
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Pre-training Agents for Design Optimization and Control

Permalink
https://escholarship.org/uc/item/3nv0h2fs

Author
Hakhamaneshi, Kourosh

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3nv0h2fs
https://escholarship.org
http://www.cdlib.org/

Pre-training Agents for Design Optimization and Control

by

Kourosh Hakhamaneshi

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering & Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Vladimir Stojanović, Co-chair
Professor Pieter Abbeel, Co-chair

Professor Xin Guo

Spring 2022

Pre-training Agents for Design Optimization and Control

Copyright 2022
by

Kourosh Hakhamaneshi

1

Abstract

Pre-training Agents for Design Optimization and Control

by

Kourosh Hakhamaneshi

Doctor of Philosophy in Engineering - Electrical Engineering & Computer Sciences

University of California, Berkeley

Professor Vladimir Stojanović, Co-chair

Professor Pieter Abbeel, Co-chair

In recent years, we have seen tremendous benefits from pre-training neural networks to learn
representations that are transferable to unseen downstream tasks in both vision and NLP.
However, this paradigm of learning has not been much explored for decision making such
as design optimization or control. In this thesis, we outline two problem settings that could
benefit from pre-training in the context of decision making. First, we describe a setting
for automated design optimization, in particular circuit design optimization, where prior
domain-specific data can be used to effectively improve the sample efficiency of model-based
optimization methods. This thesis presents novel ideas along with empirical and theoretical
analysis on how to boost sample efficiency of model-based evolutionary algorithms as well as
Bayesian optimization methods. In the second problem setting, we will discuss how we can
leverage unsupervised pre-training from large task-agnostic datasets to extract behavioral
representations and do few-shot imitation learning. We find that pre-training agents to
extract skills is a practical direction for preparing them for few-shot imitation when example
demonstrations from the new task are scarce.

i

To my amazing wife, Yasi

ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1

2 Integrated Analog Mixed Signal Circuit Design Automation 4
2.1 Market Overview . 4
2.2 Analog IC Design Flow . 5
2.3 History of Analog IC Design Automation . 7

3 Developing Software Tools for Circuit Design Automation 11
3.1 Motivation . 11
3.2 Definition of Analog Sizing Problem . 12
3.3 Black-box Evaluation Engine . 12
3.4 Schematic Simulator engine using NGSPICE 16
3.5 Layout Simulator engine Using BAG . 17
3.6 Conclusion . 18

4 Boosting Sample Efficiency of Evolutionary Algorithms 19
4.1 Population-Based Methods: Benefits and Drawbacks 19
4.2 Model for Imitating the Oracle . 21
4.3 Algorithm . 23
4.4 Experiments . 24
4.5 Conclusion . 35

5 Improving Circuit Models via Pre-training and Fine-tuning 37
5.1 Related Work . 38
5.2 Learning representations for analog circuits 38
5.3 Experiments . 42
5.4 Conclusion . 54

iii

6 Boosting Sample efficiency of Bayesian Optimization Methods via Pre-
training 55
6.1 Background . 55
6.2 Related Work . 58
6.3 Scalable MBO via JUMBO . 59
6.4 Theoretical Analysis . 61
6.5 Experiments . 67
6.6 Ablations . 70
6.7 Implementation Details . 74
6.8 Conclusion . 75

7 Few-shot Imitation Learning via Skill Extraction Pre-training 77
7.1 Introduction . 77
7.2 Related Work . 79
7.3 Approach . 81
7.4 Experiments . 85
7.5 Broader Impacts and Limitations . 96
7.6 Conclusion . 97

8 Conclusion 98
8.1 Thesis Contribution . 98
8.2 Future of Deep Learning in Analog Circuit Design Automation 99
8.3 Future of Pre-trained Agents for Sample Efficient Control 100

Bibliography 102

iv

List of Figures

2.1 The exponential growth of cost of developing system on chips. It costs about half
a billion dollars to build a large system on chip on today’s 5nm technology most
of which is dominated by design and verification cost. 5

2.2 The design effort per unit area between digital and analog circuits. Despite
consuming a smaller area the design effort for analog circuits, due to the impact
of second and third order effects, is much larger than digital counter-parts [5] . . 6

2.3 An abstraction of the flow for design and verification of analog-mixed signal
circuits. After verifying the behavioral and functional performance, the layout is
drawn and if the post-layout simulations do not satisfy the specs the assumptions
are adjusted and the design is iterated all the way from the top. 7

3.1 Separation of optimization algorithms and black-box evaluations engine 13
3.2 The NGSPICE flow diagram. 17
3.3 The BAG black-box engine flow. 18

4.1 Illustration of improvement of Oracle against EA. Each iteration is equivalent to
adding some number of new designs to the population. The region between the
two curves represents room for improvement. 21

4.2 DNN’s model used BagNet, θ = [θf , θ1, ..., θl] contains the parameters of the
DNN.Mθ(DA, DB) is the output probabilities of the DNN parametrized by θ for
inputs DA and DB. Mθ(DA, DB; i) denotes the predicted probability for the ith

specification. Note that ⪰ denotes preference, not greater than. 22
4.3 High level architecture of our optimizer . 24
4.4 Schematic of a vanilla two stage op-amp . 26
4.5 a) Average cost of top 20 individuals across number of iterations. Each iteration

corresponds to adding 5 designs to the population. b) Average cost of top 20
individuals across number of simulations. 28

4.6 Two stage op-amp with negative gm load . 30
4.7 Convergence curve of the two stage op-amp done in BAG. Orange shows the

minimum cost across iteration step and blue shows the average of cost in top 20
instances . 30

4.8 Optical receiver schematic . 32

v

4.9 a) Overdrive test recovery simulation curves for DTSA b) Probability of out-
putting a one vs. Vin. We can use the cumulative density function of a Gaussian
to estimate the standard deviation of the noise 33

4.10 a) Input and output signals for measuring the eye height and thickness, the input
is a small signal pulse with an amplitude of target input sensitivity, and with
a width of Tbit for the target data rate. The output curve is sampled at time
instances shown relative to the main cursor (maximum of output) b) Equations
used for estimating eye height and thickness to express the fidelity of eye diagram 34

4.11 Sample layouts of the optical link receiver circuit with different cost values of 0,
0.1, and 0.2 for A, B, and C, respectively. 36

5.1 (a) Example of why it is important to explicitly model device terminals as nodes
to disambiguate certain topological configurations. (b) Steps of converting a
circuit schematic to a graph representation. (1) Convert all devices to their
corresponding complete sub-graphs (2) Convert all circuit nets to (yellow) nodes
in the graph (3) Make edge connections according to the topology of the circuit. 39

5.2 Pretraining architecture: After the GNN backbone, the batch of output node
features (yellow nodes) are fed into an MLP to predict the output voltages of each
node. The same MLP is applied to all the node features. The gradient of the
mean square error between ground truth and prediction is then backpropagated
to update the parameters. 41

5.3 Node to graph prediction pipeline: After the GNN backbone, the node features
are translated to a single vector representing the graph embedding. The graph
embedding is then fed to an MLP to predict the output. The node to graph
embedding is 3 cross attention layers between a learned embedding and the node
features (similar to [54]) . 43

5.4 The circuit schematic of the resistor ladder. This circuit is comprised of n
branches. The pretraining task is to predict the output voltage of each branch
vi. A resistor ladder with n branches has 2n resistors, n+ 1 voltage sources, and
n output nodes. 45

5.5 The circuit schematic of the pretraining dataset for the OpAmp experiments. . . 45
5.6 Train and Valid Accuracy of the model during pretraining on the resistor ladder

circuit (top) and OpAmp circuit (bottom). Validation Acc@100 for resistor ladder
reaches to 92% and Acc@200 for OpAmp reaches to 91% during pretraining. . . 47

5.7 Fine-tuning capabilities of the pretrained model to new unseen topologies com-
prised of resistors and voltages sources. Each figure shows models that are trained
and evaluated on the illustrated resistor networks where new unseen topological
configurations are highlighted in red dashed boxes. 49

vi

5.8 (a) The unseen topology of the two-stage opamp that the GNN gets fine-tuned
on. We collect a small dataset of 10 thousand designs from this topology along
with their ground truth output values. We then use fractions of this training
dataset to show how much improvements we get from more data. (b) shows the
test Acc@200 of predicting the output voltage for our fine-tuned method (FT-
PT) vs. training from scratch with no knowledge transfer. (c) shows the test
Acc@50 comparison for the gain prediction task (i.e. also a new graph property
prediction task). 50

5.9 Acc@100 of the output resistance prediction task on resistor ladder. Training
from scratch will fail to generalize to the test set even if all 1k data points are
used due to significant over-fitting. Moreover the attention-based aggregation
layer outperforms the naive average pooling aggregation. 51

5.10 The average cost of top 20 designs over the course of optimization using different
evolutionary-based approaches. (Top) The optimization is done on the OpAmp
with Cc−Rz compensation (Fig. 5.5, (Bottom) The target topology is the OpAmp
with only capacitor compensation (Cc) . 53

6.1 JUMBO. During the pretraining phase, we learn a NN mapping hϕ∗ (orange) for
the warm-GP. The next query based on αt (purple) will be the point that has a
high score based on the acquisition function of both warm and cold GP (blue). 59

6.2 The effect of the pre-trained NN hϕ∗(x) on χ. In the desirable case, χ̄g gets
significantly compressed to Z̄g. 65

6.3 Dynamics of JUMBO after observing 6 data points (a) The two functions have
different optimums (b) The tasks are related (c) Iteration 4 of the BO with our
proposed model, from top to bottom: (1) GP modeling input to objective using
(x, hϕ∗(x), y) samples (2) GP modeling input to objective using (x, y) samples (3)
UCB acquisition function for GPwarm(4) UCB acquisition function for GPcold(5)
JUMBO’s acquisition function that compromises between the optimum of the two. 66

6.4 The regret of MBO algorithms on Protein, Parkinsons, Naval, and Slice datasets.
Standard errors are measured across 20 random seeds. 68

6.5 Circuit Design results . 70
6.6 JUMBO with 3 aux. tasks is better than JUMBO with each individual aux. tasks. 72
6.7 The Non-linear mapping is a crucial piece of JUMBO’s algorithm. 72
6.8 Explained Variance of latent dimensions . 73
6.9 Ablation on the dynamic choice of λt . 74
6.10 NN Architecture during pre-training: The first blocks is nl layers of nu hidden

units with tanh activations. Following that is a dropout layer and then a single
layer perceptron to get nz features. Thereafter, the latent features are mapped
linearly to the output. 75

vii

7.1 In this work we are interested in enabling autonomous robots to solve complex long-

horizon tasks that were unseen during training. To do so, we assume access to a large

multi-task dataset of demonstrations, extract skills from the offline dataset, and adapt

those skills to new tasks that were unseen during training. 79
7.2 Our algorithm – Few-Shot Imitation Learning with Skill Transition Models (FIST)

– is composed of three parts: (a) Skill Extraction: we fit a skill encoder, decoder,
inverse skill dynamics model, and a distance function to the offline dataset; (b)
Skill Adaptation: For downstream task, we are given a few demonstrations and
adapt the skills learned in (a), by fine-tuning the encoder, decoder, and the in-
verse model. (c) Few-Shot Imitation: finally, to imitate the downstream demon-
strations, we utilize the distance function to perform a look ahead along the
demonstration to condition the inverse model and decode an action. 82

7.3 Top: In each environment, we block some part of the environment and collect task-

agnostic and reward-free trajectories for extracting skills. In the kitchen environment,

red markers indicate the objects that are excluded. Bottom: For downstream demon-

strations, we use 10 expert trajectories that involve unseen parts of the maze or ma-

nipulation of unseen objects. 85
7.4 Normalized Reward on all of our environments, and their excluded regions /

objects. For maze, the episode length is subtracted from the maximum episode
length, which is then divided by the maximum episode length. For kitchen, the
reward is the number of sub-tasks completed in order, and normalized by the
maximum of 4.0 . 91

viii

List of Tables

4.1 Objective of design and performance of solutions found using different approaches
for the two stage op-amp example . 26

4.2 Summary of number of operations involved in the process of each approach . . . 27
4.3 Performance of expert design methodology and our approach 31
4.4 Design Performance for optical receiver design for CPD = 20fF , Imin = 3µA,Data Rate =

10Gbit/s . 36

5.1 Test Acc@100 of prediction of voltages for each class of resistor ladders. We ran
each experiment 3 times with random seeds for getting the standard errors. . . . 46

5.2 The comparison of sample complexity of the optimization algorithms. 52

6.1 The average normalized simple regret at the last iteration for different values of
lα (lower is better). The scores are normalized to GP-UCB’s simple regret at the
last iteration. 71

7.1 Training Hyperparameters . 87
7.2 Kitchen pre-training dataset sizes . 89
7.3 Comparison of our approach to other baselines on the Maze environments. For each

experiment we report the average episode length from 10 fixed starting positions with

the standard error across 10 evaluation runs (lower is better). We also report success

rate and its standard deviation. The maximum episode length for PointMaze and

AntMaze are 2000 and 1000, respectively. 92
7.4 Comparison of average episode reward for our approach against other baselines on the

KitchenRobot environment. The average episode reward (with a max. of 4) along with

its standard error is measured across 10 evaluation runs (higher is better). Each bolded

keyword indicates the task that was excluded during skill data collection. 92
7.5 Ablation on the impact of semi-parametric approach and the future conditioning

of skill prior . 92

ix

7.6 We ablate the use of pre-training on offline data, as well as fine-tuning on downstream

demonstrations. FIST-no-FT removes the fine-tuning on the downstream demonstra-

tion step in FIST, while FIST-no-pretrain trains the skills purely from the given down-

stream data. Without seeing the subtask, FIST-no-FT is unable to solve the down-

stream subtask. Trained on only downstream data, FIST-no-pretrain is unable to

properly manipulate the robot. 94
7.7 We ablate the use of our inverse skill dynamics model by replacing it with an inverse

dynamics model on atomic actions. The baseline ablations only succeed on one out of

the four tasks. BC learns an inverse dynamics model that takes in the state as input

and outputs a distribution over atomic actions. Goal-BC uses both state and the goal

(sub-task) as input. 94
7.8 We ablate FIST against an oracle version on pointmaze which uses the ground

truth way point planner that has access to the exact state that the agent will end
up at H-steps in the future (if it commits to the optimal path). 95

7.9 Different skill re-sampling schemes. Shown are t = 1, which are the results in
Table 7.3. We compare the results to when t = 5, and when the skill is resampled
after H steps, t = 10. 95

7.10 With all subtasks seen in the skill dataset, FIST is able to imitate a long-horizon task

in the kitchen environment. We compare to a baseline method, SPiRL, which fails to

follow the single demo. 96
7.11 We evaluate FIST on the maze environment with goal at the bottom when the inverse

skill model is trained on an extremely noisy dataset. In this case, FIST achieves sub-

optimal performance, or is unable to imitate the test time demonstration. 97

x

Acknowledgments

I want to dedicate a few paragraphs of this dissertation to thank the folks without whom
this Ph.D. would not have been possible. First and foremost, I want to thank my advisors
Vladimir Stojanović and Pieter Abbeel. Working with two professors from entirely two
different disciplines was one of the most challenging but at the same time most rewarding
aspects of my doctoral studies. Vladimir! Thank you for giving me the freedom in my
research and for helping me expand my skills beyond circuit design. Your research group
is one of the most diverse and educative groups in BWRC and I enjoyed being part of it.
Pieter! Thanks for allowing me to join your group in the middle of my Ph.D. and for trusting
me with my research agenda. I enjoyed being part of your research group and learned so
many things that make me regret why I did not take the initiative of joining earlier. I’m
grateful for your initiatives in creating a more collaborative and productive research group
as a whole that not only produces top-notch research but also gives value to each individual’s
social life and well-being, especially in the midst of the pandemic crisis. I also want to thank
you for helping me out through the job search and giving me several amazing pointers to
new connections whom I can expand my career with.

During my Ph.D., I had several mentors who have helped me immensely in navigating
my graduate studies. On the BWRC side, Sajjad was my research buddy when I joined
Berkeley and passed on all the experiences he had from his Ph.D. So thank you for that. I
want to also thank those who helped me ramp up on Berkeley Analog Generator (BAG).
Eric Chang, Sidney Buchbinder, Krishna Settaluri, and Pavan Bhargava! Thank you for
helping me learn BAG and contribute to it. Ranko! Thanks for seeding the idea of using
reinforcement learning in circuit design and helping me brainstorm ideas in the first few
months. From the BAIR side, I want to thank Aditya Grover, who has helped me a lot on
the JUMBO project and thought me how to write good papers. I’m grateful for the many
hours that we spent together reviewing the paper and its rebuttals. Though it did not get
into the venues we had hoped for, it certainly had a lot of insightful takeaways for me, at
least. I want to also thank Misha Laskin for teaching me how to expand a research idea
from the initial seed to a well-executed paper. Interacting with you has been certainly one of
the most rewarding aspects of my time at Berkeley, and last but not least Mariano Phillip!
Thanks for allowing me to join intel AI labs for the summer internship and to pursue my
research agenda. I have also had the pleasure of working with a lot of good collaborators
in my projects: Keertana Settaluri, Nick Werblun, Albert Zhan, Ruihan Zhao, Phillip Wu,
Marcel Nassar, Catherine Cang, Aravind Rajeswaran, and Igor Mordatch. Thank you all.

Mom and Dad! Thank you for encouraging me to pursue my dreams even if it meant
being far from your loved ones. I haven’t enjoyed your company for so long and I miss that
but hopefully, this year (2022) things are different and you can visit us in the US. My in-laws,
Sima and Farzad! Thanks for your constant support and always offering to help with getting
something off our shoulders. And finally to my amazing wife, Yasi! I am forever in your
debt for your constant support and the sacrifices you have made for us to get to where we
are now and where we’ll be in the future. I am forever grateful for your decision on joining

xi

me on this journey of 5 more years of school and coming to the funky city of Berkeley. You
kept me sane through all these years and brought joy to my life, especially throughout the
pandemic, and I appreciate that. I very much look forward to what lies ahead of us and I
cannot say I’m not excited about that.

1

Chapter 1

Introduction

The de-facto standard approach of Deep Learning in recent years to solve tasks is to collect
a large amount of labeled data for that task and train a deep neural network end-to-end.
This paradigm shift in problem-solving has completely changed the way humans think about
problems nowadays. In the ”Good” old days, machine learning practitioners had to carefully
investigate the data and hard-code their domain knowledge into the program they wrote
for solving particular tasks; however after the ImageNet moment in 2012 [65] they have
realized that a combination of large labeled datasets, deep neural networks, and access to
large amounts of computational resources can be the new recipe for solving problems in
different applications, ranging scene understanding [20, 112], playing video games [125], and
object grasping with robotic arms from visual inputs [57].

While deep neural networks can be trained from scratch with minimal human engineering
on priors, this tabula rasa approach makes them very data-hungry in practice. The tabula
rasa training approach starts to fall short when there are no large datasets available for the
problem at hand.

However, from the perspective of natural intelligence, humans do not seem to operate
in a tabula rasa training regime. For one thing, evolution has prepared human brain and
intelligence system to be able to quickly learn and adapt to new scenarios that are not seen
before, without needing large amounts of labeled data. In addition to this preparation, for a
while after birth, humans go through an unsupervised learning stage where they learn only
from observing the world around them and how the entities in the world interact with one
another. Only after these many preparations is when they get supervised training via their
parents or their schools.

Researchers in the field of artificial intelligence have also embraced this idea of pre-
training over the years. The most obvious manifestation of this idea has been in computer
vision where a large deep neural network is pre-trained on a large labeled dataset like Ima-
geNet to predict the output classes. Then, the pre-trained backbone of the neural network
is fine-tuned on new visual prediction tasks such as medical imaging [100] which is entirely
different from the distribution of natural images seen in pre-training. Despite this disparity,
the method has shown very promising results in the ability of neural networks to extract

CHAPTER 1. INTRODUCTION 2

general visual representations. More recently, we have seen a surge of methods in using
self-supervised pre-training for both vision and language where a labeled dataset is not even
needed. Most prominent works in this direction are MOCO [47] in vision [18] and BERT
[18] and GPT-X [98, 10] models in NLP.

In this thesis, we consider two problems that have not seen much benefit from the pre-
training paradigm over the years, but can certainly benefit from better sample efficiency
via pre-training. The first problem that we will consider is design optimization, especially
analog and mixed-signal circuit design optimization, which is a good fit for applying modern
machine learning methods. The challenge in applying common deep learning practices is that
the data collection in this domain is quite expensive and requires an efficient learning system
to automate the design process. The second problem is using pre-training in control and
reinforcement learning where the goal is to prepare a multi-task agent for few-shot adaption
via imitation on new tasks that are not seen during pre-training.

Thesis Contributions and Outline

In Chapter 2, we introduce the field of analog circuit design automation and cover the prior
works that have been done according to the literature.

In Chapter 3, we explain what software tools we have created to facilitate the exper-
imentation and data collection for analog circuit design automation using deep learning.
We present the basis of a framework that is built on Berkeley Analog Generator [12] which
abstracts away the parametrization and execution of layout generation and metric mea-
surement in analog-mixed signal circuits on real process development kits (PDKs). This
framework lets us formulate layout optimization as a black-box optimization in Python. We
also present an open-source counterpart built on NGSPICE which allows us to quickly iterate
on algorithmic ideas and development of robust optimization algorithms without having to
worry about issues with licensing or slowness of simulators.

In Chapter 4, we propose a novel modeling approach to boost the sample efficiency of
existing evolutionary algorithms. Our method replaces the simulator-based discriminator in
the selection mechanism of the evolutionary algorithms with a learned deep neural network
that can accelerate function evaluation. We show the benefits of our method by applying
the algorithm to real-world complicated circuit design problems which also considers the
parasitic effects introduced by layout. Using this method we can optimize a photonic link
receiver front-end layout, based on high-level specifications in almost a day of compute (27
hours). This work was published in ICCAD 2020 [38].

In Chapter 5, we explain how we can pre-train graph neural networks to learn better
models that further boost the sample efficiency of evolutionary algorithms. We found that
prediction of the DC simulation results of an analog circuit can serve as a scalable pre-
training objective that lets us learn re-usable circuit embeddings across many circuits. This
pre-training allows our downstream models to be less data-hungry and thereby improve the
sample efficiency of our model-based optimization algorithms [41].

CHAPTER 1. INTRODUCTION 3

In Chapter 6, we investigate Bayesian optimization as another optimization paradigm
that uses probabilistic models to provide a very sample efficient optimization framework for
problems where the evaluation of the function values is expensive. We propose JUMBO,
a multi-task Bayesian optimization algorithm that can efficiently re-use the knowledge in
additional offline data based on a combination of acquisition signals derived from training
two Gaussian Processes (GP): a cold-GP operating directly in the input domain and a warm-
GP that operates in the feature space of a deep neural network pre-trained using the offline
data. Such a decomposition can dynamically control the reliability of information derived
from the online and offline data and the use of pre-trained neural networks permits scalability
to large offline datasets. We show how such the pre-training mechanism can improve the
sample efficiency of existing Bayesian optimization methods on a circuit design problem as
well as a hyperparameter optimization problem. This work was presented in the AAAI 2022
conference, the workshop track on AI for decision optimization (AI4DO) [40].

In Chapter 7, we explore the idea of skill extraction pre-training for few-shot imita-
tion learning. We propose a new method (FIST), an algorithm that extracts skills from
offline data and utilizes them to generalize to unseen tasks given a few downstream demon-
strations. FIST learns an inverse skill dynamics model, a distance function, and utilizes a
semi-parametric approach for imitation. We show that FIST is capable of generalizing to
new tasks and substantially outperforms prior baselines in navigation experiments requiring
traversing unseen parts of a large maze and 7-DoF robotic arm experiments requiring manip-
ulating previously unseen objects in a kitchen. This work was published in the International
Conference on Learning Representations (ICLR) 2022 [39].

