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Internal physics models guide probabilistic judgments about object dynamics
Jessica Hamrick (jhamrick@mit.edu), Peter Battaglia (pbatt@mit.edu), Joshua B. Tenenbaum (jbt@mit.edu)

Department of Brain and Cognitive Sciences, MIT. Cambridge, MA 02139

Abstract

Many human activities require precise judgments about the
physical properties and dynamics of multiple objects. Clas-
sic work suggests that people’s intuitive models of physics
are relatively poor and error-prone, based on highly simplified
heuristics that apply only in special cases or incorrect general
principles (e.g., impetus instead of momentum). These con-
clusions seem at odds with the breadth and sophistication of
naive physical reasoning in real-world situations. Our work
measures the boundaries of people’s physical reasoning and
tests the richness of intuitive physics knowledge in more com-
plex scenes. We asked participants to make quantitative judg-
ments about stability and other physical properties of virtual
3D towers. We found their judgments correlated highly with a
model observer that uses simulations based on realistic phys-
ical dynamics and sampling-based approximate probabilistic
inference to efficiently and accurately estimate these proper-
ties. Several alternative heuristic accounts provide substan-
tially worse fits. Keywords: intuitive physics, dynamics, per-
ception, model

Introduction
Intuitive physics is a core domain of common-sense reason-
ing, developing early in infancy and central in adult thought
(Baillargeon, 2007). Yet, despite decades of research, there is
no consensus on certain basic questions: What kinds of inter-
nal models of the physical world do human minds build? How
rich and physically accurate are they? How is intuitive phys-
ical knowledge represented or used to guide physical judg-
ments?

The kinds of judgments we consider are those necessary to
navigate, interact with, and constructively modify real-world
physical environments. Consider the towers of blocks shown
in Fig. 1. How stable are these configurations, or how likely
are they to fall? If they fall, in what direction will the blocks
scatter? Where could a block be added or removed from the
tower to significantly alter the configuration’s stability? Peo-
ple make such judgments with relative ease, yet the literature
on intuitive physics has little to say about how they do so.

Classic research focused on the limits of human physical
reasoning. One line of work argued that people’s understand-
ing of simple object trajectories moving under inertial dynam-
ics was biased away from the true Newtonian dynamics, to-
wards a more “Aristotelian” or “impetus” kinematic theory
(Caramazza, McCloskey, & Green, 1981; McCloskey, 1983),
yet no precise model of an intuitive impetus theory was de-
veloped. Studies of how people judge relative masses in two-
body collisions concluded that humans are limited to mak-
ing physical judgments based on simple heuristics, or become
confused in tasks requiring attention to more than one dimen-
sion of a dynamic scene (Todd & Jr., 1982; Gilden & Proffitt,
1989a, 1989b, 1994). Neither the impetus accounts nor the
simple one-dimensional heuristic accounts attempted to ex-
plain how people might reason about complex scenes such as

A. B. C.

Figure 1: Three towers of varying height and stability. Each tower
(A, B, C) corresponds to a colored point in Fig. 3. A is clearly
unstable, C clearly stable, while B (matched in height to C) is less
obvious.

Fig. 1, or gave any basis to think people might reason about
them with a high degree of accuracy.

Here we argue for a different view. We hypothesize that
humans can make physical judgments using an internal gen-
erative model that approximates the principles of Newtonian
mechanics applied to three-dimensional solid bodies. They
use this model to forward-simulate future outcomes given be-
liefs about the world state, and make judgments based on the
outcomes of these simulations. We believe that only by posit-
ing such rich internal models can we explain how people are
able to perform complex everyday tasks like constructing and
predicting properties of stacks of objects, balancing or stabi-
lizing precariously arranged objects, or intercepting or avoid-
ing multiple moving, interacting objects.

