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The effects of target tone frequency, presence of a masking stimulus. and subject sex on the 

auditory ERP were studied with an ‘oddball’ paradigm. P300 latency became shorter (about 15 

msec) as the difference between the standard (1000 Hz) and target tone frequency increased (1500, 

2000, 4000 Hz) but became longer (about 10 msec) with the presence of a white noise masking 

stimulus. Similar results were obtained for both the P3a and P3b subcomponents of the P300 

potential. No significant differences between the adult male and female subjects were observed. 

The role of stimulus parameters in applied testing situations is discussed. 

1. Introduction 

The P300 component of the event-related brain potential (ERP) is a large 
(5-15 luv), positive-going waveform that occurs with a modal latency of about 
300 msec in normal young adults. Although the neurophysiology underlying 
the P300 is still being explored (Halgren, Squires, Wilson, Rohrbaugh, Bab and 
Crandall, 1980; Okada, Kaufman and Williamson, 1983), the cognitive events 
associated with its generation have received considerable attention (Donchin, 
1981; Donchin, Ritter and McCallum, 1978; Pritchard, 1981). Because the 
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P300 is thought to reflect stimulus evaluation and classification processes, it 
has found application in the assessment of cognitive function. In particular, its 
peak latency has been used to evaluate the effects of aging on cognition 
(Brown, Marsh and LaRue, 1983; Ford, Duncan~Johnson, Pfefferbaum and 
Kopell, I982; Goodin, Squires, Henderson and Starr, 1978; Howard and 
Polich, 1985; Pfefferbaum, Ford, Roth and Kopell, 1980; Pfefferbaum, Ford, 
Wenegrat, Roth and Kopell, 1984; Picton, Stuss, Champagne and Nelson, 
1984; Polich, Howard and Starr. in press; Smith, Michalewski, Brent and 
Thompson, 1980; Squires, Goodin and Starr, 1979: Syndulko, Hansch, Cohen, 
Pearce, Goldberg, Montan, Toutellotte and Potvin, 1982) as well as neurologi- 
cal and psychiatric disorders affecting mental functions (Brown. Marsh and 
LaRue, 1982; Canter, Hallett and Growdon, 1982; Goodin. Squires and Starr, 
1978; Hansch, Syndulko, Cohen, Goldberg, Potvin and Tourtellotte, 1982; 
Litzelman, Thompson, Michalewski, Patterson and Bowman, 1980; Pfeffer- 
baum et al., 1984; Polich. Ehlers, Otis, Mandell and Bloom, in press: Squires, 
Chippendale, Wrege, Goodin and Starr, 1980; Squires, Galbraith and Aine, 
1979). Thus, P3OO latency as an index of cognitive function is becoming an 
important and widespread tool in the assessment of mental capability. 

A typical procedure employed in these investigations involves the presenta- 
tion of two different signals, one less frequently than the other. The subject 
keeps a mental count or presses a button to the infrequent event and thereby 
discriminates the target stimulus from the background standard stimulus 
events. This so-called ‘oddball’ paradigm reliably produces the P300 compo- 
nent and has often been used to study factors which affect its amplitude (e.g. 
Duncan-Johnson and Donchin, 1977; Squires, Wickens, Squires and Donchin, 
1976). The latency of the P300 has also been examined, typically by means of 
complex task situations involving visual stimuli (e.g. Kutas, McCarthy and 
Donchin, 1977; Duncan-Johnson and Kopell, 1981; McCarthy and Donchin, 
1981; Polich, McCarthy, Wang and Donchin, 19X3), with only a few studies 
using a simple auditory stimulus paradigm and reporting some normative 
latency data (e.g. Ford, Hink, Hopkins, Roth, Pfefferbaum and Kopell, 7979; 
Polich, Howard and Starr, 1983; Squires, Donchin, Squires and Grossberg, 
1977). However, variations in the application of the oddball counting task may 
have produced some of the latency variability obtained across these studies, 
because differences in stimulus parameters could readily contribute to P300 
latency by affecting the ease of stimulus categorization (Goodin, Squires and 
Starr, 1983; Fitzgerald and Picton, 1983; Magliero, Bashore, Coles and 
Donchin, 1984). To assess this possibility, the present studies employed an 
auditory oddball paradigm in which the frequency separation between the 
target and standard tone was varied in order to manipulate stimulus dis- 
criminability. Each stimulus tone frequency condition was also presented with 
and without a white noise background; this technique is often used to mask 
environmental sounds during ERP recording and may also affect task diffi- 
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culty (cf. McCarthy and Donchin, 1976; Squires, Donchin, Herning and 
McCarthy, 1977). In addition, subject sex, which affects the latencies of 
various sensory evoked pontentials (e.g. Polich and Starr, 1983; Shucard, 
Shucard and Cummings, 1981; Stockard, Stockard, and Sharbrough, 1978) 
was controlled. 

