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An ongoing problem in nuclear physics is our ability to predict the rate of neutron and

gamma emission of short-lived nuclei. This is especially true for beta-delayed neutron emis-

sion, an important but understudied reaction relevant to r-process nucleosynthesis and the

decay of fission fragments. In this dissertation, I examine three hypotheses to explain this

puzzling discrepancy between our models and experimental results. To improve our predic-

tive capabilities, I have developed a suite of new computational tools which combine nuclear

structure from the shell model with statistical reaction codes. Finally, I argue in favor of

such a unified framework, and I use the beta-delayed neutron emission of 94Rb as a case

study.

xv



Prologue

When asked, “what are you pursing a Ph.D. in?”, I say “computational science, which is

another way of saying scientific computing, and my chosen science is nuclear physics”.

The computational science doctoral program is an interdisciplinary science department. In

practice, this department is concerned with the application of computing to the sciences.

Its students take courses in mathematical modeling, parallel computing, machine learning,

statistics, and finally a number of courses in their field of interest. I took courses in physics

and statistics. Ph.D. candidates inevitably fall into ranks with practicing scientists of some

field of physical, social, or applied science. I have been trained as a nuclear physicist and

this dissertation is about computational nuclear physics. The purpose of this dissertation is

to demonstrate that I have developed expertise in the application of computational science

to nuclear physics.

Several chapters of this dissertation are based on journal papers or other published works. In

such cases, I include a paragraph beginning with italics to point to the original publication,

and to say something about what my contributions to the work were. I also omit material

from those publications when appropriate, e.g. if I did not contribute to it.

This dissertation has three parts, reflecting the three domains of my research: (I) Shell

model Methods (and applications), (II) Statistical Nuclear Reactions, and (III) Beta-delayed

Neutron Emission. Each part reports contributions I have made that stand alone in their
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merit and interest to their sub-field. However, throughout Parts I and II, I will reveal

connections to and foreshadowing of Part III, which in many ways represents the unification

of the methods and tools I develop in the first two thirds of the dissertation. It is therefore

worth presenting the following overview of Parts I, II, and III in order to prepare the reader

for what to expect from each chapter, and for what relationships to look for among the

various chapters and parts.

In reverse, Part III: Beta-delayed Neutron Emission attempts to resolve a mystery in applied

nuclear reaction theory. There has been a discrepancy between measured and predicted par-

ticle counts in a process called beta-delayed neutron emission. This process relies on the

nuclear structure of the nuclei involved, and is described in part by a statistical nuclear re-

action. The methods and tools I have developed are uniquely suited to address this. Part II:

Statistical Nuclear Reactions covers my contributions to statistical nuclear reactions and in

particular uncertainty quantification tools to improve our evaluation of and constraints on

phenomenological models. These underlying phenomenological models of nuclear structure,

which feed our understanding of statistical nuclear reactions, can in turn be informed by

microscopic models of nuclear structure. Thus Part III and Part II draw crucial theoretical

inputs from Part I: Shell Model Methods. This first part covers the foundational under-

standing of nuclear structure from the shell model perspective, and covers new developments

in computational methods to improve its usefulness for nuclear reactions, and the unified

picture of nuclear structure and reactions presented in Part III.

Part I: Shell Model Methods

The main application of nuclear structure to other areas of nuclear physics is the calculation

of matrix elements of nuclear transition operators. What are the bound states of systems

of interacting nucleons and with what probability do transitions occur between those bound
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states?

Chapter 1: My work in nuclear structure has been both in the development of tools for

computing and in the application of calculations to other questions in physics. I begin Part I

of the dissertation with a brief introduction to the nuclear shell model in Chapter 1. The

shell model will be used throughout Part I, and again in Part III.

Chapter 2: In Chapter 2, I showcase a project I undertook early in my studies on a

modern application of nuclear structure: the search for dark matter. This chapter also has

significant relevance to Part III: the formalism of the electroweak theory of dark matter is

identical to that of the complete treatment of beta decay, and especially relevant for higher

order corrections to the usual first approximations.

Chapters 3, 4, and 5: Next, I move on and discuss the main tool I developed with my

advisor: a new approximate shell model code, PANASh (proton and neutron approximate

shell model). The method behind this code was inspired by similar efforts, and motivated

by investigations into proton-neutron entanglement from my masters work. This is reviewed

along with more recent results in Chapter 3. Then in Chapter 4 I discuss the method

itself and demonstrate its effectiveness with results. I conclude the discussion of PANASh

in Chapter 5 where I detail the computational methods and analysis that went into its

programming.

Chapter 6: In the final chapter of Part I, I cover developments I have made to use the

shell model to calculate statistical quantities relevant to the nuclear reaction theory covered

in Part II: gamma-ray strength functions and nuclear level densities. This development,

combined with the new shell model truncation scheme described in Chapter 4, is the cor-

nerstone for the structure calculations required in Part III. I also propose a new formula for

shell-model gamma ray strength functions which differs from the accepted definition.
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Part II: Statistical Nuclear Reactions

The second part of the dissertation covers my contributions to statistical nuclear reactions

and in particular an uncertainty quantification (UQ) tool I developed to improve evaluation

of and constraints on phenomenological models. This code, COMMCAS, is now in use by

multiple staff members at LLNL. These developments were first motivated by the work of

Dr. Jutta Escher on surrogate reaction theory, which enables indirect measurements to con-

strain our models of nuclear reactions. I extended Escher’s work showing the breakdown of

certain approximations which would otherwise bypass the need for a more involved theoret-

ical treatment of such measurements. I also demonstrate the application of COMMCAS to

a problem in nuclear astrophysics.

Chapter 7: The first chapter introduces the main concepts of nuclear reaction theory

relevant to my work. These are the concepts of low-energy nuclear reaction theory, compound

nuclear reactions, and the underlying phenomenological nuclear structure models.

Chapters 8 and 10 : Next I report my contributions to the surrogate reaction theory.

First, in a paper with Escher which demonstrates that the Weisskopf-Ewing approximation

is not valid for fast-neutron reactions. This extends prior work by Escher and others who

showed the same for neutron-capture and fission reactions. The breakdown of this approx-

imation thus motivates the need for more advanced reaction theory, and the need for more

sophisticated statistical methods (parameter inference and uncertainty quantification) for

evaluating indirect experimental measurements. Chapter 10 briefly presents an application

of full surrogate reaction method from a conference proceeding I published with Escher. This

used new parameter inference tools I developed.

Chapters 9 and 11: The need for new parameter inference and uncertainty quantification

tools brought about by the surrogate reaction method led to my development of a new code

for the task. The code’s fairly generic title, Computational Model Monte Carlo Sampler
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(COMMCAS), indicates its applicability to a wide range of Monte Carlo sampling tasks

for a wide class of computational models. The code has evolved over several years and

has seen contributions from two other graduate students and one postdoc. COMMCAS is

discussed in Chapter 9. Chapter 11 follows a direct application of COMMCAS: I initiated a

collaboration between Escher, myself, and a group of experimentalists performing an inverse

reaction measurement aimed at constraining a certain process in the astrophysical production

of proton-rich nuclei. Using COMMCAS (or rather, an early version of its current form), I

was able to improve the model agreement with the data and provide quantified uncertainties

for their nucleosynthesis predictions.

Part III: Beta-delayed Neutron Emission

A subtitle for Part III would be: “where structure and reactions meet”, because in fact this

work was born out of an effort between my Ph.D. advisor, my Livermore mentor, and myself

to craft a project that combines our expertise in nuclear structure and reactions.

Chapter 12: The problem of the missing neutrons: I introduce the main problem of the

final part of the dissertation. This is a discrepancy between the statistical description of

beta-delayed neutron emission and the measured ratio of gammas to neutrons emitted from

the products of beta decay.

Chapter 13: This chapter introduces the theory of beta decay required for our description of

beta-delayed neutron emission, including treatment of the lepton (electron and antineutrino)

phase space factor with leading order Coulomb corrections.

Chapters 14, 15, and 16: These are the main results of the dissertation: a treatment of

beta delayed neutron emission by combining the nuclear shell model structure with Hauser-

Feshbach statistical reactions. Along the way, I introduce a new method for treating Porter-
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Thomas width fluctuations, which to my knowledge has never been done before.

Chapter 17: The last chapter of the dissertation lays out the theory necessary for the

next major development of this work: full treatment of the electroweak theory of beta decay

within the framework of the nuclear shell model.
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Part I

SHELL MODEL METHODS
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Chapter 1

Low-energy Nuclear Structure

What are the properties of a bound system of interacting nucleons? What is the probability

for transitions between those states when subjected to an external field? These questions

are the day job of nuclear structure. I am interested in the application of nuclear structure

to fundamental physics, such as the search for the dark matter or neutrinoless double-beta

decay, as well as applications to nuclear astrophysics through the calculation of nuclear

reaction rates.

To address most of these needs, it is sufficient to restrict our theories to a low-energy regime

where the nuclear transitions are weak compared to the energy holding the nucleus together.

This allows us to use the main results of time-dependent perturbation theory: Fermi’s Golden

Rule number 2 [253] states that the probability for a transition from an initial nuclear state

|Ψi⟩ to a final one |Ψf⟩ is proportional to the squared matrix-element of the external field

Ĥext:

Ti→f =
2π

h̄
|⟨Ψf |Ĥext|Ψi⟩|2. (1.1)

This introduction will review the methods used in this work to model realistic wave functions
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Figure 1.1: Chart of nuclei colored according to their ground state’s half-life. Stable nuclei
have an infinite half life (shown in black squares).

|Ψ⟩ by solving the time-independent Schrödinger equation.

1.1 Accounting of bound states

There are more than 3,300 known nuclei, each with a unique number of protons (Z) and

neutrons (N). These are organized on the chart of nuclei in Figure 1.1. Only about 250

of these are stable in their ground state configurations. These are the black squares in

Figure 1.1 and they make up the center of the “Valley of Stability”. Move away from this

valley and the half-life decreases rapidly until it vanishes and no bound states can form.

Unstable nuclei decay spontaneously in any time between the life-time of the universe and

10−20 seconds, although a more typical half-life is perhaps 10−1 seconds for a nucleus not

too far from stability.

Most neutron rich nuclei (N > Z) decay when one of their neutrons turns into a proton and
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emits an electron and an electron anti-neutrino:

n→ p+ e− + ν̄e. (1.2)

This process, β− decay, arises from the weak nuclear force and can also be treated with

equation (1.1). Other decay modes for ground-state nuclei are α decay and spontaneous

fission, which will not be covered here.

So far, I have only discussed the properties of nuclear ground states. But nuclei can absorb a

large amount of energy before coming unbound, and meanwhile can exist in a finite number

of discrete internal configurations. While very light nuclei can have only a small number of

bound configurations (1H: 1, 8B: 5), medium-mass nuclei such as 56Fe can have hundreds of

bound states. The lifetime of these states is measured in picoseconds (10−12), with decay

modes being entirely dominated by electromagnetic transitions to lower states via the emis-

sion of gamma photons. The energy levels of these excited states are typically millions of

electron volts (MeVs). Above the threshold energy called the neutron separation energy, the

nucleus has enough average energy for a neutron to escape. This might not happen right

away, however. Quasi-bound states in this regime are called resonances, and they can be

studied in some approximation with the same methods as bound states.

1.2 Observables

In the previous section I discussed some basic facts about the bound states of nuclei. These

inform the kinds of observables we would like our nuclear structure models to predict: nuclear

binding energies (equivalently, the nuclear masses), energies of excited states, and half-lives

of those excited states.

The basic approach of modern nuclear structure models is to use the language of many-body
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quantum mechanics to define a Hamiltonian Ĥ0 operator whose eigenstates |Ψ⟩ are the bound

states of the nucleus, and whose eigenvalues are the binding energies of the ground state and

excited states. To first order, this Hamiltonian contains only the effective nuclear strong force

and the repulsive proton Coulomb interaction. To compute transition probabilities between

those excited states, we assume that, for example, the electromagnetic interaction is weak

compared to the nuclear binding force, and can be treated perturbatively: Ĥ = Ĥ0 + ĤEM .

In short, we take the pure eigenstates |Ψ⟩ of Ĥ0, and compute Fermi’s Golden Rule:

Ti→f =
2π

h̄
|⟨Ψf |HEM |Ψi⟩|2. (1.3)

Basic energy arguments restrict this approximation to transitions of energies small compared

to the nuclear binding energy. I will also sometimes write in terms of decay widths which

are inversely related to the half life of the initial state:

Γi→f =
h̄

t1/2
= h̄Ti→f . (1.4)

The transition amplitude for a general operator |⟨f |Ô|i⟩|2 is a squared matrix element. We

will see later that many of the operators we are interested in can be seen as one-body

operators (usually because we are assuming some sort of impulse approximation). Such

operators can be written:

Ô =
∑

ab

Oabĉ
†
aĉb, (1.5)

where ĉa, ĉ†b are one-body creation, annihilation operators and Oab = ⟨a|O|b⟩ are the matrix

elements of O in the one-body basis. The matrix elements of one-body operators can be
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written as

⟨Ψf |Ô|Ψi⟩ =
∑

ab

Oab⟨Ψf |ĉ†aĉb|Ψi⟩ =
∑

ab

Oabρ
fi
ab, (1.6)

where ρfiab ≡ ⟨Ψf |ĉ†aĉb|Ψi⟩ are called one-body density matrices, or one-body transition density

(OBTD) matrices. They are a reduced and compact form of the information stored in the

wave functions. For this reason, the OBTD matrices are a key product of nuclear structure

models.

The two most important groups of transition operators for this text are the electromagnetic

(E1, E2, M1) and weak (Fermi and Gamow-Teller) transition operators. In both cases,

we rely on the long-wavelength (low-energy) limit to use only the leading-order terms in a

multipole expansion of the perturbing external fields (electromagnetic or electroweak). Each

will be defined in detail as needed, but a summary following Suhonen’s text [272], Brusssard

and Glaudeman’s text [46], and Fox’s dissertation [94] follows below.

The standard form for a multipole electromagnetic transition probability, for X = Magnetic

or Electric character of order L from an initial state i to a final state f is

TXL
fi =

8π

h̄

(L+ 1)

L[(2L+ 1)!!]2

(
Eγ

h̄c

)2L+1

B(XL; i→ f), (1.7)

where B is the reduced transition probability (B-value),

B(XL; i→ f) ≡ 1

2Ji + 1
| ⟨Ψf | |MXL| |Ψi⟩ |2 (1.8)

=
1

2Ji + 1

∑

mfmiM

| ⟨Ψf (mf )|MXLM |Ψi(mi)⟩ |2. (1.9)

This is a strength function which assumes orientation-independent operators and has been

summed over all final magnetic substates and averaged over all initial magnetic substates.

The double-bar || denotes the reduced matrix elements following the Wigner-Eckart the-
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orem [74]. One computes the reduced B-values in (1.8) using the single-particle operator

expansion (1.6).

The electric one-body operators have the form:

MELM = epMLM(qx⃗) ≡ epjL(qx)YLM(Ωx), (1.10)

where ep is the proton charge, jL(qx) are spherical Bessel functions and YLM(Ωx) are spherical

harmonics. Electromagnetic transitions can be highly collective, involving many nucleons.

Because we often work in a truncated single-particle space (treating only single particle states

near the Fermi surface), this operator is often modified empirically to estimate the effects of

the truncated space. In particular, one introduces effective charges, endowing neutrons with

a charge. For example, one might set ep = 1.4 and en = 0.4 relative to the proton charge.

The magnetic one-body operators are:

MMLM =
µN

h̄c

[
2

L+ 1
gll + gss

]
· ∇MJM , (1.11)

where the gyromagnetic ratios gl and gs modify the couplings to orbital angular momentum

and spin relative to the nuclear magneton (in Gaussian units):

µN =
eh̄

2mp

= 0.10515 ec fm. (1.12)

For protons gl = 1, gs = 5.586 and for neutrons gl = 0, gs = −3.826. The matrix elements of

these operators in a harmonic oscillator basis (the usual choice for shell model theory) have

standard integral forms that can be found in many references [31, 46, 272]. Some of these

are given in later chapters.
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1.3 The nuclear shell model

The nuclear shell model treats the nucleus as a many-body system of interacting Fermions

with two species: protons and neutrons. The original shell model consisted of a mean-field

model, approximating the A-body nuclear interaction as a system of A non-interacting par-

ticles in a mean-field potential produced by the A−1 nucleons. Today, the shell model refers

to the interacting shell model, or configuration interaction shell model. While the individual

nucleons are placed in a fixed set of single-particle configurations, these configurations inter-

act via 1- and 2-body matrix elements which account for the residual, beyond the mean-field

interactions. In the interest of brevity, I omit discussion of the many stepping stones between

mean-field methods and the full configuration interaction (FCI) shell model. These are the

classic beyond-mean field methods, still in widespread use today, such as the Tamm-Dancoff

and the random phase approximations. To summarize these methods, they modify the mean

field by including either real or quasi (non-particle number conserving) excitations about the

Fermi surface. They include mixtures of Slater determinants, but only a handful of specially

crafted particle-hole states. FCI considers all possible configurations within a finite set of

single-particle states. First I will discuss the form of the wave functions composed of these

configurations.

We will consider factorized wave functions for our nuclear basis:

|ϕ⟩ = |p⟩ |n⟩ , (1.13)

where |p⟩ are many-proton wave functions, and |n⟩ are many-neutron wave functions. Each

of these, in turn, is a product of properly normalized and anti-symmetric products of single-

proton(neutron) wave functions, otherwise known as Slater determinants. As we work in

second quantization, these are represented by strings of fermion creation operators a†i acting
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on a vaccuum state. A 3-proton wave function (Slater determinant) might be:

|p⟩ = â†1â
†
2â

†
3 |0⟩ . (1.14)

The vaccuum state may be either a true vaccuum (no particles), or a sea of fully-occupied

states representing an inert core. The fermion nature of these states is encoded the anti-

commutation relations of the operators [87]:

{âi, â†j} ≡ âiâ
†
j + â†j âi,= δij

{âj, âj} = {â†i , â†j} = 0.

(1.15)

For example, two fermions cannot occupy the same state, (â†i )
2 = 0, and therefore the

maximum occupancy of a state ϕi is one.

The state created by â†i is an arbitrary fermion wave function. The most common choice is

a harmonic oscillator (HO) state; in principle this is the solution to the three-dimensional,

single-particle Schrodinger equation for the mean-field nuclear interaction. These states

carry the HO quantum numbers:

• ni: principle quantum number

• li: orbital angular momentum

• ji: total angular momentum, j = l + s

Each HO single-particle level (or orbit) niljji has a parity −1l and 2j + 1 degenerate states

with jz = m labels: m = −j,−j + 1, ..., j − 1, j.

The standard ordering of single particle levels and their quantum numbers are shown in

Figure 1.2. One difference from single particle states in atomic physics is that states with

higher-j have lower energy; the nuclear spin-orbit term is attractive. The exact ordering of
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the single particle levels in terms of their energies depends on the nature of the effective in-

teraction used. Energy gaps between groups of these levels result in magic quantum numbers

of nucleons: 2, 8, 20, 28, 50, 82, 126, which have special properties such as especially strong

binding energies.

To construct a finite shell model basis, we must truncate the infinite harmonic-oscillator

space, for example, to some maximum oscillator quanta. Furthermore, for medium to heavy-

mass nuclei (let’s say, A > 20), we must resort to a ‘frozen-core’ shell model, hereafter

referred to as the large-scale shell model (LSSM): one assumes that sufficiently large energy

gaps between single-particle states allows for scale-separation of an active valence space from

an inert core of nucleons. See Figure 1.3. In such cases, the interaction must be renormalized,

and the description of highly-collective states may be lost.

1.3.1 The shell model Hamiltonian

To find wave functions for nuclei, we find low-lying states of a nuclear Hamiltonian by

the configuration-interaction method in a shell-model basis [46, 44, 56]. Any many-body

Hamiltonian can be written in second quantization formalism as a polynomial in creation

and annihilation operators [245]:

Ĥ =
∑

i

ϵiâ
†
i âi +

1

4

∑

ijkl

Vijklâ
†
i â

†
j âlâk, (1.16)

where ϵi are single particle energies and Vijkl are the two-body interaction matrix elements.

The single-particle operators â†i create spin-1/2 nucleons in simple harmonic oscillator states

with quantum numbers: ni (radial quantum number), li (orbital angular momentum), and ji

(total angular momentum). Many-body states are constructed as antisymmetrized products

of these single particle states.
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The most general form of the solution to the shell model Hamiltonian is not a pure Slater

determinant,

|Φ⟩ =
N∏

i=1

â†αi
|0⟩ , (1.17)

but a mixture:

|Ψ⟩ =
∑

i

Ψi |Φi⟩ . (1.18)

In the full configuration interaction shell model, we begin with a finite list of single-particle

states and construct a basis consisting of all possible Slater determinants.

To make calculations tractable, we limit the number of single particle valence states. For

example, one might assume a fixed 16O core and allow valence nucleons in the 1s1/2-0d3/2-

0d5/2 orbits, colloquially known as the sd shell; other examples are the pf -shell (40Ca core

with valence orbits 1p1/2,3/2-0f5/2,7/2) and the combined sd-pf shells. Starting from a finite

single-particle valence space yields a finite many-body basis [53]:

|Ψ⟩ =
∑

α

cα|α⟩, (1.19)

where we use the occupation representation of Slater determinants, that is, of the form |α⟩ =
∏

i â
†
i |0⟩. Furthermore, we factorize the basis into proton (p) and neutron (n) components,

so that we can write:

|α⟩ = |p⟩ ⊗ |n⟩. (1.20)

Using Eq. (1.16) and the factorized basis (1.19) one can compute [53, 164] the matrix elements

of the Hamiltonian in the many-body basis, Hα,β = ⟨α|Ĥ|β⟩. Then the time-independent

Schrödinger equation becomes a simple matrix eigenvalue problem: Hc⃗ = Ec⃗.
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1.3.2 M-scheme versus J-scheme

In this work we work in either the M -scheme or the J-scheme. These are names for con-

straints we place on our basis states depending on which quantum numbers we choose to

be fixed (total angular momentum J , or z-component of angular momentum Jz ≡M). The

Hamiltonian commutes with both of these operators:

Ĵ2 |Ψ⟩ = j(j + 1)h̄2 |Ψ⟩ (1.21)

Ĵz |Ψ⟩ = mh̄ |Ψ⟩ , (1.22)

and so neither quantum number will be changed by the action of the Hamiltonian. One

can therefore construct a smaller basis with either of these quantum numbers fixed, but not

both. Basis states will in general be in a superposition of the other quantum number. The

advantage of the M -scheme is that the M quantum number is additive, which makes com-

puting matrix elements simpler. This choice is one factor that contributes to the efficiency

of BIGSTICK [164]. The J-scheme has the advantage of smaller basis dimensions than the

M -scheme, but at the cost of more complicated angular momentum couplings. However, the

J-scheme is the only choice when truncating in the many-body space, since a truncation in

the M -scheme may leave the many-body basis states in a linear combination of total angular

momenta. This will be important in Chapter 4.

1.3.3 Weight factor truncation in configuration space

Even with the double truncation of the single-particle space (exclusion of an infinite number

of high-energy states and an inert core), one can easily reach computationally inaccessible

matrix dimensions above 1016, e.g., in the sdpf valence space. This is due to the combi-

natorial growth of possible configurations for any given set of single-particle states (orbits).

18



Therefore, additional truncation is often required. One such method is to define a limited

valence space by restricting the number of particles that can occupy some subset of the single

particle states. (See Figure 1.3.) In the BIGSTICK shell model code, a general class of trunca-

tion schemes are implemented which encompasses both (1) the n-particle n-hole truncation

from atomic physics and (2) the Nmax truncation from the no-core shell model. This is done

with the “weight-factor” truncation scheme [164]: each single particle state is assigned an

artificial additive quantum number called the weight w. The many-body configurations are

limited by their total weight W =
∑

iwi across all single particle states. For example all

normal valence space orbits could be assigned a weight of 0, and a limited valence space

defined by a set of orbits with a weight of 1. A Wmax = 1 truncation would allow for all

configurations in the valence space, plus all configurations with one particle excited into the

limited valence space.

1.3.4 Phenomenological interactions

The parameters ϵi and Vijkl in Eq. (1.16) are input parameters of the Hamiltonian. In

principle these matrix elements could be obtained as integrals of an effective operator from

some ab initio theory of the nuclear force. In fact, many of the phenomenological interactions

begin life as such, and are then adjusted to fit experimental data. For our calculations we

use high-quality empirical interactions fitted separately in each model space to experimental

spectra. For details see the reviews in [46, 44, 53].

Some of examples are the USDB, GX1A, JUN45, and glepn interactions used in this work.

Each of these corresponds to a particular choice of single particle states, shown in Figure 1.2.

Details on these and other interactions used in this work can be found in Appendix B.3.
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1.3.5 Isospin

Isotopic spin, or “isospin” was introduced in nuclear physics to recognize the charge-independence

of the nuclear force. These will become relevant when describing the charge-violating tran-

sitions of beta decay. Despite the important differences between protons and neutrons in

other areas, including other areas of nuclear physics, it is convenient to treat protons and

neutrons as two projections of a general nucleon particle of isospin-1/2. The isospin states

are labeled |T, Tz⟩ (sometimes |T,MT ⟩). In the isospin Hilbert space, we take the convention

that a proton is isospin-up:

|p⟩ = |1
2
,+

1

2
⟩ =



1

0


 , (1.23)

while the neutron is isospin-down:

|n⟩ = |1
2
,−1

2
⟩ =



0

1


 . (1.24)

Analogously to normal spin, the isospin T is an approximate quantum number. We can

add such states with the usual vector coupling arithmetic. In this work we won’t concern

ourselves with the modern definition in terms of quark states. We have the usual Pauli

matrices, now for isospin:

τx =



0 1

1 0


 , τy =



0 −i

i 0


 , τz =



1 0

0 −1


 (1.25)
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Later we will be interested in beta decay, which involves transitions between neutron and

proton states. We can define the following operators:

τ+ = τx + iτy =



0 1

0 0


 , (1.26)

τ− = τx − iτy =



0 0

1 0


 , (1.27)

which have the important effects: τ+ |n⟩ = |p⟩, τ− |p⟩ = |n⟩.

21



U
S

D
B

G
X

1A
G

C
N

50
82

JU
N

45

gl
ep

n

Harmonic oscillator

Figure 1.2: Brussaard and Glaudeman’s [46] approximate ordering of the single-particle levels
of a harmonic-oscillator potential, with annotations. The vertical lines right of the figure
show the approximate location of the single-particle valence spaces of phenomenological
interactions used in this work. The labels for cumulative maximum particle count,

∑
Nj,

are boxed at the magic numbers 2, 8, 20, 28, 50, 82, 126.
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Figure 1.3: Shell model valence space with an inert core, active valence space, a limited
valence space, and an infinite set of excluded orbits above.
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Chapter 2

The Search for Dark Matter

This chapter is based on a paper I co-authored as first author with my advisor Calvin Johnson,

“dmscatter: A fast program for WIMP-nucleus scattering” by Oliver Gorton, Calvin Johnson,

Changfeng Jiao, and Jonathan Nikoleyczik”. I will start by pointing out what I did not do: I

did not derive the effective field theory which determines the electroweak expansion of nuclear

form factors. I took as established the formalism for the effective field theory of WIMPs; the

domain of this contribution is in the application of nuclear structure to calculate the required

electroweak responses of the nuclei. I (1) designed and developed the code starting from a set

of subroutines written by then-postdoc Changfeng Jiao for computing single-particle matrix

elements of electroweak operators and nuclear response functions, (2) derived a form of the

dark matter event rate integral which could be numerically integrated in one dimension, and

(3) optimized the algorithm and code for parallel performance, resulting in a speedup of 2

to 3 orders of magnitude compared to the Mathematica equivalent. I wrote the majority of

the manuscript with edits from Johnson.

This chapter is a demonstration of the applications of low-energy nuclear structure to other

areas of physics, with ties to another topic in this dissertation, beta decay. One possible
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candidate for dark matter is a new type of particle called weakly interacting massive par-

ticles (WIMPs). The ‘weak’ moniker here is not an insult to these elusive particles, but

an indication that they may interact via the weak force with ordinary nucleons. Attempts

to directly detect dark matter in the laboratory therefore rely on the electroweak theory of

the nucleus, the same theory governing beta decay. The direct search for dark matter is an

application of nuclear structure theory, and in particular the nuclear shell model which can

provide microscopic descriptions of the nuclei used in WIMP detectors.

2.1 Introduction

The composition of the universe remains a fundamental puzzle to science. Astrophysical and

cosmological evidence indirectly but strongly suggests that a substantial fraction (roughly

a quarter) of the universe’s mass-energy is made of some as-yet unidentified nonbaryonic

particles [33, 27]. Substantial experimental effort has been and continues to be expended

to directly detect this ‘dark matter’. Because dark matter interacts with baryonic matter

weakly and may be very massive compared to baryonic particles–WIMPs or weakly interact-

ing massive particles–these experiments attempt to measure the recoil of nuclei from unseen

and (mostly) elastic collisions [227, 86].

Originally it was assumed that dark matter particles would simply couple either to the

scalar or spin densities of nucleons [108, 250]. But a few years ago Fitzpatrick et al. used

effective field theory (EFT) calculations assuming Galilean invariance to identify upwards of

15 possible independent couplings between nonrelativistic dark matter and nucleons [89, 6,

289, 141].

The enlargement of the possible couplings motivates a variety of nuclear targets used in the

detectors. More targets better constrain the actual coupling, but also complicate simula-
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tions of detector responses. To aid such simulations, Anand, Fitzpatrick, and Haxton made

available a script written in Mathematica computing the dark matter event rate spectra [6];

this script, dmformfactor, embodied the nuclear structure in a shell model framework and the

user could choose the coupling to the EFT-derived operators. An updated Mathematica

script has been developed and applied [305].

Not only did the EFT framework break new ground in the planning and analysis of dark

matter direct detection experiments, the Mathematica script made the new framework widely

accessible. Like many scripts in interpreted languages, however, dmformfactor is not fast,

and scanning through a large set of parameters, such as exploring the effects of mixing

two or more couplings or carrying out uncertainty quantification [94], ends up being time-

consuming.

Inspired by the Mathematica script dmformfactor, we present here a fast modern Fortran

code, dmscatter, for computing WIMP-nucleus scattering event rates using the previously

proposed theoretical framework. The output is designed to align with practices of current

dark matter searches. Intermediate results such as nuclear form factors can be easily accessed.

With advanced algorithmic and numerical implementation, including the ability to take

advantage of multi-core CPUs, our code opens up new areas of research: to rapidly explore

the EFT parameter space including interference terms, and to conduct sensitivity studies to

address the uncertainty introduced by the underlying nuclear physics models. Furthermore,

we enhance the accessibility by including Python wrapper and example scripts which can be

used to call the Fortran code from within a Python environment.
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2.2 Theoretical Background

Although the formalism is fully developed and presented in the original papers [89, 6, 289,

141], for completeness and convenience we summarize the main ideas here.

The key product of the code is the differential event rate for WIMP-nucleus scattering events

in number of events per MeV. This is obtained by integrating the differential WIMP-nucleus

cross section over the velocity distribution of the WIMP-halo in the galactic frame:

dR

dEr

(Er) = NTnχ

∫
dσ

dEr

(v, Er) f̃(v⃗) v d
3v, (2.1)

where Er is the recoil energy of the WIMP-nucleus scattering event, NT is the number of

target nuclei, nχ = ρχ/mχ is the local dark matter number density, σ is the WIMP-nucleus

cross section. The dark matter velocity distribution in the lab frame, f̃(v⃗), is obtained

by boosting the Galactic-frame distribution f(v⃗): f̃(v⃗) = f(v⃗ + v⃗earth), where v⃗earth is the

velocity of the earth in the galactic rest frame.

Next is the Halo model which describes the distribution of dark matter, encoded in the func-

tion f̃(v⃗). There are many models for the dark matter distributions of galaxies. We provide

the Simple Halo Model (SHM) with smoothing, a truncated three-dimensional Maxwell-

Boltzmann distribution:

f(v⃗) =
Θ(vesc − |v⃗|)
Nescπ3/2v30

{
exp

[
−(v⃗/v0)2

]
− exp

[
−(vesc/v0)2

]}
, (2.2)

where v0 is some scaling factor (typically taken to be around 220 km/s), and Nesc re-

normalizes due to the cutoff [69, 98]. Halo distributions are not the focus of this paper,

and we leave the implementation of more sophisticated halo models, such as SMH++ [82],

to future work. The integral in equation (2.1) is evaluated numerically. Details can be found

in 2.2.4.

27



The differential scattering cross section is directly related to the scattering transition prob-

abilities T (v, q(Er)):

dσ

dEr

(v, Er) = 2mt
dσ

dq2
(v, q) =

2mT

4πv2
T (v, q). (2.3)

The momentum transfer q is directly related to the recoil energy by q2 = 2mtEr, where mt

is the mass of the target nucleus in GeV/c2.

The WIMP-nucleus scattering event probabilities are computed as a sum of squared nuclear-

matrix-elements:

T (v, q) =
1

2jχ + 1

1

2jT + 1

∑

MiMf

|⟨jTMf |H | jTMi⟩|2 (2.4)

=
1

2jχ + 1

1

2jT + 1
|⟨jT ∥H ∥ jT ⟩|2 (2.5)

which we have rewritten in terms of reduced (via the Wigner-Eckart theorem) matrix ele-

ments [74], as denoted by the double bars ||. Here v is the speed of the WIMP in the lab

frame, q is the momentum transferred in the collision, and jχ and jT are the intrinsic spins

of the WIMP and target nucleus, respectively. H is the WIMP-nucleus interaction.

The WIMP-nucleus interaction H is defined in terms of the effective field theory Lagrangian

constructed from all leading order combinations of the following operators:

i
q⃗

mN

, v⃗⊥, S⃗χ, S⃗N . (2.6)

v⃗⊥ is the relative WIMP-target velocity and S⃗χ, S⃗N are the WIMP and nucleon spins, respec-

tively. There are fifteen such combinations, and H is specified implicitly by corresponding

coupling constants cxi , (for i = 1, ..., 15), where x = p, n for coupling to protons or neutrons
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individually:

H =
∑

x=p,n

∑

i=1,15

cxiOx
i , (2.7)

and the 15 momentum-dependent operators are:

O1 = 1χ1N (2.8)

O2 = (v⊥)2 (2.9)

O3 = iS⃗N ·
(

q⃗

mN

× v⃗⊥
)

(2.10)

O4 = S⃗χ · S⃗N (2.11)

O5 = iS⃗χ ·
(

q⃗

mN

× v⃗⊥
)

(2.12)

O6 =

(
S⃗χ ·

q⃗

mN

)(
S⃗N ·

q⃗

mN

)
(2.13)

O7 = S⃗N · v⃗⊥ (2.14)

O8 = S⃗χ · v⃗⊥ (2.15)

O9 = iS⃗χ ·
(
S⃗N ×

q⃗

mN

)
(2.16)

O10 = iS⃗N ·
q⃗

mN

(2.17)

O11 = iS⃗χ ·
q⃗

mN

(2.18)

O12 = S⃗χ ·
(
S⃗N × v⃗⊥

)
(2.19)

O13 = i
(
S⃗χ · v⃗⊥

)(
S⃗N ·

q⃗

mN

)
(2.20)

O14 = i

(
S⃗χ ·

q⃗

mN

)(
S⃗N · v⃗⊥

)
(2.21)

O15 = −
(
S⃗χ ·

q⃗

mN

)((
S⃗N × v⃗⊥

)
· q⃗

mN

)
(2.22)

Operator 2 is generally discarded because it is not a leading order non-relativistic reduction

of a manifestly relativistic operator [6]. Operators 1 and 4 correspond to the naive density-
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and spin-coupling, respectively.

The EFT coefficients cxi can be expressed in terms of proton and neutron couplings x = p, n,

or, equivalently, isospin and isovector couplings τ = 0, 1. The relationship between the two

is:

cτ=0
i =

1

2
(cx=p + cx=n

i ) (2.23)

cτ=1
i =

1

2
(cx=p − cx=n

i ). (2.24)

Our code accepts either specification and automatically converts between the two. (Note:

while [6] specifies this same relationship, the Mathematica script distributed in Supple-

mentary Material, dmformfactor-prc.m, also dmformfactor-V6.m, actually uses a different

transformation, namely that cτ=0,1
i = cx=p

i ±cx=n
i . Later versions [305] however, are consistent

with the above relationship.)

The coefficients provided by the user should be in units of the weak interaction mass scale,

mv = 256.2GeV. (2.25)

2.2.1 Response functions

The summand of equation (2.4) is ultimately factorized into two factors: one containing the

EFT content, labeled Rx,x′

i , and another containing the nuclear response functions, labeled

W x,x′

i for each of the i = 1, ..., 8 allowed combinations of electro-weak-theory, discussed in

the next section. The former are listed in 2.2.2.

There are eight nuclear response functions W x,x′

i considered here. The first six nuclear
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response functions have the following form:

W x,x′

X =
∑

J

⟨Ψ| |Xx
J | |Ψ⟩ ⟨Ψ| |Xx′

J | |Ψ⟩ , (2.26)

with X selecting one of the six electroweak operators:

XJ =MJ ,∆J ,Σ
′
J ,Σ

′′
J , Φ̃

′
J ,Φ

′′
J . (2.27)

(further described in section 2.2.1) and Ψ being the nuclear wave function for the ground

state of the target nucleus. The sum over operator-spins J is restricted to even or odd values

of J , depending on restrictions from conservation of parity and charge conjugation parity

(CP) symmetry.

As a check of normalization, the J = 0 contribution to W xx′
M is just the square of the

Fourier transform of the rotationally invariant density. (For even-even targets, this is the

only contribution to ground state densities.) This means, at momentum transfer q = 0, the

J = 0 contribution to W pp
M = Z2/4π, W nn

M = N2/4π, and for isospin-format form factors,

the J = 0 contribution to W 00
M = 1

4π

(
A
2

)2. Such limits are useful when comparing to other

calculations, to ensure agreement in normalizations.

Two additional response functions add interference-terms:

W x,x′

MΦ′′ =
∑

J

⟨Ψ| |Mx
J | |Ψ⟩ ⟨Ψ| |Φ

′′x′

J | |Ψ⟩ , (2.28)

W x,x′

∆Σ′ =
∑

J

⟨Ψ| |Σ′x
J | |Ψ⟩ ⟨Ψ| |∆x′

J | |Ψ⟩ . (2.29)

The transition probability is thus [89, 6]:

T (v, q) =
4π

2jT + 1

∑

x=p,n

∑

x′=p,n

8∑

i=1

Rx,x′

i (v2, q2)W x,x′

i (q), (2.30)
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where i→ X for i = 1, .., 6, and i = 7→MΦ′′, i = 8→ ∆Σ′.

There are six basic operators, MJ ,∆J ,Σ
′
J ,Σ

′′
J , Φ̃

′
J ,Φ

′′
J , describing the electro-weak coupling of

the WIMPs to the nucleon degrees of freedom. These are constructed from Bessel spherical

and vector harmonics [67]:

MJM(qx⃗) ≡ jJ(qx)YJM(Ωx) (2.31)

M⃗JML(qx⃗) ≡ jL(qx)Y⃗JLM(Ωx), (2.32)

where, using unit vectors e⃗λ=−1,0,+1,

YJLM(Ωx) =
∑

mλ

⟨Lm1λ| |(L1)JMJ⟩YLm(Ωx)e⃗λ. (2.33)

The six multipole operators are defined as:

MJM (2.34)

∆JM ≡M⃗JJM ·
1

q
∇⃗ (2.35)

Σ′
JM ≡− i

{
1

q
∇⃗ × M⃗JJM

}
· σ⃗ (2.36)

Σ′′
JM ≡

{
1

q
∇⃗MJM

}
· σ⃗ (2.37)

Φ̃′
JM ≡

(
1

q
∇⃗ × M⃗JJM

)
·
(
σ⃗ × 1

q
∇⃗
)
+

1

2
M⃗JJM · σ⃗ (2.38)

Φ′′
JM ≡i

(
1

q
∇⃗MJM

)
·
(
σ⃗ × 1

q
∇⃗
)

(2.39)

The matrix elements of these operators can be calculated for standard wave functions from

second-quantized shell model calculations:

⟨Ψf | |XJ | |Ψi⟩ =
∑

a,b

⟨a| |XJ | |b⟩ ρfiJ (ab), (2.40)
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where single-particle orbital labels a imply shell model quantum number na, la, ja, and the

double-bar || indicates reduced matrix elements [74]. For elastic collisions, only the ground

state is involved, i.e. Ψf = Ψi = Ψg.s..

2.2.2 WIMP response functions

In the following, the EFT coefficients cxi are grouped according to how they couple to each

of the eight nuclear responses W x,x′

i . As a shorthand, cl(j) ≡ 4j(j + 1)/3, and v⊥2 ≡

v2 − (q/2µt)
2.

Rxx′

M (v, q) =
1

4
cl(jχ)

[
v⊥2(cx5c

x′

5 q
2 + cx8c

x′

8 ) + cx11c
x′

11q
2
]

(2.41)

+ (cx1 + cx2v
⊥2)(cx

′

1 + cx
′

2 v
⊥2)

Rxx′

Σ′′ (v, q) =
1

16
cl(jχ)

[
cx6c

x′

6 q
4 + (cx13c

x′

13q
2 + cx12c

x′

12)v
⊥2 + 2cx4c

x′

6 q
2 + cx4c

x′

4

]
(2.42)

+
1

4
cx10c

x′

10q
2

Rxx′

Σ′ (v, q) =
1

32
cl(jχ)

[
2cx9c

x′

9 q
2 + (cx15c

x′

15q
4 + cx14c

x′

14q
2 − 2cx12c

x′

15q
2 + cx12c

x′

12)v
⊥2 (2.43)

+ 2cx4c
x′

4

]
+

1

8
(cx3c

x′

3 q
2 + cx7c

x′

7 )v
⊥2 (2.44)

Rxx′

Φ′′ (v, q) =
q2

16m2
N

cl(jχ)(c
x
12 − cx15q2)(cx

′

12 − cx
′

15q
2) +

q4

4m2
N

cx3c
x′

3 (2.45)

Rxx′

Φ̃′ (v, q) =
q2

16m2
N

cl(jχ)(c
x
13c

x′

13q
2 + cx12c

x′

12) (2.46)

Rxx′

∆ (v, q) =
q2

4m2
N

cl(jχ)(c
x
5c

x′

5 q
2 + cx8c

x′

8 ) + 2
q2

m2
N

cx2c
x′

2 v
⊥2 (2.47)

Rxx′

Σ′∆(v, q) =
q2

4mN

cl(jχ)(c
x
4c

x′

5 − cx8cx
′

9 )−
q2

mN

cx2c
x′

3 v
⊥2 (2.48)

Rxx′

MΦ′′(v, q) =
q2

4mN

cl(jχ)c
x
11(c

x′

12 − cx
′

15q
2) +

q2

mN

cx
′

3 (c
x
1 + cx2v

⊥2) (2.49)

It should be noted that the last two dark matter responses are composed entirely of interfer-

ence terms, which is to say, they do not come into play unless certain combinations of EFT

coefficients are simultaneously active. These are the coefficient pairs listed in Section 2.5.
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For example, c4 and c5 together will activate RΣ′∆, but not alone.

2.2.3 Nuclear structure

We assume a harmonic oscillator single-particle basis, with the important convention that

the radial nodal quantum number na starts at 0, that is, we label the orbitals as 0s, 0p, 1s0d,

etc.., and not starting with 1s, 1p, etc. By default, the harmonic oscillator basis length

b =
√
h̄/(mω) is set to the Blomqvist and Molinari prescription [32]:

b2 = 41.467/(45A−1/3 − 25A−2/3) fm2, (2.50)

where A = Z+N is the number of nucleons. Other values can be set using the control words

hofrequency or hoparameter. Then, the one-body matrix elements for operators ⟨a| |X(f)
J | |b⟩,

built from spherical Bessel functions and vector spherical harmonics, have closed-form ex-

pressions in terms of confluent hypergeometric functions [67].

The nuclear structure input is in the form of one-body density matrices between many-body

eigenstates,

ρfiJ (ab) =
1√

2J + 1
⟨Ψf ||[ĉ†a ⊗ c̃b]J ||Ψi⟩, (2.51)

where ĉ†a is the fermion creation operator (with good angular momentum quantum numbers),

c̃b is the time-reversed [74] fermion destruction operator. Here the matrix elements are

reduced in angular momentum but not isospin, and so are in proton-neutron format. These

density matrices are the product of a many-body code, in our case Bigstick [164, 165],

although one could use one-body density matrices, appropriately formatted (see 2.4), from

any many-body code.

The theoretical formalism for computing the WIMP-nucleus form factors is largely the same
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as in [89, 6]. In this paper we will therefore only provide the basic formalism which is

necessary to understand the differences in our numerical and algorithmic approaches to the

implementation.

2.2.4 Integrals

We use numerical quadrature to evaluate the integral in equation (2.1) for the velocity

distribution (2.2). While there are analytic solutions [190, 90, 197] for specific forms for

the cross section, namely with v0 and v2 dependence, we derive a general equation that can

be used for any isotropic dark matter halo model, which to our knowledge has not been

presented in publication. The integral has the form:

I =

∫

Ω

d3v
dσ(v, q)

dq2
v f(v⃗ + v⃗E), (2.52)

where the constraint Ω is that v2min < (v⃗ + v⃗E)
2 < v2esc and f(v⃗) is equation (2.2). Here

we present only the result; the full derivation can be found in the manual. Switching to

spherical coordinates and taking special care for the constraint Ω, one obtains:

I =
1

N

∫ vesc+vE

vmin

dv
dσ(v, q)

dq2
v2(IMB − IS), (2.53)

where,

IMB =
πv20
vE





g(v − vE)− g(v + vE), v < vlow

g(v − vE)− g(vesc), otherwise

, (2.54)

IS = 2πg(vesc)





2v, v < vlow

[v2esc − (v − vE)2]/(2vE), otherwise

. (2.55)
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with vlow = vesc − vE. g(x) is a one-dimensional Gaussian form:

g(v) = e−v2/v20 . (2.56)

The normalization factor is the same as previously derived [190, 90, 197]:

Nsesc = π3/2v30

[
erf(z)− 2√

π
z

(
1 +

2

3
z2
)
e−z2

]
, (2.57)

with z = vesc/v0. I is a one-dimensional definite integral. We evaluate it with Gauss-

Legendre quadrature.

The limits of the integral have physical constraints. The minimum speed is defined by

the minimum recoil energy of a WIMP-nucleus collision at a momentum transfer q: vmin =

q/(2µT ), where µT is the reduced mass of the WIMP-nucleus system. In some approximations

the upper limit is simply set to infinity. (Numerically, we approximate ∞ ≈ 12 × v0.) One

can do slightly better by taking the maximum speed to be the galactic escape velocity:

vmax = vescape ≈ 550 km/s.

2.2.5 Integrals in more detail

We provide the simplest model, a three-dimensional Maxwell-Boltzmann distribution,

f(v⃗) ∝ e−v⃗2/v20 , (2.58)

where v0 is some scaling factor (typically taken to be around 220 km/s). This is called the

Simple Halo Model (SHM) when a maximum value of the speed, due to the galactic escape
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velocity vescape, is taken into account [69, 98]:

fSHM(v⃗) =
Θ(vesc − |v⃗|)
π3/2v30Nesc

e−(v⃗/v0)2 , (2.59)

where Nesc renormalizes due to the cutoff:

Nesc = erf (vesc/v0)−
2vesc√
πv0

exp
{
−(vesc/v0)2

}
. (2.60)

With this distribution, the integral in the differential event-rate has the form:

IMB =

∫

Ω

d3v
dσ(v, q)

dq2
v e−(v⃗+v⃗E)2/v20 , (2.61)

where the constraint Ω is that v2min < (v⃗ + v⃗E)
2 < v2esc.

To reduce to a one-dimensional integral, we make the conversion to spherical coordinates.

Special care has to be taken to properly handle the truncated domain. Noting that (v⃗ +

v⃗earth)
2 = v⃗2 + v⃗2earth + 2vvearth cos(θ), with θ defining the angle between the two vectors, we

make the substitution d3v = dϕd(cos θ)v2dv.

Now we follow the geometrical argument: Imagine constructing v⃗E+ v⃗. There are three cases

to consider depending on the size of v⃗, and the implications for the allowed angles θ between

v⃗E and v⃗ that satisfy the constraint (v⃗E + v⃗)2 < v2esc.

• Case 1: “Small v”, which we define as v < vesc− vE. Here there are no restrictions on

θ since by construction the magnitudes together cannot exceed vesc, so cos θ is limited

only by −1 and +1.

• Case 2: “Medium v”, in which now v > vesc − vE, so not all angles are allowed.

To keep the sum from exceeding vesc, the angle must be restricted such that cos θ <

(v2esc − v2E − v2)/2vvE. Case 2 also requires that v < vesc + vE because we reach...
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• Case 3: “Big v”: It becomes impossible to satisfy the restriction once v > vesc + vE.

It follows that

∫

(v⃗+v⃗E)2<v2esc

d3v =

∫ 2π

0

dϕ
[ ∫ vesc−vE

0

v2dv

∫ +1

−1

d cos θ (2.62)

+

∫ vesc+vE

vesc−vE

v2dv

∫ (v2esc−v2E−v2)/2vvE

−1

d cos θ
]
. (2.63)

Making the physically justified assumption that vesc − vE > vmin, we can simply shift the

limit on the first integral from 0 to vmin. Along the way we will need to work out the angular

integrals:

∫ +1

−1

d cos θe−2vvE cos θ/v20 = − v20
2vvE

(
e−2vvE/v20 − e2vvE/v20

)
; (2.64)

∫ (v2esc−v2E−v2)/2vvE

−1

d cos θe−2vvE cos θ/v20 = − v20
2vvE

(
e−(v2esc−v2−v2E)/v20 − e2vve/v20

)
. (2.65)

Combining all of this together, and simplifying, we obtain a one-dimensional integral which

we can evaluate with quadrature:

IMB =

∫ vesc+vE

vmin

dv
dσ(v, q)

dq2
v2
πv20
ve

(2.66)

{Θv<vesc−ve [g(v − vE)− g(v + vE)] + Θv>vesc−vE [g(v − vE)− g(vesc)]} , (2.67)

where g(v) = exp(−v2/v20).

We then use Gauss-Legendre quadrature to evaluate I. There are analytic solutions for

this integral in the form of error functions; we use quadrature since it makes easy to later

modify the velocity distribution. For example, adding a velocity cut-off is as easy as changing

the limit on the quadrature, with no need to write a whole new subroutine. While there
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are analytic solutions for specific velocity-dependences of the cross section [190, 90, 197],

our implementation favors a model-independent framework without the need to lock-in a

particular form for the WIMP-nucleus cross section.

The limits of the integral, vmin and vesc, have physical constraints. The minimum speed is

defined by the minimum recoil energy of a WIMP-nucleus collision at a momentum transfer

q:

vmin = q/(2µT ), (2.68)

where µT = mTmχ/(mT + mχ) is the reduced mass of the WIMP-nucleus system. To use

the simple Maxwell-Bolztmann distribution approximation, the maximum speed is taken to

be ∞ ≈ 12× v0. Otherwise, the maximum speed is taken to be the galactic escape velocity:

vesc ≈ 550 km/s.

Note that as a function of momentum q, the integral is guaranteed to go to zero above some

maximum momentum qmax. This happens when vmin = vmax + vearth, which corresponds to:

qmax = 2µT (vmax + vearth), (2.69)

ER,max = q2max/2mT = 2µ2
Tv

2
max/mT . (2.70)

With 150 GeV WIMPs and 29Si, for example, µT = 23.031916 GeV, mT = 27.209888 GeV,

vmax = 550 km/s = 0.001834602 GeV/c: ER,max = 265.2987 keV.

2.3 Description of the code

The structure of the code and its inputs are outlined in Figure 2.1. The Fortran code

replicates the capabilities of the earlier Mathematica script [6]. Notably, one can compute
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the differential WIMP-nucleon scattering event rate for a range of recoil energies or transfer

momenta, and any quantity required to determine those, such as the tabulated nuclear

response functions.

Nuclear form factors
𝑊!

","!(𝐸$)

Dark matter response 
functions

𝑅!
","!(𝑣%, 𝑞%)

EFT coefficients 𝑐!"

[wd,ws] Nuclear form factors

Transition probability
𝑇(𝑣,𝐸$)

Differential cross 
section

𝑑𝜎
𝑑𝐸$

(𝑣, 𝐸$)

Differen>al event rate
𝑑𝑅&
𝑑𝐸$

(𝐸$)
[er] Differential event rate 
spectra

[cs] Differential cross section 
velocity curve

[tp] Transition probability         
velocity curve

CLI Input:
Compute option [x]
Z
N
Control filename
Nuclear density matrix filename
𝐸$, 𝑣 options

Control file (.control):
EFT coefficients
List of optional parameters

Wigner functions

Quadrature routines

CHG func>ons

Density matrix file (.dres)

Halo model -𝑓(�⃗�)

Figure 2.1: Flow of dmscatter. Orange boxes represent input files. Green boxes represent
quantities the code can write to file. White boxes are important steps of interest and grey
boxes are libraries built into the code. The inputs are: (1) the nuclear target information:
target nucleus mass, spin, and one-body density matrix elements; (2) the non-relativistic
EFT-specification of the WIMP-nucleon interaction; (3) the velocity distribution of WIMP
particles in the laboratory frame.

We provide a detailed manual as part of the distribution package. The central engine,

dmscatter, is written in standard modern Fortran and has OpenMP for an easy and op-

tional parallel speed-up. While the distributed Makefile assumes the GNU Fortran compiler

gfortran, the code should be able to be compiled by most recent Fortran compilers and does
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not require any special compilation flags, aside from standard (and optional) optimization

and parallel OpenMP flags.

To get started, one needs a modern Fortran compiler, the make tool, and, optionally, a

Python interpreter (with NumPy, Matplotlib). We used the widely available GNU Fortran

(gfortran) compiler, but we use only standard Fortran and our code should be able to be

compiled by other Fortran compilers as well; the user will have to modify the makefile.

We provide a Python interface (a wrapper) for the Fortran code and a number of example

scripts demonstrating its use. The wrapper comes with two Python functions EventrateSpec-

tra, and NucFormFactor which can be imported from dmscatter.py in the Python directory.

Each function has three required arguments:

1. number of protons Z in the target nucleus

2. number of neutrons N in the target nucleus

3. nuclear structure file name (.dres)

If no other arguments are provided, default values will be used for all of the remaining

necessary parameters, including zero interaction strength. Default values are specified in the

control file keyword table.

To calculate an event rate with a nonzero interaction, the user should also provide one

or more of the optional EFT coupling coefficient arrays: cp, cn, cs, cv. These set the

couplings to protons, neutrons, isoscalar, and isovector, respectively. The 0th index sets the

first operator coefficient: cp[0]= cp1, etc. Finally, the user can also pass a dictionary of valid

control keywords and values to the function in order to set any of the control words.

To compute the event-rate spectra for 131Xe with a WIMP mass of 50 GeV and a cv3 = 0.0048

coupling, one might call:
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1 import dmscatter as dm
2 control_dict = {"wimpmass" : 50.0}
3 cv = np.zeros (15)
4 cv[2] = 0.0048
5 Erkev , ER = dm.EventrateSpectra(
6 Z = 54,
7 N = 77,
8 dres = "../ targets/Xe/xe131gcn",
9 controlwords = control_dict ,

10 cv = cv,
11 exec_path = "../bin/dmscatter")

This will return the differential event rate spectra for recoil energies from 1 keV to 1 MeV in

1 keV steps.

The file ‘xe131gcn.dres’ must be accessible at the relative or absolute path name specified (in

this case ‘../targets/Xe/’), and contain a valid one-body density matrix for 131Xe. Similarly,

the dmscatter executable else the path to the executable should be specified, as in the above

example (exec_path = "../bin/dmscatter").

We have provided an additional option in dmscatter which computes these nuclear form

factors from the target density-matrix and exports the results to a data file. This output

may be useful for codes like WimPyDD [156], which compute the WIMP-nucleus event

rate spectra starting from nuclear form factors (equation (2.26)) from an external source.

(The DDCalc dark matter direct detection phenomenology package [38, 16] does have a fast

Fortran90 central engine and predicts signal rates and likelihoods for ongoing dark matter

experiments, but, unlike dmscatter, the nuclear structure input for the current version of

DDCalc is fixed.)

The Python wrapper-function NucFormFactor runs the dmscatter option to export the nu-

clear response functions to file, and additionally creates and returns an interpolation function

W (q) which can be called. In the following code listing, the nuclear response function for

131Xe is generated for transfer momentum from 0.001 to 10.0 GeV/c.
1 import dmscatter as dm
2 cwords = {"usemomentum": 1}

42



3 Wfunc = dm.NucFormFactor(
4 Z = 54,
5 N = 77,
6 dres = "../ targets/Xe/xe131gcn",
7 controlwords = cwords ,
8 epmin = 0.001,
9 epmax = 10.0,

10 epstep = 0.001)
11 Wfunc (0.001)

The final line returns an (8,2,2)-shaped array with the evaluate nuclear response functions

at q = 0.001 GeV/c. Note that, had we not set the keyword usemomentum to 1, the function

input values would have been specified in terms of recoil energy (the default) instead of

transfer momentum.

2.4 Nuclear structure input

Users must provide nuclear one-body density matrix elements, either in isospin format,

ρΨJ,T (a, b) = (2J + 1)−1/2(2T + 1)−1/2⟨Ψ|||[ĉ†a ⊗ c̃b]J,T |||Ψ⟩, (2.71)

or proton-neutron format,

ρΨJ (a, b) = (2J + 1)−1/2⟨Ψ||[ĉ†a ⊗ c̃b]J ||Ψ⟩, (2.72)

where Ψ is the nuclear-target wave function and ĉ†, ĉ are the one-body creation, destruction

operators. For proton-neutron format, the orbital indices a are distinct for protons and

neutrons. Each label a corresponds to a radial quantum number na = 0, 1, 2, ..., orbital

angular momentum la, and total angular momentum ja.

The matrix elements must be stored in a file in a standard format produced by shell-model

codes like Bigstick. The only assumption is that the single-particle basis states are har-
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monic oscillator states. If density matrices are generated in some other single-particle basis,

such as those from a Woods-Saxon potential or a Hartree-Fock calculation, that basis must

be expanded into harmonic oscillator states. By using harmonic oscillator basis states one

can efficiently compute the matrix elements. One can use either phenomenological or ab

initio model spaces and interactions; as an example, we provide density matrices for 12C,

both from the phenomenological Cohen-Kurath shell model interaction [59], and from two

no-core shell model interactions [75, 266]. A detailed description of the provenance of the

supplied targets can be found in the included manual, and will be updated as more density

matrices become available. We also include, for purposes of validation, the ‘legacy’ density

matrices available in the original dmscatter script.

We supply a library of nuclear structure files (one-body density matrix files) for many of

the common expected targets, as listed in Table 2.1. (We also include, for purposes of val-

idation, some density matrices included with the original public Mathematica script [6].)

These density matrix files are written in plain ASCII, using the format output by the nu-

clear configuration-interaction code Bigstick [164, 165]. The only assumption is that the

single-particle basis states are harmonic oscillator states; the user must supply the harmonic

oscillator single particle basis frequency Ω, typically given in MeV as h̄Ω, or the related

length parameter b =
√
h̄/MΩ, where M is the nucleon mass.

Since standard one-body density matrices in phenomenological model spaces contain only

matrix elements for orbitals in the valence space, it is necessary to infer the matrix elements

for the core orbitals. Our code does this by default, but the user can disable this option

using the fillnuclearcore control word.

For phenomenological interactions one typically has a ‘frozen’ core of nucleons which do not

participate in the two-body forces of the Hamiltonian. In such cases the single-particle space

listed in the .dres file consists only of the valence orbitals and the one-body density matrices

are only specified for the valence orbitals.

44



Table 2.1: Table of nuclear data for targets we include with the program at time of publica-
tion. Each corresponds to a (.dres) density matrix file in the targets directory. The source
indicates the nuclear Hamiltonian that was used to generate the wave function data. See the
manual and GitHub repository for updates and full information on provenance. New targets
may be added in future releases. ∗ = density matrix used in original Mathematica script [6]

Nuclei Isotopes Source
He 4 [75, 266]
C 12 [59, 75, 266]
F 19 [301, 44]∗,[42]
Na 23 [301, 44],[42]
Si 28, 29 [301, 44]∗,[42]
Ar 40 [284]
Ge 70, 72, 73, 74, 76 [147]
I 127 [43]; unpublished used in [54, 55]
Xe 128, 129, 130,

131, 132, 134,
136

[43]; unpublished used in [54, 55]

DMFormFactor reads the valence space orbitals from the .dres file and infers the number of

core nucleons by subtracting the number of valence protons and neutrons from the number

of nucleons in the target nucleus. The core orbitals are assumed to be one of the standard

shell model orbital sets associated with possible cores: 4He, 16O, 40Ca,56Ni, 100Sn.

The one-body density matrix elements for the core orbitals are then determined from the

(full) occupation of the core orbitals. Because the orbitals are full and here we assume both

proton and neutron orbitals filled, the core can contribute only to J = 0, T = 0 densities.

Two formats are possible: proton-neutron format:

ρΨJ,x=p,n(a, b)(core) = δa,bδJ,0[ja], (2.73)

where [y] ≡ √2y + 1 and ja is the angular momentum of a-orbit, J is the total spin of the

nuclear target state Ψ; and isospin format for a target state with good total isospin T :

ρΨJ,T=0(a, b)(core) = δa,bδJ,0δT,0[1/2][ja], (2.74)
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ρΨJ,T=1(a, b)(core) = 0.0. (2.75)

Internally the code expands densities in isospin format into proton and neutron densities.

Note that our libraries only include isoscalar cores; if one had cores with N > Z then one

could also have T = 1 contributions.

When a density matrix is read in, dmscatter performs a test to validate the number of

particles in the valence orbitals matches the declared number of valence particles at the top

of the density matrix file. If this test fails, the code will stop. This is an indication that

the density matrices being used were not fully converged, or have some other problem. The

check is that

np =
∑

a

ρJ=0,p(a, a)[ja]/[J0] (2.76)

nn =
∑

a

ρJ=0,n(a, a)[ja]/[J0], (2.77)

where np is the number of valence protons, ja is the total angular momentum of the a-th

valence orbital, and J0 is the total angular momentum of the ground state of the nucleus.

Similarly for the number of neutrons nn.

2.5 Validation and performance

There are two sources of error in our calculation. The first is from the model uncertainty

of the nuclear wave functions. This source of error is therefore also present in dmscatter.

While phenomenological calculations can get energies within a few hundred keV [42], other

observables often require significant renormalization of operators to agree with experiment,

see, e.g., [244]. These errors in observables can have complex origins, arising both from trun-

cations of the model space and higher-order corrections to the corresponding operators [122].
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Errors in the numerical methods to solve the many-body problem given a set of input pa-

rameters are, by comparison, vanishingly small. Nonetheless, experience suggests that in

most cases the renormalization is of order one. We have qualitative support of this fact

from comparisons of event rate spectra from ab initio calculations with increasing model

space dimension (scaling with Nmax, the maximum excitation in an non-interacting har-

monic oscillator basis, sometimes written as Nmax h̄ω excitations), and from different chiral

effective-field theoretical interactions.

The second source of error is from the numerical integration. By comparison, the error from

the numerical integration is expected to be many orders of magnitude smaller. Using an

adaptive quadrature routine from a standard source [63], the code iteratively increases the

complexity of the estimator until it achieves a desired relative uncertainty.

We validated our Fortran program dmscatter against the Mathematica script dmformfactor

(version 6.0). We used 29Si as a validation case since we have access to the same nuclear

density matrix file provided in the dmformfactor package. With a J = 1/2 ground state,

29Si also has non-zero coupling to all 15 operators.

We evaluated the differential event rate for recoil energies from 1 keV to 1000 keV in 1 keV

increments for each coefficient individually cxi ; for i = 1, 3, 4, 5, ..., 15; for linearly independent

coupling pairs ca · cb = 1 for (a, b) = (1,2), (1,3), (2,3), (4, 5), (5,6), (8,9), (11,12), (11,15),

(12,15), and for both x = p, n. An example is shown in Figure 2.2. In each case we reproduce

the results of dmformfactor. Typical ‘error’ with respect to dmformfactor is shown in Figure

2.2. A full suite of validation plots are attached at the end of the manual.

The Fortran code has been optimized for multi-processor CPUs with shared memory ar-

chitecture using OpenMP. As a result of this parallelism and the inherent efficiency of a

compiled language, our program sees an extreme speedup when computing event-rate spec-

tra compared to the Mathematica package dmformfactor version 6.
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Figure 2.2: Left: Example differential event rate spectra for cn3 = 1 with 150 GeV WIMPS
on 29Si computed with dmscatter (solid blue line) and with dmformfactor (orange dots).
Right: Relative error of dmscatter with respect to the Mathematica script dmformfactor for
the same example. The spike near recoil energy 103 keV is due to round-off error on zero; the
event rate there is nearly zero. The (blue) dashed line was calculated with the BIGSTICK-
standard 5 decimals of precision in the nuclear structure input (.dres file). The (orange)
dotted line has 7 decimal places of precision, matching that used in the dmformfactor
calculation.

We provide timing data for two benchmark cases: 29Si and 131Xe, shown in Table 2.2.

The compute time of our code depends primarily on two sets of factors: the first is the

number of elements in the nuclear densities matrices (which depends on the complexity of

the nuclear structure for a given target nucleus), and the second is the number of nonzero

EFT coefficients. We include logic to skip compute cycles over zero EFT coefficients.

The timing data in Table 2.2 provides a general indication of the compute time for basic

calculations. We also ran a more complex benchmark calculation to represent the complex-

ity of a practical application. In this calculation, we compute the differential event rate

spectra for 131Xe over a range of recoil energies from 1 keV to 1000 keV, and for a range

of WIMP masses from 1 GeV to 300 GeV, in 1 GeV increments. We provide the Python

script exampleMassHeatPlot.py used to generate this plot in the python/ directory. The result

is shown in the heat plot in Figure 2.3. This calculation represents 300 calculations of the

type in Table 2.2, and so we estimate that generating the data for such a plot using the
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Coupling DMFormFactor dmscatter
Serial Parallel

Nuclear target: 29Si
cn1 3,800 0.5 0.2
cn3 3,800 1.3 0.5
cn4 3,700 1.5 0.5
cn5 3,700 0.9 0.3
cn6 3,700 0.8 0.3

Nuclear target: 131Xe
cn1 20,000 1.7 0.5
cp1 1.7 0.5
cs1 20,000 5.8 1.6
cv1 5.8 1.6

All nonzero 20,000 75 20

Table 2.2: Program execution time in seconds for a sample event-rate calculation with 1000
recoil energies with mχ = 150 GeV. The velocity distribution was taken to be Maxwellian
with vescape ≈ ∞. All calculations were done on the same machine (Apple M1 processor,
2020). Multi-threaded execution was performed with 4 threads on the 8-core CPU. 29Si has
23 matrix elements in its one-body density matrix, while 131Xe has 67.

