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I. 

Bell's Theorem and the Different 
Concepts of Locality. 

P. H. EBERHARD 

LBL-7537 

Lawrence Berkeley Laboratory, Berkeley, California 94720 

Summary.-- Four definitions of the principle of local causes, each 

of which, when applied to a theory, leads to a different mathematical 

property of the theoretical predictions, are considered and physical 

justifications given. The predictions of quantum theory are shown to 

contradict three of those four concepts of locality. Conclusions are 

drawn about the physical process and about the interpretations of 

quantum theory or any other theory that would provide the same 

predictions. Several interpretations are still possible. 

work supported by the U. S. Department of Energy. 
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I.--Mathematical properties related to locality. 

Since Bell's theorem was first demonstrated for deterministic 

hidden variables theories,Cl) generalizations of the theorem to other 

theories ~ave been published. (2-?) Recently, it was claimed that these 

generalizations were not valid and that the theorem applied only to 

hidden variables theories. (B) It is the contention of this paper that 

much of the controversy is about the meaning of the words "principle 

of local causes." Quantum theory, or any other theory that would give 

the same probabilistic predictions, has certain mathematical properties 

that can be demonstrated. Whether these properties are in contradic-

tion with one's concept of the principle of local causes depends on 

what interpretation is given to the theory. Essentially, the conflict 

occurs when one tries to describe the quantum system itself or when 

one considers the deterministic or random process by which the measure-

ment results are produced. It can be ignored whenever one is concerned 

only about the possible action that one observer can have on another. 

The principle of local causes, hereafter called locality, is 

derived from the principle of causality, which requires that, in time, 

the cause must precede the effect, and from the principle of relativit~ 

which implies that all reference frames are equivalent. Let us consider 

two points in space, PA and PB. 

time tA[tB], an experimenter sets the knob of an apparatus to a 

position A[B], that at time ta[tS] the measurement MA[MB] is 

made, and that the measurement provides the result a[S]. Let 

p(a,A,b,B) be the probability that the results of MA and MB turn 



-2-

out to be a = a and S = b when the knob settings are A and B. In 

the rest frame in which our study is made, the time sequence is: 

setting of A, measurement MA, setting of B, measurement MB. 

Therefore, 

(1) t :: : :: : ::m: :: propagation of light from P A to P8 . 

Causality requires that the setting of the knob at PB cannot 

affect MA, that is, that a is somehow "independent" of B. In 

addition, according to the principles of special relativity, there can 

be observers for whom the knob setting at PA occurs after the measure­

ment MB and causality should hold for every observer; therefore, the 

knob setting at PA can have no effect on MB so B is also 

"independent" of A. That is locality. However, the measurement 

result- S at PB may be correlated with the measurement result 

a at PA because past events may have affected both a and B at 

the same time. The result a[B] may also depend on A[B]. Because 

of the possible correlations between S and a, between a and A 

and between B and B, it is not trivial to sort out an expression 

for the independence of B from A and of a from B. 

The following mathematical properties could be attributed to the 

function p(a,A,b,B) to express different concepts of causal indepen-

dence, therefore of locality. Property 1 is convenient for expressing 

locality for theories in which there are no hidden variables or hidden 

quantities. Property 2 is suited for theories where some uncertainty 

about certain quantities explicitly contributes to the probabilistic 

character of the predictions. Property 3 is a generalization of 
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properties 1 and 2; it requires nothing but a gross estimation of 

p(a,A,b,B) in particular circumstances and is suited for theories 

that may not be well defined and may not correspond to a completely 

explicit form for the probabilities. Property 4 is relevant to the 

question of message transmission, between experimenters, at speeds 

greater than that of light. Their mathematical definitions are dis-

cussed in the following paragraphs; physical justifications of the 

properties are presented at length in sect. 2. 

1.1 Property 1. The probability distribution p(a,A,b,B) is 

the product of two functions: f(a,A) and g(b,B) of a and A and 

of b and B , respectively: 

.(2) p(a,A,b,B) = f(a,A) g(b,B) . 

When the probability distribution has property 1, a and- 8 are 

said to be "statistically independent." Property 1 insures the inde-

pendence of a from B and of 8 from A by forcing the correlation 

between a and 8 to be zero. 

1.2 Property 2. The probability distribution p(a,A,b,B) involves 

a statistical mixture of cases A with a statistical distribution 

p(A) and corresponding to conditional probabilities f(A,a,A) [g(A,b,B)], 

independent of B[A], that a = a[8 = b] when the knob settings are 

A ·and B : 

(3) p(a,A,b,B) = L p(A) f(A,a,A) g(A,b,B) . 
A 

Property 2 allows for some statistical correlation between a and 

8. It is more general then property 1 and includes property 1 if 
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p(A) = 1, for one particular case A, and if p(:\) = 0 for all 

others. Therefore, 

(4) property 1 implies property 2 . 

1.3 The families of independent results. These families are 

defined to describe a more general property than property 2. They are 

defined in connection with two values A1 and A2 for the knob setting 

A and two values B1 and B2 for the knob setting B. A "family of 

independent results" is defined as a set of values a1, b1, a2, and b2 

such that 

(5) 

Consider four experiments E
1 1

, E1 2, E2 1, and E2 2 performed , ' , , 
with AB Set at the values A

1
B

1
, A

1
B

2
, A2B

1
, and A2B2 , respectively. 

If a
1

,b
1
,a

2
, and b2 form a family of independent results, the pairs 

of values a
1
b

1
, a

1
b2, a2b1, and a2b2 are possible values of the re­

sults aS in the experiments El,l' E1, 2, E2, 1,and E2, 2, respectively, 

with nonzero probabilities. If the outcomes of these four experiments 

actually turned out this way, there would be the same result a[B] in 

the different experiments with different B[A) but with the same 

A[B]. 

1.4 Property 3. This property is defined relative to the four 

values, A
1

, A2, B1
, and B2 of the knob settings of A and B and 
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relative to a small number £. Consider all the possible outcomes of 

the four experiments El,l' E1, 2, E2, 1, and E2, 2 defined above. Eliminate 

a certain number of possible results amounting to a fraction £ in 

probability in each experiment. Property 3 means that there is a family 

of independent results in those possible outcomes that are left after the 

elimination, no matter how the elimination is made. In other words, one 

are possible results of the experiments E
1 1

, E
1 2 , E2 1 , and 

' ' , 
E

2 2
, performed with knob settings A

1
B
1

, A
1

B2, A2B
1

, and A2B2, even 
' 

if we disregard a fraction £ of the possible results considered to be 

"pathological" in each experiment. Elimination of a small fraction £ 

of pathological results will be necessary to the demonstration of sect. 

3 that the predictions of quantum theory do not have property 3 in 

general. At the limit of infinite statistics, £ can be considered to 

be zero; for full mathematical rigor, however, £ is just a small 

positive number. 

