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ARTICLE OPEN

Non-motor predictors of 36-month quality of life after
subthalamic stimulation in Parkinson disease
Stefanie T. Jost1✉, Veerle Visser-Vandewalle2, Alexandra Rizos3, Philipp A. Loehrer 4, Monty Silverdale5, Julian Evans5,
Michael Samuel3, Jan Niklas Petry-Schmelzer1, Anna Sauerbier1,6, Alexandra Gronostay1, Michael T. Barbe1, Gereon R. Fink 1,7,
Keyoumars Ashkan3, Angelo Antonini8, Pablo Martinez-Martin9, K. Ray Chaudhuri 3,6, Lars Timmermann4, Haidar S. Dafsari 1✉ and
EUROPAR and the International Parkinson and Movement Disorders Society Non-Motor Parkinson’s Disease Study Group*

To identify predictors of 36-month follow-up quality of life (QoL) outcome after bilateral subthalamic nucleus deep brain
stimulation (STN-DBS) in Parkinson’s disease (PD). In this ongoing, prospective, multicenter international study (Cologne,
Manchester, London) including 73 patients undergoing STN-DBS, we assessed the following scales preoperatively and at 6-month
and 36-month follow-up: PD Questionnaire-8 (PDQ-8), NMSScale (NMSS), Scales for Outcomes in PD (SCOPA)-motor examination,
-activities of daily living, and -complications, and levodopa equivalent daily dose (LEDD). We analyzed factors associated with QoL
improvement at 36-month follow-up based on (1) correlations between baseline test scores and QoL improvement, (2) step-wise
linear regressions with baseline test scores as independent and QoL improvement as dependent variables, (3) logistic regressions
and receiver operating characteristic curves using a dichotomized variable “QoL responders”/“non-responders”. At both follow-ups,
NMSS total score, SCOPA-motor examination, and -complications improved and LEDD was reduced significantly. PDQ-8 improved
at 6-month follow-up with subsequent decrements in gains at 36-month follow-up when 61.6% of patients were categorized as
“QoL non-responders”. Correlations, linear, and logistic regression analyses found greater PDQ-8 improvements in patients with
younger age, worse PDQ-8, and worse specific NMS at baseline, such as ‘difficulties experiencing pleasure’ and ‘problems sustaining
concentration’. Baseline SCOPA scores were not associated with PDQ-8 changes. Our results provide evidence that 36-month QoL
changes depend on baseline neuropsychological and neuropsychiatric non-motor symptoms burden. These findings highlight the
need for an assessment of a wide range of non-motor and motor symptoms when advising and selecting individuals for DBS
therapy.

npj Parkinson’s Disease            (2021) 7:48 ; https://doi.org/10.1038/s41531-021-00174-x

INTRODUCTION
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a
well-established therapy with long-term efficacy improving motor
symptoms, quality of life (QoL), and non-motor symptoms (NMS) in
patients with Parkinson’s disease (PD)1–5. Previous research also
demonstrated beneficial effects of STN-DBS on QoL compared to
medical treatment6–8. However, on the individual level, 43–49% of
patients experience no clinically relevant improvement of QoL
postoperatively at 6-month follow-up6,9,10. Furthermore, there is Class
I evidence that in 36% of pairs of patients treated either with best
medical treatment alone or with STN-DBS, medical treatment alone
results in better QoL outcomes than STN-DBS2. Identifying pre-
operative factors that predict QoL outcome could support the
decision-making process for DBS eligibility and improve individual
treatment results. Amongst other parameters younger age, worse
baseline QoL, and specific NMS have been identified as predictors of
more considerable QoL improvement at 6-month follow-up. How-
ever, it is unclear which demographic and clinical parameters
influence the evolution of QoL beyond such a short-term follow-up.
Therefore, we investigated predictors of QoL outcome after STN-DBS
at 36-month follow-up and, based on previous studies with shorter

follow-up periods, hypothesized that QoL outcome depends on
demographic and non-motor predictors as well as baseline QoL.