Mathematica package dmformfactor would require roughly 70 days of CPU time. Our cal-

culation takes only 20 minutes of CPU time with serial execution (including overhead from

the Python script running the code), and with parallel execution across 4 threads the wall

time is 7 minutes.
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Figure 2.3: (Taken from [118].) Event rate as a function of WIMP mass and recoil energy
for 131Xe. 300 masses are represented in this figure (1000 recoil energies each; a slice along
the horizontal axis is analogous to the calculation shown in Figure 2.2). Using our code,
this consumed roughly 30 minutes of CPU time. We estimate that using dmformfactor to
generate the same figure would take at least 70 days (300 curves, 20 000 seconds each). The
EFT interaction used was vector isospin-coupling to operator-1 (cτ=1

1 = 0.00048).
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Chapter 3

Proton-neutron Entanglement Entropy

This chapter is based on a paper I co-authored with my advisor Calvin Johnson [162], as

well as work from my master’s thesis [115]. Johnson conceived of the idea and I ran the

calculations. Eventually, I contributed by designing my own toy-model interactions in our

attempts to understand the trends we saw in our calculations, although, none of these re-

sulted in satisfying resolution. Johnson was the first author of the publication, writing the

majority of the manuscript and also provided the final figures, with some edits from myself.

The interest of this chapter is twofold. First, many fields have recently seen fruitful results

by applying quantum information theory to their respective complex systems. Concepts

such as entropy and temperature can tell us about how a quantum system transitions from

order to chaos, or from quantum to statistical. These are interests in their own right which

can also be investigated for the nuclear many-body problem. The second interest is more

practical: insights from quantum information may improve our computational methods. This

chapter’s second purpose is to serve as a justification for the new computational technique I

have developed in the following two chapters: the weak entanglement approximation.

The entanglement entropy of a bipartite system measures the complexity of the coupling
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between the two subsystems: an entropy of zero means we can factorize the wave function.

We compute the proton-neutron entanglement entropy in the interacting nuclear shell model

for a variety of nuclides and interactions. Some results make intuitive sense. For example,

that the shell structure as governed by single-particle and monopole energies strongly af-

fects the energetically available space and thus the entanglement entropy. We also find a

surprising result: that the entanglement entropy at low excitation energy tends to decrease

for nuclides when N ̸= Z. While we provide evidence this arises from the physical nuclear

force by contrasting with random two-body interactions which show no such decrease, the

exact mechanism is unclear. Nonetheless, the low entanglement suggests that in models of

neutron-rich nuclides, the coupling between protons and neutrons may be less computation-

ally demanding than one might otherwise expect.

3.1 Introduction

The structure of atomic nuclei exhibits a mixture of simple and complex behaviors. What

is meant by ‘simple’ can be subtle, but typically it means the behavior can be described

by far fewer degrees of freedom than required by modeling the nucleus as a collection of A

interacting nucleons; examples of simplicity include algebraic models [275] and mean-field

pictures [245]. Of course, one must acknowledge that models themselves are not physical ob-

servables. Furthermore, complex models can mimic simpler ones, for example quasidynamic

symmetries [19, 249, 20], where a Hamiltonian mixes symmetries yet observables such as

spectra and ratios of transition strengths are consistent with ‘simpler’ symmetry-respecting

models.

Entanglement is a concept describing whether the observable coordinates of a quantum sys-

tem are independent; whether measurement of one generalized coordinate q1 influences future

measurements of another coordinate q2 of a system ψ(q1, q2, ...)[5, 258]. Such correlations can
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be described by the entanglement entropy, a concept which has become popular in recent

years due to increasing interest in quantum information and the potential of quantum com-

puting [148, 271]. It is trivial to write down states which are either separable (not entangled)

or in a superposition of separable states (entangled), but the creation of entangled states in

nature relies on the existence of an interaction that mixes the relevant degrees of freedom.

Here we consider the entanglement between the proton components and neutron components

of configuration-interaction models of nuclei. Other recent work in entanglement entropy in

nuclei addressed single-particle and seniority-mode entanglement [246, 180] as well as orbital

entanglement revealing shell closures [279]; we note the first two papers reference unpublished

versions of the research reported here.

A persistent phenomenon, however, is not so easily explained: realistic ground states of nu-

clides with N ̸= Z tend to have significantly smaller entanglement entropies than those with

N = Z. We also show trends for entropies for all states. We can show this is related to some

components of realistic nuclear forces by contrasting them with results using random inter-

actions. While the mechanism for suppressing the entanglement eludes us, it is nonetheless

worth reporting, not only as an apparently robust yet unexplained phenomenon, but also

because it has a practical consequence: the low-lying states of neutron-rich nuclides have

fewer nontrivial correlations between the proton and neutron components. This, in turn,

suggests a practical approach for such nuclides, one which we are currently developing.

3.2 Entanglement entropy

The entanglement entropy is a fundamental tool in quantum information science [5, 148, 271].

Here we briefly review the development found in those sources.

For a pure quantum state |Ψ⟩, the density operator is ρ̂ = |Ψ⟩⟨Ψ|; in a basis {|α⟩}, i.e.,
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Eq. (1.19), the density matrix elements are ρα′α = c′αc
∗
α. Because this is idempotent, ρ2 = ρ,

and thus has either 0 or 1 as eigenvalues, the von Neumann entropy, S = − tr(ρ log ρ)

vanishes.

Suppose we work in a bipartite Hilbert space, e.g. H = Hπ ⊕ Hν . We can then write

Eq. (1.19) explicitly as

|Ψ⟩ =
∑

µ,σ

cµ,σ|µπ⟩ ⊗ |σν⟩. (3.1)

An unentangled state is one where one can transform to a basis where the amplitudes are

separable, that is cµ,σ = aµbσ; in this case the state could be written as a simple product:

|Ψ⟩ =
(∑

µ aµ|µπ⟩
)
⊗ (

∑
σ bσ|σν⟩) . States which do not satisfy this are entangled.

In the basis (3.1) the density matrix is ρµ′σ′,µσ = cµ′σ′c∗µσ. This density matrix is idempotent.

To get the reduced density matrix, one traces over one of the subspace indices:

ρredµ′,µ =
∑

σ

cµ′σc
∗
µσ. (3.2)

If the state is unentangled, the reduced density matrix will also be idempotent. For a general

state the reduced density matrix need not be idempotent, and its eigenvalues can be between

0 and 1. Then the entanglement entropy [5]

Sentangled = −tr ρred ln ρred (3.3)

can be nonzero. Because unentangled states must have zero entanglement entropy, non-zero

entropy is a measure of entanglement [5]. The fact that the eigenvalues of ρred are real and

non-negative, and independent of which subspace index we trace over, is a result of the

singular value decomposition theorem; this is also called the Schmidt decomposition. The
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maximum entropy possible is the natural logarithm of the smaller subspace dimensions,

Smax = ln(min(dimπ, dimν)). (3.4)

Because our codes are written using an explicit proton-neutron basis, it is easy to extract

cµ,σ for any calculated state and then compute the entanglement entropy.

To illustrate, let’s consider a bipartite spin system H12 = H1 ⊗ H2. We can represent any

wave function in this space as

|Ψ⟩ =
∑

ab

Ψab |a⟩ ⊗ |b⟩ → Ψ =



Ψ↑↑ Ψ↑↓

Ψ↓↑ Ψ↓↓


 , (3.5)

where the basis vectors |a⟩ and |b⟩ are either |↑⟩ or |↓⟩, and where the elements of the

matrix Ψ are the coefficients for the four possible bipartite basis states. Let’s compute the

entanglement entropy for two spin-1/2 particles which are not entangled:

|Ψ⟩ = |↑↓⟩ → Ψ =



0 1

0 0


 . (3.6)

The reduced density matrix of this wave function can be computed as the matrix product

ΨΨ†:

ρred =



0 1

0 0






0 0

1 0


 =



1 0

0 0


 . (3.7)

This density matrix is already diagonal, so we can compute its von Neummann entropy as

Sentangled = S(ρred) = −(1 ln(1) + 0 ln(0)) = 0. (3.8)
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Thus a non-entangled pair of spin-1/2 particles has zero entanglement entropy.

We can follow the same procedure for an entangled pair:

|Ψ′⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩), (3.9)

which can be represented as a matrix using (3.5):

Ψ′ =
1√
2




0 1

−1 0


 . (3.10)

The reduced density matrix is

ρ′ = Ψ′Ψ′† =
1

2



1 0

0 1


 . (3.11)

Thus this entangled pair has an entanglement entropy

S ′
entangled = S(ρ′) = −(1

2
ln(1/2) +

1

2
ln(1/2)) = ln 2, (3.12)

which is the maximum entanglement entropy for a bipartite system with two-dimensional

subspaces.

3.2.1 The calculations

We work in three different model spaces and with several different shell model interactions.

All of our calculations are in the M -scheme, that is, a basis with fixed total Jz. We start with

several studies of N = Z nuclides in the sd-shell, where our results can be easily understood.

We then look at cases in the sd, pf , and sd-pf spaces with N ̸= Z, which leads to a surprise:
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ground states with N ̸= Z have significantly lower entanglement entropies than those with

N = Z. By comparing with randomly generated interactions we provide evidence that this

phenomenon has its origin in physical forces; but beyond that, we have yet to understand the

specific mechanism. Finally, we look at the behavior of the entropy over the entire spectrum.

3.2.2 Examples with N = Z and the role of the shell structure

In this subsection we discuss some introductory results, focusing on N = Z nuclides.

Our first examples in Fig. 3.1 are the ground state entanglement entropies for N = Z

nuclides in the so-called sd-shell, which has a fixed 16O core and valence particles in the

1s1/2-0d3/2-0d5/2 orbitals. For convenience we give the M = 0 dimensions in Table 3.1. Here

Table 3.1: (Taken from [162].) M = 0 dimensions for the N = Z nuclides in Fig. 3.1 with
valence nucleons in the sd-shell. Because there are a maximum of 12 valence nucleons of
either species, the dimensions have a particle-hole symmetry around N,Z = 14.

Nuclide dimension
20Ne, 36Ar 640
22Na, 34Cl 6,116
24Mg, 32S 28,503
26Al, 30P 69,784

28Si 93,710

the proton and neutron many-body spaces have equal dimensions. We use a high-quality

empirical interaction, the universal sd-shell interaction, version B or USDB, which, like all

similar empirical interactions, is represented as a list of single-particle energies and two-body

matrix elements fitted to data [42].

We also show in Fig. 3.1(a) the entropies for ground states of the attractive isoscalar

quadrupole-quadrupole (QQ) interaction, the attractive isovector (IV) pairing, that is, nu-

cleons paired up to isospin T = 1, and the attractive isoscalar (IS) pairing, or nucleons

paired up to T = 0. These schematic interactions are well-known in nuclear structure
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Figure 3.1: (Taken from [162].) Ground state entanglement entropy for N = Z nuclides in
the sd-shell. Both panels show results for USDB [42], a high-quality empirical interaction,
and the maximum possible entanglement entropy. In panel (a) we show results for an at-
tractive isoscalar quadrupole-quadrupole (‘QQ’) interaction; isovector (IV) and isoscalar (IS)
pairing. In panel (b) we show results for USDB with single-particle energies and monopole
interactions which have been set to zero, eliminating shell structure (‘no mono’), and with
single-particle energies were inflated by a factor of ten, amplifying shell structure (‘s.p.e. x
10’). Additionally, panel (b) gives the average and standard deviation for calculations drawn
from a two-body random ensemble [161], also with shell structure eliminated (‘TBRE no
mono’). See text for discussion.

physics [46, 245, 34]; we give their exact definitions:

Quadrupole-Quadrupole (QQ)

We construct a quadrupole operator

Q̂2M,TMT
=

∑

ab

Qab[ĉ
†
a ⊗ c̃b]2M,TMT

(3.13)
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where a, b are indices for single-particle orbits defined by n, l, j; [· ⊗ ·]JM,TMT
indicates cou-

pling by Clebsch-Gordan coefficients up to total angular momentum J (here J = 2) and

z-component M and total isospin T and third component MT ; ĉ†a creates a particle in orbit

a, c̃b is a time-reversed destruction operator [74] for a particle in orbit b; and finally the

reduced matrix elements [74] of the quadrupole operator (which we compute in a harmonic-

oscillator basis)

Qab = ⟨a||r2Y2||b⟩, (3.14)

where Ylm(θ, ϕ) is a spherical harmonic. The quadrupole-quadrupole Hamiltonian is

VQQ

[
Q̂⊗ Q̂

]
00,00

, (3.15)

where VQQ is the strength of the interaction and is taken < 0 to make it attractive; because we

only focus on the wave functions and not the energies, the magnitude of VQQ is unimportant

here. For our calculations we considered only the isoscalar (T=0) QQ interaction.

Pairing

The pairing operator is

P̂ †
TMT

=
∑

a

√
2ja + 1[ĉ†a ⊗ ĉ†a]00,TMT

, (3.16)

where ja is the angular momentum of orbital a. The pairing Hamiltonian is

G
∑

MT

(−1)T−MT P̂ †
TMT

P̂TMT
, (3.17)
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where G is the strength of the pairing Hamiltonian, and is taken < 0 to make attractive.

Here T = 1 yields isovector pairing and T = 0 isoscalar pairing.

Unsurprisingly, isoscalar pairing, which forces protons to pair with neutrons, has nearly

maximal entanglement entropy. Isovector pairing shows a strong odd-even effect: odd-odd

nuclides, where at least one proton and at least one neutron must pair up, has much higher

entropy than the even-even cases. Ground states of the QQ interaction have a much weaker

odd-even staggering, while USDB ground states have the lowest entropies of all and exhibit

no odd-even staggering.

In Fig. 3.1(b), we further investigate the origin of some of these behaviors. The shell structure

of nuclei is governed by the single-particle energies and the so-called monopole terms [53],

that is, terms in the interaction of the form n̂an̂b where n̂a is the number operator for orbital

a. By setting the single-particle energies and monopole terms to zero, the ground state entan-

glement entropy increases, and shows an odd-even staggering comparable to QQ. Conversely,

by inflating the standard USDB values of the single-particle energies (ϵ(1s1/2) = −3.2079

MeV, ϵ(0d3/2) = 2.1117 MeV, and ϵ(0d5/2) = −3.9257 MeV) by a factor of ×10, we restrict

the space energetically available and dramatically decrease the ground state entanglement

entropy, reaching zero at shell closures. Finally, we considered two-body interactions drawn

from a random ensemble (TBRE [161]), also removing single-particle energies and monopole

terms. We used results from ten different members of the ensemble to get average entropies

and corresponding standard deviations. From this we learn that, first, the shell structure, as

encoded in single-particle energies and monopole terms, has a strong effect on the entangle-

ment entropy, by energetically restricting the available model space and thus reducing the

effective dimension. While the ‘no mono’ USDB results appear consistent with a randomly

drawn interaction, it does show a nontrivial odd-even staggering. Later, we will see additional

behaviors that strongly differ between USDB and randomly generated interactions.

From these numerical experiments we conclude the lower entanglement of the full USDB wave
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functions is due to the shell structure, i.e., the monopole terms and single-particle energies.

We speculate the lack of odd-even staggering in the entropies of full USDB calculations may

be due to many small, quasi-random components in the interaction beyond pairing and QQ.

3.2.3 Away from N = Z

In the previous subsection we considered exclusively nuclides with N = Z. Here we compare

entropies for nuclides with N ̸= Z, and find systematically lower entropies–albeit when using

physical forces. Because we use interactions which respect isospin as a good symmetry, we

only consider here N > Z.

In Fig. 3.2 we compare the ground state entropies for ‘triplets’ of nuclides. These triplets

are set in the same valence space, either sd or pf , and all members of a triplet have the

same number of valence protons or proton holes, and the same number of valence neutrons

or neutron holes. For example, we have 20Ne, with 2 valence protons and 2 valence neutrons;

36Ar, with 2 proton holes and 2 neutron holes (since the filled sd valence orbitals contain 12

particles of a given nuclear species); and 28Ne, with 2 valence protons and 2 neutron holes.

By this construction all members of a triplet have exactly the same dimensionalities. For

the sd-shell cases in Fig. 3.2(a), following Fig. 3.1, we compare entanglement entropies from

ground states computed with the full USDB interaction, USDB with monopole terms and

single-particle energies set to zero, and finally entropies of ground states calculated from the

two-body random ensemble (with monopole terms zeroed out). For the pf -shell cases in

Fig. 3.2(b), we do the same but replace USDB with the GX1A interaction [146].

We see a strong and persistent trend: ground states of nuclides with N ̸= Z computed

with realistic interactions have significantly lower entanglement than those with N = Z,

a result we have replicated in other shell model spaces we do not show. To put this in

perspective, an entropy difference of 1 corresponds to a difference in effective dimensionality
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Figure 3.2: (Taken from [162].) Ground state entanglement beyond N = Z. We compare
nuclide triplets with the same dimensionalities (same maximum entanglement entropy), with
the same number of protons/proton holes and neutrons/neutron holes; not all cases corre-
spond to physical nuclides. Panel (a) is for sd-shell nuclides, while panel (b) is for pf -shell nu-
clides. Here USDB [42] is an empirical interaction for the sd-shell while GX1A [144, 145, 146]
is for the pf -shell. We also show the average and standard deviation for interactions drawn
from the two-body random ensemble (TBRE). Finally, ‘no mono’ means the single-particle
energies and monopole interaction terms have been set to zero, thus eliminating any shell
structure [53].

of e = 2.71 . . .. This trend is stronger for even-even nuclides and when the shell structure

is removed. For ground states computed under the TBRE, however, that trend disappears

and is even slightly reversed. While we have made attempts to devise a plausible model for

these behaviors, for example why the N ̸= Z entropy is lower for realistic interactions but

is higher for the TBRE, we have not succeeded.

Because this trend suggests a lower entanglement for neutron-rich nuclides (or, because of

isospin symmetry for these interactions, proton-rich as well), we continue our investigation
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in Fig. 3.3, where we consider cross-shell examples in the sd-pf space using the ‘mu-db’

interaction [155]. In order to compare with past results, we restrict the space so as to

40 44 48 52 56
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ta

ng
le

d
max
mu-db
mu-db no mono
USDB (shifted)
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Figure 3.3: (Taken from [162].) Entanglement entropies for nuclides in the sd-pf space, from
40Ne through 56Ar. See text for a detailed description of the model space, which is truncated
so that the dimensionalities are the same as for N = Z sd-shell nuclides in Fig. 3.1. Here
‘mu-db’ is the interaction of Ref. [155], while ‘max’ and ‘no mono’ mean the same as in
Fig. 3.1. We also include for comparison sd-shell results from Fig. 3.1 (dashed lines), shifted
by A = 20

follow the dimensionalities of Fig. 3.1. Thus we restrict protons to the sd-shell, while for

neutrons the sd-shell and the 0f7/2 orbitals are filled and frozen, leaving only 0f5/2-1p3/2-

1p1/2 as the active space for neutrons. Finally, we restrict ourselves to the same number of

active protons and neutrons. Thus the nuclides correspond to 40Ne, 42Na, 44Mg, and so on,

through 56Ar. These restrictions are chosen so that the dimensionalities are the same as in

Fig. 3.1. While somewhat artificial–we do not claim all these correspond to physical nuclides–

this nonetheless allows us to make a clean investigation into the entanglement. For ease of

comparison, we include the USDB and USDB monopole-subtracted (‘no mono’) results for

N = Z nuclides, shifted over by A = 20 (so that 20,40Ne are superimposed, etc.). Again

we see a low entanglement entropy, even lower than for the sd-shell examples in Fig. 3.1,

although the ‘no monopole’ case shows much of this is driven by shell structure. Nonetheless
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this provides evidence that the low-entanglement for N ̸= Z nuclides persists for cross-shell

spaces.

It is important to note that this is not simply isospin. Although we do not show it, for a

given N and Z, states of different J and T nonetheless show very similar trends. In other

words, this behavior is related to Tz, not T . In the next section we investigate further.

3.2.4 Entanglement entropies of excited levels

In the previous results we focused on ground state entanglement. Here we look at systems

where we can fully diagonalize and compute the entanglement entropy across the spectrum.

In Fig. 3.4 we present the entanglement entropy for all levels for several nuclides computed

with empirical interactions that give a good description of the data. Specifically we con-
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Figure 3.4: (Taken from [162].) Entanglement entropies for all levels as a function of ex-
citation energy Ex. Panels (a), (b), and (c) are computed in the sd-shell using the USDB
interaction [42]. Panel (d) is computed in the sd-pf space, using the ‘mu-db’ interaction [155];
certain orbits are frozen in order to make the dimensions for this case the same as the other
three cases. The maximum entanglement entropy is at the top of each plot.

sider 20,28Ne and 36Ar, computed in the sd-shell with the USDB interaction [42], and 40Ne
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computed in a truncated sd-pf space, computed with a cross-shell interaction [155]; for the

latter, we restricted the valence protons to the sd-shell, and froze all neutrons in the sd-shell

and in the 0f7/2 orbital, so that we have only two valence neutrons in the 0f5/2-1p3/2-1p1/2

orbitals. These choices are made so that all four cases have exactly the same dimension-

alities. While each plot has considerable scatter, there are a couple of noticeable features.

The first is an overall curvature: on average, the entropy rises and then falls. The second

feature is that the isospin-asymmetric nuclides, 28,40Ne, are noticeably more asymmetric in

the distribution of entropies compared to the isospin-symmetric nuclides, in particular the

low entropy of the ground state as pointed out in the previous section.

To probe the origin of these behaviors, in Fig. 3.5 we recomputed the entropies for 20,28,40Ne.

In the top panels, Fig. 3.5(a)-(c), we set the single-particle energies and monopole interaction
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Figure 3.5: (Taken from [162].) Entanglement entropies for all levels as a function of exci-
tation energy Ex. The top panels, (a)-(c), are computed with realistic interactions (USDB
for panels (a) and (b), and ‘mu-db’ for panel (c)) but with all single-particle energies and
monopole interaction terms set to zero, so as to remove shell effects. The bottom panels,
(d)-(f), correspond to the same nuclides, but with a random two-body interaction. The
maximum entanglement entropy is the top of each plot.

terms to zero. (Note that in such a scenario, there is a particle-hole symmetry, so that 36Ar

would be exactly the same as 20Ne.) This has the effect of amplifying the asymmetry in
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all three cases. In the bottom panels, Fig. 3.5(d)-(f), we instead generated a random set

of two-body matrix elements, and also removed the monopole interaction terms. Here the

asymmetry vanishes, and the curvature for 20,28Ne is much reduced. An important lesson we

learn is that the Tz dependence of the entropy appears to come out of the physical nuclear

force, as it does not appear when using a randomly generated interaction.

3.2.5 Conclusion and outlook on entanglement

We have found that both schematic and realistic nuclear shell model Hamiltonians have low

entanglement between the proton and neutron components of the wave function. This is

particularly pronounced for states with high isospin. Part of the behavior is governed by the

shell structure, which reduces the effective dimensionality, but, by using random two-body

matrix elements, we can establish that the low entropy also is a feature of typical nuclear

forces. While we have spent considerable effort to construct toy models to understand this

behavior, so far none of them have provided convincing illumination.

A low entanglement means that one can get a good approximation to a wave function using

a much smaller subset of basis states. This is the driving idea between the density matrix

renormalization group methods [297, 298, 255], which have only been used sporadically

in nuclear structure physics [279, 71, 248, 276, 186], partitioning on orbitals rather than

between protons and neutrons. Closer to the present work is the proton-neutron singular-

value decomposition analysis of shell model wave functions [217, 219]; ironically, the latter

studies focused on N ≈ Z nuclides. One happy conclusion from our work presented here is

that reduced basis methods, justified by low entanglement [296], may be even more effective

for high-isospin nuclides, such as heavy nuclei, where the need for dimensional reduction is

greatest. We have made progress in a systematic implementation of this idea in the following

chapter.
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3.3 Optimal factors and entropies

Suppose that the division of the Hilbert space is fixed, but we consider transformations

within each subspace. Is there an optimal choice of such a transformation? By optimal I

mean one that efficiently represents Ψ with the fewest number of nonzero elements. Let’s

assume a general bipartite wave function with a set of basis factors |a⟩ and |b⟩:

Ψ =
∑

ab

ψab |a⟩ |b⟩ . (3.18)

Let |a⟩ form the columns of a unitary matrix A and |b⟩ form the columns of the unitary

matrix B. It turns out that an optimal basis occurs when |a⟩ and |b⟩ are eigenstates of the

reduced density matrices of Ψ, in which case:

ρa = ΨΨ† = ADD†A† (3.19)

ρb = Ψ†Ψ = BDD†B†, (3.20)

where DD† = D†D is a diagonal matrix with the eigenvalues of the reduced density matrices

ρa and ρb. For the wave function matrix ψab this defines a transformation of each subspace

that results in the so-called singular value decomposition:

Ψ = ADB†, (3.21)

where D is diagonal with elements equal to the roots of the eigenvalues of the reduced density

matrices. These are called the singular values of Ψ. In this basis we therefore have diagonal

coefficient matrix elements:

ψab = ψabδab, (3.22)

67



And a diagonal reduced density matrix:

ρred
aa′ = δaa′ |ψaa|2. (3.23)

The entanglement entropy for the state in the optimal basis is therefore:

Sentangle = −Tr
(
ρred. ln ρred.) (3.24)

= −
∑

aa′

δaa′(δaa′ |ψaa|2) ln
(
δaa′ |ψaa|2

)
(3.25)

= −
∑

a

|ψaa|2 ln |ψaa|2 (3.26)

= −
∑

α

Wα lnWα, (3.27)

where Wα ≡ |ψaa|2. This turns out to be exactly the von Neumann entropy [311]:

SVN = −
∑

α

Wα lnWα, (3.28)

where for a general set of wave function coefficients Wα ≡ |ψab|2. This entropy measures the

localization of the wave function in the basis. It is zero in the eigenbasis of the Hamiltonian

that generates Ψ (one coefficient would be 1 and the rest 0). Its maximum is ln(dim(Ψ)).

We can conclude that the entanglement entropy is bounded by the von Neumann entropy.

If the coefficient matrix has nonzero off-diagonal elements, then the entanglement entropy

will be reduced relative to the von Neumann entropy.

We can also define another type of entropy, the projected von Neumann entropy:

Sa
PVN = −

∑

a

Wa lnWa, (3.29)

where Wa ≡
∑

b |ψab|2. Wx is the projection of Ψ into the subspace labeled x. I showed
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in earlier work [115] how these projections are exponentially distributed for realistic shell

model wave functions when the basis factors are chosen to be eigenstates of the projected

Hamiltonian. For example, see Figure 3.6.

Unlike the entanglement entropy, this projected von Neumann entropy is not symmetric:

Sa
PVN ̸= Sb

PVN, so we must be sure to label which subspace we have projected into. This

entropy also reduces to the full von Neumann entropy in the optimal basis.

We now have three types of entropy to characterize our wave function coefficients. Some

special cases are laid out in Table 3.2. There, I introduced the term ‘singular’ to describe a

situation where a δ-function appears in desribing some aspect of the wave function. If the

wave function is singular in some subspace, then I mean that all of its elements are zero

except for one. In other words, it is an eigenvector expressed in its own eigenbasis within

that subspace. If a wave function is singular in both spaces, it is an eigenvector in its own

eigenbasis in the composite space. Correspondingly, its von Neumann entropy is zero.

Table 3.2: Some relations between bipartite wave function coefficients and their entropies.
All entries with sVN reduce to the form of the unprojected von Neumann entropy for some
undetermined positive value that are equal within a given row.

Description coefficients SVN Sa
PVN Sb

PVN Sentangle Wave function
Singular in both spaces δaiδbiψab 0 0 0 0 ψii |i⟩ ⊗ |i⟩
Singular in a-space only δaiψab sVN 0 sVN 0 |i⟩ ⊗ (

∑
b ψib |b⟩)

Singular in b-space only δibψab sVN sVN 0 0 (
∑

a ψai |a⟩)⊗ |i⟩
Jointly singular (SVD
basis)

δabψab sVN sVN sVN sVN
∑

aa ψaa |a⟩ ⊗ |a⟩
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Figure 3.6: (Taken from [115].) Distribution of the amplitudes Wa =
∑

b |ψab|2 which are re-
lated to the projected von Neumann entropy given in equation (3.29). The specific examples
here are proton-neutron decompositions of 22,28Na computed with the USDB [42] interaction.
In the case of 22Na, both subspaces are identical, while for 28Na they are unique.
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Chapter 4

Weak Entanglement Approximation

4.1 Motivation

The current limit of exact diagonalization for low-lying states of sparse matrices, which is

how we solve the nuclear many-body problem in the shell model framework, is dimension

1010 [92]. For applications to nuclear reaction theory it is useful to solve for thousands

of eigenstates, which would naturally bring this dimensional limit even lower. There are

numerous interesting cases which easily exceed dimension 1016. This drives our need for

basis-reduction methods that retain the physics we care about, including the collectivity

needed for many observables.

Shell model calculations use a harmonic-oscillator-like single-particle basis to represent the

single-particle states from which the many-nucleon states are constructed. Without any

extra steps, this leads to an infinite basis. One must therefore truncate the single particle

space to include only up to some maximum harmonic oscillator quanta. Calculations in

such a basis are the no-core shell model (NCSM). This no-compromises basis includes the

maximum number of correlated many-particle states but quickly exceeds the limits of sparse
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matrix solvers around the p-shell.

To make shell model calculations of medium-to-heavy mass nuclei possible, we must resort

to a ‘frozen-core’ shell model, hereafter referred to as the large-scale shell model (LSSM):

one assumes that the energy gaps between major shells allow separation of an active valence

space from an inert core of nucleons. See Figure 1.3. The interaction must be renormalized

within the limited space, and the description of highly-collective states may be lost. In

practice, an empirical interaction that has been fitted to experimental spectra and transition

strengths is used.

In the LSSM, each many-body basis state is a product of anti-symmetrized creation operators

(Slater determinants) acting on the frozen core. All possible configurations in the valence

space are included so that the maximum number of Slater determinants is



∑No

n=1 2jn + 1

Np/n


 , (4.1)

where No is the number of single-particle orbits (labeled ni, li, ji) and Np/n is the number

of protons/neutrons in the nucleus.

Even with this double truncation of the single-particle space, one can easily reach computa-

tionally inaccessible matrix dimensions above 1016, e.g., in the sdpf valence space. This is

due to the combinatorial (4.1) growth of possible configurations for any given set of single-

particle states (orbits). We therefore seek additional means of basis reduction. Rather than

continue to reduce the single particle space, inducing further re-normalization and loss of

collectivity, we will seek an importance truncation in the many-body configuration space.

That is, we will try to use properties of many-body configurations themselves to perform an

importance truncation within a fixed set of single-particle states.

In the previous decade, two sets of promising methods for truncating LSSM calculations were
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developed and tested: various density matrix renormalization group (DMRG) approaches

[218, 276, 186] based on the original method developed for spin-chains [297, 298] and varia-

tional wavefunction factorization (VWF) truncations [217, 219, 218]. DMRG and VWF take

insights from information theory [185]. As will be discussed in a later section, the truncation

presented in this chapter is closely related to each of these, and builds upon a long history

of related shell model truncation schemes.

4.2 Related shell model truncation methods

In addition to VWF and DMRG, there are some related methods to acknowledge from the

long history of shell model truncation schemes. This is not meant to be a comprehensive

review, rather the following list is meant to provide context for the present set of methods

without an exhaustive comparison. This list is also specifically focused on methods which

attempt to select the most important basis states based on some computed metric. These

are built on top of either an Nmax truncation in an ab initio framework, or on top of a

truncation to a particular valence space in a phenomenological framework.

• Hasper (1979): Diagonal percentage truncation (DPT) improves the diagonal energy

truncation (DET); in both methods the diagonal elements of the Hamiltonian are used

to reorder the basis states based on their energy [127].

• Horoi et al. (1994-2003): Truncation based on moments of the Hamiltonian: ex-

tension of diagonal energy truncation (DET), taking into account the width of the

diagonal matrix element distribution [149].

“Chaotic Wave Functions and Exponential Convergence of Low-Lying Energy Eigen-

values” (1999) [151].
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“Exponential convergence method: Nonyrast states, occupation numbers, and a shell-

model description of the superdeformed band in 56Ni” (2003) [150].

• Andreozzi et al. (1999-2003): The single particle space is partitioned and the

Hamiltonian is solved within each partition. The basis for the full space is constructed

from these subspace solutions:

“Truncation of Large Shell-Model Eigenproblems by Model Space Partitioning” (1999) [10].

“A redundancy-free approach to the use of correlated bases in the truncation of large

shell-model eigenproblems” (2001) [11].

A subblock of the Hamiltonian is diagonalized. Then, in an iterative procedure, the

matrix is expanded by incorporating new matrix elements with the already diagonalized

subblock:

“A simple iterative algorithm for generating selected eigenspaces of large matrices”

(2002) [12].

“An importance sampling algorithm for generating exact eigenstates of the nuclear

Hamiltonian” (2003) [9].

• Papenbrock et al. (2003-2005): SVD-themed truncation of the proton-neutron-

factorized basis leads to coupled set of nonlinear equations for optimal basis compo-

nents, which is solved iteratively [217, 219].

“Density matrix renormalization group and wavefunction factorization for nuclei” (2005) [218].

• Thakur et al. (2008): “Density matrix renormalization group study of 48Cr and

56Ni” (2008) [276].

• Roth et al. (2009): A reference state is iteratively/perturbatively improved by

adding np-nh configurations to the basis and tracking convergence with a perturba-

tion theory importance measure. Importance truncation for large-scale configuration

interaction approaches [247].
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• Weinstein et al. (2011): Lanczos-SVD for lattice Hamiltonians, motivated by en-

tanglement entropy [296].

• Kruse et al. (2013): Important truncation of the no-core shell model based on the

Hamiltonian matrix element between an approximate solution and each expanded basis

state [181].

• Qi et al. (2014-2018): Particle number partitions are solved independently and then

re-coupled to form a correlated-basis, and keeping only the lowest energy states. In

this case, “partitions” are a set of configurations with the same number of particles in

each involved orbit [158]. Implemented in a version of NuShellX [232].

A key takeaway from this list is that there have been many attempts over the years to create

importance truncation schemes for the shell model. However, none of them have become

standard for carrying out large scale calculations - many are published as a proof of concept

and not taken further. Our goal is to go beyond proof of concept and normalize the use of

our truncation scheme. We are encouraged by the simplicity of our approach which is not

iterative and our expectation that its efficiency will increase for N > Z nuclei. A recent

paper [221] citing our work on proton neutron entanglement entropy has shed additional

light on this matter. The authors of [221] demonstrated that proton and neutron orbitals

have the lowest entanglement entropy among all possible equipartitions of the valence space.

4.3 Weak entanglement limit

Suppose we have a Hamiltonian Ĥ acting on a bipartite space H = A⊕ B such that

Ĥ(λ) = Â+ B̂ + λĤ(AB), (4.2)
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where Â : A → A and B̂ : B → B are operators acting within each subspace only, and

λĤ(AB) is an operator acting on both subspaces. We define the weak entanglement limit as

the fact that as λ→ 0, the subspace entanglement of eigenstates of Ĥ must also go to zero:

lim
λ→0

SAB(Ĥ(λ)) = 0. (4.3)

The great use of this fact is that if we identify a bipartite system with low entanglement

entropy, then we can use equation (4.2) as a recipe for a sort of perturbative expansion.

This is what we have found is the case for the proton-neutron bipartite representation of

realistic nuclear Hamiltonians [162] (see Chapter 3); this does lead to an effective method for

basis reduction [115]. Furthermore, recent work [221] demonstrated that proton and neutron

orbitals have the lowest entanglement entropy among all equipartitions of the nuclear valence

space.

In the rest of this chapter, I discuss the application of this weak entanglement limit to the

development and results of the proton and neutron approximate shell model code (PANASh)

that I have co-developed with Johnson.

4.4 Proton and neutron approximate shell model

I now explain how the weak entanglement limit is used with a proton-neutron factorization

to approximate exact shell model states.

The shell model Hamiltonian represents a system of interacting single-particle harmonic

oscillator states with a mean-field (one-body) and effective two-body interaction:

Ĥ =
∑

i

ϵiâ
†
i âi +

1

4

∑

ijkl

Vijklâ
†
i â

†
j âkâl. (4.4)
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The creation/destruction operators â†i/âi create/destroy particles in the valence space orbital

i, which has harmonic oscillator labels ni, li, ji.

With two species of particles, protons and neutrons, we have the following Hamiltonian:

Ĥ = Ĥ(p) + Ĥ(pp) + Ĥ(n) + Ĥ(nn) + Ĥ(pn), (4.5)

where the superscript in parenthesis indicates the type of operator: (p) is a one-body proton

operator, (pp) is a two-body proton operator, equivalently for neutrons (n), (nn), and finally

there is the remaining proton-neutron two-body interaction (pn). The proton-only and

neutron-only operators,

P̂ ≡ Ĥ(p) + Ĥ(pp) (4.6)

N̂ ≡ Ĥ(n) + Ĥ(nn), (4.7)

each have the form of (4.4). Furthermore, each is an operator constrained to its own subspace:

P̂ : P → P and N̂ : N → N . The direct-product of these two subspaces is the bipartite

proton-neutron space H = P ⊗N , which is where the total Hamiltonian acts:

Ĥ = P̂ + N̂ + Ĥ(pn). (4.8)

Each subspace operator has its own eigenstates and eigenenergies:

P̂ |p⟩ = Ep|p⟩ (4.9)

N̂ |n⟩ = En|n⟩. (4.10)

The dimensions of these subspaces are orders of magnitude smaller than the full space, and

in general can be solved without any truncation. See Figure 4.1 for an example of the sd -

space. In the weak entanglement limit, these subspace eigenstates approximate the optimal
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basis factors |p̃j⟩ , |ñj⟩, i.e. eigenstates of the exact reduced density matrix. This motivates

a basis of products of these subspace eigenstates:

[|p⟩ ⊗ |n⟩]Jπ = |pn; Jπ⟩. (4.11)

We choose the J-scheme, rather than the usual M-scheme, so that any truncation of this

basis will produce wave functions with well-defined J .

Figure 4.1: (Left:) Basis dimensions of the M-scheme, full configuration interaction model
in the sd -shell model space. (Right:) Basis dimensions of the neutron-only part of the
Hamiltonian, dim(N̂), with the same single particle space.

We can write the matrix elements of the Hamiltonian in this basis as

⟨pfnf ; J, π| Ĥ |pini; J, π⟩ = δnfni
Ep + δpfpiEn + ⟨pfnf ; J, π| Ĥ(pn) |pini; J, π⟩ , (4.12)

where the matrix elements of Ĥ(pn) are expressed in terms of one-body density matrices

computed from the |p⟩ and |n⟩ eigenstates. The details for computing the proton-neutron

matrix elements are given in section 4.5. By diagonalizing in a truncated basis set, we obtain
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approximate solutions of the form:

|Ψ̃⟩ =
mn,mp∑

pn

ψpn|pn; Jπ⟩ ≈ |Ψ⟩, (4.13)

where |Ψ⟩ is an exact eigenstate of Ĥ. Before truncation, mp = dp ≡ dim(P̂ ) and mn =

dn ≡ dim(N̂), with additional constraints for conservation laws, not shown. Because the

only approximation we are performing is in leaving out certain basis states, our ground state

solutions follow a variational principle. Consider the true ground state |Ψ0⟩ of Ĥ with energy

E0 < Ei for all other eigenpairs Ei, |Ψi⟩. In a complete and normalized basis for any other

state |Ψ̃0⟩ =
∑

i ψi|Ψi⟩:

⟨Ψ̃0|Ĥ|Ψ̃0⟩ =
∑

i

|ψi|2Ei ≥ E0

∑

i

|ψi|2 ≥ E0. (4.14)

Meaning that leaving out basis factors can only increase the energy of the approximate

ground state. While such a rigorous statement cannot be made for the excited states, the

same result is found in practice: the first approximation of ⟨Ψ̃|Ĥ|Ψ̃⟩ always improves by

adding more terms. Some insight can be had by examining the expectation value of the

Hamiltonian for a truncated wave function in this basis:

⟨Ψ̃|Ĥ|Ψ̃⟩ =
mn,mp∑

pn

|ψpn|2(Ep + En + Epn), (4.15)

where Epn is the residual energy from the proton-neutron interaction given by the last term

in equation (4.12). In general, the En and Ep are all negative energy (bound) states and so

Ep=1 < Ep=2 < ... < Ep=mp by construction (and also for En=1,...,mn). It follows that as long

as

|Ep + En| > |Epn|, (4.16)
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that is, as long as the residual energy Epn is a lesser contribution than the subspace energies,

the energy will decrease with each additional term, even if Epn is positive (repulsive). This

is by no means guaranteed, but it is approximately true under the weak entanglement limit.

As the proton-neutron entanglement entropy goes to zero, so too must the residual proton-

neutron interaction.

Our code for performing shell model calculations in this truncated basis of proton and neutron

states is called the Proton and Neutron Approximation (Sh)ell model, or PANASh.

4.4.1 Basis construction

In this section I will explain in more detail how the basis for PANASh is constructed. It will

be shown that there are choices to be made about how factors are combined to create the

coupled basis. I also discuss different choices for basis construction.

The PANASh basis is a set of coupled proton and neutron wave functions:

{|i⟩} = {[|p⟩ ⊗ |n⟩]Jπ} = {|pn; Jπ⟩}, (4.17)

where the proton |p⟩ and neutron |n⟩ states, called the subspace factors, are each a complete

set of orthonormal many-body states. In particular, {|p⟩} and {|n⟩} are sets of eigenvectors

of Hamiltonian operators.

The first step in basis construction is to generate the basis factors. Given the proton-neutron

decomposition of the Hamiltonian as

Ĥ = P̂ + N̂ + Ĥ(pn), (4.18)
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we first diagonalize P̂ and N̂ to obtain its eigenpairs:

P̂ |p⟩ = Ep|p⟩ (4.19)

N̂ |n⟩ = En|n⟩. (4.20)

We use BIGSTICK [165] for this, although any shell model code with agreeable output formats

could be used. Each of these states has wave function coefficients in the basis |Φi⟩ used by

the generating shell model code:

|p⟩ =
∑

i

ψ
(p)
i |Φi⟩ . (4.21)

In the construction of the PANASh basis we do not use these wave function coefficients. In

fact, we never use the ψ(p)
i directly. (To compute matrix elements in the coupled basis, we

require only the one-body density matrices derived from ψ
(p)
i . This is discussed in section

4.5.2.) The basis is constructed using only information about the quantum numbers of each

basis factor, and assuming that the factors are orthonormal. BIGSTICK produces eigenstates

with well defined total angular momentum J , parity π, angular momentum projection M =

Jz, energy Ep. We may label each state as:

|p⟩ = |p : Ep, jp,mp, πp⟩ (4.22)

However, we do not use the mp quantum numbers of the factors.

Given two basis factors,

|p⟩ = |jp, πp⟩ (4.23)

|n⟩ = |jn, πn⟩ , (4.24)

a number of basis states can be constructed. The parity of the coupled state is fixed:

81



π = πpπn, and the angular momentum couple in the usual way: |Jp − Jn| ≤ J ≤ Jp + Jn.

We can therefore generate a set of coupled states for each pair:

||jp − jn|,πpπn⟩,

||jp − jn|+ 1,πpπn⟩,

...

|jp + jn − 1,πpπn⟩,

|jp + jn,πpπn⟩.

(4.25)

The Hamiltonian conserves both parity and total angular momentum Jπ, and our basis

states have definite Jπ. This will make the Hamiltonian matrix block-diagonal. Each block

can be diagonalized independently. We therefore can construct a separate basis for each Jπ

corresponding to each block of the Hamiltonian:

{|i⟩ = |pn; Jπ⟩}Jπ . (4.26)

Algorithms for combining mp, mn factors

Given a set of mp states |p⟩ and mn states |n⟩, basis construction proceeds by looping over all

mpmn combinations of the basis factors and selecting the pairs which meet the requirements

of each Jπ basis, plus any other constraints one might like to apply. The maximum basis J

value is twice the largest J of the basis factor states. To improve data locality when accessing

vector coupling coefficients, the basis factors are first ordered by their quantum numbers:

all factors with the same Jx, πx are grouped together. So in actuality, first the set of unique

quantum numbers are iterated, then all factors within that group are iterated.

Each factor |p⟩ has four essential labels: its eigenstate index p, energy Ep, angular momentum
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jp, and parity πp. If we keepmp |p⟩ factors andmn |n⟩ factors, and consider only combinations

consistent with the conservation of angular momentum and parity, we are still left with a

choice of which combinations to keep, and which to discard. We can visualize this choice

with the help of the diagrams in Figure 4.2 which depicts four basic ways to select the proton

and neutron factors to be used in the basis. Each horizontal axis indicates increasing either

the cutoff in the maximum number Np or energy Ep of proton factors used to construct the

basis. The vertical axis indicates the same but for neutron factors. In each case, the area

inside the dotted line indicates the combinations selected. Generally speaking, the number of

states Np available increases exponentially with the excitation energy Ep. Therefore, an area

in N -space is transformed to a different area in E-space with the same number of factors.

a) Square-cut on N b) Circle-cut on N

c) Square-cut on E d) Circle-cut on E

Figure 4.2: Four basic ways to truncate the many-body basis on the selection of proton and
neutron factors. See text for discussion. Similar diagrams are found in [181].

We considered only two of the algorithms from Figure 4.2:

a) Square-cut on N : Take a fixed number of factors of each type and take every combina-

tion consistent with the conservation of angular momentum and parity. In cases with
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unequal dimension, we actually take a fixed fraction of factors from each subspace.

d) Circle-cut on E : Take all factors with E(x) < ϵ and construct every combination con-

sistent with E2
p + E2

n < E2
cut, and angular momentum and parity.

The first of these is the simplest conceivable truncation scheme. The second is inspired by

perturbation theory; since the terms closest to the energy of the ground state are expected

to have the largest contribution, one may hypothesise that those terms outside some circle

of energy radius Ecut are significantly less important and can be dropped.

We compared the two schemes on two different metrics: Convergence of low-lying spectra as

a function of (a) the number of basis factors, or (b) the dimension of the truncated basis. We

found that the square-cut on factor number method optimizes metric (a), while the circle-cut

on factor energy optimizes metric (b). An example with 49Cr in the pf space is shown in Fig.

4.3. In this case, dp = 565 and dn = 1651. In the square-cut calculations, the same number

of proton and neutron factors are used.

Which method one chooses thus depends on whether most of the computational cost comes

from generating the factor wave functions, or from diagonalizing the Hamiltonian in the

truncated basis. While the dimension of the coupled basis D is proportional to the product

of mp and mn, we often only require a small number of solutions Nsol. Considering only

the cost of a power-iteration type algorithm, the minimum cost scaling for obtaining Nsol

solutions in the truncated space is S ≡ Nsol(mpmn)
2. On the other hand, obtaining the mp

and mn factors has a minimum cost scaling F ≡ mpd
2
p +mnd

2
n. Let’s assume that mn ∼ mp

and suppose m2
n ∼ dn. In this case, S ∼ Nsold

2
n and F ∼ d2.5n . For large dn, the cost of factor

generation increases faster.

Taking a more concrete example, let mn = dn/10 and Nsol = 102. Then, F10% = d3n/10 and

S10% = 102(dn/10)
4 = d4n/10

2.
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Figure 4.3: I compare two methods of constructing the coupled basis: fixed maximum exci-
tation energy (circle cut) and fixed number of factors (square cut). Eigenvalues of the first
five levels in 49Cr as a function of (left) number of neutron factors used to construct the
basis and (right) the dimension of the resulting eigenvalue problem. If factor generation is
the limiting factor, then square-cut construction is most efficient. If diagonalizing in the
truncated basis is the limiting factor, then circle-cut construction is more efficient.

In conclusion, in most applications where a significant truncation is required (for very large

dimensional problems), the cost of generating the basis factors is greater than the cost of

diagonalization in the truncated basis. Therefore, the square-cut basis construction method

is preferred, since it maximizes the convergence per total compute cost.

4.5 Residual Hamiltonian matrix elements

In this section I derive the main results required to implement the weak entanglement ap-

proximation as a reduced-basis method: the residual proton-neutron Hamiltonian matrix

elements.
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4.5.1 Two-body operators

It is useful to define the two-body creation operator with fixed angular momentum [245]:

Â†
ab;KM ≡ [c†a ⊗ c†b]KM (4.27)

Here, the angular momentum K and the azimuthal or magnetic quantum number M = Kz

are needed for the coupling of the two one-body creation operators, via Clebsch-Gordan

coefficients [74]:

[c†a ⊗ c†b]KM =
∑

mamb

(jama, jbmb|KM)ĉ†jama
ĉ†jbmb

. (4.28)

The two-body creation and annihilation operator with fixed K and M are thus, respectively:

A†
ab;KM =

∑

mamb

(jama, jbmb|KM)c†jama
c†jbmb

,

Acd;KM = −[cc ⊗ cd]KM =
∑

mcmd

(jcmc, jdmd|KM)cjdmd
cjcmc .

(4.29)

These will be used later in the derivation of the proton-neutron interaction matrix elements.

With these definitions, two-body states with proper normalization are [46]

|ab;KM⟩ ≡ 1√
1 + δab

Â†
KM(ab) |0⟩ . (4.30)

The two-body (pn) part of the Hamiltonian is thus expressed as

Ĥ(pn) =
∑

abcd

Vabcdπ
†
aν

†
b π̂cν̂d =

∑

abcd

ζabζcd
∑

KM

Vabcd;KMA
†
ab;KMAcd;KM , (4.31)

where ζab ≡
√

(1 + δab) and a, c correspond to protons orbits and b, d correspond to neutron

orbits.
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4.5.2 Residual proton-neutron operator

To diagonalize the nuclear Hamiltonian Ĥ = P̂ + N̂ + Ĥ(pn) in the basis (4.11), we seek an

explicit form in terms of proton and neutron one-body density matrices since these are a

byproduct of the diagonalization of the subspace Hamiltonians (4.9).

The P̂ and N̂ operators will naturally be diagonal in our basis. The diagonal terms are E(p)

and E(n). All that remains is to find the matrix elements of Ĥ(pn) in terms of the original

FCI single particle basis and matrix elements.

To calculate the matrix elements of H(pn), we refactor equation (4.31) into one-body density-

like operators whose matrix elements can be computed from the density matrices found from

solving the single-species terms of the full Hamiltonian. Equation (4.31) is written as a

product of pair creation and annihilation operators. These can be reordered into one-body

density operators. Doing so will introduce a nontrivial phase and a number of identities

involving vector coupling coefficients will be applied.

We start with the general proton-neutron Hamiltonian in terms of two-body interaction

matrix elements:

Ĥ(pn) =
∑

abcd;K

V
(pn)
abcd;K

∑

M

A†
ab;KMAcd;KM

=
∑

abcd;K

V
(pn)
abcd;K

∑

M

∑

mamb

(jama, jbmb|KM)c†jama
c†jbmb

∑

mcmd

(jcmc, jdmd|KM)cjdmd
cjcmc ,

(4.32)

where M ′ = ma −mc = −(mb −md). We want to write this in terms of the the generalized

one-body density operators:

ρ̂
(p)
ac̃;K′µ ≡

∑

mamc

(jama, jc −mc|K ′µ)π†
jama

π̃jc−mc , (4.33)
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ρ̂
(n)

bd̃;K′µ
≡

∑

mbmd

(jbmb, jd −md|K ′µ)ν†jbmb
ν̃jd−md

. (4.34)

The two-body operators will need to be re-ordered and the coupling coefficients re-written.

Using fermion relations:

π†
jama

ν†jbmb
νjdmd

πjcmc = π†
jama

ν†jbmb
(δjcmc,jdmd

− πjcmcνjdmd
)

= −π†
jama

ν†jbmb
πjcmcνjdmd

(drop charge-changing term)

= −π†
jama

(δjbmb,jdmd
− πjcmcν

†
jbmb

)νjdmd

= π†
jama

πjcmcν
†
jbmb

πjdmd
, (drop charge-changing term)

(4.35)

and time-reversal relations (cf. [46], eq. (14.56a)),

πjcmc = (−1)jc−mcπ̃jc−mc , (4.36)

νjdmd
= (−1)jd−md ν̃jd−md

, (4.37)

we can then write the two-body operators as:

∑

M

A†
ab;KM Acd;KM =

∑

M

∑

mambmcmd

(jama, jbmb|KM)(jcmc, jdmd|KM)

(−1)jc−mc(−1)jd−mdπ†
jama

π̃jc−mcν
†
jbmb

ν̃jd−md
. (4.38)

To write this in the form of the density operators, a few coupling coefficient transformations

are required. I will start from the identity (cf. [46] eq. (A.1.b13)):

∑

M

(jama, jc −mc|KM)(jdmd, jb −mb|KM)(−1)jc−mc(−1)jb−mb =

(−1)ja+jb+jc+jd(2K + 1)
∑

K′M ′




ja jb K ′

jd jc K





(jbmbjama|K ′M ′)(jcmcjdmd|K ′M ′).

(4.39)
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First, I relabel the states |jc −mc⟩ → |jbmb⟩ and |jb −mb⟩ → |jcmc⟩ to bring the left-hand

side (LHS) of the above closer to our original expression.

∑

M

(jama, jbmb|KM)(jdmd, jcmc|KM)(−1)jb+mb(−1)jc+mc =

(−1)ja+jc+jb+jd(2K + 1)
∑

K′M ′




ja jc K ′

jd jb K





(jc −mcjama|K ′M ′)(jb −mbjdmd|K ′M ′).

(4.40)

Second, I use the symmetry relations (jdmd, jcmc|KM) = (−1)−jd−jc+K(jcmc, jdmd|KM)

and (jc −mcjama|K ′M ′) = (−1)jc+ja−K′
(jamajc −mc|K ′M ′):

∑

M

(jama, jbmb|KM)(jcmc, jdmd|KM)(−1)jd+jc−K(−1)jb+mb(−1)jc+mc =

(−1)ja+jc+jb+jd(2K + 1)
∑

K′M ′




ja jc K ′

jd jb K





×(−1)jc+ja−K′
(jamajc −mc|K ′M ′)(jb −mbjdmd|K ′M ′). (4.41)

Third, I use the symmetry (jb −mbjdmd|K ′M ′) = (−1)jb+jd−K′
(jbmbjd −md|K ′ −M ′) and

the interchange of rows in two columns of the six-J symbol:

∑

M

(jama, jbmb|KM)(jcmc, jdmd|KM)(−1)jd+jc−K(−1)jb+mb(−1)jc+mc =

(−1)ja+jc+jb+jd(2K + 1)
∑

K′M ′




ja jb K

jd jc K ′





×(−1)jc+ja−K′
(jamajc −mc|K ′M ′)(−1)jb+jd−K′

(jbmbjd −md|K ′ −M ′). (4.42)

Finally, rearranging, cancelling certain phases and using properties such as (−1)2n = 1 and
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(−1)n = (−1)−n for integer n,

∑

M

(jama, jbmb|KM)(jcmc, jdmd|KM) = (2K + 1)
∑

K′M ′

(−1)K+jb−jd+mb+mc

×




ja jb K

jd jc K ′





(jamajc −mc|K ′M ′)(jbmbjd −md|K ′ −M ′). (4.43)

With this identity, the definitions of the density operators, and −M ′ = mb −md (and again

(−1)n = (−1)−n for integer n) we can write (4.38) as:

∑

M

A†
ab;KM Acd;KM =

∑

K′M ′

(−1)K+jb+jc−M ′




ja jb K

jd jc K ′




ρ̂
(p)
ac̃;K′M ′ ρ̂

(n)

bd̃;K′−M ′ (4.44)

The one-body density operators are proper spherical tensors, and we can recognize through

some rearrangement that the above expression contains a scalar product of two such ten-

sors [74]:

ρ
(p)
ac;K′ · ρ(n)bd;K′ = =

∑

M ′

(−1)−M ′
ρ
(p)
ac̃;K′M ′ρ

(n)

bd̃;K′−M ′ . (4.45)

The (pn) Hamiltonian can thus be written:

H(pn) =
∑

abcd

∑

K

(−1)K+jb+jc(2K + 1)V
(pn)
ab,cd;K

∑

K′




ja jb K

jd jc K ′




ρac̃K′ · ρbd̃K′ . (4.46)

This representation can be further simplified if we define recoupled two-body interaction

matrix elements (note the order of the indices):

Wacbd;K′ ≡
∑

K

(−1)K+jb+jc(2K + 1)




ja jb K

jd jc K ′




V

(pn)
abcd;K . (4.47)
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In terms of these new matrix elements, the final expression for the proton-neutron residual

matrix elements are:

Ĥ(pn) =
∑

abcd

∑

K′

Wacbd;K′ ρ̂
(p)
ac̃;K′ · ρ̂(n)

bd̃;K′ . (4.48)

4.5.3 Residual proton neutron interaction matrix elements

The expression (4.48) reveals that the (pn) part of the interaction is the scalar-product of two

independent operators: ρ̂(p)ac;K · ρ̂
(n)
bd;K . Standard vector-coupling relations tell us that matrix

elements of this operator in a j-j-coupled basis can be expressed as products of matrix

elements in the uncoupled basis:

⟨f |ρ̂(p)ac;K · ρ̂
(n)
bd;K |i⟩ = (−1)jpi+jnf+J




J jnf jpf

K jpi jni




⟨pf ||ρ̂(p)ac;K ||pi⟩⟨nf ||ρ̂(n)bd;K ||ni⟩, (4.49)

where |i⟩ = |pini; Jπ⟩ and (Jπ)i = (Jπ)f = Jπ. Finally, the pn matrix elements are:

⟨f |Ĥ(pn)
J |i⟩ = (−1)jpi+jnf+J

∑

K




J jnf jpf

K jpi jni





∑

bd

(2K + 1)
∑

ac

ρ
pfpi
ac;KW

(pn)
ac,bd;Kρ

nfni

bd;K . (4.50)

4.6 Spectral calculations

First, we show how the low-lying spectra obtained from the weak entanglement factoriza-

tion compare to the un-truncated, full configuration-interaction (FCI) calculations. Given

specifications from the phenomenological interactions used, we can also compute the total

binding energies of the states. We compare the most-bound levels for four benchmark nuclei.

In each case, multiple calculations are performed. Each uses an increasing fraction of the

proton and neutron subspace factors and therefore an increasing computational cost which
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scales like the cube of the model space dimension. All calculations were performed with the

square-cut algorithm, using all allowed combinations of the (mp,mn) basis factors.

We perform calculations in two model spaces. The first is the 0f7/2, 1p3/2, 0f5/2, 1p1/2 space

with the GX1A interaction [145], and the second is the 0f5/2, 1p3/2, 1p1/2, 0g9/2 space with

the JUN45 interaction [147]. The nuclei modeling in each space and their dimensions are

shown in Table 4.1. These nuclei were selected to span a large range of M -scheme model

Table 4.1: PANASh benchmark calculations and their: interaction used (Int.), M -scheme
FCI dimension in millions (Mdim), number of protons (Z), number of valence protons (Zval.),
proton subspace M -scheme dimension (Zdim), (the equivalent for neutrons), and properties
for which the nucleus was selected as a benchmark.

Nucleus Int. Mdim. 106 Z(Zval.) Zdim. N(Nval.) Ndim. Properties
78Ge JUN45 3.7 32(4) 701 46(18) 701 even-even, deformed
70As JUN45 760 33(5) 2,293 37(9) 36,998 odd-odd, deformed
60Ni GX1A 1090 28(8) 12,022 32(12) 12,022 even-even, spherical
79Rb JUN45 8600 37(9) 36,998 42(14) 24,426 odd-A, spherical

space dimensions (from 106 to 109), as well as breath of properties which affect the difficulty

of capturing the many-body physics. Even-even nuclei tend to be simpler than odd-A (79Rb)

or odd-odd (70As) nuclei, since the unpaired nucleon in the latter two cases lead to stronger

mixing of the proton and neutron subspaces. We also have two even-even cases: one more

spherical (60Ni) which is expected to exhibit vibrational spectra, and one more deformed

(78Ge) which is expected to exhibit rotational spectra. (In a very simplistic liquid drop

model, spherical nuclei can be thought of as perfect Harmonic oscillators yielding bands of

equally spaced levels with E = nh̄ω, while deformed nuclei are like symmetric rotors with

spacing as E = h̄2J(J + 1)/2I0; for reference see Ring and Schuck [245], Fig. 1.12). The

theoretical deformation of these nuclei can be estimated from beyond mean-field calculations

tabulated in a database described in [138].

The binding energies are calculated using the formula:

BE(Z,N) = Eval + Ecore + EC(Z,N), (4.51)
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where Eval is the binding energy amongst the valence particles, determined by the eigenen-

ergies of the model space Hamiltonian. Ecore is the binding energy of the core nucleons,

taken to be the experimental binding energy of the core nucleus. Finally, EC(Z,N) takes

into account the binding energy correction due to the Coulomb interaction. For interaction

JUN45 we use the empirical formula [147, 60],

EC(Zv, Nv) = ϵCZv +
1

2
VCZv(Zv − 1) +

1

2
bCZv +∆npZvNv, (4.52)

where Zv and Nv are the number of valence protons and neutrons, and ϵC = 9504, VC = 228,

bC = 30, and ∆np = −36 are parameters in keV taken from [60], as in [147]. The Coulomb

term for the GX1A interaction is calculated using the formula and parameters from [145].

Since PANASh uses a J-scheme basis, each Jπ block of the Hamiltonian can be solved

independently with a much smaller basis, typically an order of magnitude or more smaller

than the equivalent M -scheme basis The J-scheme matrix elements have a much higher cost

per element, however, and the BIGSTICK code is far more efficient for a fixed basis-size. For

this reason we use BIGSTICK to compute the FCI results for the un-truncated basis where

the advantages of the weak-entanglement approximation are lost.

The results for 78Ge, an even-even deformed nucleus, are shown in Figure 4.4. In each panel

the PANASh basis is constructed with m proton and neutron factors with as an increasing

fraction of the available subspace factors dn = dp = 701 (see also Table 4.1). Below each

m is the d, the maximum J-scheme dimension which had to be solved to obtain the results

in that panel. In the first panel, with 1% of the basis factors resulting in four orders of

magnitude reduction in the dimension of the model space, we reproduce the spectral structure

characteristic of a deformed, rotational nucleus: non-degenerate low-lying 0+, 2+, 4+ states.

We also get the ground state binding energy well within the 1-percent level (1.6 MeV / 676

MeV). The last panel, m = 1.0dn, has no basis factors left out of the basis and is equivalent
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Figure 4.4: Binding energies of 100 levels of 78Ge computed with the weak entanglement
factorization approximation. Each panel has two labels: the number of components used
as a fraction of the neutron subspace dimension, and the largest basis dimension required
(across all spins). Each stack of bars is a set of levels with a given total angular momentum
J ; full bars are positive parity and empty bars are negative parity. All calculations are done
with the square-cut basis method.

to the full configuration interaction (FCI) calculation. Unlike the next three benchmark

cases, it is practical to compute the FCI results with PANASh, since the dimensions are

relatively modest (105).

The results for 60Ni, an even-even spherical nucleus, are shown in Figure 4.5. The format of

the figure is the same as in Figure 4.4, except for the last panel showing the FCI calculation.

Here it was not practical to get the FCI results using PANASh due to the large dimensions,

and instead the FCI code BIGSTICK was used. Therefore, the dimension indicated is in the

M -scheme rather than the J-scheme (which would have been about an order of magnitude

smaller). The spectral structure here is not so different from 78Ge, but we do see the indicator

for a spherical nucleus [245]: 0+ ground state, 2+ first excited state, and a triplet 0+, 2+, 4+

degeneracy approximately twice the energy of the first 2+ state. (Whereas in a deformed
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Figure 4.5: Same as figure 4.4 but for 60Ni. The final panel, labeled FCI, was performed with
the M -scheme code BIGSTICK at a dimension of 1.1 · 109, but lists the equivalent J-scheme
dimension. See text for a full discussion.

nucleus the degeneracy is broken with the 2+ and 4+ brought down in energy.) The ground

state binding energies obtained using only 1% of the basis factors (4 orders of magnitude

reduction in dimension) is within 1 MeV, and the excitation energy of the first 2+ state

is about 350 keV too high, about twice the typical shell model uncertainty. Using 5% of

the basis factors (still 3 orders of magnitude reduction), the ground state binding energy is

within 160 keV of FCI, and the first 2+ is within 81 keV.

The results for 70As, an odd-odd, deformed nucleus, are shown in Figure 4.6. Unlike the

even-even nuclei with a 0+ ground state and orderly low-lying excitations, the spectra for

the odd-odd 70As is dense with a 4+ ground state. The 1% calculation which in the previous

two cases came very close to the final ground state binding energy, here the error is almost

3 MeV. This comports with our expectation that the odd proton and neutron are forced to

couple, increasing the proton neutron entanglement entropy and reducing the effectiveness

of the PANASh method. Despite this, we are still able to obtain the approximate ordering

95



Figure 4.6: Same as figure 4.4 but for 70As. The final panel, labeled FCI, was performed with
the M -scheme code BIGSTICK at a dimension of 7.1 · 108, but lists the equivalent J-scheme
dimension.

of the low-lying states and obtain hundreds of states where FCI can only manage a few with

significant resources. For the 9% calculation, the 2− ground state is off by 0.75 MeV and

resolves above the first 4+ MeV state which is nearly degenerate.

The results for 79Rb, an odd-A, spherical nucleus, are shown in Figure 4.7. As an odd-A

nucleus, there will be one unpaired nucleon leading to half-integer spins (represented in the

figure in decimal values). The M -scheme dimension for this nucleus is 8.6 · 109, which is

approaching the limits of our computing capabilities. Using BIGSTICK, we could only obtain

the lowest four states of each parity in a reasonable amount of time. In the J-scheme it

would have been 7.1 · 108. Using 1% of the basis factors, four orders of magnitude basis

reduction, the ground state binding energy is too weak by 2.1 MeV, and the ordering of

the first few states does not match the converged results. This is not too surprising given

the high level density. Furthermore, this truncation error is comparable to the error of FCI

compared to the experimental binding energy: BEexp = −679.5 MeV, BEFCI = −680.7
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Figure 4.7: Same as figure 4.4 but for 79Rb. The right-most panel was computed with the
FCI code BIGSTICK at a dimension of 8.6 · 109, but lists the equivalent J-scheme dimension.

MeV (error = 1.2 MeV). Increasing to 5% of the basis factors and an order of magnitude

increase in dimension, we get the right ordering of at least the first 5 states compared to FCI.