Let S(£,A,B) be the set of possible outcomes aS when the knob 

settings are A and B, and after a fraction £ of them in probability 

have been eliminated, using a given elimination process. Property 3 

for the function p(a,A,b,B) means that there are values a1 , b1, a2, 

and b2 such that 

al bl e S(£,A1,B
1

) 
' 

alb2 e S(£,A1,B2) 
' (6) 

a2bl e S (£,A2, B1) ' 

a2b2 e S(£,A2,B2) 

If two values, £1 and £2 , are considered for £ ' it will be 
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easier to find a family of independent results if only a few possibili-

ties are eliminated rather than if many are eliminated. Therefore, 

(7) 
( 

~roperty 3 for £ 1 

~f £1 > E2. 

implies property 3 for E2 , 

Moreover, suppose that property 2 holds. The function p(a,A,b,B) 

is of the form of eq. (3). It is possible to generate all the possible 

results of the four experiments El,l' E1 , 2, E2, 1, and E2, 2 by the 

following Monte Carlo procedure. (9) First, A is generated according 

to the distribution P (A)' then according to f(A,a,A1), and then 

B
1

,a
2

, and 82 according to g(A,b,B
1
), f(A,a,A 2), and g(A,b,B2), respec­

tively. The distribution of the results aiBk is proportional to the 

function p(a,Ai,b,Bk) of eq. (3). It is representative of the experi-

mental results of Eik" However, for the same A, we have generated 

possible results of the four experiments which have the same a for 

the same A, and the same B for the same B, that is, we have 

generated a family of independent results. If any fraction £ < \ 

of the Monte Carlo results is disregarded in each of the four experiments, 

at least one family of independent results will survive intact. Property 

3 is satisfied for any £ < \. Therefore, 

(8) property 2 implies property 3 for £ < \. 

1.5 Property 4. The probability distribution of a[B] integrated 

over b[a] is independent of B [A] : 

L p(a,A,b,B) = F (a,A), 
b 

(9) 

L p(a,A,b,B) = G (b, B) , 
a 
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Here any correlation between a and 8 is simply ignored because 

of the summations over a[b] in eqs. (9). Property 4 is a property only 

of the probability distributions of a[8] regardless of 8[a], that is, 

summed over the possible outcomes of the other measurement M8 [MA]. 

If the function p(a,A,b,B) satisfies eq. (3), it is easily 

verifiable that it satisfies eqs. (9) by summing the expression (3) over 

a[b] and taking into account the normalization property of the condi­

tional probability f(A,a,A) [g(A,b,B]: 

(10) property 2 implies property 4 

From eqs. (10) and (4), we see that property 1 implies property 4 

also. From eqs. (8) and (4), we see that property 1 implies property 

3 as well for any E < ~. However, property 3 does not necessarily 

imply property 4 as can be seen from the example shown in fig. 1. If 

only a fraction less than, let us say, 1/100 of the areas of the two 

rectangular domains OPQR and OPQ'R' is eliminated for each pair of 

values AiBk, it is still possible to find families of independent 

results. Therefore, the probability distribution has property 3 for 

values of E < 1/100. However-, the projection of the probability 

distribution on the Oa axis is not the same for A= A1, B = B1 

where it extends from 0 to R and for A= A1, B = B2 where it 

extends from 0 to R'. Therefore, the distribution does not have 

property 4 as defined by eqs. (9''· And because of eqs. (10) and (4) it 

has neither property 1 nor property 2. 

Conversely, property 4 does not necessarily imply property 3. 

This can be demonstrated by using the example of fig. 2. The 

projection of the distribution on the Oa[Ob] axis is the same for the 
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same B[A]. Therefore, the distribution p(a,A,b,B) satisfies eqs. 

(9) and thus has property 4. However, even for E = 0, it is impossible 

to find a family of independent results, that is, values a1, b1, a2, 

and b2, for which the combinations a
1
b

1
, a

1
b

2
, a2b1, and a2b2 belong 

to S(E,A
1

B
1
),S(E,A

1
B
2
), S(c,A2B

1
), and S(c,A2B2), respectively. There­

fore, because of eq. (7), the distribution does not have.property 3 for 

any E, and because of eqs. (8) and (4) it has neither property 1 nor 

property 2. (lO) Of course, property 4 implies that the projection of 

the ranges of possible results on the a[b] axis be the same for 

A = Ai [B = Bk] whatever B[A] is. However, as in the case of fig. 

2, it may happen that, in these ranges, no two particular values a1 

and a2 [b1 and b2] can be chosen for A= A1 and A2[B = B1 and B2] 

independently of B[A] that still provide combined results aibk 

that would be physical in the four combinations of A and B. 

The only implications that exist between the properties are 

swnmarized by the following statements, derived from eqs. (4), (7), 

(8)' and (10). 

property 1 implies property 2, 

(ll) property 2 implies property 3 for E < ~ and property 4, 

property 3 for any E implies property 3 for a smaller c. 

In sect. 2, the relationship between these mathematical properties 

and different concepts of locality are discussed. In sect. 3, we will 

show that quantum theory, or any other theory that would provide the 

same predictions, does not have property 3, and therefore has neither 

property 1 nor 2, although it has property 4. This demonstration, 
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called Bell's theorem, shows that none of the physical considerations 

that justify properties 1, 2, and 3 in sect. 2 applies to quantum theory, 

although the physical justifications of property 4 do apply . 

2.-Physical significance of theproperties. 

2.1 Property 1. There is at least one class of theories which may 

have different possible interpretations depending on whether property 1 

does or does not apply. Theories in this class specify all the proper­

ties of a quantum system by a single state I A. >, just as quantum theory 

does for pure cases. When the measurement MA is made, the result a 

is obtained with a probability distribution that we define as f(a,A). 

At the same time, the state is modified by the interaction with the 

measurement apparatus (wave function collapse). For a= a and the 

knob-setting A, 

(12) A. > ~ I A.' (A.,a,A) > 

When the measurement MB is made, the result B has a probability 

distribution that depends on the new state lA.' (A.,a,A) > and on B. 

Let g(A.'(A.,a,A),b,B) be the probability that B =b. The combined 

probability for MA to give a = a and for MB to give B = b is 

of the form 

(13) p(a,A,b,A) = f(a,A) g(A.' (A.,a,A), b, B). 

If we suppose that the state describes only the physical system and 

not our knowledge of it, the locality concept requires that the proba-

bilities at PB be not affected by the transformation (12) due to MA 

The probability distribution for B should be the same 
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function g(b,B) as if MA has not been made. It is a function of 

b and B , not of a and A. Therefore, 

(14) g(l' (l,a,A), b, B) = g(b,B) . 

Using eq. (14) for a substitution in eq. (13), we obtain eq. (2); 

that is, property 1. If property 1 does not apply, either the state 

ll> does not represent only the physical system or the evolution of 

the state violates locality. Note that property 1 involves no 

hidden quantity at all. 

2.2 Property 2. Even in classical physics there are quantities 

that evolve in a "nonlocal" manner. Suppose a probability distribution 

p(x} results from our uncertainty about the position x of a particle. 