RESULTS
Of 129 patients screened, 73 patients (43 male) were included in
the final analysis (see Fig. 1). The mean age at baseline was 62.0
years (SD= 8.3) and disease duration 10.3 years (SD= 4.7). The
mean time to follow-up was 3.0 years (SD= 0.31).

Clinical outcomes at baseline, 6-month, and 36-month follow-up
Friedman tests revealed significant differences between the three
visits for all outcome scores (see Table 1). In post hoc tests
comparing baseline and 36-month follow-up, we observed
significant longitudinal changes for the NMSS total score (P=
0.037), SCOPA-motor examination (P= 0.001), and -motor com-
plications (P < 0.001), and significant sustained levodopa equiva-
lent daily dose (LEDD) reduction (P < 0.001). No significant
changes at 36-month follow-up were found for the PDQ-8 SI
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(P= 0.296) and SCOPA-activities of daily living (P= 0.161). PDQ-8
domains are reported in supplementary Table e-1.

Correlation analyses
Table 2 shows correlations between PDQ-8 SI change score (baseline
vs. 36-month follow-up) and demographic variables and preopera-
tive clinical scores. Significant correlations were found between PDQ-
8 SI changes and PDQ-8 SIbaseline (moderate strength) and agebaseline
(weak). Correlations between improvement in PDQ-8 SI and NMSS
totalbaseline trended. Explorative Spearman correlations between
PDQ-8 SI changes at 36-month follow-up and NMSS items at
baseline showed significant associations with the items “difficulty
experiencing pleasure” (NMSS-12baseline, r= 0.24, P= 0.041), “con-
centration” (NMSS-16baseline, r= 0.34, P= 0.003), and “urinary fre-
quency” (NMSS 23baseline, r= 0.27, P= 0.022). We observed no
significant correlation between these NMSS items at baseline. A
partial correlation between PDQ-8 SI change score and NMSS-
16baseline was still significant after controlling for NMSS-12baseline
(r= 0.31, P= 0.007).

Linear regression analysis
Univariate regression analyses were performed using the variables
with a P < 0.2 in the correlation analyses as candidate predictors.
This additionally included the items “fainting” (NMSS-2baseline, r=
−0.17, P= 0.157), “hallucinations” (NMSS-13baseline, r= 0.18, P=
0.131), “forget things or events” (NMSS-17baseline, r= 0.17, P= 0.157),
“interest in sex” (NMSS-25baseline, r= 0.21, P= 0.082), and “pain”
(NMSS-27baseline, r= 0.22, P= 0.063). Univariate regression analyses
with change in PDQ-8 SI at 36-month follow-up as the criterion
variable was significant for the following independent variables:
PDQ-8 SIbaseline (β= 0.42, P < 0.001), agebaseline (β= –0.29, P= 0.012),
NMSS totalbaseline (β= 0.26, P= 0.025), NMSS-2baseline (β=−0.25,
P= 0.034), NMSS-12baseline (β= 0.48, P < 0.001), NMSS-16baseline (β=
0.37, P= 0.001), and NMSS 23baseline (β= 0.25, P= 0.032). For the
multivariate regression analysis, we excluded the variable NMSS
totalbaseline due to high intercorrelation with PDQ-8 SIbaseline (r=
0.65, P= <0.001). In the stepwise multivariate regression analysis,
the variables agebaseline, NMSS item 2baseline, NMSS item 12baseline,
and NMSS item 16baseline remained significant. The multivariate
model accounted for 36% of the variance (R2= 0.40) in PDQ-8 SI

Fig. 1 Enrollment. The flow chart describes the enrollment of patients. DBS deep brain stimulation.

Table 1. Outcome parameters at preoperative baseline and postoperative 6-month and 36-month follow-up.

