

determined in each iteration by comparing path flows and costs of the previous step. Both 

approaches are for a static case. Yang (2011) empirically choose the value of α value between 

0 to 1. Gentile (2015) who adopts an adaptive step-size function, notes: “This is the 

nonsummable diminishing step-size, and proved to be effective in their numerical tests, because 

it makes possible to reach a null value of probability for a given alternative in a finite number 

of iterations, which is impossible when adopting the classical MSA approaches”. 
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We refer to Gentile’s step-size function as shown in Eq (6.21)  

 
α𝑛 = α0 (

𝜂

𝜂 + 𝑛𝑤𝑜𝑟𝑠𝑒
)  (6.21) 

 

Here, 𝑛𝑤𝑜𝑟𝑠𝑒 is an integer cumulative function, Eq (6.21), that is added when the objective 

function of the current step is worse than that of the previous step. A larger 𝑛𝑤𝑜𝑟𝑠𝑒 drives α 

to be scaled down, meaning that the move size decreases (or slower convergence) so that it 

prevents jumping to another worse solution. 𝑛𝑤𝑜𝑟𝑠𝑒  is a Boolean function in its input x. If x is 

true, it becomes 1 otherwise its value is 0. 

 

𝑛𝑖𝑤𝑜𝑟𝑠𝑒 =∑𝐵𝑜𝑜𝑙(𝛾𝑖 − 𝛾𝑖−1 <  )

𝑖−1

𝑖=2

 

𝑤ℎ𝑒𝑟𝑒 𝛾: 𝑠𝑢𝑚 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒  

 (6.22) 
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6.4 Dynamic ASEEM-PM (DASEEM-PM) 

Once we identify the desired traffic pattern in a system-wide aggregated manner, the next 

step is to find the best pricing scheme where individuals follow the assigned alternative 

without envy. Our assumption of traveler’s behavior is that an agent selects the best 

alternative that has minimum envy. From the identified options from the previous step, the 

system manager arrives at the estimation of envy-free pricing for each OD- 𝜏 pair based on 

the valuation distribution. If there is a single route for an OD- 𝜏 pair, agents in the same pair 

may not compare their route with others since there is no difference in allocation and price 

among members in the same path group (Lemma 4.4).  

 

Here, we can argue the existence of alternatives although the prior step (Step 1) concludes 

there is only one path for an efficient traffic pattern. It is noteworthy that the output from 

Step 1 is not a unique solution since an aggregated traffic model only provides a unique 

solution for an objective function. In other words, the solution from Step 1 guarantees the 

unique solution exclusively for the objective function and its link flows. However, the 

computed path flows can be various, which means that the computed path flow solution 

cannot be a unique solution to our problem.  

 

Figure 6.3 is an example of the non-unique path solution. We can see that an OD pair (from 

3 to 4) can have multiple paths (path 5 (f), and path 6 (c-e)) although a solution finds there 

is only one path (path 5). This limitation might induce user dissatisfaction if the system only 

provides a single option. It will be more feasible when agents passing at node 3 have the 
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same alternatives that are path 3 and path 4. In this manner, we define a Node-to-Destination 

array for Definitions 6.7 and 6.8. Agents who pass by a node 𝑟′ at time interval t compare 

their envy with others who are passing at the same time to the same destination (s).  

 

 

Figure 6. 3 An example of non-unique path flows for OD pairs (Homogeneous agent) 

 
Definition 6.7 Dynamic Envy from Node (decision point) to Destination (DEND) 

 𝑒𝑖𝑗,𝜏,𝑟′
𝑟′𝑠 = (𝑉𝑖𝑗(𝜃𝑖𝜏 , 𝜇

𝑟′𝑠
𝑗
)  − 𝑉𝑖(𝜃𝑖𝜏, 𝜇

𝑟′𝑠
𝑖
) − (𝑝𝑖𝜏

𝑟′𝑠 − 𝑝𝑗𝜏
𝑟′𝑠))δ𝑖𝑗    ∀ 𝑖 , 𝑗, 𝑟 , 𝑖 ≠  𝑗 (6.22) 

 where δ𝑖𝑗  is 1 if “Envy” is positive and zero otherwise  

 

2

1

3

4

a

b

c d

e

OD Path ID Links Nodes
OD path volume scenarios

Case1 Case2 Case3 Case4 Case5

1->4 1 a, e 1, 2, 3

2 a, d, f 1, 2, 3, 4

3 b, f 1, 3, 4 6 5 4 3 2

4 b, c, e 1, 3, 2, 4 4 5 6 7 8

3->4 5 f 3, 4 1 2 3 4

6 c, e 3, 2, 4 4 3 2 1 0

f
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Definition 6.8 Cumulated Dynamic Envy at each Node (Decision Point) (CDEeN) 

 e𝑖𝑗 = ∑ 𝑒
𝑖,𝑡,𝑟′
𝑟𝑠

𝑖,𝑡    (6.23) 

 where 

𝑒𝑖,𝜏,𝑟′
𝑟𝑠  = 𝑒𝑖𝑗𝜏𝑟′

𝑟′𝑠 + 𝑒𝑖𝑡𝑟′−1
𝑟𝑟′  

 (6.23a) 

 

Let us assume that there are two agents, i and j. Both agents have the same destination (𝑠) 

and they are currently passing node 𝑟′ in the same time step (𝜏). The term 𝑒𝑖,𝜏,𝑟′
𝑟′𝑠  represents 

DEND for agent i. The term CDEeN (𝑒𝑖,𝜏,𝑟′
𝑟𝑠 ) is an additive function which sums the envy from 

the previous node (𝑟′ −  ) on the route and current envy at node 𝑟′(𝑒𝑖𝑗,𝜏,𝑟′
𝑟′𝑠 ). This represents 

envy that agent i feels regarding agent j. Here, agent i only compares resource of other agents 

whose destination (𝑠) and current node (𝑟′) are the same. In other words, when agent i 

arrives at node 𝑟′and time step (𝜏), the agent will select a route until the resource of the 

selected route cannot be better than agent j’s (Eq 6.2). 

