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Abstract: Murine herpesvirus-68 (MHV-68) productively infects mouse lungs, exhibiting a complex
pathology characteristic of both acute viral infections and chronic respiratory diseases. We sought to
discover proteins differentially expressed in bronchoalveolar lavage (BAL) from mice infected with
MHV-68. Mice were infected intranasally with MHV-68. After nine days, as the lytic phase of infection
resolved, differential BAL proteins were identified by two-dimensional (2D) electrophoresis and mass
spectrometry. Of 23 unique proteins, acute phase proteins, vitamin A transport, and oxidative stress
response factors Pdx6 and EC-SOD (Sod3) were enriched. Correspondingly, iNOS2 was induced
in lung tissue by seven days post-infection. Oxidative stress was partly a direct result of MHV-68
infection, as reactive oxygen species (ROS) were induced in cultured murine NIH3T3 fibroblasts and
human lung A549 cells infected with MHV-68. Finally, mice infected with a recombinant MHV-68
co-expressing inflammatory cytokine murine interleukin 6 (IL6) showed exacerbated oxidative stress
and soluble type I collagen characteristic of tissue recovery. Thus, oxidative stress appears to be
a salient feature of MHV-68 pathogenesis, in part caused by lytic replication of the virus and IL6.
Proteins and small molecules in lung oxidative stress networks therefore may provide new therapeutic
targets to ameliorate respiratory virus infections.

Keywords: murine herpesvirus-68; MHV-68; bronchoalveolar lavage fluid; BAL; proteomics;
oxidative stress

1. Introduction

Respiratory virus infections have the potential to cause significant lung pathology including
acute respiratory distress syndrome (ARDS). In addition to the continual burden of disease from
respiratory viruses such as influenza types A and B, respiratory syncytial virus (RSV), parainfluenza
viruses, adenovirus, recently emerged coronaviruses responsible for Middle East (MERS-CoV) and
severe acute (SARS-CoV) respiratory syndromes, H5N1 and H7N9 pathogenic avian influenza
viruses, pandemic swine-origin (H1N1) influenza, and human metapneumovirus target the human
lungs [1–7]. Co-morbid, underlying pulmonary medical conditions including asthma, chronic
obstructive pulmonary disease (COPD), and tuberculosis (TB) are associated with severe respiratory
virus infections [8–11]. Moreover, chronic pulmonary diseases such as asthma, COPD, and
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idiopathic pulmonary fibrosis (IPF) might have an infectious viral component to their onset and/or
pathogenesis. The gammaherpesviruses Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8)
and Epstein–Barr virus (EBV) have been detected in the lung tissue of patients with IPF and
acquired immune deficiency syndrome (AIDS)-related lymphocytic interstitial pneumonias [12–14].
In contrast, a murine gammaherpesvirus is protective in mice challenged with lethal influenza A
virus, suggesting immunomodulatory roles for gammaherpesviruses in the pathogenesis of lung
infections [14]. Thus, the application of new genomics technologies for understanding respiratory
virus infections under isogenic host conditions might yield deeper insight into the pathological changes
that occur in virus infection of the mammalian lung, and provide targets for diagnostic biomarkers or
therapeutic intervention.

Murine gammaherpesvirus-68 (MHV-68) infects the lungs of wild and laboratory mice,
productively infecting type I and II alveolar epithelial cells, macrophages, and dendritic cells
(DCs) [15,16]. MHV-68 exhibits characteristics of both acute and chronic respiratory pathogens.
Even though MHV-68 can inhibit type I interferon secretion by DCs [17], the lungs of mice infected by
the virus eventually exhibit discernable pathology, including usual interstitial pneumonia (UIP) with
diffuse alveolar damage (DAD), and infiltration of inflammatory cells [16,18,19]. MHV-68 infection
induces pro-inflammatory chemokines including MCP-1, MIP-1a, MIP-1b, IP-10 and RANTES [20] in
the lung, and interleukin-6 (IL6) and type II interferon (IFN-gamma in the draining (mediastinal) lymph
nodes) [21]. Acute infection is resolved and lytic replication of the virus is cleared from the lungs in a
CD8+ cytotoxic T-lymphocyte (CTL-) and type I alpha/beta-interferon receptor (IFNAR)-dependent
manner [22,23]. Clearance also requires CD80/CD86 antigen presentation [24], IFN-γ [25], and
some degree of CD4+ T-cell help reliant on PKCθ [26]. However, as gammaherpesvirus infection
progresses into latency, MHV-68 DNA remains detectable in the lung parenchyma, recapitulating
a chronic disease characterized by increased interstitial collagen deposition, immune deregulation,
and fibroblast proliferative events similar to those thought to occur early in the development of
idiopathic pulmonary fibrosis (IPF). This chronic pathology phenotype is more clearly observed under
experimental conditions where the lungs have been insulted prior to infection by an agent that induces
pulmonary fibrosis [27], such as fluorescein isothyocyanate (FITC), or in mice deficient in immune
responses, such as interferon gamma receptor-null mice [15].

The pro-inflammatory cytokine IL6 is thought to be involved in the host response to respiratory
infections. IL6 is upregulated in ARDS caused by bacterial pneumonias in human patients [28], and in
LPS-treated human lung cells infected with RSV [29]. While no differences in viral life cycle, cytokine
profiles, nor cytotoxic T-cell responses were observed in MHV-68 infection of IL6-deficient mice, IL6
does appear to regulate natural killer (NK) cells responding to MHV-68 infection [30]. Interestingly,
KSHV also encodes a viral homologue of IL6 (vIL6) with distinct signaling activity during lytic
infection [31,32]. To study the role of exogenous expression of this cytokine in gammaherpesvirus
infection of the lung, we constructed a recombinant MHV-68 virus expressing murine IL6.

Proteomics analysis of bronchoalveolar lavage (BAL) fluid has emerged as a new approach to
understand pathophysiological events occurring in acute, infectious, malignant or chronic obstructive
lung diseases, both in human patients and animal models [33,34]. BAL is a rich source of information
about lung cytokine and chemokine responses, inflammatory proteins, and immune cells present or
infiltrating into the alveolar lumen. In proteomics studies, proteins isolated from BAL fluid have been
typically analyzed by isoelectric focusing followed by two-dimensional electrophoresis (IEF/2DE),
or by multidimensional protein identification technology (MudPIT), allowing for the identification
of differentially-expressed proteins secreted or released via pathological processes into the alveolar
lumen. These studies have begun to add a new dimension into the characterization of human or
mouse physiological responses to acute lung injury (ALI) [33], acute respiratory distress syndrome
(ARDS) [35,36], and diffuse interstitial lung diseases including IPF [37], COPD [38], and oxidative or
toxicological damage to the lung [39,40]. In animal models of infectious diseases, BAL has revealed lung
cytokine and chemokine profiles and immune cell populations in response to virus infections [15,20,41].
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For a monkeypox virus infection model in macaques [42] and three pathogens in mouse infection
models, RSV [43], Staphylococcus aureus [44,45], and Klebsiella pneumoniae [46], proteomics analyses
of BAL have identified inflammatory proteins and revealed commonalities in infectious pulmonary
pathophysiology. Analysis of mouse BAL by IEF/2DE showed a suppression of antioxidant and
oxidative stress proteins during RSV infection [43]. However, no analysis using differential IEF/2DE
proteomics in MHV-68 infection of the mouse lung have been published to date.