The physical laws of the internal models we propose are es-
sentially deterministic, but people’s judgments are probabilis-
tic. Capturing that probabilistic structure is crucial for pre-
dicting human judgments precisely and explaining how intu-
itive physical reasoning successfully guides adaptive behav-
ior, decision-making and planning in the world. We can in-
corporate uncertainty in several ways. Objects’ positions and
velocities and their key physical properties (e.g., mass, coeffi-
cients of friction) may only be inferred with limited precision
from perceptual input. People may also be uncertain about
the underlying physical dynamics, or may consider the action
of unobserved or unknown exogenous forces on the objects
in the scene (e.g., a gust of wind, or someone bumping into
the table). We can represent these sources of uncertainty in
terms of probability distributions over the values of state vari-
ables, parameters or latent forces in the deterministic physi-
cal model. By representing these distributions approximately
in terms of small sets of samples, uncertainty can be propa-
gated through the model’s physical dynamics using only ana-
log mental simulations. Thus a resource-bounded observer
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can make appropriate predictions of future outcomes with-
out complex probabilistic calculations. Even though these
simulations may approximate reality only roughly, and with
large numbers of objects may only be sustainable for brief
durations, they can still be sufficient to make useful judg-
ments about complex scenes on short time-scales. Our goal
in the present work is to quantitatively compare several such
judgments – mainly degree of stability and direction of fall –
across human observers, variants of our model, and plausible
alternative accounts based on simple, model-free heuristics.

Several recent lines of research suggest approximate New-
tonian principles underlie human judgments about dynamics
and stability (Zago & Lacquaniti, 2005; Fleming, Barnett-
Cowan, & Bülthoff, 2010). Perhaps closest to this study is
the work of Sanborn, Mansinghka, and Griffiths (2009), who
showed that perception of relative mass from two-body col-
lisions is well-modeled as Bayesian inference in a generative
model with Newtonian dynamics. Like us, they frame intu-
itive physics as a kind of probabilistic Newtonian mechan-
ics in which uncertainty about latent variables gives rise to
uncertain predictions of physical outcomes. The main inno-
vation of our work is to capture physical knowledge with a
three-dimensional and realistic object-based physics simula-
tion, and to implement probabilistic inference using sample-
based approximations; Sanborn et al. used a simpler Bayesian
network that was specialized to the case of two point masses
colliding in one dimension. Our more general framing allows
us to test whether and how a probabilistic-Newtonian frame-
work can scale up to explain intuitive physical reasoning in
complex scenes such as Fig. 1.

Model
We frame human physical judgments using a probabilistic
model observer (Fig. 2) that combines three components:
perception, physical reasoning, and decision. The perception
component defines a mapping from input images to internal
beliefs about the states of objects in a scene. The physical
reasoning component describes how internal physics knowl-
edge is used to predict future object states. The decision com-
ponent describes how these predicted states are used to pro-
duce a desired property judgment. Uncertainty may enter into
any or all of these components. For simplicity in this paper
we have modeled uncertainty only in the perception compo-
nent, assuming that observers compute a noisy representation
of objects’ positions in the three-dimensional scene.1 When
the noise variance σ2 equals 0, the model’s outputs are deter-
ministic and correspond to physical ground-truth judgments.
We investigate how the addition of noise, along with several
other assumptions about the limitations of realistic observers,
might fit human judgments better than the perfect predictions
of physical ground-truth.

1Similar noise distributions applied to objects’ states could also
represent other sources of uncertainty, such as unknown latent forces
in the world that might perturb the objects’ state or uncertainty
about specific physical dynamics. Here we do not distinguish these
sources of uncertainty but leave this as a question for future work.

..
.

Perception Physical reasoning Decision

..
..

..

Figure 2: Model schematic. Our model has 3 components, per-
ception, physical reasoning, and decision. During perception, an
uncertain belief about the tower is inferred from an image. During
physical reasoning, tower samples are drawn from this belief distri-
bution, and a physical simulation is applied to each. To make deci-
sions about physical properties, the simulation outcomes are evalu-
ated and averaged.