 

Lemma 6.2 Unique path from DASEEM-PM  

The allocation efficiency with the pricing (Lemma 4.3) reconstructs non unique path flows 

to unique path flow if each agent is dynamically reallocated to one of the possible alternatives 

at every decision point.  

Proof) The proposed DEND function reorganizes the results from the previous step to have 

a unique path flow pattern. Figure 6.4 indicates the organized path flow pattern. There are 

two used paths for Figure 6.3. Node 3 is a common decision point for Path 3, 4 of OD pair (1 

to 4) and Path 5,6 of OD pair (3 to4). Vehicles, arriving at node 3 from node 1, meet other 
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vehicles departing from node 3. There are two routes from node 3 to a destination (node 4). 

The shortest path to the destination is by using link f, which takes 130 seconds. The 

detouring path via node 2 takes 150 seconds.  At the decision point (node 3), the minimized-

envy path pattern consists of six agents to link e and eight agents to link i according to the 

allocation efficiency (Lemma 4.3). From the pattern, the envy to the shortest path is also 

minimized. For example, let us assume that system provides the information only based on 

Path ID 3 in Figure 6.3. If agents whose origin is node 3 are assigned to the longest path even 

though they can travel the shortest path and are willing to pay, this given guidance will 

induce envy to them.  

 

 

Figure 6. 4 Unique path flow with agent heterogeneity 

2.0 0.1

2.0 0.1

Path ID 3
travel time : 250

Path ID 4
Travel time: 270

1.0

Path ID 5
travel time : 130

Path ID 6
Travel time: 150

VOT

VOT

At node 3 (common decision point)

To l ink    f To l ink    c, e

(a) assigned path via agents’ valuation for OD   -> 4

(b) assigned path via agents’ valuation for OD 2 -> 4
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To identify agents passing a node (decision point) at time step t, it is necessary to carefully 

track the movement of agents in each time step. The node to destination array for existing 

agents in a network is updated in Step 2-4 by updating agents’ position in every time step. 

Agent’s position of the next time step is calculated as shown in Figure 6.5.  

 

* Update Agent Position at each time step 

Function UAP (𝐩𝐨𝐬𝐢,𝐭−𝟏, 𝒕, 𝒖𝒂, 𝒖𝒃, 𝒂, 𝒃, 𝒏𝟐𝒅 𝒂𝒓𝒓𝒂𝒚)  

 current_link = a current link of an agent at t 

 dt,a=  a ∙   travel distance at t for   

 p si,t = p si,t−1 + dt,a  next position  

 if p si,t,a ≥ la then: check agent passes a node at t+1 

           𝑏,t =  −
la

ua
  travel time for link b at t 

         current_link = b update agent’s current link 

         p si,t =  b ∙   b,t  update agent’s position on the next link 

 
        𝑛 𝑑 𝑎𝑟𝑟𝑎𝑦.append(self.id) 

add the agent to a node-to-destination 

array  

 end if  

 
return current_link, p si,t, n d     y 

return agent’s position, and updated node 

to destination array. 

Figure 6. 5 Pseudo-code for updating an agent position in each time step 

 

Once each agent is generated from an origin node at time t, the agent will reach their 

destination by traversing multiple links and nodes. The agent’s position depends on the link’s 

traffic condition (e.g., speed of the current link, 𝑢𝑎). Note that it is possible for the agent to 

travel two consecutive links in one time step. In this case, the speed of the next link (𝑢𝑎) 

determines the position of agent in the next link. The node passing at time t is the decision 

point for the agent which selects the best route minimizing envy among alternative. Thus, 
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this function appends this agent to the node to destination array for steps 2-3 in the next 

time interval. 

 

Figure 6.6 presents the overall process of DASEEM-PM. 

 

 

Figure 6. 6 the overall process of the DASEEM-PM 

Step 1: DSO

Step 2-1: Agent generation based on Dynamic OD table 
& position update based on link travel time

Step 2-4: Agent Position update (DSO pattern)

End

Step 2-2: Update Node to Destination table
(Dynamic Envy Comparison on Route)

Step 2-0: initialization
- Reset clock: t=0, 
- Convert continuous path flows from Step 1 to Agent level

(from continuous to agent level)

- Update travel time of both links and rs paths

Step 2-3: ASEEM-PM

t>T t=t+1
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6.5 Numerical Examples 

6.5.1 Simulation Environment Settings 

We examine the proposed method on a hypothetical network (a dynamic version of Braess 

Paradox Network). Initially, a single origin-destination case shows an example of how routes 

vary under the SO condition and the proposed pricing scheme plays a role in minimizing 

envy induced by allocations for SO. Also, two OD pair cases indicate how “node-to- 

destination array updates” function provides fair and reasonable allocations for users having 

different origins but coincidently heading to the same destination. 

Table 6. 3 Link characteristics of Braess’s Paradox network 

Link ID 
Head 
node 

Tail node 
Jam density 
(veh/mile) 

# of 
lanes 

Length(ft) Speed(ft/sec) 

a 1 2 160.0 6 6000.0 51.33 

b 1 3 160.0 6 3000.0 51.33 

c 2 3 160.0 6 900.0 51.33 

d 3 2 160.0 6 900.0 51.33 

e 2 4 160.0 6 6000.0 51.33 

f 3 4 160.0 6 6000.0 51.33 

 

Table 6.3 and Figure 6.7 provide more details of the hypothetical network and its link 

performance function parameters. As discussed, a modified Greenshields model is applied to 

all links. As shown in Table 6.4, there are four route alternatives for an OD (1 to 4) and two 

routes for an OD (2 to 4). One of the routes in both od pairs share a link (c) and the other 
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route for both has the common links (d and e). When agents departing from node 1 and 

driving to node 4 pass node 2, they will meet other agents with the same destination, but 

whose origin is node 2. We will utilize this condition in Step 2 to identify unique path flow 

patterns under the assumption that our system knows the distribution of the valuation 

function. 