When that particle is observed at point x
0

, it is sensible to have 

p(x) collapse instantaneously at any point other than x
0

• However, 

that probability distribution corresponds to our knowledge about the 

particle while x is the variable that describes the position of the 

particle itself. The constraints of locality are imposed only on 

. . h" h . h h . . . f (ll) quant1t1es w 1c phys1cally describe t e p ys1cal system 1tsel , 

not our knowledge of it. 

In order to generalize that concept, we consider states ll> 

that physically describe the quantum system but do not necessarily have 

the deterministic behavior of classical physics. Moreover, these 

states can be affected by a measurement as shown in eq. (12). In 

addition, there is some uncertainty as to which state the system is in. 

For this reason, the state can be called a "hidden state." Let p(l) 

be the probability that the system is in the state ll> and let 
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f(A,a,A) [g(A,a,B)] be the conditional probability that a= a [8 = b] 

when the state is lA>. When the measurement MA is made, the state 

collapses as in eq. (12). The probability that a = a and B = b is 

(15) p(a,A,b,B) = l:P(A) f(A,a,A) g(A'(A,a,A), b, B). 
A 

An example of a "hidden states" theory is quantum theory for sta-

tistical mixtures, identifying p(A) with the eigenvalues and lA> 

with the eigenvectors of the density matrix. Other examples are the 

deterministic hidden variables theories where, given one value for A 

and A[a,A and B], the function f(A,a,A) [g(A' (A,a,A), b, B)] is 

equal to 1 for a particular value of a[b] and to 0 for all the others. 

Since the state lA> is supposed to describe the system physically, 

a natural interpretation of the concept of locality is that the proba-

bility distribution of B for a given A is the same whether or not 

MA is performed. It is the same argument as for property 1. There-

fore, 

(16) g(A' (A,a,A), b, B)= g(A, b, B). 

Using eq. (16) to substitute g(A' (A,a,A), b, B) in eq. (15), one 

obtains eq. (3), that is, property 2. 

Property 2 can also be arrived at, following a different line of 

arguments. (3) Let A designate all the conditions that can affect the 

measurements MA and MB prior to tA and let p(A) designate the 

probability of their occurrence. To satisfy locality, it seems that 

the probability of getting a = a [S = b] must be a function 

f(A,a,A) [g(A,b,B)] of A,a[b] and A[B] only. Equation (3) follows, 

that is, property 2. Property 2 means that the correlation between a 
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and B is due to the circumstances A prior to tA and that A is 

independent of A and B. 

To describe a deterministic or random process that generates the 

B'
(l2) 

results a and and to satisfy the requirement that a[B] be 

independent of B[A], it can be shown that one has to impose property 

2 to p(a,A,b,B). This can be seen when an attempt is made to repro-

duce the statistical distributions of a and B by Monte Carlo sim­

ulation. (g) Let us define A as a label for the conditions before 

measurements. These conditions can be generated by the Monte Carlo 

simulation according to the probability of their occurrence, which 

we call p(A)· Then a can be generated according to a conditional 

probability distribution defined as f(A,a,A), because A and A are 

the only variables at our disposal at time t . 
a 

The generation of 

a may require the use of A, of A, and of a few random numbers. A 

logical interpretation of locality is that the generation of B should 

not depend on A. If B involves one or more of the random numbers 

involved also in the generation of a, those random numbers can be 

incorporated in A and generated at the same time as A· Therefore, 

the generation of B is then made independent of a as well as of 

A. The B distribution is of the form g(A,b,B). It follows that 

the distribution of a and B is a function p(a,A,b,B) that satis-

fies eq. (3). Therefore, the function p(a,A,b,B) has property 2 

as long as the process that generates a[B] does not require the 

knowledge of B[A]. This statement applies also when we consider the 

real process by which nature generates a and B if, of course, we are 

interested in the way nature operates. 

J 
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These justifications of property 2 for p(a,A,b,B) are related 

to the description of the system by a state or to mechanisms by which 

the probability distributions can be generated. (l 2) Of course, none 

of these justifications implies that the theory which leads to p(a,A,b,B) 

is deterministic. However, it should be noted that any probabilistic 

theory, whether it has property 2 or not, can be replaced by a determin-

istic theory yielding the same predictions. This statement is demon­

strated in appendix A. (l 3) 

2.3 Property 3. Because of eqs. (11), any justification of either 

property 1 or property 2 is a justification of property 3. In particular, 

if one attempts to describe the mechanism that produces the results 

a and S in a way that is consistent with locality, one is led to 

impose property 2, therefore property 3, on p(a,A,b,B). However, 

property 3 is more general than properties 1 and 2. For instance, 

the probability distribution defined in fig. 1 has property 3 for small 

values of € but not properties 1 or 2,as has been seen in sect. 1.5. 

Moreover, let us consider the following probability distribution for 

a and f3: 

(17) p(a,A,b,B) = n ~ p(A) f(A,a,A) g(A,b,B) + (1-n) H(a,A,b,B) , 

A 

where p(A) , f(A,a,A), g(A,b,B),and H(a,A,b,B) are any positive 

functions normalized to 1 in A, a, b,or a and b, respectively, 

and where n is a positive number less than 1. At least a fraction 

n of the time, the results a and f3 will have a distribution of 

the type of eq. (3) and then form families of independent results. 
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The function p(a,A,b,B) has property 3 for £ < t although, for 

n < 1, if H(a,A,b,B) does not have property 2,neither does p(a,A,b,B). 

Property 3 for £ < ~ may be justified using the same arguments as 

for properties 1 and 2, but only in a fraction n of the cases. 

Suppose the function p(a,A,b,B) does not have property 3 for 

£ = 0, as in the case of fig. 2. It is clear that it is never possible 

to make a deterministic or random choice of a[S] unless we know 

B[A] and then obtain a possible result for each of the four experiments 

defined in sect. 1.3. Suppose we make any choice a1 and a2 [S1 and B2l 

for a[S] when A= A
1 

and A= A2 [B = B1 and B = B2 ], independently of 

B [A]. 

physical in at least one of the four experiments considered. If 

p(a,A,b,B) does not have property 3 for a finite £, the choice of 

a[S] without knowing B[A] is possible in no more than a fraction 4£ of 

the cases. Property 3 is associated with the possibility in a fraction 

of the cases, of generating a[S] independently of B[A] and of still 

getting results allowed by the theory. 

For £ = 0, property 3 is a property of the domain where the 

function p(a,A,b,B) is not zero. For small £'s, property 3 concerns 

the domain of possible results after a small fraction of pathological 

results is eliminated. Therefore, whereas properties 1 and 2 are suited 

to theories that determine the function p(a,A,b,B) exactly, property 

3 is meaningful even for less well-defined theories, ones that would 

even grossly reproduce the predictions of quantum theory. 

Another justification of this property 3 relies on a concept which 

was called "contrafactual definiteness,"(2•6) a concept used in daily 
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life whenever we must make a choice. Contrafactual definiteness means 

that, in a given situation, the consequence of each of the possible 

courses of action can be considered even though the only sequence of 

events that can be known for certain is the one produced by the final 

single choice. That is, we can hypothesize about the event sequences 

following the courses of action that will not·be ehosen. Three different 

causal relationships can be conceived when considering different choices 

and subsequent events: 

1) For some events, we assume there would be no difference in the 

sequences following different choices. 