Baseline 6-month follow-up 36-month follow-up

n M SD n M SD n M SD pa Post hoc tests

PDQ-8 Summary Index 73 32.8 16.8 69 23.6 14.9 73 31.1 20.2 <0.001 a

NMSS-total score 73 57.3 34.9 69 39.1 24.6 73 47.6 31.4 <0.001 a b

SCOPA

Motor examination 73 11.3 5.5 66 8.1 5.0 64 8.7 4.8 <0.001 a b

Activities of daily living 73 7.2 3.4 69 5.3 2.9 72 6.7 3.6 <0.001 a

Motor complications 73 4.9 3.0 69 2.2 2.5 71 2.3 2.4 <0.001 a b

LEDD 73 1146.2 508.2 69 550.1 339.0 72 722.7 469.4 <0.001 a b

MMSE 73 29.0 1.1 69 28.9 3.7 65 28.9 1.4 0.128

LEDD levodopa equivalent daily dose, MMSE Mini-Mental State Examination, NMSS Non-Motor Symptom Scale, PDQ-8 8-item Parkinson’s Disease Questionnaire,
SCOPA Scales for Outcomes in Parkinson’s Disease.
aFriedman test or repeated-measures ANOVA when parametric test criteria were fulfilled.
Benjamini-Hochberg correction was applied to account for multiple testing and all presented P-values were adjusted to the significance threshold P < 0.05.
Baseline assessments were conducted in the medication ON state (MedON) and postoperative assessments in the medication ON/stimulation ON state
(MedON/StimON).
Post hoc comparisons (Wilcoxon signed rank or t test):
a = significant difference between baseline vs 6-month follow-up (P < 0.05)
b = significant difference between baseline vs 36-month follow-up (P < 0.05)
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change (F4,68= 11.1, P < 0.001). In this model, NMSS item 12baseline
had the highest predictive value (β= 0.35, P= 0.001), followed by
agebaseline (β=−0.28, P= 0.004), NMSS item 16baseline (β= 0.26, P=
0.011), and NMSS item 2baseline (β=−0.22, P= 0.025).

Logistic regression analysis
The cut-off for a clinically relevant change in PDQ-8 SI at 36-month
follow-up was 8.4 points (12 SD of PDQ-8 SIbaseline). Out of 73
patients in our cohort, 28 patients (38.4%) were classified as 36-
month QoL “responders”, 29 patients (39.7%) reported unchanged
QoL, and 16 patients (21.9%) indicated a clinically relevant
worsening of long-term QoL.
For binary logistic regression analyses, patients reporting

unchanged and worsened QoL were grouped as QoL “non-
responders” (n= 45, 61.6%). In explorative logistic regression
analyses, every additional year of age at baseline decreased the
odds of 36-month QoL improvement by ~5% (odds ratio [OR]=
0.949, confidence interval [CI]=0.895–1.007, P= 0.082). Furthermore,
the odds of QoL improvement were increased by ~5% with every
additional point of baseline QoL impairment in the PDQ-8 SIbaseline
(OR= 1.048, CI= 1.012–1.086, P= 0.008) and by ~14% for every
additional 10 points of baseline non-motor burden in the NMSS-total
scorebaseline (OR= 1.014, CI= 0.999–1.029, P= 0.074). Moreover,
specific NMSS items had a predictive value: one additional point in
NMSS-12baseline (“difficulties experiencing pleasure”) increased the
odds of QoL improvement by 46% (OR= 1.462, CI= 1.054–2.028, P
= 0.023) and in NMSS-16baseline (“concentration”) by 30% (OR=
1.302, CI= 1.064–1.593, P= 0.010).
A logistic regression model using the aforementioned parameters

(agebaseline, PDQ-8 SIbaseline, NMSS-totalbaseline, NMSS-12baseline, and
NMSS-16baseline) correctly classified 75.3% of patients into groups of
long-term QoL “responders/non-responders” (Nagelkerke’s R2=
0.338, χ2= 0.9, P= 0.001, n= 73) as opposed to only 61.6% without
predictors. The model reached 75.0% sensitivity and 73.3% specificity
at the optimal trade-off point (C-statistic= 0.779, P < 0.001, CI=
0.667–0.892, see Fig. 2)11.

Linear and logistic regression analyses were confirmed by
Mann–Whitney U tests comparing baseline parameters between
long-term QoL responders and non-responders. Significant differ-
ences were found for PDQ-8 SI (responders: 40.1 ± 20.4, non-
responders 28.3 ± 12.5, P= 0.021), NMSS-12baseline (responders:
1.7 ± 3.0, non-responders 0.4 ± 1.0, P= 0.015), NMSS-16baseline
(responders: 3.1 ± 2.9, non-responders 1.5 ± 2.1, P= 0.009), NMSS-
23baseline (responders: 3.1 ± 4.0, non-responders 1.6 ± 3.0, P= 0.017),
and NMSS-27baseline (responders: 3.5 ± 3.7, non-responders 2.0 ± 3.5,
P= 0.027).