Table 6. 4 Possible path combinations for hypothesis network’s OD pairs 

OD Path ID Links Nodes 
Travel time 

(free flow, seconds) 

1->4 1 a, e 1, 2, 3 233.78 

 2 a, d, f 1, 2, 3, 4 251.32 

 3 b, f 1, 3, 4 175.34 

 4 b, c, e 1, 3, 2, 4 192.87 

2->4 5 e 2, 4 116.89 

 6 d, f 2, 3, 4 134.42 

 

Figure 6.7 depicts the time-varying demand characteristics of all origin and destinations. The 

proposed assignment module distributes agents in the network for an hour. Each time 

interval chosen for the simulation is 15 seconds. Consequently, a simulation lasting 1 hour 

consists of a total of 240-time intervals. The peak interval group has the highest demand 

ratio, with approximately 1 percent of all time intervals, which is five times that of the lowest 

demand interval group. The base demand scenario is assumed to have 5952 agents for a 

single OD pair. We also study various traffic conditions by varying the demand scale from 

0.33 to 1.33, which represents a variation of demand from 1,984 to 7,936 agents for a single 

OD scenario and from 2,504 to 10,016 agents for a multiple ODs scenario. The agents’ 



130 

 

valuation is randomly from a lognormal distribution with the values of µ and σ to be 0 and 

0.5, respectively. 

 

Figure 6. 7 Demand profile for all OD pairs 

Table 6. 5 Base demand profile and the number of generated agents (per timestep) 

OD Time Interval group 

Total 
agents 

1 2 3 4 5 6 

Periods 
(seconds) (0~360) (361~720) (721~1080) (1081~1440) (1441~1800) (1801~3600) 

1->4 14.0 43.0 57.0 43.0 21.0 14.0 5,952 

3->4 4.0 11.0 14.0 11.0 5.0 4.0 1,560 

Total 18.0 54.0 71.0 54.0 26.0 18.0 7,512 
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6.5.2 Results of Dynamic System Optimum Assignment  

Figure 6.8 shows the results of the convergence for Dynamic SO Assignment. DUE results 

have been provided for comparison. Relative Dual Gap has been utilized for the test and the 

travel cost tolerance factor (𝜔) is set to be zero. If the relative gap is worse than that in the 

previous step, the step size decreases by increasing 𝑛𝑖𝑤𝑜𝑟𝑠𝑒 . Both tests for single OD and two 

ODs scenarios indicate that RDG converges rapidly in terms of the number of iterations. From 

the experiments, we set the convergence criteria to RDG =   −  and the maximum iteration 

to 100. 

 
(a) Convergence pattern for a single OD pair 

 
(b) Multiple OD pairs 

Figure 6. 8 Convergence Pattern of the proposed DTA module 
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Overall, the total travel time of DSO pattern for a single OD pair scenario is 1,316,308 

seconds, which shows an improvement of 1.48% over the total travel time of DUE condition 

(1,336,084 seconds). Figure 6.9 shows the dynamic pattern of the average speed of both DSO 

(Green line) and DUE (Red dashed line). Average travel speed is calculated by using Space 

Mean Speed, which is total vehicle miles per total vehicle travel hours at each time step. In 

the initial simulation-steps, when traffic is not fully loaded, the average travel speed is 

similar to that in the free-flow condition. Travel speed drops significantly as demand 

increases in both DUE and DSO. However, we can see that the variance in the travel speed is 

lower in the DSO than in the DUE condition. 

 

Figure 6. 9 Average travel speed of DSO and DUE (single OD) 
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Figure 6.10 shows the details of the path travel time results from Step 1 (DTA) for the single 

OD scenario. There are three used paths in DSO assignment in which the total travel time is 

minimum. Each path has a different travel time, as shown in Figure 6.10 (a). During the peak 

hour (Interval 3), Path ID 3 (b, f) has the highest travel time at 280 seconds and the shortest 

path is ID 1. We compare the path travel time with the results from DUE. As can be seen in 

Figure 6.10 (b), the status of Dynamic User Equilibrium is achieved from our proposed 

dynamic traffic assignment module in that the path travel time of all used paths becomes 

identical within a small tolerance.  

 

(a) Dynamic System Optimum 

 

(b) Dynamic User Equilibrium 

Figure 6. 10 Identified Path Travel times of DSO and DUE with a single OD pair 

Figure 6.11 depicts path flow patterns of both DSO and DUE. It should be noted that the path 

flow results are smoothed by averaging two consecutive points. It is commonly known that 

dynamic path flows fluctuate by time since the traffic conditions in the previous time step 

affect conditions in the following step. Accordingly, the route of the following step might 

differ from the preceding step in congested conditions.  
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Overall, as expected, traffic of DSO condition has a more even spatial distribution that in the 

DUE condition. The DSO condition utilizes Path ID 1 and 3 earlier than the DUE condition, 

and DSO assigns more vehicles to Path ID 1 that is the longest path. Furthermore, path ID 3 

is generally less utilized in the DSO. These patterns imply that better traffic conditions can 

be fulfilled only if some agents are willing to yield the shortest path. Furthermore, when we 

consider the path travel time variances of DSO together, we can reconfirm that optimized 

traffic condition comes with travel time gaps among alternatives. We also can find that 

optimized system pattern has spatially dispersed traffic by time, which efficiently utilizes the 

given transportation supply.  