2) For other events we do not know if the sequences following the 

various choices would be the same or if they would be different, within 

the domain of their probability distribution. 

3) There are events that would surely be different because the 

probability distributions of the events for the different choices do 

not overlap. 

For deterministic theories, only concepts (1) and (3) make sense. 

For probabilistic theories, concept (2) may be used but it is customary 

to give "causal independence" a definition still fotmded on concept (1), 

even for events that are not completely predicted in a deterministic 

way. (l4) If now such a causal independence is assumed to exist between 

a and B and between S and A, a would be equal to the same 

value a
1

[a2] when A= A1[A2] for the two choices B = B1 and B2 , 

and S = b1 [b2] when B = B1[B2] for the two choices A= A1 and A2 ~ 2 • 6 • 7 ) 

Therefore, whatever the result a
1
b

1 
is for the experiment with A1B1, 

there are a2 and b2 which form a family of independent results with 
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Moreover, if we consider all possibilities and disregard 

a certain number of possible pairs of results aS amounting to a fraction 

E in probability in each one of the experiments with A1B1, A1B2, A2B1, 

and A2B2 , there is at most a fraction 4E of families with a missing 

member. For any E < ~. some are left intact. Therefore, one at least 

still remains and property 3 is valid for E < ~- Conversely, if 

property 3 does not hold, one is obliged to think that the result a 

would be different for a different choice of B, or S would be dif-

ferent for a different choice of A. 

Anyway, to justify property 3 for any E < ~. it is possible not to 

invoke the four hypothetical experiments of which only one can be per­

formed.(?) It is possible to define a concept of locality based on the 

requirement that, in four different experiments performed at different 

times with the four different combinations of knob settings, it is pos-

sible to group all the possible results to form families of independent 

results. 

2.4 Property 4. For a theory that agrees with the principles 

of relativity, causal independence according to property 4 is necessary 

to exclude mechanisms by which information could be transmitted backward 

in time. If property 4, expressed by the second eq. (9), were violated, 

the probability distribution for S regardless of a, l:p(a,A,b,B), 
a 

would depend on A. By repeating the experiment enough times, the 

statistical distribution of the results S at PB would reproduce the 

probability LP(a,A,b,B). 
a 

By looking at this A-dependent distribution 

of S , the parameter A, which was set at P A at time t A, could be 

J 
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known at PB at time tS, outside of the light cone. Consider the 

observer for whom, according to relativity, the measurement MB occurs 

before the setting of A. For him, the Nnowledge of A is transmitted 

backwards in time and, according to the principles of relativity, what 

this observer can do can be done by any other observer. With a series 

of similar mechanisms it would be possible to send information to any 

point of the past. Therefore, the violation of property 4 would lead 

to severe difficulties in our concept of the universe. 

Conversely, property 4 forbids transmission of information, at 

speeds greater than the speed of light, between the two experimenters 

at PA and PB using the measurements MA and MB Consider the infor-

mation carried by a[S] when S[a] is not known. The corresponding 

probability distribution is L p(a,A,b,B) [Lp(a,A,b,B)]. If that 
b a 

distribution obtained after summation over b[a] does not depend on 

B[A], the knowledge of a[S] does not supply the experimenter at 

PA[PB] with any information about the knob setting at PB[PA], that 

is, the parameter set by the other experimenter. 

Property 4 concerns only causality between observers, that is, 

between the one who sets A and the one who reads S or the one 

who sets B and the one who reads a. 

3. Properties of the quantum theoretical predictions. 

Properties 1 and 2 lead to inequalities called locality inequalities 

which are violated by quantum theory. (lS) One of them is demonstrated 

in appendix B. By itself, property 3 leads to another locality inequality, 
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shown here, that is also violated by quantum theory. Because of eqs. (11) 

the latter inequality alone shows that the quantum theory predictions 

do not have properties 1, 2, or 3. 

3.1 The locality inequality. Suppose the results a and 8 have 

many different possibilities that can be labeled using a binary system. 

The result a[ 8] is represented by a set of N numbers 

are either 0 or 1. We define 

(18) C (a, B) L Ia. -B.!. 
j J J 

a. [B.] 
J J 

that 

For a given j in the list, the term la.-B.I 
J J 

is 0 with a. = B. 
J J 

and 1 when a. ~ B .. 
J J 

Given four lists a
1

, b
1

, a2, and b
2 

of terms 

alj' blj' a2j, and b2j 

(19) 

(20) 

I a1j - blj I = I (a1j - b2j) - (a2j - b2j) + (a2j - blj) I ~ 

~ lalj - b2j I + la2j - b2j I + la2j - blj I. 

Summing inequality (19) over j and using eq. (18), we got 

Inequality (20) applies to any four lists of numbers. In particu-

lar it applies to lists a
1

,b
1
,a2, and b2 that are possible results of 

measurements at PA and P8 . If the function p(a,A,b,B) has property 

3 for a value E, there is a family of independent results a
1

,b
1
,a2, 

and b2 such that eq. (6) is verified. In each set S(E, A, B), there 

is a minimum C . (E,A,B) and a maximum C (E,A,B) for the quantity m1n max 

C(a,b) defined by eq. (18) and applied to the elements of the set. 

Therefore, if ab belongs to S(E,A,B) 
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(21) C . (E,A,B) ~ C(a,b) ~ C (E,A,B). min max 

Since property 3 implies the existence of a family of independent 

results satisfying eqs. (6), eqs. (18) and (21) can both be applied to 

the elements of that family, a
1

,b
1
,a

2
, and b2 . 

the locality inequality: 

Therefore, we derive 

(22) 
~ C (E,A1,B2) + C (E,A2,B2) + C (E,A2,B

1
). max max max 

3.2 The two-photon experiment. Inequality (22) can be used to 

test the predictions of quantum theory in the case of an idealized two-

photon experiment with N events. One event consists of the detection 

at PA and of photons and in a total spin-parity 

state em'itted in opposite directions from a point PC located between 

PA and P8 (fig. 3). There is 100% correlation between the planes 

of polarization of the photons and complete symmetry of this common. 

polarization plane about the axis of propagation. At PA[P8], the 

detection is made behind a polarization analyzer making an angle A[B] 

with respect to an x-axis normal to the z-axis that is the propagation 

The efficiencies are 100%. The result a[S] of the 

measurement MA[MB] is constituted of N numbers a. [f3.] such that 
J J 

a. [f3.] = +1 if the yA[yB] photon of the jth event passes the 
J J 

polarizer arid a. [S.] = 0 if it does not. The quantity C (a, S) of 
J J 

eq. (18) can be known by measuring the single rates in PA and P8 . 

In appendix C, it is shown that, whatever N is, the expectation value 

<C(a,S)> of C(a,S) is 
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(23) < C(a,S) > = sin2 (A-B). 