Finally, in Chapter 8, we conclude with future directions for how large scale pre-training
can be used for both design optimization and control.

4

Chapter 2

Integrated Analog Mixed Signal
Circuit Design Automation

This chapter presents the motivation behind the research on analog-mixed signal (AMS)
circuit design automation. It outlines the market and technological evolution, characterizes
the analog IC design, and finally discusses the available solutions.

2.1 Market Overview

The Microelectronic industry has significantly evolved over the past years, driven by an
ever-increasing demand for machine learning (ML) and internet of things (IoT) applications,
requiring many functionalities to be integrated into a single System-on-Chip (SoC) solution.
SoCs of today’s generation integrate a massive number of digital computational cores (i.e.
CPU, GPU, and neural processing units) with an increasing number of analog-mixed signal
and radio frequency (RF) components (i.e. radio transceivers, sensors, power regulators,
high-speed IOs, etc.) on the same chip. This makes the design and verification process
exponentially more convoluted than before and also prone to more errors. Figure 2.1 shows
the growth of the cost of building a single system-on-chip. As we can see, the majority
of the cost is dominated by design, verification, and software engineering efforts required
for building the chip. Shortening this design cycle can certainly improve chip development
margins, increasing the profits of companies that specialize in the design of these system-on-
chips.

Although the core functionality is typically driven by the digital cores, the critical path for
errors and performance tends to be in the analog part. This is due in part to the differences
in the maturity levels of CAD tools in digital and analog design. Well-established practices
supported by well-defined automated synthesis methodologies and tools exist for digital
design. However, analog design, due to the higher sensitivity of the design to parameters
and the fabrication process, requires extensive, skilled manual labor. It is not as modular as
digital design, and as a result, a standard cell library of sub-blocks cannot be used.

CHAPTER 2. INTEGRATED ANALOG MIXED SIGNAL CIRCUIT DESIGN
AUTOMATION 5

Figure 2.1: The exponential growth of cost of developing system on chips. It costs about half
a billion dollars to build a large system on chip on today’s 5nm technology most of which is
dominated by design and verification cost.

2.2 Analog IC Design Flow

As was mentioned in the previous section, AMS design requires more manual labor than
digital design. In the digital world, signals are more tolerant to noise and the information
is carried around in discrete levels of voltage or current with a large tolerance range. The
behavior of such circuits is defined by Boolean algebra, and the timing information is also
modular and defined for a library of standard cells. The optimization problems are well-
defined and therefore automation tools are much easier to be developed.

In AMS circuits, however, information is conveyed through a continuum of (typically
small) values, and therefore second and third-order effects which were ignored in digital
design become a problem in AMS design; issues like, non-linearity, devices going into their
non-linear region, matching between devices, effects of noise, layout wiring parasitics and
loading, etc. have to be considered. Figure 2.2 [5] depicts a clear picture of the design effort
per unit area between analog to digital circuits in a typical commercialized IC. Despite
consuming a smaller area, the design and validation effort for AMS circuits, due to the
impact of second and third-order effects, is much larger than its digital counterparts.

CHAPTER 2. INTEGRATED ANALOG MIXED SIGNAL CIRCUIT DESIGN
AUTOMATION 6

Figure 2.2: The design effort per unit area between digital and analog circuits. Despite
consuming a smaller area the design effort for analog circuits, due to the impact of second
and third order effects, is much larger than digital counter-parts [5]

To cope with these issues designers have to adopt top-down design and bottom-up verifi-
cation methodologies. This means that they start the design flow with top-level behavioral
modeling and hierarchically move down and verify the performance and behavior at each
step with different levels of abstraction. To do so, they start with system-level abstraction,
verification, and architecture exploration until they settle on the AMS sub-blocks and their
interaction with each other. The agile IC development flow requires designers to then use
dummy or semi-realistic sub-blocks as the placeholder for the circuits that will be eventually
designed later and verify the entire system-level flow with the behavioral models that they
expect from each sub-block. This way they can catch system-level problems early on as the
sub-blocks evolve over the design procedure. This process is then repeated for lower-level
sub-blocks (which have their own sub-blocks) until they reach the actual device and layout
level design.

As designers move down the hierarchy, they have to re-verify their assumptions on the
higher levels and if something does not behave properly re-design the lower levels. The
number of iterations in verification and design tends to increase as designers get to the layout.
This is largely in part due to the domination of layout parasitics in the determination of
circuit performance. Therefore, designing the entire system involves many iterations with
human experts exploring the complex multi-dimensional design space. Besides the large
number of iterations, simulation will also get slow as designers move down from behavioral
simulations to the device and layout levels.

CHAPTER 2. INTEGRATED ANALOG MIXED SIGNAL CIRCUIT DESIGN
AUTOMATION 7

Figure 2.3: An abstraction of the flow for design and verification of analog-mixed signal
circuits. After verifying the behavioral and functional performance, the layout is drawn and
if the post-layout simulations do not satisfy the specs the assumptions are adjusted and the
design is iterated all the way from the top.

2.3 History of Analog IC Design Automation

Over the ages of the semiconductor industry, researchers have tried an assortment of ap-
proaches to automate the AMS design in different stages. However, CAD tools have not
been following the semiconductor technology at the same pace, resulting in increasing the
price of developing state-of-the-art SoCs. In this section, we will briefly discuss available
CAD tools and some automation procedures proposed over the years.

CAD Tools for Analog-Mixed Signal Design

An improved but yet limited degree of automation is supplied by the use of a CAD method-
ology that involves the integration of one or more mature CAD tools into a flow. One of
the most known CAD tools is the Cadence® Virtuoso platform which is composed of a set
of integrated circuit tools that cover all the stages, from the schematic to the layout. Apart
from the Composer schematic editor, Cadence Virtuoso includes a high accuracy circuit sim-
ulator, like Virtuoso Spectre which is usually used at transistor-level simulation, a layout
editor, and layout verification tools that implement the three different phases of the layout
process: the design rule checking (DRC), layout versus schematic (LVS) and parasitic extrac-
tion (RCX). Additionally, the system-level analog behavioral descriptions may be simulated
with the System-Verilog simulator. These design management platforms are a valuable help
in analog integrated circuit design but they are still far behind the development stage of
design automation tools already available for digital design [5].

CHAPTER 2. INTEGRATED ANALOG MIXED SIGNAL CIRCUIT DESIGN
AUTOMATION 8

Design Automation Methodologies

Automating AMS IC design is not a novel idea by itself and has been around for over twenty
years. An excellent survey about these efforts has been done in [106]. We can divide the
previous approaches into the following subcategories:

Topology Selection Approaches

In this flavor of approaches, the goal is to infer the topology based on some criteria either
from a library or by composing sub-components together and forming more complex ones.
To name a few of these efforts, in IDAC [17] the decision is taken directly by the designer.
Heuristic rules have been used in the first attempts by [43, 63], to automate the topology
selection task. The tool [122] uses fuzzy logic reasoning to select one topology among a
fixed set of alternatives. The decision rules are introduced by an expert designer or auto-
matically generated through a learning process. Another method comprises computing the
feasible performance space for each topology within the library and then comparing it with
the desired performance specs [32]. A different method consists of combining the topology
selection with the device sizing task and employing an optimization-based approach by [66]
using genetic algorithms.

As was mentioned earlier, these approaches have several problems: The new generation
of designs is far more complicated to be supported by a predefined set of libraries. Most of
these approaches demonstrated their usefulness in the design of operational amplifiers which
is not as complicated as today’s practical circuits. On top of that, changing the technology
requires new rounds of library generation, which might be time-consuming. Additionally, all
of these methods do not consider layout effects which drastically change the performance of
the circuits.

Circuit Sizing/Optimization Approaches

These approaches typically cast analog sizing into an optimization problem and seek to find
the parameters that satisfy their objective. In many cases, the optimization formulations do
not consider all practical and non-ideal phenomena in circuits, leaving the burden on analog
designers to set the constraints properly, and guide the optimization procedure. Therefore,
it is easier for analog designers to just directly solve the optimization themselves rather than
codifying all overt design criteria (i.e. matching of layout, transistors not being in the linear
region, etc.), as well as performance metrics (i.e. gain, bandwidth, etc.).

A lot of these readily assumed design metrics are often hard to codify, either because
they cannot be captured by plain simulations (i.e. matching) or they need a specialized
expensive simulation (i.e. Monte Carlo simulations for matching). Some of these ”hard-to-
codify” metrics come from layout methodologies that designers use because they are ”safe”
and proven to be functional (i.e. how to use common centroid layout procedure for current
mirrors to ensure matching). Besides these, when utilizing such tools, designers need to get
used to fully specifying the constraints of the problem to prevent the tool from exploiting

CHAPTER 2. INTEGRATED ANALOG MIXED SIGNAL CIRCUIT DESIGN
AUTOMATION 9

the unspecified constraints, which takes a long time since the standard design practice is to
iteratively solve for most important constraints first and then fine-tune the design on the
second and third-order constraints. [5],[106] divides the circuit sizing approaches into the
following categories:

Equation-Based Methods. These approaches model the circuit behavior as analytical
formulations and the objective is to solve an equation-based optimization problem using
numerical methods.

Some of the most relevant approaches are [63, 44, 82, 33, 49]. This approach has the
advantage of reduced evaluation time. The main drawback is that analytical models have
to be used to derive the design equations for each new topology and despite recent advances
in symbolic circuit analysis [128, 128], not all design characteristics can be easily captured
by analytic equations. The approximations introduced in the analytic equations yield low
accuracy models for the design, especially in complex circuits. These methods are obsolete
and cannot guarantee the accuracy of the solution.

Simulation-Based Methods. Black-box optimization methods like [81, 122, 92, 64,
66] consist of using a simulation core in the inner loop for circuit evaluation. This gives us a
generic framework, independent of circuit topology (compared to equation-based methods),
for high accuracy evaluation of circuits.

Despite the benefits, these methods are computationally expensive and time-consuming
to run, especially for larger, more complex circuits. Nevertheless, a key difficulty is that
the AMS design problem, with all the involved design knowledge and heuristics, has to be
formulated as an optimization problem, which often presents a high barrier to entry for using
a circuit-sizing tool. Therefore, sample efficiency and short convergence time are determining
factors for these approaches. On the other hand, all the previous work in this area has been
targeted for schematic-level simulations, and layout parasitic effects have been considered
only outside of the optimization loop. In modern technologies, the layout effects create a
significantly large difference from the schematic-level design that they need to be included
in the design optimization loop.

Machine Learning-Based Methods.
To improve the convergence of these methods, many of the previous works such as [3, 2,

133] have tried to model the behavior of the circuit to be optimized, by a machine learn-
ing mechanism to quickly evaluate the performance of a specific set of design parameters,
essentially replacing the simulator’s long evaluation cycles.

In [2] a learning tool based on support vectors machines (SVM) is used to represent the
performance space of analog circuits. Based on the knowledge acquired from a training set,
the performance space is modeled as mathematical relations translating to analog function-
ality. SVMs are trained with simulation data, and false positives are controlled based on a
randomized testing procedure.

[133] presents a performance macro-model for use in the synthesis of analog circuits based
on a neural network approach. The basis of this mathematical model is a neural network
model that, once constructed, may be used as a substitute for full SPICE simulation, to
obtain an efficient computation of the performance estimator. The training and validation

CHAPTER 2. INTEGRATED ANALOG MIXED SIGNAL CIRCUIT DESIGN
AUTOMATION 10

data set is constructed with discrete points sampling over the design space. The work
explores several sampling methodologies to adaptively improve model quality and applies
a sizing rule methodology to reduce the design space and ensure the correct operation of
analog circuits.

The issue with almost all of these methods is that they require a lot of sampling points
in their training data to build a model that is accurate enough to replace the simulator.
Nevertheless, good design points tend to be a small subset of the extremely large multi-
dimensional space. Hence, despite the high overall accuracy of the model, the precision in
the regions of good designs can be low, resulting in inaccurate models in regions that designers
care about. Also, similar to previous methods, these approaches have mainly modeled the
schematic behavior of circuits. Training with layout effects can become infeasible using these
approaches since a large dataset needed for training cannot be obtained because of the long
simulation time of each circuit instance.

Generator-Based Approaches

In this approach, instead of optimizing circuit sizing objectives, the designer codifies the step-
by-step sizing and design process they pursue in a parametrized format called generators.
In other words, the input to a layout generator script is the parameters of devices (i.e.
number of unit widths, number of fingers, etc.) and the output is the associated layout
in a particular technology. Following this strategy, we can capture all layout constraints
(i.e. matching, sharing drain/sources to reduce parasitics, etc.) in a programmable, reusable
fashion and port a layout to new technologies with just a push of a button.

Berkeley Analog Generator (BAG) [12] is a framework for the development of process-
portable AMS circuit generators. It has multiple layout engines that provide designers with
the necessary application programming interface (API) to capture their layout procedure for
analog as well as custom digital circuits. It also provides a coherent environment for design
verification in a Python-based language. Designers can develop schematic generators which
essentially generate the schematic of a design in a parameterized way. They can then run
layout-vs-schematic (LVS) checks and design-rule checking (DRC) directly from the same
Python environment, and also run testbenches associated with verification of the blocks.
They can also leverage objected-oriented programming (OOP) features of Python to extend
and reuse other designers’ codes. In summary, it provides a convenient interface for designers
to specify their layout, design, and verification methodologies.

11

Chapter 3

Developing Software Tools for Circuit
Design Automation

This chapter presents the necessary tools that were developed to facilitate the research
progress made by using AI for analog circuit design. We will present the following tools
and how we integrated them into a machine learning framework for black-box optimization
formulation of analog sizing:

• Black-box Evaluation Engine
• Berkeley Analog Generator (BAG)
• NGSpice simulator

3.1 Motivation

The progress made in deep learning in recent years is largely due to access to large curated
datasets that have become the standard for testing the capability of Neural networks in
predictions (e.g. ImageNet [65]). Also in control and reinforcement learning, simulator
environments such as OpenAI gym [9], DM Control [121], and more recently ISAAC GYM
[75] along with many other simulator environments have made significant contributions to
the progress in the field.

The analog circuit design automation community however has not seen such benefits at
large from modernized tools that can be used as the backbone of developing new machine
learning systems to accelerate the design workflows. Part of this thesis’s contribution is to de-
velop and integrate existing simulation pipelines into a software interface that is amenable to
machine learning formulation and standardizing simulation tools used for machine learning-
based analog circuit optimization problems.

CHAPTER 3. DEVELOPING SOFTWARE TOOLS FOR CIRCUIT DESIGN
AUTOMATION 12

3.2 Definition of Analog Sizing Problem

Before explaining how the Black-box evaluation engine is designed we should understand
the problem formulation. The objective in analog circuit design is usually to minimize one
figure of merit (FOM) subject to some hard constraints (strict inequalities). For instance,
in op-amp design, the objective can be minimizing power subject to gain and bandwidth
constraints. However, in practice, there is also a budget for metrics in the FOM (i.e power
less than 1mW). Therefore, the optimization can be rephrased as a constraint satisfaction
problem (CSP) where the variables are the circuit’s geometric parameters, and outputs are
specifications of the circuit topology. Designers can always tighten the budgets to see if there
is any other answer with a better FOM that meets their needs.

However, in cases where there is no feasible solution to a CSP, designers still prefer to
know which solutions are nearly satisfactory to gain insight into which constraint can be
adjusted to satisfy their needs.

With this in mind, we define the following non-negative cost function where finding the
zeros is equivalent to finding answers to the CSP problem. If no answer exists, the minimum
of this cost and the non-zero terms can give insight about which metrics are the limiting
factors:

cost(x) =
∑
i

wipi(x) (3.1)

where x represents the geometric parameters in the circuit topology and pi(x) =
|ci−c∗i |
ci+c∗i

(normalized specification error) for designs that do not satisfy constraint c∗i , and zero if
they do. ci denotes the value of constraint i at input x and is evaluated using a simulation
framework. c∗i denotes the optimal value. Intuitively this cost function is only accounting for
the normalized error from the unsatisfied constraints, and wi is the tuning factor, determined
by the designer, which controls prioritizing one metric over another if the design is infeasible.
With this problem definition in mind, we can now understand the design of the Black-box
Evaluation Engine.

3.3 Black-box Evaluation Engine

Our software design philosophy for circuit design optimization is simple. We isolate the de-
velopment of the optimization algorithm and the simulator fidelity that is used for candidate
evaluation by creating an interface for the black-box evaluation. This way we can make an
abstraction for the black-box evaluator and create different instantiations with any simulator
engine quickly without the need to modify the algorithm. We can even wrap the black-box
evaluator engine into an OpenAI gym wrapper for using reinforcement learning (RL) on the
problem [109].

Figure 3.1 shows a diagram of this design philosophy. Since the algorithm only interacts
with certain general attributes of the black-box engine it never needs to be aware of the
underlying details of the simulator engine.

CHAPTER 3. DEVELOPING SOFTWARE TOOLS FOR CIRCUIT DESIGN
AUTOMATION 13

Figure 3.1: Separation of optimization algorithms and black-box evaluations engine

Black-box Evaluation Engine1 module is responsible for running and querying the eval-
uation core. It also handles the parallel evaluation of several candidates using Python’s
multiprocessing and multithreading API 2. This module is initialized by a specification file
that has all the information about the parameters to optimize, their range, the circuit spec-
ification, and how to evaluate the cost function. The interface functions are the following:

def generate_rand_designs(n, evaluate) -> Sequence[Design]:

"""

Generates a random sequence of Design samples.

Parameters

n: int

the number of individuals in the database.

evaluate: bool

True to evaluate the value of each design and

populate its attributes.↪→

seed: Optional[int]

1For references look at https://github.com/kouroshHakha/blackbox eval engine
2https://realpython.com/python-concurrency/

CHAPTER 3. DEVELOPING SOFTWARE TOOLS FOR CIRCUIT DESIGN
AUTOMATION 14

The initial seed for the random number generator.

Returns

database: Sequence[Design]

a sequence of design objects

"""

def evaluate(self, designs: Sequence[Design]) ->

Sequence[Design]:↪→

"""

Evaluates (runs simulations) a sequence of design

objects, while resetting the state of designs.↪→

"""

def compute_penalty(self, vals: SpecSeqType, key: str) ->

SpecSeqType:↪→

"""

Implement this method to compute the penalty(s) of a

given spec keyword based on the provided numbers for that

specification.

↪→

↪→

Parameters

vals: SpecSeqType

Either a single number or a sequence of numbers for a

given specification.↪→

key: str

The keyword of the specification of interest.

Returns

A single number or a sequence of numbers representing

the penalty number for↪→

CHAPTER 3. DEVELOPING SOFTWARE TOOLS FOR CIRCUIT DESIGN
AUTOMATION 15

that specification

"""

We define the black-box’s search space with a discrete grid corresponding to each degree
of freedom we have for the problem. For example, the following snippet of code shows part
of the configuration file that describes the search space of an amplifier. mp1: [1, 100, 1]

essentially means that mp1 is a parameter in design that can vary from 1 to 100 with steps
of 1. This input definition can only present the integer-valued variables, however, it is in
line with the modern analog design practices. Typically, in modern technologies that are
FinFET-based, only a discrete set of values are allowed.

mp1: !!python/tuple [1, 100, 1]

cc: !!python/tuple [0.1e-12, 10.0e-12, 0.1e-12]

We also define the required specification of the circuit with a hash map to inform the
black-box of the metrics that it should keep track of from the simulator’s output, and what
the requirement for each specification is. The following snippet of code shows an example
configuration for an amplifier: pm: [60.0, null, 1] means phase margin (pm) should be
at least 60◦, tset: [null, 60.0e-9, 1] means settling time (tset) should be at most
60ns. The third element in the specification tuple determines the weight of that specification
(wi) in the computation of the penalty function according to the formulation in Equation
3.1.

pm: [60.0, null, 1]

tset: [null, 60.0e-9, 1] #Seconds

At the core of this API, we represent each candidate with an object from Design class.
Each design object is a list of indices that correspond to the index within the grid vector
of the search space for each variable. Design objects allow the user to seamlessly switch
between different representations, from the indices to values, to specifications, and so on.

class Design:

...

@property

def value(self):

""" Returns the index representation of the Design

object. """↪→

CHAPTER 3. DEVELOPING SOFTWARE TOOLS FOR CIRCUIT DESIGN
AUTOMATION 16

@property

def value_dict(self):

""" Returns the value representation of the Design

object. """↪→

@property

def specs(self):

""" Returns the achieved specifications of the Design

object. """↪→

...

There are two different evaluation cores implemented in this framework: The first one
is an NGSPICE evaluation engine. NGSPICE is an open-source SPICE-like simulator that can
be used on any machine without license requirements. It is fast since it does only schematic
simulation and reading the data is easy. The second one is BAG integrated evaluation engine
which can generate the layout, schematic, run LVS and RC extraction, and finally run
simulations with post extracted results. This evaluation engine is expensive in run-time
and is tied to a particular foundry process design kit (PDK) which is less portable due to
licensing and intellectual property requirements.

3.4 Schematic Simulator engine using NGSPICE

To be able to quickly iterate on the optimization algorithms development cycles and not
be limited by environment implementation details such as license requirements for doing
layout simulation or the slowness of post-layout simulation run-times, we have developed
an evaluation engine based on an open-source fast simulator called NGSPICE that can do
only schematic simulations on open source predictive technologies (BSIM). We used this
simulation framework for open-sourcing our code-bases with runnable examples without
worrying about the proprietary information of PDKs.

Figure 3.2 shows how the NGSPICE evaluation engine is setup. With this framework, we
first create a template netlist description of the circuit that we want to optimize, and then the
API will use that template to convert the input parameters of a given design to the correct
netlist that can be run by the NGSPICE simulator. Then the user-defined post-processing
functions are used to parse the output results of the simulation and convert them to the final
design metrics for each design. The computed output metrics are then passed back to the
algorithm to make new candidate selections for evaluation.

CHAPTER 3. DEVELOPING SOFTWARE TOOLS FOR CIRCUIT DESIGN
AUTOMATION 17

Figure 3.2: The NGSPICE flow diagram.

3.5 Layout Simulator engine Using BAG

The difficulty in analog circuit design is rooted in the layout automation part. Ultimately, our
method should be able to consider layout effects in the design loop. Therefore, we create an
evaluator engine that directly optimizes the parameters that are fed in as the configurations
to a BAG generator that generates the layout, schematic, and all the collateral for design
verification including post-layout simulation results.

To this end, we used a BAG API called DesignManager (available only in BAG2.0). This
class manages and orchestrates the design generation jobs. In this class, we have to essentially
define how we should convert the input parameters to the layout, schematic, and circuit test
benches for measuring the specifications. For complete implementation details, we refer the
reader to the code-base at bb eval engine/circuits/bag/DeepCKTDesignManager.py

We evaluate the layout in two phases: In the first phase, we complete the generation of
the layout and then sequentially run LVS and RC extraction. If any of these steps fail, we
will not proceed to the next phase. Phase 2 is when we create the test benches and run the
simulations with the post-extracted collateral from Phase 1. During parallel execution, we
aggregate the results of Phase 1 and Phase 2 in a single list, in the same order that designs
were ordered. If phase 1 failed the corresponding entry will contain a Phase1Error exception.
This way we can filter out designs that failed during simulation from those that succeeded
without disrupting the job flows (See bb eval engine/circuits/bag/bagEvalEngine.py

for more details). Figure 3.3 shows an example of the job flow for simulating using layout.
Moving forward, we recommend the users to use BAG3.0 instead of BAG2.0 since it has a

CHAPTER 3. DEVELOPING SOFTWARE TOOLS FOR CIRCUIT DESIGN
AUTOMATION 18

better API for handling design simulation and job orchestration.