 

Figure 6. 11 Dynamic path usage of DSO and DUE with a single OD pair 

The proposed DTA method is also capable of finding the optimized traffic pattern for the 

multiple ODs scenario. Figure 6.12 depicts the comparison of travel speed over the entire 

network and time for both DSO and DUE. Similar to the single OD scenario, the average travel 

speed of DSO is higher than DUE over time. Figure 6.13 shows that the multiple ODs case also 

has travel time differences between alternatives in the DSO pattern. The maximum 
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difference is about 48.5 seconds in peak interval for OD pair 1(1->4) and is approximately 

17.5 seconds for OD pair 2 (3->4). Whereas the maximum differences of UE for both ODs are 

within 10 seconds.  These gaps correlate to the congestion level. DUE also has several path 

alternatives but its travel time is equilibrated in all OD pairs.  

 

Figure 6. 12 Average travel speed of DSO and DUE (Multiple ODs) 

 
(a) Dynamic System Optimum 

(origin: 1, destination: 4) 
(b) Dynamic User Equilibrium 

(origin: 1, destination: 4) 

 
(c) Dynamic System Optimum 

(origin: 3, destination: 4) 
(d) Dynamic User Equilibrium 

(origin: 3, destination: 4) 

Figure 6. 13 Identified Path Travel times of DSO and DUE with multiple OD pairs 



136 

 

Figure 6.14 provides the link travel speed of each link for the multiple ODs scenario. Our 

experiments show that the travel speed of each link for DSO is faster than for DUE except for 

link 𝑎 and 𝑒. However, the travel speed under DSO is not worse than under DUE. Figure 6.15 

depicts how the detour routes improve the overall network efficiency. In DUE, most agents 

travel along Path ID 3 and 4, which induces congestion on link 𝑏, 𝑐  nd 𝑓. In addition, agents 

departing from node 3 add congestion on link e  nd 𝑓 . However, the DSO pattern 

recommends that more agents in OD pair (1 to 4) drive on path 1 by selecting link 𝑎 instead 

of link 𝑏 to reduce congestion on link b, c, and f. Although we can identify the general patterns 

of path usage, it is hard to draw conclusions on the identified path flow pattern since it is not 

unique. However, it is enough to utilize this finding in the next step (Step 2) to compute the 

unique solution, which will be addressed in the following section. 

 

Figure 6. 14 Comparisons of Link travel speed profile (Multiple ODs scenario) 

 



137 

 

 

Figure 6. 15 Dynamic path usage of DSO and DUE with multiple OD pairs 

  

(a) Origin 1, Destination 4

(b) Origin 3, Destination 4

DUE DASEEM-PM

DUE DASEEM-PM

departure time (seconds) departure time (seconds)

departure time (seconds) departure time (seconds)
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6.5.3 Results of DASEEM-PM 

Based on the results from DSO (Step 1) for the multiple ODs scenario, this section examines 

the proposed DASEEM-PM (Step 2). It is noteworthy that Step 1 finds the system optimum 

traffic pattern by assuming that OD demand has a homogenous agent, but Step 2 generates 

agents given agents’ heterogeneity and allocates those agents based on the distribution of 

agents’ valuation and the estimated path flow pattern.  

 

We evaluate the proposed method by comparing several indices with other models. DUE is 

for the base scenario when no strategy is applied. DASEEM is implemented for the case when 

the system forces an agent to the given path from Step 1. DASEEM-PM estimates optimal 

pricing for each SO path that minimizes envy among agents who have the same destination 

at the same decision point at a certain time. Then, an agent selects the best option among 

estimated options that system provides.  In addition, we also introduce monetary benefit as 

a performance index. It is noteworthy that the envy function counts valuation only if other’s 

selected option is better than his/her selected option (Eq.  4.1). The monetary benefit 

function calculates how an agent feels benefit when his/her selected option is better than 

others’, as shown in Eq (6.23). Similar to the sum of the maximum envy objective in Eq (4.7), 

we calculate the sum of maximum benefit (Eq 6.24).    

 

 𝑚𝑏𝑖𝑗 =  m x (θ𝑖( j −  𝑖) + (p𝑗 − 𝑝𝑖),  )  (6.23) 

 
∑m 𝑥

𝑖≠𝑗
{𝑚𝑏𝑖𝑗}

𝑖∈𝐼

  (6.24) 
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Table 6.6 provides a numerical summary of the performance of each scenario. Total 

maximum envy is minimized to zero in DASEEM-PM, which supposed to be 40,581units in 

DASEEM. This implies that without pricing scheme, assigning agents to SO routes induces 

significant envy. It is interesting that DUE also generate envy since DUE in agent-based 

modeling results in large travel time gaps in OD routes. Among agents who have the same 

origin and destination and the same departure time, some agents might feel satisfaction 

when they arrive at their destination earlier than others’. DUE also has this satisfaction, 

whose value is 15,549.35 units. Agents who matched to the fastest path group in DASEEM 

will might feel more benefit than agents in DUE since the travel time gaps of DSO between 

routes tend to be substantial. Whereas agents matched to longer paths feel envy, agents 

belonging to the shortest path might feel benefit. Note that the Allocation Efficiency function 

in DASEEM matches the paths with respect to the agents’ valuations. Consequently, DASEEM 

minimizes total envy while maximizing total monetary benefit. However, DASEEM could still 

not be considered as a feasible application because of unfairness (envy). However, the 

pricing scheme in DASEEM-PM minimizes envy to 0 and maximizes monetary benefit that 

agents perceive from P2P travel option comparisons. 

 

Table 6. 6 Overall performance of DASEEM-PM 

Index DUE DASEEM DASEEM-PM 

Total max Envy 5,681.96 41,348.64 0.00 

Total max Monetary Benefit 15,549.35 143,906.52 92,865.00 

Total Transaction - - 64.367.10 
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Figure 6.16 depicts envy and monetary benefit by time. Agents in DASEEM are more likely 

to be dissatisfied by the system because of high level of envy during peak time. Some agents 

might feel more benefits from the DASEEM system because agents having higher valuation 

receive shorter paths without pricing. DUE has insignificant amounts of envy and monetary 

value over the time. Note that agents in DASEEM-PM do not feel envy. Instead, they feel 

benefited from the system although some pay and some detour because of the pricing 

estimated by DASEEM-PM. 