For a large enough number of events N, most values C(a,S) are close to 

the expectation value. Given two arbitrary small numbers E and a, 

it is possible to find an N large enough so that the difference between 

C(a,S) and < C(a,S) > is larger than a only in a fraction E of 

the time. Therefore, if we eliminate that fraction E of the possible 

results, we constitute sets S(E,A,B,) such that 

(24) 

(25) 

(26) 

(27) 

(28) 

I c . m1n 

c max 

(E,A,B) = sin2 (A-B) a, 

(E,A,B) = sin2 (A-B) + a. 

No matter how small E is, we will choose N large enough so that 

12-1 a < -- - 0.103, 
4 

and the angles will be chosen as 

Then, using eq. (24), inequality (25), and eq. (26), we get 

2+12 3 
=-4--a>4 

C (E,A1,B2) + C (E,A2, B~) + C (E,A2,B
1

) = max max ~ max 

{ 2 2-12 3 
= 3 sin ( 22.5 °) + a} = 3{ - 4 - + a} < 4 · 

Inequalities (27) and (28) show that locality inequality (22) does 
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not hold for these quantum theoretical predictions. Therefore, these 

predictions of quantum theory do not have property 3 for any E: > 0. 

It follows that they do not have properties 1 or 2 either, because of 

eqs. (11). The contradiction between quantum theory and properties 1 

and 2 can also be demonstrated directly, as is done in appendix B. 

As to property 4, it should be noted that it is always a property 

of the quantum theory predictions. This is insured by the fact that 

the measurement MA at PA at ta and the measurement MB at PB at t
8 

correspond to operators that commute with one another in the conditions 

of eq. (1). This statement is demonstrated in detail in appendix D. 

4 . ...,---Conclusions 

The predictions of quantum theory do not have properties 1, 2, or 

3 for any value of s > 0. Any of the arguments spelled out in sect. 

2 to justify them do not apply to quantum theory or to any other theory 

that would give the same predictions. 

Whenever the computation of the probabilities involves a single 

state lA>, that state has to collapse,when the measurement MA is 

performed, as it does in conventional quantum theory and in eq. (12). 

Because property 1 does not apply, the probability distribution of 

B is affected by that collapse due to MA, in contradiction to an 

intuitive concept of locality if the state describes the quantum 

system itself instead of our knowledge of it. Even if, on the con­

trary, there is a statistical mixture of several hidden states lA>, 

the physical states lA> still have to collapse similarly during 
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MA because property 2 does not apply. When introduced in a theory, 

hidden quantities do not resolve the conflict with locality, but neither 

do they create it. It is just impossible to describe the physical 

system in a way which is compatible with locality as expressed by eq. 

(16). 

Since the probability distribution does not have property 2, it is 

also impossible to explain the correlation between a and S only by 

conditions existing in their common past light cone.C 3) The result 

a[S] at PA[P8 ] ~s correlated directly with the knob setting B[A] at 

Moreover, the contradiction to properties 2 and 3 makes it 

impossible to imagine a process(l 2) that can generate a without the 

knowledge of B and, at the same time, of 8 without the knowledge 

of A. (l 2) In this respect, quantum theory probabilities are like the 

ones illustrated by fig. 2, but where the domains S's would represent 

the S(£,A,B) for a small nonzero £. It is impossible to choose 

a independently of B and 8 independently of A and still obtain 

physical results that do not fall into that small category of results 

we call pathological, that is, corresponding to a small probability 

in one or the other of the four experiments. 

If we consider the different sequences of events that would follow 

the different choices of A and B we may make, (i.e., if we use the 

concept called "contrafactual definiteness"( 2•6)), it is impossible to 

imagine, at the same time, that there is a choice of A and B for 

a given experiment performed at a given time; that the predictions of 

quantum theory apply to all the possible combinations of A and B; and, 

in addition, that a[8] would be the ~same for the same choice of A[B]o 
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This consideration further illustrates how impossible it is for any 

process to produce a value for a[i3] that would be independent of 

B [A] o 

Determinism has not been assumed in our demonstrations, although 

it could be restored for local and nonlocal theories (see appendix A). 

Historically, the first attempts to describe the quantum system in 

. If . k" d · · (l 6) 1tse were 1nvo 1ng some eterm1n1sm. This is why Bell's theorem 

was first demonstrated for theories with deterministic hidden variables(!) 

and why the contradiction of the quantum theory,predictions with 

locality are sometimes linked to hidden variables theories(S) (see 

appendix E). However, Bell's theorem now has been proved for probabil-

. .. . - h . 11 c2 ..: 7) 1st1c t eor1es as we . To make quantum theory predictions and 

locality compatible, more than just determinism has to be given up 

among the concepts we inherited from classical physics. What is of 

most relevance is the possibility of describing the real random or 

deterministic process(l 2) that produces the measurement results. 

Since quantum theory has property 4, it predicts that the probabil-

ity distributions of S[a], integrated over the variables a[b] at 

PA[PB], are independent of the knob setting A[B]. By changing A[B] 

it is not possible to transmit a message from PA[PB] at tA[tB], to an 

observer at PB[PA] at t
13

[ta], that is, to have an effect on him, 

before light has time to reach the point PB[PA]. It follows that 

quantum theory and any other deterministic or probabilistic equivalent 

theory are compatible with locality if the only causal dependence that 

counts is an effect of one observer on another. 

From these considerations, we conclude that several interpretations 
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of causality lead to different interpretations of the theorem. The 

conflict with locality arises when the question is asked, '~ow does 

nature do it?" According to the Copenhagen interpretation, quantum 

theory is not supposed to provide a description of the physical process, 

but only a set of rules by which predictions can be made. Bell's 

theorem demonstrates that such a description of the process will never 

be possible unless it violates that independence of a(B] from B[A] 

which we call locality of the physical process. (l 2
) 

There are essentially four possibilities remaining; they are as 

follows. (1 7) 

4.1 Quantum theory breaks down for the cases where Bell's theorem 

applies. After all, neither inequality (22) nor any other locality in-

equality has ever been shown to be incorrect, experimentally, without ad-

ditional assumptions. Quantum theory may be invalid in the two-photon 

experiment of sect. 3.2. In order to fully check these quantum theoret-

ical predictions, in the conditions expressed by eq. (1), nearly 100% 

efficiencies and very fast changes in polarizer angles A and B are 

needed. (lS) These combined requirements seem beyond present technology. 

However, experiments that approximate the two-photon experiment 

described in sect. 3.2 were performed and the quantum theoretical 

d . . h ld (19-22) pre 1ct1on was up e . More generally, in a wide domain of 

physics, small failures of quantum theory have been looked for( 23) 

but not found. ( 24) 

4.2 The principles of relativity break down. 

. (25 26) 
frames may not be equ1valent. ' One of them, 

If so, then all rest 

R , is fundamental and, 
0 

in this rest frame R only, causality applies. Causal effects can 
0 
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propagate faster than the velocity of light as long as the cause precedes 

the effect in R o· No causal loop can be made then. In any other rest 

frame R, the time sequence between events with a time-like separation 

is the same as in R
0

• Therefore, the usual causal chains in the 

light cone are the same as expected from relativity. For events with a 

space-like separation, the cause may seem to occur after the effect in 

R if the time sequences in R and R are opposite. 
0 

However, this may 

have an interpretation: only the time in the rest frame R 
0 

is the 

real physical time, and the other rest frames seem to be equivalent to 

the fundamental one R because the laws of nature just happen to have 
0 

Lorentz invariance. Variations on this idea have been suggested, ( 25) 

in which R is not one of the Lorentz rest frames but a rest frame 
0 

obtained by a nonlinear transformation in space and time. 