As many human viruses infect the lung, understanding the proteins present in BAL using MHV-68
as a model may uncover novel aspects of the mammalian host’s response to pulmonary viral infections.
Using proteomics, we have identified mouse BAL proteins that are differentially up-regulated by
virus infection and overexpression of a immunomodulatory cytokine (IL6). Proteins involved in the
acute phase response, oxidative stress responses, and vitamin A signaling were salient in the MHV-68
infected lung. Interestingly, these proteins are induced by nine days post-infection (d.p.i.), as the
initial phase of MHV-68 infection resolves and lytic replicating virus is cleared from the lungs by T-cell
mediated host responses [20,23]. The experimental protocol herein demonstrates the feasibility of
differential BAL proteomics to characterize less abundant, highly regulated host factors in BAL fluid.

2. Materials and Methods

2.1. Viruses and cell Cultures

Wild-type (WT) MHV-68, MHV68/IL6, and red fluorescent protein (RFP)/MHV-68 viruses in
this study were all titered by plaque overlay assay on BHK21 cells as previously described [47,48].
Recombinant viruses were generated by co-transfection of MHV-68 genomic DNA and a PCR-generated
cDNA encoding the gene to be inserted flanked by MHV-68 sequences corresponding to the MHV-68
genome. MHV68/IL6 virus was generated by homologous insertion of murine cDNA encoding
interleukin-6 (IL6) driven by a cytomegalovirus (CMV) immediate early (IE) promoter–enhancer into an
intergenic locus near the 5′ end of the MHV-68 genome [49]. The RFP/MHV-68 virus was generated in
a similar manner whereby a cDNA encoding RFP driven by CMV IE promoter–enhancer was inserted
into the ORF28 locus. The ORF28 gene is dispensable for infection of cultured cells and Mus musculus
models of MHV-68 infection [50]. Recombinant viruses were selected by plaque-purification, viral
DNA was purified and screened for cDNA insertion into expected loci by PCR and restriction fragment
digestion followed by Southern blotting, as has been described [48,49,51]. During lytic infection in
NIH3T3 cells, expression of IL6 from the MHV68/IL6 virus was confirmed by Western blotting and
ELISA; for RFP/MHV-68, expression of RFP was observed by epifluorescent microscopy. To probe for
reactive oxygen species (ROS), murine NIH3T3 or human A549 cells were infected with RFP/MHV-68 at
a multiplicity of infection (m.o.i) of 1 or 5 and at 4 h or 20 h post-infection (h.p.i.), cells were rinsed in cold
1 × phosphate-buffered saline (PBS), incubated for 5 min at 37 ◦C in the dark in 1× PBS containing 5 µM
5/6-carboxy-2′,7′-difluorodihydrofluorescein diacetate (H2DF2DA), a compound that exhibits superior
photostability compared to other fluorescein derivatives (Invitrogen, Carslbad, CA, USA), washed in
1 × PBS, and then imaged in an epifluorescent microscope. ROS-inducing compounds H2O2 or paraquat
(10 µM) were employed as positive controls for H2DF2DA fluorescence. For examining ROS effects
on viral titer, NIH3T3 cells were infected with RFP/MHV-68 (m.o.i. = 0.25) in the absence or presence
of 1 mM soluble glutathione (GSH) or 2–25 µM paraquat in media. After 20 h, culture supernatants
were diluted 1/2, 1/10, or 1/100, used to re-infect fresh NIH3T3 cells, and RFP fluorescence observed
20 h.p.i. by epifluroescence microscopy using a Zeiss Axiovert epifluorescence microscope (C. Zeiss AG,
Oberkochen, Germany).

2.2. Mouse Infections with MHV-68 and MHV68/IL6 Viruses

All in vivo mouse experiments were conducted at the University of California, Los Angeles
(UCLA) in a dedicated animal facility under approved protocols, following ethical guidelines for
laboratory animals in research by the Animal Research Committee at the University of California,
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Los Angeles (IACUC protocol number # 1999-058; Approved 1 Jan. 1999; renewed 2004–2006).
Twelve-week old male C57/BJ6 mice (Charles River Laboratories, Wilmington, MA, USA) were
anesthetized with 0.1 mL (100 mg/kg) ketamine by intraperitoneal (i.p.) injection, and then inoculated
with 20 µL DMEM (6 mice) or infected intranasally (i.n.) with 5 × 105 pfu of WT MHV-68 (6 mice) or
MHV68/IL6 (6 mice) virus diluted in 20 µL DMEM. Mice in each experimental group were housed
separately until sacrifice at 6 or 9 d.p.i., when at each timepoint, 3 mice in each experimental group
were anesthetized and sacrificed under anesthesia by i.p. injection of 0.1 mL ketamine. Mice were
subsequently dissected for bronchoalveolar lavage (BAL) thrice with 1.4 mL sterile 1 × PBS via a
rounded 21G syringe inserted by tracheotomy and affixed with suturing thread. Separately, 2 more
mice in the DMEM and in each infected group were sacrificed at 7 d.p.i. for whole-lung harvest
with snap-freezing of tissue in liquid N2, and determination of viral titer and gene expression as
described [47,49]. BAL fluid was centrifuged immediately (2000× g, 15 min., 4 ◦C) to separate soluble,
supernatant phases and the cell/debris pellet. Supernatants were kept at −80 ◦C until processing. Cell
pellets were resuspended in 50 µL 0.5% FBS DMEM containing 1 mM EDTA, and monocytes in 5 µL
aliquots were counted by trypan blue exclusion test with a hemocytometer. Aliquots of cell fractions
(5 µL) were also analyzed by thin smear on poly-lysine coated glass slides followed by fixation and
eosin/hematoxylin staining with Hema3 (Thermo Fisher Scientific, Waltham, MA, USA) according to
the manufacturer’s instructions, and light microscopy (Olympus Corp., Tokyo, Japan).

2.3. BAL Fluid Processing

Aliquots of BAL fluid supernatants were used for Sircol collagen assay, viral DNA detection by
quantitative PCR, and protein detection by Western blotting. For each experimental infection (MHV-68
and MHV68/IL6), one of the three BAL samples containing significant numbers of erythrocytes was
deselected. To have sufficient protein for resolution by proteomics methods, the remaining 2 BAL fluid
supernatants were pooled for each experimental condition, precipitated in 95% acetone at −20 ◦C for
2 h, centrifuged (4 ◦C, 15 min, 20,000× g), and then resuspended in binding buffer. To reduce abundant
immunoglobulins and albumin, Aurum column binding and elution (Bio-Rad, Hercules, CA, USA)
was done according to the manufacturer’s instructions. Eluents were re-concentrated and desalted by
4:1 acetone (95%, ice-cold) precipitation for 2 h, centrifuged (4 ◦C, 15 min, 20,000× g), and resuspended
in isoelectric focusing (IEF) buffer. A Bradford assay was used to quantify protein concentration prior
to and post-processing [52], and SDS-PAGE with SYPRO-Ruby staining was used to observe depletion
of abundant albumin bands.