Figure 3.3: The BAG black-box engine flow.

3.6 Conclusion

In this chapter, we presented a set of simulator tools that we developed to facilitate research
on analog-mixed signal circuit design automation using machine learning. We described
a framework that is built on Berkeley Analog Generator [12] which allows us to formalize
layout automation as a black-box optimization problem. We also presented an open-source
counterpart built on NGSPICE which allows us to quickly iterate on algorithmic ideas and
development of robust optimization algorithms without having to worry about issues with
licensing or slowness of simulators.

19

Chapter 4

Boosting Sample Efficiency of
Evolutionary Algorithms

In this chapter, we present BagNet [38] where our goal was to show that we can use neural
networks to significantly reduce the number of simulations for design evaluation. If we
iteratively use the generated samples during optimization to re-train the neural network we
can iteratively improve the model’s accuracy. A key insight is that the neural network model
is not trained to the accuracy to replace the simulator, but to perform a reasonably accurate
comparison between candidate design instances. We show that using this approach we can
boost the sample efficiency of evolutionary algorithms to a point that we can automatically
find the correct parameters of the layout for a relatively complex design of a 10 Gb/s photonic
link receiver, in almost one day.

4.1 Population-Based Methods: Benefits and

Drawbacks

Population-based methods have been extensively studied in the past in the application of
analog circuit design automation [92, 64, 66]. These methods usually start from an initial
population and iteratively derive a new population from the old one using some evolutionary
operations (i.e. combination, mutation). Some selection mechanism then picks the elites of
the old and new populations for the next generation, a process known as elitism. This process
continues until the average cost of the current population reaches a minimum.

While this could work in principle, it is very sample inefficient, prone to instability in
convergence, and requires a lot of domain-specific knowledge to hand-craft good selection
mechanisms. The process must be repeated numerous times due to its stochastic nature.
As a result, these methods are not suitable for layout-based optimizations where simulation
takes a significant amount of time.

The sample inefficiency arises from two factors. Firstly, the majority of the new pop-
ulation will only slightly improve on their ancestors, and as the population improves, the

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 20

difficulty of replacing old designs increases. Therefore, it would take many iterations until
the children evolve enough to surpass the average of the parents. Much of the previous work
seeks to improve this by focusing on modifying the evolutionary operations such that they
would increase the probability of producing better children while preserving the diversity
[95]. Unfortunately, these methods have not been able to sufficiently improve the sample
efficiency to accommodate the post-layout simulations. Secondly, many of these methods
only look at the total cost value and do not consider the sensitivity of the cost to each design
constraint, meaning that they do not account for how each specification metric is affecting
the overall cost. Expert analog designers usually do this naturally by prioritizing their design
objectives depending on what constraint limits their design the most. Considering only the
total cost value can be misleading and may obfuscate useful information about the priority
of optimizing the metrics.

To address the first issue, if we had access to an oracle that could hypothetically tell us
how two designs were compared in terms of each design constraint, we could use it to direct
the selection of new designs. Each time a new design is generated we can run the oracle to
see how the new design compares to some average design from the previous generation. In
this work, we devise a deep neural network model that can imitate the behavior of such an
oracle.

To address the second problem, we can look at the current population and devise a set of
critical specifications (i.e specifications that are the most limiting and should be prioritized
first). In each step that we query the oracle, we only add designs that have better performance
than the reference design in all metrics in the critical specification set. The important point
to note is that once a metric enters the critical specification set it never becomes uncritical,
as we do not want to forget which specifications derived the selection of population before the
current time step. For finding the critical specification at each time step we use a heuristic
which is best described by the pseudo code in algorithm 1.

Algorithm 1 Pseudo-code of the heuristic used for updating critical specification list

1: Input: Population buffer B, specification list S, critical specification list CS (empty at
first), a reference index k (i.e 10)

2: if CS.empty() then

3: B̃ ← sort B by cost(x) =
∑
i∈S

wi ∗ pi(x)

4: else
5: B̃ ← sort B by cost(x) =

∑
i∈CS

wi ∗ pi(x)

6: critical spec ← argmax
i∈S

max
x∈B̃[0:k−1]

pi(x)

7: CS.append(critical spec)

As an experimental exercise, we can realize the oracle with a simulator and use the
aforementioned heuristics to decide whether to add a new design to the population. Figure
4.1 illustrates the expected convergence performance of this oracle compared to the same

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 21

Figure 4.1: Illustration of improvement of Oracle against EA. Each iteration is equivalent to
adding some number of new designs to the population. The region between the two curves
represents room for improvement.

evolutionary algorithm without this discrimination. The expected behavior is that the oracle
can significantly reduce the number of iterations for convergence if we knew what designs to
add and what designs to reject.

However, we cannot use this oracle if we want to scale our method to do layout-level
optimizations on more complex circuit topologies with larger design spaces and more ex-
pensive simulation runs. This is because the oracle has to run simulations for all generated
instances to determine which designs to add or reject and therefore, there is no reduction
in the number of simulations that it runs. In the next section, we propose a deep neural
network model that can imitate the behavior of this oracle while significantly reducing the
required number of simulation runs.

4.2 Model for Imitating the Oracle

Multiple options exist for imitating the oracle. First, we can have a regression model to
predict the cost value and then use this predicted value to determine whether or not to
accept a design. The cost function that the network tries to approximate can be extremely
non-convex and ill-conditioned. Thus, from a limited number of samples it is very unlikely
that it would generalize well to unseen data. Moreover, the cost function captures too much
information from a single scalar number, so it would be hard to train.

Another option is to predict the value of each metric (i.e. gain, bandwidth, etc.). While
the individual metric behavior can be smoother than the cost function, predicting the metric

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 22

value is unnecessary since we are simply attempting to predict whether a new design is
superior to some other design. Therefore, instead of predicting metric values exactly, the
model can take two designs and predict only which design performs better in each metric.
Figure 4.2 illustrates the model architecture used for imitating the oracle.

Figure 4.2: DNN’s model used BagNet, θ = [θf , θ1, ..., θl] contains the parameters of the
DNN.Mθ(DA, DB) is the output probabilities of the DNN parametrized by θ for inputs DA

and DB. Mθ(DA, DB; i) denotes the predicted probability for the ith specification. Note
that ⪰ denotes preference, not greater than.

The model consists of a feature extraction component comprised of only fully connected
layers which are the same for both Design A and Design B. For each specification, there
is a sub-DNN that predicts the preference over specifications using fully connected layers.
There is a constraint that the network should predict complementary probabilities for inputs
[DA, DB] vs. [DB, DA] (i.e. Mθ(DA, DB) = 1−Mθ(DB, DA)) meaning that there should be
no contradiction in the predicted probabilities depending on the order by which the inputs
were fed in. Therefore to ensure this property holds and to make the training easier, we can
impose this inductive bias on the weight and bias matrices in the decision networks. To do
so, each sub-DNN’s layer should have an even number of hidden units, and the corresponding
weight and bias matrices should be symmetric according to the following equations:

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 23

ym×1 = Wm×2kx2k×1 + bm×1
y1
y2
...
ym

 =

[
Wm

2
×2k

W̃m
2
×2k

][
xk×1

x̃k×1

]
+

[
bm

2
×1

b̃m
2
×1

]

Where we have,

W̃(i, j) = W(
m

2
− 1− i, 2k − 1− j)

for i = 0, ...,
m

2
− 1 and j = 0, ..., 2k − 1

b̃(i) = b(
m

2
− 1− i) for i = 0, ...,

m

2
− 1 .

If the weight and bias parameters are set as above, when the input order is changed from
[DA, DB] to [DB, DA] the very first feature vector is changed from [f1, ..., fk, f̃k, ..., f̃1] to

[f̃1, ..., f̃k, fk, ..., f1]. Thus, for the last layer that has two outputs, the sigmoid function will
produce 1−Mθ(DA, DB) instead ofMθ(DA, DB).

To train the network, we construct all permutations from the buffer of previously sim-
ulated designs and evaluate their performance in each metric. We then update network
parameters with stochastic gradient descent.

4.3 Algorithm

To put everything together, Figure 4.3 illustrates the high-level architecture of the optimizer.
In each iteration we use the current population and perform some specific evolutionary
operations to get the next generation of the population, but we do not simply simulate them
and consider them as the next generation. We use the DNN to predict if they will be better
compared to some reference design already within our current population, and if the answer
is positive we simulate the designs, call them the next generation, and proceed with the
evolutionary algorithm.

The children may have a distribution mismatch from the data that DNN was trained on.
To mitigate the distribution drift, each time we add new children we evaluate them with
the actual simulator and re-train the model with correct labels so that the buffer is updated
with correct labels for the next steps of training. This idea is very similar to DAgger [105]
except that we do not relabel all of the children, rather we only relabel the accepted ones.
Algorithm 2 shows the entire algorithm, step by step.

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 24

Figure 4.3: High level architecture of our optimizer

4.4 Experiments

In this section, we study a variety of experiments that clarifies some aspects of the algorithm
and illustrates its capabilities on a variety of circuits.

Schematic Design of a Two Stage Amplifier

First, to clarify the convergence behavior and benefits of the algorithm, we use a simple
two-stage op-amp evaluated only through schematic simulation using 45nm BSIM models
on NGSPICE.

The circuit’s schematic is shown in Figure 4.4. The objective is to find the size of
transistors and the value of the compensation capacitor such that the described circuit
satisfies the requirements set in table 4.1. We fixed the length and width of the unit-
sized transistors to 45 nm and 0.5 µm, respectively, and for the size of each transistor, we

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 25

Algorithm 2 Pseudo-code for the entire algorithm

1: Given Some evolutionary operations E {e.g. CEM [8]}
2: Given Some Initial buffer of random simulated designs B
3: Given reference index k {e.g. k = 10}
4: Given DNNMθ parametrized by θ
5: update θ {e.g. For 10 epochs}
6: while num iter < max num iter do
7: Get critical specification list CS according to the heuristic {i.e. Algorithm 1}
8: B̃ ← sort B by cost(x) =

∑
i∈CS

wi ∗ pi(x)

9: Dref = B̃[k]
10: list of new children L = []
11: while L.length < 5 do
12: Dnew ← E .generate(B) {generate a new design}
13: P ←Mθ(Dnew,Dref)
14: if P [i] = 1, ∀i ∈ CS then
15: Run simulation on Dnew
16: L.append(Dnew)
17: else
18: Continue
19: B ← E .select(B + L) {Elitism}
20: update θ {e.g. For 10 epochs}

limit the number of fingers to any integer number between 1 to 100. For compensation
we also let the algorithm choose Cc from any number between 0.1pF to 10pF with steps
of 0.1fF. The grid size of the search space is 1014. A given instance is evaluated through
DC, AC, CMRR, PSRR, and transient simulations, which in total takes approximately one
second for each design. Therefore, brute-force sweeping is not practical even in this simple
example. However, this short simulation time allows us to do comparisons against the vanilla
evolutionary algorithm and the oracle. Note that these methods are not feasible for layout-
based simulations, however, since each would take several minutes per design to evaluate
instead of a second.

Table 4.1 shows the performance of the minimum cost solution found by different ap-
proaches. In this example, all approaches found a solution satisfying all specifications, but
this is not guaranteed as it depends on the feasibility of the specifications and also the
stochastic behavior of the evolutionary algorithms. We can always adjust exploration vs.
exploitation of the evolutionary algorithms by the mutation rate, but this will increase the
convergence time of all of the approaches. However, our approach will not need as many
simulations as the oracle or the vanilla evolutionary algorithms.

To avoid over-fitting and being certain about false positives and negatives, we can leverage
Bayesian DNNs within our model [79], which can estimate the uncertainty regarding the

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 26

Figure 4.4: Schematic of a vanilla two stage op-amp

Table 4.1: Objective of design and performance of solutions found using different approaches
for the two stage op-amp example

Requirement Evolutionary Oracle Ours

Gain >300 323 314 335
funity [MHz] >10 10.83 10.66 10.2
Phase Margin [◦] >60 60.7 60.83 62
tsettling [ns] <90 59.9 83.5 62
CMRR [dB] >50 53 54 54
PSRR [dB] >50 57 56 57
Systematic Offset [mV] <1 0.823 0.94 0.32
Ibias [µA] <200 188 158 148

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 27

Table 4.2: Summary of number of operations involved in the process of each approach

of NN Queries # of Re-training # of Simulations

Simple Evolution - - 5424
Oracle - - 3474
Ours 55102 50 241

decisions. In this specific example we use drop-out layers which can be considered as Bayesian
DNNs with Bernoulli distributions [30]. During inference, we sample the model 5 times and
average the probabilities to reduce the uncertainty about the decisions.

Figure 4.5a shows the average cost of the top 20 designs in the population for the ora-
cle, vanilla evolutionary, and our algorithm. Each time only 5 designs are added and the
evolutionary operations are the same for all experiments. We ran our approach on multiple
random initial seeds to ensure robustness in training and performance. We note that in terms
of the number of iterations, the oracle requires the least iterations, but it runs a simulation
on all generated designs to make selection decisions so this does not translate to the overall
fastest time. Therefore, it is impractical to run it on post-layout simulation on more complex
circuits. Figure 4.5b shows performance in terms of the number of simulations. We see that
our approach is more efficient by at least a factor of 10 in this simple example.

Table 4.2 shows a summary of number of operations in our simple example. We note that
our approach can cut down a lot of impractical simulations at the cost of more time spent
on training and inference of a DNN. With recent advancements in hardware for machine
learning and the use of GPUs, the time spent on training and inference can be significantly
reduced. When we want to scale up to more intricate circuits two factors make our approach
advantageous. Firstly, when we do layout optimization, simulation drastically increases
proportionally to the circuit size. Also, more complicated circuits have larger design space
and it will become even more critical to prune out impractical regions of design space as we
scale up. Therefore, in terms of scaling to layout optimization, our approach seems to be
promising.

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 28

(a)

(b)

Figure 4.5: a) Average cost of top 20 individuals across number of iterations. Each iteration
corresponds to adding 5 designs to the population. b) Average cost of top 20 individuals
across number of simulations.

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 29

Layout Design of a Two-Stage Amplifier and Comparison Against
an Expert Design

This example is presented to compare an expert-designed circuit with our algorithm’s design.
The op-amp’s topology and the cardinality of search space are shown in Figure 4.6, with
each array denoting how many parameters were considered for design. For example for Mref,
20 values of n fingers were considered. In total, this design example has an 11-dimensional
exploration space with a size of 3× 1013.

The topology is a standard Miller compensated op-amp, in which the first stage contains
diode-connected and negative-gm loads. The design procedure is more cumbersome than
the previous two-stage example, mainly because of the positive feedback. A scripted design
procedure for this topology is included as part of BAG to exemplify codifying expert-driven
design methodologies. The design script can find the proper transistor sizing while consider-
ing layout parasitic effects using a closed-loop design methodology. The inputs to the design
script are specifications of phase margin and bandwidth, and the objective is to maximize
gain. In this circuit, the resistor and capacitor are schematic parameters, while all transistors
and all connecting wires use the GF14 nm PDK extraction model.

Table 4.3 shows a performance summary of our approach compared to that of the design
generated by the design script. The script is unable to meet the gain requirement due
to a designer-imposed constraint that the negative gm should not cancel more than 70%
of the total positive resistance at the first stage’s output. This constraint arises from a
practical assumption that there will be a mismatch between the negative gm’s resistance and
the overall positive resistance, due to process, voltage, and temperature (PVT) variations.
Thus, the circuit can become unintentionally unstable, and therefore during design, we leave
some margin to accommodate these prospective random variations. We have the option
of imposing a similar constraint to equate the design spaces, or we can run simulations
over process and temperature variations to ensure that our practical constraints are not too
pessimistic.

For our approach, the initial random population size is 100 with the best cost of 0.3.
We ran every simulation on different PVT variations and recorded the worst metric as the
overall performance value. Figure 4.7 illustrates how the average cost in top 20 designs
changes over time. Reaching a solution with our approach took 3 hours including initial
population characterization, whereas developing the design script takes 4-7 days according
to the expert. The DNN was queried 3117 times in total (equivalent to 6 minutes of run
time on our compute servers) and we only ran 120 new simulations in addition to the initial
population of size 100 (each of which takes on average 48 seconds to run). Moreover, the
complexity of developing a design script forces the designer to limit the search space to
make the process feasible and a generic design algorithm that properly imposes high-level
specifications onto a large system is immensely difficult to generate. We will see an example
of such systems and our approach’s solution in the next section.

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 30

Figure 4.6: Two stage op-amp with negative gm load

Figure 4.7: Convergence curve of the two stage op-amp done in BAG. Orange shows the
minimum cost across iteration step and blue shows the average of cost in top 20 instances

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 31

Table 4.3: Performance of expert design methodology and our approach

Requirement Expert Ours

funity >100 MHz 382 MHz 159 MHz
pm > 60◦ 64◦ 75◦

gain >100 (for ours) 42 105

End-to-End Layout Optimization of an Optical Receiver Link

The following experiment highlights the capabilities of our approach in handling complex
analog-mixed signal design problems using post-layout simulations. This problem has 26
different parameters to set, which makes the cardinality of the design space 2.8 × 1030
(compared to 1016 for the two-stage opamp). We demonstrate a differential optical link
receiver front-end with a single tap double tail sense amplifier (DTSA) in the end. The
circuit is shown in Figure 4.8 with design space parameters at the bottom. The goal is to
design this circuit from very high-level specifications, namely, data rate, power consumption,
and minimum sensitivity for a given bit error rate (BER).

Automating the characterization of instances of this circuit is the key to setting up the
environment before running the algorithm. The following steps are crucial to get perfor-
mance metrics on each design. First, we instantiate the DTSA’s layout, schematic, and
extracted netlist. We then run overdrive test recovery to characterize the transient behavior
of DTSA. Figure 4.9a shows a typical overdrive test recovery curve for a given comparator.
We specifically measure vcharge, vreset, and vout in the time instances relative to the edge
of the clock as shown in the figure. By specifying these three numbers as well as a minimum
vin (i.e 1 mV), we can describe the performance of the comparator at a given data rate. To
get the noise behavior of the comparator, we run numerous transient noise simulations for
several cycles while sweeping input voltage from a small negative voltage to a small positive
voltage. We can then fit a normal Gaussian distribution to the estimated probability of ones
in each transient run and get an estimation of the input-referred voltage noise of the DTSA.
Figure 4.9b illustrates this simulation procedure. We then take the entire system’s extracted
netlist and characterize the behavior of the analog front end (AFE) while the DTSA is acting
as a load for the continuous-time linear equalizer (CTLE).

Once we used noise simulations to get the input-referred voltage noise of the comparator,
we can then aggregate the comparator’s noise from previous simulations with the AFE’s
noise to compute the total root mean square noise at the comparator’s input. We also use
the transient response of the circuit to ensure that the eye diagram has high fidelity at
the input of the comparator. The input-output curves, and formulas used to measure eye’s
fidelity are shown in figure 4.10a and 4.10b.

We estimate eye height and eye thickness ratio and specify a constraint on them to
describe the quality of the eye diagram for a given input sensitivity. Using BER of 10−12

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 32

Figure 4.8: Optical receiver schematic

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 33

(a)

(b)

Figure 4.9: a) Overdrive test recovery simulation curves for DTSA b) Probability of out-
putting a one vs. Vin. We can use the cumulative density function of a Gaussian to estimate
the standard deviation of the noise

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 34

(a)

(b)

Figure 4.10: a) Input and output signals for measuring the eye height and thickness, the
input is a small signal pulse with an amplitude of target input sensitivity, and with a width
of Tbit for the target data rate. The output curve is sampled at time instances shown relative
to the main cursor (maximum of output) b) Equations used for estimating eye height and
thickness to express the fidelity of eye diagram

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 35

we can compute the required eye height at the input of the comparator using equation 4.1
and compare it against the actual eye height. For the optimization objective, we can put
a constraint on the relative difference between the actual eye height and the required eye
height (i.e. actual eye height should be 10% larger than the minimum required eye height).
We call this percentage eye margin.

eye hmin = 9σnoise +Residual Offset + DTSA sensitivity (4.1)

For sensitivity, we use the Vin from the overdrive test recovery in previous tests. There will
also be a component mismatch offset which can be significantly reduced with a systematic
offset cancellation scheme. The offset cannot, however, be fully eliminated, so the residual
offset will also be considered (e.g. 1mV). We also run a common-mode AC simulation to
ensure that the tail transistors providing bias currents are operating in saturation by spec-
ifying a reasonable minimum common-mode rejection ratio requirement. For one instance,
this whole process takes about 200 seconds on our compute servers. We can then compute
the cost of each design as specified by equation 3.1. Therefore, being sample efficient in
terms of learning and optimizing is vital, as discussed in section 4.4.

In terms of layout generator search space, each resistance drawn in Figure 4.8 has unit
length, unit width, number of series units, and number of parallel units. The CTLE’s
capacitor has width and length, and each transistor has several fins and fingers that need to
be determined. We fixed the number of fins to simplify the search space. The cardinality
of each design parameter is written in Figure 4.8. In total, the design example has a 26-
dimensional exploration space with a size of 2.8× 1030.

Figure 4.11 and Table 4.4 show the layout and performance of the solution for designs
found with cost of 0 (satisfying all specs), 0.1, and 0.2, respectively. The first design solution
was found using 435 simulations equivalent to 27 hours of run time. This number includes
generating the initial population which consisted of 150 designs with the best cost function
of 2.5. During the process, the DNN was queried 77487 times in total and only 285 of those
were simulated, representing around 300x sample compression efficiency. From the total
runtime, 1.6 hours were spent on training, and almost 2.1 hours were spent on querying the
DNN.

4.5 Conclusion

In this chapter, we introduced BagNet, a sample-efficient evolutionary-based optimization
algorithm for designing analog circuits using analog layout generators. In this approach, we
used DNNs to prune out the useless part of the design space, so that we can save time on
long simulations. We showed that the algorithm can be used in designing a variety of real,
practical AMS circuits with different applications regardless of size and complexity, as long
as the verification procedure is properly defined.

CHAPTER 4. BOOSTING SAMPLE EFFICIENCY OF EVOLUTIONARY
ALGORITHMS 36

Figure 4.11: Sample layouts of the optical link receiver circuit with different cost values of
0, 0.1, and 0.2 for A, B, and C, respectively.

Table 4.4: Design Performance for optical receiver design for CPD = 20fF , Imin =
3µA,Data Rate = 10Gbit/s

Requirement
A

(cost = 0)
B

(cost = 0.1)
C

(cost = 0.2)
Thickness ratio <10% 6% 3.3% 8.5%
Eye margin
@ Imin

>10% 10.2% 15.1% 10.4%

CMRR >3 4.77 5.51 4.5
vcharge >0.95VDD VDD VDD VDD
vreset <1 mV 20 µV 52 µV 21 µV
vout <-0.9VDD -0.91VDD -0.88VDD -0.87VDD
Total Noise <5 mV 2.9 mV 3.2 mV 3.05 mV
Total Ibias <10 mA 6.2 mA 4.04 mA 6.3 mA

37

Chapter 5

Improving Circuit Models via
Pre-training and Fine-tuning

Being able to predict the performance of circuits without running expensive simulations is a
desired capability that can catalyze automated design. In what we have covered so far, the
neural network model that we learn during optimization is tailored particularly to a given
topology for modeling specific design metrics. If during the design process, the user suddenly
decides to change the topology or change the optimization criteria the modeling has to be
done from scratch and prior knowledge cannot be transferred to the new problem.