Our specific experimental focus is on judgments about dy-
namic events with towers of blocks (Fig. 1), so the relevant
object states St are the locations and orientations of all blocks
in the tower at time t. The effect of Newtonian physics over
time on the tower, which includes gravitational forces, elastic
collisions, transfer of energy, is represented by the function
φ(·), which inputs St and temporal duration T , and outputs
the subsequent state St+T = φ(St ,T ). Our implementation of
physical predictions used the Open Dynamics Engine (ODE,
www.ode.org), a standard computer physics engine, which,
critically, allows precise simulation of rigid-body dynamics
with momentous collisions. The physical properties the ob-
server wishes to predict are represented as predicates over the
current and future tower states, f (St ,St+T ). We examine two
kinds of judgments about the future state ST of a tower first
observed at t = 0:

1. What proportion of the tower will fall, f f all(S0,ST )?
2. In what direction will the tower fall, fdir(S0,ST )?

We quantify degree of stability as the proportion of a tower
that remains standing following the application of physics for
duration T . This definition matches the objective notion that
a tower that entirely collapses should be judged less stable
than one for which a single block teeters off.

Observer model Predicting a physical tower property
means computing f (S0,ST ) = f (S0,φ(S0,T )). In principle,
deterministic physics implies that knowledge of S0 and φ(·)
is sufficient to predict future physical properties perfectly.
However, a realistic observer does not have direct access to
tower states, S0, so must rely on uncertain perceptual infer-
ences to draw beliefs about the tower. The observer forms
beliefs about S0 conditioned on an image, I, and represents
these beliefs, Ŝ0, with the distribution, Pr(Ŝ0|I).

Applying physics to the inferred initial state Ŝ0 induces
a future state ŜT = φ(Ŝ0,T ) with distribution Pr(ŜT |I). As
above, predicting a physical property means computing
f (Ŝ0, ŜT ) = f (Ŝ0,φ(Ŝ0,T )). To make decisions about physi-
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cal properties, the observer computes the expectation:

E[ f (Ŝ0,φ(Ŝ0,T )]I =
∫

f (Ŝ0,φ(Ŝ0,T ))Pr(Ŝ0|I)dŜ0 (1)

which represents the model observer’s estimate of the phys-
ical property f given I, integrating out the perceptual uncer-
tainty in the initial state Ŝ0.

Approximating physical inference We model Pr(Ŝ0|I) in
a way that reflects perceptual uncertainty and the principle
that objects cannot interpenetrate, without committing to par-
ticular assumptions about perceptual inference or representa-
tions. We approximate Pr(Ŝ0|I) ≈ π(Ŝ0;S0,σ), where π(·) is
a composition of two terms: a set of independent Gaussian
distributions for each block’s x and y positions, with vari-
ance σ2 and mean centered on the corresponding block po-
sitions in the true world state S0, followed by a deterministic
transform that prevents blocks from interpenetrating. This is
clearly a simplified approximation to the observer’s percep-
tual distribution, but it serves as a reasonable starting point,
and a place where more sophisticated vision models can be
interfaced with our approach in future work.

We approximate Eqn. 1 though a Monte Carlo simula-
tion procedure that draws N “perceptual” samples Ŝ(1,...,N)

0 ∼
π(Ŝ0;S0,σ), simulates physics forward on each sample to
time T , and computes the mean value for physical property
f across their final states:

F̄ =
1
N

N

∑
i=0

f (Ŝ(i)0 ,φ(Ŝ(i)0 ,T )). (2)

Fig. 2 illustrates this computation for one unstable tower.
The simulations depend on 3 parameters: movement

threshold, M = 0.1m, the distance a block must move be-
fore it is considered to have “fallen”; timescale of the sim-
ulation, T = 2000ms, defined above; and σ, the perceptual
uncertainty. When σ = 0, the F̄ predictions deterministically
depend on S0, and represent the ground truth physical prop-
erty. When a simulation ends, f f all is measured as the num-
ber of blocks that have not fallen, and fdir is measured as the
angle of the mean position of those blocks that have fallen.
Pilot analyses determined that our results were insensitive to
changes nearby the chosen M and T values, while σ had a
substantial effect in comparison with peoples’ judgments. We
found σ = 0.05 to provide reasonable fits to all conditions but
we explore the effects of varying σ below (Fig. 3).