2.4. Sircol Collagen Assay

For lung tissue collagen assay, 0.05 g lung tissue was homogenized in 0.5 M acetic acid (1 mL)
containing 7.5 mg pepsin, and rotated for 24 h at 4 ◦C. Samples were briefly centrifuged to pellet
debris, and 100 µL of each supernatant was assayed for collagen by Sircol assay as described by the
manufacturer (BioColor Ltd., Carrickfergus Belfast, UK). For measuring soluble collagen in BAL fluid,
aliquots of 25 µL were subjected to Sircol assay. Collagen concentration was determined by absorbance
at 540 nm in a spectrophotometer and titration according to standard curves generated for lung tissue
and BAL fluid.

2.5. Catalase Assay and Immunoblotting

NIH3T3 cells were lysed in passive lysis buffer and protein content was normalized by a Bradford
assay as described previously [52], and lysates were subjected to a catalase activity assay (Sigma,
St. Louis, MO, USA) according to the manufacturer’s instructions. A standard curve was generated
with controlled quantities of H2O2. H2O2 treatment for 24 h yielded only a minimal induction
of catalase activity in this assay. For Western blots, protein lysates separated by SDS-PAGE were
Western blotted and probed with specific polyclonal anti-ORF65/M9 anti-sera or anti-catalase antibody
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(Calbiochem, San Diego, CA, USA) with HRP-linked secondary and electrochemiluminescent detection
as described [48].

2.6. PCR

For quantitative RT-PCR, total RNA was isolated from mouse lungs 7 d.p.i. and reverse transcribed
into cDNA as described [47,49]. Primers to specific murine genes (described in Supporting Information
Table S2) were used to amplify transcript cDNA and relative transcript copies determined by the
∆∆CT method with an actin internal control by SyberGreen (Applied Biosystems, Carlsbad, CA, USA)
real-time detection on a LightCycler thermocycler (Roche, Indianapolis, IN, USA). Significance of
relative gene expression was determined by an unpaired, 2-tailed t-test. Viral DNA representing viral
genome copy number was determined for each mouse BAL sample by qPCR with primers specific to
MHV-68 genomic ORF65/M9 or ORF57 loci as previously described [48,51].

2.7. IEF, 2D-PAGE, Spot Mapping and Densitometry

Eluted BAL proteins (300 µL) were resuspended in IEF buffer containing ampholytes covering the
pH 3–10 range (Bio-Rad, Hercules, CA, USA). Samples passively loaded on rehydrated, immobilized
11 cm nonlinear pH 3–10 gradient IPG strips (Bio-Rad, Hercules, CA, USA) and then focused by pI for
18 h ramping over 6 h to a maximum current of 70,000 V-h in a Protean IEF Cell (Bio-Rad, Inc., Hercules,
CA, USA). Strips were re-equilibrated for 30′ in DTT and then iodoacetamide buffers and proteins
separated by mass in a denaturing 8–16% gradient Criterion 2D-PAGE (Bio-Rad, Inc., Hercules, CA,
USA). Two-dimensional gels were briefly incubated in 10% methanol/5% acetic acid, rinsed in ddH2O,
and stained for 3 h with SYPRO-Ruby (Invitrogen, Carlsbad, CA, USA). Gels were imaged under UV
light and analyzed to identify differentially-expressed protein spots. Proteins resolved in the pH 4–7
range were sufficiently separated for spot mapping across gels using an integrated ProteomeWorks
PD Quest 7.1 imager and software (Bio-Rad, Carlsbad, CA, USA) with manual spot validation. Spots
were quantified by peak cross-sectional densitometry using ImageQuant (GE Healthcare, Piscataway,
NJ, USA), and normalized to an average of oxytocin-receptor (spot 13) and a common major form of
eluted albumin (spot 5) relative to gel image background density. A total of 89 abundant differential
spots across the three experimental conditions were excised and in-gel digested in Trypsin Gold MS
(Promega, Madison, WI, USA), and alkylated peptides were extracted, dried and stored at −80 ◦C as
described previously [53] for mass spectrometry identification.

2.8. Mass Spectrometry

Tryptic peptide digests of proteins were separated on a reverse phase column and identified
by tandem micro-LC/MS-MS and in some cases, by MALDI-TOF mass spectrometry, with sample
handling as described previously [54,55]. BSA (5 pmol) digested in Trypsin Gold was used to
generate positive control spectra for LC/MS-MS and MALDI-TOF experiments, respectively. Briefly,
MS-MS spectra were captured on an AB Sciex Qstar quadrapole XL hybrid TOF LC/MS-MS (Applied
Biosystems, Foster City, CA, USA) with tandem peptide ion fragmentation running in Information
Dependent Acquisition (IDA) mode. Peptide and fragment a-, b- and y-series ions spectra were
analyzed by Mascot software (Matrix Sciences, Boston, MA, USA) with peptide tolerance set at <0.5 Da,
MS/MS tolerance < 0.8 Da, charge states + 1/ + 2/ + 3/ + 4, 1 tryptic digest miss allowed, oxidation of
Cys and Met, with peptide identification by search against the predicted mouse proteome at NCBI
and EBI reference databases. From tryptic digests of excised spots, 44 yielded peptide data identifying
23 unique proteins. Positive identification cutoffs were determined on a case-by-case basis with
expectation scores < 10−2 (p < 0.05, for 20 hits), or p < 0.1, for 3 hits, considering multiple peptide hits
and supporting MALDI-TOF data in assignment. Another 7 spots did not meet a significance cutoff or
poorly matched predicted pI and MW, including annexin A5, hemoglobin fragment, triose phosphate
isomerase, matrix metalloproteinase 8, serpin b 3d, and collagens I and VI (p > 0.10).
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For MALDI-TOF, aliquots of peptide digests were mixed with 200× proportion of α-cyano FHSA
matrix dissolved in 70% acetonitrile and 0.1% TFA and spotted with laser ionization and data capture
with a low mass gate (500 Da) on an AB Sciex Voyager MALDI-TOF running PD Quest software
(Applied Biosystems, Foster City, CA, USA). MALDI peptide data were searched against the mouse
proteome using Aldente software [56], with predicted pI and molecular mass data estimated from
2D-PAGE spots.

2.9. Bioinformatics Analyses

Functional enrichment among the set of proteins discovered in enriched BAL fluid was analyzed
by Ingenuity Pathways Analysis (IPA 7.6, Ingenuity Systems Corp., Redwood, CA, USA) as described [57];
IPA categories were tested for significance by a Benjamini–Hochberg test for false discovery [58]. BAL
protein functions were also analyzed by Database for Annotation, Visualization, and Integrated
Discovery (DAVID) algorithms [59] to assess significant Gene Ontology (GO), InterPro (IPR), and
Protein Information Resource (SP_PIR) annotations. A subnetwork of oxidative stress-associated
molecules was discovered and extracted using IPA with manual literature curation to construct a
network model [60]. Amino acid sequences of human and mouse TNFAIP8 family proteins were
obtained from the UniProt database and CLUSTAL multiple sequence alignments performed and
formatted using MAFFT FFT-NS-2 v5.731 [61].