In this chapter, we present a supervised pretraining approach to learning circuit repre-
sentations that can be adapted to new circuit topologies or unseen prediction tasks. We
hypothesize that if we train a neural network (NN) that can predict the output DC voltages
of a wide range of circuit instances it will be forced to learn generalizable knowledge about
the role of each circuit element and how they interact with each other. The dataset for this
supervised learning objective can be easily collected at scale since the required DC simulation
to get ground truth labels is relatively cheap. This representation would then be helpful for
few-shot generalization to unseen circuit metrics that require more time-consuming simula-
tions for obtaining the ground-truth labels. To cope with the variable topological structure of
different circuits we describe each circuit as a graph and use graph neural networks (GNNs)
to learn node embeddings. We show that pretraining GNNs on the prediction of output
node voltages can encourage learning representations that can be adapted to new unseen
topologies or prediction of new circuit-level properties with up to 10x more sample efficiency
compared to a randomly initialized model. We further show that we can improve the sample
efficiency of the presented BagNet from chapter 4 by 2x (almost as good as using an oracle
model) via fine-tuning pre-trained GNNs as the feature extractor of the learned models.

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 38

5.1 Related Work

Modeling circuits using deep neural networks. Functional modeling of analog circuits
using deep neural networks has been revisited in recent years due to the success of deep
learning in modeling black-box functions. To this end, a conventional modeling approach is
to model the entire circuit end-to-end with multi-layer perceptrons [134, 70]. However, this
choice of architecture requires a large training dataset for building accurate models which
can be problematic when the simulation is time-consuming. One way to address this issue
has been to impose domain-specific inductive biases on model architectures. For example,
[45] proposes breaking the circuit into sub-circuits and modeling each with a separate NN
in an auto-regressive fashion. However, it requires ad-hoc human input on the definition of
sub-circuits. Also, the sub-circuits themselves are modeled with MLPs and do not leverage
structural information. In this work, we utilize GNNs, which generalize the idea of imposing
structural inductive bias on the architecture.

GNNs in chip design. In recent years, the idea of using GNNs to automate the design
process of systems-on-chip has been visited in several prior works from both an optimization
and modeling perspective. Most notably [76] studies the problem of chip placement and
utilizes GNNs as the backbone of the feature embeddings of an RL policy and value function
that is learned in an end-to-end fashion using custom reward functions. The reason behind
using GNNs as feature extractors is that many chip placement strategies are motivated by the
global structure of the system and GNNs can capture the structural dependencies effectively.
[104], on the other hand, uses GNNs for circuit parasitic prediction based on the circuit’s
graph which only needs local information.

[73, 136] employ GNNs as the backbone of the predictive models for optimizing analog
circuit metrics. However, the benefits of using GNNs in these works are limited to a single
topology or a single optimization objective. In our work, we study pretraining GNNs to see
whether we can reliably transfer domain knowledge to new topologies or prediction tasks
instead of learning from scratch.

5.2 Learning representations for analog circuits

We will first present the language for describing analog circuits as graphs in section 5.2.
Then we describe how we can use a supervised node property prediction task (i.e. predicting
voltages of each node) as a pretraining objective to learn representations that can be fine-
tuned for predicting voltages on unseen topologies or for new graph property prediction tasks
(e.g. predicting the output resistance of the circuit).

New graph representation

Despite the recent surge of interest in utilizing GNNs for predictive models on circuits [104,
74], there is still no unified descriptive language for representing transistor-based circuits as

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 39

(a)
(b)

Figure 5.1: (a) Example of why it is important to explicitly model device terminals as nodes
to disambiguate certain topological configurations. (b) Steps of converting a circuit schematic
to a graph representation. (1) Convert all devices to their corresponding complete sub-
graphs (2) Convert all circuit nets to (yellow) nodes in the graph (3) Make edge connections
according to the topology of the circuit.

graphs that can uniquely represent all possible topological configurations. For example, [104]
proposes to map each device and each net (i.e. wire connection) in the circuit to a graph
node and uses edge types to distinguish the device terminal types (i.e. source, drain, gate,
body). This representation becomes ambiguous in cases where a device (e.g. transistor)
has the same net connection between two or more terminals. Figure 5.1a illustrates such an
example. Since the drain (red) and gate (green) terminals of the transistor are both connected
to net N, two edges with different types should connect the device T to its corresponding
net N. The source (blue) and body (purple) terminals also have the same ambiguity.

To disambiguate this representation, we propose a set of steps that explicitly represent the
device terminals as individual nodes. This representation is closely linked to the widely used
textual description (i.e. netlist) of circuits used for simulator tools such as Spice [96]. In this
representation, each device is a complete sub-graph with its terminals as individual nodes.
The features of each node indicate the terminal type and device parameters and therefore,
all edges become feature-less. Figure 5.1b illustrates an example of how a simple amplifier
circuit gets mapped to its graph representation, step by step following our approach:

1. Convert the terminals of each device to a complete sub-graph with the same number
of nodes as the number of terminals.

2. Convert each circuit net to a node in the graph.
3. Connect all the nets to their corresponding device terminals.

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 40

The resulting representation is a graph G = (V , E) comprised of a set of nodes V and a
set of undirected edges E . Each node is associated with a feature vector which describes
the type of the node as well as the device parameters that the node belongs to (e.g. the
value of a resistor). There are no features associated with edges, and they only preserve the
connectivity information of the elements of the circuit.

Voltage prediction as the pretraining task

One of the major steps for analyzing and synthesizing circuits for humans is to compute the
bias first. This entails computing the DC voltage of various important nodes in the circuit
that sets the working condition of all the devices. One can think of computing voltages as
deriving the operating point and linearizing a nonlinear system which is a pre-requisite step
for computing other system metrics.

Inspired by this causal abstraction, we hypothesize that if a neural network is trained
to predict the DC voltages of circuit nodes in various contexts it should be able to learn
critical system-specific knowledge that can be re-used for other predictions, either in zero-
shot or few-shot manner via fine-tuning. In other words, the pre-trained backbone on the
voltage prediction task should provide a better initialization for unseen tasks and topologies
than starting from random initialization. Moreover, getting DC operating points of circuits
through simulation is relatively inexpensive compared to simulating other circuit properties.
Therefore, in principle, the pre-training dataset can be collected at scale through simulation
in a reasonable time frame.

Figure 5.2 illustrates the pretraining architecture. We cascade a GNN backbone with
an MLP with shared parameters across nodes which predicts the output voltage based on
the node contextualized representations. The pretraining objective is minimizing the mean
square error (MSE) loss between the predicted output and the ground truth for the output
nodes. There is no supervision signal on the representation of other non-output nodes. After
pretraining, we can use the output node features from the GNN backbone for the prediction
of new tasks or new topologies.

From node embedding to graph property prediction

To perform a graph property prediction task, we need to combine the node embeddings into
a single graph embedding. A naive way is to aggregate all the node embeddings via pooling
operations (e.g. mean pooling) and then feed it to an MLP that performs the graph level
prediction. However, this approach can result in loss of information during aggregation and
decreased capacity of the neural network.

To mitigate this problem, we propose a learnable attention-based aggregation layer that
scales linearly with the number of output nodes. By learning the aggregation module, the
model can choose the optimal way of aggregating the embeddings into a graph representation
based on the dataset.

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 41

F
ig
u
re

5.
2:

P
re
tr
ai
n
in
g
ar
ch
it
ec
tu
re
:
A
ft
er

th
e
G
N
N

b
ac
k
b
on

e,
th
e
b
at
ch

of
ou

tp
u
t
n
o
d
e
fe
at
u
re
s
(y
el
lo
w

n
o
d
es
)
ar
e

fe
d
in
to

an
M
L
P

to
p
re
d
ic
t
th
e
ou

tp
u
t
vo
lt
ag
es

of
ea
ch

n
o
d
e.

T
h
e
sa
m
e
M
L
P

is
ap

p
li
ed

to
al
l
th
e
n
o
d
e
fe
at
u
re
s.

T
h
e
gr
ad

ie
n
t
of

th
e
m
ea
n
sq
u
ar
e
er
ro
r
b
et
w
ee
n
gr
ou

n
d
tr
u
th

an
d
p
re
d
ic
ti
on

is
th
en

b
ac
k
p
ro
p
ag
at
ed

to
u
p
d
at
e
th
e

p
ar
am

et
er
s.

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 42

Figure 5.3 demonstrates this architecture for fine-tuning on a graph property prediction
task. Once we have the contextualized node embeddings at the output of the GNN, we
flatten them as a set of feature vectors and pass them through a cross attention network.
In this attention module, we compute the cross attention between a set of learned latent
vectors and the output node features to embed them into a single graph representation. The
latent vectors are represented as a 16x16 array that is learned during training to minimize
the output MSE loss. The contextualized 16x16 array of latent vectors is then flattened to a
single vector of size 256 at the output to represent the graph embedding. This architecture
is inspired by the transformer read-out layer proposed in [55] but modified to be similar to
perceiver IO’s cross attention architecture [54] to gracefully scale computation and memory
with the number of nodes. 1

Evaluation Metric

The prediction tasks presented in this paper are all regression tasks that require minimizing
a mean square error loss of the predicted values w.r.t. the ground truth. MSE however, is
notoriously sensitive to outliers and sensitive to the range of the predicted output. Therefore,
to get a better quantitative measure of performance, we propose measuring the accuracy of
correct predictions within a certain resolution.

For a given dataset {xi, yi}Ni=1 let ŷi be the predictions of the model. We define Acc@K
as

Acc@K =
1

N

N∑
j=1

1(|yj − ŷj | ≤
maxi yi −mini yi

K
). (5.1)

This metric measures the ratio of predictions that are within a certain precision w.r.t to
their ground truth value. For instance in the voltage prediction task (with a range of 1V),
K = 100 sets the precision to 10mV , i.e. 1% of the range.

5.3 Experiments

We perform an extensive empirical study to validate our hypothesis by focusing on the
following questions: (1) Can we successfully pre-train GNN architectures to regress the DC
voltage of output nodes on a variety of circuits? (2) How does a pre-trained network perform
on predicting the output voltage nodes of an unseen circuit topology that is slightly different
than what it has been pre-trained on? (3) Can we fine-tune the pre-trained backbone to
improve voltage prediction generalization on new unseen circuits? (4) Can we re-use the

1The regular transformer read-out layer proposed in [55] has a memory and computation footprint of
O(N2) (where N is the number of nodes), but the cross attention layer proposed in [54] (and ours) scales
linearly with N .

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 43

F
ig
u
re

5.
3:

N
o
d
e
to

gr
ap

h
p
re
d
ic
ti
on

p
ip
el
in
e:

A
ft
er

th
e
G
N
N

b
ac
k
b
on

e,
th
e
n
o
d
e
fe
at
u
re
s
ar
e
tr
an

sl
at
ed

to
a
si
n
gl
e

ve
ct
or

re
p
re
se
n
ti
n
g
th
e
gr
ap

h
em

b
ed
d
in
g.

T
h
e
gr
ap

h
em

b
ed
d
in
g
is

th
en

fe
d
to

an
M
L
P

to
p
re
d
ic
t
th
e
ou

tp
u
t.

T
h
e

n
o
d
e
to

gr
ap

h
em

b
ed
d
in
g
is

3
cr
os
s
at
te
n
ti
on

la
ye
rs

b
et
w
ee
n
a
le
ar
n
ed

em
b
ed
d
in
g
an

d
th
e
n
o
d
e
fe
at
u
re
s
(s
im

il
ar

to
[5
4]
)

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 44

learned representations after pre-training, to efficiently learn to predict new unseen circuit-
level tasks (e.g. a design metric of a circuit) via fine-tuning? (5) Can we improve optimization
sample efficiency of model-based circuit optimization tasks like BagNet (Chapter 4)?

In these experiments, all the models are pre-trained by minimizing the mean square error
loss on the predicted outputs using the Adam optimizer and learning rate with linear decay
from 1e− 3 to 5e− 5. The other common hyper-parameters are batch size of 256, activation
of Relu, and hidden channel size of 128 for GNNs and 512 for MLPs. The longest training
run-time belongs to running DeepGEN-15 which approximately takes ∼ 5 hrs on a single
NVIDIA GeForce GTX TITAN X.

The code for datasets, data loaders, and evaluators are released under BSD 3-Clause
license at https://github.com/kouroshHakha/circuit-fewshot-code. The data load-
ers are compatible with Pytorch Geometric [26] interface. We provide automatic dataset
downloading, processing, and evaluation, as well as the implementation of example baselines
discussed in the paper. We have a separate repository for data generation through circuit sim-
ulators that can be found at https://github.com/kouroshHakha/circuit-fewshot-data.
The raw datasets generated from this code-base are automatically downloaded when the pre-
vious code-base is utilized. The code for optimization experiments is found under bagnet gnn

branch of the existing repository of BagNet at https://github.com/kouroshHakha/bagnet_
ngspice/tree/bagnet_gnn.

Dataset and circuits under study

We perform our experiments on two sets of circuits. The first one is a family of resistor-
based circuits that allow us more control over different generalization aspects of the problem.
The second one is different variations of a real-world transistor-based two-stage operational
amplifier (OpAmp) circuit that illustrates the generalization of our method to more real-
world examples where modeling design constraints is challenging.

Resistor-based circuits. For pre-training we chose a particular topological structure
made only of resistors and voltage sources known as resistor ladders (Figure 5.4). For
data for pre-training, we can easily vary the number of ladder branches, values of resistors,
and voltage sources to cover enough support for resistors and voltage sources in various
contextualized neighborhoods in the graphs. During test time, we can see if the model
has transferable domain knowledge relevant to resistor-based circuits by evaluating resistor
ladders with more branches or new unseen resistor-voltage source topological structures. To
this end, we generate 20k training instances of resistor ladders with 2 to 10 branches with
equal distribution weight for each. For each node in each circuit, we solve circuit equations
to get the ground truth for voltage values.

Operational Amplifier (OpAmp). This family of circuits has been studied in many
prior works in circuit design optimization and modeling including the experiments we dis-
cussed in chapter 4. For pre-training, we consider another variation of this circuit, shown in
Figure 5.5. We generate 126 thousand design instances by varying device parameters, voltage
and current source values, and the place that circuit input is applied (i.e. differential input,

https://github.com/kouroshHakha/circuit-fewshot-code
https://github.com/kouroshHakha/circuit-fewshot-data
https://github.com/kouroshHakha/bagnet_ngspice/tree/bagnet_gnn
https://github.com/kouroshHakha/bagnet_ngspice/tree/bagnet_gnn

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 45

Figure 5.4: The circuit schematic of the resistor ladder. This circuit is comprised of n
branches. The pretraining task is to predict the output voltage of each branch vi. A resistor
ladder with n branches has 2n resistors, n+ 1 voltage sources, and n output nodes.

Figure 5.5: The circuit schematic of the pretraining dataset for the OpAmp experiments.

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 46

common-mode input, supply input, .etc). To get the ground truth we run Spice simulation
on each instance and store all DC voltages along with the graph representation of the cir-
cuit. During test time, we evaluate our predictions on new topological modifications of this
circuit where the current mirror self-bias connection is converted to a voltage-biased connec-
tion (Figure 5.8a). This minor topological modification induces enough behavioral change
to the circuit that for proper generalization, the model has to have learned fine details on
device-device interaction during pre-training.

Neural network architecture design

For all experiments, we opted to use the DeepGEN architecture proposed in [68] as the
GNN backbone. This architecture has been proposed as a solution to train very deep Graph
Convolution Networks. It leverages generalized learnable aggregation layers as well as pre-
activation skip connections to battle the vanishing gradient and over-smoothing problem
often seen in making GNNs deep. We found that this architecture generally outperforms
other vanilla GNN architectures such as GCN [59], GAT [124].

Table 5.1: Test Acc@100 of prediction of voltages for each class of resistor ladders. We ran
each experiment 3 times with random seeds for getting the standard errors.

R12 R16 R32 R128

MLP-5-fixed 0.3064 ± 0.0079 0.2466 ± 0.0056 0.1649 ± 0.0014 0.0905 ± 0.0009

DeepGEN-5-fixed 0.1024 ± 0.0073 0.1073 ± 0.0071 0.1114 ± 0.0084 0.1150 ± 0.0038
DeepGEN-10-fixed 0.6984 ± 0.0090 0.6585 ± 0.0110 0.6142 ± 0.0392 0.6167 ± 0.0027
DeepGEN-15-fixed 0.9124 ± 0.0112 0.8756 ± 0.0493 0.8756 ± 0.0166 0.8329 ± 0.0419

DeepGEN-5-(FPT) 0.1029 ± 0.0013 0.1038 ± 0.0026 0.1001 ± 0.0027 0.1009 ± 0.0027
DeepGEN-10-(FPT) 0.6847 ± 0.0069 0.6493 ± 0.0039 0.5979 ± 0.0064 0.5660 ± 0.0095
DeepGEN-15-(FPT) 0.8980 ± 0.0068 0.8711 ± 0.0059 0.8406 ± 0.0127 0.8186 ± 0.0093

Do we learn to model DC voltages?

We pre-train the NN parameters with an Adam optimizer with a batch size of 256 until
validation accuracy reaches its maximum. Figure 5.6 shows the train and validation Acc@K
for both resistor-ladder (top) and opamp (bottom) circuits. The validation set is simply a
random split on the original dataset and it is clear that we can successfully reach > 90%
accuracy for both problems during pretraining.

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 47

Figure 5.6: Train and Valid Accuracy of the model during pretraining on the resistor ladder
circuit (top) and OpAmp circuit (bottom). Validation Acc@100 for resistor ladder reaches
to 92% and Acc@200 for OpAmp reaches to 91% during pretraining.

Generalization to new unseen scenarios

Zero-shot generalization to new topologies

We first investigate whether the GNN backbone and the proceeding MLP (architecture
of Figure 5.2) can generalize their prediction to new unseen topologies of resistor ladders
with more branches and hence more complexity. To this end, we generate separate graph
datasets for resistor ladders with 12, 16, 32, and 128 branches. A single graph example
with 10 branches (the largest graph in the pretraining dataset) has 84 nodes, and 154 edges
while with 128 branches it has 1032 nodes, and 2310 edges, an order of magnitude increase
in graph complexity. For each circuit type, we generate 1k circuit instances as test set and
20k other instances for training other baselines for comparison. We consider the following
approaches as baselines:

1. We take the pre-trained model, freeze it and evaluate its prediction capability in a
zero-shot manner with no finetuning. We refer to this approach as FPT (frozen pre-trained)

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 48

model. In this modeling scheme, there is a topological mismatch between train and test sets.
The model only gets trained on graphs with 2 to 10 branches but is then evaluated on 12,
16, 32, and 128 branches which are more complex and require domain knowledge of how
resistors and voltage sources behave in the context of resistor ladders.

2. We use the 20k downstream training set to train a separate predictive model, spe-
cialized for each branch size. In this modeling scheme, there is no mismatch between train
and test sets. Note that the size of this dataset is similar to the size of the pre-training
dataset. For this strategy, since the input has a fixed static shape we can also represent it
as a fixed size vector by concatenating the node features into a vector and using an MLP
backbone as the node feature extractor. This is referred to as MLP-5-fixed since it has 5
layers. By comparing this model and GNNs we can see the impact of including the struc-
tural information in the model architecture. The specialized GNN models are referred to as
DeepGEN-x-fixed in Table 5.1 (where x is the number of layers).

Results. Table 5.1 compares the Acc@100 of the predictions of GNN backbones with
different number of layers. All the models were trained with the same MSE loss, with a
batch size of 256 using Adam optimizer2. We first notice that even though FPT models
were never trained on the test topologies, they have an on par accuracy with the specialized
models that were separately trained on comparable dataset size from a single topology.

Moreover, we also note that deeper models have better generalization across the board.
This could be due to the lack of a large enough receptive field over the entire graph for
capturing long-range dependencies in shallower models.

Also, as evident by the poor performance of the results of MLP-5-fixed in Table 5.1,
we conclude that the structural information built into the model architecture of GNNs can
significantly improve the generalization of the model. This is important evidence for choosing
GNNs over MLPs even in a fixed topology setup since they have a better inductive bias for
modeling circuits.

Few-shot generalization to other unseen topologies

In this experiment, we evaluate the FPT models on circuits that are slightly more different
than the circuits that they have been pre-trained on (e.g. resistor divider with parallel
or series resistor combinations in case of the resistor ladder pre-training dataset). These
small modifications, which are highlighted with dashed red lines in Figure 5.7 and 5.8a, will
result in poor zero-shot performance, but we show that we can significantly improve the
prediction performance via fine-tuning on small datasets from these topologies. For resistor-
based circuits, we generate 1k graphs per each topology for training and then a separate
1k instance held-out dataset for evaluation. For the OpAmp we generate 10k samples for
training and 1k examples for evaluation from the topology shown in Figure 5.8a in which the
self-biased current mirror connection is removed and the gate connections are replaced by a
voltage source. For baselines, we compare the finetuned models (FT-PT) against training the

2Only for DeepGEN-15-fixed the batch size had to be reduced from default of 256 to 32 and 16 for R32
and R128, respectively just to prevent exceeding the GPU memory

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 49

Figure 5.7: Fine-tuning capabilities of the pretrained model to new unseen topologies com-
prised of resistors and voltages sources. Each figure shows models that are trained and
evaluated on the illustrated resistor networks where new unseen topological configurations
are highlighted in red dashed boxes.

same architecture from scratch. For the remainder of the experiments, we use DeepGEN-15
as the GNN backbone unless otherwise mentioned.

Results. Figures 5.7 and 5.8b show this comparison for each circuit. For resistive
circuits, we finetune the backbone on 10, 25, 50, and 100% of the training dataset and for
the OpAmp we finetune with 1, 5, 10, 50, and 100 % of the dataset. We can see that even
with a severe distribution shift from pretraining and test domains, finetuning the learned
representation can be more efficient than learning from scratch.

Domain knowledge transfer by re-using the learned GNN features
for predicting graph level tasks

In this section, we use the architecture outlined in Figure 5.2 to re-use the learned node
features of the pre-trained GNN by using a cross attention pooling layer to construct a graph
feature from aggregating node features and use that for prediction of graph-level metrics. To
learn the model, we update all parameters (including the GNN backbone parameters) using
Adam optimizer on the downstream training dataset.

For this experiment, we have generated 10k instances of circuits from Figure 5.8a that
have ground-truth values of the gain of the amplifiers which are collected by running simu-
lations. We then evaluate the generalization of our learned models (trained by fine-tuning

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 50

(a) (b) (c)

Figure 5.8: (a) The unseen topology of the two-stage opamp that the GNN gets fine-tuned
on. We collect a small dataset of 10 thousand designs from this topology along with their
ground truth output values. We then use fractions of this training dataset to show how much
improvements we get from more data. (b) shows the test Acc@200 of predicting the output
voltage for our fine-tuned method (FT-PT) vs. training from scratch with no knowledge
transfer. (c) shows the test Acc@50 comparison for the gain prediction task (i.e. also a new
graph property prediction task).

or from scratch) on 1k separate held-out data points collected in the same procedure.
Results. Figure 5.8c shows the accuracy of gain prediction after fine-tuning on various

dataset sizes. As illustrated in this figure we can see that the pre-trained features can
significantly improve the generalization capabilities of the model even with small fractions
of the training data.

To study how important the choice of using an attention-based pooling layer is over
simpler alternative pooling methods, we have also conducted an ablation experiment where
we compare our method against a simple average pooling of all node features to construct
the graph feature. We perform this ablation, on the task of predicting the output resistance
of the resistor ladders with 10 branches. Figure 5.9 compares these baselines. As seen in the
figure, our method outperforms the simple average pooling method usually used in literature
[51]. We can also see that pre-training the GNNs prevent the model from overfitting to the
small available downstream dataset as it does if trained from scratch.