Heuristics To evaluate alternative explanations of humans’
judgments, we test whether several heuristics, i.e. the tower’s
height, skew, or top-heaviness, may account for their re-
sponses. Representing the tower’s center of mass in cylin-
drical coordinates (ρ,θ,z), where the z-axis is vertical, the
magnitude of the tower skew is equal to ρ, and the direc-
tion of the tower skew is equal to θ. Similarly, the tower’s
top-heaviness is z

h , where h is the height of the tower. We
examine the following heuristics:

Hh - height Hθ - skew direction
Hρ - skew magnitude Hz - top-heaviness

The Hh, Hρ, and Hz heuristic measures are inversely pro-
portional to physical stability, e.g. tall towers tend to be less
stable. For clarity, we negated their values to instead reflect a
proportional relationship; this does not affect the correlations
beyond changing their sign.

Experiments
General methods Participants were recruited from the
MIT BCS human subject pool with informed consent, and
were compensated $10/hr. Stimuli were viewed on a stan-
dard LCD monitor from an approximate distance of 0.6
meters. All stimuli were rendered in 3D using Panda3D
(www.panda3d.org), and physics simulations were computed
at 1500Hz using the ODE physics engine.

All trials had 3 phases: stimulus, response, and feedback.
All phases depicted a 3D scene that contained a circular 3m
radius “ground disk”, and a tower of 10 colored blocks (each
block 20× 20× 60 cm) placed at the disk’s center. In the
stability experiments, the ground was textured with a wood
grain pattern (Fig. 1; in the direction experiment, the ground
texture was a visual indicator of the responses (Fig. 5A).

The stimulus phase was 3500ms, during which participants
passively viewed the tower of blocks from a camera that or-
bited the tower at 60◦/s (total rotation of 180◦), so all sides of
the tower were made visible to the participant. The camera
radius was 7m (stability experiments) or 9m (direction exper-
iment), and the field of view was 40◦. No physics simulations
were applied, so the only image motion was due to camera
rotation. After 3000ms, a cylindrical “occluder” descended
vertically over 500ms and rested on the ground plane to ob-
scure the tower from view; this ended the stimulus phase.

The response phase then began immediately, and was not
limited in time, but ended once the participant depressed a
response key.

The feedback phase began immediately after the response
phase and lasted 2000ms, except in the no-feedback condi-
tion (described below), in which it was skipped entirely. Dur-
ing feedback, the occluder ascended vertically out of sight
over 500ms, and for the remaining 1500ms the tower was
visible. During feedback, physics was turned “on”, which
meant gravitational acceleration of −9.8m/s was applied to
the tower’s blocks. Physics caused some towers to collapse,
while some remained standing – this indication gave partic-
ipants feedback about the accuracy of their response. Ad-
ditionally, in the “stability experiments” (below) the ground
pattern was shaded red if the tower fell, and green if the tower
remained standing. After 2000ms, the tower was removed
from the scene and an inter-trial interval of 500ms was pre-
sented, after which the next trial’s stimulus phase began.