 

Figure 6. 16 Dynamic profile of Envy and Monetary benefit 

DASEEM-PM controls agent’s envy coming from the differences in travel time for each 

alternative by estimating prices to minimize envy for agents under budget balanced 

condition. Figure 6.17 shows the network-wide dynamic characteristics of tolls and 

incentives. The red dashed color and green color lines depict tolls and incentives, 

respectively. These two lines are symmetric since the total amount of collected tolls are used 

to compensate for the other path groups. The amount of incentives and tolls is associated 



141 

 

with traffic conditions in which the gap between alternatives becomes higher during 

significant congestion

 

Figure 6. 17 Dynamic pattern of Total cost and incentives 

 

Figure 6.18 indicates dynamic pricing by time for each alternative. For the three path 

alternatives case (origin 1 and destination 4, Figure 6.18 (a)), the shortest path always pays 

a toll. The price of the second option varies (ID 4). In low traffic, the pricing of the second 

fastest option is incentives. However, it becomes a toll after a certain point (from 390 

seconds). The third option that is the longest path (ID 1) always receives incentives. The 

other OD group departs from node 3 and its destination is 4 (Figure 6.18 (b)). Remarkably, 

some periods (from 1800 seconds) have only tolls instead of an incentive option. This is 

because of DEND (Definition 6.7), which updates paths and prices at each decision point. In 

the scenario, agents passing node 3 consist of two OD pair groups. First group includes 
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agents departed from node 1 and pass node 3 for node 4 at time t. At the same time, the other 

group departs from 3 to node 4. DEND function updates at time t and node 3 for agents in 

Node-to-destination table and Price matching module in DASEEM-PM estimates the best 

prices for agents in the table. 

 

(a) origin 1, destination 4 

 
(b) origin 3, destination 4 

Figure 6. 18 Dynamic pricing for each path alternative 
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Figure 6.19 confirms Lemma 6.2 that Step 2 reallocates path flows to a unique travel path 

pattern. The profile of generated agents at 𝑡 of both OD pairs follows the dynamic demand 

profile shown in Figure 6.7. The number of agents of OD pair 1(node 1 to 4) is proportional. 

In other words, the demands of OD pair 1 at 𝑡 is always four times larger than the demand of 

OD pair 2 at 𝑡.  

 

Figure 6. 19 Organized-unique path flow pattern 

The left figure of Figure 6.19 is a dynamic path flow pattern for DSO identified by Step 1, 

which is non-unique. Specifically, some of the path flows for Path ID 3 and 4 can vary with 

path flow of Path ID 5 and 6 of OD pair 2 (node 3 to 4). Those paths contain the same decision 

point (node 3). At node 3, agents heading to node 4, no matter their origin, have the same 

path alternatives. One of the alternatives is to go to node 2 (link c) or to node 4 (link f).  

departure time (seconds) departure time (seconds)

departure time (seconds) departure time (seconds)

(b) Origin 3, Destination 4

(a) Origin 1, Destination 4
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Let us recall that our simulation in Step 2 generates agents having heterogeneous valuation 

function and assigns those agents to the network based on the estimated allocated efficiency 

from step 1. This property enables us to track the distribution of valuation of agents at each 

node, which we use to reallocate agents to the given turning ratio to the next node.  

 

Figure 6.20 helps understand how the DEND function reorganizes the path flow. While the 

Path 1’ path flow remains the same, the path flow ratio Path 2 and 3 have changed. Fewer 

agents travel on Path 3 than the identified DSO pattern. Those agents initially assigned to 

link 𝑓 (Path 3) change their next link to link 𝑐 (Path 1) at node 3. Since the results of Step 1 

have the unique link flow pattern, link flows and turning ratios should be identical. 

Consequently, the amount of changes of Path 4 affects the path flow of OD pair 2. 

Interestingly, it is easy to identify that agents have shifted to path 6 since the DSO pattern of 

interval 3 (I-3) and 4 (I-5) indicates lower path usage of Path 5. In addition, agents who are 

supposed to travel along Path 5 in OD pair 2 also change their route to Path 6. This 

reallocation is dependent on the distribution of agents’ valuation. 
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Figure 6. 20 Organized-unique path ratio pattern 

  

departure time (seconds) departure time (seconds)

departure time (seconds) departure time (seconds)

(b) Origin 3, Destination 4

(a) Origin 1, Destination 4
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Chapter 7 

7.1 Numerical Study 

In this chapter, we examine the proposed DASEEM-PM method and its solution algorithm 

using an actual network. We select the Irvine Triangular network as our study area whose 

network and demand information is available (Park 2009). Their network has been coded 

for a microscopic simulation (PARAMICS). From their model, we can obtain dynamic OD 

demands. Also, we estimate the parameter of the Link Performance Function (LPF), which is 

a modified Greenshields’ model, by analyzing the relationship between link density and link 

travel time from the microscopic model. We calibrate the LPF by comparing the basic 

geometry for the network with the SCAG travel demand model such as capacity, the number 

of lanes, link type, and free-flow speed. Note that that our current model does not consider 

signal controls that were presented in Park (2009). We assume that the calibrated link 

performance functions can serve as a proxy for signalized intersections, with reduced 

capacity due to signal phases.  

 

7.1.1 Irvine Triangular Network and Its Dynamic Demand 

A total of 27,484 agents are generated in the simulation. We relaxed the maximum allowable 

envy and the maximum pricing; thus, the pricing is determined by travel time differences in 

the node to a destination pair, the distribution of valuation, and budget. We set the budget 
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constraint to be budget balanced, meaning that the total amount of collected tolls are used 

for the total incentives.  