The error in the ground state binding energy is 770 keV. Doubling the basis factors to 10%

does not significantly improve convergence despite quadrupling the basis dimension. This is

evidence that we can extract most of the physics from the lowest energy basis factors.

The significant basis reduction achieved by the weak entanglement approximation is useful in

two extremes. The first, is that it makes possible calculations which cannot be attempted in

FCI - we will be able to study the structure of a few low-lying states in model spaces that were

previously computationally impossible. The second extreme can already be seen by the small

number of levels in the FCI panel of last three figures: using this basis reduction method we

can obtain a far greater number of states for a comparable computational cost. We can choose

to sacrifice some quality for a larger quantity of states. This might not sound desirable, but

for statistical quantities like average electromagnetic properties of highly excited states, it is

exactly the right trade-off.
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4.7 Transitions

Obtaining the eigenenergies and wave functions of the Hamiltonian is not enough. We are

interested in the transition probabilities we can compute with the wave function solutions.

The most common types of transitions can be cast as one-body operators and computed

using the one-body transition density matrices computed from the original wave functions.

This greatly speeds up the computations. The next two subsections present the main results

required to compute one-body transitions using PANASh.

4.7.1 One-body transition density matrices

To compute basic observables, e.g. Eλ and Mλ multipole transition rates, we use one-

body density matrices (ρfi
K). These are efficient representations of the wave function content

needed for computing one-body operator (Ô1b) matrix elements:

⟨Ψf |Ô1b|Ψi⟩ = Tr
{
Ô1bρ

fi
K

}
. (4.53)

The trace is over all single-particle orbits in the single-particle model space. Once we have

solutions Ψ for the Hamiltonian (4.5), the one-body density (1BD) matrices can be computed

in a fashion similar to the matrix elements of the Hamiltonian: expressed in terms of the

factor wave function 1BD matrices.

The proton and neutron 1BD operators are:

ρ̂
(p)
ab,K = [π̂†

aπ̂b]K ⊗ 1 (4.54)

ρ̂
(n)
ab,K = 1⊗ [ν̂†aν̂b]K , (4.55)

where π̂a and ν̂a are proton and neutron one-body operators, respectively. The matrix
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elements of these operators for the eigenstates of the Hamiltonian in the coupled basis are:

ρ
fi(p)
ac;K = ⟨Ψf ||ρ̂(p)ac,K ||Ψi⟩ =

∑

pfnfpini

ψf
pfnf

ψi
pini
⟨pfnf ; Jfπ|ρ̂(p)ac,K |pini; Jiπ⟩ (4.56)

Using the identity for a tensor-product of a single-species operator with the identity, we ob-

tain the matrix elements of the proton/neutron 1BD operators in terms of the 1BD matrices

of the factor wave functions:

⟨f |ρ̂(p)ac,K |i⟩ = (−1)Ji+K+jpf+jniδjnf jni
[Jf ][Ji]




jpf Jf jni

Ji jpi K




⟨pf ||ρ̂(p)ac;K ||pi⟩ (4.57)

The Kronecker-delta acts to create a trace over the ‘spectator’ subspace. Combining, we

obtain:

ρ
fi(p)
acK = (−1)Ji+K [Jf ][Ji]

∑

pfpi

∑

nf

(−1)jpf+jnf




jpf Jf jnf

Ji jpi K




ψ(f)
pfnf

ψ(i)
pinf

ρ
pfpi(p)
acK (4.58)

We can rewrite to obtain:

ρ
fi(p)
acK = (−1)Ji+K [Jf ][Ji]

∑

pfpi

P
pfpi(fi)

(K) ρ
pfpi(p)
acK (4.59)

where, for efficiency, we pre-compute the sum

P
pfpi(fi)

(K) =
∑

nf

(−1)jpf+jnf




jpf Jf jnf

Ji jpi K




ψ(f)
pfnf

ψ(i)
pinf

. (4.60)

This is done at each combination of f, i,K, and som2
p memory is required. The total compute

scaling is

S ′
p = NkN

2
sm

2
p(N

2
o +mn), (4.61)
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where Ns is the number of solution wave functions between which transitions are computed.

An equivalent expression holds for S ′
n. The speedup as a result of pre-computing (4.60) is

S

S ′ =
NkN

2
sN

2
om

2
pmn

NkN2
sm

2
p(N

2
o +mn)

=
N2

omn

N2
o +mn

. (4.62)

4.7.2 Charge-changing matrix elements

To compute the charge-changing one-body density matrices, one generalizes the expressions

from the previous section to evaluate the reduced matrix elements of the tensor operator

ρ̂
(pn)
ab,K = [π̂†

a ⊗ ν̃b]K :

⟨Ψf ||[π̂†
a ⊗ ν̃b]K ||Ψi⟩ = [Jf ][K][Ji]

∑

pfnfpini

ψf
pfnf

ψi
pini





jpf jpi ja

jnf
jni

jb

Jf Ji K




⟨pf ||π̂†

a||pi⟩⟨nf ||ν̃b||ni⟩.

(4.63)

The proton one-body matrix element can be identified as the spectroscopic factor:

Spfpi;a ≡ [jpf ]
−1⟨pf ||π̂†

a||pi⟩. (4.64)

In this convention, a spectroscopic factor is the matrix element of a creation operator. To

write the neutron one-body matrix element in the same way, we first apply the time-reversal

identity:

⟨nf ||ν̃b||ni⟩ = (−1)jnf
−jb−jni ⟨ni||ν̂†b ||nf⟩ = (−1)jnf

−jb−jni [jni
]Sninf ;b. (4.65)
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This means one has to compute the spectroscopic factor as a transition from the final neutron

state to the initial neutron state. The complete expression is:

⟨Ψf ||[π̂†
a ⊗ ν̃b]K ||Ψi⟩ = (−1)jnf

−jb−jni [Jf ][K][Ji]
∑

pfnfpini

ψf
pfnf

ψi
pini

×[jpf ][jni
]





jpf jpi ja

jnf
jni

jb

Jf Ji K




Spfni;aSninf ;b.

(4.66)

4.8 Discussion of density matrix methods

We will briefly review the density matrix renormalization group (DMRG) and variational

wavefunction factorization (VWF) methods to clarify how the weak entanglement limit com-

pares. All three methods are based on a bipartite decomposition of the Hilbert space, followed

by some sort of truncation, and can also be directly or indirectly related to a singular-value

decomposition of the bipartite representation of the wave function.

4.8.1 DMRG

In a density matrix renormalization group (DMRG) approach to the nuclear shell model,

one splits the single-particle space into subspaces, which are either iteratively increased in

size (infinite algorithm), or swept through ‘left and right’ (finite algorithm) as information

from distant orbitals is integrated into the truncated states. In either case, a product state

representation of the true ground state is realized,

|Ψ⟩ ≈
m∑

lr

ψlr |l⟩ |r⟩ , (4.67)

101



where |l⟩ and |r⟩ are many-body states constructed from the left and right subsets of orbitals.

In [218] these were chosen to be conjugate pairs of proton and neutron orbits, ordered such

that the orbits near the Fermi surface were in the middle of the chain. m is the truncation

parameter which is ideally much smaller than the dimensions of the l and r subspaces.

At each iteration of the method, the ground state of the subspaces are found by exact diag-

onalization. The factors |l⟩ and |r⟩ approach their optimal values, which are the eigenstates

of the reduced density matrices of each subspace:

ρL = TrR |Ψ⟩ ⟨Ψ| (4.68)

ρR = TrL |Ψ⟩ ⟨Ψ|. (4.69)

This is related to the fact that the optimal representation of (4.67) is given by its singular

value decomposition (SVD): ψ = usvT ,

ψlr =
m∑

j

uljsjvjr, (4.70)

where sj are the singular values, and ull′ and vrr′ are unitary matrices. If we insert (4.70)

into (4.68), we see that the eigenvalues of the density matrix are the squares of the singular

values of Ψ, and ull′ contain its eigenvectors. This is a key point that will come up again:

the eigenvectors of the reduced density matrices diagonalize the wave function coefficient

matrix.

To summarize, in each step of DMRG, (1) the effective interaction in a given subspace is

diagonalized, (2) the approximate ground state’s SVD is used to inform which states to keep

in a truncation to m factors from that subspace, and (3) the solution to the full space is

taken as a product state of the subspace solutions. Various flavors of DMRG deal with how

to select the sites which define the subspaces, and how to change the subspaces at each

iteration.
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4.8.2 VWF

Variational wavefunction factorization (VWF), or simply wavefunction factorization (as

called by its creators [217, 219]) is a method which seeks to find the optimal set of pro-

ton and neutron factors |p̃⟩ and |ñ⟩ which for m << min(dp, dn) yield a good approximation,

|Ψ⟩ ≈
m∑

j

|p̃j⟩ |ñj⟩ . (4.71)

Again, it is known that the optimal representation is given by an SVD, but it is generally

too expensive to solve even the ground state of the systems. In VWF, the optimal factors

are instead found by an iterative, variational procedure. One starts with an ansatz state

comprised of random proton and neutron many-body wavefunctions. Next, a variational

condition minimizing the Hamiltonian leads to a coupled set of nonlinear equations. These

are solved as a generalized eigenvalue problem. A SVD of the updated matrix of factor

coefficients Cij = ⟨i|pj⟩ restores orthonormality of the factors within each subspace: C =

UDV T → |p′j⟩ =
∑

i Uij |i⟩. After each iteration, the number of basis factors m is increased

until satisfactory convergence is reached.

Like DMRG, VWF relies on the fact that the singular values of realistic shell model ground

states fall off rapidly so that an accurate approximation can be achieved with only a small

number of factors [218]. In practice, the spectra (including excited states [218]) tend to

converge exponentially with the number of states m retained.

4.8.3 Weak entanglement approximation

We showed in previous work that projections of ground state wave functions onto the eigen-

states of proton and neutron subspace Hamiltonians fall off exponentially with the eigenstate
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number [115]. This mimics the behavior of singular values and indicates that a basis con-

structed from such factors would provide an efficient representation, without the need for

iterative optimizers. Building upon this initial investigation, it has been shown that the

entanglement between the proton and neutron subspaces is weak [162]. In a bipartite system

H = P ⊕N with weak entanglement, there is a natural connection between the eigenstates

of the subspace operators and the reduced density matrices. Namely, a state with zero

entanglement entropy is a pure product of the eigenstates of the subspace operators:

|ΨSentangle=0⟩ = |p⟩ |n⟩ . (4.72)

The reduced density matrix of such a state is ρP = |p⟩ ⟨p|. For this special case, |p⟩ and |n⟩

are the optimal factors. It follows that for weak entanglement entropy, eigenstates of the

proton and neutron subspace operators approximate the optimal basis factors.

4.8.4 Comparison

A major cost of both DMRG and VWF is the variational approach to finding the opti-

mal basis factors, which has limited the widespread application of the methods beyond

proof-of-concept calculations. We tackle this problem by making the following ansatz: that

eigenstates of the proton and neutron subspaces are ‘good-enough’ approximations of the

optimal factors.

We combine two ideas, one from DMRG and the other from VWF. First, as in DMRG, we

solve each subspace to obtain a partial solution of the full space. However, rather than itera-

tively expanding (or sweeping) the single-particle subspaces, we maintain constant partitions.

Second, as in VWF, our partitions are the proton and neutron bi-partitions with unaltered

single-particle spaces, and the truncation deals with which many-proton and many-neutron

configurations to use. We take the first m (or (mp,mn)) factors from each subspace, and
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in some cases add further restrictions to the construction of the basis (see section 4.4.1).

However, unlike VWF, we do not attempt to optimize a random ansatz. Instead, we assume

that the eigenstates of the subspaces are good enough and that the lowest energy eigenstates

are the most important.

Interestingly, our choice of metric for selecting the proton and neutron basis factors is reminis-

cent of Wilson’s numerical renormalization group (NRG) [302, 71], the precursor to DMRG.

The downfall of NRG (which DMRG overcame) is that its truncation is based only on the

energy of the subspace solutions and ignores the coupling of the subspace to the rest of the

system. It fails when long-range correlations exist. PANASh does not have this problem,

since within each bipartition we include all orbitals, and it is known that the entanglement

between the proton and neutron subspaces is weak [162].

4.9 Outlook

Future work should investigate the behavior of other important observables including elec-

tromagnetic transitions and weak transitions. We expect that these observables will not

converge as easily as the eigenstates of the Hamiltonian. We therefore propose a modified

proton and neutron approximation scheme where the basis factors are transformed by the

operators T̂ whose matrix elements we are trying to obtain:

|p′⟩ = T̂ |p⟩ (4.73)

|n′⟩ = T̂ |n⟩ . (4.74)

In general, T̂ will act in H, not only P or N . This means that the matrix elements of the

Hamiltonian will need to be modified since the proton and neutron subspace Hamiltonians

will no longer be diagonal. This work is left for future work.
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Chapter 5

Computational Methods

This chapter describes algorithms I have implemented in the PANASh shell model code,

unless otherwise indicated.

5.1 Solving the Hamiltonian matrix equation

By selecting a basis, we can turn the many-body Schrödinger equation, a linear partial

differential equation, into an eigenvalue problem. Therefore, finding the solutions to the

Schrödinger equation reduces to finding the eigenvalues and eigenvectors of a Hermitian

matrix H :

Hψ = Eψ, (5.1)

where (ψ, E) are the eigenpairs which solve the matrix eigenvalue problem. The straightfor-

ward way to do this is to find the unitary transformation which diagonalizes the Hamiltonian

106



matrix H :

D = UHUT , (5.2)

where D is diagonal and U is unitary. In this form, the diagonal elements of D contain all

eigenvalues E, and the columns of U contain all eigenvectors of H . This is only possible for

a diagonalizable matrix, but all Hermitian matrices are diagonalizable.

There are numerous algorithms for diagonalizing matrices, but I will consider them in two

categories: those which provide all eigensolutions, and those which provide only extremal

eigensolutions.

The most important non-extremal method, that is, used for obtaining all eigenpairs, is the

QR algorithm [104]. In modern implementations, the QR algorithm has two steps. First,

H is made tridiagonal using Householder transformations. Then, the tridiagonal matrix is

diagonalized by successive QR factorizations, that is to factorize it into an orthogonal matrix

Q and an upper triangular matrix R. At each successive iteration, one reverses the product

of R and Q, which is equivalent to a unitary transformation of QR by Q. This is roughly

how the LAPACK routines SSYEV and DSYEV work [8].

Extremal eigenpair solvers can all be thought of as extensions of power iteration methods.

Starting from some initial vector x0, at each iteration a matrix-vector multiplication is

applied so that

xi+1 =
Hxi

||Hxi||
, (5.3)

gives the next best approximation in the sequence. Ideally, the initial vector would be some

approximation of the true eigenvector, otherwise a random initialization is used. The rate

of convergence of power methods depends on the spectral distribution of the eigenvalues.
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Spectra with nearly degenerate eigenvalues will converge more slowly, and the rate of con-

vergence of the dominant eigenvalue goes like its ratio to the next largest eigenvalue: |λ2/λ1|.

The most important power iteration type method used in nuclear many-body problems are

variations of the Lanczos algorithm, which will be explained in depth in the next section.

5.1.1 Lanczos

There are many introductory texts covering this class of algorithm, see for example [104], or

for the first application to nuclear physics see [299]. The idea behind the Lanczos algorithm is

very similar to the humble power iteration method. In this case, a so-called Krylov subspace

is constructed:

K(H ,v) = span{v,Hv,H2v, ...,Hm−1v}, (5.4)

where v is the initial Lanczos vector (Krylov subspace basis state), and the rest of the

Lanczos vectors are defined as

vk ≡Hkv, (5.5)

with k = 0, ...,m−1. Projection of H into K by the transformation V THV is a tridiagonal

matrix, where V has orthonormal columns v. The dimensional check of this projection looks

like this:

Tm×m = V T
m×nHn×nVn×m. (5.6)

The Lanczos algorithm allows us, with a few extra steps, to find the lowest m eigenpairs

of the n × n matrix H . In particular, If (λ,x) is an eigenpair for T , then (λ,V x) is an
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eigenpair for H, since

Tx = λx (5.7)

V THV x = λx (5.8)

V V TH(V x) = λ(V x) (5.9)

H(V x) = λ(V x). (5.10)

The general approach is to use Lanczos iterations (Algorithm 1) to find the tridiagonal

matrix T , and then to fully diagonalize T using something like the QR algorithm in a

standard library like LAPACK.

A key step in practical implementations of the Lanczos algorithm is re-orthogonalization.

Due to finite numerical precision and the large number of matrix-vector prodcuts, round-off

errors eventually accumulate and the Lanczos vectors lose their orthogonality. The remedy

is to simply reorthogonalize. Although more sophisticated approaches have been studied in

the literature, we simply reorthogonalize at each iteration. The additional cost is justified

since the number of vectors tends to be very small compared to the cost of the matrix-vector

product (and computation of the matrix elements themselves).

The computational complexity of the Lanczos algorithm scales like 2mn2+2m2n+3mn, where

n is the dimension of the Hilbert space of H and m is the number of Lanczos iterations. The

number of Lanczos iterations needed to converge l extremal eigenstates is at least l, and the

exact number will depend on the density of the eigenvalues. The cost of reorthogonalization

approximated here as 2m2n comes from 2(m(m + 1)/2 ∗ 2n). When m ≪ n, the mn2

term of matrix-vector multiplication dominates. However, as m grows large, the cost of

reorthogonalization grows quickly. For example, suppose m = n/10, then MatVec scales

as n3/10, and reorthogonalization scales as n3/50, up to a fifth of the total compute. If

one is seeking a large number of solutions, i.e. several hundred or several thousand, the
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Algorithm 1 Lanczos iterator: This algorithm requires a method to generate the matrix-
vector product Hn×nvn. The result of the algorithm are m Lanczos vectors vk, and the
diagonal (αk) and super-diagonal (βk) elements of the tridiagonal matrix T .
v1 ∼ Un ▷ i.e. random initialization
for k = 1, m do ▷ Important: reversing the order leads to instability.
w =Hvk ▷ OPS: 2mn2

for j = 1, k do ▷ Reorthogonalization step
R = wTvj ▷ OPS: m2n
if k == j then

αk = R
end if
w = w −Rvj ▷ OPS: m2n

end for
βk = ||w||2 ▷ OPS: 2mn
vk+1 = w/βk ▷ OPS: mn

end for

advantage of Lanczos can be diminished. Complete diagonalization algorithms like the QR

algorithm have compute complexity scaling of order n3. To obtain m solutions, a minimum

of m Lanczos iterations will need to be performed, resulting in order m2n+m2n operations.

If the number of desired states m is much less than the dimension n, then clearly Lanczos

is superior. However, if m is similar in magnitude to n, Lanczos becomes less efficient than

complete diagonalization.

Lanczos iterations are usually applied in sets, starting with at least q iterations where q is

the number of desired eigenpairs of H . After q iterations, several (perhaps 1-10) iterations

are applied, after which some convergence criterion is checked. A simplistic criterion would

check the change in the eigenvalues since the last check and continue until a criterion is

reached, such as:

1

q + buffer

q+buffer∑

i=1

|Ei − Eprev
i | < tolerance, (5.11)

where typical values are buffer = 10 and tolerance = 1 · 10−3.

A more sophisticated convergence check might track the overlap of the eigenvectors, but this
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is computationally more expensive.

5.1.2 Block Lanczos

The Block Lanczos [105] algorithm (Algorithm 2) takes advantage of data locality and mem-

ory hierarchy to improve the performance of the Lanczos algorithm by using a block with b

Lanczos vectors in place of a single Lanczos vector. It also supposedly improves performance

for near-degenerate eigenspectra [265], which all power iteration methods suffer upon.

Algorithm 2 Block Lanczos iterator: This algorithm requires a method to generate the
matrix-matrix productHn×n |V ⟩n×b. The result of the algorithm arem Lanczos block vectors
|Vk⟩, and the diagonal (αk) and super-diagonal (βk) blocks of the block-tridiagonal matrix
T .
V1 ∼ Unb ▷ i.e. b random orthonormal n-dim vectors
for k = 1, m do ▷ Important: reversing the order leads to instability.
W =HVk ▷ OPS: 2bmn2

for j = 1, k do
R =W TVj ▷ OPS: bm2n
if k == j then
αk = R

end if
W =W −RTVj ▷ OPS: bm2n

end for
βk =

√
W TW ▷ OPS: 2bmn

Vk+1 =W /βk ▷ OPS: bmn
end for

Just as the Lanczos algorithm can be thought of as a generalization of the power iteration

method (by keeping all vectors generated at each power of matrix-vector multiplication),

Block Lanczos can be thought of as a generalization of standard Lanczos. Block Lanczos, at

each iteration, acts as the matrix H on a set (block) of initial vectors. At each subsequent

iteration, another block HkV0 is obtained, where V0 is a matrix with the b initial vectors v0.

Because the basic operation is now matrix-matrix multiplication, rather than matrix-vector

multiplication, a given matrix element of H is applied b times at each matrix-matrix multi-
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plication. This leads to a significant performance increase, especially in the case of on-the-fly

algorithms, since a matrix element is reused b times before it is destroyed. It also improves

cache performance if the Lanczos Block is organized to apply the matrix element to sequential

block elements in memory.

5.1.3 Even more variations on Lanczos

There are even more sophisticated and efficient versions of Lanczos which can be imple-

mented, but I have not yet implemented them in PANASh.

Thick-Restart Block Lanczos [265] improves efficiency for obtaining a large number of eigen-

values by occasionally pausing the iterations, dropping all but the most recent Lanczos

Blocks, and restarting using the kept Block as a new pivot (starting vector). This reduces

the maximum number of Lanczos vectors stored in memory.

Bootstrapped Block Lanczos [309] is an extension of Thick-Restart Block Lanczos’ principle

of starting from a partially converged result. In this case, an improved starting block is

obtained by first finding an approximate solution in a highly truncated space. The overlap

with the exact wave function is what grants a speedup of two or more over a random pivot.

This method will be especially useful for methods like PANASh where an iterative procedure

could bootstrap a truncated solution with m basis factors to the next solution with m+ dm

basis factors.

Block Lanczos tends to be more sensitive to numerical instability than standard Lanczos,

due to the increased number of Lanczos vectors.
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5.2 Memory management and data structures

This section deals with trade-offs between memory and time resources.

5.2.1 On-the-fly Matrix-Vector Products

Computers have two basic types of resources: time and memory. The types of computational

problems we are dealing with push the bounds of both. Matrices take memory to store with

a scaling of O(n2), and obtaining m solutions takes time with a scaling of O(mn2). (In fact,

as I’ll discuss in the next section, another important time cost for us is obtaining the matrix

in the first place.)

While both time and memory are finite, our contemporary resource limits make memory

the harder boundary. Often we can simply wait longer to get around time constraints, even

when we are bound by a hardware-defined number of operations per second. To push our

calculations beyond these in-memory constraints, we implement ‘on-the-fly’ matrix-vector

products. This means that rather than computing all matrix elements at once and storing

them in memory, we compute each matrix element only when it is called in our iterative

solver, for example, when we need to multiply a Lanczos vector.

Jπ Dimension Hamiltonian (GB) Lanczos vectors (GB)
1/2+ 8.9 · 105 3,100 9
3/2+ 1.7 · 106 12,000 17
5/2+ 2.4 · 106 24,000 24
7/2+ 3.0 · 106 36,000 30

Table 5.1: Example J-scheme dimensions and potential memory usage of a PANASh calcula-
tion. We avoid memory cost of the Hamiltonian by computing its matrix elements on-the-fly.
This example is for 79Rb in the pfg space using r = 3699 proton factors and s = 2442 neutron
factors (10% of each subspace). Space was allocated for up to 2500 Lanczos vectors.

The main advantage of the no-the-fly approach is that our dominant memory constraint drops
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from O(n2) to O(n), since we now only need to store a constant number of n-dimensional

Lanczos vectors. A moderately large example is shown in Table 5.1. The main disadvantage

is that now we must recompute the entire Hamiltonian at each Lanczos iteration.

5.2.2 Perils of derived types

Like all aspects of computational science, the choice of data structures comes down to a

trade-off between time and memory. Many of the irreducible data structures of shell model

calculations are very sparse. This makes custom data types attractive, but sometimes this

can go awry.

The most extreme example I encountered came out of trying to store one-body transition

densities more efficiently. These operator matrix elements have a minimum of 5 labels:

ρf,i,a,b,k : ⟨ψf | [ĉ†a ⊗ ĉb]K |ψi⟩ , (5.12)

where f and i label the initial and final state wavefunctions, a and b label the orbits each

operator acts on, and k labels the angular momentum of the operator. The most memory-

inefficient way to store this object would be in a rank-5 array. Due to symmetries (most

significantly conservation of angular momentum) this array is extremely sparse. One is

tempted to create a Fortran derived type with this sort of structure:

rho%states(i,f)%operator(a,b)%coupling(k)

since at each substructure, one could work out exactly how many objects to allocate based

on the indices of the parent substructure. I.e. fixing i, f determines a subset of allowed a, b,

and fixing i, f, a, b determines an an even smaller subset of allowed k.

The problem with this data structure is that it implicitly creates a very large number of
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small allocatable arrays, and each of those arrays has a small memory overhead in the form

of metadata. That metadata can be thought of as storing the data type and array bounds.

Table 5.2 shows a minimal example using the code snippet shown below.
1 type manyarrays
2 real , allocatable , dimension (:) :: array
3 end type
4 type(manyarrays), allocatable , dimension (:) :: mymanyarrays
5

6 n = 2e8 ! number of arrays
7 m = 5 ! size of arrays
8

9 allocate(manyarrayobj(n))
10 do i = 1, n
11 allocate(mymanyarrays(i)%array(m))
12 manyarrayobj(i)%arr = i
13 end do

Table 5.2: Memory usage of many small allocatable arrays. Nominal memory usage is what
would be expected if only the mn real (single precision) values were stored. System memory
usage is the amount of memory used as reported by the operating system.

n arrays m array size Nom. (GB) Sys. (GB)
1 109 4.0 4.0

103 106 4.0 4.0
108 10 4.0 11.1

2 · 108 5 4.0 19.2
1 · 109 1 4.0 95.7

In conclusion, storing sparse data structures as a very large number of small arrays is not

necessarily a good idea. The data structure still used in PANASh for OBTD matrices is:

rho%states(i,f)%coupling(k)%operator(a,b)

The operator array in this case is typically 3×3 in size, with order 100×100×10 = 105 total

number of such arrays. However, these data structures are not used in the core calculations,

but are spooled into simple arrays. This is discussed in detail in section 5.3.
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5.3 Precomputation and caching

5.3.1 Vector coupling coefficient caching

Profiling PANASh at run-time with tools like gprof reveals that the vector-coupling coeffi-

cients dominate the compute cost. This is because each matrix element requires many vector

coupling coefficients, each taking many operations to compute. But there is a finite number

of inputs, and by the organization of the nested loops, we can predict which subsets of inputs

will be called within some fixed block of time. This leads to two general strategies, both

involving the precomputation of vector coupling coefficients.

Large agnostic cache

First is the general approach of computing a large number of coefficients. This functionality

is built into the Wigner library I wrote. One can initialize a large array of vector coupling

coefficients and keep them in memory. There is then a lookup function for accessing the

values, and a fallback to computation if the requested value falls outside of the available

stored values. This method can still significantly slow down calculations since the check of

the array bounds is expensive and hard for the compiler to optimize.

The Hamiltonian matrix elements are computed by coupling proton wave functions to neu-

tron wave functions. This requires Wigner 6-j symbols and no other explicit vector coupling.

These appear in both the transformed pn-interaction and in the coupling of the pn OBTD

operators. The latter couples the angular momentum of the component wave functions and

therefore requires larger angular momentum values. The 6-j symbol is




J jnf jpf

K jpi jni





(5.13)
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where J = jnf + jpf . Once the basis has been constructed, I determine the exact maximum

angular momentum couplings that will be required. The maximum symbol is therefore set

by M = max(jn, jp):




2M M M

2M M M




. (5.14)

For large calculations, storing all symbols up to the symbol (5.14) requires S = 8(M + 1)6

floating point (4) numbers. For M = 20 that is approximately 2.7 GB of memory. Doubling

to M = 40 requires 152 GB of memory. Somewhat arbitrarily I chose M = 20 as an upper

limit for the pre-cached symbols, and so:

M = max(jn, jp, 20). (5.15)

Loop-optimized spooling

The second strategy follows the general theme of this section, which is to be clever about

when each piece of data will be needed for the computation. Since PANASh is a J-scheme

code, the matrix eigenvalue problem is solved independently for each J . This reduces the

number of indices by one, so already the storage requirement is reduced to S = 8(M + 1)5.

For M = 20 that’s 0.13 GB, already a significant reduction from the 2.7 GB before.

We can also improve the computational efficiency of accessing the cached data by improving

data locality. In other words, I will arrange the data in an array so that values which are

expected to be used sequentially are nearby in physical memory. Computing the matrix

elements of the Hamiltonian is the most expensive operator in PANASh. I can examine the

loop structure of this part of the calculation to determine what order the 6-j symbols should

be arranged in memory. I call this process spooling (see Appendix A.3), which is a more
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specific version of array flattening in computer science.

For the Hamiltonian matrix elements we need the symbols shown in equation (5.13). In

the general cache the 6-j symbols are stored in a rank-6 array. I construct a new flattened

(rank-1) array called ‘sixjspool’, and loop over all its 5+1 arguments: J , K, jpf , jnf , jpi, jni.

The loops are nested in order corresponding to the computation of the Hamiltonian matrix

elements. The order is

jpf < jnf < jpi < jni < K, (5.16)

where jpf < jnf means that jnf is nested under jpf ; jnf will increment more frequently than

jpf . I therefore spool the rank-6 array into the rank-1 array with the above index ordering.

5.3.2 Solution transition densities

In this section, I discuss the efficient calculation of the one-body transition densities for

the solutions wave functions obtained by PANASh. To be clear, these are not the OBTD

matrices used to compute the Hamiltonian matrix elements but are the OBTD matrices

of the solutions of the Hamiltonian. These are used to compute the expectation values of

operators on the solution wave functions.

The expressions for the one-body transition density (OBTD) matrices using PANASh for-

malism are:

ρ
fi(p)
ack = (−1)Ji+k[Jf ][Ji]

∑

pfpinf

(−1)jpf+jnf




jpf Jf jnf

Ji jpi k




ψf
pfnf

ψi
pinf

ρ
pfpi(p)

ack (5.17)

ρ
fi(n)
ack = (−1)Jf+k[Jf ][Ji]

∑

nfnipf

(−1)jpf+jni




jnf Jf jpf

Ji jni k




ψf
pfnf

ψi
pfni

ρ
pfpi(n)

ack . (5.18)
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In these, we have already applied factors of δnf,ni in the first equation and δpf,pi in the second

equation.

The scaling of this calculation can be understood by counting the orders of the indices. There

is an implicit loop on a, c, k, f , and i. See Table 5.3.

Table 5.3: Scaling of each index appearing in equations (5.17) and typical values for their
order-of-magnitude. The scaling parameters are: n = number of single-particle levels, Nk =
number of couplings allowed by angular momentum conservation, N = number of wave
functions for which transitions are calculated, mp = number of proton basis factors, mn =
number of neutron basis factors.

Index Scaling Order
a n 10
c n 10
k Nk 10
f N 102 - 103
i N 102 - 103
pf mp 102 - 103
pf mp 102 - 103
nf mn 102 - 103

The nominal compute complexity for the proton OBTD matrices is

C(p) = NkN
2m2

pmnn
2, (5.19)

where each symbol is explained in Table 5.3. I will work with the proton density explicitly.

Equivalent arguments can be made for the neutron OBTD by exchanging p and n. Assuming

mp ≈ mn (i.e. a similar number of proton and neutron factors), then the complexity C =

NKN
2m3n2.

Complexity is conserved, but we can often make some trade between compute complexity

and memory complexity. In this case, I see a way to reduce the compute complexity at the

cost of pre-computing one of the three sums: the nf sum occurs less frequently than the
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other two summed indices. I define:

P fi
kpfpi

= (−1)jpf
∑

nf

(−1)jnf




jpf Jf jnf

Ji jpi k




ψf
pfnf

ψi
pinf

(5.20)

N fi
knfni

= (−1)jni

∑

pf

(−1)jpf




jnf Jf jpf

Ji jni k




ψf
pfnf

ψi
pfni

, (5.21)

where ψi
pini

are the coefficients of the solution wave functions in the PANASh basis {|p⟩ |n⟩}.

From these, we obtain the much simpler expression for the densities in terms of these factors:

ρ
fi(p)
ack = (−1)Ji+k[Jf ][Ji]

∑

pfpi

P fi
kpfpi

ρ
pfpi(p)

ack (5.22)

ρ
fi(n)
ack = (−1)Jf+k[Jf ][Ji]

∑

nfni

N fi
knfni

ρ
pfpi(n)

ack . (5.23)

The compute complexity of this calculation is reduced by a factor of mp or mn, so that the

new complexity is:

C(p)′ = NkN
2m2

pn
2, (5.24)

C(n)′ = NkN
2m2

nn
2. (5.25)

Overall speedup

The compute complexity for N and P is spent “upfront”, i.e. beforehand and stored in

memory. Each has a compute complexity of

C
(x)
Upfront = NkN

2m3
x, (5.26)

where x = n, p.
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To estimate the upfront cost of storing P and N , we compare it as a fraction of C ′:

CUpfront

C ′ =
mx

n2
. (5.27)

If mx = 1000 and n = 10, then the upfront cost is about 10× the density compute cost. The

benefit of this large upfront cost comes from the overall complexity decrease:

1

Speedup(x)
=
C(x)′ + C

(x)
Upfront

C(x)
=
NkN

2m2
xn

2 +NkN
2m3

x

NKN2m2
xmx′n2

=
n2 +mx

n2mx′
. (5.28)

For typical values of n ≈ 10 and mx ≈ 100, this is a complexity reduction of 0.02. Under

‘ideal conditions’ this means a speedup of 50. In general, if n dominates, the speedup goes

like m′
x; if mx dominates, the speedup goes like n2.

Induced memory cost

Whether this is a practical method also depends on the memory requirements of storing P

and N . Storing all indices for P fi
kpfpi

would require memory that scales like

S = NkN
2m2

p. (5.29)

For typical values, this could easily exceed (10)(1002)(10002)(4 ·10−9) GB ≈ 400 GB. This is

way too much. But we can get around this by computing subsets of P fi
kpfpi

on-the-fly/in-situ

in a loop nest with the density calculation. If we share the loops f , i, and k, then we are

now dealing with

P (fik)
pfpi

= (−1)jpf
∑

nf

(−1)jnf




jpf Jf jnf

Ji jpi k




ψ(f)
pfnf

ψ(i)
pinf

(5.30)
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N (fik)
nfni

= (−1)jni

∑

pf

(−1)jpf




jnf Jf jpf

Ji jni k




ψ(f)
pfnf

ψ(i)
pfni

(5.31)

(5.32)

where the indices in parenthesis (fik) are implicit based on the loop iteration and not stored.

The storage scaling is now only m2
x, e.g. something like (10002)(4 · 10−9) GB ≈ 4 kB.

5.3.3 Improved computation of residual p-n interaction

The preceding section explained in detail how we drastically improve the efficiency of com-

puting the OBTD matrices of our solution wave functions. The same approach is also applied

to improve the efficiency of the Hamiltonian matrix elements. This section explains the basic

details but the principles are the same as above.

The matrix elements of the pn-part of the Hamiltonian (4.50) can be written in the simplified

form:

⟨f |Ĥ(pn)
J |i⟩ = (−1)jpi+jnf+J

∑

K




J jnf jpf

K jpi jni





∑

bd

(2K + 1)
∑

ac

ρ
pfpi
ac;KW

(pn)
ac,bd;Kρ

nfni

bd;K

= (−1)jpi+jnf+J
∑

K




J jnf jpf

K jpi jni





∑

bd

P
pfpi
bd;Kρ

nfni

bd;K

(5.33)

where the reduced one-body density matrix elements of the factor wave functions |xχ⟩ are

defined as

ρ
χ′χ(x)
ij;K ≡ ⟨x′χ||ρ̂(x)ij;K ||xχ⟩/

√
2K + 1, (5.34)
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and where the partial sum P
pfpi
bd;K is defined as:

P
pfpi
bd;K = (2K + 1)

∑

ac

ρ
pfpi
ac;KW

(pn)
ac,bd;K . (5.35)

The compute cost of all Hamiltonian matrix elements ⟨f |Ĥ(pn)
J |i⟩ scales like

C = NKm
2
pm

2
nn

4, (5.36)

where n is the number of single-particle orbits, m(p/n) is the number of proton/neutron-

subspace factors, and NK is the number of allowed angular momentum combinations. We

pre-compute (5.35) at a compute cost of

CUpfront = NKm
2
pn

4, (5.37)

and memory cost

S = Nkm
2
pn

2. (5.38)

The remaining cost of the Hamiltonian matrix elements is

C ′ = NKm
2
pm

2
nn

2. (5.39)

The total compute scaling is then

CUpfront + C ′ = Nkm
2
pn

2(n2 +m2
n), (5.40)

which results in an overall speedup of

Speedup =
C

CUpfront + C ′ =
m2

nn
2

n2 +m2
n

. (5.41)
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5.4 Joining one-body transition density matrices

A key ingredient of the proton-neutron approximate shell model is the set of one-body

transition density (OBTD) matrices of the component wave functions. OBTD matrices

are used to calculate the interaction matrix elements of the proton-neutron part of the

Hamiltonian. It is common to read the density matrices from multiple sources. There are

both practical and physics-based reasons for this. First, it is sometimes not practical to

obtain all matrix elements in one calculation due to resource restrictions. Sometimes they

must be broken up into separate, smaller calculations. Second, for reasons discussed in the

following subsection 5.4.1 it is sometimes not possible to obtain all OBTD matrix elements

from a fixed-M calculation.

We have an established a need to combine sets of OBTD matrix elements from different

sources, and so I have developed algorithms to do this in PANASh. We use another shell

model code, BIGSTICK, to calculate the reduced matrix elements of the OBTD operators.

A reduced matrix element of a tensor operator is a way to represent the matrix element

of an operator without regard to the orientation in space. This is accomplished with the

Wigner-Eckart theorem [74]. For a tensor operator ÔKM ,

⟨JfMf | ÔKM |JiMi⟩ = [Jf ]
−1(JiMiKM |JfMf ) ⟨Jf | |Ôk| |Ji⟩

= (−1)Jf−Mf





Jf K Ji

−Mf MK Mi




⟨Jf | |Ôk| |Ji⟩ ,

(5.42)

where [j] ≡ √2j + 1 and the six-argument array is the six-J symbol. In the case of OBTD

operators,

⟨Jf | |[ĉ†a ⊗ c̃b]K | |Ji⟩ = [Jf ](JiMiKM |JfMf )
−1 ⟨JfMf | [ĉ†a ⊗ c̃b]KM |JiMi⟩ , (5.43)
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where the fermion operators ĉ create either proton or neutrons in pure or mixed isospin

states. BIGSTICK prints these matrix elements to file in a plain text format described in

Appendix B.4:

ρfiabK =
1√

2K + 1
⟨Jf ||[ĉ†a ⊗ c̃b]K ||Ji⟩. (5.44)

If we use multiple sources of OBTD matrix elements, we seek to find the joint set of those

matrix elements to provide all required combinations of i, f, a, c, k:

{ρfiac;K} = {⟨Ψf
1 | |ρ̂ac;K | |Ψi

1⟩} ∪ {⟨Ψf
2 | |ρ̂ac;K | |Ψi

2⟩}. (5.45)

Level matching

When PANASh is run, the user first provides a list of single particles orbits {a : na, la, ja}

and wave functions {i : Ei, Ji, πi}. When the OBTD files are read in, the wave functions

may have slightly different values of Ei, and in poorly converged solutions, slightly different

Ji. PANASh first performs a level matching routine which tries to identify each level in the

OBTD file to the reference levels. Some tolerance is set for the allowed difference in energy

levels: 5 · 10−6 × Ei. The level spins Ji are forced to be their nearest integer or half-integer

values, and must match the reference level. The parity of the states must also match.

Read-in precedence

Currently, as PANASh reads in new OBTD files, logic is applied to find matrix elements

which are missing and fill them in. Elements are ‘missing’ if their value is less than some
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tolerance ϵ = 5 · 10−6. The pseudo code each time a new OBTD is read-in is:

{ρfiac;K} =





ρfiac;K(new), ρfiac;K(old) < ϵ < ρfiac;K(new)

ρfiac;K(old), elsewhere.
(5.46)

All values less than ϵ are also forced to be zero. The code for this logic is something like:
1 ! Where data is missing , fill it in
2 where (abs(rho_old) < density_tol .and. abs(rho_new) > density_tol)
3 !rho_new = rho_new
4 elsewhere
5 rho_new = rho_old
6 end where

In some cases which are fairly common, a phase difference exists between the old and new

matrix elements. This must be corrected for. This is discussed later in section 5.4.2.

5.4.1 Accidental zeros in the Wigner-Eckart formula

This section describes a symmetry of vector coupling coefficients which causes the Wigner-

Eckart theorem to lead us astray. This leads to the necessity to read in multiple OBTD

matrices from different solutions of the Schrödinger equation.

A basic time-reversal symmetry of vector coupling coefficients is [74]:

(jamajbmb|JM) = (−1)ja+jb−J(ja −majb −mb|J −M). (5.47)

Consider the special case ma = mb =M = 0. Then,

(ja0jb0|J0) = (−1)ja+jb−J(ja0jb0|J0), (5.48)
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and we are restricted to

(ja0jb0|J0) =





(ja0jb0|J0), ja + jb − J is even

0, ja + jb − J is odd,
(5.49)

since if ja+ jb−J is odd we have X = −X. This means that computing the reduced density

matrix element ⟨Jf | |Ôk| |Ji⟩ with the Wigner-Eckart theorem in an M = 0 basis may give

what is called an ‘accidental zero’. In such cases, we must recalculate the reduced density

matrix element in the M = 1 basis (since any M will satisfy the theorem). (We cannot

compute only in the M = 1 basis, since then we would be missing all states with J = 0.)

Importantly, these accidental zeros only occur with even-A systems. This is clear when

considering that Ji and Jf are the total angular momenta of the initial and final states

of the system. An even number of particles always couple up to an integer total angular

momentum, while an odd number of particles always couple up to a half-integer total angular

momentum.

Our coupled-basis shell model calculations rely on the one-body transition densities of the

basis factors. The preceding argument implies that for even numbers of protons or neutrons

only, we must supply reduced density matrices with both M = 0 and M = 1 wave functions.

For odd numbers of protons or neutrons, M = 1/2 is sufficient.

5.4.2 Phases inconsistencies between component wave functions

We must carefully consider the phases of the wave functions used to compute the compo-

nent OBTD matrix elements. The overall sign of a solution to the Schrödinger equation is

undetermined: if |Ψ1⟩ is an eigenstate of Ĥ, then so is |Ψ2⟩ = − |Ψ1⟩. This phase carries

over into the OBTD matrix elements. If we use only one set of solutions of Ĥ to obtain the
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OBTD matrix elements, then there is no problem.

Dealing with phase differences is nontrivial since for two different sets of matrix elements,

{ρfi(1)ac;K} = {⟨Ψf
1 | |ρ̂ac;K | |Ψi

1⟩} (5.50)

and

{ρfi(2)ac;K} = {⟨Ψf
2 | |ρ̂ac;K | |Ψi

2⟩}, (5.51)

we can have three distinct possible phase signatures. First, note that each of the four wave

functions in a given comparison (Ψf
1 ,Ψ

f
2 ,Ψ

i
1,Ψ

i
2) has an independent and essentially random

sign, but only the signs of the products Ψf
1Ψ

i
1 and Ψf

2Ψ
i
2 determine the overall phase of a set

of matrix elements determine by f, i, a, c,K. We can therefore consider the matrix elements

as belonging to blocks of fixed i, f , which I will denote (fi1) and (fi2). Matrix elements

from block (fi1) must have the same phase as block (fi2). If solutions 1 and 2 are in phase

or out of phase, then

sign(ρ(fi1)ac;K · ρ
(fi2)
ac;K ) = ±1. (5.52)

In the case of a negative phase signature, we simply substitute ρfi(2)ac;K → −ρ
fi(2)
ac;K . However,

if one of the matrix elements is missing due to accidental zeros (section 5.4.1), then we can

have the situation that

(ρ
fi(1)
ac;K · ρ

fi(2)
ac;K ) = 0. (5.53)
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I construct a third array called the phase mask which is defined as:

M
(fi)
acK =





+1, ρ
(fi1)
acK ρ

(fi2)
acK > ϵ

−1, ρ
(fi1)
acK ρ

(fi2)
acK < −ϵ

0, |ρ(fi1)acK ρ
(fi2)
acK | < ϵ.

(5.54)

A “+1” is found in cases where both matrix elements are present and in phase. A “-1” is

found in cases where both matrix elements are present and out of phase. And importantly,

a “0” is found in cases where one of the matrix elements is missing (zero) from the one of

the data sets but is present in the other.

The phase mask array serves two purposes. The first is the trivial identification of phase

mismatches. If M contains -1’s, then the sign is opposite between the two density matrix

blocks, and the newer one is updated to match the existing data. If M contains +1’s, no

change is needed.

Under ideal conditions, entries would be either all 1’s and 0’s (signs match and some missing

matrix elements are filled in), or all -1’s and 0’s (signs must be corrected for the missing

matrix elements that are filled in). However, due to rounding errors of very small matrix

elements, it is routine to encounter a third case: most entries of M are all the same sign

and zeros, but a few are of opposite signs: both 1’s and -1’s appear. I call this a phase

inconsistency.

Phase inconsistencies indicate some sort of problem with the density matrices being analyzed.

One possibility is that the density matrix results being read in are not fully converged.

Another possibility is that levels in the file have been incorrectly identified. This is more

likely for nearly degenerate states in a region of high level density. In some cases, highly

excited states with large model spaces simply have such small amplitudes that rounding

errors dominate.
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When phase inconsistencies are encountered, it’s best to reevaluate the data and check for

signs of non-convergence. PANASh will continue running despite the presence of phase

inconsistencies after printing appropriate warnings. To continue, a phase must be selected.

To choose a phase, I simply compute the sum of the phase mask M , taking the phase of the

majority of matrix elements:

ϕinconsistent = sign(
∑

acK

MacK). (5.55)

Phase inconsistency or not, the phase ϕ simply multiplies the new density matrix block

before it is used to fill in the missing matrix elements in the existing data.

5.4.3 Binary format for one-body density matrices

In this section, I describe the new format I designed for storing OBTD matrix elements, and

benchmark the results using code I wrote to convert between the old and the new format.

The number of OBTD matrix elements scales like N2n2k, where N is the number of wave

functions, n is the number of one-body orbits, and k is the number of allowed couplings.

In a typical case, we might have N = 103, n = 10, and k = 10. This results in something

like 109 numbers or 4 GB of memory. The standard format for storing the OBTD matrices

was designed to be human-readable and is therefore not very compact. It is also not very

efficient to read and write these files. I found this particularly hindering when running on

a large machine with a 24-hour runtime limit. I discovered that over an hour of that time

was being used just to read in the component OBTDs for the calculation. I was motivated

to find a more efficient data structure.

Tables 5.4 and 5.5 show some example times for a fairly large OBTD matrix. The examples

are for the proton (matrices A and B) and neutron (matrix C) component wave functions
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used for a PANASh calculation of 79Rb in the pfg valence space. There are r = 3, 700 of

each type and n = 4 one-body orbits (single-particle states). The cumulative time to read

in these three sets of density matrices from plain text format is roughly 58 minutes. By

switching to the binary density format, the time is only 5 minutes. Most of this time is

actually not reading the file, but parsing the sparse array into the data structure used within

PANASh. The raw IO time is only about 20 seconds for all three files. The long IO time of

the plain text file is in large part due to the complexity of the parsing required.

Table 5.4: Comparison of OBTD matrix file sizes using the standard human-readable format
versus the simple binary format. The three cases A, B, and C are three different OBTD
densities. All three are in the pfg model space. A and B are both Z = 0, N = 14 systems
with M = 0, 1, respectively. C is Z = 9, N = 0 with M = 1/2. The columns are number
of matrix elements in millions (#ME), Nominal storage for the matrix elements as kind=4
floats in gigabytes (Nom.), the actual storage used by the plain-text formatted file (Plain),
the actual storage used by the binary formatted file (Plain), and the reduction factor for
using the binary format over the plain-text format (reduction).

Density matrix #ME (×106) Nom. (GB) Plain (GB) Binary (GB) Reduction
A 132 0.53 12.9 3.75 3.5
B 244 1.95 22.5 3.90 5.8
C 246 1.97 22.4 3.93 5.7

Table 5.5: Comparison of OBTD matrix I/O times using the standard human-readable
format versus the simple binary format. The three cases A, B, and C are three different
OBTD densities. All three are in the pfg model space. A and B are both Z = 0, N = 14
systems with M = 0, 1, respectively. C is Z = 9, N = 0 with M = 1/2.

Density matrix #ME (×106) Plain (s) Binary (s) Reduction
A 132 810 100 7.8
B 244 1400 110 13
C 246 1300 100 13

The plain-text format for OBTD as produced by the BIGSTICK shell model code is described

in Appendix B.4. It can be noted that a significant number of characters are used to make

the file easily readable. This comes at the cost of significant storage cost for the files, as well

as significant time to read and write the files. The main source of improvement is simply

using a binary-format (in Fortran, ‘unformatted’ files) and writing entire arrays with one

command. In fact, these two features are so efficient that it becomes faster to store all of the

131



nontrivial zeros in the sparse OBTD matrix which are omitted from the plain-text format.

The conversion tool I wrote works by first reading in the the necessary inputs. These are

(1) labels of the states involved, (2) labels of the single-particle orbits, and (3) the plain

text density matrix. These are all read from the (.dres) file in the usual way with a plain-

text parsing code. Then, the number of allowed matrix elements is counted. That is, the

number of matrix elements after conservation of angular momentum and parity are taken

into account. For a density matrix element

ρifac;K = ⟨Ψf | |ρ̂ac;K | |Ψi⟩ , (5.56)

that is all matrix elements which satisfy the triangle rules ∆(Ji, K, Jf ), ∆(ja, jc, K), and

parity conservation πiπf = πaπc. Next, one-index arrays are allocated to hold this number of

elements for both the proton and neutron densities, and the matrix elements are transferred

using nested loops. The order of the nested loops and the enforcement of the conservation

rules takes this form:
1 m = 0
2 do i = 1, N
3 do f = 1, N
4 do a = 1, n
5 do b = 1, n
6 check_parity(i, f, a, b)
7 do K = kmin , kmax
8 check_triangle(i, f, k)
9 check_triangle(a, b, k)

10 m = m + 1
11 rec_p(m) = rho_p%states(i,f)%coupling(K)%operator(a,b)
12 rec_n(m) = rho_n%states(i,f)%coupling(K)%operator(a,b)
13 end do
14 end do
15 end do
16 end do
17 end do

Where ‘rec_p’ and ‘rec_n’ are the one-index arrays, previously allocated. In practice, the

‘kmin’ and ‘kmax’ are chosen to automatically satisfy the triangle rules, so the ‘check_triangle‘

subroutines are not needed. Finally, four sets of unformatted write statements are made.
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The pseudo code looks something like this:
1 write(binfile) nstates , norbits , ncombo
2 do state = 1, nstates
3 write(binfile) states(state)%E, states(state)%Ex , states(state)%J,

states(state)%T
4 end do
5 do state = 1, norbits
6 write(binfile) orbits(state)%i, orbits(state)%n, orbits(state)%l, orbits

(state)%jx2
7 end do
8 write(binfile)rec_p
9 write(binfile)rec_n

The read statement is equivalent. ‘rec_p‘ and ‘rec_n‘ contain the OBTD matrix elements

with ‘ncombo’ number of kind=4 reals. ‘states’ and ‘orbits’ are Fortran derived types used

to store the ‘nstates’ wave function and ‘norbits’ single-particle orbits labels.

5.5 Hybrid parallel implementation and performance

I parallelized PANASh from its original serial version using a hybrid approach. openMP is

a shared memory specification for parallel programming that automatically handles thread

creation and work sharing. Generally, core components of a code can be parallelized with

openMP simply by placing directive statements around do loops. The Message Passing In-

terface (MPI) is a distributed memory framework that requires more careful implementation.

It relies on independent copies of the program communicating with each other to distribute

the work. By implementing both, a variety of architecture can be used more efficiently.
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5.5.1 openMP

I implemented a fairly crude parallelization of the matrix-matrix product in the block-

Lanczos algorithm of PANASh. The core operation which is parallelized is:

W =HV , (5.57)

where H is the Hamiltonian matrix and V is the block of Lanczos vectors. The code for

this operation (the in-memory-Hamiltonian version) is the following:
1 !$OMP parallel do schedule(guided , 5)&
2 !$OMP private(bra ,pf,nf ,pfj ,nfj ,sector2) &
3 !$OMP private(ket ,pi,pij ,ni ,sector4 ,phase ,hij ,a) &
4 !$OMP private(thread_id)
5 do bra = brastart , brastop , 1
6 #ifdef _openMP
7 thread_id = omp_get_thread_num ()
8 #endif
9 do ket = 1, bra - 1

10 hij = ham(ket ,bra)
11 ! bra , ket: w(a,bra) = sum_ket H(ket , bra) * vk(a, ket)
12 do a = 1, blocksize
13 w_dist(a, bra , thread_id) = w_dist(a, bra , thread_id) &
14 + hij * blvecs(a, ket , k)
15 end do
16 ! ket , bra: w(a, ket) = sum_bra H(ket , bra) * vk(a, bra)
17 do a = 1, blocksize
18 w_dist(a, ket , thread_id) = w_dist(a, ket , thread_id) &
19 + hij * blvecs(a, bra , k)
20 end do
21 end do ! ket
22 hij = ham(bra ,bra)
23 do a = 1, blocksize
24 w_dist(a, bra , thread_id) = w_dist(a, bra , thread_id) &
25 + hij * blvecs(a, bra ,k)
26 end do
27 end do ! bra

There are several things to note. First, the transpose of the Hamiltonian is stored, so that the

inner loop iterates consecutively through the row-major array in memory. This significantly

improves cache performance. Second, the W array is fragmented into omp_num_threads()

pieces, indicated by the final index of the rank-3 array. This allows each openMP thread to
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work on its own partial sum without interfering with the others. Normally this could more

efficiently be accomplished with openMP’s built-in sum-reduction directive, but this tends

to fail for very large arrays (more than 231 elements). Third, the bra-ket nested loops are

upper triangular, taking advantage of the Hermitian symmetry of the Hamiltonian.

Other sections of the code are also openMP parallel, such as the pre-computed partial sums

discussed in previous section, as well as computation of the solution-OBTD matrices.

I provide some sample parallel scaling data to demonstrate typical parallel performance of

PANASh. The following calculations were done on a workstation with 1TB of shared memory

and two AMD EPYC 7643 48-Core Processors. For a benchmark case, I calculated the first 5

Jπ = 3+ states of Ce-132 with the GCN5082 model. The dimension is 128k and the block size

is 10, iterating until 5 states are converged. Time total includes reorthogonalization steps

and convergence checks. The total time depends on the total number of iterations performed,

which has some randomness depending on the initial pivot block. Thus, the average time

per iteration is a more reliable metric. Efficiency is the ratio of MatMat speedup to thread

count.

Table 5.6: Performance of PANASh on a workstation computer with shared-memory archi-
tecture using openMP.

Hamiltonian stored in-memory. Peak memory: 67 GB
openMP threads Time total (s) Time/Iter (s) Efficiency

1 2200 67 1.0
2 1200 36 0.93
4 740 24 0.70
8 380 12 0.70
16 210 6.8 0.62
32 130 3.9 0.54
64 88 2.9 0.36
96 75 2.3 0.30

Hamiltonian computed on-the-fly. Peak memory: 5 GB
openMP threads Time total (s) Time/Iter (s) Efficiency

64 470 11 -
96 340 14 -
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5.5.2 MPI

I use MPI to distribute the top-level loop of the matrix-matrix product previously discussed.

The algorithm is currently designed assuming on-the-fly matrix elements which does not

require much memory compared to storing the entire Hamiltonian. To make MPI practical

for the in-memory solver, the Hamiltonian would need to be scattered amongst the ranks

rather than replicated (broadcast) across all ranks, as is currently done. The benefit of this

less sophisticated parallel algorithm (besides ease of implementation) is that we can take

advantage of the Hermiticity of the Hamiltonian matrix, yields a nearly factor 2 speedup.

As mentioned, the top level loop is broken up amongst the MPI ranks. Each rank is re-

sponsible for a range of loop iterations. Hermiticity means we can skip almost half of the

total iterations, but this makes load balancing is less straightforward. The approach I have

adopted is to compute the a work-scaling factor for each outer-loop iteration as:

nme(bra) = bra(bra + 1)/2, (5.58)

which is the number of upper-triangular matrix elements in the brath row. I compute the

desired work per rank as (1/nranks)
∑dim.

bra=1 nme(bra). Then for each MPI rank, I add

assigned rows (bra’s) to the rank until the desired amount of work is assigned. An example

of this algorithm distributing the work of a dimension 128,277 problem with 16 MPI ranks:

begin - end (toal nme)

Rank 1 assigned 1 - 32069 (514226415)

Rank 2 assigned 32070 - 45353 (514243566)

Rank 3 assigned 45354 - 55546 (514236850)

Rank 4 assigned 55547 - 64139 (514230899)

Rank 5 assigned 64140 - 71710 (514260175)
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Rank 6 assigned 71711 - 78555 (514285385)

Rank 7 assigned 78556 - 84849 (514235535)

Rank 8 assigned 84850 - 90708 (514297161)

Rank 9 assigned 90709 - 96211 (514310380)

Rank 10 assigned 96212 - 101415 (514225454)

Rank 11 assigned 101416 - 106365 (514257975)

Rank 12 assigned 106366 - 111095 (514295265)

Rank 13 assigned 111096 - 115632 (514332468)

Rank 14 assigned 115633 - 119997 (514262475)

Rank 15 assigned 119998 - 124209 (514299942)

Rank 16 assigned 124210 - 128277 (513558558)

The memory scaling of this MPI algorithm for this example is roughly 4.5 + 1.4 N (GB),

where N is the number of MPI ranks. Of this 1.4 GB, about half are the Lanczos vectors.

The rest are pre-computed factors such as vector coupling coefficients and OBTDs of the

factor wave functions.

Table 5.7: Performance of PANASh on a workstation computer with shared-memory archi-
tecture using MPI.

Hamiltonian computed on-the-fly.
MPI ranks Time total (s) Time/Iter (s) Efficiency Peak memory (GB)

1 15000 450 1.0 4.5
16 1000 34 0.83 26
32 580 20 0.70 48
64 310 11 0.64 94
96 280 8.5 0.55 130

While the advantages of the PANASh code lie in its physics-based approximation scheme,

this chapter has shown how the computational aspects and implementation details be a

deciding factor for the success of a shell model method. The performance effects of data

structures, algorithms, and parallel programming can easily add up to the total gains of the

approximation itself. This concludes the discussion of the computational aspects of PANASh.
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Chapter 6

Statistical Properties of Nuclei

This chapter is concerned with nuclear level densities and gamma-ray strength functions, the

two most important statistical properties of nuclei for the subject of the next part of this

dissertation: statistical nuclear reactions. Nuclear level densities are the average number of

levels available for a nucleus to occupy per unit MeV. Gamma-ray strength functions are a

more complicated topic, but they are related to the average electromagnetic decay width, or

probability, as a function of the energy of the transition. In this context “statistical” means

we are dealing with energy-averaged quantities that describe typical behaviour of a nucleus

without attention to specific states or transitions.

As will be discussed at length in Part II, statistical nuclear reactions fall under the theoret-

ical umbrella of Hauser-Feshbach (HF) theory. What we need to know for this chapter on

statistical properties of nuclei is that HF theory requires as input both nuclear level densities

and gamma-ray strength functions. In the absence of experimental data, broad studies of

nuclear reactions rely on systematic trends in these statistical quantities which are fit to data

for nuclei near stability. To improve such models, we look to microscopic models like the

shell model to provide theory predictions for these reaction model inputs, especially where
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data are unavailable.

Both nuclear level densities (NLDs) and gamma-ray strength functions (GSFs) can be directly

calculated starting from a complete list of the nuclear wave functions and their transition

probabilities up to some maximum excitation energy. This means a sufficiently large shell

model calculation can provide these statistical quantities by simply computing statistics on

its solutions.

6.1 Nuclear level densities

Level densities can be thought of as a probability density function (PDF) for the number

of levels (bound states or resonances) of a nucleus between two energies. For example,

the cumulative number of levels as a function of excitation energy Eex, spin (total angular

momentum) J , and parity π of the levels is given by the cumulative level density (CLD):

CLD(Eex, J
π) =

∫ Eex

0

ρ(E, Jπ)dE, (6.1)

in terms of the level density ρ(E, Jπ). I say approximately because the nuclear level density

is a continuous approximation of the integer number of levels.

In energy regimes and for nuclei where we can count levels (experimentally or from the shell

model), the nuclear level density can itself be ‘approximated’ as the number of levels per

energy bin of width ∆E. If each bin(i) has a domain (Ei, Ei +∆), then we count the levels

with energies Ẽj in each bin:

ρ(Ei, J
π) ≈ 1

∆E

∑

Ẽj∈bin(i)

1. (6.2)

This will only work well where the level density is sufficiently high as to have a statistically
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significant number of levels in each bin.

In this section I present an example calculation of nuclear level densities using both a full

configuration interaction (FCI) shell model calculation and using PANASh. The main figure

to note is Figure 6.1. The case is 78Ge, which has 51 experimentally measured levels [48].

Of these, only 12 have a complete level scheme, and 5 have assigned spin and parity. This

highlights the need for theoretical predictions of the nuclear level densities, which often have

limited experimental data.

The model space used is the pfg model space (f5/2, p3/2, p1/2, g9/2 valence orbitals above a

56Ni core) with the JUN45 interaction [147]. The FCI calculation includes all possible many-

body configurations in the model space. The Mπ = 0+ calculation has dimension 1, 831, 531

and the Mπ = 0− has dimension 1, 828, 324. Each were solved with Block Lanczos to obtain

the 500 lowest states of each parity. The results are shown in Figure 6.1.

The same model and interaction was applied using our PANASh shell model code. The

proton and neutron subspace dimensions are both 701. This is trivially solved even with an

exact solver. The PANASh calculation presented uses 10% of each subspace: 70 proton and

70 neutron basis factors to compute the basis. All allowed combinations of these factors are

used. Again, the results are shown in Figure 6.1.

For both methods, the model reproduces the cumulative level density (CLD) below about

3 MeV. Above this, the slope of the experimental CLD falls off. This indicates above this

many of the states have not been observed. Above about 6 MeV, both models run out of

levels: each calculation targeted the lowest 500 levels only. The PANASh method system-

atically underestimates the FCI level density. The missing states can be understood to be

systematically shifted upward in energy; the ground state converges most quickly, and, due

to the variational principle, the approximation of each state’s energy is guaranteed to be

greater than its un-truncated value.
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Figure 6.1: Cumulative level density for 78Ge from experimentally reported levels [48], and
using full configuration interaction (FCI) shell model, and our proton and neutron approxi-
mate shell model (PANASh) using 10% of the proton and neutron subspaces.

6.2 Gamma-ray strength functions

A gamma-ray strength function is a particular form of a simple quantity: the probability for

a highly excited nucleus to de-excite by emitting a photon of a particular energy Eγ. In the

shell model, this should be straightforward to calculate since one can compute the transition

probability between any two states. Obtaining a gamma ray strength function needed by

a reaction code should therefore be a simple matter of knowing what averages to take and

what particular definition is needed. In this section I will tell a more complicated story.

For statistical reaction codes the standard is to use a simple function f(Eγ) that describes

the average, statistical probability for a nucleus to decay by emitting a gamma photon

with Eγ. The form of these functions ignores the specific structure of individual states and

resonances, and in factor often ignores everything except Eγ. These functions have simple

parametric forms which are typically fit to systematic trends in measurable quantities like the

photo-absorption cross section, or the average total radiative width in a given mass range.

The goal of this section is to be able to compute gamma-ray strength functions using the shell

model which are suitable as inputs for statistical reaction codes. As it will be shown, there
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is more than one definition or interpretation of what exactly a gamma-ray strength function

is and how it should be related to measurements. I review the various definitions, then give

my own derivation of one of these definitions. I then compare various interpretations and

argue for a specific definition to be used as input for statistical reaction calculations which

is not the one used in recent literature. If my argument holds, it points towards a significant

increase in the the low-energy region of the gamma-ray strength function as compared to

the currently accepted prescription.

6.2.1 Definitions

I claim that so far there are at least three distinct definitions of gamma-ray strength functions,

which have been grouped together and often confused. The most important definition for this

work is the definition in terms of transmission coefficients, to be defined below implicitly in

terms of a photoabsorption cross section, and more fully explained later in Chapter 7. This

is the definition I will continually refer back to because the purpose of gamma-ray strength

functions (GSFs) in this work are as inputs for modeling statistical nuclear reactions.

The second definition comes from efforts to relate the transmission coefficient definition to

some measurable observable. This was first done in terms of photo-absorption or Coulomb

excitation of a nucleus - in either case, a nucleus in its ground state is excited by electromag-

netic perturbation into a highly excited state, by perhaps tens of MeV. The GSF can then

be related directly to the probability that the nucleus absorbs a fixed quanta of energy. It

is then assumed that this is related by time-reversal symmetry and the principle of detailed

balance to the probability for the same system to emit a photon of the same energy. The

problem with this approach is that it may ignore transitions from the excited state to states

other than the ground state. This is a significant omission since the number of possible final

states will grow exponentially with the level density near the final state.
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The third definition arises from efforts to relate the GSF to yet another measurable ob-

servable. The class of experimental techniques known as the Oslo method extracts gamma

strength functions from coincidence measurements of nuclear excitation energy and emit-

ted gamma energy. This method improves over ground-state excitation methods because

it allows not only for decays to the ground state, but decays to any energy lower than the

excitation energy of the initial state. This method also has its limitations. While the de-

cay probabilities obtained from Oslo-type measurements include proportionality to the final

state level density, they are normalized to one at each excitation energy [182] and so are not

sensitive to the level density near the initial state. The raw results of the method yield a

GSF with undetermined overall normalization [200].