Before the actual experiment, participants performed an
identical unrecorded 20-trial “training” session, with feed-
back, to be familiarized with the task. All recorded conditions
(except same-height, see below) were composed of 360 trials
of 6 subsessions (60 trials per subsession), with 60 differ-
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Figure 3: Stability experiments results. The lines
represent the correlation coefficients (y-axis) between
model stability predictions, F̄f all , and human judged
stabilities, R f all , as a function of the model uncer-
tainty, σ, (x-axis) for the feedback (solid line) and no-
feedback (dashed lines) conditions (1 SE bars). The
insets depict scatterplots between F̄f all (x) and R f all
(y) in the feedback condition for 3 levels of σ (0.0,
0.05, 0.1), where each point is a model/human mean
stability score (with 1 SE bars). The colored points
show the towers depicted in Fig. 1.

ent towers per subsession randomized in order and repeated
across subsessions. Also, each tower’s blocks’ colors were
randomized across different repetitions, as well as the start-
ing angle that the camera faced the tower. Participants were
not told that towers were repeated.

Tower stimuli Each tower was constructed by a stochas-
tic process in which 10 blocks were sequentially given po-
sitions and orientations that resulted in a stable or unstable
stack of blocks. Specifically, each block’s placement satisfied
two constraints: 1) its center must reside within the 60× 60
cm length and width of the tower, and 2) it must be “locally
stable”, meaning that the block is supported by the blocks be-
neath it (however adding more blocks on top could cause it to
fall). We then scored each tower’s “true stability” by simulat-
ing physics (i.e. gravity) and measuring whether any blocks
in the tower fell within 2000ms – those that had blocks fall
were deemed unstable, and those from which no blocks fell
deemed stable.

Stability experiments The first set of experiments asked
participants to judge whether towers were stable or unstable.
The 60 tower stimuli were randomly selected such that 33
were stable and 27 were unstable. Three variations of this
experiment were run: feedback (n = 10 participants), no-
feedback (n = 10), and same-height (n = 9). The feedback
condition proceeded exactly as described above. The no-
feedback condition was identical, except the feedback phase
of each trial was omitted. The same-height condition was
similar to the feedback condition, except that a different set
of 108 towers were used as stimuli, where each had the same
height of 1.6m. The same-height towers were roughly di-
vided into four groups based on simulations from our model:
very stable, mildly stable, mildly unstable, very unstable. The
same-height experimental session was composed of four sub-
sessions of 108 trials (each tower repeated four times, once
per subsession).

On each trial participants made graded responses to the
question, “Will this tower fall?”, by pressing keys on a 1-7
scale to indicate degrees of confidence between “definitely
will fall” (1) to “definitely will not fall” (7).

Direction experiment The second experiment asked par-
ticipants to predict the direction that towers fall in. This ex-
periment used a different set of tower stimuli, in which all
were unstable. It further varied from the stability experiments
in that the ground disk was divided into four quadrants col-
ored different shades of green, and participants were asked:
“Which part of the circle will most of the tower fall on?”.
They were instructed to depress the number key between 1
and 4 which corresponded to each of the quadrants (labels
listed on left of the screen). Fig. 5A shows a screenshot illus-
trating the setup of this experiment. Feedback was provided
in the Direction experiment.

Psychophysical analysis On each trial, we present a tower
with state S0. The human observer responds with the stability
property R f all or Rdir, depending on condition. We computed
each participants’ mean R for each tower across the experi-
ment as their physical property judgment. We computed the
mean across participant’s mean judgments (and SEs, using a
bootstrap analysis) to quantify human judgments about each
tower’s physical property (Figs. 3, 4, 5). We performed cor-
relation analyses using Pearson’s correlations, circular corre-
lations, and partial correlations, as noted.

Results
Stability experiments
Feedback To determine whether observers use internal
physics knowledge when making stability judgments, we
computed the correlation between participants’ judgments,
R f all , in the feedback condition (n = 10) and our models’ pre-
dictions, F̄f all (Fig. 3, insets). In comparison with the ground
truth model, which corresponded to zero uncertainty (σ = 0),
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Figure 4: Effect of height. Each point is the mean model/heuristic
prediction v. human judgment of tower stability for a single tower
(SE error bars). Colored points show the towers depicted in Fig. 1.
A. Feedback condition: height heuristic, −Hh (x) v. human (y). B.
Same-height condition: model (x) v. human (y).