2. Methods 

2. I. Subjects 

A total of 24 volunteer subjects (12 of each sex) who ranged in age from 
18-35 years were obtained from within the university community. All reported 
normal hearing and participated in one two-hour session. 

2.2. Recording conditions 

ERPs were elicited by presenting subjects with a series of binaural tones at 
60 dB nHL with a 9.9 msec rise/fall and 50 msec plateau time. The tones were 
presented in a random sequence with the standard tone occurring 80% of the 
time and the target tone 20% of the time at a rate of l.l/sec. Subjects were 
instructed to keep a silent count of the number of target tones (as defined 
below). Stimuli were presented until a block of 200 artifact-free trials was 
obtained for each condition. Electroencephalographic activity (EEG) was 
recorded between the vertex (Cz electrode site in the lo-20 system) referenced 
to linked mastoids with a forehead ground. The filter bandpass was l-30 Hz (3 
dB down, 12 dB/octave slope). Although not optimal, the relative latency of 
the P300 should be unaffected by this bandpass range even though component 
amplitude would be reduced compared to a longer time-constant (see Duncan- 
Johnson and Donchin, 1979; Polich et al., 1983). The EEG was digitized at 3 
msec/point for 768 msec and averaged on line by a Nicolet CA-1000 that also 
controlled the stimulus presentation and automatic artifact rejection of the 
averaged channel. Trials on which the EEG exceeded +45 PV were automati- 
cally rejected and not included in the averaged waveform. Hence, only trials 
uncontaminated by eye blinks, eye movements, and muscle contractions that 
usually produce very large voltage fluctuations (typically greater than 100 pV> 
were recorded. Separate averages for the rare and frequent stimulus tones were 
plotted, with the latencies of the components defined at their peak or trough. 
Amplitudes were not measured. 

2.3. Design and procedure 

Subjects were placed in a sound-attenuating booth and instructed about the 
various stimulus conditions and the counting task. Each subject was then 
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presented with six different stimulus conditions. The frequent or standard tone 
was always 1000 Hz, whereas the rare or target tone was 1500, 2000, or 4000 
Hz. These frequencies were chosen to ascertain the effects of target and 
standard frequency separation on P300 latency over a reasonable but practical 
range. Each combination of tones was presented with a masking stimulus of 60 
dB nHL white noise (MASKED) or without a masking stimulus (CLEAR). 
The presentation order of the six conditions was block randomized across 
subjects. After each experimental condition, the subject’s count of the number 
of target tones was obtained, and s/he was given a brief rest period before the 
next condition. 

3. Results 

3.1. Count tusk data 

Because the computer accepted only trials on which the EEG was within 50 
PV of baseline, the number of trials each subject received varied for a given 
condition. An overall mean of 41.6 target tones was presented for each 
condition, but no statistical difference between the various conditions or 
subject groups was obtained (F < 1, for all main effects). Subjects were highly 
accurate in their target tone counts, missing the correct number on the average 
by 1.2 counts. No differences between any of the stimulus conditions or subject 
groups was obtained for the number of tones incorrectly counted or for the 
percentage of errors. It can be safely assumed, therefore, that subjects were 
sufficiently engaged by the task situation to produce accurate and consistent 
performance under all conditions. 