3. Results

3.1. Recovery and Characterization of BAL Fluid from Mouse Lungs Infected with MHV-68

An unexpected observation regarding MHV-68 infection of laboratory mice was that MHV-68
infection could exacerbate pulmonary fibrosis [15,27,62–65]. Thus, we also sought to identify proteins
induced by MHV-68 infection accompanied by co-expression of murine IL6, a pro-fibrotic cytokine.
C57/BJ6 mice were inoculated intranasally (i.n.) with DMEM, or infected with a high titer of WT
MHV-68 or a recombinant MHV-68 virus co-expressing murine interleukin-6 (IL6) from a constitutive
promoter. To discover secreted or extracellular proteins in virus infection of the mouse lungs, we
developed an experimental procedure to analyze the BAL fluid proteome (Figure 1A). At six d.p.i. and
nine d.p.i., BAL fluid was collected and analyzed for cells, protein, soluble collagen, and viral DNA
content. At six d.p.i., MHV68/IL6 showed significantly more soluble type I collagen in BAL fluid than
WT MHV-68 infection; by nine d.p.i., soluble type I collagen was significantly higher in BAL fluid from
both WT and MHV68/IL6 infection in comparison to the uninfected control (Figure 1B). Subsequent
analysis focused on the nine d.p.i. timepoint, for which soluble type I collagen levels in BAL were
similar between the WT virus and MHV68/IL6, and good resolution of proteins by IEF/2DE was
achieved. Both protein concentration and mononuclear cellularity in BAL fluid were substantially
higher in infected vs. uninfected mice at nine d.p.i., and viral DNA was detected (Figure 1C). MHV-68
viral capsid antigen ORF65/M9 was also present in clarified BAL fluid (Figure S1B). Differences in
extracellular virion DNA or DNA from damaged cells in the lung (Figure S1A), which are not a direct
measurement of infectious virus titer, were not significant (p > 0.1, two-tailed t-test). Numbers of BAL
mononucleocytes recovered (Figure 1C) was similar to a previous report of phenotypic characterization
of mononuclear cell infiltrates (Figure S1C), chemokines and cytokines in MHV-68 infection of the
lungs [20].
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Figure 1. Analysis of bronchoalveolar lavage (BAL) fluid from murine herpesvirus-68 (MHV-68)
infection of the mouse lung. (A) Overview of differential proteomics analysis of proteins induced in
BAL by virus infection. Wild-type (WT) MHV-68 or MHV68/IL6 virus infection, BAL fluid processing,
protein spot identification, and protein data analysis scheme. BAL fluid processing removed cells,
immunoglobulins, excess albumin, and salts, enriching the recovered eluent for less-abundant proteins.
(B) Collagen production in MHV-68 infection of the mouse lung is exacerbated by lytic expression
of interleukin-6 (IL6). C57/BJ6 mice were mock infected with DMEM or infected intranasally with
5 × 105 pfu of WT MHV-68 or MHV68/IL6 virus. Type I collagen in BAL fluid in MHV-68 and
MHV68/IL6 infection was measured at indicated times post-infection by Sircol assay; p-value of
fold induction estimated from unpaired, 2-tailed t-test; error bars represent standard error on the
mean (S.E.M.) (C) Characteristics of bronchoalveolar lavage (BAL) fluid. BAL fluid recovered 9 days
post-infection (d.p.i.) from C57/BJ6 mice inoculated as above was processed to remove cells, salts,
abundant serum proteins and immunoglobulins. Average protein concentration was measured by
Bradford assay (±1 s.d.); eluate exhibited significant differences (p < 0.05, unpaired, 2-tailed t-test)
between MHV-68 and DMEM and MHV68/IL6 and DMEM. Average viral DNA copy number
(1 × 105 cp) in BAL in 3 mice for each condition measured by qPCR, and average mononuclear
cellularity (1 × 105 cells) measured by trypan blue hemocytometry; differences not significant.
IEF = isoelectric focusing.
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3.2. Differential Proteomics Analysis of BAL Fluid

Recovered BAL fluid from nine d.p.i. was pooled for each experimental condition (three mice
in DMEM, or two mice for WT MHV-68 and MHV68/IL6, respectively), after processing to remove
cells and reduce abundant immunoglobulins, albumin, and salts. Reduction of the most abundant
proteins in biofluids is a common approach for reducing proteome complexity to enrich less abundant
but biologically interesting proteins [66]. Enriched BAL proteins were analyzed by comparative 2D
gel electrophoresis (IEF/2DE) display (Figure 2). WT MHV-68 and MHV68/IL6 infection induced a
considerably more complex proteome than DMEM-inoculated control mice. Prominent constitutive and
differentially-expressed orthologous proteins were mapped and identified by LC/MS-MS and/or MALDI
mass spectrometry. We mapped 39 spots in the pH 3–7 range, and identified 23 unique proteins, of
which 20 proteins had high significance scores (p < 0.05), for example peroxiredoxin 6 (Pdx6, spot #15 in
Figure 2; see Figure S2 for example of detailed peptide LC/MS-MS data), and three proteins (A2MP, OxtR,
and Tnfaip8l2) had marginal scores (p < 0.1) for at least two peptide matches (Supporting Information
Table S1). Even though viral ORF65/M9 antigen was detected by Western blot in clarified BAL fluid
supernatants (Figure S1), peptides matching MHV-68 virion proteins [53] in enriched BAL fluid data did
not reach the significance cutoff (p > 0.10). Of the proteins identified, 13 were induced by WT MHV-68
infection (six strongly), and five were markedly upregulated in the context of MHV68/IL6 (Figure 2D).
Another four proteins showed a reduced abundance in the context of either virus infection in comparison
to DMEM-treated or uninfected control mice (Figure 2D and Table S1).

3.3. Functions of Proteins Induced by MHV-68 in Lungs

While this survey is not a comprehensive list of BAL proteins [34,67], the proteins identified fell
into four broad functional groups according to Gene Ontology (GO) classification and the scientific
literature (Table 1): (i) acute phase response (APR) and inflammation, (ii) oxidative stress response,
(iii) phospholipid metabolism and signaling, and (iv) molecular transport and serum proteins. Most of
these proteins have been implicated in inflammation or lung diseases, and many have been identified
in proteomics studies of BAL from human patients with ARDS [35,36,68], acute lung diseases [33],
IPF [37], or proteomics analysis of serum from patients with severe acute respiratory syndrome (SARS)
caused by SARS-coronavirus [69]. The MHV68/IL6 virus induced three antioxidant (thioredoxin-like
4B, peroxiredoxin 2, superoxide dismutase 3) and two acute phase (α2-macroglobulin, CRABP2)
proteins substantially more than WT MHV-68. Accordingly, oxidative stress [70,71] and acute phase
responses [72,73] have been shown to be regulated by IL6.
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Figure 2. Enriched BAL proteome from mice infected with MHV-68 viruses. Mice were intranasally
(i.n.) inoculated with DMEM (A), or infected i.n. with 5 × 105 pfu of WT MHV-68 (B) or MHV68/IL6
virus (C). BAL was collected from mouse lungs 9 d.p.i., pooled, and processed to enrich for less
abundant proteins as described in Methods. Eluted BAL proteins were separated by isoelectric
focusing followed by 2D-PAGE and SYPRO-Ruby staining. Proteins resolved in the pH 4–7 range were
sufficiently separated for spot identification (red numbers), excision, and tryptic digestion for protein
identification by MALDI and/or LC/MS-MS. Spots were quantified by densitometry, normalized
as described in Methods, and fold induction over orthologous spots in mock (DMEM) treatment is
indicated (D). Significant fold induction (>2.0) of MHV68/IL6 over WT MHV-68 specified.
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Table 1. Functions of bronchoalveolar lavage proteins identified in MHV-68 infection. Functions of constitutive and differentially-expressed proteins identified by
proteomics from BAL fluid from mock (DMEM), MHV-68 infected, and MHV-IL6 infected mice, with selected findings in lung pathophysiology, inflammation and
infectious diseases