If this option is taken seriously, it may be interesting to 

investigate the possibility that the special rest frame R may also 
0 

have special properties in different domains of physics. The experi-

mentally verified Lorentz invariance may be only an approximation. It 

has been suggested that the phenomenon of conscienciousness may obey 

. f b f . . h . ( 27 ) d1 ferent laws than the ordinary su jects o exper1ment 1n p ys1cs. 

4. 3 Very basic concepts of causality have to_ be reviewed. It has 

been speculated that the laws of nature are fully deterministic, includ-

ing the hands of the experimenters, so that the knob setting A[B] 

is really predetermined by conditions in the past that can be known 

at P8 [PA] at time tB[ta] .(17) 

A second speculation( 2S) is that thereality exists in many universes 

simultaneously. Then, the decision about which measurement result 
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coexists with which observer could be made long after the measurements 

MA and M8 have been made. At that instant, the information about 

A and B would have time to be communicated at speeds less than the 

velocity of light to the point where the observer is dragged into one 

of these universes only. 

A third speculation( 29) has it that in special circumstances, the 

effect may occur before the cause, in all rest frames and in the light 

cone. This speculation would explain how A[B] may be known at the 

point PC at time of emission of the two photons. Then, this informa­

tion could be transmitted downstream, in time, with the photon y8 [yA] 

to the point P8 [PA]. 

None of these speculations leads to a theory that is practical in 

the sense of its being used instead of conventional quantum theory. 

4.4 One should not care about "how nature does it." In conformity 

with the Copenhagen point of view, the goal of a theory is to prescribe 

mathematical procedures and it is not worth looking for a description 

of what is going on. ( 2S) Of course, there is a conflict between 

locality and any description of the quantum system or of the physical 

process, but it is not important. The only causality that counts 

concerns the causal action one observer can have on another one. The 

compatibility of quantum theory with property 4 insures that this 

concept of locality holds. In this case, Bell's theorem is less 

important because that different definition of locality is the important 

one. 

The inconvenience of that fourth option is that the desire to 

understand how nature works-has been historically a powerful motivation 

,, 
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for scientific research. Modifications of logics have been suggested 

to approach these questions. (ZB) 

At the present time, all the four above options are being pursued, 

and it is difficult to ascertain which one will turn out to be the 

right one. Consequently, any attempt to discourage the work that is 

being performed in any one of those four directions is either futile 

or counterproductive. 

* * * 

The author is indebted to Dr. T. G. TRIPPE and Professor R. R. ROSS 

for in-depth discussions and for reviewing the manuscript; to Professor 

J. S. BELL, Drs. H. P. STAPP and J. F. CLAUSER for many discussions 

about several topics treated in this paper; to Drs. P. A. MOLDAUER, 

A. BERTHELOT, and N. HERBERT for a useful exchange of letters; and to 

Mrs. J. BARRERA for help with the manuscript. 



-28-

APPENDIX A 

Restoration of determinism irt a theory. 

Determinism is defined here as a property, of certain theories, 

according to which the initial conditions of a system completely deter-

mirte its future evolution and observations and where the probabilistic 

character of some predictions is entirely due to some uncertainty we 

have about these initial conditions. Given any probability distribution 

of n measurement results 

a 2 , ... , aj' ... ,an, it is possible to construct a deterministic 

theory with hidden variables that predicts that probability distribu-

t
. ( 13) 
lOTI. This can be demonstrated considering the Monte Carlo genera-

tion(9) of the a.'s 
J 

It first 

requires the generation of a
1 

according to the probability distribution 

(A.l) 

then of all the subsequent 

bility 

(A. 2) 

a2, .•• ,a., ••• ,a ), 
J n 

a.'s, according to the conditional proba­
J 

Each of these Monte Carlo generations requires the generation of 

a random number ~· of uniform probability between 0 and 1 and the 
J 

determination of a. 
J 

from the values of and ~. : 
J 
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(A. 3) 

where 

(A.4) HJ.(a1,a2, ... ,aJ._ 1,aJ.) = L h.(a1,a2, ..• ,a. 1,a'.). 
a~<a. J J- J 

J J 

Consider a theory in which the system is described by a state with 

hidden variables r,; 1 ' r,; 2 , • ·., i';;j, · • • ,r;n distributed according to a 

uniform probability between 0 and 1 and where the a.'s 
J 

are bound to 

the l';;.'s by eq. (A.3). Then that hidden variable theory is determin­
J 

istic and predicts probability distributions identical to p(a
1
,a2, ... , 

. . (13) 
a., ... ,a). 

J n 

If in a particular Lorentz rest frame the results a1, a 2, ... ,aj' 

... ,a have been ordered according to time of measurement, if the 
n 

corresponding measurements depend on external parameters A1 , A2, ... , 

Aj, ... ,An that are set by some experimenter, and if p(a1, a2, ... , 

a., •• ,a) has been computed according to quantum theory, it can be 
J n 

proved that each function h(a1, a2, ... ,aj)' (thus the generation of 

a.) is independent of A. 1, ... ,A, in agreement with causality. Let 
J J+ n 

D be the initial density matrix and Q.(a.,A.) the projection operator 
J J J 

associated with the result a. = a. when the external parameter is 
J J 

A., then 
J 

(A. 5) 

Q~ (a.,A.) = Q.(a.,A.), 
J J J J J J 

E 
a. 

Q.(a.,A.) =I. 
J J J 

J 

The procedure of quantum theory permits the computation of the 

probability: 
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= Tr { 0 l (a l , A l) ... Q . (a . , A . ) ... Q1 ( a1 , A1) DQ1 ( a1 , A1) ... Q . (a . , A . ) 
'n- n- n- J J J J J J 

(A.6) 

(A. 7) 

~-l(an-l'An-1) ~(an,An) } 

= Tr { DQ1 (a l , A1) . . . Q . (a . , A . ) . . . 0 l (a l , A l) 0 (a , A ) J J J 'n- n- n- 'n n n 

Using eqs. (A.l) and (A.S), we obt~in: 

which does not depend on A2, ... ,A., ... ,A and, using eqs. (A.2) and 
J n 

(A. 5), we obtain 

=-----------------------------------------------------

which does not depend on Aj+1 , ... ,An if hj_ 1 Ca
1

,a2 ... ,aj_ 1) does 

not. This way, by induction we prove that the generation of a. can 
J 

be made without the knowledge of aj +1 ... an and of the parameters 

A. 
1 
... A that 

J+ n are set after a is measured. Such generation is then 

compatible with the concept of causality. 