DISCUSSION
In the present study, we report the 36-month effects of STN-DBS
on QoL in a cohort of 73 patients with PD. We observed significant
improvements in QoL following STN-DBS at a short-term, i.e., 6-
month follow-up with subsequent decrements in gains at 36-
month follow-up when only 38% of the patients experienced a
sustained clinically relevant QoL improvement compared to
preoperative baseline. Our results provide evidence that clinically
relevant QoL improvement three years after preoperative baseline
assessment can be predicted with 75% accuracy. Greater QoL
improvement was observed for patients with younger age at
intervention, worse baseline QoL, and a higher burden of specific
NMS, such as anhedonia and concentration impairments. In
contrast, patients more severely affected by fainting at baseline
experienced less QoL improvement.
To our knowledge, the present study is the first to report an

association between younger age at intervention and greater QoL
improvement at 36-month follow-up. The association between these
parameters was previously described for a 12-month period by

Table 2. Correlations between preoperative baseline test scores or
demographic variables and 36-month change scores of quality of life.

PDQ-8 SI change score

n r P

Age 73 −0.29* 0.012

Sexa 73 −0.14 0.215

Disease duration 73 −0.02 0.860

PDQ-8 Summary Index 73 0.42*** <0.001

NMSS-total score 73 0.20 0.083

SCOPA

Motor examination 73 0.01 0.938

Activities of daily living 73 0.14 0.233

Motor complications 73 −0.04 0.751

LEDD 73 0.04 0.713

MMSE 73 −0.06 0.599

Spearman correlations, respectively Pearson correlations for normally
distributed variables were calculated between PDQ-8 SI change scores
from preoperative baseline to postoperative 36-month follow-up and
preoperative baseline test scores, respectively for demographic variables.
LEDD Levodopa equivalent daily dose, MMSE Mini-Mental State Examina-
tion, NMSS Non-motor Symptom Scale, PDQ-8 8-item Parkinson’s Disease
Questionnaire, SCOPA Scales for Outcomes in Parkinson’s Disease.
*P < 0.050, **P < 0.010, ***P < 0.001.
aRank-biserial correlation.

Fig. 2 Receiver operating characteristic curve. The receiver
operating characteristic curve (blue) illustrates the classification
accuracy of the fitted logistic regression model (dependent variable:
PDQ-8 SI “Responder”/”Non-Responder”, independent variables:
agebaseline, PDQ-8 SIbaseline, NMSS-total scorebaseline, NMSS item
12baseline, NMSS item 16baseline). The discriminatory power of the
test with these parameters is demonstrated by C-statistic= 0.78. The
diagonal line (red) represents chance classification accuracy. The
cross of black reference lines indicates the optimal trade-off point in
which the model reached 75.0% sensitivity and 73.3% specificity.
NMSS Non-Motor Symptom Scale, PDQ-8 SI8-item Parkinson’s
Disease Questionnaire Summary Index.
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Soulas et al.12. However, other studies found no association between
age and changes in QoL6,13. This inconsistency might be explained
by the fact that calendar age may not predict QoL. Instead, QoL after
STN-DBS may be associated with ‘physiological age’. For example,
frailty and co-morbidities may impact QoL post STN-DBS more than
calendar age14. In line with previous research, other sociodemo-
graphic parameters, such as sex and disease duration were not
significantly correlated with long-term change of QoL6,15.
Confirming results of earlier studies with shorter follow-up

periods, the dosage of dopaminergic medication at preoperative
baseline was not associated with QoL outcome6,13. In line with
previous studies with follow-up periods up to 5 years, motor
examination did not predict QoL changes13,16. In line with
previous studies with follow-up periods up to 5 years, motor
examinations did not predict QoL changes. Daniels et al.6 reported
that the cumulative daily OFF time is the strongest predictor for
improvement in disease-related QoL after DBS at 6-month follow-
up. Further studies including cumulative OFF time with a longer
follow-up are needed.
To our knowledge, this is the first report of a significant