Improving sample efficiency of model-based optimization by using
pre-trained models

In this section, we show the benefits of pre-trained circuit models in improving the sample
efficiency of model-based circuit optimization algorithms like BagNet. In these methods, part
of the objective is to learn a good model of the design objectives so that we can compare
different design choices and focus exploration on more promising regions.

In chapter 4, a simple multi-layer perceptron was used as the backbone feature extractor
which was shown to out-perform the base evolutionary algorithm with no such discriminator.

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 51

Figure 5.9: Acc@100 of the output resistance prediction task on resistor ladder. Training
from scratch will fail to generalize to the test set even if all 1k data points are used due
to significant over-fitting. Moreover the attention-based aggregation layer outperforms the
naive average pooling aggregation.

In this section, we reproduce those results and show that if we use the pre-trained GNN
backbone for extracting circuit features we can significantly boost the performance to almost
as good as an oracle discriminator which has access to the ground truth design metrics and
their comparisons. To validate our hypothesis, we use the Operational Amplifier introduced
in Figure 5.5 as our pretraining topology. In this circuit, the compensation method is
comprised of a series capacitor and resistor (Cc−Rz). However, for optimization we consider
two target topologies: one is the same as the pre-training topology and another one with a
different topology where only a capacitor is used for compensation (Cc). It is known that
adding a resistor can make the compensation easier to expand the bandwidth of the amplifier.
The design specification requirements are similar to those presented in Table 4.1.

We consider the following baselines:

• Evolutionary (Evo) just runs the base evolutionary algorithm and does not use any
discriminator during the optimization

• Oracle uses ground truth comparison labels for the discriminator

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 52

Table 5.2: The comparison of sample complexity of the optimization algorithms.

Cc −Rz Cc − only

Queries Sims Queries Sims

Oracle 3770.7 193.0 18821.0 224.3
Evo - 2757.3 - 5422.7
BagNet + FC 14720.0 397.7 176568.3 4024.0
BagNet + Randinit GNN 8892.0 254.7 47961.7 426.5
BagNet + FPT GNN 8000.3 347.3 27309.0 500.3
BagNet + FT-PT GNN (Ours) 4890.7 226.0 14408.7 293.0

• BagNet + FC uses fully-connected layers as feature extractor (the original BagNet
work)

• BagNet + Randinit GNN, uses a randomly initialized GNN as feature extractor
that is jointly trained with the the rest of the model during optimization

• BagNet + FPT GNN uses a frozen but pre-trained GNN for feature extractor

• BagNet + FT-PT GNN fine-tunes the pretrained GNN

Results. Figure 5.10 qualitatively shows the quality of the designs found during op-
timization as the function of the number of iterations. We run each algorithm with three
initial seeds to show the standard error on performance. The y-axis measures the objective
value of the top 20 designs found until each iteration. We also provide the average number
of simulations and the average number of discriminator queries for all of these baselines in
Table 5.2 for quantitative comparisons.

All BagNet algorithms that use the discriminator outperform the base evolutionary al-
gorithm. We note that the performance boost obtained by the pre-trained and fine-tuned
GNN (FT-PT) is very close to the oracle baseline while using the frozen pre-trained fea-
tures or randomly initialized GNN is not as good. This gap is larger when tried on the
harder optimization problem (Cc-only), despite pretraining FT-PT’s initial weights on a dif-
ferent topology than the target optimization topology. This picture clearly shows that the
performance boost in sample efficiency is partly due to the utilization of GNNs over MLP
architectures as feature extractors and partly due to being able to transfer the pre-trained
representations to unseen topologies. We also note that the number of discriminator queries
is typically lower when the model is better. This implies that the more accurate the model
gets the number of new candidate designs that get rejected by mistake become lower.

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 53

Figure 5.10: The average cost of top 20 designs over the course of optimization using different
evolutionary-based approaches. (Top) The optimization is done on the OpAmp with Cc−Rz

compensation (Fig. 5.5, (Bottom) The target topology is the OpAmp with only capacitor
compensation (Cc)

CHAPTER 5. IMPROVING CIRCUIT MODELS VIA PRE-TRAINING AND
FINE-TUNING 54

5.4 Conclusion

This work illustrates how we can use large in-expensive datasets collected from running DC
simulations at scale on analog circuits to learn transferable circuit representations that could
enable more sample efficient modeling and optimization of new expensive-to-collect metrics.

We presented a supervised-learning paradigm for learning representations that are trans-
ferable to new circuit topologies that can be fine-tuned for new graph-level prediction tasks.
We introduced a novel graph representation of the circuit and used the prediction of the
output node voltages as the pretraining objective. We showed that such a pretraining objec-
tive can induce learning generalizable domain-specific features that can be easily fine-tuned
for similar predictions on new topologies or unseen new graph property prediction tasks
such as predicting the output resistance of a circuit or gain of an amplifier. We have also
shown that we can leverage the pre-trained features to boost the performance of model-based
optimization methods used for analog circuit design automation.

55

Chapter 6

Boosting Sample efficiency of
Bayesian Optimization Methods via
Pre-training

Bayesian optimization (BO) is a popular framework for expensive-to-evaluate black-box op-
timization problems as it seeks to minimize the number of function evaluations required for
optimizing a target black-box function [111, 28]. In real-world scenarios, however, we often
have access to offline evaluations of one or more auxiliary black-box functions related to
the target function. For example, in the circuit design domain, designers are interested in
performing layout simulations for satisfying the required design configurations. These simu-
lations are however expensive to run; designers instead often turn to schematic simulations
as an inexpensive proxy for prototyping designs. Multi-task Bayesian optimization (MBO) is
an optimization paradigm that extends BO to exploit such additional sources of information
from related black-box functions for efficient optimization [120].

When offline datasets are large, the scalability of prior approaches comes at the expense
of expressivity and inference quality. In this chapter, we propose JUMBO (Joint Upper
Confidence Bound Multi-task Bayesian Optimization), an MBO algorithm that sidesteps
these limitations by querying additional data based on a combination of acquisition signals
derived from training two Gaussian Processes (GP): a cold-GP operating directly in the input
domain and a warm-GP that operates in the feature space of a deep neural network pre-
trained using the offline data. Such a decomposition can dynamically control the reliability
of information derived from the online and offline data and the use of pre-trained neural
networks permits scalability to large offline datasets.

6.1 Background

We are interested in maximizing a target black-box function f : χ → R defined over a
discrete or compact set χ ⊆ Rd. We assume only query access to f . For every query point x,

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 56

we receive a noisy observation y = f(x) + ϵ. Here, we assume ϵ is standard Gaussian noise,
i.e., ϵ ∼ N (0, σ2

n) where σn is the noise standard deviation. Our strategy for optimizing f
will be to learn a probabilistic model for regressing the inputs x to y using the available data
and using that model to guide the acquisition of additional data for updating the model.
In particular, we will be interested in using Gaussian Process regression models within a
Bayesian Optimization framework, as described below.

Gaussian Process (GP) Regression

A Gaussian Process (GP) is defined as a set of random variables such that any finite subset
of them follows a multivariate normal distribution. A GP can be used to define a prior
distribution over the unknown function f , which can be converted to a posterior distribution
once we observe additional data. Formally, a GP prior is defined by a mean function µ0 : χ→
R and a valid kernel function κ : χ× χ→ R. A kernel function κ is valid if it is symmetric
and the Gram matrix K is positive semi-definite. Intuitively, the entries of the kernel matrix
Ki,j = κ(xi, xj) measure the similarity between any two points xi and xj. Given points
X = {x1, x2, . . . , xn}, the distribution of the function evaluations f = [f(x1), f(x2), . . . f(xn)]
in a GP prior follows a normal distribution, such that f |X ∼ N (µ0(X), K(X,X)) where
µ0(X) = [µ0(x1), µ0(x2), . . . µ0(xn)] and K(X,X) is a covariance matrix. For simplicity, we
will henceforth assume µ0 to be a zero mean function.

Given a training dataset D, letXD and yD denote the inputs and their noisy observations.
Since the observation model is also assumed to be Gaussian, the posterior over f at a test
set of points X∗ will follow a multivariate normal distribution with the following mean and
covariance:

µ(f∗|D, X∗) = K(X∗, XD)
T K̃−1

D yD,

Σ(f∗|D, X∗) = K(X∗, X∗)−K(X∗, XD)
T K̃−1

D K(X∗, XD),

where K̃D = K(XD, XD) + σ2
nI.

Due to the inverse operation during posterior computation, standard GPs can be com-
putationally prohibitive for modeling large datasets.

We direct the reader to [103] for an overview on GPs.

Bayesian Optimization (BO)

Bayesian Optimization (BO) is a class of sequential algorithms for sample-efficient optimiza-
tion of expensive black-box functions [28, 111]. A BO algorithm typically runs for a fixed
number of rounds. At every round t, the algorithm selects a query point xt and observes a
noisy function value yt. To select xt, the algorithm first infers the posterior distribution over
functions p(f |{(xi, yi)}t−1

i=1) via a probabilistic model (e.g., Gaussian Processes). Thereafter,
xt is chosen to optimize an uncertainty-aware acquisition function that balances exploration
and exploitation. For example, a popular acquisition function is the Upper Confidence Bound

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 57

(UCB) which prefers points that have high expected value (exploitation) and high uncer-
tainty (exploration). With the new point (xt, yt), the posterior distribution can be updated
and the whole process is repeated in the next round.

At round t, we define the instantaneous regret as rt = f(x∗)−f(xt) where x∗ is the global
optima and xt maximizes the acquisition function. Similarly, we can define the cumulative
regret at round T as the sum of instantaneous regrets RT =

∑T
t=1 rt. A desired property

of any BO algorithms is to be no-regret where the cumulative regret is sub-linear in T as
T →∞, i.e., limT→∞ RT/T = 0.

Multi-task Bayesian Optimization (MBO)

Our focus setting in this work is a variant of BO, called Multi-Task Bayesian Optimization
(MBO). Here, we assume K > 0 auxiliary real-valued black-box functions {f1, . . . , fK}, each
having the same domain χ as the target function f [120, 116]. For each function fk, we have
an offline dataset D(k) consisting of pairs of input points x and the corresponding function
evaluations fk(x). If these auxiliary functions are related to the target function, then we can
transfer knowledge from the offline data Daux = D(1) ∪ · · · ∪ D(K) to improve the sample-
efficiency for optimizing f . In certain applications, we might also have access to offline data
from f itself. However, in practice, f is typically expensive to query and its offline dataset
Df will be very small.

We discuss some prominent works in MBO that are most closely related to our proposed
approach below. See Section 6.2 for further discussion about other relevant work.

Multi-task BO [120] is an early approach that employs a custom kernel within a multi-
task GP [130] to model the relationship between the auxiliary and target functions. Similar
to standard GPs, multi-task GPs fail to scale for large offline datasets.

On the other hand, parametric models such as neural networks (NN), can effectively
scale to larger datasets but do not defacto quantify uncertainty. Hybrid methods such as
DNGO [115] achieve scalability for (single task) BO through the use of a feed-forward
deep NN followed by Bayesian Linear Regression (BLR) [7]. The NN is trained on the
existing data via a simple regression loss (e.g, mean squared error). Once trained, the NN
parameters are frozen and the output layer is replaced by BLR for the BO routine. For
BLR, the computational complexity of posterior updates scales linearly with the size of the
dataset.

This step can be understood as applying a GP to the output features of the NN with a
linear kernel (i.e. κ(xi, xj) = hϕ(xi)

Thϕ(xj) where h is the NN function with parameters ϕ).
For BLR, the computational complexity of posterior inference is linear w.r.t. the number

of data points and thus DNGO can scale to large offline datasets.
MT-ABLR [89] extends DNGO to multi task settings by training a single NN to

learn a shared representation hϕ(x) followed by task-specific BLR layers (i.e. predicting
f1(x), ..., fK(x), and f(x) based on inputs). The learning objective corresponds to the max-
imization of sum of the marginal log-likelihoods for each task:

∑K+1
t=1 p(yt|wt, hϕ(Xt), σt).

The main task is included in the last index, wt is the Bayesian Linear layer weights for task

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 58

t with prior p(wt) = N (0, σ2
wt
I), σt and σwt are the hyper-prior parameters, and (Xt,yt) is

the observed data from task t. Learning hϕ(x) by directly maximizing the marginal likeli-
hood improves the performance of DNGO while maintaining the computational scalability
of its posterior inference in case of large offline data. However, both DNGO and ABLR have
implicit assumptions about the existence of a feature space under which the target function
can be expressed as a linear combination. This can be a restrictive assumption and there is
no guarantee that given finite data such feature space can be learned.

MT-BOHAMIANN [116] addresses the limited expressivity of prior approaches by
employing Bayesian NNs to specify the posterior over f and feed the NN with input x and
additional learned task-specific embeddings ψ(t) for task t.

While allowing for a principled treatment of uncertainties, fully Bayesian NNs are com-
putationally expensive to train and their performance depends on the approximation quality
of stochastic gradient HMC methods used for posterior inference.

6.2 Related Work

Transfer Learning in Bayesian Optimization: Utilizing prior information for apply-
ing transfer learning to improve Bayesian optimization has been explored in several prior
papers. Early work of [120] focuses on the design of multi-task kernels for modeling task
correlations [93]. These models tend to suffer from a lack of scalability; [132, 24] show that
this challenge can be partially mitigated by training an ensemble of task-specific GPs that
scale linearly with the number of tasks but still suffer from cubic complexity in the number
of observations for each task. To address scalability and robust treatment of uncertainty,
several prior works have been suggested [107, 116, 89]. [107] employs a Gaussian Copula to
learn a joint prior on hyper-parameters based on offline tasks, and then utilizes a GP on the
online task to adapt to the target function. [116] uses a BNN as surrogates for MBO; how-
ever, since training BNNs is computationally intensive [89] proposes to use a deterministic
NN followed by a BLR layer at the output to achieve scalability.

Some other prior work exploits certain assumptions between the source and target data.
For example, [113, 34] assume an ordering of the tasks and use this information to train GPs
to model residuals between the target and auxiliary tasks. [25, 131] assume the existence
of a similarity measure between prior and target data which may not be easy to define for
problems other than hyper-parameter optimization. A simpler idea is to use prior data to
confine the search space to promising regions [88]. However, this highly relies on whether
the confined region includes the optimal solution to the target task. Another line of work
studies utilizing prior optimization runs to meta-learn acquisition functions [127]. This idea
can be utilized in addition to our method and is not a competing direction.

Multi-fidelity Black-box Optimization (MFBO): In multi-fidelity scenarios, we
can query for noisy approximations to the target function relatively cheaply. For example,
in hyperparameter optimization, we can query for cheap proxies to the performance of a
configuration on a smaller subset of the training data [91], early stopping [69], or by predicting

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 59

Figure 6.1: JUMBO. During the pretraining phase, we learn a NN mapping hϕ∗ (orange) for
the warm-GP. The next query based on αt (purple) will be the point that has a high score
based on the acquisition function of both warm and cold GP (blue).

learning curves [19, 61]. We direct the reader to Section 1.4 in [53] for a comprehensive
survey on MFBO. Such methods, similar to MF-GP-UCB [58] (section 6.5), are typically
constrained to scenarios where such low fidelities are explicitly available and make strong
continuity assumptions between the low fidelities and the target function.

Deep Kernel Learning (DKL): Commonly used GP kernels (e.g. RBF, Matern) can
only capture simple correlations between points a priori. DKL [52, 11] addresses this issue by
learning a latent representation via NN that can be fed to a standard kernel at the output.
[115] employs linear kernels at the output of a pre-trained NN while [52] extends it to use
non-linear kernels. The warm-GP in JUMBO can be understood as a DKL surrogate model
trained using offline data from auxiliary tasks.

6.3 Scalable MBO via JUMBO

In the previous section, we observed that prior MBO algorithms make trade-offs in either
posterior expressivity or inference quality to scale to large offline datasets. Our goal is to
show that these trade-offs can be significantly mitigated and consequently, the design of our
proposed MBO framework, which we refer to as JointUpper confidenceMulti-task Bayesian
Optimization (JUMBO), will be guided by the following desiderata: (1) Scalability to large
offline datasets (e.g., via NNs) (2) Exact and computationally tractable posterior updates
(e.g., via GPs) (3) Flexible and expressive posteriors (e.g., via non-linear kernels).

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 60

Regression Model

The regression model in JUMBO is composed of two GPs: a warm-GP and a cold-GP
denoted by GPwarm(0, κw) and GPcold(0, κc), respectively. As shown in Figure 6.1, both
GPs are trained to model the target function f but operate in different input spaces, as we
describe next.
GPwarm (with hyperparameters θw) operates on a feature representation of the input

space hϕ(x) derived from the offline dataset Daux. To learn this feature space, we train a
multi-headed feed-forward NN to minimize the mean squared error for each auxiliary task,
akin to DNGO [115]. Thereafter, in contrast to both DNGO and ABLR, we do not train
separate output BLR modules. Rather, we will directly train GPwarm on the output of the
NN using the data acquired from the target function f . Note that for training GPwarm, we
can use any non-linear kernel, which results in an expressive posterior that allows for exact
and tractable inference using closed-form expressions.

Additionally, we can encounter scenarios where some of the auxiliary functions are insuf-
ficient in reducing the uncertainty in inferring the target function. In such scenarios, relying
solely on GPwarm can significantly hurt performance. Therefore, we additionally initialize
GPcold (with hyperparameters θc) directly on the input space χ.

If we also have access to offline data from f (i.e. Df), the hyperparameters of the warm
and cold GPs can also be pre-trained jointly along with the neural network parameters. The
overall pre-training objective is then given by:

L(ϕ, θw, θc) = LMSE(ϕ|Daux) + LGP(θw|Df) + LGP(θc|Df) (6.1)

where LGP(·|Df) denotes the negative marginal log-likelihood for the corresponding GP
on Df .

Acquisition Procedure

Post the offline pre-training of the JUMBO’s regression model, we can use it for online data
acquisition in a standard BO loop. The key design choice here is the acquisition function,
which we describe next. At round t, let αwarm

t (x) and αcold
t (x) be the single task acquisition

function (e.g. UCB) of the warm and cold GPs, after observing t−1 data points, respectively.
Our guiding intuition for the acquisition function in JUMBO is that we are most inter-

ested in querying points that are scored highly by both acquisition functions. Ideally, we
want to first sort points based on αwarm scores and then from the top choices select the ones
with the highest αcold score.

To realize this acquisition function on a continuous input domain, we define it as a convex
combination of the individual acquisition functions by employing a dynamic interpolation
coefficient λt(x) ∈ [0, 1]. Formally,

αt(x) = λt(x)α
cold
t (x) + (1− λt(x))αwarm

t (x). (6.2)

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 61

In Eq. 6.2, By choosing λt(x) to be close to 1 for points with αwarm
t (x) ≈ maxx α

warm
t (x),

we can ensure to acquire points that have high acquisition scores as per both αcold
t (x) and

αwarm
t (x). Next, we will discuss some theoretical results that shed more light on the design

of λt(x).

6.4 Theoretical Analysis

Next, we will formally derive the regret bound for JUMBO and provide insights on the
conditions under which JUMBO outperforms GP-UCB [118]. For this analysis, we will use
Upper Confidence Bound (UCB) as our acquisition function for the warm and cold GPs. To
do so, we utilize the notion of Maximum Information Gain (MIG).

Definition 1 (Maximum Information Gain [118]). Let f ∼ GP(0, κ), κ : Rd × Rd → R.
Consider any χ ⊂ Rd and let χ̃ = {x1, ..., xn} ⊂ χ be a finite subset. Let yχ̃ ∈ Rn be n noisy
observations such that (yχ̃)i = (fχ̃)i + ϵi, ϵi ∼ N (0, σ2

n). Let I denote the Shannon mutual
information.

The MIG Ψn(χ) of set χ after n evaluations is the maximum mutual information between
the function values and observations among all choices of n points in χ. Formally,

Ψn(χ) = max
χ̃⊂χ,|χ̃|=n

I(yχ̃; fχ̃)

This quantity depends on kernel parameters and the set χ, and also serves as an important
tool for characterizing the difficulty of a GP-bandit. For a given kernel, it can be shown that
Ψn(χ) ∝ Π(χ) where Π(χ) = |χ| for discrete and Vol(χ) for the continuous case [118]. For
example for Radial Basis kernel Ψn([0, 1]

d) ∈ O(log(n)d+1). We will first focus on settings
where χ is discrete.

For GP-UCB [118], it has been shown that for any δ ∈ (0, 1), if f ∼ GP(0, κ) (i.e., the
GP assigns non-zero probability to the target function f), then the cumulative regret RT

after T rounds will be bounded with probability at least 1− δ:

Pr{RT ≤
√
CTβTΨT (χ),∀T ≥ 1} ≥ 1− δ (6.3)

with C = 8
log(1+σ−2

n)
and βT = 2 log

(
|χ|π2T 2

6δ

)
.

Recall that hϕ : χ → Z is a mapping from input space χ to the feature space Z. We
will further make the following modeling assumptions to ensure that the target black-box
function f is a sample from both the cold and warm GPs.

Assumption 1. f ∼ GPcold(0, κc).

Assumption 2. Let ϕ∗ denote the NN parameters obtained via pretraining (Eq. 7.3).Then,
there exists a function g ∼ GPwarm(0, κw) such that f = g ◦ hϕ∗.

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 62

Theorem 1. Let χg ⊂ χ and χ̄g = χ\χg be some arbitrary partitioning of the input domain
χ. Define the interpolation coefficient as an indicator λt(x) = 1(x ∈ χ

g). Then under
Assumptions 1 and 2, JUMBO is no-regret.

Specifically, let s be the number of rounds such that the JUMBO queries for points xt ∈ χ̄g.
Then, for any δ ∈ (0, 1), running JUMBO for T iterations results in a sequence of candidates
(xt)

t=T
t=1 for which the following holds with probability at least 1− δ:

RT <
√
CTβT{ΨT−s(χg) + Ψs(Z̄g)},∀T ≥ 1 (6.4)

where C = 8

log(1+σ−2
n)

, βt = 2 log
(

|χ|π2t2

3δ

)
, and Z̄g = {hϕ∗(x)|x ∈ χ̄g} is the set of output

features for χ̄g.

Proof. Let µct(x) and σ
c
t (x) denote the posterior mean and standard deviation of GPcold at

the end of round t after observing Dcold
t−1 = {(xi, yi)t−1

i=1}. Similarly, we will use µwt (x) and
σwt (x) to denote the posterior mean and standard deviation of GPwarm at the end of round
t after observing Dwarm

t−1 = {(hϕ(xi), yi)t−1
i=1}.

Lemma 2. Pick δ ∈ (0, 1) and set βt = 2 log
(

|χ|πt
δ

)
where Σt≥1π

−1
t = 0.5, πt > 0 (e.g. πt =

π2t2

3
). Define µt(x) = λt(x)µ

c
t(x)+(1−λt(x))µwt (x) and σt(x) = λt(x)σ

c
t (x)+(1−λt(x))σwt (x).

Then,

P{|f(x)− µt(x)| ≤ β
1/2
t σt(x),∀x ∈ χ,∀t ≥ 1} ≥ 1− δ.

Proof. Fix t ≥ 1 and x ∈ χ. Based on Assumption 1, conditioned on Dcold
t−1 , f(x) ∼

N (µct(x), σ
c
t (x)). Similarly, Assumption 2 implies that conditioned onDwarm

t−1 , f(x) ∼ N (µwt (x), σ
w
t (x)).

Let A be the event that |f(x) − µct(x)| ≤ β
1/2
t σct (x) and B the event that |f(x) − µwt (x)| ≤

β
1/2
t σwt (x). From proof of Lemma 5.1 in [118] we know that given a normal distribution

z ∼ N (0, 1), P{z > c} ≤ 0.5e−
c2

2 . Using z =
f(x)−µct (x)

σc
t (x)

and c = β
1/2
t , P{Ā} ≤ e−βt/2.