the correlation coefficient was 0.69± 0.088 (standard error,
SE). This corresponded to people correctly classifying 66%
of towers’ stabilities (on the 1-7 scale: 1-3 meant unstable,
5-7 meant stable, response 4 was excluded). The value of
σ for which the model best-predicted human responses was
0.05 (which falls within perceptual position discriminability
tolerances), and yielded a correlation of 0.89±0.024. Fig. 3
(solid line) shows these correlations for a range of σ values.
The high correlation between model and humans supports the
hypothesis that people use real physical dynamics knowledge
to produce their judgments.

To test the possibility that people use simple heuristics,
rather than a richer model, we compared stability judgments
predicted by the heuristics introduced in the Model section
with human judgments. For σ = 0.05, the correlation co-
efficient between humans and: 1) tower height, Hh, was
0.77± 0.051, 2) top-heaviness, Hz, was 0.43± 0.12, and 3)
tower skew magnitude, Hρ, was 0.22±0.12. Only the corre-
lation for Hh was comparable to the model correlations, the
others likely reflect inherent dependencies between the phys-
ical properties the heuristics represent and the actual physical
stability of the towers. Fig. 4 shows the relationship between
people’s judgments and height.

Of course, these heuristics are related to the actual physical
stability due to the natural structure of the towers, so to de-
couple the model predictions from the heuristics’ effects, we
computed the partial correlations between human data and the
heuristics, controlling out the model’s predictions. The partial
correlations between humans and: 1) tower height, Hh, was
0.52±0.092, 2) top-heaviness Hz, was −0.13±0.11, and 3)
tower skew magnitude, Hρ, was −0.12± 0.20. Thus, it is
clear that height played some role in humans’ judgments, but
the other heuristics did not.

To evaluate the model without the effect of Hh, we com-
puted the partial correlation between model and participants’
responses while controlling out height, which was 0.79±
0.044, indicating that people use the physics model indepen-
dent of height to a significant degree.

Same-height To further examine the effect of height on
people’s responses, we conducted the same-height condition

to compare participants’ judgments (n = 9) to the model’s
predictions. We computed a correlation coefficient of 0.73±
0.039 for σ = 0.0 and 0.76 ± 0.044 for σ = 0.05 (Fig.
4B), which is statistically indistinguishable from the height-
independent partial correlation computed between humans
and model in the feedback data (previous section). These
significant correlations, coupled with their closeness to the
partial correlation, confirms people’s judgments are best pre-
dicted by the rich, simulation-based physical model.

No-feedback In order to control for possible learning ef-
fects in the feedback condition we collected participants’
judgments in the no-feedback condition. We computed the
correlation between peoples’ judgments (n = 10) and the
model’s predictions, resulting in a coefficient of 0.82±0.030.
Fig. 3 (dashed line) shows correlations for a range of σ levels.
The model was slightly poorer at predicting their responses,
however the correlation between the feedback responses and
the no-feedback responses was 0.95± 0.011, suggesting lit-
tle difference between the two conditions. It may be that
the model is better able to predict the feedback responses be-
cause participants in that condition had opportunity to cali-
brate their internal physics models. Despite this difference,
however, the no-feedback correlation is also significant, af-
firming the hypothesis that physics knowledge plays a large
role. Furthermore, the fact that judgments from both condi-
tions are so similar implies people use strategies that are not
captured by the model.

Direction experiment

One of the key ideas of the rich simulation-based model is
that it is able to easily generalize to many different tasks and
situations. In order to assess this flexibility, we compared hu-
man judgments (n = 9), Rdir regarding the direction a tower
will fall, with the model’s predictions, F̄dir, as well as the
skew heuristic prediction, Hθ. The circular correlation be-
tween Rdir and F̄dir was 0.66± 0.032 while the correlation
between Rdir and Hθ was 0.18± 0.038. Clearly, the model
is far better at explaining humans’ direction judgments; Fig.
5B illustrates these results by plotting the differences between
Rdir and F̄dir for each tower (dots).