relationship between more severe preoperative QoL impairment
and greater postoperative QoL improvement at 36-month follow-
up3. This is in line with previous studies, that reported a
relationship between these parameters at 6-month and 24-
month follow-up3,9. Every additional point in the PDQ-8 SI at
baseline increased the odds of favorable long-term QoL outcome
by 5%. The strength of the association is in line with the results of
our previous study at short-term follow-up9 and the Cleveland
Clinic cohort results10, emphasizing the essential role of baseline
QoL for the prediction of even long-term QoL outcome and also
demonstrating the validity of our results. Our results are in line
with several previous studies which have demonstrated that
higher baseline QoL impairments predict greater postoperative
QoL improvement at short-term follow-up3,6,10. In contrast, a study
by Lezcano et al.16 has observed that lower less severe QoL
impairments could predict greater QoL improvement at 1- and 5-
year follow-up. These differences could be explained by demo-
graphic and clinical parameters in the study by Lezcano et al., such
as a longer mean disease duration (13.2 years) and higher mean
baseline PDQ impairments (41.1 points), than in the present study
(10.3 years and 32.8 points)3,6,10,16. In the multivariate model,
anhedonia, age, concentration problems and fainting contributed
toward explaining QoL outcome at 36-month follow-up, whereas
baseline QoL did not add to the predictive value of this model.
This means that, although baseline QoL was a significant predictor
of QoL change at 36-month follow-up in the univariate analysis, its
contribution in the multivariate model was dominated by the
other four variables mentioned earlier.
In the present study, specific preoperative NMS, namely more

severe anhedonia and problems with sustaining concentration,
were predictors for greater QoL improvement.
The predictive potential of depressive symptoms is in line with

the results at 6-month follow-up in a previous study of our group9

and 8-month follow-up in the Cleveland Clinic cohort10. The
present study results also extend the time frame of a 24-month
follow-up study by Schuepbach et al. which reported greater QoL
improvement in patients with worse baseline scores in two
depression scales (Beck Depression Inventory and Montgomery-
Åsberg Depression Rating Scale)3. One must acknowledge, that
preoperative psychological interviews and strict formal testing
resulted in a highly selected cohort with low baseline depression
similar to other cohorts2,3,17. Therefore, the observation that worse
baseline depression results in greater QoL improvements is only
valid for patients with minimal or subclinical depression. More
severe preoperative depression is a known risk factor for
postoperative attempted or completed suicide18.
Furthermore, we observed that patients with greater baseline

concentration deficits experienced greater QoL improvements at 36-

month follow-up. The relationship between baseline concentration
and QoL changes remained significant after controlling for
anhedonia. Floden et al. and Witt et al. have reported that higher
preoperative verbal memory deficits (Rey Auditory Verbal Learning
Test single-trial memory and Dementia Rating Scale-2) are predictors
of more unsatisfactory postoperative QoL outcome at 6- and 8-
month follow-up10,19. Concentration/attention deficits are often
accompanied by global cognition impairment in patients with PD.
However, in our cohort, multi-disciplinary team assessments included
expert neuropsychological assessments with formal testing of global
cognition scores, psychiatric interviews, and neurological examina-
tions to identify risks of adverse outcomes in patients with poor
preoperative global cognition as these patients have a higher risk to
progress to dementia. Strict indication assessments resulted in
normal global cognition at baseline which remained stable at 6- and
36-month follow-up. Therefore, in this highly selected cohort, a
higher burden of isolated concentration deficits constituted a
predictor of greater QoL improvement. Future studies in larger
cohorts including formal testing of concentration are warranted to
confirm this finding.
To our knowledge, our study is the first to report an association

between the presence of preoperative fainting and worse QoL
outcome at 36-month follow-up. This finding is in line with the
observation that cardiovascular symptoms, such as fainting/
syncopes, worsen at 36-month follow-up8 and have a marked
negative impact on QoL20.
Some limitations of our study should be acknowledged. One