Spot a BAL Protein Identification Symbol GO:Terms b Function Lung Disease Finding c

Acute Phase Response and Inflammation
1 α1-acid glycoprotein 1B A1AG1 0002682 Lipocalin-like immune regulator APR; TB; IAV
2 α1-anti-trypsin (serpin A1) A1AT6 0004867 Serine-type endopeptidase inhibitor APR; ARDS; COPD; SARS; IAV
3 α2-macroglobulin A2MP 0004867 Serum-type endopeptidase inhibitor APR; ARDS; IPF

11 Haptoglobin Hp 0004252 Serine-type endopeptidase APR; SARS
12 IL1 family member 10 IL1f10 0005152 IL1-receptor antagonist APR; IPF
21 TNF α-induced protein 8-like 2 Tnfaip8l2 0050728 Negative immune regulator Anti-proliferative

Oxidative Stress Response
19 Superoxide dismutase 3 [Cu-Zn], ex. EC-SOD 0006979 Response to oxidative stress ARDS; NFκB; antioxidant
10 Glutathione-S-transferase, mu1 GSTm1 0004364 Response to oxidative stress Antioxidant
14 Peroxiredoxin 2 Pdx2 0006979 Response to oxidative stress ARDS; SARS; IAV; antioxidant
15 Peroxiredoxin 6 Pdx6 0000302 Response to reactive oxygen species Sf-PhL; IAV; antioxidant
20 Thioredoxin-like 4B TXNL4B 0030612 Thioredoxin activity Antioxidant

Phospholipid Metabolism and Signaling
8 Calcyclin S100a6 0048146 Fibroblast proliferation Growth factor
9 Clara cell protein 10 CC10 0019834 Phospholipase A2 inhibitor Sf-PhL

13 Oxytocin receptor OxtR 0004990 Oxytocin receptor activity
16 Phospholipase A2, secreted PLA2G12A 0004623 Phospholipase A2 activity SARS; IAV; Sf-PhL
12 Hydrocephalus-inducing protein Hydin 0003341 Movement of tracheal cilia

Molecular Transport/Serum
5 Albumin Alb 0006810 Molecular transport in serum
6 Annexin A5 Anxa5 0050819 Negative regulation of coagulation Anticoagulant
4 α2-u-globulin (mj urinary protein 6) Mup6 0005550 Lipocalin-like pheromone transport Allergen
7 Apolipoprotein E ApoE 0017127 Cholesterol, lipid transport in serum Sf-PhL

17 Plasma retinol binding protein RBP4 0001972 Plasma retinol and vitamin A carrier SARS; VA; APR (negative)
18 Retinoic acid binding protein 2 CRABP2 0001972 Retinoic acid (retinol) binding APR; VA
22 Transthyretin TTR 0005179 Vitamin A and T4/thyroxine transport APR; VA

a Proteins spots from 2D electrophoresis identified by mass spectrometry. b Selected Gene Ontology (GO) term. c Selected findings in lung diseases: APR, acute phase response; ARDS,
acute respiratory distress syndrome; COPD, chronic obstructive pulmonary disease; IAV, influenza A virus infection; IPF, idiopathic pulmonary fibrosis; NF-κB, nuclear factor κB induced
gene; SARS, severe acute respiratory syndrome caused by SARS-CoV; Sf-PhL, surfactant-phospholipid oxidation/regulation; TB, tuberculosis; VA, vitamin A (retinol/retinoic acid)
transport, signaling and metabolism. Refer to text for references and discussion.
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3.4. Functional Enrichment Analysis

To gain a more systematic understanding of protein functions induced in response to MHV-68
infection of the lung, we undertook bioinformatics analyses to identify functional enrichment for the
20 of 23 significant or marginally significant proteins identified in MHV-68 BAL. Albumin, a reference
serum protein, and protein fragments (Hydin and OxtR) were not included. Among BAL proteins,
significantly enriched functional categories included physiological stress (p = 0.0010), oxidative
stress annotations (p < 0.0001), and acute phase response (p = 0.0028) (Figure 3). Oxidative stress
response proteins included reactive oxygen species (ROS) and detoxifying enzymes (peroxiredoxins,
thioredoxins, and superoxide dismutase). Acute phase response (APR) proteins overlapped with
other enriched functions, including physiological stress response and signaling (p = 0.039). Among
signaling proteins, vitamin A (retinoic acid) binding was a significant function (p = 0.0094) for three
proteins that were also induced in APR: CRABP2, transthyretin (TTR), and plasma retinol binding
protein (RBP4). Proteins induced by WT MHV-68 infection were predominantly in the stress response,
acute phase, signaling, and oxidative stress categories. Exogenous expression of IL6 in the context of
MHV-68 infection primarily induced oxidative stress and APR proteins as well as vitamin A binding
protein CRABP2; RBP4 was weakly induced in the context of IL6. Finally, signaling and APR proteins
(calcyclin, Clara cell protein 10, and haptoglobin) were found to be less abundant in WT MHV-68
compared to the control (“suppressed by MHV68”, Figure 3) but clearly not oxidative stress proteins.
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Figure 3. Functional enrichment matrix for identified BAL proteins. Protein functional enrichment
for 20 out of 23 BAL proteins identified, clustered by Gene Ontology (GO), InterPro (IPR), and
Protein Information Resource (SP_PIR) term annotation, Ingenuity Pathways Analysis (IPA), or
regulation by WT MHV-68 (MHV68) and MHV68/IL6 (infex). Dark gray, inclusion in functional
term or strong regulation. Light gray, weak induction by MHV-68 or MHV68/IL6. Proteins involved
in vitamin A (vit. A *) signaling and transport were enriched within the signaling category with
p = 0.0094. Significance estimated by p-values (labeled p) for enrichment in annotated functional
categories; Benjamini–Hochberg (pBH) false discovery probability values for IPA category analysis. n.s.
= not significant.