Similarly, P{B̄} ≤ e−βt/2. Using union bound, we have:

P{Ā ∨ B̄} ≤ P{Ā}+ P{B̄} ≤ 2e−βt/2.

By union bound, we have:

P{Ā ∨ B̄} ≤ |χ|
∑
t≥1

2e−βt/2 ≤ δ ∀x ∈ χ,∀t ≥ 1.

The event in this Lemma is just A ∧ B and the proof is concluded.

Next, we state two lemmas from prior work.

Lemma 3. If |f(x)− µt(x)| ≤ β
1/2
t σt(x), then rt is bounded by 2β

1/2
t σt(xt).

Proof. See Lemma 5.2 in [118]. It employs the results of Lemma 2 to prove the statement.

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 63

Lemma 4. Let σ2
t (x) denote the posterior variance of a GP after t− 1 observations, and let

A ⊂ χ. Assume that we have queried f at n points (xt)
n
t=1 of which s points are in A. Then∑

t:xt∈A σ
2
t (x) ≤ 2

log(1+σ−2)
Ψs(A).

Proof. See Lemma 8 in [58].

Proof for Theorem 1 From Lemma 3, we have:

r2t ≤ 4βtσ
2
t (xt) (6.5)

Summing over instantaneous regrets for T rounds, we get:

T∑
t=1

r2t ≤
T∑
t=1

4βtσ
2
t (xt) (6.6)

≤ 4βT

T∑
t=1

σ2
t (xt) (6.7)

≤ 4βT

 ∑
t:xt∈χg

σc
2

t (xt) +
∑

t:xt∈χ̄g

σw
2

t (xt)

 (6.8)

≤ 8βT
1 + σ−2

n

(
ΨT−s(χg) + Ψs(Z̄g)

)
(6.9)

Eq 6.7 follows from the monotonicity of βt = 2 log(πt/δ). Eq. 6.8 follows from the
definition of σt in Lemma 2 and the last inequality in Eq. 6.9 follows from Lemma 4.

Finally, from Cauchy-Schwartz inequality, we know that R2
T ≤ T

∑T
t=1 r

2
t . Combining

with Eq. 6.9, we obtain the result in Theorem 1.

Extension to Continuous Domains

We will now derive regret bounds for the general case where χ ⊂ [0, r]d is a d-dimensional
compact and convex set with r > 0. This will critically require an additional Lipschitz
continuity assumption on f .

Theorem 5. Suppose that kernels κc and κw are such that the derivatives of GPcoldand
GPwarmsample paths are bounded with high probably. Precisely, for some constants a, b > 0,

P

{∣∣∣∣sup
x∈χ

∂f

∂xj

∣∣∣∣ > L

}
≤ ae−(L/b)2 , j = 1, 2, . . . , d. (6.10)

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 64

Pick δ ∈ (0, 1), and set βt = 2 log(4π2t2/3δ) + 4d log(dtbr
√

log(4da/δ)). Then, running
JUMBO for T iterations results in a sequence of candidates (xt)

t=T
t=1 for which the following

holds with probability at least 1− δ:

RT <
√
CTβT{ΨT−s(χg) + Ψs(Z̄g)}+

π2

6
,∀T ≥ 1

where C = 1/(1+σ2
n).

To start the proof, we first show that we have confidence on all the points visited by the
algorithm.

Lemma 6. Pick δ ∈ (0, 1) and set βt = 2 log(πt/δ), where
∑

t≥1 π
−1
t = 0.5, πt > 0. Define

µt(x) = λt(x)µ
c
t(x) + (1− λt(x))µwt (x) and σt(x) = λt(x)σ

c
t (x) + (1− λt(x))σwt (x). Then,

|f(xt)− µt(xt)| ≤ β
1/2
t σt(xt), ∀t ≥ 1

holds with a probability of at least 1− δ.

Proof. Fix t ≥ 1 and x ∈ χ. Similar to Lemma 3, P{Ā ∨ B̄} ≤ 2e−βt/2. Since e−βt/2 = δ/πt,
using the union bound for t ≥ 1 concludes the statement.

For the purpose of analysis, we define a discretization set χt ⊂ χ, so that the results
derived earlier can be re-applied to bound the regret in continuous case. To enable this
approach we will use conditions on L-Lipschitz continuity to obtain a valid confidence interval
on the optimal solution x∗. Similar to [118], let us choose discretization χt of size τ

d
t (i.e. τt

uniformly spaced points per dimension in χ) such that for all x ∈ χ the closest point to x in
χ
t, [x]t, has a distance less than some threshold. Formally, ||x− [x]t||1 ≤ rd/τt.

Lemma 7. Pick δ ∈ (0, 1) and set βt = 2 log(4πt/δ) + 4d log(dtbr
√
log(4da/δ)), where∑

t≥1 π
−1
t = 0.5, πt > 0. Then, for all t ≥ 1, the regret is bounded as follows:

rt ≤ 2β
1/2
t σt(xt) +

1

t2
(6.11)

with probabilty of at least 1− δ.

Proof. In light of Lemma 6,the proof follows directly from Lemma 5.8 in [118].

Proof of Theorem 5

Proof. From Eq. 6.9 in the proof of Theorem 1, we have shown that:

T∑
t=1

4βtσ
2
t (xt) ≤ CβT (ΨT−s(χg) + Ψs(Z̄g)) ∀T ≥ 1.

Therefore, using Cauchy-Schwarz:

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 65

Figure 6.2: The effect of the pre-trained NN hϕ∗(x) on χ. In the desirable case, χ̄g gets
significantly compressed to Z̄g.

T∑
t=1

2β
1/2
t σt(xt) ≤

√
CβT (ΨT−s(χg) + Ψs(Z̄g)) ∀T ≥ 1.

Since
∑T

t=1
1
t2
≤ π2

6
, Theorem 5 follows Lemma 7.

Based on the regret bound in Eq. 6.4, we can conclude that if the partitioning χ
g is

chosen such that Π(Z̄g) ≪ Π(χ̄g) and Π(χg) ≪ Π(χ), then JUMBO has a tighter bound
than GP-UCB. The first condition implies that the second term in Eq. 6.4 is negligible
and intuitively means that GPwarm will only need a few samples to infer the posterior of
f defined on χ̄g, making BO more sample efficient. The second condition implies that the
ΨT−s(χg)≪ ΨT (χ) which in turn makes the regret bound of JUMBO tighter than GP-UCB.
Note that χg cannot be made arbitrarily small, since χ̄g (and therefore Z̄g) will get larger
which conflicts with the first condition.

Figure 6.2 provides an illustrative example. If the learned feature space hϕ∗(x) compresses
set χ̄g to a smaller set Z̄g, then GPwarm can infer the posterior of g(hϕ∗(x)) with only a few
samples in χ̄g (because MIG is lower). Such hϕ∗(x) will likely emerge when tasks share high-
level features with one another. In the appendix, we have included an empirical analysis
to show that GPwarmis indeed operating on a compressed space Z. Consequently, if χg
is reflective of promising regions consisting of near-optimal points i.e. χ

g = {x ∈ χ |
f(x∗) − f(x) ≤ lf} for some lf > 0, BO will be able to quickly discard points from subset
χ̄
g and acquire most of its points from χ

g.

Choice of interpolation coefficient λt(x)

The above discussion suggests that the partitioning χg should ideally consist of near-optimal
points. In practice, we do not know f and hence, we rely on our surrogate model to define
χ(t)
g = {x ∈ χ | αwarm∗

t −αwarm
t (x) ≤ lα}. Here, αwarm∗

t is the optimal value of αwarm
t (x) and the

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 66

(a) Target (red) and auxiliary (blue) task
(b) Correlation between target and auxiliary
tasks

(c) Posterior of GPwarm, GPcold, their UCB and JUMBO’s acquisition function

Figure 6.3: Dynamics of JUMBO after observing 6 data points (a) The two functions have
different optimums (b) The tasks are related (c) Iteration 4 of the BO with our proposed
model, from top to bottom: (1) GP modeling input to objective using (x, hϕ∗(x), y) samples
(2) GP modeling input to objective using (x, y) samples (3) UCB acquisition function for
GPwarm(4) UCB acquisition function for GPcold(5) JUMBO’s acquisition function that com-
promises between the optimum of the two.

acquisition threshold lα > 0 is a hyper-parameter used for defining near-optimal points w.r.t.
αwarm
t (x). At one extreme, lα →∞ corresponds to the case where αt(x) = αcold

t (x) (i.e. the
GP-UCB routine) and the other extreme lα → 0 corresponds to case with αt(x) = αwarm

t (x).
Figure 6.3 illustrates a synthetic 1D example of how JUMBO obtains the next query

point. Figure 6.3a shows the main objective f(x) (red) and the auxiliary task f1(x) (blue).
They share a periodic structure but have different optimums. Figure 6.3b shows the corre-
lation between the two.

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 67

Applying GP-UCB [118] will require a considerable amount of samples to learn the pe-
riodic structure and the optimal solution. However in JUMBO, as shown in Figure 6.3c,
the warm-GP, trained on (hϕ∗(x), y) samples, can learn the periodic structure using only 6
samples, while the posterior of the cold-GP has not yet learned this structure.

It can also be noted from Figure 6.3c that JUMBO’s acquisition function is αcold
t (x) when

the value of αwarm
t (x) is close to αwarm∗

t . Therefore, the next query point (marked with a star)
has a high score based on both acquisition functions. We summarize JUMBO in Algorithm 4.

Algorithm 3 JUMBO

1: Input: Offline auxiliary dataset Daux , Offline target dataset Df0 (optional; default:
empty set), Threshold lα

2: Output: Sequence of solution candidates {xt}Tt=1 maximizing target function f
3: Initialize NN hϕ(x), GPcold, GPwarm.

4: Pretrain NN params jointly with GPcold and GPwarm hyper-params using Daux and Df0
as per Eq. 7.3.

5: Initialize Dcold
0 = {}, Dwarm

0 = {}.
6: for round t = 1← T do
7: Set αwarm∗

t = argmaxx∈χ α
warm
t (x).

8: Set λt(x) = 1(αwarm∗
t − αwarm

t (x) ≤ lα).
9: Set αt(x) = λt(x)α

cold
t (x) + (1− λt(x))αwarm

t (x)
10: Pick xt = argmaxx∈χ αt(x).
11: Obtain noisy observation yt for xt.
12: Update Dcold

t ← Dcold
t−1 ∪ {(xt, yt)} and GPcold.

13: Update Dwarm
t ← Dwarm

t−1 ∪ {(hϕ∗(xi), yi)} and GPwarm.

6.5 Experiments

We are interested in investigating the following questions: (1) How does JUMBO perform
on benchmark real-world black-box optimization problems relative to baselines? (2) How
does the choice of threshold lα impact the performance of JUMBO? (3) Is it necessary to
have a non-linear mapping on the features learned from the offline dataset or a BLR layer is
sufficient?

Automated Hyperparameter Tuning

Datasets. We consider the task of optimizing hyperparameters for fully-connected NN
architectures on 4 regression benchmarks from HPOBench [60]: Protein Structure [102],
Parkinsons Telemonitoring [123], Naval Propulsion [15], and Slice Localization [35].

HPOBench provides a look-up-table-based API for querying the validation error of all
possible hyper-parameter configurations for a given regression task. These configurations

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 68

are specified via 9 hyperparameters, that include continuous, categorical, and integer-valued
variables.

The objective we wish to minimize is the validation error of a regression task after 100
epochs of training. For this purpose, we consider an offline dataset that consists of validation
errors for some randomly chosen configurations after 3 epochs on a given dataset. The target
task is to optimize this error after 100 epochs. In [60], the authors show that this problem is
non-trivial as there is a small correlation between epochs 3 and 100 for top-1% configurations
across all datasets of interest.

We handle categorical and integer-valued variables in BO similar to [31]. In particular,
we used κc(T (x), T (x′)) as the kernel where T : χ → T is a deterministic transformation
that maps the continuous optimization variable x to a representation space T that adheres
to a meaningful distance measurement. For example, for categorical parameters, it converts
a continuous input to a one-hot encoding corresponding to a choice for that parameter, and
for integer-valued variables, it converts the continuous variable to the closest integer value.
Similarly, for the pre-training phase, we also train using hϕ(T (x)).

Figure 6.4: The regret of MBO algorithms on Protein, Parkinsons, Naval, and Slice datasets.
Standard errors are measured across 20 random seeds.

Evaluation protocol. We validate the performance of JUMBO against the following base-
lines with a UCB acquisition function [118]:

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 69

• GP-UCB [118] (i.e. cold-GP only) trains a GP from scratch disregarding Daux completely.
Equivalently, it can be interpreted as JUMBO with λt(x) = 1 ∀x, t ≥ 1 in Eq. 6.2 and α(x) =
αUCB(x).

• MT-BOHAMIANN [116] trains a BNN on all tasks jointly via SGHMC (Section 6.1).

• MT-ABLR [89] trains a shared NN followed by task-specific BLR layers (Section 6.1).

• GCP [107] uses Gaussian Copula Processes to jointly model the offline and online data.

• MF-GP-UCB [58] extends the GP-UCB baseline to a multi-fidelity setting where the source
task can be interpreted as a low-fidelity proxy for the target task.

• Offline DKL (i.e. warm-GP only) is our proposed extension to Deep Kernel Learning, where
we train a single GP online in the latent space of a NN pre-trained on Daux (See Section 6.2 for
details). Equivalently, it can be interpreted as JUMBO with λt(x) = 0 in Eq. 6.2.

Results. We run JUMBO (with lα = 0.1) on all baselines for 50 rounds and 5 random seeds
each and measure the simple regret per iteration.

The regret curves are shown in Figure 6.4. We find that JUMBO achieves lower regret
than the previous state-of-the-art algorithms for MBO in almost all cases.

We believe the slightly worse performance on the slice dataset relative to other baselines
is due to the extremely low top-1% correlation between epoch 3 and epoch 100 on this
dataset as compared to others (See Figure 10 in [60]), which could result in a suboptimal
search space partitioning obtained via the warm-GP. For all other datasets, we find JUMBO
to be the best performing method. Notably, on the Protein dataset, JUMBO is always able
to find the global optimum, unlike the other approaches.

Automated Circuit Design

Next, we consider the two-stage operational amplifier design example that we have introduced
in chapter 4.

In practice, we are interested in performing layout simulations for measuring the per-
formance metric. To emulate the mismatch between layout and schematic simulations we
created a different NGSPICE template that includes estimated parasitics that scale as a func-
tion of the transistor sizes. So that up-sizing transistors would not come for free in the
simulations.

We then use the simulation engine with no parasitics for offline data collection of all
the specification metrics outlined in table 4.1. From those metrics we choose three as the
auxiliary signals to model using the pre-trained neural network: cost, gain, settling time.
After pre-training the neural network, the frozen embedding is used for optimizing the score
function of the circuit using the parasitic-aware simulation engine. This experimental setup
ensures that the auxiliary dataset is not entirely aligned with the target objective’s perfor-
mance. For the offline dataset, we collected 1000 pairs of circuit configurations and the three
auxiliary signals.

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 70

Figure 6.5: Circuit Design results

We consider the same baselines as before. We also consider BOX-GP-UCB [88] which
confines the search space to a hyper-cube over the promising region based on all auxiliary
tasks in the offline data. Unlike the considered HPO problems, the offline circuit dataset
contains data from more than just one auxiliary task, allowing us to consider BOX-GP-UCB
as a viable baseline. MF-GP-UCB was run only with the schematic score as the lower fidelity
approximation of the target function. We ran each algorithm with lα = 0.1 for 100 iterations
and measured simple regret against iteration. As reflected in the regret curves in Figure 6.5,
JUMBO outperforms other algorithms.

6.6 Ablations

Choice of lα. The threshold lα is a key design hyperparameter for defining the acquisition
function in JUMBO. JUMBO with lα = ∞ reduces to GP-UCB (i.e. cold-GP only) and
with lα = 0, it reduces to offline DKL (i.e. warm-GP only).

Table 6.1 shows the effect of different choices for lα on the performance of the algorithm
for both HPO and circuit design problems. As we can see, small values for lα (e.g. ∼ 0.01)
cause JUMBO to rely more on the accuracy of the warm-GP model and result in sub-optimal
convergence in case of model discrepancy between warm-GP and the target task. On the
other hand, bigger values of lα (e.g. ∼ 0.2) cause JUMBO to give more weight to the cold-
GP and rely less on prior data. We also note that there is a wide range of lα that JUMBO

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 71

performs well relative to other baselines, suggesting a good degree of robustness and less
tuning in practice. Even though the optimal choice of lα depends on the exact problem
setup (e.g. 0.05 for circuits problem, and 0.2 for Slice localization), we have found that the
choice of lα = 0.1 is a good initial choice for all the problems considered.

Table 6.1: The average normalized simple regret at the last iteration for different values of lα
(lower is better). The scores are normalized to GP-UCB’s simple regret at the last iteration.

GP-UCB JUMBO-0.01 JUMBO-0.05 JUMBO-0.1 JUMBO-0.2 Offline DKL (lα =∞)

Protein 1.0 ± 0.08 2.09 ± 0.00 1.45 ± 0.18 0.00± 0.00 0.29 ± 0.05 0.77 ± 0.13
Parkinsons 1.0 ± 0.05 0.52 ± 0.07 0.19 ± 0.05 0.07± 0.05 0.45 ± 0.05 1.0 ± 0.02
Naval 1.0 ± 0.07 0.97 ± 0.07 0.46± 0.03 0.49 ± 0.04 0.78 ± 0.07 1.78 ± 0.06
Slice 1.0 ± 0.02 5.54 ± 0.5 2.87 ± 0.12 2.69 ± 0.29 0.94± 0.17 13.77 ± 0.57
Circuit 1.0 ± 0.06 0.16 ± 0.00 0.09± 0.00 0.18 ± 0.01 0.24 ± 0.01 1.01 ± 0.01

Effect of auxiliary tasks. It is important to analyze how learning on other tasks affects
performance. To this end, we considered the circuit design problem with 1 and 3 auxiliary
offline tasks. In Figure 6.6, task 1 (yellow) is the most correlated and task 3 (red) is the least
correlated task with the objective function. The regret curves suggest that the performance
would be poor if the correlation between tasks is low. Moreover, the features pre-trained
on the combination of all three tasks provide more information to the warm-GP than those
pre-trained only on one of the tasks.

BLR with JUMBO’s acquisition function. A key difference between JUMBO and
ABLR [89] is replacing the BLR layer with a GP. To show the merits of having a GP, we
ran an experiment on the Protein dataset and replaced the GP with a BLR in JUMBO’s
procedure. Figure 6.7 shows that JUMBO with GPwarmsignificantly outperforms JUMBO
with a BLR layer.

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 72

Figure 6.6: JUMBO with 3 aux. tasks is better than JUMBO with each individual aux.
tasks.

Figure 6.7: The Non-linear mapping is a crucial piece of JUMBO’s algorithm.

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 73

Space compression through the pre-trained NN. In this experiment we studied
the latent space of a NN fed with uniformly sampled inputs for circuit design and see that
75% of data variance is preserved in only 4 dimensions (with nz = 32), suggesting that the
warm-GP is operating in a compressed space.

Figure 6.8: Explained Variance of latent dimensions

Dynamic choice of λt. In this ablation, we illustrate that the dynamic choice of λt is
indeed better than choosing it to be a constant value. The intuition behind it is that by
choosing a constant coefficient we essentially allow the acquisition function to choose points
with very high αcold but low αwarm scores. However, αcold should not be trusted because of
the warm-start problem in BO.

Figure 6.9 compares JUMBO with dynamic and constant λt on the four HPO problems. It
can be seen that JUMBO with constant λt = 0.5 immaturely reaches a sub-optimal solution
in all the experiments.

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 74

Figure 6.9: Ablation on the dynamic choice of λt

6.7 Implementation Details

Neural Network Architecture

Figure 6.10 illustrates the skeleton of the architecture that was used for all experiments.
The input configuration is fed to a multi-layer perceptron of nl layers with nu hidden units.
Then, optionally, a dropout layer is applied to the output and the result is fed to another
non-linear layer with nz outputs. The latent features are then mapped to the output with a
linear layer. All activations are tanh.

For HPO experiments, we have used nu = 32, nz = 4, nl = 3, learning rate = 5×10−5, and
batch size = 128. For circuit experiments we used nu = 200, nz = 32, nl = 3, learning rate =
3 × 10−4, batch size = 64, and dropout rate of 0.5. These hyper-parameters were chosen
based on random search by observing the prediction accuracy of the pre-training model on

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 75

Figure 6.10: NN Architecture during pre-training: The first blocks is nl layers of nu hidden
units with tanh activations. Following that is a dropout layer and then a single layer percep-
tron to get nz features. Thereafter, the latent features are mapped linearly to the output.

the auxiliary validation dataset which was 20% of the overall dataset.

Details of training the Gaussian Process hyper-parameters

For both warm and cold GP, we consider a Matern kernel (i.e. κ(x, x′) = 21−ν

Γ(ν)
(
√
2νr2)Kν(

√
2νr2)

with ν = 2.5 where r2 = ||x−x′||2
θ

). The length scale θ and observation noise σn are optimized
in every iteration of BO by taking 100 gradient steps on the likelihood of observations via
Adam optimizer with a learning rate of 0.1.

Acquisition Function Details

For all experiments, we used Upper Confidence Bound with the exploration-exploitation
hyper-parameter at round t set as 10 exp −t

T
where T is the budget of the total number

of iterations. This way we favor exploration more initially and gradually drift to more
exploitation as we approach the end of the budget. For optimization of the acquisition
function, we use the derivative-free algorithm CMA-ES [42].

6.8 Conclusion

We proposed JUMBO, a no-regret algorithm that employs a careful hybrid of neural net-
works, Gaussian Processes, and a novel acquisition procedure for scalable and sample-efficient
Multi-task Bayesian Optimization. We derived JUMBO’s theoretical regret bound and em-
pirically showed it outperforms other competing approaches on a set of real-world optimiza-
tion problems. We specifically showed how this combination of pre-training and Bayesian
optimization can result in improved sample efficiency in the application of analog circuit
design. Our method scales gracefully (O(n)) with the number of data points in the auxiliary
datasets and therefore can be scaled up in the pre-training phase. For future directions it
would be interesting to see whether the graph neural network models pre-trained in Chapter

CHAPTER 6. BOOSTING SAMPLE EFFICIENCY OF BAYESIAN OPTIMIZATION
METHODS VIA PRE-TRAINING 76

5 can be re-used as the feature extractor for JUMBO to improve the sample efficiency of
Bayesian optimization methods.

77

Chapter 7

Few-shot Imitation Learning via Skill
Extraction Pre-training

In the previous chapters, we covered how we can use pre-training to improve the sample
efficiency of black-box optimization methods. However, there are other fields of AI that
could also benefit from the paradigm of pre-training. For instance, the domains of robotics,
(motor) control, and reinforcement learning (RL) have largely operated under a task-specific
and tabula rasa learning paradigm, thereby limiting the generalization and scale. In this
chapter, we take a step in the direction of using offline existing trajectory datasets to pre-
train models or policies that can be used for unseen downstream control tasks.

A desirable property of autonomous agents is the ability to both solve long-horizon prob-
lems and generalize to unseen tasks. Recent advances in data-driven skill learning have
shown that extracting behavioral priors from offline data can enable agents to solve chal-
lenging long-horizon tasks with reinforcement learning. However, generalization to tasks
unseen during behavioral prior training remains an outstanding challenge. To this end, we
present Few-shot Imitation with Skill Transition Models (FIST), an algorithm that extracts
skills from offline data and utilizes them to generalize to unseen tasks given a few down-
stream demonstrations. FIST learns an inverse skill dynamics model, a distance function,
and utilizes a semi-parametric approach for imitation. We show that FIST is capable of
generalizing to new tasks and substantially outperforms prior baselines in navigation experi-
ments requiring traversing unseen parts of a large maze and 7-DoF robotic arm experiments
requiring manipulating previously unseen objects in a kitchen.