3.2. Waveform data 

Examples of the ERP data for all conditions are presented in fig. 1. These 
data are from four representative subjects and illustrate the potentials obtained 
for the six different conditions to both the rare (1500, 2000, and 4000 Hz) and 
frequent (1000 Hz) stimuli. The components are labelled in the middle two 
rows of the CLEAR stimulus condition and agree in morphology and latency 
range with previous reports. In most of the subjects, the P300 component from 
the target stimulus displayed two distinct subcomponents. These are labelled 
the P3a and P3b, with the former defined as the first positive-going potential 
occurring after the N2 between 220-280 msec, and the latter as the subsequent 
positivity occurring between 250-350 msec. Most often a bifurcated peak was 
observed for the same subject in the majority of recording conditions. If only a 
single positive peak was observed, it was labelled a P3b. While scalp distribu- 
tions of these subcomponents could not be obtained, use of latency window 
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Fig. 1. Waveforms obtained from four different subjects (overplotted) for the standard (1000 Hz) 

and target tones (1500, 2000, 4000 Hz) in an auditory oddball paradigm. The CLEAR column 
illustrates waveforms collected when stimuli were presented without an auditory mask, while the 

MASKED column illustrates waveforms collected when stimuli were presented with a 60 dB white 
noise mask. Note the latency shift apparent in the P3a and P3b portion of the waveforms as a 

function of target tone frequency. 

criteria and observation of the two subcomponents over task conditions within 
a subject facilitated component measurements and yielded similar results as 
those previously reported for the P3a and P3b varieties of the P300 potential 
(Ford, Roth and Kopell, 1976; Polich et al., 1983: Roth, 1973; Snyder and 
Hillyard, 1976, Squires, Squires and Hillyard, 1975). 
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Table 1 

Mean latency (msec), standard deviation (SD), and number of subjects (N) demonstrating a P3a 

and P3b subcomponent in each stimulus condition 

CLEAR 

MASKED 

Mean 

SD 
N 

Mean 

SD 

N 

1500 Hz 2000 Hz 4000 Hz 

P3a P3b P3a P3b P3a P3b 

262 330 254 320 247 312 

15.1 22.9 31.7 29.7 24.1 23.7 

22 24 21 24 22 24 

270 337 259 331 257 321 

13.6 25.8 30.1 29.1 21.4 21.2 

22 24 22 24 23 24 

The mean latencies and standard deviations of the P3a and P3b components 
from the target tone stimulus are presented in table 1 with the effects of task 
conditions illustrated in fig. 2. There was no statistical difference in the 
number of subjects yielding a P3 subcomponent across experimental condi- 
tions (x2 = 0.01, p > 0.9) implying that the occurrence of a P3a and P3b was 
unrelated to the frequency of the target tone or the presence of a masking 
stimulus. As indicated by figs. 1 and 2, the P300 component complex occurred 
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Fig. 2. Mean P3a and P3b latency as a function of target tone frequency for the CLEAR and 

MASKED stimulus presentation conditions. 
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at shorter latencies as the difference between the standard and target tone 
frequencies increased. Some slowing of the P300 components also appears to 
occur when the white noise masker was presented compared to the clear 
condition. 

The latencies of each subcomponent were subjected to a four-factor (Target 
Frequency x Masking Condition X Component Type X Subject Sex) analysis 
of variance. The mean latencies for the P3a component were used as data 
points for the few subjects not yielding such measures in a specific condition. 
This analysis confirmed the trends indicated above: As the target tone frequency 
increased, P300 latency decreased significantly (F(2,44) = 12.7, p < 0.0001) 
although the magnitude of effect was only about 15 msec. The presence of a 
white noise masking stimulus significantly delayed the latency of the P300 
component(s) by about 10 msec (F(1,22) = 5.4, p < 0.03). The latencies of the 
P3a and P3b were also different (F(1,22) = 474.1, p < 0.0001). None of these 
variables were affected by subject gender (p > 0.4, in all cases), and no 
significant interactions were obtained. 

4. Discussion 

Changing the target tone frequency relative to the standard tone and use of 
a white noise masking stimulus produced consistent, albeit small effects on P3a 
and P3b latency (lo-15 msec). No differences in latency were observed as a 
function of gender. In applied testing, the choice of auditory stimulus parame- 
ters should not greatly affect overall P300 latency. However, if the perceptual 
difference between the target and standard tones is very small so that dis- 
crimination between the two tones is relatively difficult, the latency of the P300 
can increase by up to 50 msec (Ford et al., 1979; Goodin et al., 1983; Squires, 
et al., 1980). Hence, variations in stimulus parameters is important insofar as 
they help determine task discrimination difficulty and therefore affect the 
resulting P300 peak latency for a given population. The present results 
illustrate the range of these effects for values of typically employed auditory 
stimuli and indicate that subject sex does not critically affect latency of the 
P300 ERP component. 
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