3.5. Acute Phase and Oxidative Stress Gene Expression in the MHV-68 Infected Lung

To further investigate acute phase and oxidative stress responses in lung tissue, the expression of
known host genes involved in these pathways was studied by quantitative real-time (qRT) PCR.
Two mice for each condition were infected with WT MHV-68, MHV68/IL6, or mock (DMEM)
inoculated, and RNA was extracted from total lung homogenates for qRT-PCR. By seven d.p.i.,
APR/vitamin A transport genes RBP4 and TTR were upregulated approximately four- and two-fold,
respectively, with significantly higher induction by MHV68/IL6 for RBP4 (Figure 4). MHV-68 infection
also generally induces oxidative stress genes in the lung by seven d.p.i. (Figure 4), including genes
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encoding lung antioxidant proteins Pdx6, EC-SOD, glutathione peroxidase 3 (Gpx3), and thioredoxin 1
(Trx1), as well as inducible nitric oxide synthetase (iNOS), a pro-inflammatory protein that is capable
of generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) as a byproduct of the
production of NO messenger [74].
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Figure 4. MHV-68 infection upregulates stress response genes in the lungs of infected mice. Mice were
mock-infected, or infected i.n. with 2 × 105 pfu of WT MHV-68 or MHV68/IL6. Total lung RNA was
isolated 7 d.p.i., and qRT-PCR performed with specific primers to murine acute phase, immunomodulatory,
oxidative stress response genes, and actin. p-values of fold induction estimated from unpaired, 2-tailed
t-test (sub-table) with p < 0.01 (***), p < 0.05 (**), p < 0.1 (*), or p > 0.1 (n.s., not significant). Error bars
represent S.E.M. TIPE2, Tnfaip8l2; Gpx3, glutathione peroxidase 3; iNOS, inducible nitric oxide synthetase;
SOD3, (extracellular) superoxide dismutase 3; Trx1, thioredoxin 1; RBP4, TTR, Pdx6, as in Table S2.

3.6. Lytic MHV-68 Infection Induces Oxidative Stress in Cultured Fibroblasts

To investigate the autonomous contribution of the MHV-68 lytic phase to oxidative stress in
infected cells, we studied the role of the MHV-68 lytic phase in the production of ROS in murine
NIH3T3 fibroblasts and human lung epithelioid A549 cells. As a control, we treated uninfected NIH3T3
cells with hydrogen peroxide, and induction of ROS was evident by oxidative green fluorescence
of H2DF2DA (Figure 5A, upper panel). To examine whether ROS is induced by MHV-68 infection,
sub-confluent NIH3T3 or A549 cells were infected with a recombinant MHV-68 virus expressing red
fluorescent protein (RFP) from the ORF28 late locus, and then stained with H2DF2DA at 20 h.p.i.
The majority of infected NIH3T3 or A549 cells (indicated by red fluorescence) exhibited a moderate
to bright green H2DF2DA oxidative fluorescence, indicative of a high level of ROS (Figure 5A, lower
two panels). Roughly 15% of infected NIH3T3 cells exhibited bright H2DF2DA oxidative fluorescence,
indicative of a high level of ROS, by 20 h.p.i. (Figure 5A). ROS can lead to the generation of peroxides
such as H2O2, which are reduced by the multi-subunit catalase enzyme. Indeed, catalase enzyme
(Figure 5B) and catalase activity (Figure 5C) were upregulated in NIH3T3 cells infected with WT
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MHV-68 (m.o.i. = 1) by 24 h.p.i. In contrast, only basal catalase activity was observed early during
MHV-68 infection at two h.p.i. and six h.p.i., analogous to simply adding excess H2O2 (Figure 5C).
ROS did not accumulate by four h.p.i. even in a high titer infection (m.o.i. = 5), but did by 20 h.p.i.
(Figure S3), suggesting that cytotoxicity associated with the late lytic cycle of virus infection is required
for the generation of ROS. However, ROS induction itself seems to have little effect on MHV-68 infection;
modulating cellular redox potential in infected NIH3T3 cells with sub-lethal doses of the oxidative
stress inducer paraquat only weakly enhanced lytic expression of RFP/MHV-68, and quenching ROS
with soluble glutathione had little discernable effect (Figure S3).
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Figure 5. MHV-68 infection induces reactive oxygen species (ROS) in cultured cells. (A) Murine
NIH3T3 fibroblasts or human lung A549 cells were infected (m.o.i. = 1) in triplicate with MHV-68
expressing red fluorescent protein (RFP/MHV-68, red channel). Supernatants were removed 20 h.p.i.,
and the cells were incubated with H2DF2DA and imaged by epifluorescence microscopy. Hydrogen
peroxide (H2O2) was a control for induction of ROS leading to oxidative fluorescence of H2DF2DA
(green channel). (B) NIH3T3 cells infected in triplicate with WT MHV-68 were lysed at the indicated
times, proteins separated by SDS-PAGE, and Western blots probed for catalase protein and MHV-68 lytic
antigen (ORF65) with specific antibodies and electrochemiluminescent secondary antibody detection.
(C) Induction of ROS measured by catalase activity assay. NIH3T3 cells in triplicate were untreated,
treated with H2O2 for 20 h, or infected with WT MHV-68 for the times indicated; cells were lysed and
aliquots measured for protein content by Bradford and catalase activity assays according to a standard
curve; only for 24 h, p < 0.05, two-tailed t-test; error bars represent S.E.M.

3.7. An Oxidative Stress Response Network Induced in Mouse Lungs by MHV-68 Infection

To gain a deeper understanding of the pathways induced in response to MHV-68 infection of the
lung and co-expression of IL6, we used Ingenuity Pathways Analysis (IPA) to extract an oxidative stress
and inflammatory response network centered on redox proteins identified in this study. While the
number of proteins identified in our proteomics study (Table S1) was insufficient for de novo network
discovery [60], analog curation using data from the Ingenuity KnowledgeBase and NCBI EntrezGene
allowed synthesis of a model depicting regulatory interactions (i.e., activation, inhibition, etc.) among
key molecules (Figure 6). A striking feature of the model is the multi-directional interaction between
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antioxidant proteins and transcriptional regulatory factors such as COX-2, NF-kB, and iNOS, all of
which have been found to be important to gammaherpesvirus infections [25,52,75].
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Figure 6. Oxidative stress network induced in mouse lungs by MHV-68. A sub-network of antioxidant
proteins was extracted by IPA and manually curated. MHV-68 lytic infection induces reactive oxygen
species (ROS) small molecules (red) that in turn induce oxidative stress response genes. Network
model includes proteins induced in infected lungs by MHV-68 (yellow) or by IL6 in the context of
MHV-68 infection (orange and orange-border), proteins directly upregulated by MHV-68 lytic infection
(pink and pink-border, [52]), and NF-kB, which has a complex interaction with MHV-68 lytic replication
(green, [75]). Antioxidant co-factors (aqua), other redox proteins (gray), activating interactions (arrows),
indirect regulation (dashed arrows and bars), and inhibitory interactions (blocking bars) indicate the
potential complexity of even a small-scale redox network in vivo.