7.1 Introduction

We are interested in developing control algorithms that enable robots to solve complex
and practical tasks such as operating kitchens or assisting humans with everyday chores at
home. There are two general characteristics of real-world tasks – long-horizon planning and
generalizability. Practical tasks are often long-horizon in the sense that they require a robot

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 78

to complete a sequence of subtasks. For example, to cook a meal a robot might need to
prepare ingredients, place them in a pot, and operate the stove before the full meal is ready.
Additionally, in the real world, many tasks we wish our robot to solve may differ from tasks
the robot has completed in the past but require a similar skill set. For example, if a robot
learned to open the top cabinet drawer it should be able to quickly adapt that skill to open
the bottom cabinet drawer. These considerations motivate our research question: how can
we learn skills that enable robots to generalize to new long-horizon downstream tasks?

Recently, learning data-driven behavioral priors has become a promising approach to
solving long-horizon tasks. Given a large unlabeled offline dataset of robotic demonstrations
solving a diverse set of tasks this family of approaches [114, 90, 1] extract behavioral priors
by fitting maximum likelihood expectation latent variable models to the offline dataset.
The behavioral priors are then used to guide a Reinforcement Learning (RL) algorithm to
solve downstream tasks. By selecting skills from the behavioral prior, the RL algorithm
can explore in a structured manner and can solve long-horizon navigation and manipulation
tasks. However, the generalization capabilities of RL with behavioral priors are limited since
a different RL agent needs to be trained for each downstream task and training each RL
agent often requires millions of environment interactions.

On the other hand, few-shot imitation learning has been a promising paradigm for gener-
alization. In the few-shot imitation learning setting, an imitation learning policy is trained
on an offline dataset of demonstrations and is then adapted, in few-shot, to a downstream
task [21]. Few-shot imitation learning has the added advantage over RL in that it is often
easier for a human to provide a handful of demonstrations than it is to engineer a new re-
ward function for a downstream task. However, unlike RL with behavioral priors, few-shot
imitation learning is most often limited to short-horizon problems. The reason is that imita-
tion learning policies quickly drift away from the demonstrations due to error accumulation
[105], and especially so in the few-shot setting when only a handful of demonstrations are
provided.

While it is tempting to simply combine data-driven behavioral priors with few-shot im-
itation learning, it is not obvious how to do so since the two approaches are somewhat
orthogonal. Behavioral priors are trained on highly multi-modal datasets such that a given
state can correspond to multiple skills. Given a sufficiently large dataset of demonstrations
for the downstream task the imitation learning algorithm will learn to select the correct
mode. However, in the few-shot setting how do we ensure that during training on down-
stream data we choose the right skill? Additionally, due to the small sample size and long
task horizon, a naive imitation learning policy will likely drift from the few-shot demonstra-
tions. How do we prevent the imitation learning policy from drifting away from downstream
demonstrations?

The focus of our work is the setup illustrated in Figure 1; we introduce Few-Shot Imitation
Learning with Skill Transition Models (FIST), a new algorithm for few-shot imitation learn-
ing with skills that enables generalization to unseen but semantically similar long-horizon
tasks to those seen during training. Our approach addresses the issues with skill selection
and drifting in the few-shot setting with two main components. First, we introduce an

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 79

Offline dataset of multi-task
demonstrations

Pickup Place Reach

Extraction of skills from offline
data

Few-shot adaptation of skills to
new tasks

Assembly
Task

Figure 7.1: In this work we are interested in enabling autonomous robots to solve complex long-
horizon tasks that were unseen during training. To do so, we assume access to a large multi-task
dataset of demonstrations, extract skills from the offline dataset, and adapt those skills to new
tasks that were unseen during training.

inverse skill dynamics model that conditions the behavioral prior not only on the current
state but also on a future state, which helps FIST learn uni-modal future conditioned skill
distribution that can then be utilized in few-shot. The inverse skill model is then used as a
policy to select skills that will take the agent to the desired future state. Second, we train
a distance function to find the state for conditioning the inverse skill model during evalua-
tion. By finding states along with the downstream demonstrations that are closest to the
current state, FIST prevents the imitation learning policy from drifting. We show that our
method results in policies that can generalize to new long-horizon downstream tasks in nav-
igation environments and multi-step robotic manipulation tasks in a kitchen environment.
To summarize, we list our three main contributions:

1. We introduce FIST - an imitation learning algorithm that learns an inverse skill dynam-
ics model and a distance function that is used for semi-parametric few-shot imitation.

2. We show that FIST can solve long-horizon tasks in both navigation and robotic manip-
ulation settings that were unseen during training and outperforms previous behavioral
prior and imitation learning baselines.

3. We provide insight into how different parts of the FIST algorithm contribute to final
performance by ablating different components of our method such as future condition-
ing and fine-tuning on downstream data.

7.2 Related Work

Our approach combines ingredients from imitation learning and skill extraction to produce
policies that can solve long-horizon tasks and generalize to tasks that are out of distribution
but semantically similar to those encountered in the training set. We cover the most closely
related work in imitation learning, skill extraction, and few-shot generalization.

Imitation Learning: Imitation learning is a supervised learning problem where an agent
extracts a policy from a dataset of demonstrations [6, 84]. The two most common approaches
to imitation are Behavior Cloning [94, 105] and Inverse Reinforcement Learning (IRL) [80].

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 80

BC approaches learn policies πθ(a|s) that most closely match the state-conditioned action
distribution of the demonstration data. IRL approaches learn a reward function from the
demonstration data assuming that the demonstrations are near-optimal for the desired task
and utilize Reinforcement Learning to produce policies that maximize the reward. For
simplicity and to avoid learning a reward function, in this work we aim to learn generalizable
skills and use the BC approach. However, two drawbacks of BC are that the imitation
policies require a large number of demonstrations and are prone to drifting away from the
demonstration distribution during evaluation due to error accumulation [ross11drift]. For
this reason, BC policies work best when the time horizon of the task is short.

Skill Extraction with Behavioral Priors: Hard-coding prior knowledge into a policy
or dynamics model has been considered as a solution to more sample efficient learning, espe-
cially in the context of imitation learning [13, 4, 119]. For example, [119] utilizes dynamic
movement primitives instead of the raw action space to simplify the learning problem and
improve the performance of evolutionary policy search methods. While imposing the struc-
tural prior on policy or dynamic models can indeed improve few-shot learning, our method is
complementary to these works and proposes to learn behavioral priors from a play dataset.
Methods that leverage behavioral priors utilize offline datasets of demonstrations to bias
a policy towards the most likely skills in the datasets. While related closely to imitation
learning, behavioral priors have been mostly applied to improve Reinforcement Learning.
Behavioral priors learned through maximum likelihood latent variable models have been
used for structured exploration in RL [114], to solve complex long-horizon tasks from sparse
rewards [90], and regularize offline RL policies [135, 87, 77]. While impressive, RL with data-
driven behavioral priors does not generalize to new tasks efficiently, often requiring millions
of environment interactions to converge to an optimal policy for a new task.

Few-Shot Learning: Few-shot learning [129] has been studied in the context of image
recognition [126, 62], reinforcement learning [22], and imitation learning [21]. In the context
of reinforcement and imitation learning, few-shot learning is often cast as a meta-learning
problem [27, 22, 21], with often specialized datasets of demonstrations that are labeled by
tasks. However, there are other means of attaining few-shot generalization and adaptation
that do not require such expensive sources of data. For instance, [16] and [86] use Bayesian
Optimization for transfer learning to a possibly damaged robot in the real world via learned
priors based on big repertoires of controllers in different settings from simulation. However,
our problem of interest is skill adaptation that requires no further interaction with the
downstream environment during few-shot imitation.

Recently, advances in unsupervised representation learning in natural language processing
[97, 10] and vision [48, 14] have shown how a network pre-trained with a self-supervised
objective can be finetuned or adjusted with a linear probe to generalize in few-shot or
even zero-shot [99] to a downstream task. Our approach to few-shot imitation learning is
loosely inspired by the generalization capabilities of networks pre-trained with unsupervised
objectives. Our approach first fits a behavioral prior onto an unlabeled offline dataset of
demonstrations to extract skills and then fits an imitation learning policy over the previously
acquired skills to generalize in few-shot to new tasks.

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 81

7.3 Approach

Problem Formulation

Few-shot Imitation Learning: We denote a demonstration as a sequence of states and
actions: τ = {s1, a1, s2, a2, . . . , sT , aT}. In a few-shot setting we assume access to a small
dataset of M such expert demonstrations Ddemo = {τi}i=Mi=1 that fulfill a specific long horizon
task in the environment. For instance a sequence of sub-tasks in a kitchen environment such
as moving the kettle, turning on the burner, and opening a cabinet door. The goal is to
imitate this behavior using only a few available example trajectories.

Skill Extraction: In this work we assume access to an unlabeled offline dataset of
prior agent interactions with the environment in the form of N reward-free trajectories
{τi = {(st, at)}t=Tit=1 }i=Ni=1 . We further assume that these trajectories include semantically
meaningful skills that are composable to execute long horizon tasks in the environment.
This data can be collected from past tasks that have been attempted or be provided by
human experts through teleoperation [137].

Skill extraction refers to an unsupervised learning approach that utilizes this reward-free
and task-agnostic dataset to learn a skill policy in form of πθ(a|s, z) where a is action, s is
the current state, and z is the skill. We hypothesize that by combining these skill primitives
we can solve semantically similar long-horizon tasks that have not directly been seen during
the training. In this work, we propose a new architecture for skill extraction based on
continuous latent variable models that enables a semi-parametric evaluation procedure for
few-shot imitation learning.

Hierarchical Few-Shot Imitation with Skill Transition Models

Our method, shown in Fig. 7.2, has three components: (i) Skill extraction, (ii) Skill adapta-
tion via fine-tuning on few-shot data, and (iii) Evaluating the skills using a semi-parametric
approach to enable few-shot imitation.

(i) Skill Extraction from Offline Data: We define a continuous skill zi ∈ Z as
an embedding for a sequence of state-action pairs {st, at, . . . , st+H−1, at+H−1} with a fixed
length H. This temporal abstraction of skills has proven to be useful in prior work [90, 1],
by allowing a hierarchical decomposition of skills to achieve long horizon downstream tasks.
To learn the latent space Z we propose training a continuous latent variable model with the
encoder as qϕ(z|st, at, . . . , st+H−1, at+H−1) and the decoder as πθ(a|s, z). The encoder outputs
a distribution over the latent variable z that best explains the variation in the state-action
pairs in the sub-trajectory.

The encoder is an LSTM that takes in the sub-trajectory of length H and outputs the
parameters of a Gaussian distribution as the variational approximation over the true poste-
rior p(z|st, at, . . . , st+H−1, at+H−1). The decoder is a policy that maximizes the log-likelihood
of actions of the sub-trajectory conditioned on the current state and the skill. We implement
the decoder as a feed-forward network that takes in the current state st and the latent vector

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 82

F
ig
u
re

7.
2:

O
u
r
al
go
ri
th
m

–
F
ew

-S
h
ot

Im
it
at
io
n
L
ea
rn
in
g
w
it
h
S
k
il
l
T
ra
n
si
ti
on

M
o
d
el
s
(F

IS
T
)
–
is
co
m
p
os
ed

of
th
re
e

p
ar
ts
:
(a
)
S
ki
ll
E
xt
ra
ct
io
n
:
w
e
fi
t
a
sk
il
l
en
co
d
er
,
d
ec
o
d
er
,
in
ve
rs
e
sk
il
l
d
y
n
am

ic
s
m
o
d
el
,
an

d
a
d
is
ta
n
ce

fu
n
ct
io
n
to

th
e
offl

in
e
d
at
as
et
;
(b
)
S
ki
ll
A
da

pt
at
io
n
:
F
or

d
ow

n
st
re
am

ta
sk
,
w
e
ar
e
gi
ve
n
a
fe
w

d
em

on
st
ra
ti
on

s
an

d
ad

ap
t
th
e
sk
il
ls

le
ar
n
ed

in
(a
),
b
y
fi
n
e-
tu
n
in
g
th
e
en
co
d
er
,
d
ec
o
d
er
,
an

d
th
e
in
ve
rs
e
m
o
d
el
.
(c
)
F
ew

-S
ho

t
Im

it
at
io
n
:
fi
n
al
ly
,
to

im
it
at
e

th
e
d
ow

n
st
re
am

d
em

on
st
ra
ti
on

s,
w
e
u
ti
li
ze

th
e
d
is
ta
n
ce

fu
n
ct
io
n
to

p
er
fo
rm

a
lo
ok

ah
ea
d
al
on

g
th
e
d
em

on
st
ra
ti
on

to
co
n
d
it
io
n
th
e
in
ve
rs
e
m
o
d
el

an
d
d
ec
o
d
e
an

ac
ti
on

.

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 83

z and regresses the action vector directly. This architecture resembles prior works on skill
extraction [90].

To learn parameters ϕ and θ, we randomly sample batches of H-step continuous sub-
trajectories from the training data D and maximize the evidence lower bound (ELBO):

log p(at|st) ≥ Eτ∼D,z∼qϕ(z|τ)[log πθ(at|st, z)︸ ︷︷ ︸
Lrec

+β (log p(z)− log qϕ(z|τ)︸ ︷︷ ︸
Lreg

] (7.1)

where the posterior qϕ(z|τ) is regularized by its Kullback-Leibler (KL) divergence from a
unit Gaussian prior p(z) = N (0, I) and β is a parameter that tunes the regularization term
[50].

To enable quick few-shot adaptation over skills we learn an inverse skill dynamics model
qψ(z|st, st+H−1) that infers which skills should be used given the current state and a future
state that is H steps away. To train the inverse skill dynamics model we minimize the
KL divergence between the approximated skill posterior qϕ(z|τ) and the output of the state
conditioned skill prior. This will result in minimizing the following loss with respect to the
parameters ψ:

Lprior(ψ) = Eτ∼D [DKL(qϕ(z|τ), qψ(z|st, st+H−1))] . (7.2)

We use a reverse KL divergence to ensure that our inverse dynamics model has a broader
distribution than the approximate posterior to ensure mode coverage [7]. In our implemen-
tation, we use a feed-forward network that takes in the concatenation of the current and
future states and outputs the parameters of a Gaussian distribution over z. Conditioning
on the future enables us to make a more informed decision on what skills to execute which
is a key enabler to few-shot imitation. We jointly optimize the skill extraction and inverse
model with the following loss:

L(ϕ, θ, ψ) = Lrec(ϕ, θ) + βLreg(ϕ) + Lprior(ψ) (7.3)

(ii) Skill Adaption via Fine-tuning on Downstream Data: To improve the consis-
tency between the unseen downstream demonstrations and the prior over skills, we use the
demonstrations to fine-tune the parameters of the architecture by taking gradient steps over
the loss in Equation 7.3. In the experiments, we ablate the performance of FIST with and
without fine-tuning to highlight the differences.

(iii) Semi-parametric Evaluation for Few-shot Imitation Learning: To run the
agent, we need to first sample a skill z ∼ qψ(z|st, s∗t+H) based on the current state and the
future state that it seeks to reach. Then, we can use the low-level decoder π(at|z, st) to
convert that sampled skill z and the current state st to the corresponding action at.

During evaluation, we use the demonstrations Ddemo to decide which state to use as the
future state to condition on. For this purpose, we use a learned distance function d(s, s′) to
measure the distance between the current state st and every other state in the demonstrated

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 84

trajectories. Then, from the few-shot data we find the closest state s∗t to the current state
according to the distance metric:

s∗t = min
sij∈Ddemo

d(st, sij) (7.4)

where sij is the jth state in the ith trajectory in Ddemo. We then condition the inverse
dynamics model on the current state st and the state s∗t+H , H steps ahead of s∗t , within
the trajectory that s∗t belongs to. If by adding H steps we reach the end of the trajectory,
we use the end state within the trajectory as the target future state. The reason for this
look-ahead adjustment is to ensure that the sampled skill always makes progress towards
the future states of the demonstration. After the execution of action at according to the
low-level decoder, the process is repeated until the fulfillment of the task. The procedure is
summarized in Algorithm 4.

Algorithm 4 FIST: Evaluation Algorithm

1: Inputs: Fine-tuned inverse skill dynamics model qψ(z|st, st+H−1), fine-tuned skill policy
πθ(a|s, z), learned distance function d(s, s′), downstream demonstration Ddemo

2: Initialize the environment to s0
3: for each t = [1 . . . T] do
4: Pick s∗

′
t = LookAhead(mins∈Ddemo d(st, s))

5: Sample skill z ∼ qψ(z|st, s∗
′
t)

6: Sample action a ∼ πθ(a|st, z)
7: st ← env.step(a)

Learning the distance function

To enable few-shot imitation learning we use a learned distance function to search for a goal
state that is ”close” to the current state of the agent. Learning contrastive distance metrics
has been successfully applied in prior work both in navigation and manipulation experiments.
Both [72] and [23] utilize contrastive distance functions to build semi-parametric topological
graphs, and [108] and [110] use a similar approach for visual navigation. Inspired by the
same idea, we also use a contrastive loss such that states that are H steps in the future are
close to the current state while all other states are far.

We wish to learn an encoding such that our distance metric d is the euclidean distance
between the encoded states.

d(s, s′) = ||h(s)− h(s′)||2 (7.5)

To learn the encoder h, we optimize a contrastive loss on encodings of the current and
future states along the same trajectory. At each update step we have a batch of trajectories

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 85

Figure 7.3: Top: In each environment, we block some part of the environment and collect task-
agnostic and reward-free trajectories for extracting skills. In the kitchen environment, red markers
indicate the objects that are excluded. Bottom: For downstream demonstrations, we use 10 expert
trajectories that involve unseen parts of the maze or manipulation of unseen objects.

τ1, ..., τB where τi = si,1, ..., si,H . For si,1 the positive sample is si,H and the negative samples
are sj,H where j ̸= i. We use the InfoNCE Loss [83],

Lq = − log
exp(qTWk)∑K
i=0 exp(q

TWki)
, (7.6)

with query q = h(st) as the encoded starting state, and the keys k = h(st+H) as the
encoded future states along the K trajectories in the dataset D. By doing so, we are
attracting the states that are reachable after H steps and pushing those not reachable far
out. This approach has been used successfully in prior work in [72, 23] and we use this
method for a generalizable solution for finding the state to condition the future on. This
particular choice of distance function is a means to an end for obtaining the future state to
condition on and further research is required for investigating similar choices for a robust
performance across a diverse set of tasks. We leave this investigation for future work.

7.4 Experiments

In the experiments we are interested in answering the following questions: (i) Can our
method successfully imitate unseen long-horizon downstream demonstrations? (ii) What is
the importance of the semi-parametric approach vs. future conditioning? (iii) Is pre-training
and fine-tuning the skill embedding model necessary for achieving a high success rate?

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 86

Pre-training

The training for both skill extraction and fine-tuning were done on a single NVIDIA 2080Ti
GPU. Skill extraction takes approximately 3-4 hours, and fine-tuning requires less than 10
minutes. Our codebase builds upon the SPiRL released code and is located at https:

//github.com/kouroshhakha/fist. Hyperparameters used for training are listed in Table
7.1.

Fine-tuning

Fine-tuning for both FIST and SPiRL follows the same implementation details. It is done
only on Ddemo which includes 10 trajectories of the agent fulfilling the long horizon task.
These trajectories are segmented into sub-trajectories of length H = 10 first (similar to pre-
training), and then we update all the network parameters1 by minimizing the loss in equation
7.3, for 50 epochs of the small dataset. The original training was done on 200 epochs of the
large and diverse dataset. Everything else, including batch size, learning rate, and the
optimizer remains the same between pre-training and fine-tuning. The hyper-parameters for
fine-tuning are listed at the bottom of Table 7.1.

1During our initial experimental analysis, we tried a version of FIST that only finetuned the inverse skill
dynamics model and that did not show any meaningful results. We hypothesize that without fine-tuning the
VAE components, the skill-set of the agent will not include the out of distribution parts of the task.

https://github.com/kouroshhakha/fist
https://github.com/kouroshhakha/fist

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 87

Table 7.1: Training Hyperparameters

Hyperparameter Value

Contrastive Distance Metric

Encoder output dim 32
Encoder Hidden Layers 128
Encoder # Hidden Layers 2
Optimizer Adam(β1 = 0.9, β2 = 0.999, LR=1e-3)

Skill extraction

Epochs 200
Batch size 128
Optimizer Adam(β1 = 0.9, β2 = 0.999, LR=1e-3)
H (sub-trajectory length) 10
β 5e-4 (Kitchen), 1e-2 (Maze)
Skill Encoder
dim-Z in VAE 128
hidden dim 128
LSTM Layers 1

Skill Decoder
hidden dim 128
hidden layers 5

Inverse Skill Dynamic Model
hidden dim 128
hidden layers 5

Fine-tuning

Epochs 50
Epoch cycle train 10
Batch size 128
Optimizer Adam(β1 = 0.9, β2 = 0.999, LR=1e-3)

Environments

We evaluate the performance of FIST on two simulated navigation environments and a
robotic manipulation task from the D4RL benchmark as shown in Figure 7.3. To ensure
generalizability to out-of-distribution tasks we remove some categories of trajectories from
the offline data and at test time, we see if the agent can generalize to those unseen trajectories.

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 88

Specifically for Pointmass and Ant environments we block some regions of the maze and
at test time, we provide demonstrations that navigate into the excluded region; and for
Kitchen, we exclude interactions with a few selected objects and at test time, we provide
demonstrations that involve manipulating the excluded object.

In this section, we explain the tasks and the procedure for data collection for both pre-
training the skills and the downstream fine-tuning in each environment separately. The
instruction for downloading the dataset as well as its generation is included in our code
repository.

PointMaze. In this environment, the task is to navigate a point mass through a maze,
from a start to a goal location. The outline of the maze is shown in Figure 7.3. We train the
skills on three different datasets, each blocking one side of the maze. To test the method’s
ability to generalize to unseen long-horizon tasks, we use 10 expert demonstrations that start
from random places in the maze, but end at a goal within the blocked region. This ensures
that our demonstrated trajectories are out of distribution compared to training data. We
evaluate the performance by measuring the episode length and the success rate in reaching
the demonstrated goals. The data for PointMaze is collected using the same scripts provided
in the D4RL dataset repository [29]. To generate the pre-training dataset we modified the
maze outline to have parts of it blocked. Then we run the same oracle way-point controller
on the new maze map and collect continuous trajectories of the agent navigating to random
goals, for a total of 4 million transitions. For downstream demonstrations we unblock the
blocked region, pick a fixed goal within that region, and have the agent navigate from random
reset points to the picked goal location. The observation consists of the (x, y) location and
velocities.

AntMaze. The task is to control a quadruped ant to run to different parts of the
maze. The layout of the maze is the same as PointMaze, and the same sides are blocked
off. Similar to PointMaze we measure the episode length and success rate as our evaluation
metric. The data for AntMaze is solely based on the ”ant-large-diverse-v0” dataset in D4RL.
To construct the pre-training data we filter out sub-trajectories that contain states within
the blocked region. By doing so, we effectively exclude the region of interest from the pre-
training dataset. The result is datasets with 47165, 58329, and 50237 transitions, for the
Bottom, Right, and Left blocked regions respectively. For the downstream demonstrations,
we randomly select 10 from the excluded trajectories that start outside the blocked region
and end in the blocked region, shown in Figure 7.3.