 

Figure 7. 1 Irvine Triangular Network 

The study network includes various road types and multiple OD pairs, as shown in Figure 

7.1. There are 231 nodes and 312 links. The time scope of the simulation is 7 am for a one-

hour period in the morning weekday peak. The simulation time interval is 15 seconds. There 

are 270 OD pairs and 21,068 dynamic OD pairs. The total number of agents in this case study 

is 27,484.  

 

Dynamic demands are loaded to the network during an hour. Valuation of agents from 

dynamic demands is drawn from a lognormal distribution with the values of µ and σ to be 1 

and 0.5, respectively, as shown in Figure 7.2. The simulation ends when all agents arrive at 

their destination. On first glance, it may seem from the cumulative curve of the departure 

pattern in Figure 7.3 that agents are likely to be generated from a uniform distribution. 
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However, Figure 7.4, indicating the dynamic demand patterns of top four OD pairs having 

high demands, confirm that the OD demand referred to Park (2009), contains time-varying 

dynamics.  

 

Figure 7. 2 An example of gents’ valuation distribution 

 

Figure 7. 3 Cumulative curve for agents’ departure and arrivals 
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Figure 7. 4 Dynamic demand pattern of top 4 OD pairs 

 

7.1.2 Scenarios for Comparative Studies 

We verify our proposed model by comparing the results with the DUE model. There are 4 

cases for the comparative analysis, as shown in Table 7.1. Case1 is the base scenario in which 

no strategy is applied (DUE). Agents in Case 1 are assumed to seek the shortest path and to 

change their path until their travel cannot be better off. In the equilibrated condition, all 

agents have the same travel time, but this greedy behavior makes the entire system 

inefficient. Case 2 is for the best condition in terms of efficiency. The solutions of both Case 

1 and Case 2 are computed based on the assumption that agents have the same preference 
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on travel time (homogeneous). There is no pricing scheme in Case 1 and Case 2. Case 3 and 

Case 4 takes heterogeneity and pricing into account in the model for fairness and efficiency. 

The difference between Case 3 and 4 is the DEND function, according to which the system 

manager of Case 4 finds agents approaching a node and updates the node to the destination 

demand table at every time step, which is used to process dynamic pricing to minimize envy. 

The system recommends travel options for the agents in the node to destination table if 

better options are available to the agent.  

Table 7. 1 Definition of cases and its component 

Case Model Pricing Heterogeneity 
DEND  

(Node update) 

Case 1 DUE x x x 

Case 2 DASEEM x ✓ x 

Case 3 DASEEM-PM x ✓ ✓ 

Case 4 DASEEM-PM Toll & Incentive ✓ ✓ 

 

7.2 Results 

Table 7.2 summarizes the basic comparisons of all the cases. First, the proposed model 

improves the efficiency of the given supply. The total travel time of the proposed model is 

14,399,160 (seconds), which represents an improvement of 0.44% over Case 1(DUE). This 

improvement can be achieved due to the spatially distributed traffic. The total number of 

paths of Case 2 is 565, which is 196 more than the number of paths of Case1. Case 4 has the 

increased number of paths of 603 because of the previously defined DEND function. The total 
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travel time of Case 2, 3 and 4 is higher than in Case1 because the optimized system 

distributes traffic over the space using a larger number of paths. Note that Case 4 has the 

highest number of paths since the DEND function reorganizes paths for agents at each node 

while traffic patterns remains the same. Although there are total travel distances increases 

for Case 2, 3, 4, the average travel speed, which can be calculated by both total travel time 

and total travel distances, improves from 42.95 mph to 43.36 mph.  

Table 7. 2 Results of comparative analysis 

Index Case 1 Case 2 Case 3 Case 4 

Total Travel Time 
(seconds) 

14,467,252 14,399,160 14,399,160 14,399,160 

Total Travel Distances 
(ft) 

911,395,789 915,674,204 915,674,204 915,674,204 

Average Speed 
(SMS,mph) 

42.95 43.36 43.36 43.36 

Total number of paths 369 565 565 603 

Total max Envy 100,290 136,917 0 0 

Total Transaction 0 0 138,305 140,790 

Total Max envy to the 
shortest path 

30,951 151,691 57,466 0 

Total Max Monetary 
Benefit 

79,165 362,047 212,842 234,037 

 

Figure 7.5 shows a detailed analysis of the dynamic case in terms of the average travel speed. 

Overall, DASEEM-PM tends to have the lower total travel times (green line) than DUE (red 

dashed line) in the entire time period, meaning that the proposed method affects the overall 

system efficiency. Although the proposed system has the higher total travel distance, Figure 
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7.5 shows that DASEEM-PM has better speed in the entire system. Dynamic pricing plays role 

in making people select the DSO pattern as a green line in Figure 7.5 

 

Figure 7. 5 Comparisons of a trend of average speed over the entire simulation time 

 

Figure 7.6 also visualizes the total pricing (tolls and incentives) over the simulation time. As 

more traffic exists in the network and causes higher marginal effects on congestion, 

transaction costs increase. Before 07:08:15 am (485 seconds), the pricing gaps between tolls 

and incentives are small due to less severe traffic congestion and fewer number of agents in 

the network.  
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Figure 7. 6 Estimated total tolls and incentives for the Irvine Triangular network 

Figure 7.7 depicts the envy of agents in each case. While Case 1 (red dotted line) and 2 (green 

hashed line) have envy, Case 3 (orange hashed line) and 4 (blue line) do not have envy due 

to price matching. Similar to the Braess’ Paradox Network scenario in Chapter 6, Case 2 

(Green line), which is DASEEM with no pricing, has the highest envy. However, agents in Case 