Transmission coefficients

Gamma-ray strength functions find their use in modeling of compound nuclear reactions. I

will postpone complete introduction of nuclear reactions until Chapter 7, and present only

the relevant definitions here. The (energy averaged) photoabsorption cross section σ can be

expressed in terms of a transmission coefficient Tγ as:

⟨σXL
γ ⟩ = gπλ2T XL

γ , (6.3)

where g is a (spin) statistical weight, and XL is the multipole type and order of the elec-

tromagnetic radiation. λ = λ/2π = 1/kγ is the reduced wavelength, which is related to

the energy as kγ = Eγ/(h̄c). For massive particles like neutrons, transmission coefficients

are directly related to average total-widths of the neutron resonances Γn, and the average

resonance spacing D [277]:

Tn =
2π⟨Γn⟩
D

. (6.4)
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This comes from Hauser-Feshbach theory which averages over many resonances. The prob-

ability of absorbing the particle into one of these resonances is approximately the average

total resonance width times the number of resonances (1/D). For photons, the transmission

coefficients are expressed in terms of the gamma-ray strength function f :

T XL
γ (Eγ) = 2πE2L+1

γ fXL(Eγ), (6.5)

which factors out a systemic energy dependence of the gamma widths. The origin of this

expression can be traced to the theory of photo-absorption of a nucleus in terms of transition

probabilities between individual levels which carry this energy dependence.

Formal strength functions and photo-absorption

The implicit definition of the gamma-ray strength function (GSF) differs from the more

formal definition of a strength function [160]:

S(Ei, Ex) =
∑

f

δ(Ex − Ef + Ei)|⟨f |Ô|i⟩|2, (6.6)

where Ei and Ef are the energies of the initial and final stats, and Ex = Ef−Ei is the energy

of the excitation1. Instead, the GSF can be thought of as related to the energy averaged

strength function:

E2L+1
γ fXL(Eγ) ∝

1

∆E

∫ Ei+∆E/2

Ei−∆E/2

dEiS(Ei, Eγ), (6.7)

where ∆E is the energy region of interest accessible by the transitions. The Brink-Axel

hypothesis implicit in the energy-independent definition of the GSF requires that S(Ei, Eγ)

be independent of Ei.
1This definition comes from the study of sum rules, which place physical limits on the maximum value

of these strength functions for certain operators [31].
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We can compare these expressions to Ring and Schuck’s expression [245, 285] for photoab-

sorption of dipole radiation:

σabs(Eγ) =
16π3Eγ

9h̄c
S(Ei = 0, Eγ). (6.8)

The definition of Bartholomew

Modern applications of the nuclear shell model to calculation of gamma-ray strength func-

tions [97, 208, 184, 41, 260] nearly all refer to Bartholomew’s 1973 definition [21]. Bartholomew’s

perspective is from that of an experimentalist trying to measure GSF’s, in a time where

photo-excitation was the main way to do so. The definitions therein are not derived, but

stated as: “the distribution, as a function of γ-ray energy, of the average reduced width for

transitions of a particular multipole type XL”:

−→
f XL

fiJ (Eγ) = E−(2L+1)
γ Γ̄XL

fiJ (Eγ)ρJ(Ef ), (6.9)

where the transition is upward from i → f (Ef > Ei), absorbing a gamma energy of Eγ.

Usually i is the ground state. The average radiative width Γ̄fiJ is averaged over large numbers

of levels of the same spin and parity near Ef .

For compound nuclear reactions we need not the upward GSF, but the downward one,

which can be used to describe the decay of a compound nucleus. Modern works have cited

Bartholomew’s definition for the strength function for decay of levels of spin J within unit

energy interval at Ei to a state Ef by emission of radiation type XL[21]:

←−
f XL

fiJ (Eγ) = E−(2L+1)
γ Γ̄XL

fiJ (Eγ)ρJ(Ei), (6.10)

where now the transition is Ei > Ef . The average is over a large number of initial states near
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Figure 6.2: Photo-absorption (left) of an unpolarized beam of photons with energy Eγ±∆E
by a nucleus in its ground state. Photo-emission (right) of a nucleus shortly after absorbing
an unpolarized beam of photons.

Ei; Ei is fixed and Ef describes a variable state. To obtain an energy-independent strength

function, one needs to either sum or average over final states.

In his PhD thesis, Zeiser points out [310](pp.9-11) that (6.10) can be explained by applying

the principle of detailed balance, which says that:

Ti→f =
ρf
ρi
Tf→i. (6.11)

Zeiser thusly argues that Bartholomew’s two definitions are linked. Equation (6.11) comes

from time-dependent perturbation theory, in particular Fermi’s Golden rule. So I will briefly

introduce it here. Fermi’s Golden Rule2, as it is commonly called3 plays an important role

in the description of nuclear decay. It describes the transition probability per unit time of a

quantum system from an initial state i to some closely spaced group of final states f [253]:

Ti→f =
2π

h̄
|H ′

fi|2ρf , (6.12)

2Actually, he called it “Golden Rule No. 2” [213]
3Although, Fermi cites the rule from Schiff’s textbook [253] on quantum mechanics.
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where H ′ is the perturbative operator leading to the transition, and ρf is the density of

states near f . This approximation comes directly from time-dependent perturbation theory,

with the following assumptions: (1) there is a group of states f that have nearly degenerate

energies, and for which the matrix element is roughly constant; (2) the level density ρ(f) is

also sufficiently independent of f .

Oslo-measurement formula

The following expression is an interpretation of (6.10), which I will call the Oslo-measurement

formula, since it was introduced to account for measurements made with the Oslo method

in recent shell model calculations of the gamma-ray strength function [97, 208, 184, 40, 260]:

f
(M1)
Oslo (Ei, Eγ) =

16π

9(h̄c)−3
⟨B(Eγ)⟩iρ(Ei), (6.13)

where ⟨B(Eγ)⟩i is the average B-value (reduced matrix elements) and can be related to

the average radiative width (the details will be explained later). Because this formula has

been used in the context of the Oslo method of measuring gamma-ray strength functions,

it has been interpreted in a particular way. Midtbo provides a derivation of this GSF in

his dissertation [198] (Appendix A, pp. 147-150), starting from Bartholomew’s expression of

the average total radiative width as an integral of the gamma-ray strength function and the

level densities at both the initial and final states. That is,

⟨Γ(Ei, J, π)
XL⟩ =

∫ Ei

0

E2L+1
γ fXL(Ei, Eγ, J, π)

ρ(Ei, J, π)

J+L∑

Jf=J−L

ρ(Ef , Jf , πf )dEγ. (6.14)

In the Oslo method, gamma energies Eγ are measured in coincidence with the nuclear ex-

citation energy Ex = Ei and binned into a large matrix of decay probabilities P (Ei, Eγ):
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P (Ei, Eγ) ∝ T (Eγ)ρ(Ef ) (6.15)

Importantly, the matrix is normalized for each Ei [254]:

∑

Eγ

P (Ei, Eγ) = 1. (6.16)

This decay matrix is in turn convoluted into a product of the final state nuclear level density

and a gamma-ray strength function. The average B-value is computed by sorting the transi-

tions into 100 keV bins on the initial energy Ei = Ex and the transition energy Eγ = Ei−Ef ,

analogous to the probability matrix P (Ei, Eγ), and dividing by the number of transitions in

each two-dimensional bin, or ‘pixel’ [40].

6.2.2 Derivation of the upward strength function

To understand the origin of Bartholomew’s expression (at least the upward definition), I

follow Blatt and Weisskopf’s (BW) text [31]. The following argument roughly follows chapter

XII, sec. 7 discussing the nuclear photoeffect, and leads to the derivation of the photo-

absorption cross section. To obtain the definition of Bartholomew (6.9), I then relate the

cross section back to the strength function defined in Section 6.2.1.

First, BW restate that the probability for excitation of a nucleus from the ground state to

some definite state f is given by the beam intensity S(Eγ) times the spontaneous emission

probabilities T , given in equations BW(3.25) and BW(3.21), respectively. It is assumed that

the photon beam is not monochromatic. It has an intensity S(Eγ) exciting many states in a

region ∆E around Eγ = Ef . The unpolarized4 light will have m = ±1. The probability of
4By this we mean that the photons have random spin alignment.
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excitation by multipole radiation type XL is (BW(3.25)) then:

AXL =
π2

2k2γ
(2L+ 1)S(Eγ)[T

XL(m = −1) + TXL(m = +1)], (6.17)

where kγ = Eγ/(h̄c). The constant factor is from normalizing the flux to the particular flux

corresponding to one photon per vibration of the field at order L (see BW pp. 809-811). In

our notation the reduced transition probability is (equivalent of BW(3.21)):

TXL
fi =

8π

h̄

(L+ 1)

L[(2L+ 1)!!]2

(
Eγ

h̄c

)2L+1

B(XL; i→ f), (6.18)

where B is the reduced matrix element (B-value), averaging over all orientations:

B(XL; i→ f) =
1

2Ji + 1
| ⟨Ψf | |MXL| |Ψi⟩ |2. (6.19)

Second, BW elaborate that with an incident gamma beam with a spread of energies, many

states f will be excited. Then, the total excitation probability is a sum over those states,

which can be approximated as an ensemble average:

AXL
tot =

Eγ+∆E∑

Ef=Eγ

AXL
0→f ≈ ⟨AXL

0→f⟩avρJ(Ef )∆E, (6.20)

where ∆E is the beam width and ρJ = D−1
J is the level density of states near f which are

populated by the photo-excitation. The average is over the final states f .

The approximation (6.20) is only valid if the average transition probability to the group of

states f has low variance, and the level density does not vary too rapidly. (I.e. law of large

numbers; the sum is the average times the number in the sum, not valid for ‘long-tailed‘

distributions.) Similar arguments take place to arrive at Fermi’s golden rule (6.12) from

time-dependent pertubation theory [253], with similar constraints. In this context, however,
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Figure 6.3: Photo-absorption of an unpolarized beam of photons with energy Eγ ±∆E by
a nucleus in its ground state. The total probability of absorption is a sum over transition
probabilities to states in the energy bin near Ef .

we do not need this approximation if in fact we know all of the states f . In deriving a

modern definition of the GSF, I will drop this approximation.

Finally, to find the photo-absorption cross section, BW divide the excitation probability by

the flux: number of photons in the beam per area per second, S(Eγ)(∆E/h̄).

⟨σXL
abs ⟩(Eγ) =

AXL
tot

S(Eγ)(∆E/h̄)
≈ π2

k2γ
(2L+ 1)h̄⟨TXL

0→f⟩avρJ(Eγ). (6.21)

The factor 1/2 was combined with the sum over both values of m. This matches equation

(49) of Carpenter [51], p.23, up to a statistical factor g. Note also that Ef = Eγ.

To relate (6.21) to the GSF, we take the definition (6.3), while summing over the final states

spins Jf and averaging over the photon spins s to get the absorption cross section:

⟨σXL
abs ⟩(Eγ) =

1

w(s)

∑

s

∑

Jf

g(Jf , s)
π

k2γ
2πE2L+1

γ fXL(Eγ), (6.22)

where w(j) is the number of states accessible by the spin (angular momentum) j. Only

the spin factor g depends on Jf and s. This spin factor is proportional to the number of
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accessible states of the final level Jf , and inversely to the number states formed by coupling

s and Ji [31]:

g =
w(Jf )

w(s)w(Ji)
. (6.23)

(A nice trick for counting angular momentum couplings is to remember that the number of

states, i.e. the dimension, is conserved between the coupled and uncoupled basis. This is

why the denominator of (6.23) is the product of w(s) and w(Ji).) We have the constraint

Jf = Ji + s + L, where L is the orbital angular momentum of the projectile. Generally

w(j) = 2j + 1, counting up the magnetic substates m in the usual way. In our case, s = 1,

but for massless photons only m = ±1 are allowed, so w(s) = 2. Evaluating the average and

sum in (6.22) for (6.23), we obtain:

1

2

∑

s

∑

Jf

g =
1

2

∑

s

∑

Jf

2Jf + 1

2(2Ji + 1)
=

1

2
(2L+ 1); (6.24)

This required
∑

Jf
(2Jf + 1) = (2L + 1)(2S + 1) from [31] where S = L + s. Thus, the

photoabsorption cross section for unpolarized radiation of multipole type XL is:

⟨σXL
abs ⟩(Eγ) = (2L+ 1)

π2

k2γ
E2L+1

γ

−→
f XL(Eγ). (6.25)

Using h̄T = Γ and equations (6.21) and (6.25), we have derived Bartholomew’s gamma-ray

strength function for absorption:

−→
f XL

0→f (Eγ) = E−(2L+1)
γ ⟨ΓXL

0→f⟩avρJ(Eγ). (6.26)

Undoing the approximation as an ensemble average, this can also be written more explicitly
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as:

−→
f XL

0→f (Eγ) = E−(2L+1)
γ

1

∆E

Eγ+∆∑

Ef=Eγ

ΓXL
0→f (6.27)

=
8π(L+ 1)

L[(2L+ 1)!!]2

(
1

h̄c

)2L+1
1

∆E

Eγ+∆∑

Ef=Eγ

B(XL; 0→ f). (6.28)

This form avoids any possible confusion about the definition of the level density in equa-

tion (6.26).

In summary, the photo-absorption strength function describes the total width from the

ground state to an excitation energy near Ef = Eγ, assuming there are many nearby partial

widths contributing. This is a quantity that is proportional to the level density near the

final state. That is clear from the form (6.26). The only energy dependence is from the

energy dependence of the level density, and any residual energy dependence in the reduced

B values. The former grows exponentially, while the B-values are often assumed to be

energy-independent according to the Brink-Axel hypothesis [39, 18]. However, shell model

studies have shown that the Brink-Axel hypothesis is not quite true [160, 137].

6.2.3 Return to strength functions

Equation (6.27) is consistent with the form of the strength function expression for the pho-

toabsorption cross section [245, 284]:

σabs(Eγ) =
16π3Eγ

9h̄c

∑

f

B(E1; 0→ f)δ(Eγ − Ef + E0), (6.29)

since if we select L = 1 and substitute kγ = Eγ/(h̄c) into (6.25) and using (6.27) we get:

⟨σE1
abs⟩(Eγ) = 3

16π3Eγ

9h̄c

1

∆E

Eγ+∆∑

Ef=Eγ

BE1(0→ f). (6.30)
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The factor of 3 comes from the assumption of unpolarized photons.

6.2.4 Photo-emission from an excited state

So far we have only discussed photo-absorption. What about photo-emission from a com-

pound nucleus? In particular, what is the gamma-ray strength function used to calculate

a transmission coefficient for decay from an initial state i? See Figure 6.4. If we are in

Figure 6.4: Photo-emission from a single state i to a bin near Ef . The total probability
of decay is a sum over transition probabilities to states in the energy bin near Ef . Sn is
the neutron separation energy around which the level density is usually high enough for a
statistical description.

the continuum description of statistical decay, then the HF gamma-decay probability (to be

defined in the next chapter) is proportional to the transmission coefficient times the level

density near the final state. Recalling that the gamma-ray transmission coefficient should

be written in terms of the gamma-ray strength function, we can write:

T XL
γ (Eγ = Ei − Ef )ρ(Ef )∆E = 2πE2L+1

γ fXL(Eγ)ρ(Ef )∆E. (6.31)
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From a microscopic perspective, the gamma-decay probability for a state i is proportional

to the total decay width:

2πΓi = 2π
∑

f∈Ef

ΓXL
i→f = 2π⟨Γi→f⟩fρ(Ef )∆E., (6.32)

where f ∈ Ef means all final states f within ∆E/2 of Ef . And so we can write down an

expression for the photo-emission gamma-ray strength function by equating the two numer-

ators:

fXL(i, Eγ) = E−(2L+1)
γ ⟨Γi→f⟩ (6.33)

=
8π(L+ 1)

L[(2L+ 1)!!]2

(
1

h̄c

)2L+1
1

Nf

∑

f∈Ef

BXL(i→ f)δ∆E(Ef − Ei + Eγ),

(6.34)

where the ‘softened’ delta function δ∆E(x) enforces the relation x = 0±∆E/2, and Nf is the

number of final states accessible. Finally, to compute a ‘Brink-Axel’ gamma-ray strength

function [39, 18] independent of the initial energy, I average over all initial states above some

minimum for the sum to have good statistics, e.g. i > 100. This type of gamma-ray strength

function is illustrated in Figure 6.4.

To calculate what is measured in photo-absorption experiments (i.e. proportional to the

total level width), we must multiply (6.33) by the number of accessible final states ρ(Ef ) to

get a new function F (i, Eγ):

FXL(i, Eγ) = fXL(i, Eγ)ρ(Ef ) (6.35)

=
8π(L+ 1)

L[(2L+ 1)!!]2

(
1

h̄c

)2L+1
1

∆E

∑

f∈Ef

BXL(i→ f)δ∆E(Ef − Ei + Eγ)

(6.36)
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Some regard FXL(i, Eγ) as the ‘photon-strength function’ and fXL(i, Eγ) as the ‘gamma-ray

strength function’ [88], but this is not widespread.

Physically, equation (6.36) is expected to have a giant dipole resonance when the transition

is of E1 type [285, 39, 18] and i is the ground state, which is often modeled with a Lorentzian

shape. However, it is common practice in Hauser-Feshbach codes to instead model fXL with

Lorentzian type functions, fit to experimental data like average total radiative widths [215,

174].

6.2.5 Photo-emission to a final state

What about Bartholomew’s formula for decay of levels near Ei to a final state f? That is,
←−
f XL(f, Eγ) = E

−(2L+1)
γ ⟨ΓXL

i→f (Eγ)⟩iρ(Ei), which corresponds to the situation depicted in the

right side of Figure 6.2. I propose the following interpretation of the Bartholomew formula:

FXL(f, Eγ) = E−(2L+1)
γ ⟨ΓXL

i→f⟩iρJ(Ei) (6.37)

=
8π(L+ 1)

L[(2L+ 1)!!]2

(
1

h̄c

)2L+1
1

∆E

∑

i∈Ei

BXL(i→ f)δ∆E(Ef − Ei + Eγ).

(6.38)

This is the total strength from many states near Ei to a final state f . This is in contrast to

equation (6.36), which is a decay from a specific state i to a bin near Ef , shown in Figure 6.4.

The state-independent GSF F (Eγ) is obtained by an average over all final states. I have

now defined four gamma-ray strength functions in this fx, Fx = fx/ρ notation. To obtain a

function which depends only on the gamma energy, we need to take one final average over the

remaining free variable. These are given in Table 6.1. A comparison of the two expressions

for both fx and Fx = fxρ is given in Figure 6.5.

Unsurprisingly, both fi and ff give similar values. In the end, we are averaging over both
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Table 6.1: The various gamma-ray strength functions defined to far and the final average
that must be taken to give the Brink-Axel equivalent GSF. Fi is the upward Bartholomew
formula if i = 0 which can be related to the photoabsorption cross section. Ff is the
downward Bartholomew formula.

Formula GSF Physical description Final average
(6.33) fi = f(i, Eγ) Average B-value from initial states All initial states i
(6.35) Fi ≡ F (i, Eγ) Total strength from initial state All nonempty bins Ei

- ff ≡ f(f, Eγ) Average B-value to final states All final states f
(6.37) Ff ≡ F (f, Eγ) Total strength to final state All nonempty bins Ef

initial and final states. Fi and Ff give very different results. Fi has an exponential ‘up-turn’

at low energy. This is explained by the multiplication by the final state density: a single

decaying state has many more low-energy transitions available to it. Ff is nearly flat. Here,

the decaying strength ff is countered by the exponentially growing number of initial states

near Ei.

6.2.6 The Oslo GSF and the Bartholomew formula

How do expressions (6.35) and (6.33) compare to the literature? The following expression

is an interpretation of (6.10), which I will call the Oslo formula, since it was introduced to

account for measurements made with the Oslo method in recent shell model calculations of

the gamma-ray strength function [97, 208, 184, 40, 260]:

f
(M1)
Oslo (Ei, Eγ) =

16π

9(h̄c)−3
⟨B(Eγ)⟩iρ(Ei). (6.39)

Because this formula has been used in the context of the Oslo method of measuring gamma-

ray strength functions, it has been interpreted in a particular way.

In the Oslo method, gamma energies Eγ are measured in coincidence with the nuclear ex-

citation energy Ex = Ei and binned into a large matrix of decay probabilities P (Ei, Eγ):
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Figure 6.5: Calculated M1 gamma-ray strength function for 94Sr computed using an approx-
imate shell model with the glepn interaction [191]: a comparison of gamma-ray strength
functions between a single state and an energy bin, depending on the direction of the decay.
Fi is a decay from a state i to a bin Ef yielding a Eγ transition. Ff is the reverse: decay
from a bin near Ei, downward Eγ, to state f .

P (Ei, Eγ) ∝ T (Eγ)ρ(Ef ). (6.40)

Importantly, the matrix is normalized for each Ei [254]:

∑

Eγ

P (Ei, Eγ) = 1. (6.41)

This decay matrix is in turn convoluted into a product of the final state nuclear level density

and a gamma-ray strength function. Equation (6.39) is then used to calculate an equivalent

shell model GSF. The average B-value is computed by sorting the transitions into 100 keV

bins on the initial energy Ei = Ex and the transition energy Eγ = Ei − Ef , analogous to

the probability matrix P (Ei, Eγ), and dividing by the number of transitions in each two-
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dimensional bin, or ‘pixel’ [40]. In terms of the B-values, this translates to:

⟨B(Ei, Ji, πi, Eγ)⟩ =
1

Nif

∑

if∈Ei,Eγ

BM1(i→ f)δ100 kev(Eγ − (Ei − Ef )), (6.42)

where Nif is the number of transitions in each pixel and the sum is over all transitions

i → f satisfying Ef = Ei − Eγ (all transitions in the pixel (Ei, Eγ)). This is equivalent to

satisfying the ‘softened’ delta function. Next, one is to multiply by the initial state level

density ρ(Ei, Ji, πi), which is the number of states in one row of fixed Ei in the (Ei, Eγ)

matrix:

f
(M1)
Oslo (Ei, Eγ) =

16π

9(h̄c)−3
⟨B(Eγ)⟩ifρ(Ei) (6.43)

=
16π

9(h̄c)−3
ρ(Ei, Ji, πi)

1

Nif

∑

if∈Ei,Eγ

BM1(i→ f)δ100 kev(Eγ − (Ei − Ef ))

(6.44)

=
16π

9(h̄c)−3

Ni

∆E

1

Nif

∑

if∈Ei,Eγ

BM1(i→ f)δ100 kev(Eγ − (Ei − Ef )), (6.45)

In the second equation, I have made the definition of the level density explicit in terms of the

number of transitions Ni out of the bin with Ei. This number is counted by the number of

nonzero B-values. This avoids the need to track the spins and parities of the ‘level density’

since the number of nonzero B-values automatically respect the appropriate selection rules.

The i-independent function is obtained by a simple average over nonempty bins (Ei, Ji, πi).

Figure 6.6 provides a numerical example comparing this Oslo-experiment formulation of the

gamma-ray strength function to the average GSF for the decay states near Ei to a single

state f , F (f, Eγ).
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Figure 6.6: M1 gamma-ray strength function for 94Sr computed using an approximate shell
model with the glepn interaction [191]. The blue dashed line shows the decay strength
from an initial bin Ei to a state f . The green dotted line shows the equivalent F = fρ.
The orange dash-dotted line shows the Oslo GSF formula (6.43) from recent literature [97,
208, 184, 40, 260]. The red solid line shows a composite model based on D1M+QRPA
calculations [112, 110], which uses a mean field approach with realistic forces plus an empirical
low-energy ‘up-bend’ fit to shell model calculations and low-energy data.

6.2.7 Hauser-Feshbach (bin to bin) decays

So far we have explored (1) decays from an initial state i to an energy bin Ef , (2) decays

from an initial energy bin Ei to a final state f , and (3) decays from an initial energy bin Ei

with a decay energy of Eγ simulating an Oslo-type measurement. So which expression should

be used as inputs for a Hauser-Feshbach calculation? Hauser-Feshbach codes calculate the

probability for decay from one energy bin to a lower energy bin. This is shown in Figure 6.7.

To model a bin-to-bin transition, level densities in both the initial bins and the final bins

will influence the total decay probability.

The expression for the decay probability from the initial bin near Ei can be obtained by
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Figure 6.7: Photo-emission from a bin near Ei to a bin near Ef . The total probability of
this decay is a sum over all states in the initial bin and over all transition probabilities to
states in the energy bin near Ef .

summing the total decay widths for all levels in the initial energy bin:

P (Ei, Eγ) = 2π
1

∆E

∑

i∈Ei

ΓXL
i (Eγ) (6.46)

= 2π
1

∆E

∑

i∈Ei

⟨Γi→f⟩fρ(Ef = Ei − Eγ)∆E (6.47)

≈ 2πρ(Ei)⟨Γi→f⟩fρ(Ef )∆E, (6.48)

where the approximate equality shows the proportionality to both initial and final state

densities. It is approximate because it relies on the local Brink-Axel hypothesis for the total

gamma decay widths: that all total widths near Ei are similar and thus the sum can be

approximated by the average times the number of states.

There is an important difference between (6.46) and the Oslo-experiment formula presented

in equation (6.40). The Oslo gamma matrix POslo(Ei, Eγ) is normalized to one at each

Ei. In our case, it may be that
∑

Eγ
P (Ei, Eγ) depends on Ei. In fact, we can see from

equation (6.48) that the HF decay probability depends on ρ(Ei), which has an exponential

Ei dependence. At higher excitation energy, there are more states per MeV, and thus more

chances per MeV for the nucleus to decay out of that bin. Because the Oslo matrix is

normalized to 1 at each Ei, this effect cannot be extracted from Oslo measurements.

160



Recall that the Hauser-Feshbach decay probability is defined as:

T XL
γ (Eγ = Ei − Ef )ρ(Ef )∆E = 2πE2L+1

γ fXL(Eγ)ρ(Ef )∆E. (6.49)

We obtain the Hauser-Feshbach gamma-ray strength function by equating the two proba-

bilities (6.46) and (6.49). The densities near Ef will cancel, along with a factor of 2π∆E,

leaving a dependence proportional to the density near ρ(Ei). We therefore must accept the

following definition of the Hauser-Feshbach gamma-ray strength function:

fXL
HF (Ei, Eγ) = E−(2L+1)

γ

1

∆E

∑

i∈Ei

⟨Γi→f⟩f (6.50)

=
1

∆E

∑

i∈Ei

8π(L+ 1)

L[(2L+ 1)!!]2

(
1

h̄c

)2L+1
1

Nf

∑

f

BXL(i→ f)δ∆E(Ef − Ei + Eγ)

(6.51)

=
1

∆E

∑

i∈Ei

←−
f XL(i, Eγ). (6.52)

An equivalent expression holds for FXL
HF in terms of

←−
F XL(i, Eγ) using equation (6.36). The

last equality relates the HF gamma-ray strength function to the gamma-ray strength function

for photo-emission from a single state, given in equation (6.33). It is important to note that

the average of the final states, and therefore the value of Nf , is determined by all final states

accessible to a particular initial state i and transition energy Eγ ±∆E/2.

If we were to use the Brink-Axel hypothesis, we would have the form:

fXL
HF ≈ E−(2L+1)

γ ⟨Γi→f⟩fρ(Ei), (6.53)

which is different than equation (6.39) from recent literature [97, 208, 184, 40, 260].

Figure 6.8 shows this new expression for the HF gamma-ray strength function and compares it

to the Bartholomew expression F (f, Eγ) from equation (6.37). fHF is significantly enhanced
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Figure 6.8: M1 gamma-ray strength function for 94Sr computed using an approximate shell
model with the glepn interaction [191]: A comparison of the Oslo formulation (6.43) of
the gamma-ray strength function (GSF) and the Hauser-Feshbach (HF) GSF proposed in
equation (6.50).

with respect to the Bartholomew expression (which treats each final state as independent).

The HF expression fHF first computes the average partial width of each initial state i to a

local set of states near Ef , then sums over all initial states in the bin. The Bartholomew

expression sums all strength from states near Ei to one final state f , then averages over all

final states.

6.2.8 Conclusion

Our goal in computing gamma-ray strength functions is the generation of inputs for statistical

reaction models. There have been multiple attempts to constrain GSF’s using different exper-

imental techniques: electromagnetic excitation of the ground state, Oslo-type measurements,

and the surrogate reaction method, which has yet to be discussed (see Chapters 8 and 10).

Relating these measurements to the theoretical formulation of the gamma-ray strength func-

tion has also been affected by confusion about the definitions [199]. In this chapter, I have
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paid special attention to the microscopic significance of the gamma-ray strength function,

and studied how different approaches for averaging transition probabilities can result in dif-

ferent definitions of the gamma-ray strength function. Finally, I have made an argument for

a new microscopic definition of the gamma-ray strength function which differs from those

used to analyze both ground-state excitation and Oslo-type measurements.

It is left to future work to make rigorous tests of this new definition and explore its con-

sequences for reactions, especially those sensitive to the gamma-ray strength function like

neutron capture reactions. One should compare these various GSF definitions, computed

with a microscopic model, to the non-statistical method of computing nuclear decay. Since

the microscopic model like the shell model provide the individual levels and their branching

ratios, an ab initio model of the random decay can be carried out with the same methods

as in [29]. The same calculation can then be carried out with a Hauser-Feshbach code, and

the GSF definition which best reproduces the ab initio model should be considered. In par-

allel, experimental methods such as the surrogate method (see Chapter 10) can be used to

cross-validate.

6.2.9 Supplemental tests

Results from PANASh compared to FCI

These results have appeared in a conference proceeding [117] from the 15th International

Conference on Nuclear Data for Science and Technology (ND2022).

For demonstration of gamma-ray strength functions, we show preliminary results for 78Ge in

the pf-shell (f5/2, p3/2, p1/2, g9/2 valence orbitals above a 56Ni core) with the JUN45 interaction

[147]. To compute the M1 strength function, we follow the methods described in recent

literature [97, 208, 184, 40, 260].
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In this case, we take 20 percent of the proton and neutron eigenstates to construct the

basis, yielding a maximum basis dimension 7,000, only 4-percent relative to the un-truncated

dimension of 170,000. (This is the dimension of the largest J-basis, J = 6.) To calculate

the M1 strength functions involved in the GSF, we use the standard magnetic moment

operator with proton spin and orbital couplings gs = 5.586, gl = 1; and neutron couplings

gs = −3.826, gl = 0. We used the usual quenching factor of q = 0.7 [147].

We compute the first 500 positive-parity states for use in the calculation, for J = 0− 10 h̄.

The resulting level density and M1 photon strength function are shown in Figure 6.9. We

find good agreement with recent results from [97], which used a similar interaction with the

same single particle space. Although that calculation also included negative parity states,

we find that these only slightly alter the GSF.

An important conclusion we can draw from Figure 6.9 is that the GSF converges far better

than the nuclear level density. This can be understood in terms of the variational principle:

the energy levels from a PANASh calculation are guarenteed to be larger than their converged

results, and the ground state converges fastest. This explains why the PANASh level density

is “shifted” to the right of the FCI level density: all the energies are larger than their

converged values, and more so for higher energies. The GSF, on the other hand, does not

follow a variational principle. It is the result of averaging over many incoherently perturbed

matrix elements. The result, we can conclude from the figure, is a much better agreement

with the un-truncated calculation.

Brink-Axel hypothesis

The Brink-Axel hypothesis [39, 18] claims that the gamma-ray strength function should be

independent of the initial state excitation energy. It should be noted that this specifically

refers to the photo-excitation energy from the ground state or low excited states. However, it
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Figure 6.9: Preliminary calculations of gamma-ray strength functions (GSFs) (top panel) and
nuclear level densities (NLDs) (bottom panel) using the PANASh code, with comparison to
the full configuration interaction (FCI), untruncated model. In both cases, the first 500
positive-parity states were computed; the sudden drop of the level density above 6 MeV is a
direct result of this. Energy bins are 0.2 MeV.

is important to examine the more broadly defined BA hypothesis as it is applied in Hauser-

Feshbach theory: that the gamma ray strength function is completely independent of the

initial excitation energy. We can easily test this with the shell model.

Figure 6.10 shows the same gamma ray strength function F (i, Eγ) calculations shown in

Figure 6.6, but for individual initial states i = 100, 500, 1500, 1501, 15002. The functions

have also been smoothed by convolution with a Gaussian kernel with a width of 3∆E, with

∆E = 0.05 MeV being the bin width. We see evidence for the local BA hypothesis [137]:

only states nearby in energy have similar strength functions. Even still, there is significant
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variation from one level to the next.
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Figure 6.10: M1 gamma-ray strength function for 94Sr computed using an approximate shell
model with the glepn interaction [191] for different initial excitation states. In this model,
i = 100 has Ex = 4.69 MeV, i = 500 has Ex = 6.23 MeV, and i = 1500 has Ex = 7.55
MeV. Levels 1500, 1501, and 1502 are degenerate in energy within 0.001 MeV, but have
Jπ = 5+, 1+3−, respectively.
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Chapter 7

Introduction to Reaction Theory

Modeling nuclear reaction networks for nuclear science applications and for simulations of

astrophysical environments relies on cross section data for a vast number of reactions, many

of which have never been measured. Cross sections for neutron-induced reactions on unstable

nuclei are particularly scarce, since they are the most difficult to measure. Consequently,

we must rely on theoretical predictions or indirect measurements to obtain the requisite

reaction data. For compound nuclear reactions, the surrogate reaction method can be used

to determine many cross sections of interest.

7.1 Basic concepts and terminology

Since nuclei are composed of protons and neutrons, we account for reactants and products

in terms of their number of protons (Z) and neutrons (N). When labeling nuclei we name

both their elemental symbol, e.g. U (Uranium, Z = 92), which uniquely specifies Z, and

their atomic mass A (≡ Z + N). Thus, 238U uniquely identifies the nucleus Uranium-238,

which is Z = 92 and N = A− Z = 146.
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This notation is augmented to describe reactions among nuclei. For example, we can describe

reaction in which (1) a neutron collides with a Uranium nucleus to (2) form a compound-

nucleus with one additional neutron, (3) which then decays by emitting two neutrons, in the

notation:

n+238 U →239 U∗ → 2n+237 U. (7.1)

This can be written compactly as: 238U(n, 2n), since we can work out the other isotopes of

U involved by conservation of Z and N . In this example, the neutron is the projectile and

the uranium nucleus is the target. What nuclei are left over after the reaction are called the

reaction products.

The rate at which a reaction will take place per unit volume may be written:

rA(a,b) = ΦanAσA(a,b), (7.2)

where Φa is the incoming flux (particles/area/second) of projectile particles a, nA is the

density of target nuclei in the target (particles/volume), and σA(a,b) is the microscopic cross

section (units of area) of the target nucleus, which in general is simply called the cross

section.

This chapter is primarily concerned with the acquisition of nuclear cross sections. Equa-

tion (7.2) alludes to experimental measurements of nuclear cross sections. But for many

reactions of interest, it is not possible or practical to carry out the reaction in a laboratory

setting. Theoretical calculations of these cross sections is possible, but proves insufficient, as

will be discussed later. An intermediate option is to conduct what are called indirect mea-

surements. These are measurements which when combined with a theoretical description of

nuclear reactions, yield the desired cross section.
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7.2 Types of reactions

Nuclear reactions fall into a number of categories depending on the relevant degrees of

freedom of the nucleons involved. I will restrict the discussion to a limited number of these.

First, we will deal mostly with neutron-induced reactions, with some exceptions, and mostly

with nuclei with a relatively high level density near the neutron separation energy. Within

these constraints, the main consideration for which mechanism will dominate is the energy

of the projectile. Inelastic reactions transition one of the reacting nuclei to an excited state.

So, below some threshold energy corresponding to the first excited state, all reactions will

be elastic.

In this work we will focus on reactions from several hundred keV to several MeV incident

energy. This roughly coincides with where the compound nuclear reaction mechanism is

dominant. The other important mechanism is the direct reaction mechanism. These two

mechanisms are on opposite ends of a spectrum. Direct reactions are fast, taking place

in a time small compared to the mean-free-path of a nucleon within a nucleus, ≈ 10−22

seconds. They involve single-particle excitations in the target nucleus. Conversely, compound

reactions take place over a much longer timescale 10−15 − 10−16 seconds and involve many-

particle excitations. These can be thought of as reactions which form long-lived resonance

states.

An essential aspect of modeling compound nuclear reactions is the Bohr Hypothesis. This is

the idea that the compound nuclear reaction can be described by two independent processes:

first, the absorption of the projectile by the target to form the intermediate resonance, the

compound nucleus, and second, the decay of the compound nucleus. The Bohr hypothesis,

roughly speaking, says that the compound nucleus forgets how it was formed, ‘remembering’

only its energy, spin, and parity. The second process, the decay, can therefore be described

in purely statistical way, without regard to the specific nuclear states excited in the first
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step. This approximation is far from perfect, and corrections are required.

7.3 Hauser-Feshbach theory

The Hauser-Feshbach (HF) statistical reaction formalism properly accounts for conservation

of angular momentum and parity in compound-nuclear reactions. For a reaction with en-

trance channel α = a + A that forms the compound nucleus (CN) B∗, which subsequently

decays into the exit channel χ = c+ C,

a+ A→ B∗ → c+ C,

the HF cross section can be written as

σαχ(Ea) =
∑

J,π

σCN
α (Eex, J

π)GCN
χ (Eex, J

π). (7.3)

Here Ea and Eex are the kinetic energy of the projectile a and the excitation energy of the

compound nucleus B∗, respectively. They are related to each other via Ea = mA

ma+mA
(Eex −

Sa), where Sa is the energy needed to separate the particle a from the nucleus B∗. ma

and mA are the masses of the projectile and target, respectively. J and π are the spin and

parity of the compound nucleus and σCN
α (Eex, J

π) is the cross section for the forming the

compound nucleus B∗ with spin and parity Jπ at energy Eex. The σCN
α (Eex, J

π) and their

sum, the compound-formation cross section σCN
α (Eex) =

∑
J,π σ

CN
α (Eex, J

π), can be deter-

mined using an appropriate optical model for the a-nucleus interaction. Width fluctuation

corrections have been omitted to simplify the notation in Equation 7.3, but are included in

the calculations.

Equation (7.3) expressed the idea introduced earlier that a compound nucleus ‘forgets’ how
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it was formed. If in fact there were no correlation between the incoming and out-going

particles, the total cross section (a probability-like quantity) would be the simple product of

the formation cross section and decay probabilities. Being good physicists, we at least have

to conserve angular momentum and parity, hence equation (7.3). As we will see later on,

the essence of the Weisskopf-Ewing approximation is to give up even this.

GCN
χ (Eex, J

π) is the probability that the CN decays via the exit channel χ. It depends on

the convolution of the transmission coefficient T J
χlcjχ

with the level density ρjC (U) for the

residual nucleus, divided by analogous terms for all competing decay modes χ′:

GCN
χ (Eex, J

π) =

∑
lcjχjC

∫
T J
χlcjχ

ρjC (U)dEχ∑
χ′l′cj

′
χj

′
C

∫
T J
χ′l′cj

′
χ
(Eχ′)ρj′C (U

′)dEχ′
. (7.4)

The quantities lc and l′c are the relative orbital angular momenta in the exit channels. j⃗χ =

j⃗c+ j⃗C is the exit channel spin, related to the total spin J⃗ = l⃗a+ j⃗α = l⃗c+ j⃗χ by conservation

of momentum with the entrance channel spin, j⃗α = j⃗a + j⃗A. ρC(U, jC) is the density of

levels of spin jC at energy U in the residual nucleus. Contributions from decays to discrete

levels and to regions described by a level density have to be accounted for, as shown in the

denominator of (7.4). All sums over quantum numbers must respect parity conservation,

although this is not explicitly expressed here. A graphical representation of the decay of a

compound nucleus is shown in Figure 7.1. In this example, the compound nucleus is 88Y

which is formed by neutron capture on 87Y. The vertical gray bands represent the various sets

of levels for different J . The dashes below are known discrete levels. The arrows represent

various possible realizatons of decays, e.g. by gamma emission between excited states, or

neutron emission to the neighboring nucleus. In a monte carlo HF code, decays continue

until there are no more energetically favorable transitions.

We focus on neutron-induced reactions, i.e. α = n+A. For such reactions, the optical model

potential, used to calculate the first factor in (7.3), is well approximated by a one-body
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Figure 7.1: Figure of Hauser-Feshbach decay from “Nuclear Reactions for Astrophysics”
Thompson and Nunes [278], originally attributed to Erich Ormand. In this case, a neutron
captures on 87Y to form the compound nucleus 88Y, which subsequently decays statistically.

potential [100]. By far the greatest source of uncertainty comes from the decay probabilities,

a fact that can be attributed to uncertainties in the nuclear structure inputs. Ab initio

shell-model calculations can provide nuclear structure information for nuclei with only a

dozen or so nucleons, and traditional shell-model calculations cover a limited number of

nuclei, primarily near closed shells, containing up to around 100 nucleons. Mean-field and

beyond-mean field approaches cover a wider range of nuclei, but calculating the relevant

structure quantities (level densities and gamma-ray strength functions) is nontrivial. While

much progress has been made toward achieving microscopic nuclear structure inputs for HF

calculations of medium-mass and heavy nuclei, many isotopes needed for applications and

for simulating stellar environments are currently out of reach.

A greatly simplified Hauser-Feshbach formula might be expressed in terms of a wave-number

kα and transmission coefficients T for the incoming and outgoing channels as:

σαχ =
π

kα
Tα

Tχ∑
χ′ Tχ′

. (7.5)

The right-most factor involving Tχ, when generalized to account for spins and continuous

level density models yields equation (7.4). The transmission coefficients Tχ are related to
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S-matrix elements connecting the incoming and outgoing particles:

Tχ = 1− | ⟨Sχχ⟩ |2. (7.6)

These must be available for all possible decay-channels. For nucleon emissions, these are

assumed to be identical to the absorption transmission coefficients calculated using the opti-

cal model - again, these are well-constrained. A significant uncertainty enters, however, for

the photon-transmission coefficients, which are especially relevant when the neutron-capture

channel competes. In these reactions, the compound nucleus does not emit a nucleon, but is

left in a highly excited state which must decay by electromagnetic transitions until it reaches

its ground state.

7.3.1 Nuclear level density model

The level density model ρ(Ex, J, π) is a mean description of the number of levels per unit

energy available in the nucleus at excitation energy Ex and spin J . There are several models

available for the description of the nuclear level density, but all are comparable to the model

we will discuss here, the Gilbert-Cameron model [101], which combines the constant tem-

perature model at low excitation with the back-shift Fermi-gas model at high temperature.

Closely paraphrasing the presentation of [215], the back-shifted Fermi gas model is

ρFG(Ex, J
π) =

1

12
√
2σ

exp
[
2
√
aU

]

a1/4U5/4
PJ(Ex)Pπ(Ex), (7.7)

where U = Ex − ∆, with ∆ being the pairing parameter, σ is the spin cutoff parameter,

and a is the single-particle, level-density parameter. The angular momentum distribution is
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given by

PJ(Ex) =
2J + 1

2σ2
exp

[
−(J + 1

2
)2

2σ2

]
, (7.8)

while the parity fraction is generally taken to be 1
2

for π = ±1. Both σ and a are functions

of the excitation energy Ex. The energy dependence of the level-density parameter is

a(Ex) = ã

(
1 + δW

1− exp(−γU)
U

)
, (7.9)

where ã is the asymptotic level density parameter, δW is the shell correction parameter, and

γ is the shell damping factor. The spin cutoff parameter is taken to be of the form

σ2(Ex) =λA
5/3

√
U

a(Ex)
, (7.10)

where the constant is taken to be λ = 0.01389.

At low excitation energy, the level density is assumed to have the constant-temperature form:

ρCT(Ex, J
π) =

1

T
exp

[
Ex − E0

T

]
PJ(Ex)Pπ(Ex), (7.11)

where E0 and T are fit to known low-lying discrete levels.

7.3.2 Gamma ray strength function model

For gamma transitions of a CN from relatively low-excitation energy, there are often gamma-

ray transition probabilities available based on experimental measurements. For gamma tran-

sitions from highly excited states - far into the continuum description of the level density -

no such measurements are available, and so phenomenological gamma-ray strength functions
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(GSFs) are used. These functions were first understood in terms of photo-absorption and the

observed giant dipole resonance. That phenomenon can be explained by strength functions

which take modifications of the Lorentzian form:

fXL(Eγ) =
KL

E2L−2
γ

∑

i

σXL,iEγΓ
2
XL,i

(E2
γ − E2

XL,i)
2 + E2

γΓ
2
XL,i

, (7.12)

where KL = 1/[(2L + 1)π2h̄2c2] and σXL,i, EXL,i, and ΓXL,i are the strength, energy, and

width for each resonance. X and L define the type (electric or magnetic) and polarity of the

transition.

For the E1 GSF, it is standard to add an additional energy-dependent term to the Lorentzians

due to the work of Kopecky and Uhl [178] (again, closely paraphrasing the presentation

in [215]):

fE1(Eγ) = K1

∑

i

[ EγΓE1,i(Eγ)

(E2
γ − E2

E1,i)
2 + E2

γΓ
2
E1,i(Eγ)

+
0.7ΓE14π

2T 2

E5
E1,i

]
σE1,iΓE1,i, (7.13)

(note that both [215] and [177] have a typo in the second term, raising the denominator EE1

to the third power instead of the fifth, as it should be [178]) where the energy dependent

width is given by

ΓE1,i(Eγ) = ΓE1,i

E2
γ + 4π2T 2

E2
E1,i

, (7.14)

and T is a nuclear temperature depending on the nuclear level density parameters and defined

as

T =

√
Ex −∆− Eγ

a(Sn)
, (7.15)

where Ex is the excitation energy of the compound nucleus, ∆ is the pairing gap, the a(Sn)

is the level-density parameter evaluated at the neutron separation energy Sn. An example
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of this form is shown in Figure 7.2. This low energy enhancement of the E1 GSF represents
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Figure 7.2: Kopecky-Uhl gamma-ray strength function: a standard Lorentzian centered at
15 MeV with a width of 4 MeV and the low-energy enhancement term (dotted lines) at
various excitation energies Ex. The other parameters are ∆ = −2.44 MeV, a(Sn) = 12.5,
σE1 = 180 mb.

a break from the Brink-Axel hypothesis. The Kopecky-Uhl work [178] only included such

a term in the E1 resonance because the energy regime they studied would not have been

affected by additional terms in, e.g. the M1 GSF, which peaks between 5 - 10 MeV.

It is also common to include a second and weaker peak in the E1 somewhere around 5-10

MeV to model what is called the pygmy resonance (for a review, see [251]). This will not be

considered in detail in this work.

Both the nuclear level densities and the gamma-ray strength functions follow systematic

trends: nuclei which are neighbors on the nuclear chart are likely to have similar nuclear

structures. Furthermore, there are databases such as the Reference Input Parameter Library

(RIPL) [48] which store evaluated parameters, some of which are based on targeted studies

of specific regions of the nuclear chart, and others based purely on global systematics.

However, these trends are not absolute, and since most global fits are based on measurements

for nuclei near the valley of stability, it’s expected that these models require special tuning
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for any detailed study of particular nuclear reactions.

7.4 Hauser-Feshbach codes

Today’s Hauser-Feshbach (HF) codes for reactions have evolved into multi-physics pack-

ages that go beyond purely statistical [129] decay models. It’s now routine to have an

integrated software package that computes coupled-channel optical models, pre-equilibrium

decays, width-fluctuation corrections, multi-chance fission, decays between hundreds of dis-

crete states, and more [215, 177, 136].

Some examples of HF codes are TALYS [177, 173], EMPIRE [136], CoH [166], NON-

SMOKER [239, 240], Stapre [283] and YAHFC [215]. Each has different advantages,

includes or omits certain approximations, and has favor with certain communities interested

in statistical nuclear reactions. Some of the work presented in this part of the dissertation

will use TALYS, Stapre and YAHFC, while all calculations performed in Part III are

performed with YAHFC.

YAHFC is a relatively new code developed at Lawrence Livermore National Laboratory by

Erich Ormand (one of the original developers of the shell model code Bigstick). I have

been able to participate in some of the development of YAHFC (mostly bug fixes). This has

allowed me to extend its feature set when necessary for my applications. YAHFC is a Monte

Carlo code, which means that the statistical decay calculations are carried out using random

event generation with millions of events. This enables correlation and spectral analysis not

possible with deterministic codes. For these reasons it is favored in this work.
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Chapter 8

Surrogate Reactions I: Weisskopf-Ewing

Approximation

This chapter is based on a paper I co-authored, “Cross sections for neutron-induced reactions

from surrogate data: Reexamining the Weisskopf-Ewing approximation for (n, n′) and (n, 2n)

reactions”, by Oliver Gorton and Jutta Escher [116]. This is my first first-author journal

paper. I did the majority of the work and writing, while my supervisor Jutta Escher designed

the study (which was based on her previous studies of the Weisskopf-Ewing approximation

for other reaction mechanisms), provided generous guidance and support, edited and helped

write the manuscript, especially the introduction and discussion.

8.1 Surrogate reaction method

Nuclear reaction data are required for many applications in both basic and applied science,

whether it be for modeling the origin of elements in the universe, the safe operation of a

next-generation reactors, or for national-security applications [13, 133]. Nuclear reaction

179



libraries provide evaluated reaction data for many such applications [48]. These evaluations

are based on nuclear reaction calculations anchored to experimental data and state-of-the-art

nuclear theory. As many reaction cross sections of interest cannot be measured directly, due

to short lifetimes or high radioactivity of the target nuclei involved, indirect methods are

being developed [22, 282, 80, 182] to address the gaps and shortcomings in present databases.

In this chapter we focus on the “surrogate reaction method” [80, 77], an indirect approach

for determining cross sections for compound-nuclear reactions. Compound-nuclear, or “sta-

tistical” reactions, proceed through the formation of an intermediate “compound” nucleus

n + A → B∗, followed by a decay into reaction products B∗ → c + C. The appropriate

formalism for calculating cross sections for these reactions is the Hauser-Feshbach formal-

ism [129, 99]. Hauser-Feshbach calculations are often quite limited in accuracy due to un-

certainties in the nuclear physics inputs needed, in particular the nuclear structure inputs

associated with the decay of the compound nucleus (CN).

In a surrogate reaction experiment, the CN of interest is produced via an alternative, ex-

perimentally accessible reaction, and the probability of decay into the reaction channel of

interest is measured. From this data, constraints for the Hauser-Feshbach calculations can

be obtained.

The surrogate method has some significant advantages over alternative indirect approaches:

1) the method does not require measurement of auxiliary nuclear properties that are not

available for unstable nuclei and for which interpolation or extrapolation procedures are

associated with uncontrolled uncertainties [81, 236], and 2) The method can be used for

reactions that populate energies well above particle separation thresholds in the CN, i.e.

it is applicable not only to (n, γ), but also to (n, n′), (n, 2n), (n, p), (n, f) reactions (and

similarly to charged-particle-induced reactions).

Alternative indirect approaches, in particular the Oslo and β-Oslo methods [182], aim at
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Figure 8.1: Surrogate reactions approach for the simultaneous measurement of 90Zr(n, γ),
90Zr(n, n′), and 90Zr(n, 2n) cross sections. A recent inelastic scattering experiment produced
the CN up to about 30 MeV, i.e. above the two-neutron threshold. Subsequent decay
via emission of γs, one neutron, and two neutrons, produces final 91Zr, 90Zr, and 89Zr nu-
clei, respectively. The example here displays a situation in which discrete γ transitions
between low-lying states in three nuclei are used to determine the decay channel probabil-
ities. A complementary decay measurement that focuses on the detection of neutrons is
under development as well [154]. The 90Zr experiment serves as a benchmark, since multiple
neutron-induced reactions for the stable 90Zr nucleus are known from direct measurements
[263].

extracting level densities and γ-ray strength functions by populating a CN below the neutron

separation energy via a transfer reaction or β decay, respectively, and measuring the resulting

gamma emission. To separate the level density from the gamma-ray strength function, the

Oslo-type analyses require the use of additional information; typically, this includes average

neutron resonance spacings (D0) and the average radiative widths, ⟨Γγ⟩. For neutron-induced

reactions on unstable nuclei, however, these quantities are not available and are difficult to

estimate reliably. In addition, the (n, n′) and (n, 2n) reactions of interest here require CN

decay information for excitation energies well above the neutron separation energy.
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Both the surrogate method and the Oslo/β-Oslo methods require the calculation of the

formation of the CN in the desired reaction. This involves, for neutron-induced reactions,

knowledge of a neutron-nucleus optical model potential. For target nuclei near stability,

global nucleon-nucleus optical models exist [176, 287], which are expected to be reliable at

least a few isotopes away from stability. While these optical models are often applied far

from stability, little is known about how well they work in these areas of the isotopic chart

[163, 230, 134]. More theoretical work is needed to develop the next generation of optical

model potentials. These need to display the proper dispersive properties and reflect the

correct isospin dependence, and are ideally based on microscopic theories [65, 229, 300, 30].

In addition, new experiments at radioactive beam facilities are needed to constrain and test

the optical models.

Applications of the surrogate method to (n, f) reactions have a long history [80] and in

recent years scientists successfully used the approach to obtain neutron capture cross sections

[81, 236, 222]. In this chapter, we focus on possible applications to (n, n′) and (n, 2n)

reactions.

Figure 8.1 illustrates how the surrogate approach can be used to determine 90Zr(n, γ),

90Zr(n, n′), and 90Zr(n, 2n) cross sections from a surrogate inelastic scattering experiment.

For incident neutron energies below a few MeV, neutron capture and inelastic neutron scat-

tering compete with each other, above En ≈ 10 MeV, one- and two-neutron emission compete

with each other. Proton and α emission compete only weakly and have to be accounted for,

but are not shown here. In actinides, fission may compete at all energies. If the surrogate

reaction measurement is designed to cover a broad energy range, it becomes possible to de-

termine cross sections for all three neutron-induced reactions in one experiment. The decay

channel of interest is determined either by measuring γ transitions specific to one of the

three decay products, or by detecting outgoing neutrons, in coincidence with the scattered

3He particle. Experimentalists conducting these measurements have utilized discrete γ rays
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and are currently developing the capability to use neutron measurements.

8.2 The Weisskopf Ewing approximation

In principle, a careful description of the surrogate reaction mechanism is required to obtain

the cross section of the desired reaction. This is because one must account for the differences

in the decay of the CN due to the angular-momentum and parity differences in the surrogate

and desired reactions (the spin-parity mismatch). Indeed, (n, γ) reactions are very sensitive

to spin effects, particularly in nuclei with low level density [58, 79, 93]. On the other hand,

sensitivity studies for surrogate (n, f) applications have shown that neglecting the spin-

parity mismatch yields reasonable results, except at low neutron energies [307, 308, 78].

Neglecting the spin-parity mismatch between the surrogate and desired reactions is known

as the Weisskopf-Ewing approximation, and it greatly simplifies the extraction of the cross

sections from surrogate data, as only a simple theoretical treatment is required.

It is the purpose of this chapter to investigate what is required to determine reliable cross

sections for (n, n′) and (n, 2n) reactions from surrogate data. Specifically, we carry out

sensitivity studies that examine the validity of the Weisskopf-Ewing approximation for these

two reactions for several regions of the nuclear chart.

In the next section, we review the surrogate reaction formalism and provide details on the

Weisskopf-Ewing approximation. In Section 8.4, we describe our procedure for testing the

assumption of the approximation, and for investigating the consequences of applying the

approximation in situations where its assumptions are not strictly valid. In Section 8.5, we

present results for zirconium, gadolinium and uranium nuclei, which are representative of

spherical and deformed nuclei, respectively. We summarize our findings and make recom-

mendations in Section 8.6.
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8.3 Weisskopf-Ewing formalism

Here we summarize the Hauser-Feshbach formalism for calculating the cross section of a

compound-nuclear reaction and its relationship to the description of a surrogate reaction.

This clarifies how surrogate reaction data can be used to constrain calculations for unknown

cross sections. We outline the circumstances under which the Weisskopf-Ewing approxima-

tion can be used to simplify the analysis used to obtain the desired compound cross section.

8.3.1 Full modeling of the surrogate reaction

In a surrogate experiment, such as the one schematically shown in Figure 8.1, the compound

nucleus B∗ is produced by an inelastic scattering or transfer reaction d+D → b + B∗, and

the desired decay channel is observed in coincidence with the outgoing particle b at angle θb.

The probability for forming B∗ in the surrogate reaction (with specific values for Eex, J , π)

is FCN
δ (Eex, J, π, θb), where δ refers to the surrogate reaction d+D → b + B∗. The quantity

Pδχ(Eex, θb) =
∑

J,π

FCN
δ (Eex, J

π, θb) GCN
χ (Eex, J

π) , (8.1)

which gives the probability that the CN B∗ was formed with energy Eex and decayed into

channel χ, can be obtained experimentally by detecting a discrete γ-ray transition charac-

teristic of the residual nucleus (or some other suitable observable).

The distribution FCN
δ (Eex, J, π, θb), which may be very different from the CN spin-parity

populations following the absorption of a neutron in the desired reaction, has to be deter-

mined theoretically, so that the branching ratios GCN
χ (Eex, J

π) can be extracted from the

measurements.
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In practice, the decay of the CN is modeled using a Hauser-Feshbach-type decay model

and the GCN
χ (Eex, J

π) are obtained by adjusting parameters in the model to reproduce the

measured probabilities Pδχ(Eex, θb). Subsequently, the sought-after cross section for the de-

sired (neutron-induced) reaction can be obtained by combining the calculated cross sections

σCN
n+A(Eex, J

π) for the formation of B∗ (from n+A) with the extracted decay probabilities

GCN
χ (Eex, J

π), see Eq. (10.1). Modeling the CN decay begins with an initial (“prior”) de-

scription of structural properties of the reaction products (level densities, branching ratios,

internal conversion rates), plus a fission model for cases which involve that decay mode.

Finally, a procedure for fitting the parameters of the decay models, e.g. via a Bayesian

approach as introduced in Ref. [81], needs to be implemented to determine the desired cross

section, along with uncertainties.

This procedure was recently employed to determine cross sections for neutron capture on

the stable 90Zr and 95Mo isotopes (for benchmark purposes), as well as for neutron capture

on the unstable 87Y nucleus [81, 236]. It was also used to simultaneously infer the (n, γ)

and low-energy (n,f) cross sections for 239Pu [222]

Such a full treatment of a surrogate experiment is challenging: It involves taking into account

differences in the angular momentum J and parity π distributions between the compound

nuclei produced in the desired and surrogate reactions, as well as their effect on the decay of

the compound nucleus. Predicting the spin-parity distribution FCN
δ (Eex, J, π, θb) resulting

from a surrogate reaction is a nontrivial task since a proper treatment of direct reactions

leading to highly excited states in the intermediate nucleus B∗ involves a description of par-

ticle transfers, and inelastic scattering, to unbound states. In addition, a complete treatment

should include consideration of width fluctuation corrections and the possible decay prior to

reaching equilibrium.

For capture cross sections, it was shown that this type of approach is needed to account for

the spin-parity mismatch in the surrogate experiment [79, 58], while for fission applications
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it often suffices to employ the much simpler Weisskopf-Ewing or ratio approximations [78].

8.3.2 Weisskopf-Ewing approximation for neutron-nucleus reactions

and surrogate coincidence probabilities

The Hauser-Feshbach expression for the cross section of the desired neutron-induced reaction,

Eq. (10.1), conserves total angular momentum J and parity π. Under certain conditions

the branching ratios GCN
χ (Eex, J

π) can be treated as independent of J and π and the cross

section for the desired reaction simplifies to

σWE
n+A,χ(Ea) = σCN

n+A(Eex) GCN
χ (Eex) (8.2)

where σCN
n+A(Eex) =

∑
Jπ σ

CN
n+A(Eex, J

π) is the cross section describing the formation of the

compound nucleus at energy Eex and GCN
χ (Eex) denotes the Jπ-independent branching ratio

for the exit channel χ. This is the Weisskopf-Ewing limit of the Hauser-Feshbach theory [100].

The Weisskopf-Ewing limit provides a simple and powerful approximate way of calculating

cross sections for compound-nucleus reactions. In the context of surrogate reactions, it

greatly simplifies the application of the method. In section 8.3.1 we described the process

required to obtain the Jπ-dependent branching ratios GCN
χ from measurements of Pδχ(Eex).

In the Weisskopf-Ewing limit, and because
∑

Jπ F
CN
δ (Eex, J

π) = 1,

Pδχ(Eex) = GCN
χ (Eex). (8.3)

Calculating the direct-reaction probabilities FCN
δ (Eex, J, π, θb) and modeling the decay of

the compound nucleus are no longer required in this approximation. (In actual applications,
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experimental efficiencies have to be included when determining Pδχ(Eex); these are omitted

for simplicity here, but are accounted for in the analysis of surrogate experiments.)

The conditions under which the approximate expressions (8.2)) and (8.3) are obtained from

equations (10.1) and (8.1) are discussed in the appendix.

In addition, the Weisskopf-Ewing approximation can be used in situations in which the

surrogate reaction produces a spin distribution that is very similar to that of the desired

reaction, i.e.

FCN
δ (Eex, J

π) ≈ FCN
n+A(Eex, J

π) ≡ σCN
n+A(Eex, J

π)∑
Jπ′ σCN

n+A(Eex, Jπ′)
, (8.4)

since the weighting of the Jπ-dependent decay probabilities in the measured Pδχ(Eex) is the

same as the weighting relevant to the desired reaction. While some intuitive arguments

have been forwarded in favor of specific surrogate reaction mechanisms that might satisfy

the condition (8.4), not much is actually known about what spin-parity distributions FCN
δ

are obtained when producing a CN at high excitation energies (Eex > 5 MeV) via inelastic

scattering or a transfer reaction. We therefore investigate both the dependence of realistic

decay probabilities GCN
χ (Eex, J

π) on spin and parity (Section 8.4.1) and the impact of using

the Weisskopf-Ewing approximation in situations in which GCN
χ (Eex, J

π) depends on spin

and parity (Section 8.4.2).

8.3.3 Conditions of the Weisskopf-Ewing limit

As discussed in Section 8.3.2, if the decay probabilities GCN
χ (Eex, J

π) are independent of spin

and parity, or the surrogate reaction produces a compound nucleus spin distribution which

is very similar to that produced by the neutron-induced reaction, the cross section for the
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desired reaction can be obtained very simply as:

σn+A,χ(En) = σCN
n+A(Eex)P

CN
δχ (Eex), (8.5)

where PCN
δχ (Eex) is the coincidence probability determined from the surrogate measurement.

The latter of these options, the ‘serendipitous’ or ‘matching’ condition requires that FCN
δ (Jπ) ≈

FCN
n+A(Eex, J

π) holds. A comparison of FCN
n+A(Eex, J

π) for representative nuclei and energies

Eex, shown in Figure 8.2 of this chapter and in Figure 3 of Ref. [79], with realistic surrogate

spin-parity distributions, such as those shown in Figure 8.3, indicates that it is difficult to

identify and carry out a surrogate reaction experiment that can achieve this condition.

Here, we briefly review the conditions in which the decay probabilities become approximately

independent of Jπ, i.e. GCN
χ (Eex, J

π) → GCN
χ (Eex) (see also Refs. [100, 78]):

First, the energy of the compound nucleus has to be sufficiently high, so that almost all

channels into which the nucleus can decay are dominated by integrals over the level density.

In that case, the denominator in Eq. (10.2) does not include decays to discrete levels.

Second, correlations between the incident and outgoing reaction channels, which can be

formally accounted for by including width fluctuation corrections [140], have to be negligible.

These correlations enhance elastic scattering, at the expense of the inelastic and reaction

cross sections, and are most prominent at the low energies relevant to capture reactions.

Width fluctuations are negligible if the first condition (above) is satisfied.

Third, the transmission coefficients T J
χ′l′cj

′
χ

associated with the available exit channels have

to be independent of the spin of the states reached in these channels. This condition is

sufficiently well satisfied since the dependence of transmission coefficients on target spin is

very weak and, in fact, is ignored in many Hauser-Feshbach codes.
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Fourth, the level densities ρjC in the available channels have to be independent of parity and

their dependence on the spin of the relevant nuclei has to be of the form ρjC ∝ (2jC + 1).

While level densities are known to depend on parity, that dependence becomes weaker with

increasing excitation energy and is often ignored in statistical reaction calculations. In

addition, many successful applications use level densities that are parametrized in a form

that is factorized (for each parity) as:

ρjC (UC) = w(UC)
(2jC + 1)

2σ2
C

exp

(−jC(jC + 1)

2σ2
C

)
, (8.6)

where w(UC) contains the energy dependence of the level density and σC is the spin cut-off

factor. At low energies (Eex ≤ 3 MeV), typical values for σ2
C are 7-10 in the Zr region and

12-16 in the Gd region [290]. As Eex increases from a few MeV to about 20 MeV, σ2
C can

increase by a factor of 4 or more for these mass regions [291]. If we then assume that the

spins populated in the residual nucleus are small compared to the σC , the level density can

be written as

ρjC (UC) ≈
wC(UC)

2σ2
C

(2jC + 1). (8.7)

When the above conditions are satisfied, the decay probabilities from Eq. (10.2) take the

form:

GCN
χ (Eex, J

π) =

∑
lcjχjC

∫
T J
χlcjχ

wC(UC)(2jC + 1)dEχ∑
χ′l′cj

′
χj

′
C

∫
T J
χ′l′cj

′
χ
(Eχ′)wC′(U ′

C)(2j
′
C + 1)dEχ′

. (8.8)

We can carry out the sum over jC if we use the triangle rule |jχ − jc| < jC < |jχ + jc| to

obtain the identity

∑

jC

(2jC + 1) = (2jχ + 1)(2jc + 1), (8.9)
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analogously for the jχ:

∑

jχ

(2jχ + 1) = (2J + 1)(2lc + 1), (8.10)

to obtain the spin-independent decay probabilities:

GCN
χ (Eex) =

(∑
lc
(2lc + 1)Tχlc

) ∫
(2jc + 1)wC(UC)dEχ(∑

χ′l′c
(2lc + 1)Tχ′l′c(Eχ′)

) ∫
(2j′c + 1)wC′(U ′

C)dEχ′

. (8.11)

In summary, in order for the GCN
χ (Eex, J

π) to become independent of spin and parity, the

energy Eex of the compound nucleus must be high enough so that decays to the continuum

of residual nuclei dominate, and the reaction must populate spins that are small relative

to the spin cutoff parameter. Since neutron-induced reactions and surrogate reactions can

produce different spin distributions, it is possible that the conditions for the validity of the

Weisskopf-Ewing approximation are satisfied for one type of reaction, but not the other.

8.4 Assessing the validity of the Weisskopf-Ewing ap-

proximation

As discussed in the previous section, there are two scenarios in which it is clearly valid

to employ the Weisskopf-Ewing approximation in the analysis of a surrogate experiment:

(a) The decay probabilities GCN
χ (Eex, J

π) are independent of Jπ for the decay channel χ

of interest; or (b) The surrogate and desired reactions produce identical spin distributions

(“serendipitous” or “matching” approach [80]). In addition, there are some intermediate

situations in which a Weisskopf-Ewing analysis can give a good approximation to the true

cross section. For instance, it is possible that the decay probabilities GCN
χ (Eex, J

π) are only

moderately sensitive to Jπ, and that the surrogate and desired reactions populate somewhat
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similar compound nucleus spins and parities, so that violations of the Weisskopf-Ewing limit

may have little impact on the extracted cross section. Investigations into the possibility of

using the Weisskopf-Ewing approximation must therefore consider both the behavior of the

decay probabilities GCN
χ (Eex, J

π) for the decay channel χ of interest and their influence in

typical surrogate reaction analyses.