important limiting factor is the underrepresentation of patients
with severe NMS, such as clinically relevant psychiatric disorders
or cognitive impairment, as these patients were not eligible for
DBS. Although the cohort size of the present study (n= 73) is
limited, it is still one of the largest beyond short-term follow-up.
Furthermore, the multicenter design of our study increases
external validity by reducing bias caused by single-center studies.
We did not systematically assess apathy, which could have
improved our prediction model, as patients with negative QoL
outcome showed higher preoperative apathy scores in previous
research21. QoL was assessed with the PDQ-8, which may be less
sensitive to small QoL changes than the PDQ-39 due to a reduced
scale gradation resulting from fewer items22. Due to the focus on
QoL and non-motor aspects of PD, we did not conduct
assessments of motor examination in pre- or postoperative
medication or stimulation OFF states and we did not assess other
motor aspects, such as the cumulative daily OFF time or severity of
dyskinesia. Future studies are needed to further explore a possible
predictive potential of these parameters. Another limitation is that
severe disease progression can result in patients being lost to
follow-up which could introduce a systematic bias in studies with
longer follow-up periods23.
Also, the variability of the exact location of stimulation in the

target area might be relevant for postoperative QoL improve-
ment24, but was not investigated in the present study as we
focused on preoperative predictors of QoL outcome. A recent
study by Petry-Schmelzer et al. reported that non-motor out-
comes, such as mood/apathy and attention/memory, depend on
the location of neurostimulation and are correlated with QoL
outcome24–26. These results and the predictive value of baseline
anhedonia and concentration deficits observed in the present
study highlight the importance of assessments of a wide range of
NMS which may have implications for DBS programming to
achieve optimal long-term QoL outcomes.
The observation of greater QoL improvements at 36-month

follow-up in patients with younger age at intervention, worse
preoperative QoL, worse preoperative anhedonia and concentra-
tion problems, and less autonomic dysfunction, such as fainting,
highlight the importance of preoperative assessments of a wide
range of motor and nonmotor symptoms. Our results, therefore,
contribute to the long-term goal of identifying patients who
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experience more considerable postoperative QoL improvement
and optimizing patient selection for STN-DBS.

METHODS
Study design
In this ongoing, prospective, observational, multicenter international study
(Cologne, London, Manchester), we examined patients with PD undergoing
STN-DBS as part of the DBS arm of the NILS study at preoperative baseline,
6-month, and 36-month follow-up postoperatively27,28. Patients were
screened between 06/2011 and 07/2017. The study was conducted under
the Declaration of Helsinki. Study protocols had been approved by the local
ethics committees (Cologne, study no.: 12-145; German Clinical Trials
Register: DRKS00006735; United Kingdom: NIHR portfolio, number: 10084;
National Research Ethics Service South East London REC 3, 10/H0808/141).
All patients gave written informed consent before study procedures.

Participants
PD diagnosis was based on the UK Brain Bank criteria and patients were
screened for DBS treatment according to the guidelines of the Interna-
tional PD and Movement Disorders Society29. A sufficient levodopa
responsiveness (>30% improvement in the Unified Parkinson’s Disease
Rating Scale-III) was required for each patient. Furthermore, eligibility for
STN-DBS was based on multi-disciplinary assessments including move-
ment disorders specialists, stereotactic neurosurgeons, neuropsychologists,
psychiatrists, and when necessary, speech therapists and physiotherapists.
This led to the exclusion of patients with clinically relevant cognitive
impairment and psychiatric diseases30.

Clinical assessment
Clinical assessments were carried out under medication ON (MedON) at
preoperative baseline and with neurostimulation ON and medication ON
(MedON/StimON) at 6-month and 36-month follow-up.
The following scales and questionnaires were assessed:

(1) QoL was investigated with the PD Questionnaire-8 (PDQ-8) reported
as PDQ-8 Summary Index (PDQ-8 SI) ranging from 0 (no impairment)
to 100 (maximum impairment)31,32. The PDQ-8 assesses eight aspects
of QoL (mobility, activities of daily living, emotional wellbeing,
stigma, social support, cognition, communication, bodily discomfort)
and has been commonly used in PD33 and STN-DBS28,34,35.