If two measurements of a. and a. 1 are performed outside of 
J J+ 

the light cone with two measurement apparatus with the knob settings 

A. &nd A. 1 , respectively, it follows that is is possible to 
J J+ 

generate a. [or a. 1] 
J J+ 

without the knowledge of A. 
1 

[or A.]. 
J+ J 

However, it is not possible to generate both a. without the knowledge 
J 
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of A. 
1 

and a. 
1 

without the knowledge of A. unless p(a., A., 
J+ J+ J J J 

aj+l' Aj+l) has property 2 (see sect. 2.2), a property that the quantum 

theoretical predictions do not always have (see sect. 3). 

Demonstrations that deterministic hidden variables theories cannot 

(30 31) have the same predictions as quantum theory have been attempted. ' 

Those demonstrations have been shown to rely on unnecessary assump-

. (32,33) h h" d . d k t1ons t at t 1s emonstrat1on oes not rna e. 
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APPENDIX B 

Inequality generated by properties 1 and 2. 

Following is a proof of one of the possible locality inequalities 

that can be demonstrated. Let us define the probability that a = a 

and B f; b as 

(B .1) p(a,A,b,B) = ~ p(a,A,b,B) - p(a,A,b,B), 
b 

and the probability that B = b and a f a as 

(B. 2) p(a,A,b,B) = L; p(a,A,b,B) - p(a,A,b,B) 
a 

for the knob settings of A and B. Let us consider two values 

and A2 for knob setting A, two values Bl and 

setting B, and four values al,bl,a2, and b2 • 

Property 1 is defined by eq. (2) where f(a,A) 

be taken 

(B. 3) 

(B.4) 

as normalized to 1. Therefore, 

p(a,A,b,B) = f(a,A)(l-g(b,B)), 

p(a,A,b,B) = (1-f(a,A)) g(b,B). 

B2 

and 

Since f(a,A) and g(b,B) are positive and ~1, 

(B. 5) 

(B. 6) 
(l-f(a2,A2)) g(b 2,B 2) ~ 

for knob 

g(b, B) 

Al 

can 

~ f(a
1

,A1)(1-f(a2,A2))g(b2 ,B2)(1-g(b1,B1)), 

(B. 7) 

: r 

- ' 



•. 

-33-

Adding inequalities (B.S), (B.6), and then (B.7), the following result 

is obtained: 

(B. 8) 

Therefore, using eqs. (B.3) and B.4), 

(B.9) 
p(al ,AI ,b2,B2) + p(a2,A2,b2,B2) + p(a2,A2,bl ,Bl) ~ 

~ p(al,Al,bl,Bl). 

Inequality (B.9) is one of the locality inequalities that can be 

derived from property I. 

Property 2 is defined by eq. ( 3) . Therefore, the functions 

defined by (B .1) and (B. 2) can be written as 

(B.IO) 

(B. II) 

p(a,A,b,B) = L p(A) f(A.,a,A) (1-g(A,b,B)), 
A. 

p(a,A, b, B) = L p(A.) (1-f(A, a,A)) g(A, b, B) • 
A 

The functions f(a,A) and g(b,B) can be replaced by f(A.,a,A) 

and g(A.,b,B) in inequalities (B.S), (B.6), and (B.7), and therefore in 

inequality (B.8). Then, both sides of the inequality can be multiplied 

by p(A.) and summed over >... Taking eqs. (B.IO) and (B.ll) into 

account, we arrive again at inequality (B.9). Therefore, inequality 

(B.9) is valid also for theories that have property 2, which is a more 

general property than property I. 

It can be shown that locality inequality (B.9) is not verified by 

the quantum theoretical predictions for the two-photon experiment of 

sect. 3.2, if the number of events N = 1 and if the polarizer angles 

defined in eqs. (26) are used. The quantum theoretical predictions 
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are computed in detail in appendix C. From eqs. (C.6) and (C.9) of 

appendix C, 

(B.l2) 

(B.l3) 

p ( 1 , A, l, B) = p ( 1 , A, 0 , B) = ~ s in 2 (A-B) , 

p(l,A,l,B) = p(O,A,l,B) = ~ sin2 (A-B). 

Therefore, using the· angles of eq. (26), 

(B.l4) 

= ~ sin2 
(22.5°) = ~ (2-/2) ~ 0.220. 

(B .15) ( -1 ) 1 . 2 ( 0) 2+12 p l,A1, ,B1 = ::2 s:m 67 .. 5 = - 8- ~ 0.4270 

Equations (B.l4) and (B.lS) are incompatible with inequality (B.9), 

showing that quantum theory has neither property 1 nor property 2. 

. 
., ' 
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APPENDIX C 

Quantum theoretical computation. 

For an experiment such as that of sect. 3.2 but with a number of 

events N = 1, the procedure of quantum theory calls for the definition 

of an initial state vector for two photons in a 0+ spin-parity state 

(C .1) 

where 

IYA,x> = state vector with YA photon polarized along x, 

IYA,y> = state vector with YA photon polarized along y, 
(C. 2) 

IY8 ,x> = state vector with Ys photon polarized along x, 

IY8 ,y> = state vector with Ys photon polarized along y. 

The computation of quantum theory follows the procedure described in 

sect. 2.1 with eqs. (12) and (13). The result is noted a= 1 

[S = 1] if the photon yA[y
8

] passes the polarizer and a= 0 

[S = 0] if it does not. The probability that the photon yA passes 

[is absorbed in] the polarizer at PA is f(l,A) [f(O,A)]: 

(C.3) f(l,A) = f(O,A) = ~. 

If the photon yA passes the polarizer and is detected, the state 

for the photon y
8 

instantaneously collapses as in eq. (12), 

(C.4) IA'(A,l,A) >=cos A ly
8

, x> +sin A ly8 , y>, 

and the probability that will not be detected in B is 

(C.S) g(A 1 (A,l,A),O,B) = l-cos 2(A-B) = sin2(A-B). 
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Therefore, the probability that a = 1 and s = 0 

from eq. (13): 

(C.6) p(l,A,O,B) = ~ sin2(A-B). 

If the photon YA is absorbed in the polarizer in 

of the photon yB instantaneously collapses into 

(C.7) IA'(A,O,A) >=-sin A IYB,x> +cos A IYB,y>. 

Therefore, 

(C. 8) 

(C.9) 

. 2 
g(A'(A,O,A),l,B) =sin (A-B), 

p(O,A,l,B) = ~ sin2 (A-B). 

is derived 

A, the state 

The quantity la-S I is 1 [Ol is a = 1 and S = 0 [S = 1] or if 

a= 0 and S = 1 [S = 0]. Therefore, its expectation value is 

(C.lO) <la-SI>=p(O,A,l,B) + p(l,A,O,B) = sin 2 (A-B). 

For N events produced in the same condition, the statistical 

average C(a,S) of eq. (18) has the same expectation value as 

la.-S. I for each event. Therefore 
J J 

(C.ll) <C(a,S)> = sin2(A-B). 