The model’s predictions about different towers’ fall direc-
tions vary significantly in confidence, due to the effects per-
ceptual uncertainty on different samples’ physical outcomes.
Confidence of fall direction judgments can be quantified by
circular variance of the model’s fall-direction estimates (indi-
cated by dot color in Fig. 5B, or the insets in Fig. 5C) over
the N simulations sampled from the same tower. In order to
assess model fits on the stimuli for which model predictions
are most meaningful, we sorted towers by the circular vari-
ance of model predictions and computed model-participant
correlations for the k lowest-variance towers, where k was
varied from 10 to all 60 towers. Fig. 5C shows the circular
correlations between Rdir and F̄dir, as well as Rdir and Hθ, as
functions of k. Excluding the 10-20 towers with lowest con-
fidence (i.e., k = 40,50 or less) the correlation between Rdir
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Figure 5: Direction experiment A. Experiment stimulus, showing the possible direction choices as quarters of the ground. B. Each point
is the difference between the mean model/heuristic prediction and the mean human judgment of the tower’s fall direction (F̄dir −Rdir, or
Hθ−Rdir), and each dot represents a different tower stimulus. C. Correlations between humans and model/heuristics. The lines represent the
correlations (y-axis) between R f all and F̄dir (blue line, ±1 SE), and R f all and Hθ (red curve, ±1 SE), as a function of the number of towers
over which the correlation was performed (x-axis, sorted from lowest to high variance towers as predicted by the model). The purple insets
show the model’s distribution of predicted fall directions (dots), with the best-fit Von Mises distributions (curves), for 3 towers.

and F̄dir is reliably over 0.8. Model predictions for direction
of fall thus seem to match human judgments well in those
cases where model predictions are meaningfully defined.

Lastly, we evaluated whether the model output’s circular
variances can predict people’s confidence in stability judg-
ments, as measured by variance in responses across partic-
ipants. There was indeed a correlation of 0.55± 0.035 be-
tween the circular variances of human judgments and thoses
of model predictions across individual towers, which would
be expected if humans make judgments by stochastically
sampling from possible choices with frequency in proportion
to their expected reward.

General Discussion
We find human physical reasoning consistent with a model
that uses internal knowledge of physical principles to predict
future scenes states, and that internal limitations like uncer-
tainty due to noise can account for deviations from ground
truth performance. This consistency may be surprising in
light of previous work on intuitive physics with much simpler
situations focusing on the ways in which human judgments
are biased and error-prone (Todd & Jr., 1982; Gilden & Prof-
fitt, 1989a, 1989b, 1994; Caramazza et al., 1981; McCloskey,
1983). Future work will explore the differences between our
tasks and previous intuitive physics studies that might explain
this gap, such as differences in the ecological validities of the
scenarios, stimuli and tasks (Zago & Lacquaniti, 2005).

While our model is a good predictor of human physical rea-
soning (Fig. 3), people predict each others’ responses even
better. This suggests that there is systematic structure to peo-
ple’s judgments that our model does not capture. The model
may be limited by its assumption that the brain perfectly mod-
els Newtonian dynamics, or its approximations of perceptual
inference. One improvement might be to adopt noisy physics
simulations, with accuracies diminishing rapidly over time.
Another might be to vary perceptual uncertainty for blocks
that are visible and occluded, respectively – which can be
tested by manipulating participants’ viewing conditions.

Though preliminary, this work supports the hypothesis that
knowledge of Newtonian principles and probabilistic repre-
sentations are generally applied for human physical reason-
ing. Complex tasks like predicting the stability of a tower of
blocks are both expressible in our modeling framework and
well-matched with human performance. This idea provides
rich and flexible foundational groundwork for developing a
comprehensive model that naturally scales to a broad class of
human physical judgments.
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