3 are likely to feel envious when they realize that no shortest path is available to them as an 

option. Figure 7 (b) shows how the agents feel envy to the shortest path. Case 3, which does 

not include the DEND function, has significant level of envy to the shortest path although the 

level of envy is lower than in Case 3. DASEEM-PM of Case 4 updates the node-to-destination 

table at each time step, then travel options from a node to destination are processed with 

pricing according to agents set in the table. Thus, agents always receive travel options where 

one of them is the shortest path.  
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Figure 7. 7 Dynamic profile of envy and envy to the shortest path (Irvine) 

 
Figure 7.8 shows the dynamic trend of monetary benefit that agents receive because their 

best option is better than other agents’ travel time and cost. Since travel time gaps of Case 1 

are insignificant, its monetary benefit is small. The monetary benefit of CASE 2 is the highest 

over the same time period. However, it is noteworthy that envy and envy to the shortest path 

of Case 2 are also highest, which has a negative effect on the fairness of the system. 

 

Figure 7. 8 Dynamic profile of Monetary benefit (Irvine) 
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We further analyze the travel time and pricing for the selected OD pairs. The OD paths of 

DUE have a similar travel time as the definition of UE. Moreover, the number of paths is 

significantly limited. For example, most OD time instances have one or two paths. The 

maximum number of paths is 4. On the other hand, DSO and the proposed method (both Case 

2 and 3) have more paths. Figures from 7.9 to 7.11 indicate examples of the various paths. 

Figure 7.9 shows all paths for Interstate 5 (I-5) which is a major interstate highway in 

California. In the Irvine Triangular network, its origin and destination are the entry and exit 

points of Interstate 5 (I-5), respectively. DSO has five identified travel paths in the time step, 

whereas DUE has only one path.  

 

 

 

Figure 7. 9 Paths for an origin 2 to a destination 4 (I-5 southbound) 

 

Path ID: 1

Path ID: 2

Path ID: 3

Path ID: 4

Path ID: 5

I-5 South bound paths

Path ID: 6

Path ID: 7

Path ID: 8
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Figure 7.10 also visualizes the five paths from Interstate 5 to Interstate 405 (Northbound). 

There are five paths in DASEEM-PM over the simulation periods, whereas only one path is 

used in DUE. The thickness of each path in Figure 7.8 indicates the relative path flow. It is 

evident that most of the flow is assigned to Path 1. DASEEM-PM finds the optimal pattern 

that minimizes travel time by distributing travel demands over the possible paths. Figure 7.9 

confirms this pattern.  

 

DUE pattern has two paths (Path ID 1 and 2). Upon closer inspection of the overlapped paths 

and actual road geometry, we can regard that the two paths are the same. However, 

DASEEM-PM generates total 8 paths. Most agents still select Path ID 1 and 2, which are 

shorter paths. Some agents selecting the detoured routes contributes to minimizing total 

travel time (efficiency). 

 

Table 7.3 indicates the number of used paths for DASEEM-PM and DUE over the entire 

simulation periods. The DUE patterns have a limited number of paths. The I-5 Southbound 

case has 4 paths. I-405 Northbound and Woodbridge to I-405 case have 1 and 2 paths, 

respectively. In contrast, DASEEM-PM efficiently utilize road supply by distributing flows, 

which is important because even small fraction of distributed traffic could play role in 

improving efficiency.  As can be seen in Table 7.3, the paths of DASEEM-PM not used in DUE 

have a relatively small number of path flows. For example, only 62 agents among 3,502 in 

the I-405 Northbound direction are able to influence the system to make it efficient. In the 
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same manner, the other paths for I-5 Southbound than DUE have 31 agents over total 5,298 

agents.  

 

 

Figure 7. 10 Paths for an origin 4 to a destination 1 (I-405 northbound) 

 

Figure 7. 11 Paths from Woodbridge to I-405 northbound  

Path ID: 1

Path ID: 2

Path ID: 3

Path ID: 4

Path ID: 5

I-405 North bound paths

Path ID: 1 Path ID: 2 Path ID: 3 Path ID: 4

Path ID: 5

Woodbridge to I-405 Northbound paths

Path ID: 6 Path ID: 7 Path ID: 8
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Table 7. 3 Path flows of the selected OD pairs 

Direction Path ID 
Path Volume 

DASEEM-PM DUE 

I-5 Southbound 1 2,933 3,389 

 2 1,027 1,018 

 3 976 889 

 4 331 2 

 5 18  

 6 11  

 7 1  

 8 1  

Total 5,298 5,298 

I-405 Northbound 1 3,440 3,502 

 2 54  

 3 4  

 4 3  

 5 1  

Total 3,502 3,502 

Woodbridge to  1 344 540 

I-405 Northbound 2 214 92 

 3 32  

 4 18  

 5 11  

 6 5  

 7 4  

 8 4  

Total 632 632 
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Figure 7.12 compares the path travel times by simulation time between DASEEM-PM and 

DUE for the OD pair of I-5 southbound. In addition, Figure 7.13 shows the pricing according 

to the paths. As for the definition of DUE, travel time among paths are almost the same. 

However, DASEEM-PM achieves minimized travel time from different travel times among 

paths as shown in Figure 7.12 (a). Although there are 8 paths in DASEEM-PM, only four paths 

are mostly used over the timesteps.  

 

(a) Path travel times of DASEEM-PM (b) Path travel times of DUE 

Figure 7. 12 Comparisons of path travel time between DSO and DUE (I-5 Southbound) 

 

Figure 7. 13 Tolls and Incentives of paths (I-5 Southbound) 
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The incentives and tolls are related to the path travel time gaps as shown in Figure 7.12 (a) 

and Figure 7.13.  The pricing estimated by DASEEM-PM is shown in Figure 7.13. The shortest 

path (path 1, blue line) has the highest tolls ranging from 0 to 110 time-units). In this OD pair 

case, the tolls collected from path 1 are distributed to the other paths. These patterns are 

similarly observed in the other OD paths. Figure 7.14 to 7.18 further exemplify these 

patterns.  