I ; 1··!'' 
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APPENDIX D 

Proof that quantum theory has property 4. 

Here we will not <i:onsider that the density matrix D represents the 

statistical mixture of hidden states as we did in sect. 2.2. For 

simp.licity, we will consider D as a state itself to be treated like the 

states of sect. 2.1. The procedures of quantum theory for computing 

the function p(a,A,b,B) calls for the definition of a set of projec-

tion operators Q(a,A) [R(b,B)] associated with the measurements 

MA [MB] when the knob settings are A [B] and the result is 

a= a [B = b]: 

(D.l) 2 Q(a,A) , Q (a,A) = 

(D. 2) R2(b, B) = R(b, B) • 

(D. 3) E Q(a,A) = E R(b,B) = I. 
a b 

The probability f(a,A) that a = a is expressed by 

(D.4) f(a,A) = Tr{Q(a,A) D }, 

and, at the same time, as in eq. (12) the wave function collapse pro-

duces a change of the density matrix that becomes 

(D.S) D' = Q(a,A) D Q(a,A) 
f(a,A) 

The same procedure is repeated for ~ using the R(b,B) 's and 

D' as the density matrix. It leads to the computation of the prob-

ability that a= a and B = b, using eq. (13): 

(D.6) p(a,A,b,B) = Tr{Q(a,A) R(b,B) Q(a,A) D}o 
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In the formalism of quantum theory, locality is expressed by the 

requirement that the measurement operators outside of the light cone 

commute. Then Q(a,A) and R(b,B) commute for any a, A, b, and B. 

Using eqs. (D.l) and (D.3), 

(D. 7) 

(D. 8) 

Similarly, 

(D.9) 

p(a,A,b,B) = Tr{Q(a,A) R(b,B) D}, 

L p(a,A,b,B) = Tr{ L Q(a,A) R(b,B) D} = 
a a 

= Tr{ R(b,B) O} = G(b,B) independently of A. 

L· p(a,A,b,B) = F(a,A) independently of B. 
b 

Equations (0.8) and (0.9) are equivalent to eqs. (9). Therefore, 

property 4 is a property of quantum theory. 

Note that the commutation relations have another consequence. The 

probabilities can be computed either by assuming the wave function 

collapse to occur during MA, and using the collapsed wave function to 

compute the probability distribution of B, or vice versa, by collap-

sing in MB and using the collapsed wave function for a. The two 

modes of computation give the same result p(a,A,b,B) 0 This property 

is another necessary property which prevents us from seeing a funda-

mental difference between Lorentz rest frames. We cannot estab-lish. 

which one of the two measurements MA or MB has modified the prob­

ability distribution of the other and, therefore, which one actually 

occurred first. 
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APPENDIX E 

A broad definition of hidden variables. 

As in sect. 3, the contradiction between property 3 and the predic­

tions of quantum theory is usually demonstrated using the example of the 

experiment of sect. 3.2 with N events produced in the same conditions. (2•6•7) 

The measurement index j of eq. (18) is equated to the event number and 

used in the demonstration. It has been suggested that this event number 

j be called a "hidden variable," thus restricting the effect of Bell's 

theorem to "hidden variables" theories. (8) 

Actually, in the experiment, the event number j is known before 

the event occurs; therefore, it is not "hidden." Moreover, though it is 

known, the event number does not provide any more information about what 

the future measurement result will be; therefore, it is not a system 

variable either. To call the event number j a "hidden variable" 

supposes an extension of the usually accepted definition of these words 

in general and of the meaning given them by BELL(l) in particular. 

There are experiments for which the event number j may provide more 

information about the upcoming measurement result. If the experimental 

conditions are changing even slightly from one event to the next, then 

the probability distributions depend on j and that dependence can be 

used to refine the predictions in any theory. In this sense, j may 

be considered as a system variable though, of course, it is still not 

a "hidden" quantity in the common sense. 

In order to justify property 1 in sect. 2.1, we have considered 
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theories where the quantum theory state corresponds to one physical state 

only. Nothing is "hidden" in these theories. Calling j a hidden 

variable would cause these theories, and quantum theory for pure cases, 

to be "hidden variable theories" whenever the event number j is used 

to compute probability distributions. For this reason, this extension 

of the definition has been judged misleading and beside the point. It 

is not adopted in this paper. Here, as in BELL, (1) the words "hidden 

variables" are attributed only to quantities which, according to some 

theories, would specify the state of the quantum system so completely 

that its future behavior would be determined for a specific set of hidden 

variables. Hidden variables would not be known before measurement and 

our uncertainty about them would be responsible for the probabilistic 

character of quantum theory. 

Even though this restricted definition of hidden variables is 

adopted, the question can be raised whether Bell's theorem applies only 

to deterministic theories. (B) If the question implies that there may 

be probabilistic theories which do not need a wave function collapse 

or another nonlocal evolution that violated eqs. (14) or (16), the 

answer is no, , as has been shown in this paper and elsewhere. (2
-?) 

If the question means. that all the theories that are affected by Bell's 

theorem can be replaced by a deterministic one giving the same predic­

tions, the answer is yes, because all probabilistic theories can be 

replaced by a deterministic one (see appendix A) whether or not they 

abide with properties 1, 2, 3, or 4. (l 3) The question of determinism 

consequently seems orthogonal to the points raised here. 

To demonstrate the contradiction between quantum theory and 

f 
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property 3, a comparison is made, as in inequality (19), between possible 

results of the different experiments E
1 1

, E
1 2, E2 1

, and E
2 2. Since 

' , ' ' 
only one of these experiments can be performed at any one time, it has 

been suggested that, in the context of quantum theory, such demonstra-

tions be called invalid on the grounds that the actual results cannot 

be obtained coincidentally. (S) If such a point of view were adopted, 

it would provide some philosophical background to be associated with 

the fact that the function p(a,A,b,B) derived from quantum theory 

does not have property 3. However, the function p(a,A,b,B) still 

does not have property 3 for any £ > 0 and, therefore, no determinis­

tic or random process(lZ) can possibly generate a value for a[B] with-

out the knowledge of B[A] , as has been shown in this paper . 
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Figure Captions 

Fig. 1.- Domains S(O,A,8) of the variables a and b for which a function 

p(a,A,b,8) is not zero. The function is uniform in a and b in the 

rectangle OPQR and zero outside for A= A
1 

and 8 = 81. For A and~ 

equal to A1 and 8
2

, A2 and 8
1

, or A2 or 82, the distribution is uniform 

in the rectangle OPQ'R' and zero outside. 

Fig. 2.- Domains S(O,A1'81), S(O,A1,82), s(O,A2,81), and S(O,A2,B2) of 

the variables a and b for which distributions p(a,A1,b,81), p(a,A1,b,B2), 

p(a,A2,b,B
1
), and p(a,A2,b,82) are not zero. Each of them consists of 

the inside of two ellipses inside of which the distribution p(a,A,b,8) 

is uniform in a and b. 

Fig. 3.- Schematic of the experiment described in sect. 3.2 
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