Earlier studies, which have done that, demonstrated that it is not a priori clear whether the

Weisskopf-Ewing limit applies to a particular reaction in a given energy regime [78, 93, 79, 58].

For fission applications, it was found that using the Weisskopf-Ewing approximation gives

reasonable cross sections, with violations of the Weisskopf-Ewing limit occurring primarily

at low energies (En below 1-2 MeV) and at the onset of first and second-chance fission [78].

For neutron capture reactions, however, the GCN
γ (Eex, J

π) were found to be very sensitive to

the Jπ and no circumstances have been identified so far in which the Weisskopf-Ewing limit

can be used to obtain capture cross sections [79].

In the present study we focus on the proposed use of the surrogate method to determine

(n, n′) and (n, 2n) cross sections. To study the validity of the Weisskopf-Ewing approxima-

tion, we proceed in two steps:

1. Investigation of the Jπ dependence of the decay probabilities GCN
χ (Eex, J

π) for χ = 1n

and 2n, i.e. for one- and two-neutron emission.

2. Assessment of the impact of the Jπ dependence of the GCN
χ (Eex, J

π) on cross sections

extracted by using the Weisskopf-Ewing approximation.

8.4.1 Method for determining spin-parity dependence

In the first step, we obtain the GCN
χ (Eex, J

π) from well-calibrated Hauser-Feshbach calcula-

tions that involve the relevant decay channels. We selected n+90Zr, n+157Gd, and n+238U
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as representative cases for neutron reactions on spherical and deformed nuclei, with the ura-

nium case representing a nucleus for which fission competes with particle evaporation and γ

emission.

For each nucleus, we carried out a full Hauser-Feshbach calculation of the neutron-induced

reaction and calibrated the model parameters to give an overall good fit of the known neutron

cross sections. This local optimization of model parameters allows us to isolate the spin-

parity effects from model uncertainties. Our optimization procedure accounted for pre-

equilibrium effects using the two-exciton model [172], and other competing decay channels.

This is necessary to accurately and realistically reproduce the data without biasing the

model-space parameters. In contrast, the calculations described in this and the following

section include only contributions from compound nucleus decay. This is consistent with the

goal of investigating the ability to determine the compound cross section from a Weisskopf-

Ewing analysis of surrogate data.

The calculations were carried out with Hauser-Feshbach codes Stapre [283] and YAHFC [215].

The results discussed here are obtained using the latter. We extracted the branching ratios

GCN
xn (E, Jπ) for one- and two-neutron emission (x = 1 and 2, respectively) for a range of

spin and parity values of the initially formed compound nuclei 91Zr∗, 158Gd∗, and 238U∗, and

investigated their behavior as a function of the excitation energy Eex of the CN. Our findings

are discussed in Section 8.5.1.

8.4.2 Method for demonstrating impact of spin-parity dependence

In the second step, we employ the decay probabilities GCN
xn (Eex, J

π) extracted above to

simulate the results of possible surrogate measurements. This is done by calculating the co-

incidence probabilities given by equation (8.1), which are ordinarily measured in a surrogate

experiment, by multiplying theGCN
xn (Eex, J

π) with several schematic spin-parity distributions
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FCN
δ (Eex, J

π), summed over all relevant spins and parities:

P sim
xn (Eex) =

∑

Jπ

FCN
δ (Eex, J

π)GCN
xn (Eex, J

π). (8.12)

We normalized the distributions
∑

Jπ F
CN
δ (Eex, J

π) = 1 and did not consider angle de-

pendencies. Multiplication of these simulated coincidence probabilities P sim
xn (Eex) by the

CN-formation cross section σCN
n+A(Eex) then yields cross sections σWE

(n,n′)(En) and σWE
(n,2n)(En)

that correspond to a Weisskopf-Ewing analysis of the simulated surrogate measurement:

σWE
(n,xn)(En) = σCN

n+A(Eex)P
sim
xn (Eex) (8.13)

for x = 1, 2. In Section 8.5.2, we compare the so extracted cross sections for various spin-

parity distributions FCN
δ to each other and to the known desired cross sections.

To select relevant Jπ distributions for our study, we briefly summarize what is known about

Jπ distributions that typically occur in neutron-induced as well as surrogate reactions.

Spin-parity distributions in neutron-induced reactions.

Figure 8.2 shows spin-parity distributions relevant to neutron-induced reactions, as predicted

by calculating the compound-formation cross sections for various spins and parities, at the

energies indicated. For Zr, a spherical optical-model calculation is sufficient, while rare earths

and actinides require coupled-channels treatments, which can be carried out by suitably

deforming a spherical optical model, see Ref. [209, 210], or by using a coupled-channels

scheme that is specifically adjusted for the nucleus or nuclear region of interest, see Refs. [267,

268, 196, 66, 79]. We have used the Koning-Delaroche optical model [176] for Zr and Gd,

and Soukhovitskii [267, 268] for U.
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For the (n, n′) and (n, 2n) applications considered here, neutron energies between about 5

and 20 MeV are relevant. The examples selected here involve target nuclei with low spins

(3/2− for 157Gd and 0+ for the even-even 90Zr and 238U nuclei), so the spin-distributions are

closely connected to the angular-momentum transferred in the reaction.

Panel (a) shows the population of positive and negative parity states for the n+90Zr example,

for several neutron energies En. At En ≈ 1 MeV, p-wave capture dominates [93] and produces

a distribution that favors negative-parity states within a narrow range of spins. As the energy

increases, contributions from higher partial waves result in smoother distributions, centered

at larger angular momentum values, and with a more equal partition between positive and

negative spins.

Panels (b), for n+157Gd, and (c), for n+238U, are representative of the situations one en-

counters for deformed rare-earth and actinide nuclei, respectively. Overall, the distributions

are smoother for the deformed nuclei than for the Zr case and involve larger values of angu-

lar momentum. With increasing En, the positive and negative parity distributions become

similar, while at low energies, En < 1 MeV, the distributions can look quite different from

each other [79].

Spin-parity distributions in surrogate reactions.

The findings of the following illustrate that it is not correct to assume that the spin-parity

distribution of a compound nucleus produced in a surrogate reaction is given by the spin and

parity behavior of the level density for that nucleus. The reaction mechanism plays a critical

role in selecting which states act as doorways into the compound nucleus. The population

of these doorway states determines the Jπ distribution for the surrogate reaction.

Figure 8.1 illustrates schematically the excitation energies that a surrogate reaction has

to populate in order to produce decay information relevant to (n, γ), (n, n′) and (n, 2n)
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(c) n + 238U

Figure 8.2: (Published in [116].) Spin-parity distributions for compound nuclei produced
in neutron-induced reactions, for several neutron energies En. Solid bars are positive- and
hatched bars are negative-parity probabilities. Panels (b) n+157Gd and (c) n+238U are rep-
resentative of deformed rare-earth and actinide nuclei, respectively, while panel (a) presents
the case of a near-closed shell nucleus, n+90Zr. Neutron energies below 1 MeV are important
for neutron capture reactions [79]. For the (n, n′) and (n, 2n) applications considered in this
chapter, neutron energies between about 5 and 20 MeV are relevant.

reactions. For neutron capture, Eex values between about 5 and 10 MeV have to be reached,

for inelastic scattering, energies between approximately 10 and 20 MeV are relevant, and for

(n, 2n) reactions, Eex = 20-30 MeV are important. These energy regimes exhibit high level
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densities, and transfer reactions aiming to populate these energy ranges are very different

from those used for traditional nuclear structure studies. It should therefore not surprise that

standard DWBA or even coupled-channels calculations cannot be used to reliably calculate

the direct (surrogate) reactions that produce such states.

Predicting the spin-parity distributions for these higher excitation energies requires taking

into account both the surrogate reaction mechanism and the nuclear structure at these higher

energies. For instance, to calculate the Jπ population in the compound nucleus 91Zr∗ that was

produced via the 92Zr(p,d) pickup reaction in a recent surrogate experiment with Ep = 28.5

MeV [81], it was necessary to consider the structure of deep neutron hole states, which exhibit

considerable spreading [70, 80]. Furthermore, two-step mechanisms involving (p, d′)(d′, d)

and (p, p′)(p′, d) combinations of inelastic scattering and pickup contribute significantly to

the reaction. These have a strong influence on the final spin-parity distribution in 91Zr∗ [81],

which is shown for Eex = 7.25 MeV in Figure 8.3(a). The influence of the reaction mechanism

is reflected in the differences between the predicted spin-parity population (bars) and the

spin distribution in a representative level density model at the same excitation energy (green

curve).

Around the neutron separation energy, i.e. in the energy region of interest to neutron capture,

the angular behavior of the (p,d) cross section was found to be fairly structureless, and the

Jπ distribution was seen to vary little over several MeV around Eex = Sn(
91Zr) = 7.195

MeV [72]. These observations reflect the fact that the surrogate reaction does not produce

a simple single-particle excitation, but populates specific doorway states which mix with

neighboring complex many-body states to form the compound nucleus.

The (d, p) transfer reaction, which – at first glance – seems to be a well-matched surrogate

for neutron-induced reactions, turns out to involve non-trivial reaction mechanisms as well.

The case of interest is that in which the deuteron breaks up in the combined Coulomb-

plus-nuclear field, and the neutron is absorbed while the proton escapes and is observed
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in a charged-particle detector. Calculating the resulting compound nucleus Jπ distribution

requires a theoretical description that separates elastic from nonelastic breakup and, in

principle, one also needs to separate out inelastic breakup, rearrangement, and absorption.

This challenge has generated strong interest in developing a more detailed formalism for

inclusive (d, p) reactions [187, 188, 225, 50, 226]. This formalism was used to calculate the

Jπ distribution relevant to the 95Mo(d, p) surrogate reaction described in Ref. [236]. The

calculated Jπ distribution, for excitation energies near the neutron separation energy in 95Mo

is shown in Figure 8.3(b). Here, again, the predicted spin-parity distribution (bars) does not

follow the distribution of spins that are expected to be available at this energy, based on a

representative level density model (green curve).

Inelastic scattering with charged light ions is a third type of reaction that has been employed

in surrogate reaction measurements [262, 242, 153, 216, 222]. From these experiments, as

well as from traditional studies of giant resonances [28, 35, 194], it is known that inelastic

scattering can produce a compound nucleus at a wide range of excitation energies. There is

evidence that this type of reaction is also likely to produce Jπ distributions that are broad

and may be centered at angular momentum values of 5-10 h̄ [262, 222]. Furthermore, for

inelastic α scattering, a staggering of even and odd parity populations is expected, since the

reaction populates predominantly natural-parity states.

Schematic spin-parity distributions

In order to investigate the impact of a spin-parity mismatch between the desired and sur-

rogate reaction on the cross section obtained from a Weisskopf-Ewing analysis, we employ

the schematic distributions FCN
δ (Jπ) shown in Figure 8.4. We include distributions that

are centered at both low and high angular-momentum values and allow for more spread-out

distributions in the latter case. The distributions centered at low J values allow us to in-

vestigate situations in which the surrogate reaction populates lower spins than the desired
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Figure 8.3: (Published in [116].) Spin-parity distributions (bars) near the neutron separation
energy, as predicted for use with specific surrogate experiments. Solid bars are positive-
parity and hatched bars are negative-parity probabilities. Panel (a) shows the half-integer
J distribution in the compound nucleus 91Zr∗ resulting from a 92Zr(p,d) reaction with Ep =
28.5 MeV at Eex = 7.25 MeV [81]. Panel (b) shows the integer valued result for 95Mo(d, p)
surrogate reaction with Ed = 12.4 MeV at Eex = 9.18 MeV [236]. In both cases, the predicted
spin-parity distributions were used in combination with models for the decay of the respective
compound nuclei, leading to the successful determination of (benchmark) neutron capture
cross sections. For comparison, the spin distribution calculated from an energy-dependent
level density model, which assumes equal parity distribution, is given by the green solid
curve [291].

reaction. Variations in parity are not explicitly considered for this part of the sensitivity

study, as we found the decay probabilities to be less sensitive to parity than to variations in

spin.

The distributions shown will be combined with the decay probabilities GCN
χ (Eex, J

π) ex-

tracted from our calibrated Hauser-Feshbach calculations (see Section 8.5.1) to simulate a

range of possible surrogate data Pδχ(Eex, θ) using Eq. (8.1). For simplicity, we will neglect

the energy dependence of the Jπ distributions. This should be a reasonable approach for

our sensitivity studies, as recent results indicate that these distributions vary slowly with

energy [236, 81].
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Figure 8.4: (Published in [116].) Schematic spin distributions employed in the current study.
Each is of the form F (J, µ) ∝ N (m = µ, sd =

√
µ), where N is a normal distribution and

mean spin µ is indicated in the legend. The spin values J are either integer or half-integer,
for even-A and odd-A nuclei, respectively, and equal probability is assigned to positive and
negative parity states.

8.5 Results

We first demonstrate that the one- and two-neutron decay probabilities depend on the spin,

and to a lesser extent, the parity of the compound nucleus. The dependence is strongest

at low energies and for spherical nuclei, and lesser at higher energies and for deformed

nuclei. Then, we show the impact of the Weisskopf-Ewing approximation on the outcome of

simulated surrogate experiments, giving insight into the effect that the spin dependence has

on predicted cross sections.

8.5.1 Decay probabilities for representative nuclei

GCN
xn (Eex, J

π) for one- and two-neutron emission from the compound nucleus 91Zr∗ are shown

in Figure 8.5, for both positive and negative parities and a variety of spins. The behavior
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of GCN
xn (Eex, J

π) just above the CN separation energy, corresponding to Eex = Sn(
91Zr)

= 7.194 MeV, is governed by the interplay of the neutron-transmission coefficients and the

low-energy structure of the residual nucleus 90Zr which is reached by one-neutron emission.

The situation is schematically illustrated in Figure 8.1. Due to the shell structure of the

nucleus, the low-energy spectrum of 90Zr is very sparse, with the first excited state occurring

at 1.76 MeV. Since both the ground state and the first excited state have Jπ = 0+ and s-

and p-wave neutron emission dominates at low energies, the residual nucleus can only be

reached from low-spin states in the compound nucleus 91Zr∗. This suppression of neutron

emission from all but the lowest spin states in 91Zr∗ is well known from earlier studies of

neutron capture reactions, and a dependence on parity is observed as well [93, 80, 37].

As the excitation energy in 91Zr∗ increases, additional states in the residual nucleus become

accessible and the decay probabilities GCN
xn (Eex, J

π) for higher J values take on non-zero

values. In the region between Eex = 15 − 20 MeV, the one-neutron emission probability is

essentially unity, because of the weakness of competing decay channels.

In the energy region between 20 and 27 MeV, we observe the transition from predominantly

one-neutron emission to two-neutron emission. We see significant dependence of the branch-

ing ratio on the spins of the compound nucleus for J ≥ 6.5, while there is much weaker

dependence for J ≤ 6.5. The decay probabilities are not very sensitive to parity.

Figure 8.6 shows the analogous one- and two-neutron emission probabilities for the decay

of the rare-earth nucleus 158Gd. Here, the dependence on spin is weaker than in the Zr

case, especially near the one-neutron separation energy of the compound nucleus. This is

primarily due to the significantly higher level density in the gadolinium nuclei: While the

first excited state in 90Zr is at 1.76 MeV, there are 15 levels below 0.5 MeV in 157Gd. In

general, the level densities in deformed nuclei are much higher, and the sensitivity of the

compound nucleus decays to spin and parity is reduced. This is also true at higher energies:

The competition between one- and two-neutron emission shows significant dependence on
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Figure 8.5: (Published in [116].) robabilities for neutron emission from the 91Zr∗ nucleus, as
function of excitation energy, for various Jπ values of the compound nucleus. Both decay
channels exhibit a strong dependence on the spin of the compound nucleus. The variance is
seen to be greatest at the onset of one-neutron emission, near Eex = Sn(

91Zr) = 7.194 MeV.

the compound-nuclear spins, although the sensitivity is not as strong as in the zirconium

case.

Figure 8.7 shows the one- and two-neutron emission probabilities for the 239U nucleus. Like

201



0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(a) Gn(E, J )

J = 0.0
J = 3.0
J = 6.0
J = 9.0
J = 12.0

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

(b) Gn(E, J + )

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(c) G2n(E, J )

5 10 15 20 25 30
Excitation energy of the compound nucleus (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(d) G2n(E, J + )

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.6: (Published in [116].) Probabilities for one-and two-neutron emission from the
158Gd∗ nucleus, as function of excitation energy, for various Jπ values of the compound
nucleus. The decay probabilities for both channels are seen to depend on the angular-
momentum states populated in the compound nucleus, at the onset of one-neutron emission
near Eex = Sn(

158Gd) = 7.937 MeV and in the transition region where the two-neutron
channel opens.

the gadolinium case discussed, the uranium nuclei are deformed and have a much higher

level density than the zirconium nuclei: 238U has 16 levels below 1 MeV. The transition from
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one-neutron to two-neutron emission, which lies near the threshold for second-chance fission,

is also sensitive to the angular momentum population of the compound nucleus. Multiple

channels compete at all energies considered and no clear plateaus for the probabilities emerge,

unlike in the other cases considered.
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Figure 8.7: (Published in [116].) Probabilities for one-and two-neutron emission from the
239U∗ nucleus, as function of excitation energy, for various Jπ values of the compound nucleus.
We observe a strong spin- and parity-dependence of GCN

1n (Eex, J
π) near Eex = Sn(

239U) =
4.806 MeV, which lies just below the threshold for fission.
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For all three cases discussed, we have observed that there is enhanced sensitivity of the

neutron emission probabilities near the thresholds. It can therefore be expected that a

failure to account for the spin-parity mismatch in the analysis of surrogate reaction will

result in extracted (n, n′) and (n, 2n) cross sections that do not reflect the true threshold

behavior. This will be investigated in more detail in the next subsection.

8.5.2 Impact of spin dependence of 1n and 2n decay probabilities

In the previous section, we observed that the one- and two-neutron decay probabilities show

a significant dependence on the spin of the compound nucleus and a lesser dependence on

parity. Here we study the impact of this dependence on cross sections obtained under the

assumption of the validity of the Weisskopf-Ewing approximation. We use the schematic spin

distributions FCN
δ (Eex, J

π) discussed in Section 8.4.2. They are conveniently parameterized

as discretized normal distributions with mean µ and variance σ2 = µ:

FCN
δ (Eex, J

π) ∝ N (m = µ, sd =
√
µ). (8.14)

The distributions are cut off above J = 50 and normalized to unity. For the even-even

compound nucleus 158Gd∗, we consider the five distributions, µ = 1, 3, 5, 7, 9, shown in

Figure 8.4; for the odd nuclei 91Zr∗ and 239U∗ we use µ = 1.5, 3.5, 5.5, 7.5, and 9.5.

Results for 90Zr(n, n′) and 90Zr(n, 2n) cross sections obtained from a Weisskopf-Ewing anal-

ysis of the simulated surrogate data are shown in Figure 8.8. As expected, the threshold

regions for both reactions are particularly sensitive to spin effects. At the onset of inelastic

scattering, it is not possible to obtain a reliable (n, n′) cross section; both shape and mag-

nitude show a very large variance. Different spin distributions give the same magnitude of
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this cross section in the region of the plateau, but there is again significant uncertainty in

the region where the two-neutron channel opens up.
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Figure 8.8: (Published in [116].) Cross sections for (a) 90Zr(n, n′) and (b) 90Zr(n, 2n), ob-
tained from simulated surrogate data, using the Weisskopf-Ewing assumption. The under-
lying schematic spin-parity distributions used are indicated in the legend. The shape of the
transition depends clearly on which simulated surrogate data is used, with the cross sec-
tions varying by ±30% at about En = 15 MeV. The 90Zr(n, 2n) cross section varies by ±4%
near its maximum, which is located at about En = 20 MeV. For comparison, experimental
data [312] for 90Zr(n, 2n) is shown in panel (b). The only data for the inelastic scattering
case is for scattering to an isomeric state.

Given the findings in the previous section, we expect the situation to be better for the

gadolinium case, shown in Figure 8.9. While the 157Gd(n, n′) cross section near the onset

of inelastic scattering varies less than the analogous zirconium cross section, it is still quite

unreliable. The value of the 157Gd(n, n′) cross section shows no dependence on the simulated

spin-parity distribution in a region around En = 5 MeV. Not surprisingly, the Weisskopf-

Ewing approximation for different sets of simulated surrogate data yields results that are
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consistent with each other in an energy regime where there is little to no competition from

other decay channels. The maximum for the 157Gd(n, 2n) cross section occurs near En = 15

MeV, where the different sets of surrogate data differ from each other by about 4%, which is

an uncertainty that is similar to the error bands obtained from direct measurements. Overall,

it appears that the Weisskopf-Ewing approximation might provide a very rough estimate of

the (n, 2n) cross section of a rare earth nucleus.
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Figure 8.9: (Published in [116].) Cross sections for 157Gd(n, n′) and 157Gd(n, 2n), obtained
from simulated surrogate data, using the Weisskopf-Ewing assumption and several schematic
spin-parity distributions. In the energy region where the transition from one- to two-neutron
emission occurs, the cross sections exhibit greater uncertainty, varying by ±57% for (n, n′)
and ±13% for (n, 2n) at En = 10 MeV. The maximum for (n, 2n) near En = 15 MeV, the
variation is ±62% for (n, n′) and ±1% for (n, 2n). For comparison, directly measured data
[312] is shown for the 157Gd(n, 2n) cross section; no data are available for the inelastic cross
section.

For the uranium case, shown in Figure 8.10, we observe a further decrease in sensitivity to

differences in spin. Even so, the shape of the 238U(n, n′) cross section cannot be reliably ex-
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tracted at low energies. With increasing energy, the Weisskopf-Ewing approximation appears

to become more reliable. In fact, the 238U(n, 2n) cross section obtained from the simulated

data are in good agreement with available directly-measured data. At energies above 18

MeV, however, where no data exists, we see deviations from the ENDF evaluation[45]. We

attribute this to the neglect of pre-equilibrium contributions, which are included in evalu-

ations but neglected in standard WE analysis. We attribute the systematic discrepancy of

the simulated WE prediction relative to the evaluated cross section [45] to pre-equilibrium

contributions, which are not included in the WE analysis. Overall, it appears that the

Weisskopf-Ewing approximation might provide a reasonable estimate of the (n, 2n) cross

section of an actinide nucleus if pre-equilibrium can be taken into account.
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Figure 8.10: (Published in [116].) Cross sections for (a) 238U(n, n′) and (b) 238U(n, 2n),
obtained from simulated surrogate data, using the Weisskopf-Ewing assumption and several
schematic spin-parity distributions. The 238U(n, 2n) results agree reasonably well with the
existing data [312]. For the inelastic case, data is only available data for low energies, where
direct reaction mechanisms are known to contribute.
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Overall, we find that the Weisskopf-Ewing approximation can provide rough first estimates

for the (n, 2n) cross sections of nuclei with large level densities, such as rare earth and actinide

nuclei, while the low-energy behavior is much less reliable. Specifically, near thresholds there

is clearly increased sensitivity of the decay to the underlying spin-parity distribution in the

compound nucleus. As a result, the shape of the extracted cross sections do not reproduce

the true cross sections very well. Notably, the Weisskopf-Ewing approximation fails at the

onset of one-neutron emission. This is in line with earlier findings about the limitations of

this approximation for neutron capture cross sections.

In addition, it should be stressed that we have focused on the compound contributions to the

(n, n′) and (n, 2n) cross sections here. For inelastic scattering, it is well known that direct

(pre-equilibrium) mechanisms provide significant additional contributions, which are not

considered here. These contributions are known to affect the spins populated in the target

nucleus [62, 169] and will exacerbate the deficiencies of the WE approximation. These have

to be calculated separately and added to the cross section, similar to what is done for the

direct-reaction component in an evaluation. Unfortunately, for many nuclei there is little

data available for neutron inelastic scattering, and the calculations are challenging, so this

reaction channel requires additional studies, both experimentally and theoretically.

8.6 Outlook

We have investigated the potential use of the Weisskopf-Ewing approximation for deter-

mining (n, n′) and (n, 2n) cross sections from surrogate reaction data. Earlier work for

neutron-induced fission and radiative neutron capture demonstrated that this approxima-

tion yields reasonable approximations for the fission cross sections, but fails for capture,

making it necessary to employ more detailed theoretical modeling in the latter case.
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We modeled the nuclear structure properties that determine the decay of a compound nucleus

via 1n and 2n emission, as well as the combined effect of the nuclear structure and the

surrogate reaction mechanisms on the cross-section results that one obtains from a Weisskopf-

Ewing analysis of the indirect data. We found that the Weisskopf-Ewing approximation fails

to give consistent cross section shapes in the presence of a spin-parity mismatch between the

desired and surrogate reactions. The outcomes are worse for nuclei with low level density,

i.e. for lighter nuclei and for those in regions near closed shells. While rough estimates for

the cross sections might be obtained for (n, 2n) reactions on well-deformed rare-earth and

actinide nuclei, we find that nuclei in the mass-90 region are more sensitive to the effects

of spin and parity. Furthermore, inelastic neutron scattering cross sections are found to be

quite sensitive to angular-momentum effects and thus require a detailed treatment of the

reaction mechanism, similar to that recently used for extracting capture cross sections from

surrogate data.

Suggestions to find a surrogate reaction that approximates the spin-parity distribution rele-

vant to the desired reaction are well-motivated, as the use of the Weisskopf-Ewing approx-

imation greatly simplifies surrogate applications. However, not enough is known about the

angular momentum and parity of the compound states that are populated in a surrogate re-

action to plan an appropriate experiment. Recent work has demonstrated that the surrogate

reactions that produce a compound nucleus at the high energies of interest involve higher-

order reaction mechanisms, which render inadequate the type of simple angular-momentum

estimates that are often used in traditional nuclear structure studies. It is also not neces-

sarily true that a surrogate reaction produces spins in a compound nucleus that are higher

than those relevant to neutron-induced reactions. This means that in order to achieve cross

section results with appropriate shapes and errors less than about 30%, surrogate reaction

data will need to be combined with full modeling of the reaction mechanism, as described

in section 8.3.1.
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In light of our findings that the Weisskopf-Ewing approximation is insufficient for determining

(n, n′) and (n, 2n) cross sections, we believe that further development of surrogate reaction

theory is important for addressing existing nuclear data needs. Inelastic scattering (n, n′)

reactions in particular are poorly constrained by direct measurement techniques. Alternative

indirect methods [183] do not address (n, n′) and (n, 2n) reactions. Recent surrogate reaction

applications to neutron capture have demonstrated how to proceed to accurately extract cross

sections from surrogate data in situations where the Weisskopf-Ewing approximation fails

[81, 236, 222]. Given the limited utility of the Weisskopf-Ewing approximation for neutron

induced one- and two- neutron emission reactions, we conclude that additional developments

are needed in order to describe the relevant reaction mechanisms, such as those involved in

the (3He,3He′) scattering experiment described in Figure 8.1.
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Chapter 9

Computational Model Monte Carlo

Sampler (COMMCAS)

Markov Chain Monte Carlo (MCMC) methods are a subset of Monte Carlo methods: prin-

cipally they are methods to sample probability distribution functions. To apply MCMC to

the problem of fitting model parameters to data, the probability distribution that is sampled

is the posterior probability distribution for some observable associated with the data. By

defining a map between the observable and the parameters, e.g. by some physical parametric

model, each MCMC sample of the observable posterior corresponds to a sample from the

posterior on the parameters.

In this chapter I will introduce the probability theory necessary for parameter inference

and uncertainty quantification, then I will present a code I have developed for performing

such calculations with general computational models. This code will be applied to practical

problems in the chapters that follow.

211



9.1 Forward and Inverse UQ Propagation

Uncertainty propagation (UQ) with Monte Carlo sampling is a method to inform uncertainty

of one variable y using uncertainty of another variable θ. This is simple if we assume some

physics model M ,

y =M(θ|q), (9.1)

and that the probability distribution function (PDF) p(θ) is known. One can simply draw

independent samples θi ∼ p(θ) and evaluate yi =M(θi|q) in order to generate samples of y.

The q indicates that M could be a function of other variables which are held fixed.

If, on the other hand, we have a PDF for y and want to find the corresponding PDF for θ,

then we have an inverse problem. For ‘interesting’ relationships y = M(θ|q), determining

the inverse is non-trivial. In such cases, we can use Markov Chain Monte Carlo (MCMC)

to sample some probability distribution for y via Bayes’ Theorem (e.g. with a likelihood

function defined by experimental uncertainties of measured observables) and propagate that

uncertainty backwards into the probability distribution for a set of physics model parameters

θ.

9.1.1 Bayes theorem

Bayes’ theorem defines a posterior probability distribution for a random variable y by relating

some prior probability distribution p to observations D of the random variable:

P (y|D) =
L(D|y)p(y)∫
L(D|y)p(y)dy , (9.2)

where L defines the likelihood of the observations given a certain value of y.
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In the context of a physical parameteric model, y = M(θ|q) for which we wish to solve the

inverse problem, Bayes theorem takes the form:

P (θ|D) =
L(D|θ)p(θ)∫
L(D|θ)p(θ)dθ , (9.3)

where D remains observations of the variable y, now related by y = M(θ|q) to the variable

of interest θ, the model parameters. The likelihood function is where the model enters:

L(D|θ) = L̃(D|M(θ|q)). (9.4)

9.1.2 Standard likelihood function

The likelihood function defines the probability of the observations D given a particular value

of the random variable y. The experimental data we deal with are typically reported in

terms of a mean value, and an uncertainty: di = µi ± σi. This uncertainty is taken to

represent the diagonal matrix element of a covariance matrix. Such a covariance encodes

both statistical uncertainty and irreducible systematic uncertainty due to experimental or

physical constraints.

Once a set of means and a covariance matrix is defined, we assume that they correspond to

a multivariate gaussian probability distribution:

P (y|D : µ,Σ) = N (y;µ,Σ) ≡ exp
(
−1

2
rTΣ−1r

)
√
(2π)N |Σ|

, (9.5)

where r = y − µ. We have made the switch to vector notation to indicate that we are

generally dealing with a set of observable data points. Usually these are observables of the

same quantity measured at different system energies, e.g. a cross section at different incident

energies. The covariance matrix Σ describes how the various observations vary with respect
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to one another. Until we have complete covariance data from experimental sources, this is

a diagonal matrix where the diagonals are the experimental errors, δ2y (δy is the standard

deviation: experimental error bar). Note, however, that the underlying independent variable

such as the incident energy is not encoded in this framework. At best, observables adjacent

in energy are adjacent in the covariance matrix.

Once again, as we introduce a parametric model, we substitute y = M (θ|q), to define our

standard inverse-problem (log) likelihood function as the probability that a given model

evaluation is consistent with the experimental data D:

logL(D : µ,Σ|θ) = −1

2
(rTΣ−1r + log |Σ|+ k log 2π), (9.6)

where r = µ−M(θ|q) is the residual between the data y and the modelM . The dimension-

N array r and dimension-N ×N array Σ include all data for all observables. The parameter

vector θ is dimension k.

9.1.3 Including unaccounted for uncertainties

There are two common approaches for dealing with inconsistent experimental uncertain-

ties by including other ‘unaccounted-for’ sources of uncertainties. The first is by adding a

meta-parameter which may renormalize certain datasets or observables with respect to one

another. The second is to include meta-parameter for each observable which models an un-

known source of uncertainty. This is discussed in [230]. These “unaccounted-for uncertainty

parameters” (UAUP) δuaup add-in-quadrature with the experimental uncertainties δexp in the

covariance matrix:

∆2 = δ2exp + δ2uaup, (9.7)

214



where ∆2 are the diagonal elements of the covariance matrix Σ. This approach may help

soften issues coming from underestimated experimental uncertainties, or equivalently, un-

derestimated theoretical uncertainties. However, it still does not address the issue of the

relative weighting of multiple data sets.

9.1.4 Inverse to Forward UQ Propagation for the Surrogate Reac-

tion Method

This is an extension of the idea of simple inverse UQ propagation. In the inverse-to-forward

case, we assume that we have a complementary variable(s)

z = G(θ|q′), (9.8)

where G is some other physics model that depends on the same variables θ, which we now

constrain with the inverse UQ propagation of y = F (θ|q). Here, q′ could be the same or

different from q. To obtain samples of z, we first perform simple inverse UQ propagation to

obtain p(θ|q), then we sample zi = G(θi ∼ p(θ|q)|q′).

9.1.5 Metropolis Hastings for Uncertainty Quantification

In physics we often are concerned not only with a single value of a variable x, but with

the probability of observing an aribtrary value. This is best described in the language

of probability theory as the probability density function (PDF) of the random variable x.

Formally,

P (a < x < b) =

∫ b

a

f(x)dx (9.9)

215



gives the probability of observing a value of x between a and b. And so f(x) is the probability

density function. Still, it is common to casually refer to f(x) as the probability of a certain

value of x.

For a sufficiently complex PDF, a closed functional form may not exist, and yet it is still

possible to generate samples from that distribution:

Xi ∼ f(x). (9.10)

And so, by generating a large number of samples {X1, X2, ..., Xn}, one can generate a his-

togram approximation of the PDF f(x).

In this way, Monte Carlo methods can be used to approximately evaluate Bayes’ theorem

even when the integral of the prior and likelihood functions may not exist in closed form.

Markov Chain Monte Carlo (MCMC) is a Monte Carlo method [179] for generating samples

Xi of an unknown distribution f(x). It begins with a random number which initiates a

chain of random numbers stochastically generated by a Markov process. A Markov process

being one in which subsequent members of the chain generated depend only on the previous

sample. The usefulness of MCMC comes from the fact that it only requires the ability to

evaluate some probability density function which is proportional to f(x); we don’t need to

be able to draw samples directly from f . This is ideal for drawing samples from a posterior

distribution given by Bayes’ theorem:

P (x|D) =
L(D|x)p(x)∫
L(D|x)p(x)dx, (9.11)

since it means we don’t need to evaluate the integral for the normalization constant (the

denominator). Instead, we only need to be able to compute the numerator given some data

D and a proposal for the random variable x.
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The Metropolis Hastings algorithm is perhaps the simplest implementation of the decision

step.

Algorithm 3 Metropolis Hastings. To sample from a density f(x) known up to a normal-
izing constant, initialize with some X0 for which f(X0) > 0.

for t = 0, ..., T − 1 do
Y ∼ q(y|Xt) ▷ Y is drawn from the proposal density
U ∼ Uniform(0, 1)

α(a, b) = min
(

f(b)q(a,b)
f(a)q(b,a)

, 1
)

Xt+1 ←
{
Y, U ≤ α(Xt, Y )

Xt, otherwise

end for

This algorithm generates samples Xt from the PDF f(x), i,e, Xt ∼ f(x). The PDF α(x, y) is

the acceptance probability, determined from the ratio of the target density f evaluated at the

current and proposal states, weighted by q. An important requirement of the MH algorithm

is that we know the form of f up to a constant, so that we can carry out this evaluation.

q(x, y) is the proposal density function, from which the proposal state Y is drawn. This is

a local probability density function centered around the current state Xt. The fact that the

proposal state Y is sampled from a PDF centered on the current state Xt is what results in

a Markov Process.

9.2 Computational Model Monte Carlo Sampler

I have developed a code called the computational model Monte Carlo sampler (COMMCAS)

for the Nuclear Data and Theory group at Lawrence Livermore National Laboratory (LLNL)

over the past 5 years. In that time, there have been contributions from two former graduate

students (now graduated). The majority of the machine learning work was conducted by

graduate students Kirana Bergstrom and Emily Shinkle. The more recent integration with

Python computational models is due to postdoc Simone Perrotta.
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Figure 9.1: Data flow diagram of the COMMCAS code. Sampling of a prior distribution,
and computing the predictive of a posterior distribution are done with the MC loop, while
sampling of a posterior distribution are done with the MCMC loop.

COMMCAS is both a Monte Carlo sampler and a general computational model Python-

wrapper. It uses emcee [91] to sample the input space of parametric computational models

and compare to experimental measurements of model observables.

It works with essentially any computational model that meets these criteria:

• Runs on Linux

• Reads its input parameters from a file or Linux redirect
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• Writes its results to one or more files in columnated format

or, is a Python function with the appropriate argument signature.

When dealing with linux programs, COMMCAS works by modifying a user-provided tem-

plate file, running the computational model with system calls, and reading the specified

output files. Essentially, it acts as a Python wrapper for generic computational models.

With light modification, it can also work with any model with a Python interface.

COMMCAS can sample either a prior distribution of model parameters using Monte Carlo

(MC) sampling, or it can sample a Bayesian posterior distribution using Markov chain Monte

Carlo (MCMC). In the case of MC, one propagates the uncertainty in the parameter space

into uncertainty in the observable space. In the case of MCMC, the likelihood function of

Bayes’ theorem is defined by experimental uncertainties provided as part of the user-defined

experimental measurement data.

It can therefore be used to "fit" a model to experimental data by sampling posterior dis-

tribution of the model observables, thus propagating the observable uncertainty into model

parameter uncertainty.

A key feature of COMMCAS is the ability to track multiple observables simultaneously. The

idea being that a single model calculation generates multiple observables of interest which

may be correlated, but conceptually distinct.

Additionally, COMMCAS has the option to train a neural network to serve as an emulator

for a unix model. This is ideal if the unix function is computationally expensive and the

parameter space is relatively narrow. Once trained, this network can be called in place of the

unix function to reduce runtime for other types of sampling. This technique for accelerating

MCMC has been employed previously by others, for example Zou et al. [314], Wang et

al. [292], and Park et al. [220].
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9.2.1 Log-likelihood function

The log likelihood function used by COMMCAS is:

logL(D : µ,Σ|θ) = −1

2
(rTΣ−1r + log |Σ|+ k log 2π),

where r = µ −M (θ, x|q) is the residual between the data means µ and the parametric

model M . D is the experimental data defined as pairs of means and standard deviations:

(µi, σi). These values make up the vector µ and covariance matrix Σ. The covariance matrix

is rescaled (and optionally shifted) so that the diagonals are

Σii = (k/N)(σ2
i + δ2ui).

Here k is the number of parameters θi in the model and N is the number of data points

(µi, σi). The unaccounted-for uncertainties δ2u, if UAUQ parameters uu are included, are

δui = uu(µi +M(θ, xi))/2.

9.2.2 Python interface

COMMCAS can be imported as a Python package and run from within your own Python

script. As of December 2022, this option has only been tested with MCMC sampling of a

Unix executable computational model.

Here is an example where we construct a COMMCAS run. First, we import the necessary

packages, including commcas by pointing to the directory where its source code is located.
1 import sys
2 sys.path.append("/usr/workspace/pints/shared/commcas/src")
3 import commcas
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If you are using parallel computing resources, you should add the following line directly after

you import commcas:
1 pool = commcas.readypool(num_threads =36)

Here, num_threads is the number of multiprocessing threads to use. If you are using MPI,

this parameter is not used and instead an MPI Pool is created automatically.

Next, we set the path to the computational model code to be executed:
1 modelname = "~/bin/YAHFC.x"

The next step is to create ‘Observable‘ objects. These define the observables which are

computed by the model code. If one provides a corresponding ‘datafile’, then this observable

is used to compute the likelihood function. A data file is not required for all observables –

those without will be tracked but will not contribute to the likelihood function.
1 observable1 = commcas.observables.Observable(
2 name="Gamma_0719_2 +2_2+1",
3 outfile="96Mo/Pop/g/gammas/Channel_g_Gammas_i003f001_Egam_0 .7196.

dat",
4 outcoly=6,
5 datafile="./data/Z_Mo96_gam_prob_0719keV.g91",
6 dataformat="1x2y",
7 fitmin=None ,
8 fitmax=None ,
9 contributes=True ,

10 xsigma =0.08)

commcas.observables.Observable Arguments

name (string) is the name of the observable. Any normal string without spaces is allowed,

but there are some constraints if you are using a Python functional model rather than a

Unix executable.

outfile (string or None) file path/name generated by the executable model, relative to

template directory. None if using functional model.
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outcoly (integer) the number of the column (0-indexed) where the observable can be found

in the ‘outfile‘ file. None if using functional model.

outcolx (integer) the number of the column (0-indexed) where the observable’s x values can

be found in the ‘outfile‘ file. None if using functional model.

datafile (string or None) filename for existing data on this observable, e.g. experimental

data. Path should be relative to current working directory. None if no data; in that case

this observable will not contribute to the likelihood function.

dataformat (string or None) specially formatted string chosen from: ‘2x2y’, ‘1x2y’, ‘1x1y’,

‘none’, ‘xydxdy’. This string indicated the format of the columns in ‘datafile‘. For example,

‘2x2y’ means there are 4 columns: x, dx, y, dy. ‘1x2y’ means there are 3 columns: x, y, dy.

This implies y = f(x), where x has an uncertainty (standard deviation) dx, and y has an

uncertainty dy. None only if ‘datafile‘ is None.

fitmin (float or None) minimum x value below which the data in ‘datafile’ is not used for

the likelihood calculation. None means fitmin = -inf.

fitmax is the maximum x value above which the data in ‘datafile’ is not used. All data will

still be plotted. None means fitmax = +inf.

contributes (bool) Flag to determine if this observable contributes to the likelihood func-

tion. Default True.

interpolate (bool) Flag to determine if the model is interpolated to the data or not. Default

True. If False, the model must provide (x,y) pairs that exactly match the x-values of the

data.

interporder (integer) Order of the spine used to interpolate the model. A value of 1 would

be linear interpolation.
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xsigma (float) Standard deviation of Gaussian smoothing for x values. This value is used

to account for Gaussian uncertainty in the x values of the observable. After the model is

computed, it is folded with a Gaussian kernel with standard deviation xsigma. Has units

equal to those of x.

Back to the example

I created several other observables too, not shown. Once we have our observables, we pack

them into a dictionary to more easily pass around.
1 observable_dict = {}
2 observable_dict.update(
3 {
4 observable1.name : observable1 ,
5 observable2.name : observable2 ,
6 observable3.name : observable3 ,
7 observable4.name : observable4 ,
8 observable5.name : observable5 ,
9 observable6.name : observable6 ,

10 observable7.name : observable7
11 }
12 )

Next is the main object for our calculations, the Job object. This holds all of the information

necessary for a run. I also create a pool object for parallel execution.
1 job = commcas.jobs.Job(
2 jobname = "example2",
3 modeltype=’executable ’,
4 executable=modelname
5 sampletype="posterior",
6 workdir="templates",
7 template="mo95dpg.template",
8 psetfile="mo95dpg.pset",
9 backend_filename=None ,

10 nwalkers =36,
11 iterations =10,
12 burnin=0,
13 thin_by=1,
14 warmstartname=None ,
15 observable_dict=observable_dict)
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commcas.jobs.Job Arguments

jobname (string) Any string you want to name pre-pend output files with. ‘debug’ is a

special option that will print extra information and save certain files. ‘default’ is a special

option that will automatically generate a name based on the time.

modeltype (string) Must be from (‘function’, ‘proxy’, ‘executable’) determining which type of

computational model is to be used. If ‘executable’, user must provide ‘executable’ argument.

executable (string) This is the /path/name of the executable model to be used. ‘proxy’ is

a special option that will use a Python functional model instead.

sampleType (string) choose the sample type from the options ‘posterior’, ‘prior’, ‘prior’,

‘sequential’, ‘training’, ‘density’.

workdir (string) /path/ starting from the active directory to the folder containing the

template and other (optional) input files.

template (string) filename of the template input file. This must be in ‘workdir’.

psetfile (string) filename of the parameter specification file.

backend_filename (string or None) /path/name of the (optional) backend file from which

to continue a previous calculation, or, from which to read parameters if using ‘sequential’

sampling.

nwalkers (integer) number of walkers used to sample. If using the ‘stretchMove’, this must

be at least twice the number of model parameters. It’s a good idea to make this a multiple

of the number of processes.

iterations (integer) number of iterations to perform during sampling. If you are sequen-

tially sampling a backend file, entering a negative iterations number will begin sampling

224



from the end of the chain progress backwards.

burnin (integer) number of samples to ignore from the beginning of the sampling when

computing posterior statistics. Samples before the burnin are still saved to the backend.

thin_by (integer) factor by which the number of samples will be thinned. e.g. 1 will keep

all samples, 10 will keep only every tenth sample.

warmstartname (string or None) /path/name of file containing initial vector from which to

start sampling nearby. None will start randomly from the prior.

observable_dict (dict) dictionary of Observable objects.

movetype (emcee move) you can create and set a different ‘emcee‘ package move type here.

scratch (bool) option to write temporary executable folders to the system scratch. This is

often faster, and doesn’t clutter the active directory. Default is False.

Back to the example

We are ready to run. This will create a emcee sampler object containing our results which

we can then process into preliminary plots and statistics:
1 sampler = commcas.run(job ,pool)
2 commcas.make_plots(job , sampler)
3 commcas.write_stats(job , sampler)

9.2.3 Sampling options

The sampling options are: posterior, prior, sequential, density, training.

‘Posterior’ uses MCMC.
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Table 9.1: COMMCAS arguments for determining the extent of the sampling.

Variable Description Recommendation
nwalkers Number of independent Markov

chain samplers, each of which has
a different initialization.

Must be at least 2 times the param-
eter dimension. More is better.

iterations Number of MCMC/MC steps to
take for each walker; total sam-
ples will be (nwalkers x iterations).
(N+1 model evaluations will be per-
formed if starting fresh).

This will depend on how good your
starting point is.

burnin Number of iterations to throw away
for plotting and statistics. The
burnin iterations will still be saved
in the backend.

You will have to monitor the con-
vergence to determine a reasonable
value.

‘Prior’ uses MC.

‘Sequential’ draws samples in order from an existing Markov chain stored in a backend file.

‘Density’ samples from a probability density generated from the kernel density estimate

(KDE) of a previously calculated Markov chain. The motivation here is to more efficiently

sample a known posterior using Monte Carlo sampling.

‘Training’ produces a neural network intended to emulate a more computationally expensive

function. This neural network can then easily be used in place of the expensive function for

any of the other sampling options listed above. More information is provided in the following

section.

There are a number of variables that determine the quality of the sampling.

The default move type is the Stretch Move (affine invariant sampler), which is the default

for emcee. To change the move type, you can pass a different move from the emcee library

to the jobs argument ‘movetype‘.

If you have an acceptance fraction problem, the first thing to do is increase the number of

226



walkers, rather than change the move type.

Additional information about training option

If the ‘training’ option is selected, COMMCAS will train a neural network surrogate/proxy

to emulate a unix function (e.g. YAHFC). Once trained, this network can be called in

place of the unix function to reduce runtime for other types of sampling. This option runs

a self-guided training loop which alternates between running the unix function to generate

training data and using the generated data to train the neural network. This loop ends when

one of the three following conditions is met:

• MSE goal is met

• loss is no longer decreasing

• max number of data generation steps has been reached

See more information about each condition below.

The user must specify some variables. Read carefully – some variables will look similar to

those for different sampling types, but they are different.

For information about how to now use this neural network as a proxy for the unix function

with other sampling types, see below.

9.2.4 Sampling with a proxy

COMMCAS can be run with the sampling option ‘training’ to generate a neural network

surrogate/proxy model for a unix function (eg. YAHFC). Once a sufficient proxy has been

trained, the proxy can be used in place of the unix function for faster sampling.
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Table 9.2: COMMCAS arguments for proxy model training.

Argument Description Recommendation
proxy_name A name for the neural network to

distinguish it from any others you
train

You might select the jobname or a
name describing the network archi-
tecture.

layer_info A list of list of positive integers indi-
cating the number of nodes in hid-
den layer of the proxy model. The
length of the list indicates the num-
ber of hidden layers. E.g. Entering
’40, 60’ will produce a neural net-
work with two hidden layers with
sizes 40 and 60.

This will depend on the number
of parameters, the number of ob-
servables, the size of the parameter
space, and complexity of the unix
function. I suggest starting with a
single hidden layer of size 60 and in-
creasing if the loss is not low enough
(see below).

mse_goal If the network achieves this MSE,
the training will terminate. MSE
indicates how different the proxy
outputs are from the outputs of the
unix function. A value of 1 indi-
cates essentially random guessing.
Enter -1 to elimate this stop con-
dition.

The default is currently 1e-3. More
work is needed to determine the
best value for this parameter. Ex-
amine the training output files to
judge what MSE seems best.

nwalkers This is the number of evaluations of
the unix function that will be run in
parallel.

The number of cores available.

max_iters After the unix function has been
evaluated (in parallel) this many
times, the training will terminate.
In this case, the total number of
calls of the unix function is (nwalk-
ers)(max_iters).

I have found that it is good to have
(nwalkers)(max_iters) > 2000

For this option, enter ‘proxy’ when prompted for the model to use. You will later be asked to

provide three additional pieces of information. You will need to provide the ’proxy_name’

you chose when creating the proxy, as well as the list of layer sizes. Finally, you must provide

the name of a directory containing the following three files:

• proxy_name_proxy.pt

• proxy_name_observables_helper.pkl
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• proxy_name_parameters_helper.pkl

When the proxy was trained, these files were deposited into a directory. One can simply

provide this filename. Alternatively, one can transfer these three files into the working

directory or another directory and provide the name of that directory instead.

Everything else is identical to sampling with a unix function, just (hopefully) much faster.

9.2.5 Prior distribution and parameter specification file (.pset)

This file specifies the parameters that will be fit, and establishes a prior distribution from a

range of options. This file ends in ‘.pset’.

This file should be in the working directory specified in the input file.

Here’s an example .pset file ‘zr91wNorms.pset’:
1 # pnames:
2 # Parameters keywords which should appear in the template input files.
3 # Spelling and case matter.
4 #
5 # prior:
6 # The type of prior distribution to use for this parameter. The options

are:
7 # none :
8 # No prior is used.
9 # Initial state will be within 10% of arg1. arg2 is not used.

10 # parity:
11 # No prior is used , except that the sign of the parameter
12 # is not allowed to change. "normal conservation ".
13 # Initial state will be within 10% of arg1. arg2 is not used.
14 # uniform:
15 # Uniform prior , where p(x) = 1 if arg1 < x < arg2 and 0

otherwise.
16 # Initial state will be drawn from U(arg1 , arg2).
17 # normal:
18 # Normal (Gaussian) prior , where p(x) = N(x, mu=arg1 , sd=arg2).
19 # Initial state will be drawn from p(x).
20 # pnormal:
21 # Normal (Gaussian) prior multiplied by the parity distribution.
22 # I.E. a normal distribution that cannot change signs.
23 # loguniform:
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24 # Log uniform distribution (parameter appears uniform on a log
scale).

25 #
26 # arg1 , arg2:
27 # Arguments for the prior distribution functions. See above for how

these are
28 # used in each prior.
29 # pname prior arg1 arg2
30 cnLDaa95 pnormal 12.5 6.0
31 cnLDla pnormal 0.014 0.0042
32 cnLDdel95 pnormal 1.23 1.23
33 cnLDdW95 normal -0.927 -0.927
34 cnLDgam pnormal 0.096 0.0288
35 gSFeE1 pnormal 16.6 5.0
36 gSFeG1 pnormal 4.0 4.0
37 gSFeS1 pnormal 200.0 100.0
38 # Model normalizations
39 _NORM_Pg -Sr96 -813 parity 1.0 1.0

Each parameter can have its own prior type.

The parameters with the names _NORM-##_ are special keywords for scaling the model predic-

tions. The two-digit integer ## specifies which model observable to scale. _NORM_-Pg-Sr96

-813_ scales the observable named ‘Pg-Sr96-813’.

9.2.6 Parallel Computing

COMMCAS has two parallel computing implementations: pool from multiprocessing and

MPIpool from schwimmbad.

By default, running COMMCAS will use Python multiprocessing with the number of threads

equal to half the number of detected processors. Half because I assume the CPU has twice

as many virtual CPUs as physical CPUs. Python multiprocessing is limited to single-node

compute.

To run COMMCAS with MPI, simply call it using srun, etc., and MPIpool will automatically

be used instead of multiprocessing pool, enabling multi-node compute.
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9.2.7 Sequential sampling

Sequential sampling now properly samples backends in-order by requiring that the user

sets the same number of walkers. You can also now set a negative iterations number to

start sampling at the end of the sample set in the backend, and progress backwards. The

meaning of the various parameters (nwalkers, iterations, burnin, thinby) should also

be clarified. Figure 9.2 may be useful for visualizing the Markov chains.

Sample stored in backend
Sample discarded

nwalkers (4)

thinby (3)

iterations (9)

Figure 9.2: Graphical representation of a COMMCAS backend data structure generated from
MCMC. In this example, iterations=9, nwalkers=4, thinby=3. As a result, (9 × 4)/3 = 12
net samples will be generated. With a nonzero burnin, only plotting and reported statistics
would differ.

When creating a new Markov chain, nwalkers quasi-independent Markov chains are gener-

ated. Each chain will take iterations number of steps, creating at most (iterations×nwalkers)

samples. If thinby is nonzero, then only every thinby samples will be stored; the rest dis-

carded. Then, the final Markov chain will have (iterations× nwalkers)/thinby samples.

The burnin parameter never effects how many samples are saved when generating a new

Markov chain. If nonzero, burnin determines how many samples at the beginning of the

final Markov chain will be ignored when computing statistics and generating plots.

When sampling an existing Markov chain, nwalkers must match the number of walkers in the

backend. Then, the first burnin number of samples will be ignored, and only every thinby
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samples will be used. The iterations number determines how many, and in what order

Samples read from backend
Skipped by thinby

nwalkers (4)

thinby (2)

burnin (3)

iterations (2)

iterations (-2)

Skipped by burnin

Figure 9.3: Graphical representation of a COMMCAS backend data structure being pro-
cessed for resampling. In this example, nwalkers=4, thinby=2, and burnin=3, iterations=±2.
As a result, (2 × 4)/2 = 8 net (re)samples will be generated. If iterations is positive, the
sampling begins from the beginning of the pruned samples. If negative, it begins from the
end.

the samples will be resampled. If positive, sampling begins at the beginning of the chain

and proceeds forwards. Each iteration computes one model evaluation for each walker. If

iterations is negative, then sampling begins at the end of the chain and proceeds backwards.

In both cases, burnin and thinby are always relative to the beginning of the chain; these

pruning steps both occur before sampling begins and iterations determines how the remaining

samples are treated.

9.2.8 Including unaccounted-for uncertainty parameters (UAUP)

A new set of meta-parameters to account for unaccounted-for uncertainty, called unaccounted-

for uncertainty parameters (UAUPs) are included, up to one for each observable type. Meta-

parameters do not enter into the model itself: while all parameters Θ = {θ, θmeta} are treated

equally for MCMC-purposes, only the regular parameters are fed into the model: M (θ).

In this case, the meta-parameter is labeled δu, and is enters into the covariance matrix as an
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additional source of uncertainty:

∆2 = δ2y + δ2u (9.12)

where ∆2 are the diagonals of Σ, and δy are the uncertainties from experiment (one for each

data point). The δu uncertainties are unique up to each observable type.

9.2.9 Systematic handling of outliers (future work)

An important remaining feature lacking from COMMCAS which Cole Pruitt explored in

his optical model work is systematic exclusion of outliers. By outliers we mean data points

which produce model residuals many standard deviations away from the rest of the data, i.e.

by having unusually small reported uncertainties. In statistics this is called sigma clipping.

This feature is an important counter-measure to unaccounted-for uncertainty parameters:

an outlier in the reported uncertainty will tend to inflate the UAUP.

9.3 Future work: Regularized likelihood functions

There are some problems when it comes to fitting theoretical models to nuclear data:

1. The data lack covariances

2. Multiple data sets cover the same energy domain; covariances between data sets in the

same energy domain are generally not well defined

3. Data sets within the same energy region can have incompatible uncertainties
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4. It is difficult to weigh the relative uncertainty of multiple observables, each of which

has a variable number of experimental data sets constraining them

Discrete covariances of observables at different energies within a given experiment are impor-

tant ingredients, but really what we want to say is that many of these observables are smooth

functions of energy (or angle, etc). Discrete covariances can approximately encode that in-

formation within a single data set. But when you add multiple data sets with their own

reported covariances, we can see conceptual problems arise. Is simply adding unaccounted

for uncertainties or renormalizing data sets or their covariances [230] the right approach?

I want to re-frame this problem to make the solution clear: when we have observables

which are smooth functions of an underlying variable X (energy, angle), what is the correct

way to deal with uncertainty per unit X? These issues all meet when it comes time to

define a likelihood function for an inverse uncertainty quantification (UQ) solver. I claim

that Gaussian Processes (GPs) [235] are an ideal tool for addressing these problem. This

approach will mostly address problem 4, and to a lesser extent problems 1 and 2. Problem

3 will likely persist.

9.3.1 Datasize-weighted covariances

The issue of the relative weighting of multiple data sets is summarized in the following

thought experiment: suppose we are fitting multiple observables simultaneously: should

an observable with more data points in a comparable energy range contribute more to the

likelihood function than an observable with comparatively little measurements? Without

covariances on uncertainties between experiments, there is no definite way to decide.

One approach for dealing with this issue, also discussed in [230] is to renormalize the covari-

ance matrix, or sub-blocks thereof, by a weight equal to the number of data points within
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that block. For example, by a factor of k/Nblock, where k is the number of model parameters

and Nblock is the number of data within a block of the covariance, associated with a particu-

lar observable or data set. The problem with such an approach is that the covariance tends

towards zero as the number of data points becomes large. If the uncertainty were purely

statistical then this might be reasonable. However, this is not so for experimental nuclear

data.

9.3.2 Generalized Least Squares

This problem of interpreting multiple nuclear data sets is shared with nuclear data evaluation.

How do evaluators deal with this problem? Historically it has been with generalized least

squares (GLS), with the particular implementation being the GMA (Gauss-Markov-Aitken)

method and GMA code originally from Argonne National Lab [223, 49].

The GMA equations give the optimal observable predictions p and their covariances Vp on

the new grid given a set of observations (data):

p = VpA
TV −1

y y (9.13)

Vp = (ATV −1
y A)−1, (9.14)

where y are measured values of the observables (containing multiple data sets over the same

energy domain), Vy is the corresponding experimental covariance matrix, and A is called

the design matrix. The design matrix does the job of mapping (linearly) the measured

observables to new values of the observables on an arbitrary grid of points (the design

space). The design matrix may simply interpolate, for example.

The great benefit of the GMA method is to ‘bin’ multiple sets of data onto a desired grid,

while best preserving the information carried by the data about the mean values and co-
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variances. In fact, this is the discrete version of what I will be proposing. It could be used

instead. A possible downside of GMA is the large number of parameters (which scales with

the size of the design space) and that it sometimes leads to un-smooth and non-physical

features [49].

9.3.3 Proposal

I propose using a Gaussian Process model to turn the collection of experimental data sets

into a single, fully co-variate probability distribution to be used as part of the likelihood

function in inverse UQ propagation. That GP model, faithfully encoding the joint exper-

imental probability distribution, will be used in place of the data in our existing MCMC

framework (obtaining the posterior of the model parameters given the data). This addresses

the problems laid out in the introduction by regularizing the data vectors and reducing the

dimension of the covariance matrix.

Regularization

The purpose of creating a GP model for the multiple data sets of a single energy-dependent

observable is to regularize or ‘bin’ the multivariate normal distribution which describes it.

Unlike the experimental covariance matrix, or even one determined by a GMA method [223],

the GP covariance kernel is explicitly aware of the energy-dependence of the covariances. A

simple kernel is a Gaussian function [73]:

k(x, x′;σf , l) = σf exp

[−(x− x′)2
2l2

]
, (9.15)

where σf and l are parameters to be fit to the experimental data.

We assume that each data point of an observable y occurs at some independent variable (e.g.
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energy) x,

y = f(x), (9.16)

that experimental measurements of particular yi at xi are noisy,

yi = f(xi) +N (0,Σ), (9.17)

but that experimental measurements can provide good approximations of that noise (un-

certainty). An experimental data set will provide a set of measured mean values µexp and

estimated covariances Σexp ≈ Σ for some set of (yi, xi).

The job of the kernel function k of a GP is to estimate the covariance matrix elements at

energies on an arbitrary grid: a grid of prediction points x∗ for which the GP will predict

observable values y∗.

Regularized likelihood

Our new likelihood function is the multivariate Gaussian distribution defined on the predic-

tive (interpolated) grid of q points with means [73, 235]:

µ∗ =K∗K
−1µexp. (9.18)

The matrix K is defined on the grid of experimental data points,

K = Σexp +ΣGP +Σtheory (9.19)

where ΣGP has matrix elements equal to the kernel k(xi, xj;κ) evaluated on the experimental

data grid xi. The theory covariance matrix may not be known, in which case it is omitted.
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Similarly, K∗ is a matrix of kernel values k(x∗, xj) at prediction grid points x∗ against all

data grid points xj. The GP predictive covariance matrix is [73, 235]:

Σ∗ =K∗∗ −K∗K
−1KT

∗ , (9.20)

where K∗∗ = k(x∗, x∗).

The probability function defined on the predictive-grid of energies x∗ is thus:

P (y∗|D : µexp,Σexp) = N (y∗;µ∗,Σ∗). (9.21)

Assuming a model M (θ) = y∗, we define the regularized likelihood as:

L̃(D|M (θ)) = N (M(θ);µ∗,Σ∗). (9.22)

As a reminder, the crux of this new likelihood function is to be able find an appropriate kernel

function k(x, x′;κ) and subsequently fit its parameters κ to represent the experimental µexp

and Σexp.

Dimension reduction

In the standard likelihood function, our joint PDF is described by n+n(n+1)/2 parameters

provided by experiment: n mean-values and n(n + 1)/2 independent covariance elements.

The regularized likelihood function, by contrast, will have only p parameters: the number of

parameters describing the kernel function k(x, x′).

Generally p≪ n≪ n(n + 1)/2, so that in most cases we end up with far fewer parameters

required to describe the joint PDF describing the experimental data, and therefore also of

the likelihood function used in the inverse UQ problem. Of course, the downside of this is
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that we risk losing information in the process.

What this proposal is not

This is not a proposal to use a Gaussian Process for nuclear data evaluation, which amongst

other requirements sets out to not only interpolate but to extrapolate. In this application

the goal of the GP is only to encode the joint experimental uncertainty as a function of

energy, thereby avoiding over-prescription of certainty when adding multiple measurements

of observables in the same energy region.
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Chapter 10

Surrogate Reactions II: Parameter

Inference and Uncertainty Quantification

The general concept of the surrogate reaction method was already discussed in the previous

chapter on the Weisskopf-Ewing approximation of the surrogate reaction method. Earlier

work demonstrated that cross sections for neutron-induced fission and radiative neutron

capture can be determined from a combination of surrogate reaction data and theory. For

the fission case, it was shown that the Weisskopf-Ewing approximation can be employed,

which significantly simplifies the implementation of the surrogate method [80]. This is not

true for neutron capture cross sections, where a more sophisticated theoretical evaluation of

the data is required using the complete surrogate reaction method [81, 236, 222].

The conclusions of Chapter 8 are similar: while peak cross sections can be estimated us-

ing the Weisskopf-Ewing approximation, the shape of the (n, n′) and (n, 2n) cross sections,

especially for low neutron energies, cannot be reliably determined without accounting for

the angular-momentum differences between the neutron-induced and surrogate reaction. To

obtain reliable (n, n′) and (n, 2n) cross sections from surrogate reaction data, a detailed
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description of the surrogate reaction mechanisms is required.

The full surrogate reaction method, as compared to the surrogate reacion method with the

Weisskopd-Ewing approximation, requires two additional ingredients. The first is a model

to predict the spin-parity distribution of the compound nucleus following its formation in

the surrogate reaction entrance channel. The second ingredient is a means to do parameter

inference on the model parameters describing the statistical decay of the compound nucleus.

In this chapter, I address the second need, and rely on the work of others to supply the

first. In particular I demonstrate the application of the COMMCAS code discussed in

Chapter 9 to the full surrogate method by providing the framework for parameter inference

and uncertainty quantification.

10.1 Theory for the desired reaction

The Hauser-Feshbach (HF) statistical reaction formalism properly accounts for conservation

of angular momentum and parity in compound-nuclear reactions. For a reaction with en-

trance channel α = a + A that forms the CN B∗, which subsequently decays into the exit

channel χ = c+ C,

a+ A→ B∗ → c+ C,

the HF cross section can be written as

σαχ(Ea) =
∑

J,π

σCN
α (Eex, J

π)GCN
χ (Eex, J

π). (10.1)

Here Ea and Eex are the kinetic energy of the projectile a and the excitation energy of the

compound nucleus B∗, respectively. They are related to each other via Ea = mA

ma+mA
(Eex −
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Sa), where Sa is the energy needed to separate the particle a from the nucleus B∗. ma

and mA are the masses of the projectile and target, respectively. J and π are the spin and

parity of the compound nucleus and σCN
α (Eex, J

π) is the cross section for the forming the

compound nucleus B∗ with spin and parity Jπ at energy Eex. The σCN
α (Eex, J

π) and their

sum, the compound-formation cross section σCN
α (Eex) =

∑
J,π σ

CN
α (Eex, J

π), can be deter-

mined using an appropriate optical model for the a-nucleus interaction. Width fluctuation

corrections have been omitted to simplify the notation in Equation 10.1, but are included in

the calculations.

GCN
χ (Eex, J

π) is the probability that the CN decays via the exit channel χ. For reactions

that emit one particle (neutron, proton, alpha, etc.) it depends on the convolution of the

transmission coefficient T J
χlcjχ

with the level density ρjC (U) for the residual nucleus, divided

by analogous terms for all competing decay modes χ′:

GCN
χ (Eex, J

π) =

∑
lcjχjC

∫
T J
χlcjχ

ρjC (U)dEχ∑
χ′l′cj

′
χj

′
C

∫
T J
χ′l′cj

′
χ
(Eχ′)ρj′C (U

′)dEχ′
. (10.2)

The quantities lc and l′c are the relative orbital angular momenta in the exit channels. j⃗χ =

j⃗c+ j⃗C is the exit channel spin, related to the total spin J⃗ = l⃗a+ j⃗α = l⃗c+ j⃗χ by conservation

of momentum with the entrance channel spin, j⃗α = j⃗a+ j⃗A. ρC(U, jC) is the density of levels

of spin jC at energy U in the residual nucleus.

Contributions from decays to discrete levels and to regions described by a level density have

to be accounted for and are implicitly included in the integrals in both the numerator and

denominator of Eq. (10.2). For reactions that involve sequential decays, e.g. the emission

of two neutrons in (n,2n), Eq. (10.2) is repeatedly applied: First, to determine the possible

outcomes of the CN decay in the first step of the emission chain, and second, to follow

the subsequent decays of the intermediate compound nuclei created. In HF calculations, the

final cross sections are obtained by tracking all possible decays in this manner. All sums over
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quantum numbers must respect parity conservation, although this is not explicitly expressed

here.