 

(a) Path travel times of DASEEM-PM (b) Path travel times of DUE 

Figure 7. 14 Comparisons of path travel time (I-405 North) 

 

Figure 7. 15 Tolls and Incentives of paths ( I-405 Northbound) 
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(a) Path travel times of DASEEM-PM (c) Path travel times of DUE 

Figure 7. 16 Comparisons of path travel time (Woodbridge to I-405 Northbound) 

 

Figure 7. 17 Tolls and Incentives of paths (Woodbridge to I-405 Northbound) 
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Chapter 8  

Future technologies will require smart management of urban infrastructure systems. Our 

primary research interest is to develop smart urban mobility platforms for achieving both 

fairness and efficiency, goals that often compete with each other. We focus on the design of 

a transportation planning platform which maximizes system efficiency while minimizing 

user ‘envy’. Traditional planning methods limit the demand characteristics as an aggregated 

behavior, meaning that all travelers have identical behavior. Even efforts to consider the 

heterogeneity of travelers only focus on broad categorical travelers who are assumed to have 

the same behavior within their group. The transportation design resulting from the 

assumption of homogeneous behavior results in traveler dissatisfaction since not all 

travelers can be satisfied with their assigned supply. To solve this problem, we have 

developed extensions to the envy-free allocation theory, an idea from Economics. Our 

solution arrives at a pricing scheme, achieving both Pareto efficiency and fair allocations by 

considering an individual-level preference and efficient allocation of supply. 

 

This dissertation introduces a pricing scheme for a transportation system optimized with 

respect to envy. The pricing scheme incentivizes agents to follow the system optimum traffic 

pattern, without feeling envious. The shortest path group in the optimized system can travel 

faster than in the UE condition and even faster than other path groups. Their added 

convenience comes from the other group’s inconvenience in the form of longer travel times, 

who are appropriately compensated. The travel time of the inconvenient group can be either 



163 

 

longer or shorter than the travel time under UE conditions. It will be true that in any efficient 

system, an agent will feel unfairness when she/he compares their allocations with the 

shortest path group. Therefore, financial incentives are an obvious way to compensate 

people who are willing to sacrifice their travel time to others. At the same time, when the 

shortest path group pays too much than they deem reasonable, they might not opt into such 

a system, and not comply with the recommended alternative that the system finds as most 

efficient.  

 

Firstly, we formulate ASEEM-PM’s mathematical objective function and constraints, 

considering the heterogeneity of valuation for time and optimized transportation systems. 

The solution finds the optimal price where nobody feels envious to others while achieving 

an efficient transportation state. From this solution, we can regard the optimized system to 

be both fair and efficient. The proposed method can address agent heterogeneity and 

optimality in both the efficiency and fairness and computes the optimal prices for each group. 

However, its current limitation is scalability.  

 

The individual level of alternative comparisons requires a polynomial number of constraints, 

n ×  (n −  ) . The mathematical formulation includes binary variables for paths. Our 

numerical experiences indicate the processing time increases exponentially by the number 

of agents. More computational resources are required as the number of route alternatives 

increases. This limitation prevents the ASEEM-PM as currently envisioned to be 

implemented in a real-world scenario, which were also addressed in subsequent chapters.  
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By analyzing the characteristics of the mathematical formulations of ASEEM-PM, we reduce 

the problem complexity. The proposed decomposition heuristic simplifies the original 

mixed-integer linear programming problem, which decreases the computation complexity 

from NP-complete to that of linearly increasing processing time with respect to the number 

of agents. The experiments on the Braess’ Paradox network indicate that the proposed 

heuristic finds the optimum solution that MILP could not guarantee. Furthermore, the 

proposed heuristic enables us to solve non-linear programs in our framework within a 

feasible time period. We extended our examination to a much larger network that has a non-

linear link cost function (Sioux Falls network).  

 

The proposed ASEEM-PM and its heuristic solution are extended to the dynamic 

transportation problem for real-world implementation, which considers the time and space-

dependent nature of transportation systems. For identifying the dynamic system optimum 

condition in the given dynamic demand and supply, we develop a dynamic traffic assignment 

model for SO (SODTA) by integrating a bi-level programming version of dynamic traffic 

assignment model (Jayakrishnan et al. 1995) with Yang et. al. (2011) Gradient Projection 

approach. The dynamic version of ASEEM-PM (DASEEM-PM) utilizes the results from the 

SODTA model. The DASEEM-PM considers time-space movements of agents and agents’ 

behavior, which is defined as Dynamic Envy to a Destination (DEND) at each node. This 

property is sufficient to prove that the solution from the DASEEM-PM guarantees a unique 

path travel pattern. We implemented DASEEM-PM on both Braess’s Paradox Network and 
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the actual experimental network in Irvine, CA, USA (Irvine Triangular Network). The results 

indicate that the proposed method maximizes the efficiency of a system and minimizes envy 

of agents.  

 

This research has applications in the public and private sector. An immediate candidate 

application would be pricing policies for road systems. Furthermore, with the rapid adoption 

of cloud-based mobile platform services, our research contributions can enhance public 

transportation, multimodal route planning services, and transit feeder systems, to name just 

a few applications. This research can also play a vital role in improving current tolling 

strategies such as tradable credit schemes, by introducing dynamic tolling and incentivizing. 

 

In the private sector, our research has implications for No-rush shipping, a common shipping 

tactic employed by Amazon and other retailers. These logistic companies must determine 

the value of the incentives offered to customers who choose to have their items shipped 

slower.  Our research can also be applied to companies in the Mobility as a Service (MaaS) 

market, to design flexible options for customers and price these options to induce certain 

desirable travel and consumption patterns. 
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