4. Discussion

We have undertaken a differential proteomics analysis of BAL fluid to gain insight into the
pulmonary molecular pathology of respiratory virus infections in mice. As a tractable animal model of
gammaherpesvirus infection, the pathogenesis and immune response to MHV-68 in the mouse lung
has been a subject of considerable recent inquiry [16,18–21,23,47,64]. In such studies, BAL fluid has
been used to analyze immune cell infiltration, cytokine/chemokine profiles, and chemotaxis activity,
for example [15,20]. We found molecules in BAL fluid that provide additional insight as virus-induced
lung injury is resolved, uncovering molecular details (i.e., host factors and pathways) of the host
response to a virus in a quantifiable manner. Proteins induced by nine d.p.i. included oxidative stress
response proteins, acute phase proteins, signaling molecules and transporters (Table 1). Functional
category analyses indicated that redox, acute phase, and vitamin A proteins were significantly enriched
in the subset of BAL proteins we identified (Figure 3), suggesting that these processes are induced by
nine d.p.i. in MHV-68 infection of the mouse lung.
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4.1. Effects of Co-Expressing IL6

As suggested by experiments in IL6-deficient mice [30], IL6 may play a role in inflammation and
the development of lung pathology during MHV-68 infection rather than impacting viral replication.
Instead of comparing BAL proteins between WT and IL6-deficient mice, we took a different approach
to examine the effects of IL-6 by using an MHV68/IL6 virus that over-expresses this cytokine.
Co-expression of IL-6 in MHV-68 infection of the mouse lung showed neither significant difference in
replication kinetics nor whole lung viral titers in comparison to wild-type virus. However, MHV68/IL6
induced a subset of BAL proteins, including redox, acute phase, and vitamin A signaling/transport
molecules (Figure 2D), as well as type I collagen (Figure 1B). IL6 gene expression is induced by NF-kB
heterodimers, and IL6 in turn signals through an IL6 (CD126) receptor–gp130 co-receptor complex on
a subset of B-cells to NF-IL6, a pro-inflammatory transcription factor [76,77]. In the lung, IL6 regulates
natural killer (NK) cells responding to MHV-68 infection [30]. KSHV, a human gammaherpesvirus,
encodes a viral IL6 homologue that can signal though the gp130 co-receptor found on a range of
B-cells, independently of the cellular IL6 receptor [78]. The KSHV lytic transactivator replication
and transcription activator (RTA) also activates the human IL6 promoter [79]. In addition, KSHV
microRNAs (miRNAs) specifically induce IL6 and IL10 in macrophages [80]. Besides querying the
effects of supranormal IL6 levels on infected lung pathophysiology, inclusion of the MHV68/IL6
virus in our BAL proteomics analysis allowed for the development of an analytical IEF/2DE method
for differential protein discovery (Figure 2), demonstrating the potential utility of this approach for
querying viral mutants.

4.2. Oxidative Stress Response Proteins Are Induced in MHV-68 Infection of the Mouse Lung

In the BAL proteome, host antioxidant and oxidative stress response proteins were upregulated by
MHV-68 infection (Table 1), including Pdx6, EC-SOD, and a paralogue of GST (GSTm1). In whole lung
tissue, genes encoding iNOS, extracellular glutathione peroxidase (Gpx3), and a thioredoxin (Trx1),
were also induced (Figure 4). Co-expression of IL6 in MHV-68 infection further upregulated EC-SOD
(Figure 2D), and induced another peroxiredoxin (Pdx2) and a thioredoxin paralogue (TXNL4B).
Induction of antioxidant proteins suggests a pathophysiological response in the lungs to oxidative
stress. Induction of oxidative stress has been found in experimental virus infections in vivo, including
RSV in mice [43,81], and influenza virus infections in human epithelial cells, mice [82,83] and
macaques [57]. Antioxidant proteins can protect lung tissue from oxidative damage, detoxify oxidized
phospholipids, and reduce virus-associated ALI [83–85]. Oxidative stress induced in respiratory virus
infections can also have pleiotropic effects on lung gene expression and inflammatory processes such
as cytokine and chemokine production [57,82,86].

4.2.1. Sources of Oxidative Stress

We found that MHV-68 infection of cultured NIH3T3 fibroblasts or lung-derived A549 cells
induces ROS and catalase activity (Figure 5). Similarly, cultured cells infected with respiratory
syncytial virus (RSV), rhesus monkey rhadinovirus (RRV, another gammaherpesvirus), or HSV-1
show increased oxidative stress [43,87–89]. Two genes upregulated by MHV-68, COX-2 [52] and
iNOS (Figure 4), are capable of directly generating ROS as reaction byproducts [74,90]. Lytic MHV-68
infection proceeds under conditions of oxidative stress, as we found that treating infected cells with
paraquat did not inhibit but rather mildly enhanced RFP/MHV-68 virus infection (Figure S3). In vivo,
mice treated with NSAID-targeting COX-2 showed no differences in MHV-68 titers than controls ([52]).
In contrast, cytotoxic T-lymphocyte (CTL) immune control of MHV-68 is impaired in mice deficient
in iNOS, resulting in lethality [25]. While viral infection of type I and II lung epithelial cells likely
contributes directly to the induction of oxidative stress, there may be other contributing factors in the
alveolar microenvironment, such as degranulation of activated innate immune effector cells (alveolar
macrophages, natural killer cells, and neutrophils). For example, the Ncf1/NADPH oxidase complex
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in neutrophils also significantly contributes to ROS and oxidation of phospholipids in lungs insulted
with H5N1 highly pathogenic avian influenza (HPAI) [70].

4.2.2. Oxidative Damage to Surfactant Phospholipids

Pulmonary surfactant lipids and proteins have roles in antiviral defense and inflammatory and
immune responses against respiratory viruses such as influenza A viruses, RSV, and adenovirus [91].
Conversely, oxidative damage to phospholipids is implicated in ALI caused by viruses such as HPAI,
SARS-CoV [70], and RSV [81]. Oxidized phospholipids that accumulate in HPAI and SARS-CoV
infections also likely contribute to ALI and hypercytokinemia (“cytokine storm”) by signaling though
toll-like receptor 4 (TLR4) and TRIF/TICAM1 in macrophages, activating NF-kB and inducing
IL6 [70]. We found PLA2G12A, a secreted phospholipase A2 enzyme, highly upregulated in BAL
from MHV-68 infected mice at nine d.p.i. (Table 1 and Figure 2D). Phospholipase A2 enzymes are
involved in the degradation of damaged (oxidized) surfactant phospholipids including dipalmitoyl
phosphatidylcholine (DPPC), a process often upregulated in lung injury. Phospholipase A2 is inhibited
by abundant surfactant proteins including surfactant protein A (SP-A; [92]), and Clara cell protein
10 (CC10), which was downregulated in BAL from MHV-68 infection (Figure 2D). Another protein
induced in BAL, Pdx6, may reduce oxidized phospholipids, including DPPC, that have been modified
by ROS, allowing lipid recycling in type II epithelial cells or macrophages in the lungs [93–95].
Accordingly, surfactant protein expression is altered in chronic MHV-68 infection of interferon gamma
receptor (IFNGR)-null mice that display a pathology reminiscent of IPF [15]. These finding suggest a
role for lung surfactant lipids and lipid-associated proteins in the pathogenesis of MHV-68 in the lungs.

4.2.3. Comparison to other Respiratory Diseases and Role of Nrf2

In contrast to MHV-68 infection, expression of antioxidant (oxidative stress response) proteins
SOD1, GPx1, Pdx6, GSTmu1, and catalase were suppressed during RSV infection in the lungs of
mice and human patients [43]. The antioxidant transcription factor Nrf2 was also suppressed in RSV
infection, while Pdx2 was induced like in MHV-68 infection. The importance of the Nrf2-mediated
response was illustrated in knockout mice, whereby Nrf2 protected lung cells from bronchopulmonary
injury by RSV and influenza A virus [81,82]. Interestingly, a close association between oxidative stress
and pro-fibrotic inflammation in the lung, marked by elevated Nrf2 expression, is well-established in
human patients with IPF and/or interstitial pneumonia [96,97]. Human Pdx2 particularly has also
been found upregulated in UIP/IPF lung tissue, in particularly in alveolar macrophages [98]. Thus,
the role of Nrf2 in the induction of antioxidant defenses and pro-fibrotic pathophysiology of MHV-68
is in need of further investigation.