(2) The clinician-rated NMS Scale (NMSS) contains 30 items covering
nine domains of NMS: cardiovascular, sleep/fatigue, mood/apathy,
perceptual problems/hallucinations, attention/memory, gastrointest-
inal tract, urinary, sexual function, and miscellaneous (including pain,
inability to smell/taste, weight changes, and sweating). Symptoms
are surveyed over the last four weeks and therefore reflect ON and
OFF states. The NMSS total score ranges from 0 (no impairment) to
360 (maximum impairment)36.

(3) Motor examination, activities of daily living, and motor complications
were assessed with the Scales for Outcomes in PD (SCOPA) -motor
examination, -activities of daily living, and -motor complications37.
The SCOPA is an abbreviated version of the Unified PD Rating Scale.
It strongly correlates with the corresponding parts of the Unified PD
Rating Scale and was used here as its administration time is
approximately four times shorter than the MDS-Unified PD Rating
Scale37,38. SCOPA subscales range from 0 (no impairment) to 42
(motor examination), 21 (activities of daily living), and 12 (motor
complications). Motor examinations were conducted by movement
disorders specialists.

(4) Global cognition was assessed with the Mini-Mental State Examina-
tion (MMSE) which ranges between 0 (maximum impairment) and 30
(no impairment).

(5) To record the medical regimen, we calculated the LEDD following
Tomlinson et al.39.

Statistical analysis
Longitudinal outcome changes. Statistical analyses were performed using
SPSS Statistics 26. The Kolmogorov-Smirnov test was applied to check the
assumption of normality. Longitudinal outcome changes between the
three visits were analyzed with Friedman tests or repeated-measures
analyses of variance when parametric test criteria were fulfilled. Post hoc,

we calculated Wilcoxon signed-rank and t-tests, respectively, to compare
outcome changes between pairs of visits. Benjamini-Hochberg correction
was applied to account for multiple testing. The presented P-values were
adjusted to the significance threshold P < 0.05 unless stated otherwise.

Correlation analyses. The relationship between changes in QoL scores
and preoperative demographic and clinical parameters was explored using
Spearman correlations, respectively Pearson correlations for normally
distributed variables. PDQ-8 SI change score (mean Testbaseline – mean
Test36-month follow-up) was correlated with the following variables: agebaseline,
sex, disease duration since diagnosis, NMSS total scorebaseline, PDQ-8
SIbaseline, SCOPA-motor examinationbaseline, -activities of daily livingbaseline,
-motor complicationsbaseline, MMSEbaseline, and LEDDbaseline. In addition, we
explored if PDQ-8 SI change score correlated to specific NMSS itemsbaseline
and, when appropriate, if these results remained significant after
controlling for changes in other NMSS items in partial correlations.

Linear regression analysis. In a second step, we aimed to identify
preoperative predictors of long-term QoL outcome using stepwise linear
regression analysis. We included parameters from the correlation analyses
(P < 0.2)40 as candidate predictor variables and PDQ-8 SI change score as
criterion variable. Multi-collinearity was checked using intercorrelations
between candidate predictor variables (r > 0.6) and Variance Inflation
Factors, which should not exceed 1041.

Logistic regression analyses and receiver operating characteristics. Further-
more, the cohort was divided into groups of patients with clinically
relevant QoL improvement and patients reporting stable/worsened QoL at
36 months. Each patient was classified as a long-term QoL “responder” or
“non-responder” based on a preassigned threshold (½ SD of PDQ-8
SIbaseline) to report clinically important differences42. We employed
exploratory logistic regression models and receiver operating characteristic
analyses with dichotomized QoL outcome as criterion variable and
demographic and preoperative clinical parameters as predictor variables
to evaluate the utility of linear regression models to predict patients’
postoperative long-term QoL changes. Moreover, we analyzed differences
of baseline characteristics between “responders”/“non-responders” using
Mann–Whitney U tests or t-tests, respectively. To explore the relationship
between QoL outcome changes and specific NMS, all analyses were
explored for NMSS item scores.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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