In this chapter, we focus on neutron-induced reactions, i.e. α = n+A. For such reactions, the

optical model potential, used to calculate the first factor in Eq. (10.1), is well approximated

by a one-body potential [100]. By far the greatest source of uncertainty comes from the decay

probabilities, a fact that can be attributed to uncertainties in the nuclear structure inputs.

Ab initio shell-model calculations can provide nuclear structure information for nuclei with

only a dozen or so nucleons, and traditional shell-model calculations cover a limited number

of nuclei, primarily near closed shells, containing up to around 100 nucleons. Mean-field

and beyond-mean field approaches cover a wider range of nuclei, but calculating the relevant

structure quantities (level densities and gamma-ray strength functions) is nontrivial. While

much progress has been made toward achieving microscopic nuclear structure inputs for HF

calculations of medium-mass and heavy nuclei, many isotopes needed for applications and

for simulating stellar environments are currently out of reach.

In the absence of microscopic predictions of structural properties, phenomenological models

are used for nuclear level densities and electromagnetic transition strengths, with parameters

that are fitted to available data. Much effort has been devoted to generate global or regional

parameter systematics [48] that can be utilized as to perform HF calculations and build

nuclear reaction evaluations [177, 175, 215, 45]. Alternatively, it is possible to use surrogate

reaction data to obtain experimental constraints on the decay probabilities.

10.2 Benchmark: Zr-90 neutron capture

The following is a modified version of a conference proceedings from the Compound Nuclear

Reactions conference of 2018 [114].
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Figure 10.1: In this example shown here, we form the compound nucleus 88Y by choosing
the stable target 89Y and performing a (p, d) (proton-deuteron) reaction. This we call the
surrogate reaction. Experiments can be conducted to measure the coincidence probabilities
Pd,p(Eex), where emitted deuterons are measured in coincidence with gamma rays emitted
from the compound nucleus with specific energies, which identify the compound nucleus
formed.

Neutron capture cross sections can be measured by bombarding a sample of target nuclei

with neutrons and detecting decay products. Such measurements cannot be completed in

the laboratory when the target isotopes have half-lives that are short compared to timescales

relevant to the experiment. This leaves critical gaps in nuclear data libraries. To predict

the missing data, nuclear cross section calculations can, in principle, be carried out using

statistical Hauser-Feshbach (HF) models [48].

In compound nuclear reactions, a compound nucleus (CN) is formed, which then decays

through the available decay channels. These channels and the probability of each being

taken depends on the nuclear level densities and γ-ray strength functions of the CN. The

general lack of nuclear structure information for medium to heavy mass nuclei leads to the

need for indirect constraints on the corresponding HF parameters. The surrogate method [80]

obtains these constraints using measurements of the same CN decay observed in alternative

reactions.

Specifically, in Ref. [81] the decay of the CN 91Zr was modeled using parametrized (phe-

nomenological) forms for the level density and γ-ray strength function. The parameters
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were fit to measured 92Zr(p, dγ) data from the surrogate experiment and subsequently used

to calculate the desired 90Zr(n, γ) cross section. A Bayesian Monte Carlo approach was

employed which provided an average (n, γ) cross section, along with a variance, yielding an

uncertainty band that is symmetric around the mean.

In this section, we explore a Markov-Chain Monte Carlo approach to fitting the parameters to

the surrogate data. MCMC generates a probability distribution for each parameter without

visiting every combination of parameters. We chose to implement a Metropolis-Hastings

algorithm [128] because it is the most common variety of MCMC. We present preliminary

results for the 90Zr(n, γ) neutron capture cross section. This reaction serves as a benchmark

case since direct experimental data is available for 90Zr(n, γ). Earlier results [81] for this

application of the surrogate method used Bayesian Monte Carlo sampling, which has some

disadvantages over the more robust MCMC approach. We sample the HF parameter to

constrain five parameters in the composite Gilbert-Cameron level density model, and nine

parameters in the γ-ray strength function description. The prior distribution is a finite and

flat distribution, centered around recommended parameter values from RIPL-3 [48].

The posterior distribution of parameters is obtained by fitting to experimental data for

92Zr(p, dγ) from Ref. [81]. We then generate a HF prediction for the desired 90Zr(n, γ) reac-

tion at each point in the posterior distribution of parameters. The subsequent distribution of

90Zr(n, γ) cross sections is our constraint on the neutron capture cross section. The posterior

parameter distribution we obtain is sampled, yielding the 90Zr(n, γ) cross section shown in

Figure 10.2. The result is in agreement with the TENDL 2015 and ENDF/B-VII.x evalua-

tions, both of which are based on directly-measured data. In future work we will investigate

correlations among the model parameters.
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Figure 10.2: (Taken from [114].) 90Zr(n, γ) cross section obtained indirectly from 92Zr(p, dγ)
data using the newly-developed MCMC approach. The thick solid (blue) curve is the mean
value and the thin solid curves indicate the 68% confidence interval. For comparison, the
Talys Evaluated Nuclear Data Library (TENDL) [175] and the Evaluated Nuclear Data File
(ENDF) library results are shown as well [57].

246



10.3 Benchmark: neutron capture on Mo-95

In this section I will demonstrate the application of COMMCAS to a specific problem which

has already been addressed in [236] and again in a conference proceeding improving on the

statistical methods [76]. I contributed to the latter publication.

The application in question is a surrogate reaction evaluation of the 96Mo neutron capture

cross section (n, γ) using the reaction 95Mo(d, pγ) as a surrogate. This case serves as a

valuable benchmark since direct measurements of this cross section are available to validate

the surrogate approach. The desired neutron capture cross section is:

n+95 Mo→96 Mo∗ → 96Mo + γ. (10.3)

The surrogate reaction is:

d+95 Mo→96 Mo∗ + p→ 96Mo + γ + p. (10.4)

We can see that both reactions form 96Mo∗ as an intermediate compound nucleus, which is

what allows us to use 95Mo(d, pγ) to constrain 96Mo(n, γ) indirectly - in particular, the decay

branching ratios. A proton-gamma coincidence measurement is made for specific gamma

transitions in 96Mo. See [236] for more experimental details. The result is five Ppγ(Ex),

energy-dependent coincidence probability measurements.

The task of the surrogate evaluation is to use these measurements of the surrogate reaction

to constrain the desired neutron capture reaction. This requires two UQ propagation steps.

First, an inverse UQ propagation to constrain Hauser-Feshbach model parameters using the

measured coincidence probabilities Ppγ(Ex). This produces a distribution of model parame-

ters describing the decay of the compound nucleus shared by both reactions (the surrogate

and the desired reaction). Second, a forward UQ propagation to calculate the distribution
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of (n, γ) cross sections given the now constrained model parameters. Both of these steps can

be done with COMMCAS.

For this benchmark data I use the same five experimental data curves Ppγ(Ex) from the five

best-measured gamma transitions between states and with energies: 2+2 → 2+1 7.17 MeV,

2+1 → 0+1 7.78 MeV, 6+1 → 4+1 8.12 MeV, 4+2 → 2+1 1.091 MeV, 3+1 → 2+1 1.20 MeV. These are

the five ‘observables’ COMMCAS uses to compute its likelihood function.

For the model parameters describing the decay of the compound nucleus, I focus on the

nuclear level densities and gamma-ray strength functions of the compound nucleus 96Mo. I

varied four level density parameters, and nine gamma-ray strength function (GSF) param-

eters, focusing on the giant dipole resonance of the E1 GSF. I also followed the procedure

of [236] and included a normalization parameter for each gamma transition channel, which

corrects for limited knowledge of individual gamma-decay branching ratios. This constitutes

five parameters, one for each coincidence probability. Finally, each observable was assigned

its own unaccounted-for uncertainty parameter (UAUQ). The total number of parameters

was 23.

For the MCMC sampling, I used a large number of walkers (500), with a relatively short

sampling period of about 1000 samples. (This is acceptable because the priors are close to the

posterior solution.) All five observables were fit simulaneously over the entire energy range

of the available data. A Gaussian smoothing was applied to all coincidence probabilities with

a half-width of 0.08 MeV to account for the beam width of the experiment. The posterior

model predictions after sampling are are shown in Figure 10.3. Two other observables were

also tracked during the sampling which did not contribute to the likelihood function, shown

in Figure 10.4. These observables, the E1 gamma-ray strength function and the M1 GSF,

are tracked by COMMCAS during the fit, but do not influence the posterior distribution

of parameters. There are experimental measurements available for the E1 photoabsorption

cross section, which can provide some indication as to the overall shape of the E1 strength
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function. We see that the E1 GSF constraints obtained from fitting to the surrogate data

yield overall agreement with the data in the energy range where the data was fit, below 11

MeV excitation energy of the compound nucleus 96Mo. Once the surrogate data was fit and

the decay parameters were constrained, I conducted the second series of calculations: forward

UQ propagation. Using the last few parameter samples from the Markov Chain generated

during sampling, I computed the desired cross section 96Mo(n, γ). The results are shown

in Figure 10.5. The uncertainty bands in this figure have a specific interpretation: given

the uncertainty in the measured surrogate data from the 95Mo(d, pγ) experiment, along with

our prior limits on the Hauser-Feshbach decay parameters, this is the confidence interval for

the 96Mo(n, γ) neutron capture cross section. I find excellent agreement with the directly

measured data, and with the previously published surrogate evaluation in [236] using similar

methods.
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Figure 10.3: The five data sets for Ppγ(Ex) coincidence probabilities from the five best-
measured gamma transitions between states and with energies: 2+2 → 2+1 7.17 MeV, 2+1 → 0+1
7.78 MeV, 6+1 → 4+1 8.12 MeV, 4+2 → 2+1 1.091 MeV, 3+1 → 2+1 1.20 MeV. These are the five
‘observables’ COMMCAS uses to compute its likelihood function. The gray bands are the
model posteriors after sampling with MCMC: the black line is the 50-th percentile, the dark
grey band is the 68-percent confidence interval, and the light grey band is the 98-percent
confidence interval.
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Figure 10.4: This observable, the E1 gamma-ray strength function, was tracked by COMM-
CAS during the fit, but not included in the likelihood function. This is useful for under-
standing the properties of the posterior distribution in the context of a multi-physics model;
auxiliary observables can be used to assess the sensibility of the posterior parameters.
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Figure 10.5: The predictive posterior of the desired observable: the 96Mo(n, γ) neutron
capture cross section obtained by fitting the compound nucleus decay parameters to the
95Mo(d, pγ) surrogate data shown in Figure 10.3. The experimental data (orange dots with
error bars) were not used in the calculations. Our results show excellent agreement with
those presented in [236], and with the experimental data (see [236] for details).
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Chapter 11

Constraints on (γ, p) branch points for

the γ-process

This chapter is based on a paper I co-authored, “Measurements of proton capture in the

A = 100 − 110 mass region: Constraints on the 111In(γ, p)/(γ, n) branching point relevant

to the γ-process” by Orlando Olivas-Gomez, et al. [212] Orlando and I met as graduate

student interns at LLNL in the summer of 2019, both working with Jutta Escher. After

some lunchtime discussions, I realized from Orlando’s description of his experimental work

that the UQ tool I was developing (which would later be called COMMCAS) was perfect

for analyzing his group’s data. This led to a collaboration between Orlando and his Ph.D.

advisor Anna Simon of Notre Dame, Escher, and myself. Escher and I were fourth and third

authors, respectively.

As a principally experimental physics paper, my contribution is mainly centered around the

improved interpretation of the results, in particular with respect to quantifying the uncertain-

ties. The contents of this chapter closely follow sections from the original paper [212], with

some rewording and reorganization to emphasize my contribution and to avoid discussion of
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the experimental aspects with which I was not involved.

11.1 Overview

The γ-process is an explosive astrophysical scenario, which is thought to be the primary

source of the rare, proton-rich stable p-nuclei. However, current γ-process models remain

insufficient in describing the observed p-nuclei abundances, with disagreements up to two

orders of magnitude. A sensitivity study has identified 111In as a model-sensitive (γ, p)/(γ, n)

branching point within the γ-process. Constraining the involved reaction rates may have a

significant impact on the predicted p-nuclei abundances. Here we report on measurements

of the cross sections for 102Pd(p, γ)103Ag,108Cd(p, γ)109In, and 110Cd(p, γ)111In reactions for

proton lab energies 3-8 MeV using HECTOR and the γ-summing technique. These mea-

surements were used to constrain Hauser-Feshbach parameters used in TALYS 1.9, which

constrains the 111In(γ, p)110Cd and 111In(γ, n)110Ag reaction rates. The newly-constrained

reaction rates indicate that the 111In (γ, p)/(γ, n) branching point occurs at a temperature of

2.71± 0.05 GK, well within the temperature range relevant to the γ-process. These findings

differ significantly from previous studies, and may impact the calculated abundances.

A key step in the analysis of this work is to take the experimentally measured (p, γ) cross

section and to make an inference about the inverse (γ, p) cross section. To do this requires

some intermediate theoretical model which can compute both of these. By constraining the

model with the new experimental data, we obtain new constraints on the inverse process via

the theoretical model. Before my involvement in this work, the group’s plan was to try the

various pre-programmed statistical decay models in a popular reaction code (TALYS), and

choose the one that reproduced the experimental data. This choice would then be used for

the inference calculations of the inverse process. My contribution was to improve on this

method by first selecting a model, and then using Bayesian statistics to constrain the model
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paramters using the data. In the end, both Bayesian and non-Baysian methods were used

and are compared in this chapter.

11.2 Introduction

The p-nuclei are the proton-rich stable nuclei between 74Se through 196Hg. As a group they

are the rarest of all stable nuclei, with abundances typically two to three orders of magnitude

lower than other stable isotopes of the same element [7]. Unlike most nuclei heavier than

iron, which can be made through sequential neutron captures in the s- and r- processes, the

p-nuclei are shielded from β-decay by the valley of stability, and thus it was determined

that an alternative mechanism is needed [47]. Presently, the origin of the p-nuclei remains a

mystery.

The most favored and thoroughly investigated model for the production of the p-nuclei is

known as the γ-process [304]. The γ-process is based on explosive astrophysical scenarios, in

which at temperatures between 2.0-3.0 GK photodisintegration reactions, (i.e., (γ, p), (γ, n),

and (γ, α)), on preexisting r-, s-process seed nuclei can produce most of the p-nuclei. This

process is illustrated in Fig. 11.1 for the A = 100− 110 mass region.

For many years, the primary astrophysical site for the γ-process was thought to primarily

occur within the oxygen-neon rich layers of a massive star undergoing core-collapse type-II

supernova [14]. Type-II supernova based γ-process models are mildly successful in predicting

most of the solar p-nuclei abundances within about a factor of three. However, there are seri-

ous deficiencies, especially in the molybdenum-ruthenium region where the solar abundances

are underpredicted by up to two orders of magnitude [241]. Thus, there could be several

independent astrophysical scenarios contributing to the production of the p-nuclei (see [238]

and the references therein). For example, recent advances in simulations have demonstrated
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Figure 11.1: (Taken from [212]) The γ-process reaction flow for the A = 100−110 mass region
where photodisintegration reactions on seed nuclei can produce the p-nuclei (shown here
102Pd, 106Cd, 108Cd, and 112Sn). Colored arrows indicate the dominant photodisintegration
reaction. Isotopes with two outgoing arrows are branching points; at a critical temperature,
one reaction rate will become stronger than the other.

that the γ-process can also occur within the carbon rich layers of a white dwarf undergoing

type-Ia supernova [281].

Therefore, although the γ-process may be the primary candidate for the production of the

p-nuclei, it is not clear to what extent each astrophysical site contributes to the p-nuclei

abundances. One of the major factors hindering progress is due to uncertainties of the

associated nuclear physics. To better understand the γ-process, and the contributions coming

from different astrophysical sites, it is imperative to constrain the nuclear input, which is

the focus of this work.

Modeling of the γ-process requires input of thousands of nuclear reaction rates, which re-

quires knowledge of the cross section within the appropriate Gamow energy window for each

reaction. However, most of these cross sections have not been experimentally measured and

thus rely on theoretical calculations. The calculations are done using the Hauser-Feshbach

statistical reaction formalism [129], which is implemented in reaction model codes such as
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TALYS [173] and NON-SMOKER [239, 240]. However, due to the lack of experimental

data, parameters inherent to the Hauser-Feshbach theory are poorly constrained. For exam-

ple, proton and neutron capture/emission reaction rates calculated by NON-SMOKER have

uncertainties of about a factor of two [239].

This becomes an issue primarily when the (γ, n) and (γ, p) reaction rates for an isotope are

comparable in magnitude within the γ-process temperature window. As illustrated in Fig.

11.1, the γ-process proceeds through a sequence of (γ, n) reactions, shifting the abundances

to the proton-rich side of stability. At some point along a chain of isotopes, the (γ, p) or

(γ, α) rate becomes stronger than that of neutron emission, and the mass flow branches

into another isotopic chain. These are known as branching points, and establishing their

locations is crucial for accurate modeling of the γ-process. However, due to the reaction

rate uncertainties, there is an ambiguity in the location of several branching points, and

consequently, in the reaction flow of several mass regions which may have a significant

impact on the predicted p-nuclei abundances.

In one particular case, a sensitivity study [237] has identified 111In as a potential (γ, p)/(γ, n)

model-sensitive branching point within the γ-process. This is demonstrated in Figure 11.2,

which shows the stellar photodisintegration rates for 111In, taken from the JINA REACLIB

database [61]. These (γ, p) and (γ, n) rates are based on two versions of the NON-SMOKER

code (labeled tsh8-v6 and rath-v2) [240, 61], with tsh8-v6 being the more recent version.

The (γ, p) rates from these two versions differ by about a factor of five. The inconsistencies

between these two rates, coupled with the uncertainty of the reaction rates, make it unclear

at what temperature (γ, n) begins to dominate. If the ths8-v6 version is correct, it could be

between 2.3 GK to 3 GK. On the other hand, rath-v2 predicts the branching point above 3

GK and possibly outside the γ-process window.

Above the branch-point temperature, 111In(γ, n)110In begins to dominate, and the reaction

flow would feed into 108Cd through the series of reactions: 110In(γ, n)109In(γ, p)108Cd (see

256



Fig. 11.1). Below the branch-point temperature however, 111In(γ, p)110Cd would dominate,

feeding into 110Cd. So, if the branch-point temperature is determined to be within the γ-

process temperature window, the abundance ratio of 108Cd to 110Cd would be sensitive to

temperature, which would be a useful metric in constraining the seed-distribution and/or

astrophysical conditions necessary for the γ-process. Thus, the purpose of this work is to
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Figure 11.2: (Taken from [212]) Stellar photodisintegration reaction rates for 111In. The
light shaded bands are (γ, p) rates taken from the JINA REACLIB database [61]. The labels
refer to the version of NON-SMOKER used. The uncertainty of the reaction rates makes it
unclear at what temperature (γ, n) begins to dominate (γ, p), which can have a significant
impact on γ-process model predictions of p-nuclei abundances.

reduce the nuclear uncertainties of γ-process models by constraining the 111In(γ, n)110In and

111In(γ, p)110Cd reaction rates. This constrains the 111In (γ, p)/(γ, n)-temperature branching

point, improving our understanding of the reaction flow in this mass region.

To achieve this goal, the cross sections for 108Cd(p, γ)109In, and 110Cd(p, γ)111In were mea-

sured between lab energies 3-8 MeV, which covers most of the Gamow window for each

reaction. By measuring (p, γ) cross sections of nuclei near 111In, the measurements can be

used to constrain the Hauser-Feshbach parameters, and consequentially, constrain the in-

verse reaction rates of interest. In addition, the 102Pd(p, γ) cross section was also measured

throughout a similar energy range. The inclusion of this reaction, being a lower mass relative
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to the other two nuclei, helped limit the bias when constraining the set of Hauser-Feshbach

parameters used in describing similar reactions in the A = 100 − 110 mass region to be

discussed later.

In the present dissertation, I will present only the discussion of the constrained Hauser-

Feshbach parameters, and constrained 111In(γ, n)110In and 111In(γ, p)110Cd reaction rates.

11.3 Bayesian modeling

Each of the models underlying the Hauser-Feshbach cross sections, (i.e., the OMP, γSF, and

NLD), has associated with it an uncertainty which contributes to the overall uncertainty

of the cross section. For phenomenological models, there are several parameters which are

typically fit to nuclear data. For example, the Kopecky-Uhl generalized Lorentzian γSF

(KU-γSF) [178], which is a parameterization of a Lorentzian representation of the giant

dipole resonance (GDR), depends on the strength, centroids, and widths of the E1 and M1

GDR. The Gilbert-Cameron NLD model (GC-NLD), which is the combination of a constant-

temperature model with a Fermi-gas model at higher temperatures [101], depends on an

energy-dependent level density parameter a. The values of these parameters depend on the

nuclear structure of the nuclei participating in the reaction; when there is no experimental

information, they are estimated from systematics and/or extrapolated.

Using the (p, γ) cross sections measured in this work, statistical parameter estimation within

γSF and NLD models were carried out using the Hauser-Feshbach code TALYS, version 1.9.

For the NLD, the GC-NLD was used. The internal parameters constrained were the asymp-

totic level density parameter ã, and the level density damping parameter γ of the three nuclei

in the proton-entrance, neutron-exit, and γ-exit channels of each reaction. For example, in

the 110Cd(p, γ)111In reaction, 110Cd, 110In, and 111In are considered.
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For the γSF, E1 transitions were calculated using the KU-γSF. The internal parameters

constrained were the centroid, width, and strength of the E1 GDR. The M1 transition

were calculated using the Brink-Axel Lorentzian (BA-γSF) [39, 18]. Two M1 peaks were

considered, and the internal parameters constrained were the centroids, strengths, and widths

of these peaks. Higher-order transitions were left as the TALYS default, which is discussed

in [174].

Regarding the OMP, the Koning and Delaroche OMP (KD-OMP) [176] was used for protons

and neutrons. For the α OMP — the TALYS default — the alpha potential of Avrigeanu

et al. [17] was chosen, which is consistent with the recommendation by [168] for the same

mass region. The parameters within these models were not varied and kept as the TALYS

default.

In total, fifteen parameters for each reaction were constrained; these parameters were found

to be the dominant factors affecting the cross-section predictions. The Hauser-Feshbach

model, in this case TALYS, is represented as a parametric model of the cross sections: σth(θ).

To constrain the parameters θ, a Markov Chain Monte Carlo (MCMC) algorithm was used to

sample the posterior probability distribution, which was found by combining prior knowledge

of the parameters with new knowledge given by the experimental measurements described

in this work. This is accomplished with Bayes’ theorem:

P (θ|D) =
L(D|θ)p(θ)∫
L(D|θ)p(θ)dθ , (11.1)

where θ is the set of model parameters (ã, γ, etc.) and D is the set of experimental cross-

section measurements (previous measurements in the literature are not included). p(θ) is

the joint prior probability distribution of the parameters, which was taken to be uniform

to obtain an unbiased posterior. L(D|θ) is the likelihood function, which is defined to be

a multivariate normal distribution, with means equal to the measured cross sections σexp
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and a diagonal covariance matrix with elements equal to the square of the experimental

uncertainties dσ2
exp:

L(D : σ, dσ|θ) ∝ exp

[
−
∑

i∈D

(
σexp − σth(θ)

dσexp

)2
]
. (11.2)

A Metropolis Hastings algorithm [128] serves as the MCMC sampler. For each reaction, 15

independent chains of 1500 steps were computed. The first 500 steps of each chain were

considered “burn in”, and discarded. In total, the posterior distribution for each reaction

contains 15000 samples.

Once the joint posterior probability distribution P (θ|D) is obtained, a distribution of cross-

section predictions can be calculated by sampling from P (θ|D). The results of this are shown

in the left panels of Fig. 11.3. The band represents a 68% confidence interval, while central

values are taken as the median. As a comparison, the TALYS 1.9 calculations using the

default parameters values for the same NLD and γSF are shown as well. The results are

a significant improvement over the TALYS 1.9 default and NON-SMOKER models, as the

predictions are in good agreement with the experimental data throughout the energy range

measured. In a similar fashion, the inverse cross section and reaction rates of interest can

also be calculated by sampling from P (θ|D).

11.4 Pre-Bayesian modeling

In the previous section, the internal parameters within phenomenological models were con-

strained, resulting in predictions that agree well with experiment within uncertainties. How-

ever, as previously mentioned, the uncertainties of the internal parameters grow with extrap-

olation from experimental data. In addition to determining the best constrained reaction

rates, it is also beneficial to develop a model for the mass region that can be used for nearby

260



nuclei where there is still little to no experimental data. For this, we turn to microscopic

γSF and NLD models.

Microscopic models tend to be less accurate, but are more robust, capable of describing a

small mass region with less need for experimental data for re-calibration of their internal pa-

rameters. However, there are many microscopic γSF and NLD available within TALYS, and

it is unclear which combination best describes the region of interest; random combinations

of these models vary the cross-section predictions by over a factor of ten.

Thus, every combination possible for microscopic γSF and NLD models available within

TALYS 1.9 was tested. Within TALYS 1.9, there are three microscopic NLDs and six

microscopic γSFs for a total of 18 combinations; each model is listed in Table 11.1. For

the OMP, the KD-OMP and the semi-microscropic Jeukenne-Lejeune-Mahaux OMP (JMP-

OMP) [157] were tested for protons and neutrons. Like the previous method, the α OMP

remained as the TALYS default.

Table 11.1: Microscopic NLD and γSF available within TALYS 1.9. The numbering nota-
tion is consistent with the TALYS 1.9. manual [174]. The microscopic γSFs calculate the
dominant E1 transitions; M1 and all other higher order transitions are calculated using the
BA-γSF.

NLD

ldmodel 4: Skyrme force from Goriely’s tables [113]
ldmodel 5: Skyrme force from Hilaire’s combinatorial tables [111]
ldmodel 6: Temperature dependent HFB, Gogny force from Hilaire’s combinatorial tables [139]

γSF
strength 3: Hartree-Fock BCS tables [48]
strength 4: Hartree-Fock-Bolgubyubov (HFB) tables [48]
strength 5: Goriely’s hybrid tables [109]
strength 6: Goriely’s temperature dependent HFB [139]
strength 7: temperature dependent relativistic mean field [15]
strength 8: Gogny D1M HFB and quasiparticle random phase approximation [195]

The total number of combinations tested was then 36. From each combination, theoretical
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cross sections for each energy measured in this work were calculated and compared to the

experimental values. Unlike the Bayesean modeling method described in the previous section,

the default parameters of the microscopic models were not changed. In order to determine

the best combination, the chi-square value χ2 for each model was computed, which is equal

to the argument in the exponent of Eq. (11.2), taking σth as the model prediction, and σexp

as the experimental cross section for a given energy.

The model combination with the smallest χ2 for each individual reaction is labeled as “Local”

and is plotted as a solid line on the right-hand panels of Fig. 11.3 for that reaction. The other

reactions are plotted as a dashed line for comparison. From the 36 model combinations, the

KD-OMP had a lower χ2 compared to its JMP-OMP counterpart. From the 18 combina-

tions that used the KD-OMP, model 4-3 was found to have the smallest χ2 across all three

reactions. The two numbers correspond to the NLD-γSF used. This model combination is

labeled as “Global”, and is shown as a solid red line in all three plots.

The microscopic and phenomenological models discussed in this section were also compared

to the experimental partial cross sections (capture to the ground state and meta-stable state)

for 108Cd and 110Cd, which is shown in Fig. 11.5. The models are in good agreement with

the measurements within the uncertainties.

11.5 Photodisintegration reaction rates

Calculation of the photodisintegration decay rates requires integration of the cross section

folded over the photon number density with respect to the incident γ-ray energy:

λ(γ,β)(T ) =
1

π2c2h̄3

∫ ∞

0

E2
γ

eEγ/kT − 1
σ(γ,β)(Eγ) dEγ, (11.3)
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where Eγ is the energy of the incident γ ray and σ(γ,β) is the cross section for the photodis-

integration reaction to exit channel β. However, in stellar interiors, nuclei exist not only in

their ground states but also in excited states in thermal equilibrium. Therefore, a calculation

of the stellar photodisintegration decay rate, which accounts for thermally accessible excited

states, is needed. The stellar photodisintegration rate is given by:

λ∗(γ,β)(T ) =

∑
µ λ

µ
(γ,β)(T )e

−Eµ
x/kT

∑
µ(2J

µ + 1)e−Eµ
x/kT

(11.4)

where λµ(γ,β) is the photodisintegration rate of a nuclei in state µ with excitation energy Eµ
x

and spin J .

Using TALYS 1.9 the stellar (γ, p) and (γ, n) decay rates for the inverse reactions measured

in this work were calculated for temperatures between 0.001 - 10 GK. The rates are calcu-

lated based off the MCMC-fitted model, where each calculation was done using parameters

sampled from the posterior distribution. Stellar decay rates below 1 GK in general were

below TALYS’ precision, and therefore have been omitted from the table. The 111In stellar

photodissociation decay rates based off the MCMC fitted model, along with the global and

local 110Cd microscopic model are plotted in Fig. 11.4. These rates are in good agreement,

within uncertainties, with the predictions from the REACLIB tsh8-v6.

Despite two different approaches used to constrain the Hauser-Feshbach theory, the stellar

(γ, p) rates are in good agreement with one another. There is however, some slight variation

between model predictions of the stellar (γ, n) rates. This is to be expected, since the

reactions were constrained based off (γ, p) cross-section measurements. Furthermore, the

MCMC-fitted approach alters the level density of the neutron exit channel.

In the bottom panel of Fig. 11.4, the ratios of the stellar (γ, p) to (γ, n) decay rates are shown.

The ratio of rates from the REACLIB ths8-v6 has an uncertainty estimated at about a factor

of three, which is shown as a gray band. Within this uncertainty band, the MCMC-fitted
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KU-γSF, GC-NLD model constrains the branch-point temperature to 2.71±0.05 GK. While

the line thickness of the microscopic-model rate ratios are aesthetic for easier distinguishing,

the band of the MCMC-fitted model represents a 68% percentile of the posterior distribution.

The 110Cd Micro model is in good agreement while the Global model predicts the branch-

point temperature at around 2.6 GK. This discrepancy is somewhat expected as in general

the Global model will be less accurate, but serve as a better estimation for other reaction

rates in the A = 100− 110 mass region.

Based on our results, the branch-point temperature is indeed within the γ-process temper-

ature window, and the abundance ratio of 108Cd to 110Cd will be temperature sensitive. In

addition, it can be seen that the global-microscopic model gives similar predictions to the

MCMC-fitted model, helping to validate it as a model useful in investigating other reaction

rates in the same mass region.

11.6 Conclusion

In an effort to better model the γ-process, and potentially mitigate discrepancies of the

predicted p-nuclei abundances, the 111In(γ, p)110Cd and 111In(γ, n)110In reaction rates were

constrained, constraining the temperature of the 111In(γ, p),(γ, n) branching point. This

was achieved by measuring the cross sections for 102Pd(p, γ)103Ag, 108Cd(p, γ)109In, and

110Cd(p, γ)111In, and then using the measurements to constrain γSF and NLD models used

in Hauser-Feshbach theory within TALYS 1.9. In constraining these models we have adopted

two different approaches: in one approach parameters within phenomenological models such

as the KU-γSF and GC-NLD were constrained through a MCMC sampling algorithm; an-

other approach investigated various combinations of microscopic γSF and NLD, identifying

the combination which best describes the experimental measurements. We recommend us-

ing the global-microscopic combination for estimating cross sections/reaction rates for proton
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and neutron reactions in the A = 100−110 mass region where there are no experimental mea-

surements. Both methods give similar predictions for the 111In(γ, p)110Cd and 111In(γ, n)110In

reaction rates.

In conclusion, with a few stable-target experiments, the 111In(γ, p)/(γ, n) branch-point tem-

perature, for which previously only the lower limit of 2.3 GK was established, has been

constrained to 2.71 ± 0.05 GK; this is a reduction of over a factor of 30. However, the un-

certainties presented are only systematic, as there may be additional uncertainties inherit to

the TALYS code which are difficult to quantify. Based on our results, above the branching-

point temperature 108Cd will be fed through 109In, while below 110Cd will be fed through

111In. This may have an impact on the predicted abundances of these isotopes, as well on

the lighter p-nuclei, warranting further investigation. Furthermore, future cross-section mea-

surements to constrain other model-dependant γ-process branching points are desirable, as

constraining the nuclear input will likely continue to provide further insight and constraints

into the astrophysical conditions necessary to produce the p-nuclei.
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Figure 11.3: (Taken from [212].) Constraining of Hauser-Feshbach statistical parameters
used to predict cross sections. The left panels show the MCMC-fitted result based off con-
strained parameters within the KU-γSF and GC-NLD model. The solid blue line is the
median prediction while the band represents a 68% confidence interval. For the panels on
the right hand side, predictions based off different combinations of microscopic NLD and
γSF are shown. The shaded band represents the total range of predictions from all micro-
scopic model combinations available in TALYS 1.9. The combination that best fits all three
reactions from this work is labeled “Global” while the combination that best fits a single
reaction is labeled as “Local”. The number notation represents NLD and γSF model number
consistent with the notation used in the TALYS 1.9 manual [174].
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Figure 11.5: (Taken from [212].) Comparison of the MCMC-fitted GC-NLD and KU-γSF
model, and microscopic models to the experimentally measured partial cross sections of 108Cd
(a) and 110Cd (b).
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Chapter 12

Introduction

Parts of the discussion in this chapter have already been published in a conference proceed-

ing [117] which I authored for the 15th International Conference on Nuclear Data for Science

and Technology (ND2022).

In this chapter I will review the dissertation proposal, laying out the main problem I am

addressing in this final part of the dissertation.

Reaction measurements on fission products are being planned at both Argonne National

Lab and at the Facility for Rare Isotope Beams. These indirect experiments produce specific

short-lived nuclei via beta decay, and the subsequent neutron and gamma emission are

studied. Some initial experiments found a surprising overabundance of gamma emission,

which theory has yet to explain [274, 286]. To remedy this, we are developing an integrated

nuclear data workflow that connects advanced nuclear shell model codes for describing the

beta decay with a contemporary nuclear reaction model code.

Beta decay is the mechanism for element transmutation towards stability, and plays an

important role in competition with neutron-capture in the formation of heavy elements:

269



Understanding this is one of the central tasks of the nuclear theory community and the

new Facility for Rare Isotope Beams (FRIB) [13, 252]. A less common, yet important [207]

process is the emission of one or more neutrons immediately following beta decay in a process

called beta-delayed neutron emission (BDNE), depicted in Figure 12.1.

Figure 12.1: Schematic depiction of beta-delayed neutron emission for the case of 94Rb.
The distribution of states populated by beta decay can be predicted with a microscopic
structure model like quasiparticle random-phase approximation or shell model. The decay
of the neutron and gamma emitting nucleus (94Sr) is historically described by a statistical
model, assuming compound nuclear decay.
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12.1 The discrepancy: the statistical model versus the

measurement

Theoretical description of BDNE has been an ongoing challenge since the late 1970’s [96, 231,

142]. The idea of selectivity [96] of states populated by beta decay, leading to non-statistical

neutron emission, was proposed to explain peak-features seen in delayed neutron spectra.

These effects were almost explained away by the Pandemonium effect [126], which indicated

that such peaks were artifacts due to detector limitations. Others showed that in some cases,

(a) statistical models of BDNE could reproduce the peaks if excited states in the residual

nucleus were included [231], and (b) that states populated in beta decay could be strongly

connected to excited states in the final nucleus [264], supporting selectivity. At the close

of the decade, the nuances were better understood, including the importance beta-decay

strength function shape and nuclear level densities [142, 234].

With the development of total absorption gamma-ray spectroscopy (TAGS) [4, 152] and its

application to the study of BDNE [274, 286, 121], the Pandemonium effect can be avoided.

Even so, the statistical description in some cases significantly under-predicts the intensity of

emitted photons from TAGS experiments, e.g. in [286]. Thus, BDNE remains an important

and unresolved modeling challenge. There are three hypotheses which may explain this.

12.2 The three hypotheses

I propose three hypotheses which may explain the discrepancy between the statistical reac-

tion model and the observed emission of beta-delayed gammas and neutrons. These will be

reffered back to throughout the rest of the dissertation.

Hyp. 1: Gamma-ray strength function is stronger than assumed. This is the simplest ex-
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planation: if the photon-strength function is enhanced, the nucleus formed by beta decay

will de-excite below the neutron separation energy before delayed neutrons are emitted. If

this is the explanation, then many neutron capture rates will also have to be re-evaluated,

especially for astrophysical interests.

Hyp. 2: Forbidden beta decay is stronger than assumed, blocking high-l neutron emission. If

forbidden transitions play a significant role in these neutron-rich cases, then higher angular

momentum states populated by beta decay would block this emission of neutrons to available

states in the neighboring nucleus.

Hyp. 3: Beta decay does not lead to a compound nucleus. Essentially, selectivity. This

explanation requires the greatest change in our description of beta-delayed neutron emission.

It would also have significant implications for the use of beta-decay as a means of indirect

cross section measurements such as the beta-Oslo method [269].

In the following chapters, I will address each of these.

12.3 Shell model approach

Some BDNE studies have made progress combining quasiparticle random-phase approxi-

mation (QRPA)-type descriptions of beta decay with HF calculations to reasonable effect

[167, 124]. We are also aware of recent efforts with the shell model [120]. We want to

continue along these lines to incorporate modern shell model methods into HF codes in a

self-consistent way, including level densities and gamma-ray strength functions derived from

the shell model.

Shell model calculations, treating nuclei at the nucleon-degree-of-freedom, offer the largest

model spaces to capture the physics of complex nuclei. Energy levels, binding energies,
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nuclear level densities, gamma-ray strength functions, and beta-decay strength functions can

all be computed from the same wave functions generated from phenomenological interactions.

Even after restricting configurations to a finite valence space, nuclei of interest to BDNE

generate basis dimensions several orders of magnitude larger than current computational

limits, O(1010).

To make these models tractable without discarding important orbitals, we apply an impor-

tance truncation in the many-body configuration space. We assign configuration importance,

in explicit proton-neutron formalism based, based on the eigenvalues of the "separable" pro-

ton and neutron parts of the Hamiltonian. This approach is motivated by the empirical fact

that eigenstates of the nuclear Hamiltonian Ĥ = Ĥ(p) + Ĥ(n) + Ĥ(pn) are well approximated

by simple products of eigenstates of the proton-only and neutron-only interactions, Ĥ(p) and

Ĥ(n) [217, 219], with fidelity increasing exponentially with the number of extremal states

taken in combination.

Our code, PANASh (proton and neutron approximate shell-model, unpublished), implements

this importance truncation scheme (see Chapter 4). Basis states are constructed by coupling

together eigenstates of Ĥ(p) and Ĥ(n), up to fixed total angular momentum and parity. The

basis is then truncated by using only some fraction of all states, taking the lowest excitations

from each subspace. PANASh has been designed and simplified for our purpose, and is ready

for extensive application.
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Chapter 13

Theory of Beta Decay

This chapter covers the theory necessary for calculating shell model inputs for modeling the of

beta-delayed neutron emission. Nuclear level densities, gamma-ray strength functions, and

leading order beta decay strength functions are all discussed in previous chapters. What

remains is the calculation of beta-decay transitions. A good introductory text is chapter

7 of Suhonen [272]. A complete treatment of the subject, however, is beyond the scope of

most textbooks. This is especially true for higher-order beta decay transitions and proper

treatment of the interaction of the electron and nuclear wave functions. For the complete

treatment, Behrens and Buhring [24] is the definitive reference.

13.1 Beta decay transition probabilities

Beta decay is a weak-nuclear process wherein a neutron decays into a proton (β− decay),

which for a nucleus with Z protons and N neutrons is:

(Z,N)
β−
→ (Z + 1, N − 1) + e− + ν̄e. (13.1)
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Alternatively, a proton may decay into a neutron (β+ decay),

(Z,N)
β+

→ (Z − 1, N + 1) + e+ + νe (13.2)

(There is also electron capture (EC).)

Beta decay transitions emitting leptons with a total L = 0 are called allowed transitions,

otherwise they are called forbidden. Allowed transitions are further categorized into:

• Fermi (F) transitions if the emitted electron (positron) and anti-neutrino (neutrino)

couple to total spin S = 0 (thus the nucleus changes total angular momentum ∆J = 0),

and

• Gamow-Teller (GT) if the emitted particles couple to S = 1 (thus the nucleus changes

∆J = 0, 1).

To do beta decay calculations as part of nuclear reaction theory, the quantity we need is the

transition rate, or half-life, of nuclear states. In the usual way:

t1/2 =
ln 2

Tfi
, (13.3)

where T is the transition probability. For reporting beta decay rates in literature, the logft

values are typically presented:

f0t1/2 =
κ

BF +BGT

, (13.4)

where f0 is the energy-independent phase-space integral and BF and BGT are the reduced

transition probabilities:

BF =
g2v

2Ji + 1
|MF |2, (13.5)
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BGT =
g2A

2Ji + 1
|MGT |2. (13.6)

κ is a collection of constants:

κ =
2π3h̄7 ln(2)

m5
ec

4G2
F

≈ 6289 s. (13.7)

From [272], here is the Fermi beta decay matrix element:

MF = δJfJi
∑

ab

MF (ab) ⟨Ψf | |[π†
aν̃b]∆J=0| |Ψi⟩ , (13.8)

with

MF (ab) = ⟨a| |1τ±| |b⟩ = δabĵa. (13.9)

The indices a and b label the single-particle orbitals from which the many-body states |Ψ⟩

are constructed. π†
a is a proton single-particle state creation operator. ν̃b is the time-reversed

destruction operator for neutron single-particle states. Recall that:

c̃j,−m = (−1)j−mcj,m. (13.10)

The Fermi operator changes only the isospin of the wave function - all other quantum numbers

are unchanged; the delta function δab enforces this sending a neutron in orbit b to the same

proton orbit a = b.

The Gamow-Teller (GT) (allowed) beta decay matrix element is:

MGT = ⟨Ψf | |στ±| |Ψi⟩ =
∑

ab

MGT (ab) ⟨Ψf | |[π†
aν̃b]∆J=1| |Ψi⟩ , (13.11)
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where in the second equality the τ− operator is selected for β− transitions. Here,

MGT (ab) =
1√
3
⟨a| |στ−| |b⟩ =

√
2δna,nb

δla,lb ĵaĵb(−1)la+ja+
3
2





1
2

1
2

1

ja ja la




. (13.12)

The Gamow-Teller operator acts on the isospin and the intrinsic spin of the nucleons, while

the principle quantum number n and orbital angular momentum l remain unchanged.

13.2 Beta decay matrix elements with PANASh

Next we need expressions for the beta decay B-values using PANASh. To compute equations

the transition matrix elements for Fermi and Gamow-Teller transitions (13.8) and (13.11)

(and all other types of transitions), PANASh will need to supply one-body charge-changing

transition matrix elements. These are a simple generalization of one-body transition matrix

elements and were defined in section 4.7.2 for the PANASh basis:

⟨Ψf ||[π̂†
a ⊗ ν̃b]K ||Ψi⟩ = (−1)jnf

−jb−jni [Jf ][K][Ji]
∑

pfnfpini

ψf
pfnf

ψi
pini

×[jpf ][jni
]





jpf jpi ja

jnf
jni

jb

Jf Ji K




Spfni;aSninf ;b,

(13.13)

where ψi
pini

are the wave function coefficients in the PANASh basis, and Spfni;a, Sninf ;b are

the proton, neutron spectroscopic amplitudes of the PANASh basis factors. The program

RHODIUM, a companion code to BIGSTICK takes as input the proton and neutron basis factors

used to construct the PANASh basis to compute these spectroscopic amplitudes.

There is a somewhat complicated pipeline connecting these three codes, BIGSTICK, RHODIUM,

and PANASh. In summary (See Figure 13.1):
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1. BIGSTICK computes the proton and neutron wave functions which become the PANASh

basis factors

2. RHODIUM computes the proton spectroscopic amplitudes and the neutron spectroscopic

amplitudes

3. PANASh computes the nuclear wave functions using the proton and neutron wave func-

tions from BIGSTICK (actually, it just needs the one-body transition matrix elements)

4. PANASh computes the beta decay matrix elements using its nuclear wave functions

and the spectroscopic amplitudes from RHODIUM

PANASH

PANASH

BIGSTICK

BIGSTICK

PANACEA Code Stack:
Beta Decay Matrix Elements

.dres: one-body density matrix file

.wfn:  many-body wave function file

.bas:  many-body basis file

BIGSTICK

BIGSTICK

|Ψ!#

|Ψ"#

|Ψ⟩ ≈ & Ψ#$ |𝜙#%⊗ |𝜙$&⟩ '
#$()*+,--

𝜋: protons (purple lines)
𝜈: neutrons (green lines)

Ψ" [𝜋.⊗ �̃�]/' Ψ!

(Beta decay matrix elements)

(Spectroscopic matrix elements)

i: initial state (- solid lines)
f: final state (-- dash lines)

Updated 2022-03-09

(Component wave functions)

𝜙"(%) 𝜋. 𝜙!(%)

(Z, N)

PANASH

𝜙"(&) �̃� 𝜙!(&)

N → N-1 RHODIUM

RHODIUM Z → Z+1

|𝜙!(%)#

|𝜙"(&)#

|𝜙"(&)#

|𝜙!(%)#

(Z)

(N)

(Z+1)

(N-1) (Z+1,N-1)

Figure 13.1: Interplay between BIGSTICK, RHODIUM and PANASh codes. Many-proton and
many-neutron wave functions generated with the full configuration interaction (FCI) code,
BIGSTICK. These proton and neutron factors are used to construct the many-nucleon, trun-
cated basis used by PANASh. The beta decay matrix elements are computed with PANASh
using its own approximate wave functions and spectroscopic amplitudes (generalized one-
body density matrices) from the utility code RHODIUM.
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13.3 The electron and the neutrino

So far we have described how to calculate the log f0t value for beta decays by rearranging

the relation:

t1/2 =
κ

f(Q)
=

κ

f0(BF +BGT )
=

ln(2)

Tfi
, (13.14)

where f(Q) is the phase-space factor which depends on the energy of the transition Q. This

is done to avoid treatment of the phase-space factor. But our principle quantity of interest

is this total transition probability:

Tfi =
ln(2)

κ
f, (13.15)

so we must calculate the phase space factor. In general, the phase space factor depends

not only on the nuclear structure of the decaying nucleus and its products, but also on

the interaction between the emitted electron and the residual nucleus. In this section, I will

discuss the details required for us to calculate the beta decay transition probability by taking

into account the physics of the emitted electron and antineutrino.

We will assume that the initial and final nuclear states are very heavy compared to the

Q-value of the beta decay, so that the three body decay (Z,N)→ (Z+1, A)+e−+ ν̄e can be

treated mostly non-relativistically. In particular, we assume we can work in the brick-wall

frame of reference, where the nuclear mass is infinite and drops out of the kinematics. In

terms of the electron energy (in units of mec
2), the phase space factor is an integral:

f(W0) =

∫ W0

1

C(W )(W 2 − 1)1/2W (W0 −W )2F0(Z,W )dW. (13.16)
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The integrand is proportional to the differential electron energy distribution:

P (W )dW =
G2

F

(h̄c)6
1

2π3h̄
C(W )pecW (W0 −W )2F0(Z,W )dW, (13.17)

• C(W ) is a shape factor which contains the nuclear structure content

• pe is the momentum of the out-going electron

• W = (p2e + 1)1/2 is the outgoing electron energy in units of mec
2 (W = Ee/(mec

2))

• W0 ≈Mi −Mf is the maximum electron energy

• F0(Z,W ) is the Fermi function; the effect of the Coulomb interaction between the

electron and nucleus

In this way we can see that the partial half-life is just:

t1/2 = ln(2)

(∫
P (W )dW

)−1

. (13.18)

More usefully, the transition probability from a state i in the precursor nucleus to a state f

in the residual nucleus is

Tfi =
G2

F

(h̄c)6
1

2π3h̄

∫ W0

1

C(W )pecW (W0 −W )2F0(Z,W )dW. (13.19)

When the nuclear shape factor C(W ) is energy-independent, it is common to denote the

phase-space factor as the statistical phase-space factor:

f0(W0) =

∫ W0

1

(W 2 − 1)1/2W (W0 −W )2F0(Z,W )dW, (13.20)

since it depends only on the kinematics of the outgoing leptons. The energy-independent
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form factor C is nothing but the B-values of the transition. In the case of allowed decay,

Tfi =
G2

F

(h̄c)6
1

2π3h̄
δ(W0 − (Ei − Ef )/mec

2)f0(W0)(BF (i→ f) +BGT (i→ f)). (13.21)

The delta function is included to point out the relation between the maximum electron

energy and the energy of the nuclear transition. In the following subsections I will explain

each term.

13.3.1 Energy and momentum relations

The kinematic quantities of interest are the energies and momenta of the nucleus, electron,

and neutrino before and after the beta decay. The momentum transfer of the processes is

q⃗ = p⃗f − p⃗i = −(p⃗e + p⃗ν). (13.22)

The initial nucleus is usually at rest, so that q⃗ = p⃗f , and q2 = p2f = 2MfER, where ER is the

kinetic energy of the recoiled nucleus. The limits on the three and four momentum transfer

are:

0 ≤q2 ≤ ∆2 −m2
e (13.23)

−∆2 ≤q2 ≤ −m2
e, (13.24)

where ∆ = −(Mf −Mi) is the mass defect. The maximal energy W0 of the beta particles is

W0 = −(Wf −Mi) = ∆− |ER|Wν=0 = ∆

(
1− ∆2 −m2

e

2Mf∆

)
. (13.25)
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Since the second term (nuclear recoil energy) is of the order 0.01/A,

W0 ≃ ∆. (13.26)

Note that we are working in units of mec
2 with c = 1.

The rest masses here naturally include the binding energy, not just the bare nucleon masses.

Since the particle numbers in the nucleus doesn’t change, the Q value here is just the dif-

ference in the energies of the nuclear states minus the rest energy of the leptons (we will

ignore the neutrino). Assuming we are always decaying from the ground state of the initial

nucleus,

Q = BE(Ψi)− (BE(Ψf ) + EEx(Ψf ))−mec
2, (13.27)

where BE are the ground-state binding energies of the initial and final nuclei, and Ef is

the excitation energy of the final state. We can write this as Q = Ei − Ef −mec
2, where

E = BEgs + EEx. If Ei and Ef of the nuclear states are in MeV, then,

W0 =Mi −Mf =
Ei

mec2
− Ef

mec2
=

Q

mec2
+ 1. (13.28)

This hopefully makes the limits of the phase space integral (1,W0) clearer; we can think of

this as an integral from zero Q-value to the maximum Q value when Ef is the ground state

of the residual nucleus.
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13.3.2 Phase space factor

How does this phase space factor arise? The staring point is the basic relation between the

total decay probability for a state i→ f in terms of an S-matix:

Pfi = S†
ifSfi, (13.29)

where

Sfi = δfi + i(2π)4δ4(pf − pi)NTfi, (13.30)

for a T-matrix Tfi and normalization N , depending on the plane wave initial and final states.

Taking into account the various conservations of energy and momentum, and in the rest-

frame of the initial nucleus (p⃗i = 0), the decay probability per unit time can be written,

dW

dt
=

1

(2π)5

∑

fs

∫
T †
ifTfiδ

3(p⃗f + p⃗e + p⃗ν)δ(Wf +W +Wν −Mi)d
3pfd

3ped
3pν . (13.31)

The sum is over all final states f and spins s. We chose the rest frame of the initial nucleus

because by also assuming the initial nucleus is infinitely massive compared to the others, we

can omit its energy contribution. The T-matrix is connected to the beta decay Hamiltonian

through first-order perturbation theory:

Tfi = −
1

(2π)4δ4(pf − pi)
⟨f |

∫
Hβ(x)d

4x |i⟩ . (13.32)

It’s useful to look at the case where the T-matrix is energy-independent (constant). This

is the case for allowed transitions, for example. In such cases, the transition probability is
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dictated by the number of available states. The transition probability density becomes

dW

dt
∝ 1

(2π)5

∫
δ3(p⃗f + p⃗e + p⃗ν)δ(Wf +W +Wν −Mi)d

3pfd
3ped

3pν =
R

(2π)5
. (13.33)

R is the phase space integral due to the kinematic effects only, and not the dynamics of the

decay process. R can be simplified by integrating out the neutrino momentum p⃗ν , and, after

a change to spherical variables, also integrating over dϕe, dΩf , and d(cosΘfe):

dR = 8π2

∫
(Wf +W −Mi)pfdpfWdW

= 16π2peW (W0 −W )2dW

(13.34)

with W0 =Mi −Mf . For details on the other physically-motivated substitutions and limits

of integration used, see the full discussion in chapter 5 of Behrens and Buhring [24] . This is

the probability, under the constant-T-matrix assumption, that the electron is emitted with

energy between W and W + dW .

The statistical shape factor,

P0(W ) = peW (W0 −W )2 (13.35)

is shown in Figure 13.2. Restoring the possible energy dependence of the T-matrix, we

obtain:

P (W )dW =
1

2π3

∑

fs

|T |2peW (W0 −W )2dW. (13.36)

All that’s missing from this expression now is the Coulomb correction f(Z,W ) scaling factor.

284



Figure 13.2: The statistical shape factor P (W ) = peW (W0−W )2dW for beta decay. Taken
from Behrens and Buhring [24] chapter 5.3.

13.3.3 Statistical phase factor with no Fermi factor

If we assume an energy-independent nuclear form factor so that only the statistical phase

space factor is considered, and the integral can be carried out a priori. Assuming a statistical

shape (13.34) and a negligible Coulomb correction, one can obtain [24]:

f00(W0) =

∫ W0

1

(W 2 − 1)1/2W (W0 −W )2dW

=
1

60
[(2W 4

0 − 9W 2
0 − 8)

√
W 2

0 −m2
e + 15W0 ln

(
W0 +

√
W 2

0 −m2
e

)
].

(13.37)

Recall that the maximum electron energy is W0 = (Ei − Ef )/(mec
2). At the lower limit,

f(1) = 0, and for large W0, goes like W 5
0 . On a plot the function resembles an exponential

function (although it is much slower). This means that the phase space factor suppresses

low-energy transitions and greatly enhances higher energy transitions.

13.3.4 Fermi factor (static Coulomb correction)

In addition to the weak interaction leading to the beta decay, there is also the electrostatic

interaction between the outgoing electron and the nuclear charge. This distorts the outgoing
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electron wave function in a complicated way and is the subject of the first half of the Behrens

and Buhring [24] text. We can also see that that will effect the electron energy spectrum.

For β− decay, the outgoing electron will feel an attractive potential from the nucleus. In

some approximation, this effect can be factored into the so-called Fermi function F0(Z,W ).

The differential electron spectrum is then:

P (W )dW =
G2

F

(h̄c)6
1

2π3h̄
C(W )pecW (W0 −W )2F0(Z,W )dW. (13.38)

F0(Z,W ) comes from a ratio of distorted and free electron radial wave functions [272]. (See

[24], p 105.) The standard definition of the Fermi factor is:

F0(W,Z) = 4(2peR/h̄)
2(γ−1)eπy

( |Γ(γ + iy)|
Γ(1 + 2γ)

)2

, (13.39)

where the γ = γ1 function is γ =
√
1− (αZ)2 (≈ 1 for small Z). The argument y(W ) =

(αZW )/(pec). The radius R is [256] R ≈ 1.2A1/3fm. The Fermi function is order unity, and

has been tabulated approximately in [119] and less approximately in [256].

Since numerical evaluation of the Fermi function has historically been tedious, there have

been several attempts at approximations, e.g. [288]. As a historical note, Suhonen’s text

[272] attributes the following non-relativistic approximation:

F0(W,Z) ≈
W

pe

2παZ

1− e−2παZ
, (13.40)

to Primakoff and Rosen [228]; the “Primakoff-Rosen approximation”. However, that paper

on double beta decay specifically attributes the same expression as a “very approximate”

form from Blatt and Weisskopf [31]. An even more true attribution, following [288], would

be from Mott and Massey 1933 [206]. In any case, Venkataramaiah [288] points out that for
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small Z this has the form

F0(W,Z) ≈ 1 + παZW/pe. (13.41)

The nonrelativistic equation (13.40) can be improved to within one-percent error for large-Z

up to Z=84 by multiplying by the factor [288]:

[W 2(1 + 4(αZ)2)− 1]
√

1−(αZ)2−1. (13.42)

In this work we will use the relativistic formula (13.39).

13.3.5 Finite neutrino mass

As we now know, neutrinos have a nonzero rest mass. This has an effect on the spectrum.

I will now revisit the kinematics integral in more detail to show its effect. I follow the

development in DeBenedetti [64].

The most general statistical factor for the number of final (momentum) states of a reaction

is the product of the differential momentums of each particle:

ρf =
1

dW0

N−1∏

i=1

d3pi
(2πh̄)3

, (13.43)

where the energy and momentum satisfy:

E0 =
N∑

i=1

Ei, and 0 =
N∑

α=1

pα. (13.44)

We are dealing with a particle decay rection where the initial nuclear is many orders of

magnitude more massive than the emitted electron and neutrino. Working in the rest frame
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of the initial particle then,

dE0 =
N−1∑

α=1

dEα. (13.45)

To obtain the differential momentum distribution of the electron (which is historically what

is observed rather than the elusive neutrino), we integrate over all other degrees of freedom.

In general, for particle ‘1’ this takes the form:

ρf (p1)dp1 =
d3p1
(2πh̄)3

d

dE0

N−1∏

α=2

∫ Eα/c

0

d3pα
(2πh̄)3

. (13.46)

In this case, there is only the neutrino to integrate over. The energy available to the neutrino

is the energy available for the reaction (E0) minus the electron energy:

E2
ν = (E0 − Ee)

2 −m2
νc

4. (13.47)

Substituting spherical coordinates (d3p = p2dpdΩ) with rotational symmetry,

ρf (pe)dpe =
4πp2edpe
(2πh̄)6

d

dE0

∫ [(E0−Ee)2−m2
νc

4]1/2/c

0

4πp2νdpν (13.48)

=
16π2p2edpe
(2πh̄)6

1

3c3
1

dE0

[(E0 − Ee)
2 −m2

νc
4]3/2 (13.49)

=
16π2

(2πh̄)6c3
p2e[(E0 − Ee)

2 −m2
νc

4]1/2dpe. (13.50)

Recent measurements put the neutrino mass < 0.8 ev/c2 from beta decay measurements [3]

or < 0.2− 0.4 ev/c2 from astronomical measurements [107]. This is at least three orders of

magnitude smaller than the first term. We ignore its effects in this work.
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13.3.6 Numerical phase space factor

Today it is a trivial task to integrate the phase space integral without any approximation

to the Fermi factor (13.39). I have implemented such a routine and plotted a comparison

in the following figures. Note that these calculations assume an energy-independent nuclear

shape factor C(W ), which is the case for Fermi and Gamow-Teller allowed transitions.
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Figure 13.3: Integrand of the phase space integral equation (13.38), which gives the probabil-
ity density of emitting electrons with energy W (unitless), and its Fermi-factor contribution.
The total integrand P (W ) is the product of the statistical shape P0(W ) and the Fermi factor
F0(W,Z).

First, it is useful to visualize the relative contributions of the statistical shape (13.35) and

the Fermi factor (13.39). Figure 13.3 shows the integrand of the phase space factor f and

the individual contributions from the statistical shape and Fermi function F0(W,Z). The

integrand is essentially the probability density function for the number of emitted electrons

as a function of the electron energy W [272]. This plot is for a maximum electron energy of

W0 = 3.0, which corresponds to a Q-value of 1.02 MeV.

Next, I numerically integrate both the bare statistical factor and the Fermi-corrected phase

space integrands. There is perfect agreement with the analytic integral of the statistical
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factor given by equation (13.37). The results are shown in Figure 13.4. The values of W0

range from 1 (zero Q-value) to around 30, which corresponds to a Q-value of 15 MeV. The

enhancement of the phase space factor from the Fermi term is significant except for at very

low transition energies.
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Figure 13.4: Integrated phase space factor as a function of the maximum electron kinetic
energy W0, with (P (W )) and without (P0(W )) the Fermi factor F0(W,Z) correcting the bare
statistical shape P0(W ).

Finally, I have also shown in both Figures 13.3 and 13.4 the nonrelativistic approximation

to the Fermi function from equation (13.40). Over the range of W0s in Figure 13.4, the

non-relativistic formula over-estimates the phase space integral by about 17%.

13.4 Spin-parity distribution of the residual nucleus

Before we can run our statistical reaction code, we need to know which states will be popu-

lated in the residual nucleus. Assuming a fixed excitation energy, the remaining degrees of

freedom (as far as the reaction code is concerned) are the spins and parities of the states

populated. This is what our shell model calculations must provide.
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We can compute the spin parity distribution of the residual nucleus as a ratio of transition

probabilities. At each excitation energy Ex = Ef − BEgsf of the residual nucleus, we want

to know what fraction of states will be populated with a given spin J , and parity π:

F (Ex, J, π) =

∑
f δJfJδπfπδ(Ex − Ef +BEgsf )Tfi∑

f ′ δ(Ex − Ef ′ +BEgsf )Tf ′i,
(13.51)

The state i is always the ground state of the initial nucleus. Note also that Tfi has its own

restrictions regarding conservation of energy, and spin and parity depending on the type

of transition. Since we are taking a ratio, a number of constants drop out. For allowed

transitions, we obtain:

F (Ex, J, π) =

∑
f δJfJδπfπδ(Ex −Q0 −mec

2W0)f0(W0)[BF (i→ f) +BGT (i→ f)]∑
f ′ δ(Ef ′ − Ef )f0(W0)[BF (i→ f ′) +BGT (i→ f ′)],

(13.52)

where Q0 ≡ BEgsi −BEgsf is the difference in ground state binding energies.

In the shell model where all of the states are discrete, (13.51) will either be 1 where there is

a state, or 0 where there is not. This is evident from the delta functions on Ex. In reality

what we are describing are neutron unbound states, i.e. resonances, which are not actually

discrete. In fact, for the statistical decay description to be valid, these resonances must be

densely packed and overlapping. To model this we can convolute our function (13.52) (or

(13.51)) with a Lorentzian as in [285], or Gaussian as in [52].

13.5 Summary

I have presented the theory required to describe the beta decay process and the probabilities

with which it populates particular states in the residual nucleus. This can be calculated

for individual states in the final nucleus using equation (13.19), which takes into account

the phase space of the outgoing electron and antineutrino and depends on the energy of the
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transition Q = Ei − Ef −mec
2. If we are interested in statistically averaged quantities, we

can instead use equation (13.51) to determine the distribution of spin-parity combinations

populated in the residual nucleus as a function of its excitation energy Ex. This is what

is required as input for a statistical reactions description of beta-delayed neutron emission,

which is the subject of the next two chapters.
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Chapter 14

The Decay of 94Rb: Statistical Reactions

The primary case study of this work is the beta-delayed neutron emission of 94Rb and

its competition with beta-delayed gamma emission. It has been shown that a standard

statistical treatment of the decay with existing models does not reproduce the experimentally

observed channel branching ratios [286]. In this chapter I will use the methods presented

earlier in the dissertation to to provide an integrated shell model and statistical reaction

description of the beta-delayed neutron emission of 94Rb. The goal is to correctly predicts

the competition between the gamma and neutron emission channels, or to explain why the

statistical treatment is not sufficient.

14.1 Reviewing the experimental literature

The relevant experimental results from a 2017 paper by Valencia et al. [286] are shown in

Figure 14.1. In this experiment, 94Rb spontaneously beta decayed from its ground state,

forming 94Sr with excitation energies between zero and the beta-decay Q-value of 10.281

MeV. Since Qβ > Sn, the neutron separation energy of 94Sr, both gammas and neutrons were
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PRC95,024320(2017)

Figure 14.1: The discrepancy between the measured and predicted beta delayed gamma-
neutron branching ratios. The diagram on the left depicts the process leading to the mea-
surement. The solid red line in the diagram corresponds to the horizontal axis Ex in the
graph on the right (taken from [286]), which is the excitation energy of 94Sr. See text for
discussion.

observed. The competition between the emitted gammas and neutrons above the neutron

separation energy was studied. In this work, the quantity of interest is the average total-

gamma-width as a ratio of the total decay width of 94Sr:

〈
Γγ:i

Γγ:i + Γn:i

〉
=

〈 ∑nγ

f=1 Γγ:fi∑nγ

f=1 Γγ:f ′i +
∑nn

f=1 Γn:fi

〉
, (14.1)

where Γγ:fi is the partial decay width for a gamma transition from a level i → f , and

similarly for the partial neutron decay widths Γn:fi. (Γ = h̄T for a transition probability

T .) The sums extend over all final states allowed by energy, angular momentum, and parity

rules. The averages extend over all initial states in some initial energy bin.

In principle, equation (14.1) can be calculated with a Hauser-Feshbach (HF) reaction code.

294



However, HF theory assumes that:

〈
Γγ:i

Γγ:i + Γn:i

〉
≈ ⟨Γγ:i⟩
⟨Γγ:i⟩+ ⟨Γn:i⟩

. (14.2)

The authors of [286] found that this greatly under-predicts the data and that a significant

improvement is obtained by including the effects of Porter-Thomas fluctuations, by assuming

that the partial decays widths are random numbers distributed according to a Porter-Thomas

(PT) distribution (a chi-squared distribution with 1 degree of freedom). Still, the statistical

model based on these PT distribution results in the solid lines plotted in the right side of

Figure 14.1 – under-predicting the experimentally measured values.

My goal in this chapter is to shed light on the remaining discrepancy between the statistical

model and the experimental measurement by testing the three hypotheses laid out in Chap-

ter 12. I begin by first reproducing the results of [286] using the tools available to me. This

is discussed in the next section.

14.2 Initial statistical reaction calculations

The first thing to check is that we can reproduce the published results. This is essentially

a nuclear data evaluation task. I first checked the RIPL-3 library [48] to source reasonable

priors for the gamma-ray strength function parameters. These are shown in Tables 14.1

and 14.2. There is no experimental data in the database for our specific nucleus 94Sr, but

there are systematic theoretical predictions from a simple model [103], as well as experimental

data for nearby nuclei.

I used the default settings for the Gilbert and Cameron level density parameters, and all

other parameters for the YAHFC calculation. Then, I populated 94Sr with each of the

possible spins for allowed, then forbidden, beta decay from 94Rb. This leads to a decay
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Table 14.1: Giant dipole resonance parameters for 93,94Sr. Assuming a Lorentzian (RIPL-3)
or enhanced generalized Lorentzian (YAHFC) shape with one or two peaks with energies E,
width G, and strength S.

Nucleus E1 (MeV) G1 (MeV) S1 (mb) E2 (MeV) G2 (MeV) S1 (mb)
RIPL-3

93Sr 17.54 7.48 - 15.25 4.43
94Sr 17.64 6.99 - 14.89 4.10

YAHFC Default
93Sr 16.84 4.5 206 - - -
94Sr 16.84 4.5 206 - - -

Table 14.2: Magnetic strength function parameters for 93,94Sr.