4.3. Modeling a Complex Relationship

A network of molecules intersects with these antioxidant proteins, including NF-kB, IL6, COX-2,
iNOS, Nrf2, and small molecules, suggesting multiple points at which MHV-68 infection might
generate an oxidative stress in the lungs (Figure 6). For example, while it is suspected that NFκB can
be activated by oxidative stress in viral infections [81,82], the relationship between NF-kB signaling
and gammaherpesvirus pathogenesis is complex and poorly understood. It has been reported that
NFκB is activated by MHV-68 lytic replication [63], while paradoxically, NF-kB activation can also
inhibit the initiation of MHV-68 lytic replication [75]. Regulation of NF-kB is an enriched function
among cellular proteins interacting with MHV-68 proteins [99], and the lytic protein ORF73 promotes
ubiquitination and degradation of p65/RelA [100]. Likewise, inhibition of NF-kB leads to upregulation
of ROS and reactivation of latent KSHV by activating expression of the lytic transactivator protein,
RTA [101]. Moreover, experimental inhibition of NF-kB blocks chemokine responses and development
of pulmonary fibrosis in the lung in MHV-68 infection [63]. Functional genomics studies may provide
additional molecular insight into virus–host interactions controlling MHV-68 infection and induction
of oxidative stress [99].
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4.3.1. Acute Phase Response

Appearance of acute phase proteins in the serum is a hallmark of systemic inflammation
resulting from infections, including bacterial sepsis, pneumonia, and human immunodeficiency
virus (HIV-1) [102–105]. The release of acute phase proteins from liver hepatocytes or other tissues
is dependent on IL6 and other cytokines [106,107]. The finding of acute phase proteins in BAL from
MHV-68 infected mice indicate a systemic response to intranasal MHV-68 infection, or leakage of
serum proteins into the pleural interstitial and alveolar lumen, consistent with previous findings of
UIP pathology in MHV-68 infection [16]. We found acute phase-related proteins in BAL at nine d.p.i,
including α1-antitrypsin (A1AT6), α2-macroglobulin (A2MP), α1-acid glycoprotein 1B (A1AG1/AGP),
haptoglobin, and vitamin A transport molecules CRABP2, TTR, and RBP4 (Table 1 and Figure 3). AGP
is immunomodulatory, induced in experimental pulmonary tuberculosis [108] and influenza [72] in
mice. A1AT6 is a protease inhibitor induced by MHV-68, while the endopeptidase haptoglobin is
suppressed (Figure 2D); along with type I collagen accumulation (Figure 1B), an anti-proteolytic lung
tissue remodeling environment is apparent. IL6 has also been suggested to enhance the production of
acute phase response proteins in virus infections [106]. Indeed, the protease inhibitor A2MP is induced
in MHV68/IL6 infection (Figure 2D), consistent with higher type I collagen deposition. Finally, vitamin
A (retinoic acid, RA) is a signaling molecule carried in the serum as all-trans retinol by an RBP4 and
TTR dimer complex [109]. Vitamin A inhibits HSV-1 [110] and KSHV [111] replication in cell culture.
Vitamin A can activate the immune response to infection in the respiratory tract, for example, by
enhancing Th2 responses and IgA secretion in influenza virus infection of mice [112]. In the lungs,
vitamin A counter-acts IL6 and protects against bleomycin-induced fibrotic lung injury [113,114].
The immunoregulatory function of vitamin A is not understood in MHV-68 infection.

4.3.2. Other Immunomodulatory Proteins in BAL Fluid

One gene encoding an immune modulator, Tnfaip8l2, was induced in BAL by MHV-68 infection
by nine d.p.i. (Table S2). While LC/MS-MS peptide data identification of this protein was of marginal
significance (p < 0.1), the gene encoding Tnfaip8l2 was also weakly upregulated in lung tissue by
seven d.p.i. (Figure 4). TNFα-interacting protein 8 members, including Tnfaip8l2 (TIPE2), form a
conserved gene family in humans and mice (Figure S4) involved in immune homeostasis. TIPE2
downregulates inflammatory responses mediated by toll-like receptors (TLR), T-cell receptors (TCR),
and NFκB signaling, which in turn promotes Fas-mediated apoptosis in lymphoid cells [115]. Except
for Tnfaip8l2 and a weak match to annexin A5, we did not find other cell death regulators in BAL
at nine d.p.i. Cell death in MHV-68 infection has been found to be mediated by CD8+ CTL in the
lung [23], while a viral Bcl2 encoded in the MHV-68 genome blocks internal cell death mechanisms
such as autophagy in infected cells [116].

4.4. Limitations of This Study

Our BAL processing protocol enriched for differentially-expressed proteins remaining after the
reduction of abundant high-MW macromolecules, including albumin, immunoglobulins, and serum
proteins (Figure 1C). While this approach allowed us to resolve less-abundant proteins, it likely missed
potentially interesting proteins associated with the removed macromolecules. We also did not detect a
high diversity of cytokines in post-processed BAL, possibly because of their relatively low abundances,
interactions with antibodies or albumin, or failure to isolate highly basic proteins in the purification
schema. Variant protocols enriching different BAL fractions, or using different BAL solvents, and new
mass spectrometry technologies are in development.
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5. Conclusions

Experimental MHV-68 Infection of the Mouse as a Model for Lung Diseases

The induction of and responses to oxidative stress appear to be a common theme in the
pathophysiology of interstitial lung diseases, including infections such as MHV-68 (this study and [15]),
SARS-coronavirus [69], influenza A virus [70,82], RSV [43], and in chronic diseases such as COPD [117]
and IPF [96]. Interestingly, a number of the gene products we identified as differentially regulated by
MHV-68 infection in BAL were also found to be associated with these diseases (Table 1). Differential
proteomics analysis of mouse BAL fluid opens a new window into understanding the pathogenesis of
MHV-68 and other respiratory viruses, and MHV-68 models of chronic lung diseases such as IPF [15].
The proteins identified herein are potential biomarkers for pulmonary virus infections generating
high levels of oxidative stress and aggravating other pathophysiological responses, such as acute
phase (Figure 3) and surfactant lipid damage. We propose continuing application of differential BAL
proteomics in conjunction with whole-lung genomics and proteomics analyses [57,118] to integrate a
systems understanding of immune responses and virus-induced pathological changes to the pleura.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/10/12/670/s1,
Table S1: Proteomics identification of proteins in murine BAL fluid from MHV-68 infection, Table S2. RT-PCR
primers used in this study, Figure S1. Analysis of viral and cellular components in BAL fluid. Figure S2. One of the
LC/MS-MS spectra identifying mouse Pdx6. Figure S3. Dynamics of ROS generation in MHV-68 infection of cultured
cells. Figure S4. Tnfaip8l2 is a member of a conserved gene family in human and mouse.
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