Nucleus E (MeV) G (MEV) S (mb)
YAHFC Default

93Sr 9.05 4.0 0.48
94Sr 9.01 4.0 0.47

with competition between gammas and neutrons above the neutron separation energy of

Sn = 6.832 MeV. Since the ground state of 94Rb is accepted to be 3− [286], allowed beta

decays (∆J = 0, 1) will result in 94Sr nuclei with 2−, 3−, and 4−. Figure 14.2 shows the

results of this using the YAHFC defaults for the GSF. I find that the agreement with the

experimental data is worse than reported by [286].

There are a few measurements of some strontium gamma-ray strength functions using various

different methods for different isotopes. These are compared in Figure 14.3 with some the-

oretical models from systematic studies of gamma-ray strength functions across the nuclear

chart.

In order constrain our GSF model using this data while accounting for uncertainty in the

model, I used COMMCAS to fit the GSF parameters in the statistical reaction code YAHFC

to the data. I assumed an enhanced generalized Lorentzian (EGLO) model with two peaks:

the standard dominant GDR around 17 MeV, plus another peak around 10 MeV to reproduce

the structure seen in the NRF data. I included all three data sets in the fit, excluding the

anomalous data in the NRF data set (measurements taken above the neutron separation
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Figure 14.2: Comparison of the initial statistical calculations of the beta-delayed neutron
emission of 94Rb compared to the experimental data of Valencia 2017 [286]. The data from
the paper was estimated using graphical software. The solid lines show decays from a 94Sr
nucleus populated by allowed decay and using the RIPL-3 [48] parameters used by default
in the YAHFC Hauser-Feshbach code. The grey bands show the decay from 3− states in
94Sr using GSF parameters fit to available experimental data and systematic models.

energy, see [261] for discussion).

It is well known that neutron capture is sensitive to the low-energy part of the gamma

ray strength function, and that experimental and theoretical evidence suggests that the low

energy part of the GSF may be enhanced by M1 electromagnetic transitions. The same

will be true for BDNE; a low energy enhancement of the GSF from the M1 component

may contribute to the enhanced gamma emission probability. I therefore included a simple

M1 model with two peaks: one primary and the second placed near zero energy to model

possible low-energy components. I fit M1 GSF to the SMLO systematic model of [110] to

which I assigned an arbitrary 10% uncertainty. Both models were assigned an un-accounted

for uncertainty parameter (see Chapter 9). Since none of the data used polarized beams

to excite the nucleus, the polarization of the transitions in each data set is unknown. As
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Figure 14.3: Gamma-ray strength functions for Strontium isotopes from various experimental
and theoretical models. The window of interest indicates the energies relevant for gamma
emission from 94Sr. Nuclear resonance florescence (NRF) data from [261]. β-Oslo data from
database [110] sourced from unpublished data from A. Sweet. Photo-absorption data on
natural strontium from [189]. D1M plus quasiparticle random phase approximation (QRPA)
plus emperical low-energy enhancement from [110, 112]. Simple modified Lorentzian (SMLO)
from global fits from the same database.

a rough approximation, I assume that the data are dominated by E1 transitions, although

this is possibly wrong below 5 MeV where the M1 and E1 of the systematic models predict

roughly equal magnitude from M1 and E1.

The results of the fit are shown in Figure 14.4. The assumptions described above result

in a reasonable total GSF. Examining Figure 14.2, we can see that this fit significantly

increases the gamma channel in the BDNE of 94Rb. The gray band shows calculations of

the normalized Γγ from 3− states in 94Sr.

In summary, by improving the phenomonological GSF’s using available measurements and

global systematic models, I was able to greatly increase the agreement with the data com-

pared to the default parameterizations. This used the parameter inference and uncertainty
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Figure 14.4: Gamma-ray strength functions fit to experimental data and models using
COMMCAS markov chain monte carlo sampling.

quantification tools developed in Part II. Second, this improvement is not sufficient. Follow-

ing the investigation of Valencia 2017 [286], this is likely due to contributions from random

fluctuations in the neutron partial widths. This will be addressed in the next section.

14.3 Porter-Thomas fluctuations

The calculations performed in the previous section do not match the results from Valen-

cia et al. [286]. The missing gamma strength in our statistical calculations can be partly

attributed to the effects of Porter-Thomas (PT) width fluctuations. Put simply, the dis-

tribution of individual-level gamma-decay widths has a long tail: a small number of very

strong transitions (from the tail of a PT distribution of decay widths) dominate the statistics

and the energy averaged Hauser-Feshbach calculation does not reproduce the correct decay
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pattern. In terms of the average ratio of widths, this means that

〈
Γγ

Γγ + Γn

〉
̸= ⟨Γγ⟩
⟨Γγ⟩+ ⟨Γn⟩

. (14.3)

The classic paper on the topic of this effect is by Porter and Thomas [224]. A review of

evidence for and against this model can be found in the proceedings by Weidenmuller [295].

More recent work has reinforced the evidence that neutron resonances indeed follow a Porter-

Thomas distribution [85]. Shell model calculations have provided evidence that M1 and E2

transition intensities (specifically, the reduced B-values) follow a PT distribution [2, 125].

And successful application to compound nucleus decay [286, 273] (e.g. see DICEBOX [29] or

RAINIER [170]) has provided further justification.

The authors of the Valencia paper [286] addressed this effect with a custom program similar

to DICEBOX [29] or RAINIER [170], but including the effects of neutron width fluctuations (e.g.

DICEBOX handles only gamma width fluctuations). In this section I will attempt to avoid

such a step, and instead seek a novel solution inspired by the Hauser-Feshbach solution

to width fluctuation corrections (WFCs) for correlations between the entrance channel and

all outgoing decay channels [215, 203]. This will enable us to take into account this effect

without a single-purpose code while maintaining the full suite of capabilities of a complete

Hauser-Feshbach code.

14.3.1 Random partial widths

The basic theory of Porter-Thomas fluctuations goes like this: the partial widths (whether

electromagnetic or neutron) are proportional to squared matrix elements,

Γfi ∝ |⟨Ψf |Ô|Ψi⟩|2, (14.4)
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for some transition operator Ô. The total decay width for the initial level i is the sum:

Γi =
n∑

f=1

Γfi. (14.5)

Now, we consider the matrix elements to be random numbers following a Gaussian distri-

bution (more specifically, a Gaussian orthogonal ensemble, viz. [311]). A sum of n squared-

Gaussian random variables is a chi-squared distribution with n degrees of freedom. The

probability density function for such a variable is:

P (x, n) = Γ(r)−1r(rx)r−1e−rx, (14.6)

where Γ here is the gamma-function, r = n/2, and in our context x = Γfi/Γ̄fi is a dimension-

less quantity in terms of the average partial width. (Note that this differs from the common

definition χ2
n = 2−rΓ(r)−1xr−1e−x/2 which has a mean of n = 2r.) So if we assume that

the matrix elements have a Gaussian distribution, the individual partial widths will have

a chi-squared distribution with n = 1. In nuclear physics this is called the Porter-Thomas

(PT) distribution:

PPT(x) = P (x, n = 1) =
e−x/2

√
2πx

. (14.7)

The physical implications of this analysis is that the individual level widths Γi will fluctuate

around their mean value Γ̄fi with a distribution given by a PT distribution.

Continuing the assumption of Gaussian matrix elements, the total level widths are also chi-

squared distributions, but now with n degrees of freedom. As n increases, the variance

of the total width of the resonance tends to decrease (P (x;n) approaches a delta function

as n → ∞, see Figure 14.5). In other words, the total width approaches a constant (the

average). This mean that the effects of PT distributed widths are only significant when there

are a small number of final states (small n). Otherwise, all widths behave the same.
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Figure 14.5: The Porter-Thomas distribution and related distributions which approach a
delta function at x = 1 as n→∞.

On a related note, PT fluctuations are not sufficient to explain other instances of apparent

non-statistical decay. For examples, see the work by Koehler et al. [171] and Fanto et al. [84]

concerning the case of neutron capture on 96Mo. So the remaining discrepancy of [286] is

not a new trouble.

In our specific case of beta-delayed neutron emission, we are interested in decays near the

neutron separation energy. In this regime, there is a large number of final states for the

gamma decay, and a small number of final states for the neutron decay. This means that

the total neutron widths will follow a low-n chi-squared distribution, while the total gamma

decay widths will be roughly constant. I therefore focus on implementing PT fluctuations of

the neutron partial widths only.

14.3.2 Porter-Thomas numerical experiment

It is not at all obvious that including Porter-Thomas fluctuations will increase the average

gamma widths with respect to the neutron widths. Although one would expect that as
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the number of neutron partial widths (i.e. the number of accessible excited states in the

neighboring nucleus) increases, the effect should disappear and return the Hauser-Feshbach

prediction. To illustrate, I conducted a numerical experiment to analyze the effects of as-

suming PT neutron widths on the quantity ⟨Γγ/Γt⟩, where Γt = Γγ + Γn.

I assume standard normal matrix elements for both types of transitions and work in units of

the mean so that Γn = x. Equivalently, P (Γn) = P (x, k). I further assume the gamma total

widths include many terms, so that P (Γγ) ≈ δ(Γγ − 1). Thus, the purely Hauser-Feshbach

estimate of ⟨Γγ/Γt⟩ for any k neutron partial widths is exactly 1/2:

⟨Γγ⟩
⟨Γγ⟩+ ⟨Γn⟩

=
1

1 + ⟨P (Γn, k)⟩
=

1

2
. (14.8)

In other words, equal odds for either channel regardless of the number of neutron partial

widths. Next, I numerically simulate the “true” ratio assuming randomly distributed neutron

widths. I generate random samples of the ratio,

Γγ

Γt

=
1

1 + Γn

, (14.9)

by generating random values of Γn from the appropriate chi-squared distribution P (x, k) for

the desired number of neutron partial widths k. To generate one sample, k random numbers

are drawn yi ∼ N(0, 1), i = 1, ..., k, then I compute Γn =
∑k

i=1 y
2
i /⟨y2i ⟩, where ⟨y2⟩ is the

sample mean of y2i . After sampling, I compute the mean ratio ⟨Γγ/Γt⟩ of all the samples.

I generated 106 samples representing the initial states of the compound nucleus in some fixed

energy bin. The final results are fairly insensitive to the number of samples, but I generated

a large number to produce smooth histograms. The results of the numerical simulations for

k = 1 and k = 100 are shown in Figure 14.6. The gamma total widths are constant (black

dashed line) while the neutron total widths are randomly distributed (blue histograms). The

resulting distribution of width ratios are shown in the narrow green histograms.
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Figure 14.6: Porter-Thomas fluctuation toy model wherein the average neutron and gamma
widths are equal. See text for discussion.

The left panel of Figure 14.6 shows a simulation with one neutron partial width. The total

neutron width Γn follows a PT distribution. The ratio of the gamma total width to the

combined total width is shown in the green histogram with thin bars. The average of these

width ratios (blue solid line) is enhanced with respect to the HF estimate (red dotted line).

The right panel of Figure 14.6 shows a simulation with 100 neutron partial widths. The

neutron total widths are centered around 1.0 (broad, blue histogram). The distribution of

neutron total widths is narrow and centered around the average near 0.5. The average of

these width ratios (solid blue line) is indistinguishable from the HF prediction (red dotted

line).

At k = 1 we observe the maximum effect of PT fluctuations. I obtain ⟨Γγ/Γt⟩ = 0.66. As

anticipated, the gamma width is enhanced with respect to the HF prediction of 0.5. The

increase is about 33 percent.

For the k = 100 simulation, ⟨Γγ/Γt⟩ = 0.50(3), which is close to the HF prediction. As

expected, the PT fluctuations are strongly suppressed as the number of partial widths in-

creases.
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14.3.3 Porter-Thomas enhancement factor

We have shown how Porter-Thomas fluctuations of the neutron partial widths can enhance

the average gamma total width. But how many partial widths are required before the PT

result reduces to the HF approximation? And how strong can the PT enhancement be when

it is ignored? To answer these questions, I varied the number of neutron partial widths from

k = 1 to k = 100 and repeated the above experiment for each. For each k, I computed

⟨Γγ/Γt⟩ and divided by the HF prediction to compute a PT enhancement factor:

WPT = PT enhancement factor =
⟨Γγ/Γt⟩

⟨Γγ⟩/(⟨Γγ⟩+ ⟨Γn⟩)
. (14.10)

Figure 14.7 shows the smooth decay of the PT enhancement factor from its maximum at

k = 1.
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Figure 14.7: Reduction of the Porter-Thomas (PT) enhancement factor as a function of
increasing number of neutron partial widths k and for different Hauser-Feshbach width ratios
⟨Γγ⟩/(⟨Γγ⟩ + ⟨Γn⟩). The vertical axis is the factor by which PT fluctuations of the neutron
partial widths increase the average relative gamma total widths with respect to the Hauser-
Feshbach approximation.

Finally, I repeat the whole experiment for different values of the fixed total gamma width.

Recall that so far the gamma width was a constant equal to the average neutron width, 1.0.

Now I vary P (Γγ) = δ(Γγ − g) for some variable constant g. The sampled ratios are now
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given by:

Γγ

Γt

=
g

g + Γn

. (14.11)

Since ⟨Γn⟩ = 1 by construction, changing g is equivalent to changing the ratio

h ≡ ⟨Γγ⟩
⟨Γγ⟩+ ⟨Γn⟩

=
g

g + 1
, (14.12)

which is the HF estimate of the width ratio and is the denominator of the PT enhancement

factor. In all previous simulations we had g = 1, which is h = 1/2. Now I include ratios of

h = 100, 10−1, 10−2, 10−3, and 10−4. This spans the range of values of the Hauser-Feshbach

ratios in Figure 14.2.

Figure 14.7 shows that for k = 1, the PT enhancement can be up to two orders of magni-

tude. By k = 5, all curves are below an enhancement of 2. For all curves to be below an

enhancement of 1.1, one requires k > 22.

To summarize these numerical experiments, we have learned that fluctuations of the neutron

partial widths from highly excited states to low-lying levels in the neighboring nucleus pro-

duce a strong enhancement of the gamma width. This assumes that we have many available

partial gamma widths. This effect is independent of any energy dependence of the neutron

partial widths (which are known to have an approximately
√
E dependence [294, 85, 84])

and depends only on the number of neutron partial widths k and the ratio of average widths

h (eq. (14.12)). Normalizing to the ratio h removes the energy dependence from our simula-

tions. We can therefore compute a correction factor WPT (k, h) relating the Hauser-Feshbach

estimate to the true ratio ⟨Γγ/Γn⟩:

⟨Γγ/Γt⟩ = WPT (k, h)
⟨Γγ⟩

⟨Γγ⟩+ ⟨Γn⟩.
(14.13)
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There are publicly available codes to model the effects of PT fluctuations for gamma cascades.

The same is not true for neutron decays where Hauser-Feshbach models are assumed to be

sufficient. However, it may be possible that including the PT enhancement factor is sufficient.

Figure 14.8 shows the calculations from Figure 14.2 with the PT width fluctuation corrections

applied. At each energy bin of the HF calculation, I apply equation (14.13). k at each

energy is calculated according to the discrete levels used by the HF code. It is equal to the

cumulative number of levels in the residual nucleus available for neutron emission. h is equal

to the original HF ratio of average widths.
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Figure 14.8: Same as Figure 14.2 with and without the Porter-Thomas width fluctuation
correction (PTWFC) factor. The lower panel shows the number of partial widths k avail-
able for neutron emission (neutron decay to 93Sr). The discontinuities in the HF+PTWFC
calculation line up with changes in k.

I believe this is the first time a correction factor for Porter-Thomas width fluctuations has

been applied within the framework of a Hauser-Feshbach code. However, the basic idea is

conceptually equivalent to width-fluctuation corrections [204] for particle-induced reactions.

These types of width fluctuations are usually only applied to account for correlations be-
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tween two competing channels, but Moldauer [205] pointed out the “second and less widely

discussed” enhancement due to fluctuations of the total widths.

In future studies, one should generalize the assumptions made in this study to test the

sensitivity to those assumptions. For example, the gamma partial widths could also be

modeled as random numbers, with a large k value which could be estimated based on the

level density or from shell model calculations. Additionally, distributions of the partial

widths with different degrees of freedom (n ̸= 1) could be tested.

Summarizing the findings so far, we have shown that improvements to the gamma-ray

strength functions using existing measurements combined with a correction factor for (neu-

tron) Porter-Thomas width fluctuations significantly improves the statistical model’s agree-

ment with the data. In agreement with the conclusions of Valencia [286], we have inde-

pendently verified that the current statistical model is not sufficient to explain the strong

gamma emission observed in the measurements of [286]. In the final section of this chapter,

we will continue to work within the framework of statistical nuclear reactions to test one of

the hypotheses for this discrepancy proposed in Chapter 12.

14.4 Forbidden decays

Let us restate the second hypothesis presented in Chapter 12 for explaining the model dis-

crepancy:

Hyp. 2: Forbidden beta decay is stronger than assumed, blocking high-l neutron emission. If

forbidden transitions play a significant role in these neutron-rich cases, then higher angular

momentum states populated by beta decay would block this emission of neutrons to available

states in the neighboring nucleus.
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In theory, we can compute the relative strength of forbidden decays from 94Rb into 94Sr using

a microscopic model such as the shell model. The method for such a calculation is shown

in section 13.4. Prior to such an undertaking, however, we can test the plausibility of this

hypothesis by modeling the decay of 94Sr from artificial spin populations with a fixed Jπ.

This is completely analogous to the study performed in Chapter 8: Surrogate Reactions I:

Weisskopf-Ewing Approximation. If the decay of 94Sr shows only weak dependence on the

spin and parity Jπ of the decaying states, then it would not matter whether the beta decay

populating those states were allowed with transitions ∆Jπ = 0+, 1+, or first-forbidden with

transitions ∆Jπ = 0−, 1−, 2−. This is equivalent to the Weisskopf-Ewing approximation.

I performed such a study by simulating the decay of 94Sr from three sets of single-Jπ spin-

parity populations. The possible spin-parity combinations populated in 94Sr following the

beta decay of the 3− ground state of 94Rb are summarized in Table 14.3.

Table 14.3: Possible spin-parity combinations populated in 94Sr following the beta decay of
the 3− ground state of 94Rb.

Type of beta decay ∆Jπ Jπ populated in 94Sr
Allowed, Fermi 0+ 3−

Allowed, Gamow-Teller 0+, 1+ 2−, 3−, 4−

First-forbidden, non-unique 0−, 1− 2+, 3+, 4+

First-forbidden, unique 2− 1+, 5+

I used the gamma-ray strength function parameters obtained by fitting to the available data,

as described in section 14.2. I also applied PTWFC factors, as described in section 14.3.3.

The results are shown in Figure 14.9. What is clear from panel (a) of Figure 14.9 is the

conclusion reached by [286], that the present statistical model, even including the effects of

Porter-Thomas flucuations, cannot account for the observed gamma-width ratio. Panels (b)

and (c), however, indicate that an appropriate combination of the effects of first-forbidden

decay may in fact account for the missing gamma strength. Recall that in the real beta decay

from 94Rb to 94Sr, there is some mix of allowed and forbidden decays, and the assumption

so far has been the the allowed decays dominate. But recent work in the field of reactor
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Figure 14.9: Each panel shows the HF+PTWFC calculations for decays from states pop-
ulated by a different beta-decay mode: (a) allowed (Fermi and Gamow-Teller), (b) first-
forbidden, non-unqie, and (c) first-forbidden, unique. Without any other modifications,
decays from allowed state cannot explain the data. However, some energy-dependent com-
bination of contributions from (a), (b), and (c) may provide a solution.

anti-neutrino monitoring has shown that nuclei in this region can have a nontrivial forbidden

decay contribution [83, 131]. The true spin-parity distribution will be energy dependent, as

indicated by equation (13.51).

With this simple study, I have shown that hypothesis 2 is feasible: statistical calculations

akin to a Weisskopf-Ewing test show that nonzero forbidden decays are a viable explanation

of the discrepancy. What remains is to use our theoretical models to assess the likelihood

that these forbidden decays have sufficient strength. In principle, this can be done using the

shell model. In the following chapter I will recount progress towards this goal.
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Chapter 15

The Decay of 94Rb: Shell Model

I call the reader’s attention back to the three hypotheses proposed in Chapter 12:

Hyp. 1: Gamma-ray strength function is stronger than assumed.

Hyp. 2: Forbidden beta decay is stronger than assumed, blocking high-l neutron emission.

Hyp. 3: Beta decay does not lead to a compound nucleus.

In Chapter 14 we used statistical reactions calculations to show that hypothesis 2 is at least

plausible. In this chapter I will lay the groundwork to test all three hypotheses using the

shell model. First, by providing a microscopic calculation of both the gamma-ray strength

functions (hyp. 1). Using the methods developed in Chapter 6, we will be able to propose

a new statistical reaction prediction using modified gamma-ray strength functions. Then, I

will explain what next steps are necessary to test the forbidden beta decay strength (hyp.

2), and finally the possibility of non-statistical decay by analyzing the correlations between

the electromagnetic and electroweak transition probabilities (hyp. 3).

All three investigations can be carried out with the nuclear shell model. But because the
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nuclei involved 94Rb and 94Sr require large model spaces, we will have to employ the basis

reduction methods developed in Part I of this dissertation.

The first section will cover an initial analysis of the shell model interaction to be used for our

calculations, followed by calculations of the shell model gamma-ray strength function. The

reduced-basis provided by our PANASh code will be crucial for testing this hypothesis since

the dimensions for 94Sr are too large for the number of states we require for computing the

gamma-ray strength function. I begin this section with both full configuration interaction

(FCI) calculations with BIGSTICK and truncated shell model calculations with PANASh,

with the former being important for testing the phenomenological interaction we will be

using.

15.1 Validating the interaction

I validated the shell model interaction glepn defined in 1990 by Mach et al. [191] against

published results to make sure it behaved in BIGSTICK (and by extension PANASh) as

expected.

The glepn interaction was developed for a shell model description of the beta decay of 96Y

to 96Zr. The authors also evaluated their results against other zirconium isotopes. It’s

worth noting that the paper concludes saying that a major goal should be obtaining a better

interaction for the spectroscopy in the A = 96 region, and one which better describes both

allowed and forbidden transition rates. Despite this, it has been applied in recent literature

to a broad range of nuclei in a systematic study of allowed and forbidden beta decay [131].

It will be used here until a better interaction can be created in future work.

The single particle space involves orbits from the N = 3 and N = 4 major shells. The

frozen core is 56Ni, and seven active orbits are included from the pf and gds shells: 2p3/2,
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1f5/2, 2p1/2, 1g9/2, 2d5/2, 3s1/2, and 2d3/2. The Mach paper [191] indicates that the

1f7/2 orbit is included, but in available implementations of the interaction, the 1f7/2 orbit

is omitted. This valence space can fit up to 34 protons and 34 neutrons. I will use this

notation to descibe the full single-particle valence space which couples together the proton

π and neutron ν single particle spaces:

glepn77 = πZv(2p3/2, 1f5/2, 2p1/2, 1g9/2, 2d5/2, 3s1/2, 2d3/2)

⊗νNv(2p3/2, 1f5/2, 2p1/2, 1g9/2, 2d5/2, 3s1/2, 2d3/2),

(15.1)

where Zv and Nv are the number of protons and neutrons in each valence subspace. I

decorated the glepn model space name with “77” to indicate 7 proton orbits and 7 neutron

orbits, which will be reduced in later calculations.

The interaction itself consists of 14 single particle energies ϵx=p,n
i=1,..,7, and 1621 two-body matrix

elements. The single-particle energies are given in Table 15.1.

The model space truncation described in the original paper for glepn is not easily imple-

mented in modern large-scale shell model codes such as BIGSTICK. (Essentially, it took only

a small number of possible configurations within the selected single-particle space, e.g. a

single 1p-1h configuration relative to a frozen core.) Instead, I used results from a more

recent paper [233] to validate usage of the interaction.

The nucleus used for validation was 92Sr, which has 10 valence protons and 26 valence

neutrons. The calculation done in [233] blocked protons from exciting to the 2d orbits (2d3/2

and 2d5/2), and forced the neutron orbits up to 1g9/2 (2p3/2, 1f5/2, 2p1/2, 1g9/2) to remain

filled. This restriction on the neutrons means that there is effectively an additional soft core

with 22 frozen neutrons. The model space is

glepn53 = π10(2p3/2, 1f5/2, 2p1/2, 1g9/2, 3s1/2)⊗ ν4(2d5/2, 3s1/2, 2d3/2). (15.2)
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I implemented this space in BIGSTICK using the weight-factor truncation method described

in section 1.3.3. The w-truncation used is shown in Table 15.1 with Wmax = 0. This leads

to M-scheme dimensions of more than 33 million.

Table 15.1: The single-particle energies ϵx=p,n of the glepn model space and the w-truncation
scheme used to implement the model space given in equation (15.2).

Orbit ϵp wp ϵn wn

2p3/2 -0.387 0 -6.032 0
1f5/2 -3.090 0 -7.882 0
2p1/2 -1.078 0 -4.809 0
1g9/2 -0.647 0 -4.156 0
2d5/2 8.742 1 3.983 1
3s1/2 8.780 0 4.721 1
2d3/2 9.815 1 8.471 1

Using the model space (15.2) and the glepn interaction, I was able to reproduce the energies

of the first several states in 92Sr to at least the first three decimal places. To reproduce

the energies of Ramahlo [233] I had to assume two-body matrix elements (TBMEs) were in

un-normalized (upn) format:

V xpn
abcd;J =

1

2

√
(1 + δab)(1 + δcd)V

upn
abcd;J . (15.3)

See BIGSTICK manual [165] for discussion of normalized and unnormalized TBME conven-

tions. Further, the TBME’s were not re-scaled by any factor of A, as is the case for some

interactions.

15.2 94Rb low-lying structure with glepn53 FCI

For beta-delayed neutron emission, we need only the ground state information for 94Rb. The

nuclear data sheets evaluated spin assignment for the ground state is 3− [1]. The experiment

responsible for the spin assignment was a beta decay detected optical pumping method [36].
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Table 15.2: Low lying excitation energies of 92Sr from experiment and the shell model calcu-
lations described in the text. This work is shown in columns UPN, assuming un-normallized
TBMEs, and XPN, assuming normalized TBMEs.

State Ramahlo 2022 [233] UPN Exp. XPN
0+1 0 0 0 0
2+1 0.848 0.848 0.815 0.813
2+2 1.793 1.793 1.385 1.693
2+3 2.074 2.074 1.778 1.844
0+2 * 1.657 2.088 1.294
1+1 2.552 ** 2.141 1.788

*Not reported
**Did not converge

The parity was assumed based on shell model calculations [1].

With such a high level density it’s expected that our model may not correctly predict the

order of the states, and indeed this is the case. We will therefore compute the first few states

and take the lowest 3− to be our ground state.

We begin with the same model space used for the benchmark calculation of 92Sr, since

94Rb is not too far away with one fewer proton and three extra neutrons. Rubidium-94 has

(Z,N) = (37, 57). With a 56Ni core, this leaves (9, 29) valence particles, and with the soft

22-neutron core due to the truncation, an effective valence count of (9, 7). The model space

is:

glepn53 = π9(2p3/2, 1f5/2, 2p1/2, 1g9/2, 3s1/2)⊗ ν7(2d5/2, 3s1/2, 2d3/2). (15.4)

The M-scheme dimension for the negative parity states in this model space is 35,673,448.

The results of the calculation for the first few levels is shown in Table 15.3. The spin

assignments of the experimentally observed levels are not well constrained. The parenthesis

around the parity assignments indicate that the parity is assumed, but not confirmed. The

first 3− state in the glepn calculation is 354 keV above the predicted ground state. This is
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large compared to the ‘rule of thumb’ shell model error of 100 keV.

Table 15.3: Low lying excitation energies and spin assignments of 94Rb from experiment and
the shell model calculation described in the text. The 3− ground state is in bold font.

Excitation Experiment UPN XPN
Jπ
i Ex Jπ

i Ex Jπ
i Ex

1 3
(−)
1 0.000 2−1 0.000 2−1 0.000

2 * 0.005 2−2 0.229 3−
1 0.060

3 * 0.191 3−
1 0.354 0−1 0.133

4 (4−) 0.217 1−1 0.447 1−1 0.691
5 * 0.223 0−1 0.653 2−2 0.769
6 * 0.293 1−2 0.927 4−1 0.832
7 (5−) 0.328 4−1 0.950 2−3 0.837

*Unknown spin assignment

Calculating the single particle occupancies shows that the 3− state has zero occupation of

the 3s1/2 orbit:

N̂ [π9(2p3/2, 1f5/2, 2p1/2, 1g9/2, 3s1/2)] = (3.4, 4.7, 0.4, 0.5, 0.0) (15.5)

N̂ [ν7(2d5/2, 3s1/2, 2d3/2)] = (5.7, 1.1, 0.2). (15.6)

An approximate diagram of these single-particle occupancies is shown in Figure 15.1. This

is not surprising since the single particle energy of the 3s1/2 orbit is 9 MeV higher in single-

particle energy (see Table 15.1). As a check, I also ran another calculation with the 3s1/2

removed from the proton space:

glepn43 = π9(2p3/2, 1f5/2, 2p1/2, 1g9/2)⊗ ν7(2d5/2, 3s1/2, 2d3/2). (15.7)

The dimension was reduced to 13.4 million, and the low-lying energies were unchanged to

the third digit.
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Figure 15.1: Ground state single-particle occupancy of 94Rb resulting from the FCI calcula-
tion described in the text and given by equations (15.5) and (15.6). The green dashed boxes
indicate the active orbits in the glepn53 truncation. The order and spacing of the orbits in
the figure are based on the effective single-particle energies (SPEs) of the interaction, and
differ from the usual order. We can see that the 2p3/2 orbit fills before the 1g9/2 despite its
higher SPE - this is in line with the expected ordering of the orbits and is realized by the
residual two-body interaction.

15.3 94Sr low-lying structure with glepn53 FCI

The M-scheme dimension of 94Sr in the glepn53 model space is 122,689,148 (1.2 · 108).

The low-lying spectra of this model can be extracted with commodity resources. BIGSTICK

obtained the lowest 10 states in about 1.5 hrs on 1 HPC node with 36 cores. The proton

and neutron spaces and their dimensions in the glepn53 model space are:

π10(2p3/2, 1f5/2, 2p1/2, 1g9/2, 3s1/2)146,144 (15.8)

ν6(2d5/2, 3s1/2, 2d3/2)142. (15.9)

317



Table 15.4: Low lying excitation energies and spin assignments of 94Sr from experiment and
the glepn53 FCI shell model calculation described in the text.

Excitation Experiment UPN XPN
Jπ
i Ex Jπ

i Ex Jπ
i Ex

1 0+1 0.000 0+1 0.000 0+1 0.000
2 2+1 0.837 2+1 1.280 2+1 1.087
3 (3−1 ) 1.926 0+2 2.020 0+2 1.903
4 4+1 2.146 3+1 2.233 2+1 2.314
5 (2+2 ) 2.271 2+3 2.498 5−3 2.494
6 (3−2 ) 2.414 0+3 2.638 6−3 2.542
7 (4−1 ) 2.614 5−1 2.648 4−1 2.566
8 * 2.650 2+3 2.663 4+3 2.674
9 4

(+)
2 2.704 4+1 2.779 3+1 2.757

10 * 2.711 4−1 2.836 2+1 2.788

*Unknown spin assignment

15.4 Applying PANASh

Next, we can apply PANASh. There are two distinct strategies we can take. First, we can use

the same truncated model space described above (15.2), and use the PANASh truncation to

further reduce the dimension. For example, for 94Rb the Zv = 9 proton factors are computed

in the proton-only part of the single particle space (15.4) with dimension 98,775. The Nv = 7

neutron factors are computed in the neutron-only space with dimension 119. The advantage

of this is we will reach a much higher excitation level under the same computational limits.

This strategy is not so useful for our needs since we only need the 3− ground state. For the

beta decay product 94Sr we need levels up to around 8.5 MeV, thousands of levels.

The second strategy is to calculate the proton and neutron factors in the untruncated glepn77

model space (15.1), and to rely entirely on the PANASh truncation. The main advantage of

this approach is to include the higher orbits which are fairly close in single-particle energy.

The untruncated M-scheme dimension of the full glepn model space for 94Rb is 442 billion.
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The proton and neutron spaces and their dimensions are:

π9(2p3/2, 1f5/2, 2p1/2, 1g9/2, 2d5/2, 3s1/2, 2d3/2)4,014,532 (15.10)

ν29(2p3/2, 1f5/2, 2p1/2, 1g9/2, 2d5/2, 3s1/2, 2d3/2)26,566. (15.11)

The M-scheme dimension of 94Sr in the glepn77 model space is 10,177,374,468,286, or about

1.0 · 1013. The proton and neutron factor spaces and their dimensions are:

π10(2p3/2, 1f5/2, 2p1/2, 1g9/2, 2d5/2, 3s1/2, 2d3/2)9,757,466 (15.12)

ν28(2p3/2, 1f5/2, 2p1/2, 1g9/2, 2d5/2, 3s1/2, 2d3/2)119,994. (15.13)

Figure 15.2 shows a comparison of the low-lying states of 94Sr computed with three different

shell model truncations: (1) a PANASh calculation with glepn53 using 500 of 146k proton

components and 142 of 142 neutron components, (2) a PANASh calculation with glepn77

using 500 of 9.8 M proton components and 500 of 120k neutron components, and finally

(3) a FCI calculation glepn53 using the equivalent of all components for both protons and

neutrons. Also shown are the limited number of experimentally observed levels. All three

calculations reproduce the 2+ first excited state, and show some variation of a deformed

rotational spectra. All three predict a low-lying 3+ state where the experiment asigns a 3−

state. The experiment reporting the parity of that state should be re-examined to investigate

this discrepancy. Between the two PANASh calculations, the glepn53 model is showing a

much higher level density below 4 MeV. This could be an indication that the space is more

converged with the given fraction of basis components used in each calculation.

We can use the methods of Chapter 6 to compute the nuclear level density (NLD) and

gamma-ray strength functions (GSF) of 94Sr. In principle these can both be used as inputs

to our Hauser-Feshbach calculations. However, the nuclear level densities obtained in our
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Figure 15.2: Low-lying evels in 94Sr computed with three different truncation schemes, and
compared to experiment. From left to right, the first two panels are PANASh calculations.
glepn53 uses 500 of 146k proton components and 142 of 142 neutron components. glepn77
uses 500 of 9.8 M proton components and 500 of 120k neutron components. Finally, glepn53
FCI (untruncated model) uses the equivalent of all components for both protons and neu-
trons.

basis-reduced method do not perform as well as other methods such as the Lanczos moments

method [214]. Instead, the real utility of our weak entanglement approximation and the

PANASh code is to calculate the gamma-ray strength functions, which appear to be much

more robust to basis reduction (see Figure 6.9).

We can still use the cumulative level density produced by our calculations as an indicator of

the convergence of many states by comparing to experimentally measured levels. Figure 15.3

shows the nuclear level densities for our PANASh glepn53 with mp = 500, mn = 142 and

glepn77 calculations with mp = 500, mn = 500. Also plotted are the cumulative number

of known (experimentally measured) levels, and a constant temperature (CT) model with

RIPL-3 parameters fit to the same data [48]. Since the CT model agrees well with the data,

and we have reason to believe the truncated models will under-predict the level density, we

use the CT model as a reference. Both of our PANASh models agree quite well with the
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Figure 15.3: Cumulative number of levels in 94Sr as computed by the nuclear shell model
calculations described in the text. glepn53 uses 500 of 146 k proton components and 142
of 142 neutron components. glepn77 uses 500 of 9.8 M proton components and 500 of 120
k neutron components. The constant temperature (CT) model was computed using recom-
mended parameters from the RIPL-3 database [48], which were fit to the known (measured)
levels.

data up to about 2.8 MeV, and then begin to deviate.

Figure 15.4 presents the shell model M1 gamma-ray strength functions I calculated using

the lowest 4,000 states of 94Sr in the glepn53 model space with fp = 500/146k = 10−3 and

fn = 142/142 = 1. This generated more than 1.3 million downward transitions, which were

processed into gamma-ray strength functions according to the methods of Chapter 6. Also

included are the phenomenological GSF models (E1 and M1) which were fit to available

data and global models in section 14.2. Two shell model gamma ray strength functions (M1)

are shown. These are the two formulas for the GSF discussed in 6: the Oslo-experiment

formula (M1 SM Oslo (glepn53)), and the proposed Hauser-Feshbach formula (M1 SM HF

(glepn53)). Both use exactly the same set of shell model transition probabilities, and the

only difference lies in the formula used to take the sums and averages.
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Figure 15.4: Gamma-ray strength functions for 94Sr as computed by the nuclear shell model
calculations described in the text. The shell model (SM) M1 gamma-ray strength functions
are computed using the methods described in Chapter 6. In particular, I show both the Oslo-
experiment formula from recent literature [97, 208, 184, 40, 260] and our proposed Hauser-
Feshbach formula proposed in section 6.2.7. The grey bands are the same calculations from
Figure 14.4 from the MCMC fit to experimental E1 data and M1 models.

The shell model GSF calculated using the Oslo-experiment formula (equation (6.43)) shows

excellent agreement with the phenomenological model fit to agree with the global SMLO

and D1M+QRPA models shown in Figure 14.3. This is expected because those models

were modified with a low-energy enhancement to match established M1 shell model calcula-

tions [112]. As discussed in Section 6.2.7, however, this may not be the correct form of the

GSF to use in Hauser-Feshbach calculations. If our proposed formula (6.50), plotted as “M1

SM HF glepn53” turns out to be the correct one, then Figure 15.4 shows how significant the

modification to the GSF could be.

The next step is to use this M1 SM GSF in the Hauser-Feshbach calculation to see how it

affects the BDNE of 94Rb. I repeated the calculations described in section 14.4: I use the

same E1 GSF parameters as before, but replace the phenomonological M1 GSF with the

microscopic M1 GSF computed with the shell model. I run the HF decays from each group

322



of spin-parity combinations for allowed and forbidden decay, and finally I apply the PTWFC

factors. The results are shown in Figure 15.5. The results are promising. The allowed decays
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Figure 15.5: Same as Figure 14.9 except the M1 GSF is replaced with the shell model GSF
“M1 SM HF (glepn53)” shown in Figure 15.4. Compared to calculations performed with the
published M1 GSF based on the Oslo-measurement formula, calculations performed with the
proposed GSF greatly enhance the gamma emission in 94Sr.

are now consistent with the experimental error bars everywhere except between 7.1 MeV and

7.4 MeV, whereas with the previous GSF the discrepancy was between 6.9 MeV and 7.5 MeV

(Figure 14.9). The agreement for the allowed decays is also improved across the entire energy

range. Overall, the effect is to increase the agreement of the statistical model with the data,

and to reduce the need for changes to the forbidden decay contribution.

In summary, a change to the definition of the shell model gamma ray strength function

proposed in Chapter 6, if validated, explains most of the remaining discrepancy between
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the statistical model and the measured beta-delayed gamma emission. This would support

hypothesis 1 given in Chapter 12 and would reduce the contributions required from forbid-

den decays to make up the difference (hypothsis 2). Further investigation is needed on both

fronts: a rigorous test of microscopic gamma-ray strength functions for or against the pro-

posed modification, and a microscopic calculation of the contribution from forbidden beta

decays. These are beyond the scope of this dissertation, but a path forward is discussed in

the next chapter.
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Chapter 16

Summary and Outlook

The objective of this final part of the dissertation has been to improve our understanding of

beta-delayed neutron emission, using the decay of 94Rb as a case study.

I have successfully combined the nuclear shell model methods from Part I with the statistical

nuclear reaction methods from Part II. This has enabled a treatment of beta delayed neutron

emission by directly interfacing shell model structure calculations with a Hauser-Feshbach

reaction code. Along the way, I introduce a new method for implementing Porter-Thomas

width fluctuations of neutron widths, which to my knowledge is a unique approach and

generally applicable. This effect is important for proper treatment of gamma emission above

the neutron emission threshold and can increase the gamma emission probability by two

order of magnitude. I intent to work with developers of the YAHFC HF code to implement

these corrections in their code.

Additionally, the newly proposed form of the microscopic gamma-ray strength function from

Chapter 6 greatly improves the statistical model’s ability to reproduce the data of Valencia

et al. [286]. Further work is required to test this new proposal before a final conclusion can

be made. If this new method for determining gamma ray strength functions turns out to be
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valid, it will have significant impact on other areas of nuclear reactions. In particular, neutron

capture reactions will be greatly enhanced, with important implications for astrophysical

simulations. These findings support hypothesis 1: that the gamma-ray strength function is

stronger than previously assumed. However, this does not completely resolve the discrepancy.

The analysis presented in Chapter 15 suggests that it must be combined with hypothesis 2:

that there is some forbidden decay strength, which I have shown would enhance the emission

of beta-delayed gammas and reduce the model discrepancy. To make a final conclusion on

this, further investigation is required.

These developments and the case study of beta-delayed neutron emission of 94Rb have demon-

strated the potential for a unified approach combining nuclear structure and statistical nu-

clear reactions relying on advanced shell model basis reduction methods. The shell model

calculations performed for these nuclear structure inputs were made possible using basis-

reduction techniques in Part I, and I have made significant progress towards a fully micro-

scopic description of the relevant nuclear structure. In the rest of this chapter, I will detail

ongoing and future work that will continue this effort, including thorough investigations of

hypotheses 2 and 3.

16.1 94Rb to 94Sr beta decay distribution

All calculations of the γ and neutron total widths in the previous chapters have assumed

that the compound nucleus (94Sr) is populated by beta decay with states of energy Ex, spin

J , and parity π. We selected specific J, π combinations to model corresponding to particular

types of beta decay transitions (allowed, forbidden, etc.). This dependence can be expressed

as Γ(Ex, J, π). In an actual beta decay, the distribution of the states populated, F (Ex, J, π),
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will determine the actual total widths by the relation:

Γ(Ex) =
∑

J,π

F (Ex, J, π)Γ(Ex, J, π), (16.1)

where
∑

J,π F (Ex, J, π) = 1. To calculate the distribution of spins and parities F (Ex, J, π)

populated in 94Sr following the beta decay of 94Rb, one would use the formalism discussed

in section 13.4. We have left this to future work for two reasons.

First, the distribution of spin-parity combinations accessible by allowed decays (Fermi and

Gamow-Teller) shows very little dependence on the spins. This means that determining the

exact distribution of the allowed decays will not provide any additional insight. However, if

we wanted to calculate this distribution, we would also need to expand the single-particle

model space beyond glepn53. Essentially, the glepn53 proton and neutron single particle

states are orthogonal below 9 MeV. The only orbital shared between the proton and neutron

subspaces is the 3s1/2. (See Figure 15.1.) A neutron can only transfer to this orbit by allowed

decay if the transition is Fermi (∆J = 0 and no spin change). Our shell model calculations

show very little occupation of this orbit in 94Sr in the window of interest up to 8.5 MeV,

which is not surprising considering the 9 MeV gap between the 2p3/2 and 2d5/2 proton single

particle states.

The most straightforward remedy would be to use the full glepn77 space. But if this turns

out to be too costly even with the PANASh basis reduction, glepn57 may also prove fruitful.

This model space would keep the proton space unchanged and open up the lower 4 neutron

orbits. The approach is supported by evidence that Gamow-Teller transitions in this region

proceed through the decay of a neutron in the 78Ni-core [192].

The second reason for postponing this calculation is that the formalism required to properly

treat forbidden decays is beyond the scope of this work. It requires implementation of:
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1. additional momentum-dependent electroweak operators

2. modification of some operators by perturbation from the charge-distribution of the

nucleus

3. careful treatment of the small parameters which are, in addition to the lepton momenta,

the electron rest mass, the electron kinetic energy, and αZ, which for rubidium is

37/137 ≈ 0.27

Nonetheless, in Chapter 17 I have aggregated the necessary formalism, constants, and ap-

proximations. Importantly, I have expressed the general energy-dependent shape factor

C(W ) in terms of electroweak operators from Chapter 2. This means that the core subrou-

tiens from the dmscatter can be reused in a new code capable of computing high-precision

beta decay transition probabilities for medium to heavy mass nuclei.

16.2 Beta decay selectivity: compound nuclear versus di-

rect reactions

The final hypothesis. 3: Beta decay does not lead to a compound nucleus can be tested within

the framework of the nuclear shell model by analyzing correlations between states populated

by beta decay and their electromagnetic decay properties.

In order for a compound nucleus to form, it must evolve from some asymptotic initial state

with special structure (e.g. a nuclear ground state plus a plane wave projectile, or simply

a nuclear ground state in the case of beta decay) to a randomized, statistical state with

very low probability for one particular nuclear configuration. When this is not the case, and

only a small number of degrees of freedom are excited in the target nucleus, we are dealing

with a direct reaction process. This can be the case if there is a strong overlap between
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the asymptotic initial state and (through an electromagnetic transition) a low-lying state in

the A+1 system [306]. Statistical reaction codes describe the intermediate process between

direct and compound nucleus processes in the context of pre-equilibrium decay [100]. This

process is modeled using an exiton model [243, 100, 215]: the first configurations of neutron

capture are imagined as a one-particle excitation of the A+1 system. Two-body interactions

then evolve this state adiabatically to configurations with more and more n + 1-particle n-

hole configurations, until the energy of the incoming neutron is evenly spread amongst all

nucleons. There is a chance for one nucleon to escape at each step in the process, hence “pre-

equilibrium emission”, with the probability declining as the energy is distributed amongst

the nucleons At the end of the pre-equilibrium process, the system reaches equilibrium: a

compound nuclear state.

By using Hauser-Feshbach theory to describe beta-delayed neutron emission, and decay of

beta decay products in general, we are implicitly assuming this transition from the special

structure of the asymptotic initial state to a statistical, equilibrated compound nucleus. In

the case of beta decay, the initial state is even simpler than the asymptotic state of neutron

capture: it is a nuclear ground state. The beta decay transition operators also have rela-

tively simple structure, and can appear as one-particle one-hole excitations in the final state

nucleus. This raises the possibility that (1) beta decay may selectively populate states with

simple particle-hole structure, (2) these states may have especially strong electromagnetic

character, so that (3) the beta decay products may decay by a process more analogous to

direct reactions than to compound nuclear reactions. If this is the case, then it would point

to a non-statistical nature of beta-delayed neutron emission. This is known to be the case

for at least some systems near closed shells [120, 135].

The shell model can test this idea. The beta decay transition probabilities can be represented

as a transition matrix Ffi where i is the ground state in 94Rb and f are all possible final

states in 94Sr. The matrix elements Ffi are simply the transition probabilities given by
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equation (13.19). We would then matrix multiply this with the matrix Gf ′i′ of gamma-

decay transition probabilities given by equation (6.18) to obtain the total probability of

beta-delayed gamma decay to final states f ′ in 94Sr:

P
(γ)
f ′i =

∑

f

δi′fGf ′i′Ffi. (16.2)

This is the probability of beta-delayed gamma emission in the absence of other decay chan-

nels. Most notably it omits competition with neutron emission. However, if P (γ)
f ′i is highly

localized to a small number of final states f ′, that would indicate strong correlations be-

tween states populated by beta decay and states with strong electromagnetic collectivity.

This alone would support the possibilities (1) and (2) from the previous paragraph. To in-

vestigate point (3), one could estimate the mixing of these selective states with nearby states

via the Hamiltonian two-body matrix elements V̂2b:

two-body mixing = ρ(Ef ′ + δE)|⟨(Ψf ′ + δE)|V̂2b|Ψf ′⟩|2, (16.3)

where ρ(Ef ′ + δE) is the density of states that can be reached by the two-body matrix

elements. If these two-body mixing amplitudes are strong compared to the P
(γ)
f ′i matrix

elements, then formation of compound nuclear states is likely.

16.3 Shell model uncertainty quantification

Another avenue to improve this analysis is to account for the uncertainty in the nuclear

shell model. Efforts to do uncertainty quantification (UQ) with the nuclear shell model is a

relatively new venture [94, 95]. I expect the future of shell model uncertainty quantification

will begin at interaction creation. For example, MCMC methods could be applied when

fitting phenomenological interactions to observables, whether that be with direct shell model
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methods or model emulators. Having an uncertainty quantified shell model interaction would

make UQ of observables like the GSF straightforward.

16.4 Discrete branching ratios

Our approach so far has been to use the shell model to compute the statistical behaviour

of the decaying nucleus by computing averages over many branching ratios. This inevitably

introduces some approximation because it ignores correlations and the distribution of indi-

vidual widths that give rise to Porter-Thomas fluctuations. Furthermore, it is an artificial

restriction within the framework of the nuclear shell model.

An alternative approach is to use the shell model to compute the branching ratios of all levels

(simply a matter of normalizing the transition probabilities). This would allow seamless

integration with a Monte Carlo Hauser Feshbach codes like YAHFC which can read-in discrete

levels and branching ratios. From the HF code perspective, we would treat the shell model

levels and branching ratios as if they were experimentally measured levels. Of course, known

levels and branching ratios should be used first where available.
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Chapter 17

Future work: Higher Order Corrections

to Beta Decay

This chapter reviews and aggregates the theory necessary for calculating higher order cor-

rections to nuclear beta decay using the shell model.

The definitive text on beta decay formalism is the book by Behrens and Burhing [24], a

600-page treatise on the subject. For some time, the only competing formalism was that of

Holstein [143]. In a recent review of the subject by Hayen et al. [132], the two formalisms

are compared. To summarize, Behrens and Buhring provide the more complete and rigorous

treatment, while Holstein’s treatment benefits from its more transparent presentation of

different terms - yet is ultimately hindered by its approximations. Some effects like Coulomb

corrections need to be added back in, which confuses the interaction of various small terms.

I therefore adopt the formalism of Behrens and Buhring.

In this chapter I (1) present the main results relevant for first forbidden decay of medium-

mass nuclei to first order, and (2) express the relevant nuclear operators in terms of those

of Chapter 2: the search for dark matter. In this way, I have prepared the way for imple-
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mentation of a new code to calculate forbidden bet decay transition probabilities using our

existing shell model framework.

17.1 Weak interaction

Assuming a pure vector plus axial-vector current, the beta decay Hamiltonian density can

be written as [24]:

Hβ = −Gβ√
2

[
J†
µ(x)Lµ(x) + h.c.

]
, (17.1)

where Gβ is the coupling constant of a single nucleon, Jµ(x) is the nuclear current,

J†
µ(x) = iψ̄p(x)γµ(1 + gAγ5)ψn(x), (17.2)

and the lepton current is:

Lµ(x) = iψ̄νeγµ(1 + γ5)ψe(x). (17.3)

γλ are Dirac matrices. The field operators ψ(x) can be written in terms of plane waves of

momentum creation and annihilation operators.

The nuclear current must recieve special treatment due to a number of theoretical challenges

due to the strong force:

1. The nucleons in a nucleus are not plane waves, but bound states

2. Many body effects complicate the Hamiltonian, adding additional terms
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The following generalization is therefore adopted:

J†
µ(x) = ⟨f |Vµ(x) + Aµ(x) |i⟩ = ei(pi−pf )x ⟨f |Vµ(0) + Aµ(0) |i⟩ , (17.4)

where the second equality is due to translational invariance of the interaction.

The next development is to make a multipole expansion of the interaction.

17.2 Multipole expansion

A well known expansion is a plane wave in terms of spherical functions:

eiq·r = 4π
∑

LM

(i)LjL(q · r)Y M∗
L (q̂)Y M

L (r̂). (17.5)

The spherical Bessel functions have the expansion:

jL(qr) =
(qr)L

(2L+ 1)!!

∑

n=0

(−1)n(2L+ 1)!!

(2n)!!(2L+ 2n+ 1)!!
(qr)2n. (17.6)

The first two terms are:

jL(qr) =
(qr)L

(2L+ 1)!!

(
1− (qr)2

2(2L+ 3)
+ ...

)
. (17.7)

I have included a plot of the spherical Bessel functions in figure 17.1.

Stech and Schulke [270, 259] first introduced such an expansion for beta decay:

⟨i|V0(0) + A0(0) |i⟩ =
∑

LM

(−1)Jf−Mf [Ji]
√
4π (17.8)
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Figure 17.1: The first few spherical Bessel functions jL(x).

×




Jf L Ji

−Mf M Mi


Y ∗M

L (q̂)
(qR)L

(2L+ 1)!!
FL(q

2) (17.9)

⟨i| V⃗ (0) + A⃗(0) |i⟩ =
∑

KLM

(−1)Jf−Mf [Ji]
√
4π (17.10)

×




Jf K Ji

−Mf M Mi


 Y⃗ ∗M

KL (q̂)
(qR)L

(2L+ 1)!!
FKL(q

2), (17.11)

where the form factors FL(q
2) and FKL(q

2) are related to reduced matrix elements of the

interaction. They have the form:

FL(q
2) =

√
4π[Ji]

−1 (2L+ 1)!!

(qR)L

× ⟨Ψf | |
∑

k

iLjL(qxk)YL(x̂k)

[
1 +

gA
2mpi

∇⃗k · σ⃗k
]
τ k+| |Ψi⟩ ,

(17.12)
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FKL(q
2) =

√
4π[Ji]

−1 (2L+ 1)!!

(qR)L

× ⟨Ψf | |
{∑

k

iLjL(qxk)Y⃗KL(x̂k)

[
1

2mpi
∇⃗k + gAσ⃗k

]
τ k+

+ i
√
6
∑

j

(−1)L−K [j]C(1jL|00)




1 1 1

j L K





×
∑

k

qjj(qxk)(i)
jY⃗Kj(x̂k) ·

( µ

2mpi
σk

)
τ k+

}
| |Ψi⟩ .

(17.13)

By an intermediate step not shown, irreducible tensor operators are substituted, adding an

index to the form factors:

FKLs =





FLδKL, s = 0

FKL, s = 1.

(17.14)

The form factor coefficients can be then expanded in power of (qR) as:

FKLs(q
2) =

∑

n

(−1)n(2L+ 1)!!

(2n)!!(2L+ 2n+ 1)!!
(qR)2nF

(n)
KLs. (17.15)

Usually qR << 1, and so one can truncate the series:

FKLs(q
2) = F

(0)
KLs −

(qR)2

2(2L+ 3)
F

(1)
KLs + ... (17.16)

For light cases, only the first term need be retained. But for large-Z systems [270],

qR ∼ W0R +
3

2
αZ, (17.17)

and so the second term in the expansion may also be needed.
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17.3 Behrens and Buhring MK(ke, kν) and mK(ke, kν)

The shape factor C(W ) is a sum of terms MK(ke, kν) and mK(ke, kν), which I denote as

MK,ke,kν and mK,ke,kν :

C(W ) =
∑

ke,kν ,K

λke

[
M2

K,ke,kν +m2
K,ke,kν −

2γke
keW

MK,ke,knumK,ke,kν

]
. (17.18)

These MK,ke,kν and mK,ke,kν quantities are functions of the (shape) form factors F (N)
KLs. The

indices ke and kν (k = 1, 2, 3, ...) are for the momentum expansions of the electron and

neutrino, respectively. The index K is the order of forbiddeness of the transition. The most

dominant terms are those with the lowest K = Kmin, Kmin + 1; Kmin = ∆J , and the lowest

ke and kν :

ke + kν = K + 1, K + 2. (17.19)

The leading order terms are the well-known Fermi (J∆π = 0+),

M0,1,1 =
V F

(0)
000; (17.20)

Gamow-Teller (J∆π = 0+, 1+):

M1,1,1 = −AF
(0)
101; (17.21)

first-forbidden non-unique (J∆π = 0−, 1−):

M0,1,1 =
AF

(0)
000 −

1

3
αZ AF

(0)
011(1, 1, 1, 1)−

1

3
W0R

AF
(0)
011 (17.22)

m0,1,1 = −
1

3
meR

AF
(0)
011 (17.23)
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and first-forbidden unique (J∆π = 2−):

M2,1,2 = −
1

3
pνR

AF
(0)
211 (17.24)

M2,2,1 = −
1

3
peR

AF
(0)
211. (17.25)

We have the Coulomb function ratio:

λke =
fke−1(Z,W )

f0(Z,W )
, (17.26)

as a function of the generalized Fermi function:

fke−1(Z,W ) = 4ke−1(2ke)(ke + γke)[(2ke − 1)!!]2(2(W 2 − 1)1/2R/h̄)2(γke−ke)

×
( |Γ(γke + iy)|

Γ(1 + 2γke)

)2 (17.27)

The helper functions used are γke = [k2e − (αZ)2]1/2 and y = αZW
pc

. Besides [23, 24], the full

expressions for M and m are reproduced in [123].

The general approach to calculations using the BB formalism is to identify the relevant

approximations one can take for the nucleus of interest (e.g. infinite mass, or small Z

approximations), then throw out the corresponding small terms.

17.3.1 Form factor integral forms

Additional notation is used to as a shorthand for integrals correcting the nuclear form factors

for the nuclear charge distribution. We define form factor coefficients [23]:

F
(N)
KLs(ke,m, n, ρ) =

∫ ∞

0

J(q)FKLs(q
2)q2dq, (17.28)
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where

J(q) =
2

π

(qR)L

(2L+ 1)!!

∫ ∞

0

( r
R

)L+2N

I(ke,m, n, ρ, r)jL(qr)r
2dr. (17.29)

The quantities I(ke,m, n, ρ; r) are lengthy functions of the radial coordinate r and the nuclear

radius parameter R. When ρ = 0 (equivalently Z = 0), I(ke,m, n, ρ = 0; r) = 1. As an

example of the type of functions I take, in the case of a uniform charge distribution,

I(k, 1, 1, 1; r) =





3
2
− 2k+1

2(2k+3)

(
r
R

)2
, 0 ≤ r ≤ R

2k+1
2k

R
r
− 3

2k(2k+3)

(
R
r

)2k+1
R ≤ r.

(17.30)

BB tabulate these functions for various charge distribution models.

17.3.2 Relation between Behrens and Buhring and CLEM opera-

tors

Modern EFT theories interested in electroweak forces (e.g. [118]) have used the formalism

following Walecka (e.g. see [67]), which I refer to as the CLEM (Coulomb, longitudinal,

transverse-electric, and transverse-magnetic) operators. Behrens and Buhring (BB) [24]

provide the relation between the two multipole expansions, which I will repeat here in the

notation of [67].

The BB form factors with the impulse approximation in terms of nuclear matrix elements is

expressed as:

FJLs(q
2) = (−1)J−LMJLs(q

2). (17.31)

The multipole operators of Walecka being the Coulomb, longitudinal, transverse-electric,
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and transverse-magnetic are all defined in terms of the spherical Bessel functions, spherical

harmonics, and vector spherical harmonics [67]:

MMJ
J (qx) ≡ jJ(qx)Y

MJ
J (Ωx), (17.32)

MMJ
JL (qx) ≡ jL(qx)Y

MJ
JL1 (Ωx). (17.33)

We have, in terms of the vector and axial-vector currents Ĵ = V̂ + Â [24], with q = |q|,

ĈM
J (q) =

∫
dxMMJ

J Ĵ0(x) (17.34)

L̂MJ
J (q) =

∫
dx[

i

q
∇MMJ

J (qx)] · Ĵ (x) (17.35)

ÊMJ
J (q) =

∫
dx[

1

q
∇×MMJ

JJ (qx)] · Ĵ (x) (17.36)

M̂MJ
J (q) =

∫
dxMMJ

JJ (qx) · Ĵ (x). (17.37)

The relations to the BB form factors FJLs(q
2) are (Eqs. (9.74) - (9.77) in [24]):

⟨Jf | |iJĈJ | |Ji⟩ =
√

2Ji + 1

4π

(qR)J

(2J + 1)!!
FJJ0(q

2) (17.38)

⟨Jf | |iJ L̂J | |Ji⟩ = −
√

2Ji + 1

4π

{
(qR)J−1

(2J − 1)!!

√
J

2J + 1
FJ,J−1,1(q

2) (17.39)

− (qR)J+1

(2J + 3)!!

√
J + 1

2J + 1
FJ,J+1,1(q

2)

}
(17.40)

⟨Jf | |iJÊJ | |Ji⟩ = −
√

2Ji + 1

4π

{
(qR)J−1

(2J − 1)!!

√
J + 1

2J + 1
FJ,J−1,1(q

2) (17.41)

+
(qR)J+1

(2J + 3)!!

√
J

2J + 1
FJ,J+1,1(q

2)

}
(17.42)

⟨Jf | |iJM̂J | |Ji⟩ =
√

2Ji + 1

4π

(qR)J

(2J + 1)!!
FJJ1(q

2). (17.43)

Note that the iJ and iK−1 factors on the LHS is needed if single particle wave functions on

both sides are used.
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To use the single-particle matrix elements from Donnelly and Haxton [67], we will want to

invert the relations of (17.38)-(17.43).

FJJ0(q
2) =

√
4π[Ji]

−1 (2J + 1)!!

(qR)J
⟨Jf | |iJĈJ | |Ji⟩ (17.44)

FJ,J−1,1(q
2) = −

√
4π[Ji]

−1 (2J + 1)!!

(qR)J−1

[√ J

2J + 1
⟨Jf | |iJ L̂J | |Ji⟩ (17.45)

+

√
J + 1

2J + 1
⟨Jf | |iJÊJ | |Ji⟩

]
(17.46)

FJ,J+1,1(q
2) = −

√
4π[Ji]

−1 (2J + 1)!!

(qR)J+1

[√ J + 1

2J + 1
⟨Jf | |iJ L̂J | |Ji⟩ (17.47)

−
√

J

2J + 1
⟨Jf | |iJÊJ | |Ji⟩

]
(17.48)

FJJ1(q
2) =

√
4π[Ji]

−1 (2J + 1)!!

(qR)J
⟨Jf | |iJM̂J | |Ji⟩ . (17.49)

17.4 Matrix elements of the CLEM operators

The seven basic electroweak operators M , ∆, ∆′, Σ, Σ′, Σ′′, and Ω can be used in a harmonic

oscillator basis to obtain closed-form matrix elements of such transitions. And, since the weak

interaction density is related to the electromagnetic interaction density, a common choice is

to use the Coulomb, Longitudinal, Electric, and Magnetic operators from standard multipole

analysis of, e.g. electron scattering on nuclei [68]. (Conserved-vector-current (CVC) theory

tells us that the matrix elements in the weak processes due to vector current are identical to

those in the electromagnetic process.) In this section I will restate these expressions, while

realizing them with relevant values to this study.

The relevant equations from Donnelly and Haxton [67] are (20a-g), which I will first list, and

then digest. Other references are [211, 67].
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Vector (General)

CJMJ ;TMT
(qr) = F

(T )
1 MMJ

J (qr)IMT
T (17.50)

LJMJ ;TMT
(qr) =

q0
q
CJMJ ;TMT

(qr) (17.51)

EJMJ ;TMT
(qr) =

q

mN

[
F

(T )
1 ∆′MJ

J (qr) +
1

2
µ(T )ΣMJ

J (qr)

]
IMT
T (17.52)

iMJMJ ;TMT
(qr) =

q

mN

[
F

(T )
1 ∆MJ

J (qr)− 1

2
µ(T )Σ′MJ

J (qr)

]
IMT
T (17.53)

where, besides the coupling constants F (T )
X , we have used the isospin operator:

IMT
T ≡ 1

2





1 T = 0,MT = 0

τ0 = τ3 T = 1,MT = 0

τ±1 = ± 1√
2
(τ1 ± iτ2) T = 1,MT = ±1

. (17.54)

Axial-vector (General)

iCJMJ ;TMT
(qr) =

q

mN

[
F

(T )
A Ω′MJ

J (qr) +
1

2
q0F

(T )
P Σ′′MJ

J (qr)

]
IMT
T (17.55)

−iLJMJ ;TMT
(qr) =

(
F

(T )
A − q2

2mN

F
(T )
P

)
Σ′′MJ

J (qr)IMT
T (17.56)

−iEJMJ ;TMT
(qr) = F

(T )
A Σ′MJ

J (qr)IMT
T (17.57)

MJMJ ;TMT
(qr) = F

(T )
A ΣMJ

J (qr)IMT
T (17.58)

The q0 = −E factor is the time-component of the momentum transfer four-vector [67].

The expression for the Coulomb operator, taken from Donnely and Haxton [67], differs in

convention from the expression of both Connell [211] and Glick and Magic [102]. The above
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uses Ω′ = Ω+ 1
2
Σ′′. I will switch to the convention of the latter, leading to:

iCJMJ ;TMT
(qr) =

q

mN

[
F

(T )
A ΩMJ

J (qr) +
1

2
(F

(T )
A + q0F

(T )
P )Σ′′MJ

J (qr)

]
IMT
T . (17.59)

Another difference between the sources is conventional: whether the isospin operator is

included in the definition of the CLEM operators.

17.4.1 Coupling constants

For the coupling constants F (T )
X and µ(T ) = F

(T )
1 +2mNF

(T )
2 , Donnely and Haxton [67] refer

us to Connell [211]. There is also a discussion of these coupling constants in [68]. Each

coupling constant has momentum dependence:

F
(T )
X (q2) ∝

[
1 +

q2

(855MeV)2

]−2

, (17.60)

which is essentially constant for any momentum we will be interested in. For the axial-vector

coupling,

F
(T )
A = gA ≈ −1.276. (17.61)

The vector coupling constants are equal to their electromagnetic counterparts [68, 67, 211]:

F
(T=0,1)
1 = gV = 1 (17.62)

µ(0) = F
(0)
1 + 2mNF

(0)
2 = µp + µn = 0.890 (17.63)

µ(1) = F
(1)
1 + 2mNF

(1)
2 = µp − µn = 4.706. (17.64)
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In the above, µp and µn are the proton and neutron magnetic moments. From early experi-

ments [31],

µp = (2.7934± 0.0003)
eh̄

2mpc
(17.65)

µn = (−1.9135± 0.0003)
eh̄

2mpc
. (17.66)

From Connell [211], the pseudoscalar coupling constant is

FP (q
2) =

2mNFA(q
2)

q2 +m2
π

= gP , (17.67)

which, according to contemporary measurements [106], is estimated to be

gP = 349(9). (17.68)

17.4.2 Reduced matrix operators

I now write down the reduced and simplified matrix elements, assuming a sum over all single-

particle states, and ignoring orientation in space to drop the MJ dependence (Jz reduced

matrix elements will be used, summing over all orientations). I also use the assumptions

about the coupling constants discussed in the previous sections to express the operators in

terms of the well-known coupling constants gV , gA, gP , µ.

344



Vector (Simplified)

Under CVC theory, the vector-longitudinal operator can be expressed in terms of the Coulomb

operator.

CJM(qr) = gVM
MJ
J (qr)τ± (17.69)

LJM(qr) = −E
q
CJM(qr) (17.70)

EJM(qr) =
q

mN

[
gV∆

′MJ
J (qr) +

1

2
µΣMJ

J (qr)

]
τ± (17.71)

MJM(qr) = −i q

mN

[
gV∆

MJ
J (qr)− 1

2
µΣ′MJ

J (qr)

]
τ± (17.72)

Axial-vector (Simplified)

CJM(qr) = −i q

mN

[
gAΩ

MJ
J (qr) +

1

2
(gA + q0gP )Σ

′′MJ
J (qr)

]
τ± (17.73)

LJM(qr) = i

(
gA −

q2

2mN

gP

)
Σ′′MJ

J (qr)τ± (17.74)

EJM(qr) = igAΣ
′MJ
J (qr)τ± (17.75)

MJM(qr) = gAΣ
MJ
J (qr)τ± (17.76)

17.4.3 Nuclear electroweak operators

There are six basic operators, MJ ,∆J ,Σ
′
J ,Σ

′′
J , Φ̃

′
J ,Φ

′′
J , describing the electro-weak coupling of

the WIMPs to the nucleon degrees of freedom. These are constructed from Bessel spherical

and vector harmonics [67]:

MJM(qx⃗) ≡ jJ(qx)YJM(Ωx) (17.77)
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M⃗JLM(qx⃗) ≡ jL(qx)Y⃗JLM(Ωx), (17.78)

where, using unit vectors e⃗λ=−1,0,+1,

YJLM(Ωx) =
∑

mλ

⟨Lm1λ| |(L1)JMJ⟩YLm(Ωx)e⃗λ. (17.79)

The multipole operators are defined as:

MJM (17.80)

∆JM ≡M⃗JJM ·
1

q
∇⃗ (17.81)

∆′
JM ≡− i

[
1

q
∇⃗ × M⃗JJM

]
· 1
q
∇⃗ (17.82)

ΣJM ≡M⃗JJM · σ⃗ (17.83)

Σ′
JM ≡− i

(
1

q
∇⃗ × M⃗JJM

)
· σ⃗ (17.84)

Σ′′
JM ≡

(
1

q
∇⃗MJM

)
· σ⃗ (17.85)

ΩJM ≡MJM σ⃗ ·
1

q
∇⃗ (17.86)

Φ̃′
JM ≡

(
1

q
∇⃗ × M⃗JJM

)
·
(
σ⃗ × 1

q
∇⃗
)
+

1

2
M⃗JJM · σ⃗ (17.87)

Φ′′
JM ≡i

(
1

q
∇⃗MJM

)
·
(
σ⃗ × 1

q
∇⃗
)

(17.88)

The last two are not used for beta decay. Some of these can be calculated as combinations

of the others. First, the ∆′ operator:

∆′
JM =

[
−
(

J

2J + 1

)1/2

M⃗J,J+1,M +

(
J + 1

2J + 1

)1/2

M⃗J,J−1,M

]
· 1
q
∇⃗. (17.89)

The first factor being identical in form, the Σ′ operator:

Σ′
JM =

[
−
(

J

2J + 1

)1/2

M⃗J,J+1,M +

(
J + 1

2J + 1

)1/2

M⃗J,J−1,M

]
· σ⃗. (17.90)
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Similar in form, the Σ′′ operator:

Σ′′
JM =

[(
J + 1

2J + 1

)1/2

M⃗J,J+1,M +

(
J

2J + 1

)1/2

M⃗J,J−1,M

]
· σ⃗. (17.91)

17.4.4 Nuclear electroweak matrix elements

The matrix elements of the nuclear electroweak operators can be calculated for standard

wave functions from second-quantized shell model calculations:

⟨Ψf | |XJ | |Ψi⟩ =
∑

a,b

⟨a| |XJ | |b⟩ ρfiJ (ab), (17.92)

where single-particle orbital labels a imply shell model quantum number na, la, ja, and the

double-bar || indicates reduced matrix elements [74]. For elastic collisions, only the ground

state is involved, i.e. Ψf = Ψi = Ψg.s..

We will need explicit representations of the matrix elements. In this section, I mostly just

reproduce results from old papers for convenience. The important original papers are [68,

67, 211], and for a recent review with a modern Mathematica implementation, see [130].

First I will state the operator matrix elements in terms of spherical Bessel functions and

related single-particle operators, and then present the explicit expressions for those single-

particle matrix elements in a harmonic oscillator basis. The single particle states have labels

n, l, and j, as per usual. The matrix elements are reduced, using the Wigner-Eckart theorem

to remove MJ dependence [74],

⟨j′m′|TJM |jm⟩ = (−1)j′−m′




j′ J j

−m′ M m


 ⟨j′| |TJ | |j⟩ . (17.93)

The coupling symbol here is the 3-j symbol.
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The MJ reduced matrix elements are [67]:

⟨a| |MJ(y)| |b⟩ =
1√
4π

(−1)J+j+1/2[l′][l][j′][j][J ]




l′ j′ 1

2

j l J







l′ J l

0 0 0


 ⟨a| jJ(y) |b⟩ ,

(17.94)

where y = qx, |a⟩ = |n′l′j′⟩ and |b⟩ = |nlj⟩.

Next are the matrix elements related to the ΣJM operator, in terms of the general M⃗JLM

vector function (which in ΣJM has L = J):

⟨a| |M⃗JL(y) · σ⃗| |b⟩ =
1√
4π

(−1)l′
√
6[l′][l][j′][j][J ][L]





l′ l L

1
2

1
2

1

j′ j J







l′ L l

0 0 0


 ⟨a| jJ(y) |b⟩ .

(17.95)

The next matrix elements are related to the ∆JM operator:

⟨a| |M⃗JL(y) ·
1

q
∇⃗| |b⟩ = 1√

4π
(−1)L+j+1/2[l′][j′][j][J ][L]




l′ j′ 1

2

j l J





[
− (l + 1)1/2[l + 1]




L 1 J

l l′ l − 1







l′ L l + 1

0 0 0




× ⟨a| jL(y)
(
d

dy
+
l + 1

y

)
|b⟩

]

(17.96)
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The matrix elements related to the ΩJM operator:

⟨a| |MJ(y)σ⃗ ·
1

q
∇⃗| |b⟩ = 1√

4π
(−1)l′ [l′][j′][j][2j − l][J ]




l′ j′ 1

2

j 2j − l J







l′ J 2j − l

0 0 0




×
[
− δj,l+1/2 ⟨a| jL(y)

(
d

dy
− l

y

)
|b⟩

+ δj,l−1/2 ⟨a| jL(y)
(
d

dy
+
l + 1

y

)
|b⟩

]
.

(17.97)

17.4.5 Bessel function harmonic oscillator matrix elements

To compute the matrix elements of the basic electroweak operators, we need the matrix

elements of the spherical Bessel function, and related operators, in a basis of harmonic

oscillator states |b⟩ = |nlj⟩. These are listed below, taken from [67, 130]. In the following, the

definition of y differs from that in previous sections. Here, y = (qb/2)2, where b =
√
h̄/mω

is the harmonic oscillator length scale.

The confluent hyper-geometric functions 1F1 are described in the Appendix.

⟨a| jL(y) |b⟩

=
2L

(2L+ 1)!!
yL/2e−y

√
(n′ − 1)!(n− 1)!

√
Γ(n′ + l′ + 1/2)Γ(n+ l + 1/2)

×
n−1∑

m=0

n′−1∑

m′=0

(−1)m+m′

m!m′!(n−m− 1)!(n′ −m′ − 1)!

× Γ[(l + l′ + L+ 2m+ 2m′ + 3)/2]

Γ(l +m+ 3/2)Γ(l′ +m′ + 3/2)
1F1[(L− l′ − l − 2m′ − 2m)/2;L+ 3/2; y].

(17.98)
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⟨n′l′j′| jL(y)(
d

dy
− l

y
) |nlj⟩

=
2(L− 1)

(2L+ 1)!!
y(L−1)/2e−y

√
(n′ − 1)!(n− 1)!

√
Γ(n′ + l′ + 1/2)Γ(n+ l + 1/2)

×
n−1∑

m=0

n′−1∑

m′=0

(−1)m+m′

m!m′!(n−m− 1)!(n′ −m′ − 1)!

Γ[(l + l′ + L+ 2m+ 2m′ + 2)/2]

Γ(l +m+ 3/2)Γ(l′ +m′ + 3/2)

×
{
− 1

2
(l + l′ + L+ 2m+ 2m′ + 2) 1F1[(L− l′ − l − 2m′ − 2m− 1)/2;L+ 3/2; y]

+ 2m 1F1[(L− l′ − l − 2m′ − 2m+ 1)/2;L+ 3/2; y]
}
.

(17.99)

⟨n′l′j′| jL(y)(
d

dy
+
l + 1

y
) |nlj⟩

=
2L−1

(2L+ 1)!!
y(L−1)/2e−y

√
(n′ − 1)!(n− 1)!

√
Γ(n′ + l′ + 1/2)Γ(n+ l + 1/2)

×
n−1∑

m=0

n′−1∑

m′=0

(−1)m+m′

m!m′!(n−m− 1)!(n′ −m′ − 1)!

Γ[(l + l′ + L+ 2m+ 2m′ + 2)/2]

Γ(l +m+ 3/2)Γ(l′ +m′ + 3/2)

×
{
− 1

2
(l + l′ + L+ 2m+ 2m′ + 2) 1F1[(L− l′ − l − 2m′ − 2m− 1)/2;L+ 3/2; y]

+ (2l + 2m+ 1) 1F1[(L− l′ − l − 2m′ − 2m+ 1)/2;L+ 3/2; y]
}
.

(17.100)

17.5 Special formulas

17.5.1 First forbidden non-unique to first order

In most applications of BB formalism, only a select number of terms are relevant for a given

set of approximations and required precision. To see an example of a reduction of the full
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theory, see the 1972 paper [26] in which Behrens et al. apply the BB formalism to the first

forbidden decay of 209Pb.

In a first forbidden non-unique decay, the nuclear angular momentum and parity change by

∆Jπ = 0−, 1−. The shape factor for first forbidden decays is found in BB [24] section 14.3,

which highest order coefficients given (in slightly opaque notation) in equations (14.452 -

14.460). An expanded version is given in Table 4 of [23], and in equation (5) of [26]. Both

provide:

C(W ) =M2
011 +m2

011 − 2
µ1γ1
W

M011m011 +M2
111 +m2

111 − 2
µ1γ1
W

M111m111 (17.101)

+M2
112 + λ2M

2
121 +M2

212 + λ2M
2
221, (17.102)

where µ1 and λ2 are Coulomb functions, and γ1 =
√
1− (αZ)2. The MKkekν and mKkekν

quantities are, to first order in the expansion of small parameters [23], αZ, WR, meR (αZ,

WR/h̄c, mecR/h̄ in SI units):

M011 =
AF000 −

1

3
αZ AF011(1, 1, 1, 1)−

1

3
W0R

AF011 (17.103)

m011 = −
1

3
R AF011 (17.104)

M111 = − V F101 −
1

3
αZ

√
1

3
V F110(1, 1, 1, 1)−

1

3
W0R

√
1

3
V F110 (17.105)

− 1

3
αZ

√
2

3
AF111(1, 1, 1, 1)−

1

3
(W − q)R

√
2

3
AF111 (17.106)

m111 = −
1

3
R

[√
1

3
V F110 +

√
2

3
AF111

]
(17.107)

M112 =
1

3
qR

[√
2

3
V F110 +

√
1

3
AF111

]
(17.108)

M121 =
1

3
pR

[√
2

3
V F110 −

√
1

3
AF111

]
(17.109)

M212 = −
1

3
qR AF211 (17.110)
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M221 = −
1

3
pR AF211. (17.111)

We have:

α = fine structure constant

q = (W0 −W ) = neutrino momentum

R ≈ r0A
1/3 nuclear radius

Z = proton number of the daughter

Furthermore, terms with qR and pR are small (on the order of 0.04 in natural units) and

only their squares enter C(W ); these terms can be dropped [26]. We are left with:

C(W ) =M2
011 +m2

011 − 2
µ1γ1
W

M011m011 +M2
111 +m2

111 − 2
µ1γ1
W

M111m111; (17.112)

M011 =
AF000 −

1

3
αZ AF011(1, 1, 1, 1)−

1

3
W0R

AF011 (17.113)

m011 = −
1

3
R AF011 (17.114)

M111 = − V F101 −
1

3
αZ

√
1

3
V F110(1, 1, 1, 1)−

1

3
W0R

√
1

3
V F110 (17.115)

− 1

3
αZ

√
2

3
AF111(1, 1, 1, 1)−

1

3
(W − q)R

√
2

3
AF111 (17.116)

m111 = −
1

3
R

[√
1

3
V F110 +

√
2

3
AF111

]
. (17.117)

These expressions require the following form factor coefficients FN
KLs which can be related to

standard CLEM operators:

AF000,
AF011,

AF111,
V F101

V F110, (17.118)

as well as the following shape form factor coefficients FN
KLs(ke,m, n, ρ) which require special
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integrals to compute:

AF011(1, 1, 1, 1),
AF111(1, 1, 1, 1),

V F110(1, 1, 1, 1). (17.119)

Since we are only computing to leading order, I have dropped the N label in FN
KLs; where

needed it is set to zero. If the nucleus is sufficiently small, the small Z approximation may

apply, in which case

αZ << 1, (17.120)

so that the shape form factors may be neglected. For our nuclei of interest, however, Z =

35− 40, so

0.26 ≤ αZ ≤ 0.29. (17.121)

Using the relations from section 17.3.2, we can express the operators not requiring special

integrals in terms of the standard CLEM operators. For both of the following, we set J = 0

and obtain:

AF000 =
√
4π[Ji]

−1 ⟨Jf | |ĈA
0 | |Ji⟩ , (17.122)

AF011 = −
√
4π[Ji]

−1 1

qR

[
⟨Jf | |iJ L̂A

0 | |Ji⟩
]
. (17.123)

For the next three relations, we set J = 1:

V F110 = FJJ0(q
2) =

√
4π[Ji]

−1 3

qR
⟨Jf | |iĈV

1 | |Ji⟩ , (17.124)

V F101 = FJ,J−1,1(q
2) = −

√
4π[Ji]

−13
[√1

3
⟨Jf | |iL̂V

1 | |Ji⟩+
√

2

3
⟨Jf | |iÊV

1 | |Ji⟩
]
,

(17.125)
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AF111 = FJJ1 =
√
4π[Ji]

−1 3

qR
⟨Jf | |iM̂A

1 | |Ji⟩ . (17.126)

The shape form factor coefficients FN
KLs(ke,m, n, ρ) can be calculated as integral transforms

of the previously listed formulas via the relation (17.28). For the order we are computing,

we only need N = 0 and L = 1 terms:

F
(0)
K1s(1, 1, 1, 1) =

∫ ∞

0

J
(N=0)
L=1 (q)FKL=1s(q

2)q2dq. (17.127)

We can write down the geometric factor for the specific case of I(k = 1, 1, 1, 1):

I(1, 1, 1, 1; r) =





3
2
− 3

10

(
r
R

)2
, 0 ≤ r ≤ R

3
2
R
r
− 3

10

(
R
r

)3
R ≤ r.

(17.128)

Then the kernel simplifies to:

J
(N=0)
L=1 (q) =

2

π

qR

3

∫ ∞

0

( r
R

)
I(1, 1, 1, 1; r)jL=1(qr)r

2dr. (17.129)

Note that we cannot use the small-qr expansion of the spherical Bessel function here because

we are integrating r → ∞. The asymptotic form of the Bessel functions for all L are some

phase shift of cos(qr)/(qr). I(1, 1, 1, 1; r) goes like 1/r. Thus, the integrand appears to

have asymptotic behaviour as r cos(x), which would not converge. However, Behrens and

Buhring [24] claim (BB 6.162) that in fact the integral J(q) is equivalent to q-derivatives of

J̃(q) =
2

π
q

∫ ∞

0

I(ke,m, n, ρ; r)j0(qr)r
2dr, (17.130)

which, by a similar argument as above, does converge.
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17.5.2 First forbidden unique to first order

In a first forbidden unique decay, the nuclear angular momentum and parity change by

∆Jπ = 2−. The shape factor in this case is, to a first approximation, of the ‘normal’ unique

shape [25]:

C(W ) =M2
212 + λ2M

2
221, (17.131)

where the dominant terms are:

M212 = −
1

3
pνR

AF211 (17.132)

M221 = −
1

3
peR

AF211 (17.133)

so that

C(W ) =
1

9
R2( AF211)

2(p2ν + λ2p
2
e). (17.134)

The next leading corrections to the normal shape scale like W0R and αZ and include the

form factors and shape form factors AF220 and V F221.

Using equations (17.44) and setting J = 2, we obtain the expression for AF211:

AF2,1,1(q
2) =

√
4π[Ji]

−1 15

qR

[√2

5
⟨Jf | |L̂A

2 | |Ji⟩+
√

3

5
⟨Jf | |ÊA

2 | |Ji⟩
]
. (17.135)

17.5.3 As a correction to allowed shape

A common approximation for computing first forbidden decays is by approximating the

energy spectrum C(W ) as a correction to the allowed-shape spectrum. In this way, the form
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is:

C(W ) = k

[
1 + aW +

b

W
+ cW 2

]
, (17.136)

where the coefficients are related to the nuclear matrix elements. Some papers like [202, 313]

attribute the following definition to a Behrens and Buhring 1971 paper [23] (which does not

appear to contain that definition), but a paper by Towner and Hardy (1972) [280] indicates

that the definition is from the text by Schopper (1966) [257]. There is a footnote in BB [24]

on page 594 which briefly mentions this notation. The formulas are:

k = (ζ20 +
1

9
w2) + (ζ21 +

1

9
(x+ u)2 − 4

9
µ1γ1u(x+ u) (17.137)

+
1

18
W 2

0 (2x+ y)2 − 1

18
λ2(2x− u)2] +

1

12
z2(W 2

0 − λ2), (17.138)

ka = −4

3
uY − 1

9
W0(4x

2 + 5u2)− 1

6
z2W0, (17.139)

kb =
2

3
µ1γ1[−ζ0w + ζ1(x+ u)], (17.140)

kc =
1

18
[8u2 + (2x+ u)2 + λ2(2x− u)2] +

1

12
z2(1 + λ2) (17.141)

• ζ0 = V + 1
3
wW0

• ζ1 = Y + 1
3
(u− x)W0

• V = ξ′v + ξw′

• Y = ξ′y − ξ(u′ + x′)

• ξ = αZ
2R

The functions γk=1, µk=1, and λ2 are Coulomb functions, and for sufficiently light nuclei,

γ1 = µ1 = λ2 = 1.

The factors w, x, u, z are non-relativistic electroweak matrix elements, which are expressed

in terms of operators like the isospin operator τ , the spin operator σ, and the vector spherical
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harmonic,

Clm =

√
4π

2l + 1
Ylm. (17.142)

From [313], using the Condon and Shortley phase convention and reduced matrix elements

(assumed sum over all nucleons):

w = −R AF 0
011 = −gA

√
3[Ji]

−1⟨f ||r[C1 × σ]0τ ||i⟩C (17.143)

x = − 1√
3
R V F 0

110 = −[Ji]−1⟨f ||rC1τ ||i⟩ (17.144)

u = −
√

2

3
R AF 0

111 = −gA
√
2[Ji]

−1⟨f ||r[C1 × σ]1τ ||i⟩ (17.145)

z =
2√
3
R AF 0

211 = 2gA[Ji]
−1⟨f ||[C1 × σ]2τ ||i⟩. (17.146)

In the above and below, [J ] =
√
2J + 1 and the axial-vector coupling constant is approxi-

mately gA = −1.27. M is the nucleon mass. The necessary primed expressions (derivatives

with respect to r) in terms of the nuclear charge distribution (uniform sphere),

I(1, 1, 1, 1, r) =
3

2





1− 1
5

(
r
R

)2
, 0 ≤ r ≤ R

R
r
− 1

5

(
R
r

)3
, r ≥ R

, (17.147)

are given by:

w′ = −2

3
R AF 0

011(1, 1, 1, 1) = −gA
√
3[Ji]

−1⟨f ||2
3
rI(1, 1, 1, 1, r)[C1 × σ]0τ ||i⟩C

(17.148)

x′ = − 2

3
√
3
R V F 0

110(1, 1, 1, 1) = −[Ji]−1⟨f ||2
3
rI(1, 1, 1, 1, r)C1τ ||i⟩ (17.149)

u′ = −2

3

√
2

3
R AF 0

111(1, 1, 1, 1) = −gA
√
2[Ji]

−1⟨f ||2
3
rI(1, 1, 1, 1, r)[C1 × σ]1τ ||i⟩

(17.150)
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Finally, ξ′v and ξ′y are relativistic operators with non-relativistic reductions:

ξ′v =A F 0
000 =

1

M
gA
√
3[Ji]

−1⟨f ||[σ ×∇]0τ ||i⟩ (17.151)

ξ′y =V F 0
101 = −

1

M
[Ji]

−1⟨f ||∇τ ||i⟩. (17.152)

Large Z (ξ) approximation; allowed shape

Following the arguments retold in Towner [280], we can neglect certain terms in the above

expansion when

ξ =
αZ

2R
>> W0, (17.153)

where W0 is the maximum electron energy and R is the nuclear charge radius. It can be

shown that in this limit,

• k ∼ O(ξ2)

• ka ∼ O(ξ)

• kb ∼ O(ξ)

• kc ∼ O(1)

Thus, keeping only the leading term in ξ,

C(W ) ∼ k. (17.154)

BB mention the large-Z approximation in a footnote on page 594 in the context of this

‘historical’ notation: for large Z (and if cancellations do not occur), the quantities V and Y
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are approximated by:

V ≈ A0 (17.155)

Y ≈ −C0, (17.156)

which, expanding using BB formalism to leading order, is equivalent to:

V ≈ AF000 ∓
1

3
αZ AF011(1, 1, 1, 1)−

1

3
W0R

AF011 (17.157)

Y ≈ −
(
−V F101 ∓

1

3
αZ

√
1

3
V F110(1, 1, 1, 1) (17.158)

− 1

3
W0R

√
1

3
V F110 ∓

1

3
αZ

√
2

3
AF111(1, 1, 1, 1) (17.159)

+
1

3
W0R

√
2

3
AF111

)
. (17.160)

17.6 Coulomb correction

Because the electron (lepton) emitted during beta decay will interact with the residual

nuclear charge, the beta decay interaction must include weak and electromagnetic terms.

Since the electromagnetic interaction is strong compared to the weak interaction, it cannot

be included as a simple perturbation. There are two main effects of the Coulomb correction,

static and radiative:

1. Static distortion of the electron wave functions, modifying the beta spectrum by an

overall scaling factor (i.e. the Fermi function f(Z,E))

2. Radiative correction terms (things like bremsstrahlung) which alter the normalization

of the shape function as well as the form of the multipole operators
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17.6.1 Static corrections

The static effects are the main concern of Behrens and Buhring [24], and is fully incorporated

into their treatment of the electron radial wave functions. A schematic Feynman diagram is

shown in Figure 17.2 for the dominant terms static terms.

Figure 17.2: Figure from Behrens and Buhring [24] showing the (static) electromagnetic
interaction (c) correction to nuclear beta decay.

The physical interpretation of static corrections is that the electron radial wave functions

are distorted by the presence of the nuclear charge from simple plane waves to Coulomb

wave functions. We will see in the following sections covering the Behrens and Buhring

(BB) formalism that a number of functions are needed which encode this distortion in the

calculation of beta decay form factors. These are called the Coulomb functions: µk, γk, λk,

which to leading order are close to unity.

First, we have the Fermi function γk:

γke =
√
k2e − (αZ)2, (17.161)

where Z is the atomic number of the residual nucleus, and ke = k is the wave number of the
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outgoing electron. α is the fine structure constant.

µke =
keW

γkem

α2
−ke
− α2

ke

α2
−ke

+ α2
ke

, (17.162)

λke =
α2
−ke

+ α2
ke

α2
−1 + α2

1

, (17.163)

where αke are called the Coulomb-amplitudes, which are solutions to the electron radial wave

function equations in the presence of a uniform nuclear charge. They generally have the form

(to leading order in WR << 1):

αk ≃ (2W )−1/2(2p)γe(π/2)y|E−1| |Γ(γ + iy)|
Γ(1 + 2γ)

, (17.164)

where y = αZW
pc

and E is a normalization factor. This can be expressed in terms of the

generalized Fermi function, introduced elsewhere, which has the form fk−1 ∼ 1 + O(αZ)

when αZ → 0. With this shorthand,

ακ ≃
p

k
√
2W

√
fk−1





√
(k + γ)(kW − γm), κ = k

√
(k + γ)(kW + γm), κ = −k.

(17.165)

Using

α2
−ke + α2

ke ≃ fk−1p
2k + γ

k
(17.166)

α2
−ke − α2

ke ≃ fk−1p
2 (k + γ)γ

k2
m

W
, (17.167)

we find

γke =
√
k2e − (αZ)2 (17.168)

µke ≃ 1 (17.169)

λke =
fke−1

f0

ke + γke
ke(1 + γ1)

≈ 1 +O{(αZ)2}. (17.170)
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Tabulated values for the Fermi functions, as a function of Z, r0 (R = r0A
1/3), and p, can

be found in [256]. I include some of the relevant values in Table 17.1. As a reminder, the

relation between the important quantities are:

W =
√
p2 + 1 (17.171)

E = (W − 1)mec
2 (17.172)

mec
2 = 511.006keV. (17.173)

Table 17.1: Coulomb functions as a function of Z and the electron momentum p (in units
of mec) for r0 = 1.2 fm reported by [256]. p = 1 corresponds to E ≈ 0.21 MeV and p = 20
to E ≈ 9.7 MeV. The underlying Coulomb amplitudes αk and Coulomb phases ∆k were
computed by solving the equation for a nucleus with a uniform charge distribution and
without screening effects.

µ1 p = 1 p = 20
Z = 20 0.9994 0.9832
Z = 50 0.9971 0.9297
Z = 80 0.9893 0.8376
λ2 p = 1 p = 20

Z = 20 0.9804 1.0099
Z = 50 0.8880 1.0486
Z = 80 0.7201 1.1859

17.6.2 Radiative corrections

Radiative corrections can further be categorized into ‘inner’ and ‘outer’ radiative corrections,

depending on whether the correction deals with the structure of the strong interaction. Inner

radiative corrections are typically incorporated into effective coupling constants, while the

outer corrections are energy dependent [132, 24]. The first few orders of radiative corrections

are shown in Figure 17.3.

In light nuclei and for low-precision applications, the effect of the static Coulomb interaction
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Figure 17.3: Figure from Behrens and Buhring [24] showing the (radiative) electromagnetic
corrections to nuclear beta decay for the first few orders in the smallness parameters: α,
Zα2. The final two order α diagrams show inner bremsstrahlung corrections [132].

can be ignored. The smallness parameter is of the order:

ϵC ∼ αZf =
1

4πϵ0

e2

h̄c
Zf ≈

1

137
Zf , (17.174)

where Zf is the nuclear charge of the residual nucleus.

The correction to the spectrum shape has the form

CR(W ) = C(W )(1 + ∆
V/A
R )(1 + δR(W,W0)), (17.175)

where ∆V/A
R (≈ 2.4% [193]) is the inner radiative correction term, and δR(W,W0) is the outer.

For ∆V
R ≈ 2.4% [193], while the axial-vector component is incorporated into gA [132]. The

energy-dependent outer radiative correction has scaling factors of α, Zα2, and Z2α3. The

effect is of the order of a percent, at least for super-allowed transitions [24].
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17.7 Glick-Magid and Gazit Formalism

Glick-Magid and Gazit [102] have renewed the beta decay formalism, providing an alternative

to the formalisms by Behrenes and Burhing [23, 24] and Holstein [143]. The GD formalism

is essentially equivalent to the formalism of Connel, Donnelly, and Walecka [211] and related

work in terms of the Walecka operators. In this section, I restate the important results from

their paper. In each case, I reduce to the leading order for the cases we are interested in:

medium-to-heavy mass nuclei.

An important note is that the formalism in this section ignores corrections due to the

Coulomb force between the nucleus and the β particle, which is dominated by a factor

[102]:

ϵc ∼ αZf . (17.176)

However, this term may become important for the nuclei we are interested in here.

Spectra

Switching now to the notation of [102], where the spectrum remains differential in the electron

and neutrino momenta, we begin with:

d5ω

dE dk̂
4π

dν̂
4π

=
4

π2
kE(E0 − E)2F∓(Zf , E)Ccorr

1

2Ji + 1
Θ(q, β⃗ · ν⃗), (17.177)

• E, k⃗, β⃗ = k⃗/E are the energy, momentum, direction of the emitted electron with E0 =

• ν, ν⃗ are the energy and momentum of the emitted neutrino

• (E0, q⃗) = (E, k⃗) + (ν, n⃗u) is the momentum transfer
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• Ccorr contains corrections such as: radiative corrections, finite-mass and electrostatic

finite-size effects, atomic and chemical effects

• F∓(Zf , E) is the Fermi function describing the interaction of the residual nucleus with

the emitted electron

• Θ(q, β⃗ · ν⃗) contains the nuclear form factors

At leading order, the (point-charge) Fermi function is taken to be [132]:

F∓(Zf , E) = 4(2kRf )
2(γ0−1) |Γ(γ0 + iy)|2

Γ2(2γ0 + 1)
eπy, (17.178)

• γ0 =
√

1− (αZf )2

• y = ±αZfE/k

• Γ(z) is the complex gamma function

Small parameters

The formalism proceeds by expanding the nuclear form factors in a number of small param-

eters, which can be used to determine which terms are important for a given situation. I

collected those terms in the Table 17.2, along with their approximate sizes depending on the

system.

β-decay multipole expansion

Within the standard model, only vector (V) and axial-vector (A) couplings contribute to the

weak force. By assuming an infinitely massive nucleus, the form factors can be written in
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Table 17.2: Small parameters and their sizes in the Glick-Magid and Gazit formalism

Small parameter Scaling Approximate size
ϵNR: non-relativistic expansion PFermi/mN 0.2
ϵqr: leptonic wavefunction expansion qR 0.02A1/3

ϵrecoil
q

mN
0.003

ϵMπ : pion correction q
mπ

0.02
ϵM : nuclear recoil ∆M

Mmin
0.003A−1

ϵc: Coulomb correction αZf Zf/137
ϵNM : nuclear model Q/Λb

the expansion:

Θ(q, β⃗ · ν̂) =
∞∑

J=1

[
(1− (ν̂ · q̂)(β⃗ · q̂))(|⟨||ÊJ ||⟩|2 + |⟨||M̂J ||⟩|2)

± q̂ · (ν̂ − β⃗)2Re
(
⟨||ÊJ ||⟩⟨||M̂J ||⟩∗

) ]

+
∞∑

J=0

[
(1− β⃗ · ν̂ + 2(ν̂ · q̂)(β⃗ · q̂))|⟨||L̂J ||⟩|2

+ (1 + β⃗ · ν̂)|⟨||ĈJ ||⟩|2 − q̂ · (ν̂ + β⃗)2Re
(
⟨||L̂J ||⟩⟨||ĈJ ||⟩∗

) ]
,

(17.179)

in terms of the multipole operators, i.e. the Coloumb, longitudinal, electric, and magnetic

operators:

ĈJ(q) =

∫
d3r jJ(qr)YJ(r̂)J0(r⃗) (17.180)

L̂J(q) =
i

q

∫
d3r

[
∇⃗(jJ(qr)YJ(r̂))

]
· J⃗ (r⃗) (17.181)

ÊJ(q) =
1

q

∫
d3r

[
∇⃗ × (jJ(qr)Y⃗JJ1(r̂))

]
· J⃗ (r⃗) (17.182)

M̂J(q) =

∫
d3r jJ(qr)Y⃗JJ1(r̂) · J⃗ (r⃗). (17.183)

• jJ(qr) are spherical Bessel functions

• YJ(r̂), ŶJl1 are spherical harmonics, vector spherical harmonics

• J⃗ (r⃗), J0(r⃗) is the nuclear current, nuclear charge
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These correspond to equations (13a-d) in [67], which Behrens and Burhing point out in

Section 9.3 of their text comparing different formalisms [24].

Impulse approximation, leading order multipole operators

The next solidifying step in the formalism is to express the multipole expansion of the op-

erators in terms of single-particle matrix elements of well known operators, namely those

of [67]. For that to happen, one has to apply the impulse approximation to the nuclear

currents; writing the current density operator as one body currents. A non-relativistic ex-

pansion is made, taking the low-momentum limit of nucleonic motion within the nucleus, and

the current density operator is written as a sum of first-quantization, location-independent

operators [102]:

J (r⃗) =
A∑

j=1

Ĵ (1)(j)δ(3)(r⃗ − r⃗j) (17.184)

There are separate expressions for the V and A currents, listed in equations (A3a - A.3d)

of [102]. The operators from equations (17.179), now with the non-relativistic and impulse-

approximated currents, become:

Vector:

ĈV
J (q) = gV

A∑

j=1

MJ(qr⃗j)τ
±
j +O(ϵJqrϵ2NR) (17.185)

L̂V
J (q) = −

q

2mN

gV

A∑

j=1

{
MJ(qr⃗j)− 2

[
1

q
∇⃗MJ(qr⃗j)

]
· 1
q
∇⃗
}
τ±j +O(ϵJ−1

qr ϵ2NR) (17.186)

ÊV
J (q) =

q

mN

A∑

j=1

{
− igV

[
1

q
∇⃗ × M⃗JJ1(qr⃗j)

]
· 1
q
∇⃗ (17.187)

+
gV + g̃T (V )

2
M⃗JJ1(qr⃗j) · σ⃗j

}
τ±j +O(ϵJ−1

qr ϵ2NR) (17.188)
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M̂V
J (q) = − iq

mN

A∑

j=1

{
gV M⃗JJ1(qr⃗j) ·

1

q
∇⃗ (17.189)

+ i
gV + g̃T (V )

2

[
1

q
∇⃗ × M⃗JJ1(qr⃗j)

]
· σ⃗j

}
τ±j +O(ϵJqrϵ2NR). (17.190)

Axial-vector:

ĈA
J (q) = −

iq

mN

A∑

j=1

{
gAMJ(qr⃗j)σ⃗j ·

1

q
∇⃗+

1

2

[
gA −

g̃P
2mN

(E0 ±∆Ec)

]
(17.191)

× [
1

q
∇⃗MJ(qr⃗j)] · σ⃗j

}
τ±j +O(ϵJqrϵ2NR) (17.192)

L̂A
J (q) = i

(
gA +

q2

(2mN)2
g̃P

) A∑

j=1

[
1

q
∇⃗MJ(qr⃗j)] · σ⃗jτ±j +O(ϵJ−1

qr ϵ2NR) (17.193)

ÊA
J (q) =

(
gA +

q2

(2mN)2
g̃P

) A∑

j=1

[
1

q
∇⃗ × M⃗JJ1(qr⃗j)] · σ⃗jτ±j +O(ϵJ−1

qr ϵ2NR) (17.194)

M̂A
J (q) =

(
gA +

q2

(2mN)2
g̃P

) A∑

j=1

M⃗JJ1(qr⃗j) · σ⃗jτ±j +O(ϵJqrϵ2NR) (17.195)

• MJ(qr⃗) = jJ(qr)YJ(r̂)

• M⃗JL1(qr⃗) = jL(qr)Y⃗JL1(r⃗)

Fermi Transition J∆π = 0+

The operator for the Fermi transition, i.e. for J∆π = 0+, to leading order is

Θ0+(q, β⃗ · ν⃗) = (1 + β⃗ · ν̂)|⟨||ĈV
0 ||⟩|2

= (1 + β⃗ · ν̂)|⟨||1̂||⟩|2,
(17.196)

where I have taken the NLO shape-correction term δ0
+

1 ≈ 0, the nuclear-structure-depednent

factor b0+ ≈ 0, and the recoiled-nucleus correction a0+ ≈ 1.
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Gamow-Teller J∆π = 1+

The operator for the Gamow-Teller transition, i.e. for J∆π = 1+, to leading order is

Θ1+(q, β⃗ · ν⃗) = 3|⟨||L̂A
1 ||⟩|2

= 3|⟨||σ̂||⟩|2.
(17.197)

Non-unique first-forbidden transition J∆π = 0−

We are interested in medium-to-heavy mass nuclei, so I set the recoil terms to zero: δ0−1 = 0,

δ0
−

β2 = 0, and δ0−(βν)2 = 0. The angular correlation coefficient is likewise negligible, so a0− = 1.

Finally, the Fierz term is ignored, b0− = 0. The operator for non-unique first-forbidden

transitions is then:

Θ0−(q, β⃗ · ν̂) = (1 + β⃗ · ν̂)
[
|⟨||ĈA

0 ||⟩|2 −
E0

q
2Re(⟨||L̂A

0 ||⟩⟨||ĈA
0 ||⟩∗) + |⟨||L̂A

0 ||⟩2
]

+2
E(E0 − E)

q2
[β2 − (β⃗ · ν̂)2]|⟨||L̂A

0 ||⟩2.
(17.198)
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[267] E. Sh. Soukhovitskĩı, R. Capote, J. M. Quesada, S. Chiba, and D. S. Martyanov. Nu-
cleon scattering on actinides using a dispersive optical model with extended couplings.
Physical Review C: Nuclear Physics, 94(6):064605, Dec. 2016.
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Appendix A

Functions and Algorithms

This appendix goes over some functions used in the text, but whose details aren’t necessary

to understand on a first pass.

A.1 Matrix elements of Bessel functions in a harmonic

oscillator basis

To compute the matrix elements of the electroweak operators in a harmonic oscillator basis,

we use the derivations from [67]. Namely, equations (1a) - (1f) and (3a) - (3d), which

express the necessary geometric matrix elements in terms of matrix elements of the spherical

Bessel functions. Here, we write out the remaining explicit formulas for obtaining matrix

elements of the Bessel functions jL(y) in a harmonic oscillator basis in terms of the confluent

hyper-geometric function:

1F1(a, b, z) =
∞∑

n=0

a(n)zn

b(n)n!
, (A.1)
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which makes use of the rising factorial function:

m(n) =
(m+ n− 1)!

(m− 1)!
. (A.2)

The first additional relation is for the matrix elements of the Bessel function:

⟨n′l′j′| jL(y) |nlj⟩ =
2L

(2L+ 1)!!
yL/2e−y

√
(n′ − 1)!(n− 1)!

×
√

Γ(n′ + l′ + 1/2)Γ(n+ l + 1/2)
n−1∑

m=0

n′−1∑

m′=0

(−1)m+m′

m!m′!(n−m− 1)!(n′ −m′ − 1)!

×Γ[(l + l′ + L+ 2m+ 2m′ + 3)/2]

Γ(l +m+ 3/2)Γ(l′ +m′ + 3/2)
1F1[(L− l′ − l − 2m′ − 2m)/2;L+ 3/2; y].

(A.3)

The two additional relations are needed:

⟨n′l′j′| jL(y)(
d

dy
− l

y
) |nlj⟩ =

2(L− 1)

(2L+ 1)!!
y(L−1)/2e−y

√
(n′ − 1)!(n− 1)!

√
Γ(n′ + l′ + 1/2)Γ(n+ l + 1/2)

×
n−1∑

m=0

n′−1∑

m′=0

(−1)m+m′

m!m′!(n−m− 1)!(n′ −m′ − 1)!

Γ[(l + l′ + L+ 2m+ 2m′ + 2)/2]

Γ(l +m+ 3/2)Γ(l′ +m′ + 3/2)

×
{
− 1

2
(l + l′ + L+ 2m+ 2m′ + 2) 1F1[(L− l′ − l − 2m′ − 2m− 1)/2;L+ 3/2; y]

+2m 1F1[(L− l′ − l − 2m′ − 2m+ 1)/2;L+ 3/2; y]
}
.

(A.4)

And finally:

⟨n′l′j′| jL(y)(
d

dy
+
l

y
) |nlj⟩ =

2(L− 1)

(2L+ 1)!!
y(L−1)/2e−y

√
(n′ − 1)!(n− 1)!

√
Γ(n′ + l′ + 1/2)Γ(n+ l + 1/2)

×
n−1∑

m=0

n′−1∑

m′=0

(−1)m+m′

m!m′!(n−m− 1)!(n′ −m′ − 1)!

Γ[(l + l′ + L+ 2m+ 2m′ + 2)/2]

Γ(l +m+ 3/2)Γ(l′ +m′ + 3/2)

×
{
− 1

2
(l + l′ + L+ 2m+ 2m′ + 2) 1F1[(L− l′ − l − 2m′ − 2m− 1)/2;L+ 3/2; y]

+(2l + 2m+ 1) 1F1[(L− l′ − l − 2m′ − 2m+ 1)/2;L+ 3/2; y]
}
.

(A.5)
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All remaining electroweak matrix elements can be computed in terms of these Bessel ele-

ments, combined with vector coupling coefficients, etc., as set forth in the aforementioned

reference.

A.2 Vector coupling coefficients

A.2.1 Basic Computation

I implemented a standard set of functions and subroutines for computing the vector-coupling

3-j, 6-j, and 9-j symbols using the Racah algebraic expressions found in Edmonds [74].

For an analysis of relative error compared to more modern methods, see Johansson and C.

Forssen [159]. A more accurate but slower method involves prime factorization of integers.

In old Fortran, see work by Wei (1999) [293]

For the 3-j symbol, we use the relation to the Clebsh-Gordon vector-coupling coefficients:



j1 j2 J

m1 m1 M


 = (−1)j1−j2−M(2J + 1)−1/2(j1j2m1m2|j1j2; J,−M). (A.6)

The vector coupling coefficients are computed as:

(j1j2m1m2|j1j2; J,M) = δ(m1 +m1,m)(2J + 1)1/2∆(j1j2J) (A.7)

× [(j1 +m1)(j1 −m1)(j2 +m2)(j2 −m2)(J +M)(J −M)]1/2
∑

z

(−1)z 1

f(z)
,

(A.8)
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where

f(z) = z!(j1 + j2 − J − z)!(j1 −m2 − z)! (A.9)

× (j2 +m2 − z)!(J − j2 +m1 + z)!(J −m1 −m2 + z)!, (A.10)

and

∆(abc) =

[
(a+ b− c)!(a− b+ c)!(−a+ b+ c)!

(a+ b+ c+ 1)!

]1/2
. (A.11)

The sum over z is over all integers such that the factorials are well-defined (non-negative-

integer arguments).

Similarly, for the 6-j symbols:




j1 j2 j3

m1 m1 m3





= ∆(j1j2j3)∆(j1m2m3)∆(m1j2m3)∆(m1m2j3)
∑

z

(−1)z (z + 1)!

g(z)
,

(A.12)

with

g(z) = (α− z)!(β − z)!(γ − z)!(z − δ)!(z − ϵ)!(z − ζ)!(z − η)! (A.13)

α = j1 + j1 +m1 +m2 β = j2 + j3 +m2 +m3 (A.14)

γ = j3 + j1 +m3 +m1 (A.15)

δ = j1 + j2 + j3 ϵ = j1 +m2 +m3 (A.16)

ζ = m1 + j2 +m3 η = m1 +m2 + j3. (A.17)
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For the 9-j symbol, we use the relation to the 6-j symbol:





j1 j2 j3

j4 j5 j6

j7 j8 j9





=
∑

k

(−1)2k(2k + 1)




j1 j4 j7

j8 j9 k








j2 j5 j8

j4 k j6








j3 j6 j9

k j1 j2




. (A.18)

The 6-j symbols used to calculate the 9-j symbol are first taken from any tabulated values.

Otherwise, they are computed as previously described.

A.3 Array spooling

A.3.1 Spooling

A sewing machine bobbin is a cylindrical object onto which thread is spooled before the

machine is operated.

In computing, there are many cases where your data is multi-dimensional. But multi-

dimensional arrays are unwieldy, especially in distributed memory systems. One dimensional

arrays are best.

If you choose to spool your data into a one-dimensional array, you ought to know where your

data ends up, and ideally, be able to access it efficiently. These notes help me do that.

Note that the term spooling, which I might have been the first to apply in the context of

arrays, is array flattening with the additional feature that the mapping of indices is chosen

to optimize data locality. Of course, high performance computing eventually reduces to

understanding the layout of data in memory, so this is not a novel concept.

To spool an n-dimensional array into a 1-d array, we need to map an arbitrary number of

401



indices into a single index y:

spool(y)← array[i, j, k, l,m, n, o, p, ...], (A.19)

To create a one-to-one correspondence, we have to assign an order to the n indices:

xn > xn−1 > ... > x1. (A.20)

This ordering, or hierarchy, is arbitrary; it doesn’t have anything to do with the meaning of

the indices or their ranges, but it does have consequences, discussed later.

Let’s further suppose that each index x runs from xmin to xmax. With these constraints, we

can use the following mapping:

y = xn +
∑

i<n

(xi − xmin
i )

∏

j>i

(xmax
j − xmin

j + 1). (A.21)

The inequalities under the sum and product symbols are with respect to the ordering. For

example, i < n means "those indices xi with lesser order than xn".

With this mapping, incrementing xn will change y by the least amount. In fact, it will be

incremented by one. Going up one index in the ordering we have defined will increase the

amount y is incremented.

Our choice of ordering should therefore be informed by the access pattern we expect for this

array. Indices which will be incremented more frequently (e.g. deeper inside a nested-loop

structure) should appear higher in the ordering.
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2-d example

Let’s take a two dimensional array array[x2, x1] where x1 = 1, ...,m, and x2 = 0, ..., n − 1.

We have to choose an ordering, so let’s take x2 > x1.

Applying the formula, we have

y = x2 + (x1 − xmin
1 )× (xmax

2 − xmin
2 + 1) (A.22)

Substituting our particulars we have:

y = x2 + (x1 − 1)(n− 1− 0 + 1) (A.23)

= x2 + (x1 − 1)n. (A.24)

If instead we take x1 > x2 then,

y = x1 + (x2 − xmin
2 )× (xmax

1 − xmin
1 + 1), (A.25)

which is:

y = x1 + (x2 − 0)(m− 1 + 1) (A.26)

= x1 + x2m. (A.27)
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3-d example

Suppose a three dimensional array array[x1, x2, x3] where x1 = 1, ..., r, x2 = 0, ..., s, and

x3 = 1, ..., 2t. We take the ordering x2 > x3 > x1.

y = x2 + (x3 − 1)(s− 0 + 1) + (x1 − 1)(2t− 1 + 1)(s− 0 + 1) (A.28)

= x2 + (x3 − 1)(s+ 1) + (x1 − 1)2t(s+ 1). (A.29)

Again, changing the ordering will change the expression. This ordering would be most

efficient for a nested loop such as:

do x1 = 1, r:

do x3 = 1, 2t:

do x2 = 0, s:

y = x2 + (x3-1)(s+1) + (x1-1)*2*t*(s+1)

access spool[y]

This requires 10(s+ 1)(2t)r integer operations to compute.

Sectors

The 3-d example in the previous section can be improved by pre-computing parts of the

index further up in the loop hierarchy.

y = xn + sector(xn−1, ..., x1), (A.30)
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where

sector(xn−1, ..., x1) ≡
∑

i<n

(xi − xmin
i )sectorsize(i). (A.31)

The sectorsize quantities do not depend on the loop variable xi, and can therefore be pre-

computed beforehand:

sectorsize(i) ≡
∏

j>i

(xmax
j − xmin

j + 1). (A.32)

Or, recursively:

sectorsize(i) = (xmax
i − xmin

i + 1)sectorsize(i− 1), (A.33)

with sectorsize(1) = 1.

Improved 3-d example

Taking the same 3-d example as before, we can improve the performance by computing

sectors in shallower loops and by pre-computing sector sizes. Recall that:

y = x2 + (x3 − 1)(s+ 1) + (x1 − 1)2t(s+ 1). (A.34)

In this case:

secsize1 = 1

secsize2 = (s+1) # * secsize1

secsize3 = (2*t) * secsize2
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do x1 = 1, r:

sector1 = (x1 - 1) * secsize3

do x3 = 1, 2t:

sector31 = (x3 - 1) * secsize2 + sector1

do x2 = 0, s:

y = x2 + sector31

access spool[y]

This requires (2t)(s + 1)r + 3(2t)r + 2r + 3 operations to compute. Assuming 2t, s, and r

are all similarly large, this is a speedup of approximately 20str
2str

= 10.

Upper-triangular

Suppose we have some symmetry which allows us to only store the upper triangular part of

a two-dimensional array. I.e. i <= j for all rows i and columns j. Then the access pattern

of the array might look like the following:

column j

r 1 2 4 7 11

o 3 5 8 12

w 6 9 13

10 14

i 15

and so on. In this case, the spooling is different. Importantly, we no longer need to know

the size of the array, because the number of labeled rows in each column is always equal to

the column number. Further, we always know that the largest index in the previous column
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j′ = j − 1 is the sum of all integers up to j′, which is j′(j′ + 1)/2. Thus:

y = i+ j(j − 1)/2. (A.35)

This can be combined with higher dimensional square blocks.

A.3.2 Un-spooling

Suppose we have a single do-loop which addresses a two-dimensional array. How do we invert

the map?

It depends on the access pattern. We could have a row-major access pattern: “ ‘ 1 4 7 2 5 8

3 6 9 “ ‘ In which case the mapping is

x1 = (y − 1)/sx1 + 1 (A.36)

x2 = mod (y − 1, sx1) + 1 (A.37)

Upper triangular

Suppose the desired access pattern is upper triangular:

1 2 4 .

3 5 .

6 .

.
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Then the mapping is:

j = ceiling((
√

8y + 1− 1)/2) (A.38)

i = y − j(j − 1)/2 (A.39)

Here, i is fast and j is slow. A nice aspect of this layout is that the mapping does not depend

on the size of the array. However, it does rely on real-type arithmetic (but there’s a way

around that).

The compute cost of the j index is at least 5 FLOPS plus the cost of the ceiling function.

The cost of the i index is 4 FLOPS. The former is reduced to 4 FLOPS with:

j = ceiling(
√

2y + 0.25− 0.5) (A.40)

i = y − j(j − 1)/2 (A.41)

To see why this seemingly arbitrary map works, notice from the label pattern above that we

are trying to map the first N integers onto the first n columns, where the j-th column has

j consecutive labels. The maximum label which n rows can support is:

n∑

j=1

j =
n(n+ 1)

2
. (A.42)

The index y maps to the column with at least as many labels:

y ≤ j(j + 1)

2
. (A.43)

The positive solution for j is:

j ≤
√
8y + 1− 1

2
. (A.44)
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Finally, by demanding that j be an integer, we find the first part of the mapping:

j = ceiling
(√

8y + 1− 1

2

)
. (A.45)

Since the label y increases by one when increasing the row index i, all we need is to subtract

the maximum label from the previous column from y to get i. But this is just the sum of all

integers up to the previous column number j′ = j − 1. A simple substitution gives us the

final result for the row i:

i = y − j(j − 1)

2
. (A.46)

A word of caution: Since this map relies on real numbers, it is susceptible to rounding errors.

In particular, if 1/j is small compared to the precision of the real data type, then the ceiling

function may go the wrong way.
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Appendix B

Shell Model Supplemental

B.1 Nucleon-nucleon interaction

The nuclear strong force is a screened version of the full strong force between quarks within

a nucleon. The residual force between nucleons is what matters for nuclear physics. Fetter

and Walecka’s book [87] has a succinct summary of the main features this force has, from

empirical investigation: (1) attractive and short range (a few fermi fm= 10−15m), (2) hard

core (repulsive at short distances 1/2 fm), (3) spin dependent, (4) non-central (has a tensor

component), (5) spin-orbit force, (6) charge-independent. The potential with these properties

is called the nucleon-nucleon (NN) potential. As a Hamiltonian invariant under translation,

rotation, and reflection, whatever operators are combined must result in a scalar valued

operator. The seven possible base operators are [303, 201]:

1 purely central (B.1)

σi · σj spin dependent (B.2)

Sij = 3(σi · r)(σj · r)− σi · σj tensor force (non-central) (B.3)
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l · S spin-orbit (B.4)

l2 quadratic in momentum (B.5)

l2(σi · σj) (B.6)

(l · S)2, (B.7)

where σ are the Pauli spin matrices, l = r × p is the orbital angular momentum of the two

particles, r = ri − rj is their relative position, and S = (h̄/2)σ.

If we include isospin dependence, the most general NN potential with constant and linear

terms in momentum takes the form:

VNN(r) = [V0(r) + Vs(r)σ1 · σ2 + Vls(r)l · S + VT (r)S12](1 + τ1 · τ2). (B.8)

To fit experimental data, its common to also include terms quadratic in momentum [303].

B.2 Simple models

B.2.1 Extreme single-particle model

The so-called extreme single-particle model is the simplest possible shell model wherein we

consider filling the lowest energy single-particle states first and taking no other combinations.

The approximate wave function is a single Slater determinant (product wave function) con-

sisting of the occupation of the lowest energy single-particle states only. Assuming some set

of single-particle energies ϵi, the Hamiltonian would be:

HESP =
∑

i

ϵiâ
†
i âi (B.9)
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which essentially just counts up the number of particles in each orbit with weights equal to

the single-particle energies.

B.2.2 Mean field models

General mean field models extend the idea of the extreme single-particle model from a non-

interacting set of particles with a constant potential, to a non-interacting set of particles

with a central potential. The usual development is to start with a 1+2 body Hamiltonian,

and to shift by a constant central potential until the Hamiltonian looks like a strong mean

field plus a weak residual two-body interaction:

H = HMF +HRES, (B.10)

where we then solve just the mean field part:

HMF =
∑

i

h(r), (B.11)

which is a model in which each particle i experiences only a mean-field, central potential

h(r) from the rest of the particles.

The most well-known mean field method is the Hartree-Fock method wherein the approxi-

mate wave functions are pure Slater determinants. The single-particle wave functions com-

posing the product are varied until a minimum in the energy is found.

B.2.3 Mean field Hamiltonian

Here I follow the material of Suhonen’s textbook [272], but the material can be found in any

introductory text on the nuclear many-body physics.
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The single particle Hamiltonian is a mean-field Hamiltonian, that is, it approximates the

central potential felt by any given nucleon due to the effects of all other nucleons in its

vicinity. In terms of a nucleon mass mNc
2 ≈ 940 MeV, it has the form:

h(r) = − h̄2

2mN

∇2 + v(r) + vC(r) + vLS(r)L · S (B.12)

where v(r) is some suitable central potential for the nuclear force. Typically either a Har-

monic oscillator (HO) or Woods-Saxon potential (WS) it considered. In the rest of this

section a WS will be used for illustration. The WS potential performs better than a HO

potential at reproducing single-particle energies, but usually HO basis functions are assumed

when computing analytic single-particle operator matrix elements.

The mean field potential has three major terms. The first is the spin-independent WS

potential already discussed. To improve this model, one also includes a Coulomb repulsion

term for the protons,

vC(r) =
Ze2

4πϵ0





3−(r/R)2

2R
, r ≤ R

1
r
, r > R,

(B.13)

which is just the static Coulomb force from a uniformly charged sphere of charge.

The Woods-Saxon potential has the form:

vWS(r) =
−V0

1 + e(r−R)/a
, (B.14)

with parameters describing the potential well depth, surface diffuseness, and nuclear radius:

V0 =

(
51± 33

N − Z
A

)
MeV, (B.15)

a = 0.67fm, (B.16)
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R = r0A
1/3fm = 1.27A1/3. (B.17)

A drawing of this function is shown in comparison to a similar Harmonic oscillator potential

in Figure B.1.

Figure B.1: Suhonen’s [272] drawing of a Woods-Saxon and Harmonic oscillator potential
with similar integrated energies. Typical values for the parameters are (40Ca) a = 0.67fm,
R = 4.3fm, V0 = 51 MeV.

To obtain the experimentally observed magic numbers, one has to include a spin-orbit inter-

action. This is an attractive, spin-dependent interaction of the form:

vLS(r)L⃗ · S⃗, (B.18)

where L⃗ is the orbital angular momentum of the nucleon, and S⃗ is its spin vector. This

force will break the degeneracy of levels of a given n and l into states with total angular

momentum j. The total angular momentum of a particle is J⃗ = L⃗+S⃗. This central potential

peaks at the nuclear surface,

vLS(r) = −v(0)LS

(r0
h̄

)2 1

r

d

dr
vWS(r), (B.19)
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with v(0)Ls = 0.44. The spin-orbit operator L⃗ · S⃗ satisfies

L⃗ · S⃗ |l1
2
jm⟩ = 1

2
[j(j + 1)− l(l + 1)− 3

4
]h̄2 |l1

2
jm⟩ , (B.20)

which shows us the j-dependence: states with higher j are more-strongly bound.

The solution to the single-particle Hamiltonian would be the single-particle wave functions

ψi with energies ϵi. In this context of the configuration interaction model, these ϵi are the

single-particle energies.
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B.3 Phenomenological interactions

Here I include some practical information about a number of phenomenological interactions

used in this work.

Model space 0d3/2, 0d5/2, 1s1/2
.int usdb
.spo sd
Z0 = N0 8
Core 16O
Max occ. 12
Largest nucleus 40Ca
xspe, A, B, X 1.0 18.0 A 0.3
Single particle orbits (3):

n l π j E (MeV) max occ.
0 2 +1 3/2 2.1117 4
0 2 +1 5/2 -3.9257 6
1 0 +1 1/2 -3.2079 2

Authors Brown, Richter (2006)
Citation [42] https://doi.org/10.1103/PhysRevC.74.034315

Model space 0f7/2, 1p3/2, 0f5/2, 1p1/2
.int gx1a
.spo fp
Z0 = N0 20
Core 40Ca
Max occ. 20
Largest nucleus 80Zr
xspe, A, B, X 1.0 42.0 A 0.3
Single particle orbits (4):

n l π j E (MeV) max occ.
0 3 -1 7/2 -8.6240 8
1 1 -1 3/2 -5.6793 4
0 3 -1 5/2 -1.3829 6
1 1 -1 1/2 -4.1370 2

Authors Honma, Otsuka, Brown, Mizusaki (2004)
Citation [145] https://doi.org/10.1103/PhysRevC.69.034335
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Model space 0f5/2, 1p3/2, 1p1/2, 0g9/2
.int jun45
.spo jj44
Z0 = N0 28
Core 56Ni
Max occ. 22
Largest nucleus 100Sn
xspe, A, B, X 1.0 58.0 A 0.3
Single particle orbits (4):

n l π j E (MeV) max occ.
0 3 -1 5/2 -8.7087 6
1 1 -1 3/2 -9.8280 4
1 1 -1 1/2 -7.8388 2
0 4 +1 9/5 -6.2617 10

Author(s) Honma, Otsuka, Mizusaki, Hjorth-Jensen (2009)
Citation [147] https://doi.org/10.1103/PhysRevC.80.064323

Model space 0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2
.int GCN5082
.spo GCN5082
Z0 = N0 50
Core 100Sn
Max occ. 32
Largest nucleus 164Pb
xspe, A, B, X 1.0 1.0 1.0 1.0
Single particle orbits (5):

n l π j x E (MeV) max occ.
0 4 +1 7/2 4 -10.416450 8
1 2 +1 5/2 4 -10.602300 6
1 2 +1 3/2 4 -8.915810 4
2 0 +1 1/2 4 -9.057190 2
0 5 -1 11/2 5 -8.205680 12

Author(s) Brown, Stone, Stone, Towner, Hjorth-Jensen
Citation [43] (Unpublished.)
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Model space 0f5/2, 1p3/2, 1p1/2, 0g9/2, 1d5/2, 1d3/2, 2s1/2
.int glepn
.spo glepn
Z0 = N0 28
Core 56Ni
Max occ. 34
Largest nucleus 124Gd
xspe, A, B, X 1.0 1.0 1.0 1.0
Single particle orbits (5):

n l π j x E (MeV) max occ.
0 4 +1 7/2 4 -10.416450 8
1 2 +1 5/2 4 -10.602300 6
1 2 +1 3/2 4 -8.915810 4
2 0 +1 1/2 4 -9.057190 2
0 5 -1 11/2 5 -8.205680 12

Author(s) Mach, Warburton, Gill, Casten, Becker, Brown, Winger
Citation [191] https://doi.org/10.1103/PhysRevC.41.226

B.4 BIGSTICK OBTD format specification

This document specifies the format of the one-body density matrix files produced by the

many-body code BIGSTICK.
1 State E Ex J T
2 1 -330.17116 0.00000 1.500 11.500
3 Single particle state quantum numbers
4 ORBIT N L 2 x J
5 1 0 2 3
6 2 0 2 5
7 3 1 0 1
8 Initial state # 1 E = -330.17117 2xJ , 2xT = 3 23
9 Final state # 1 E = -330.17117 2xJ, 2xT = 3 23

10 Jt = 0, proton neutron
11 1 1 1.55844 5.40558
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B.4.1 Definition

One-body density matrices between many-body eigenstates |Ψ⟩ are defined as

ρfiK(ab) =
1√

2K + 1
⟨Ψf ||[ĉ†a ⊗ c̃b]K ||Ψi⟩, (B.21)

where ĉ†a is the fermion-creation operator (with good angular momentum quantum numbers),

c̃b is the time-reversed fermion-destruction operator. The creation/destruction operators

refer to single-particle states in a harmonic oscillator basis.

Each state |Ψi⟩ and has an energy eigenvalue and two quantum numbers: total angular

momentum Ji and total isospin Ti. The angular momentum K of the density matrix operator

ρK(ab) must satisfy conservation of angular momentum according to the triangle inequality

rule for both the many-body states and the single-particle states:

|Jf − Ji| ≤ K ≤ |Jf + Ji|, (B.22)

|ja − jb| ≤ K ≤ |ja + jb|. (B.23)

B.4.2 Symmetry

Two space saving measures may be taken in the storage of these matrix elements which must

be taken into account. The first is trivial: matrix elements equal to zero are not stored in

the file. The second is more subtle and can be confused with the first measure. One-body
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density matrices obey the following symmetry relation:

ρi,fK,T (ba) = (−1)ja−jb+Ji−Jf+Ti−Tfρf,iK,T (ab), (B.24)

only matrix elements with a < b (or a > b) need to be stored in order fully specify the

nonzero matrix elements.

B.4.3 Filename

The density matrix file ends in ".dres".

B.4.4 Format

The file is written with standard plain text.

B.4.5 Three blocks

The density matrix file has three consecutive blocks: (1) many-body state information, (2)

single-particle state quantum numbers, (3) density matrix element blocks.

B.4.6 First block: States

The f and i indices on the ρf,iJ (ab) object refer to the many-body states involved.

The states section of the file is identified by the following line:
1 State E Ex J T

This line begins with exactly two blank spaces. Each state is specified by 5 numbers:
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1. State number (i.e, 1, 2, 3, 4. 1 is the ground state.)

2. State eigenvalue/energy in MeV

3. State excitation energy (eigenvalue/energy minus the ground state (1st state) eigen-

value/energy)

4. State total angular momentum quantum number

5. State total isospin quantum number

Each number should be in its own column separated by one or more spaces.

Example with five states:
1 State E Ex J T
2 1 -330.17116 0.00000 1.500 11.500
3 2 -330.13419 0.03697 0.500 11.500
4 3 -329.77492 0.39624 2.500 11.500
5 4 -329.70014 0.47102 1.500 11.500
6 5 -329.42771 0.74346 3.500 11.500

B.4.7 Second block: Single particle state quantum numbers

The single particle state quantum numbers section begins with the following two lines:
1 Single particle state quantum numbers
2 ORBIT N L 2 x J

Each single particle state (SPS) is specified by 4 numbers:

1. SPS number (i.e. 1, 2, 3, ...)

2. SPS nodal quantum number

3. SPS orbital angular momentum

4. SPS twice the total angular momentum
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Each number should be in its own column separated by one or more spaces.

Example with five SPS:
1 Single particle state quantum numbers
2 ORBIT N L 2 x J
3 1 0 4 7
4 2 1 2 5
5 3 1 2 3
6 4 2 0 1
7 5 0 5 11

B.4.8 Third block: Density matrix element blocks

Density matrix blocks have three nested sub-blocks:

1. States involved

2. Transition angular momentum value

3. SPS labels and matrix elements

States involved

The states involved in a block are specified by two lines. The first specifies the initial (ket)

state and the second specifies the final (bra) state.

By example:
1 Initial state # 1 E = -330.17117 2xJ , 2xT = 3 23
2 Final state # 1 E = -330.17117 2xJ, 2xT = 3 23

Both lines are preceded by a space. "Initial" and "Final" are capitalized.
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Transition angular momentum (operator momentum)

The operator connecting a given initial and final states is constrained by conservation of

angular momentum, but can otherwise take any integer value. The line specifying this sub-

block is as follows:
1 Jt = 1, proton neutron

The line begins with one space. The two strings at the end of the line indicate the coupling

of the second two columns of density matrix elements that follow. For isospin format density

matrix files, this line would be:
1 Jt = 1, Tt = 0 1

Single particle state labels and matrix elements

The inner-most block of data store the actual one-body density matrix elements for each

allowed combination of single-particle states. There are four numbers per line in the inner-

most block:

1. Creation SPS label (a)

2. Destruction SPS label (b)

3. Proton (isospin-0) coupling one-body density matrix element ρf,iK,(p)(a, b) (if isospin

format then ρf,iK,T=0(a, b))

4. Neutron (isospin-1) coupling one-body density matrix element ρf,iK,(n)(a, b) (if isospin

format then ρf,iK,T=1(a, b))

For example:
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1 1 1 1.55844 5.40558
2 2 2 0.82990 4.64991
3 3 3 0.33371 2.66182
4 4 4 0.15089 2.19140
5 5 5 0.19585 5.45541

Matrix elements which are identically zero are not stored in the file to save space.

B.4.9 Example density matrix file with one state

From the following example file one should be able to find that (examples):

ρf=1,i=1
K=0,(p)(a = 3, b = 3) = 0.33371 (B.25)

ρf=1,i=1
K=2,(n)(a = 2, b = 1) = −0.00432 (B.26)

1 State E Ex J T
2 1 -330.17116 0.00000 1.500 11.500
3 Single particle state quantum numbers
4 ORBIT N L 2 x J
5 1 0 4 7
6 2 1 2 5
7 3 1 2 3
8 4 2 0 1
9 5 0 5 11

10 Initial state # 1 E = -330.17117 2xJ , 2xT = 3 23
11 Final state # 1 E = -330.17117 2xJ, 2xT = 3 23
12 Jt = 0, proton neutron
13 1 1 1.55844 5.40558
14 2 2 0.82990 4.64991
15 3 3 0.33371 2.66182
16 4 4 0.15089 2.19140
17 5 5 0.19585 5.45541
18 Jt = 1, proton neutron
19 1 1 0.01905 0.02637
20 1 2 -0.00378 0.01404
21 2 1 0.00378 -0.01404
22 2 2 0.01022 0.00476
23 2 3 0.00387 0.00942
24 3 2 -0.00387 -0.00942
25 3 3 -0.00075 0.82318
26 3 4 0.00046 0.01952
27 4 3 -0.00046 -0.01952
28 4 4 -0.00194 -0.01399
29 5 5 0.00030 0.00399
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