Kitchen. The task is to use a 7-DoF robotic arm to manipulate different parts of a
kitchen environment in a specific order (e.g. open a microwave door or move the kettle)2.
During skill extraction, we pre-process the offline data to exclude interactions with certain
objects in the environment (e.g. we exclude interactions with the kettle). However, for the
demonstrations, we pick four sub-tasks one of which includes the objects that were excluded
from the skill dataset (e.g. if the kettle was excluded, we pick the task to be to open the

2The environment dynamics are still stochastic and therefore, a simple replication of actions would not
fulfill the tasks robustly

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 89

microwave, move the kettle, turn the top burner, and slide the cabinet door). In evaluation,
for completion of each sub-task in the order consistent with the downstream demonstrations,
the agent is awarded a reward of 1.0 for a total max reward of 4.0 per episode.

The pool of demonstrations is downloaded from the repository of [37] located at https:
//github.com/google-research/relay-policy-learning. There are a total of 24 multi-
task long horizon sets of trajectories that the data is collected from. Each trajectory set is
sampled at least 10 times via VR teleoperation procedure and the filenames indicate what
the agent is trying to achieve (e.g. microwave-kettle-switch-slide). For creating the pre-
training data, we filter the trajectory sets, solely based on the filenames that do not include
the keyword for the task of interest. This will essentially remove all multi-task trajectories
that include the sub-task and not just the part that we do not want. It is also worth noting
that the excluded object (e.g. the kettle) is still part of the environment and all its state
vectors are still visible to the agent, despite the exclusion of the “interaction” with that
object. The dataset size for each case is shown in Table 7.2.

Table 7.2: Kitchen pre-training dataset sizes

Tasks # of trajectories

Microwave, Kettle, Top Burner, Light Switch 285
Microwave, Bottom Burner, Light Switch, Slide Cabinet 236
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 230
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 198

Results

We use the following approaches for comparison:

• BC+FT: Trains a behavioral cloning agent (i.e. πθ(a|s)) on the offline dataset D and
fine-tunes to the downstream dataset Ddemo.

• SPiRL: This is an extension of the existing skill extraction methods to imitation
learning over skill space [90]. The skill extraction method in SPiRL [90] is very similar
to FIST, but instead of conditioning the skill prior on the future state it only uses
the current state. To adapt SPiRL to imitation learning, after pre-training the skills
module, we fine-tune it on the downstream demonstrations Ddemo (instead of finetuning
with RL as proposed in the original paper). After fine-tuning we execute the skill prior
for execution.

• FIST (ours): This runs our semi-parametric approach after learning the future con-
ditioned skill prior. After extracting skills from D we fine-tune the parameters on

https://github.com/google-research/relay-policy-learning
https://github.com/google-research/relay-policy-learning

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 90

the downstream demonstrations Ddemo and perform the proposed semi-parametric ap-
proach for evaluation.

Figure 7.4 compares the normalized average score on each unseen task from each domain.
Each tick on x-axis presents either an excluded region (for Maze) or an excluded object (for
Kitchen). The un-normalized scores are included in tables 7.3 and 7.4.

Here, we provide a summary of our key findings:

1. In the PointMaze environment, FIST consistently succeeds in navigating the point mass
into all three goal locations. The skills learned by SPiRL fail to generalize when the
point mass falls outside of the training distribution, causing it to get stuck in corners.
While BC+FT also solves the task frequently in the Left and Bottom goal locations,
the motion of the point mass is sub-optimal, resulting in longer episode lengths.

2. In the AntMaze environment, FIST achieves the best performance compared to the
baselines. SPiRL and BC+FT make no progress in navigating the agent towards the
goal while FIST can frequently reach the goals in the demonstrated trajectories. We
believe that the low success rate numbers in this experiment are due to the low quality
of trajectories that exist in the offline skill dataset D. In the dataset, we see many
episodes with the ant falling over, and FIST’s failure cases also demonstrate the same
behavior, hence resulting in a low success rate. We hypothesize that with a better
dataset FIST can achieve a higher success rate number.

3. In the kitchen environment, FIST significantly outperforms SPiRL and BC+FT. FIST
can successfully complete 3 out of 4 long-horizon object manipulation tasks in the
same order required by the task. In one of these long-horizon tasks, all algorithms
perform similarly poor.

We believe that such behavior is because the majority of the trajectories in the pre-
training dataset start with a microwave task and removing this sub-task can substantially
decrease the diversity and number of trajectories seen during pre-training.

Ablation Studies

In this section, we study different components of the FIST algorithm to provide insight into
the contribution of each part.

Effect of the Semi-parametric evaluation and future conditioning of the skill
prior

We recognize two major differences between FIST and SPiRL: (1) future conditioning of the
skill prior during skill extraction and (2) the semi-parametric approach for picking the future
state to condition on. To separately investigate the contribution of each part we performed

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 91

F
ig
u
re

7.
4:

N
or
m
al
iz
ed

R
ew

ar
d
on

al
l
of

ou
r
en
v
ir
on

m
en
ts
,
an

d
th
ei
r
ex
cl
u
d
ed

re
gi
on

s
/
ob

je
ct
s.

F
or

m
az
e,

th
e
ep
is
o
d
e

le
n
gt
h
is

su
b
tr
ac
te
d
fr
om

th
e
m
ax

im
u
m

ep
is
o
d
e
le
n
gt
h
,
w
h
ic
h
is

th
en

d
iv
id
ed

b
y
th
e
m
ax

im
u
m

ep
is
o
d
e
le
n
gt
h
.
F
or

k
it
ch
en
,
th
e
re
w
ar
d
is
th
e
n
u
m
b
er

of
su
b
-t
as
k
s
co
m
p
le
te
d
in

or
d
er
,
an

d
n
or
m
al
iz
ed

b
y
th
e
m
ax

im
u
m

of
4.
0

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 92

Table 7.3: Comparison of our approach to other baselines on the Maze environments. For each
experiment we report the average episode length from 10 fixed starting positions with the standard
error across 10 evaluation runs (lower is better). We also report success rate and its standard devi-
ation. The maximum episode length for PointMaze and AntMaze are 2000 and 1000, respectively.

FIST (Ours) SPiRL BC+FT

Blocked Region Environment Episode Length Success Rate Episode Length Success Rate Episode Length Success Rate

Left PointMaze 329.09 ± 5.62 1.0 ± 0.00 1966.7 ± 32.54 0.02 ± 0.04 1089.76 ± 173.74 0.74 ± 0.11
Right PointMaze 440.47 ± 50.81 0.99 ± 0.03 2000 ± 0 0.0 ± 0.0 1918.99 ± 43.65 0.07 ± 0.06
Bottom PointMaze 491.67 ± 78.44 0.91 ± 0.05 2000 ± 0 0.0 ± 0.0 1127.47 ± 148.24 0.87 ± 0.10

Left AntMaze 764.36 ± 8.93 0.32 ± 0.04 1000 ± 0 0.0 ± 0.0 1000 ± 0 0.0 ± 0.0
Right AntMaze 903.98 ± 12.01 0.22 ± 0.12 1000 ± 0 0.0 ± 0.0 1000 ± 0 0.0 ± 0.0
Bottom AntMaze 923.22 ± 6.36 0.21 ± 0.07 957.85 ± 8.62 0.12 ± 0.07 1000 ± 0 0.0 ± 0.0

Table 7.4: Comparison of average episode reward for our approach against other baselines on the
KitchenRobot environment. The average episode reward (with a max. of 4) along with its standard
error is measured across 10 evaluation runs (higher is better). Each bolded keyword indicates the
task that was excluded during skill data collection.

Task (Unseen) Environment FIST (Ours) SPiRL BC+FT

Microwave, Kettle, Top Burner, Light Switch KitchenRobot 3.6± 0.16 2.1 ± 0.48 0.0 ± 0.0
Microwave, Bottom Burner, Light Switch, Slide Cabinet KitchenRobot 2.3± 0.5 2.3± 0.5 2.2± 0.28
Microwave, Kettle, Slide Cabinet, Hinge Cabinet KitchenRobot 3.5± 0.3 1.9 ± 0.09 1.3 ± 0.47
Microwave, Kettle, Slide Cabinet, Hinge Cabinet KitchenRobot 4.0± 0.0 3.3 ± 0.38 1.0 ± 0.32

an ablation with the following modifications of FIST and SPiRL on the kitchen environment:
FIST (Euc.) is similar to our FIST experiment, except that we use the Euclidean distance
on the raw state space, rather than our learned contrastive distance for lookup. Comparison
to this baseline measure the importance of our contrastive distance method, compared to
a simpler alternative; SPiRL (closest) uses the contrastive distance function to look-up
the closest state in the demonstrations to sample the skill via p(z|sclosest); and SPiRL (H-
step) uses the same H-step-ahead look-up approach as FIST and samples a skill based on
p(z|sclosest+H).

Table 7.5: Ablation on the impact of semi-parametric approach and the future conditioning
of skill prior

Task (Unseen) FIST (ours) FIST (Euc.) SPiRL SPiRL (closest) SpiRL (H-steps)

Microwave, Kettle, Top Burner, Light Switch 3.6± 0.16 3.3 ± 0.15 2.1 ± 0.48 0.0 ± 0.0 0.2 ± 0.13

Microwave, Bottom Burner, Light Switch, Slide Cabinet 2.3± 0.5 2.8± 0.42 2.3 ± 0.49 2.8 ± 0.44 0.0 ± 0.0

Microwave, Kettle, Slide Cabinet, Hinge Cabinet 3.5± 0.3 3.0 ± 0.32 1.9 ± 0.29 0.0 ± 0.0 0.0 ± 0.0

Microwave, Kettle, Slide Cabinet, Hinge Cabinet 4.0± 0.0 1.3 ± 0.14 3.3 ± 0.38 2.4 ± 0.51 1.5 ± 0.41

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 93

A comparison of SPiRL results suggests that the performance would degrade if the semi-
parametric lookup method is used to pick the conditioning state in SPiRL. This is not
surprising since the model in SPiRL is trained to condition on the current state and is
unable to pick a good skill z based on p(z|sclosest) in SPiRL (closest) or p(z|sclosest+H) in
SPiRL (H-steps). Therefore, it is crucial to have the prior as p(z|st, st+H), so that we can
condition on both the current and future goal state.

We also note that FIST (Euc.) results are slightly worse in 3 out of 4 cases. This suggests
that (1) contrastive distance is better than Euclidean to some degree (2) the environment’s
state space is simple enough that Euclidean distance still works to a certain extent. It is
worth noting that the Euclidean distance, even with comparable results to the contrastive
distance in the kitchen environment, is not a general distance metric to use and would quickly
lose advantage when state representation gets complex (e.g. pixel representation).

The effect of skill pre-training and fine-tuning on FIST

To adjust the pre-trained skill-set to OOD tasks (e.g. moving the kettle while it is ex-
cluded from the skill dataset) FIST requires fine-tuning on the downstream demonstrations.
We hypothesize that without fine-tuning, the agent should be able to perfectly imitate the
demonstrated sub-trajectories that it has seen during training, but should start drifting
away when encountered with an OOD skill. We also hypothesize that pre-training on a large
dataset, even if it does not include the downstream demonstration sub-trajectories, is crucial
for better generalization. Intuitively, pre-training provides a behavioral prior that is easier
to adapt to unseen tasks than random initialization.

To examine the impact of fine-tuning, we compare FIST with FIST-no-FT which di-
rectly evaluates the semi-parametric approach with the model parameters trained on the
skill dataset without fine-tuning on the downstream trajectories. To understand the effect of
pre-training, we compare FIST with FIST-no-pretrain which is not pre-trained on the skill
dataset. Instead, we directly train the latent variable and inverse skill dynamics model on
the downstream data and perform the semi-parametric evaluation of the FIST algorithm.

From the results in Table 7.6, we observe that fine-tuning is a critical component for
adapting to OOD tasks. The scores on FIST-no-FT indicate that the agent is capable of
fulfilling the sub-tasks seen during skill pre-training but cannot progress onto unseen tasks
without fine-tuning. Based on the scores on FIST-no-pretrain, we also find that the pre-
training on a rich dataset, even when the downstream task is directly excluded, provides
sufficient prior knowledge about the dynamics of the environment and can immensely help
with generalization to unseen tasks via fine-tuning.

Imitation Learning over skills vs. atomic actions

FIST is comprised of two coupled pieces that are both critical for robust performance: the
inverse dynamics model over skills and the non-parametric evaluation algorithm. In this
experiment we measure the influence of inverse skill dynamics model qψ(z|st, st+H−1).

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 94

Table 7.6: We ablate the use of pre-training on offline data, as well as fine-tuning on downstream
demonstrations. FIST-no-FT removes the fine-tuning on the downstream demonstration step in
FIST, while FIST-no-pretrain trains the skills purely from the given downstream data. Without
seeing the subtask, FIST-no-FT is unable to solve the downstream subtask. Trained on only
downstream data, FIST-no-pretrain is unable to properly manipulate the robot.

Task (Unseen) FIST (ours) FIST-no-FT FIST-no-pretrain

Microwave, Kettle, Top Burner, Light Switch 3.6± 0.16 2.0 ± 0.0 0.5 ± 0.16
Microwave, Bottom Burner, Light Switch, Slide Cabinet 2.3± 0.5 0.0 ± 0.0 0.7 ± 0.15
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 3.5± 0.3 1.0 ± 0.0 0.0 ± 0.0
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 4.0± 0.0 2.0 ± 0.0 0.8 ± 0.13

An alternative baseline to learning the skill dynamics model is to learn an inverse dy-
namics model on atomic actions qψ(at|st, st+H−1) and perform goal-conditioned behavioral
cloning (Goal-BC). This model outputs the first action at required for transitioning from st
to st+H−1 over H steps. We can combine this model with FIST’s non-parametric module to
determine the st+H−1 to condition on during the evaluation of the policy. As shown in Table
7.7, temporal abstraction obtained in learning an inverse skill dynamics model is a critical
factor in the performance of FIST.

Table 7.7: We ablate the use of our inverse skill dynamics model by replacing it with an inverse
dynamics model on atomic actions. The baseline ablations only succeed on one out of the four tasks.
BC learns an inverse dynamics model that takes in the state as input and outputs a distribution
over atomic actions. Goal-BC uses both state and the goal (sub-task) as input.

Task (Unseen) FIST (ours) Goal-BC

Microwave, Kettle, Top Burner, Light Switch 3.6± 0.16 0.0 ± 0.0
Microwave, Bottom Burner, Light Switch, Slide Cabinet 2.3± 0.5 1.2 ± 0.3
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 3.5± 0.3 1.8 ± 0.44
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 4.0± 0.0 0.9 ± 0.1

Is our contrastive distance function an optimal approach for picking the future
state to condition on?

For environments such as PointMaze, where we have access to the same waypoint controller
that generates the demonstrations, we can use the ground truth environment dynamics to
calculate the oracle state that the waypoint controller would be at, H steps in the future, and
use that as the goal. This waypoint controller is not available for the kitchen environment,
since the demonstrations were collected using VR teleoperation.

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 95

In Table 7.8, FIST (Oracle) uses the waypoint controller oracle look-up. The results
show that with better future conditioning, an oracle approach can solve the pointmaze task
even better than FIST with the contrastive distance. Improving the current semi-parametric
approach for obtaining the future conditioning state could be a very interesting direction for
future work.

Table 7.8: We ablate FIST against an oracle version on pointmaze which uses the ground
truth way point planner that has access to the exact state that the agent will end up at
H-steps in the future (if it commits to the optimal path).

Section FIST FIST (oracle)

Episode Length Success Rate Episode Length Success Rate

Left 329.09 ± 5.62 1.0 ± 0.00 236.00 ± 1.02 1.0 ± 0.00

Right 440.47 ± 50.81 0.99 ± 0.03 280.93 ± 5.61 1.0 ± 0.00

Bottom 491.67 ± 78.44 0.91 ± 0.05 269.89 ± 3.75 1.0 ± 0.00

Skill re-sampling frequency Although the skills are conditioned on states H steps into the
future, we found executing the skill for one step, and then re-sampling the skill latent to be
more efficient. In Table 7.9, we quantitatively compare the difference in episode length for
the PointMaze environment using different re-sampling frequencies. As the agent progresses
through the environment, the optimal state st+H−1 changes, and so does the optimal skill
z. This difference is shown in Table 7.9, where sampling less often results in less optimal
trajectories and longer episode lengths. However, planning every H step is still able to solve
the task, and can be used if calculating the goal state st+H−1 using the semi-parametric
model is expensive.

Table 7.9: Different skill re-sampling schemes. Shown are t = 1, which are the results in
Table 7.3. We compare the results to when t = 5, and when the skill is resampled after H
steps, t = 10.

t = 1 t = 5 t = 10

Blocked Region Episode Length Success Rate Episode Length Success Rate Episode Length Success Rate

Left 329.09 ± 5.62 1.0 ± 0.00 324.55 ± 6.09 1.0 ± 0.00 338.04 ± 9.80 1.0 ± 0.00
Right 440.47 ± 50.81 0.99 ± 0.03 474.26 ± 69.45 0.98 ± 0.04 465.05 ± 52.38 1.0 ± 0.00
Bottom 491.67 ± 78.44 0.91 ± 0.05 510.45 ± 3.58 0.9 ± 0.00 520.03 ± 47.91 0.89 ± 0.03

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 96

One-shot Imitation Learning

The FIST algorithm can be directly evaluated on one-shot in-distribution downstream tasks
without any fine-tuning. In this experiment, we want to see if the agent can pick up the
right mode within its skill-set with only one demonstration for fulfilling a long-horizon task
in the kitchen environment. The difference between this experiment and our main result is
that the downstream task is within the distribution of its pre-trained skill-set. This is still
a challenging task since the agent needs to correctly identify the desired mode of skills.

We hypothesize that in SPiRL, the skill prior is only conditioned on the current state and
therefore is, by definition, a multi-modal distribution and would require more data to adapt
to a specific long-horizon trajectory. For instance, in the kitchen environment, after opening
the microwave door, the interaction with any other objects in the environment is a possible
choice of skills that can be invoked. However, in FIST, by conditioning the skill prior on
the future states, we fit a uni-modal distribution over skills. In principle, there should be no
need for fine-tuning for invoking those skills within the distribution of the pre-trained skill
set.

We compare our approach to SPiRL (Section 7.4) as a baseline. In addition, we can
provide supervision on which skills to invoke to fulfill the long-horizon task by fine-tuning
SPiRL (hence SPiRL-FT) for a few epochs on the downstream demonstration. As sum-
marized in Table 7.10, FIST, without any fine-tuning, can fulfill all the long-horizon tasks
listed with almost no drift from the expert demonstration. We also see that it is tricky to
fine-tune SPiRL in a one-shot setting, as fine-tuning only on one demonstration may cause
over-fitting and degradation of performance.

Table 7.10: With all subtasks seen in the skill dataset, FIST is able to imitate a long-horizon task
in the kitchen environment. We compare to a baseline method, SPiRL, which fails to follow the
single demo.

Order of tasks (seen in the skill dataset) FIST (ours) SPiRL-FT SPiRL-no-FT

Kettle, Bottom Burner, Slide Cabinet, Hinge Cabinet 4.0± 0.0 0.8 ± 0.19 2.4 ± 0.35
Kettle, Top Burner, Light Switch, Slide Cabinet 3.8± 0.19 0.5 ± 0.16 1.1 ± 0.22
Microwave, Kettle, Slide Cabinet, Hinge Cabinet 4.0± 0.0 1.1 ± 0.22 1.0 ± 0.37
Top Burner, Bottom Burner, Slide Cabinet, Hinge Cabinet 4.0± 0.0 0.1 ± 0.1 0.6 ± 0.25

7.5 Broader Impacts and Limitations

Limitations As with all imitation learning methods, the performance of FIST is re-
lated to the quality of the provided demonstrations. Concretely, when the skill training
demonstrations are poor, we expect the extracted skills to be also sub-optimal, thus, hurting
downstream imitation performance. To better understand this limitation, we analyze an
extremely noisy version of the PointMaze dataset and use it for skill extraction. As shown

CHAPTER 7. FEW-SHOT IMITATION LEARNING VIA SKILL EXTRACTION
PRE-TRAINING 97

Environment Episode Length Success Rate

PointMaze 621.02 ± 69.87 1.0 ± 0.0

Table 7.11: We evaluate FIST on the maze environment with goal at the bottom when the inverse
skill model is trained on an extremely noisy dataset. In this case, FIST achieves sub-optimal
performance, or is unable to imitate the test time demonstration.

in Table 7.11, despite achieving a high success rate, the episode length is substantially worse
than FIST trained on expert data.

Learning structured skills from noisy offline data is an exciting direction for future re-
search.

Broader Impacts The ability to extract skills from offline data and adapt them to solve
new challenging tasks in few-shot, could be impactful in domains where large offline datasets
are available but control is challenging and cannot be manually scripted. Examples of such
domains include autonomous vehicle navigation, warehouse robotics, digital assistants, and
perhaps in the future, home robots. However, there are also negative potential consequences.
First, since in real-world settings offline data will be collected from users at scale there will
likely be privacy concerns, especially for video data collected from users’ cars or homes.
Additionally, since FIST extracts skills, without labeled data, quality for large datasets
becomes increasingly opaque and if there are harmful skills or behavior present in the dataset
FIST may extract those and use them during deployment which could have unintended
consequences. A promising direction for future work is to include a human in the loop for
skill verification.

7.6 Conclusion

We present FIST, a semi-parametric algorithm for few-shot imitation learning for long-
horizon tasks that are unseen during training. We use previously collected trajectories of
the agent interacting with the environment to learn a set of skills along with an inverse
dynamics model that is then combined with a non-parametric approach to keep the agent
from drifting away from the downstream demonstrations. Our approach can solve long-
horizon challenging tasks in the few-shot setting where other methods fail.

98

Chapter 8

Conclusion

8.1 Thesis Contribution

In this thesis, we extended the idea of pre-training neural networks for sample efficient
generalization to two categories of problems: 1) design optimization with a focus on analog-
mixed signal circuit design and 2) in control with a focus on few-shot imitation learning.

For solving circuit design optimization problems we began by re-visiting evolutionary
algorithms as the optimization backbone of our methods and proposed a modeling idea that
results in boosting the sample efficiency of these methods. In Chapter 4, we presented
BagNet, an evolutionary black-box optimization algorithm, which replaces the expensive
simulation in the loop with a deep neural network that is trained with the online samples
that we collect during optimization. We showed that if the neural network is architected as
a design discriminator model, it can result in a significant reduction in the number of simu-
lations that are needed to reach the desired specifications using the underlying evolutionary
algorithm. We showed that this reduction in sample efficiency enables direct automated lay-
out optimization of designs that are large and complicated even for human designers, paving
the way for improving productivity and utility of existing analog design flows.

In Chapter 5, we proposed an idea for pre-training analog circuit models that is based on
learning to model the DC behavior. We showed that by pre-training graph neural networks to
predict the DC behavior of a variety of circuits across different topologies or even on the same
topology we can build in some circuit-specific domain knowledge about the representations
of each device that we can fine-tune for more sample efficient circuit modeling or design
optimization. We demonstrated this hypothesis, by replacing BagNet’s feature extractor
with the pre-trained graph neural network backbones and showed that the improvement in
the model quality will result in another significant reduction in the number of simulations
required for the optimization.

We then revisited the idea of pre-training in other more sample efficient optimization
methods like Bayesian optimization and proposed JUMBO (Chapter 6), a multi-task bayesian
optimization algorithm that can use large auxiliary datasets from the domain, to efficiently

CHAPTER 8. CONCLUSION 99

transfer prior knowledge to a new downstream target objective.
In Chapter 7, we turned to the problem of pre-training agents to do sample efficient

control. We proposed FIST, a few-shot imitation learning algorithm that uses previously
collected trajectories of the agent to extract permissible skills in the environment, and showed
that we can efficiently re-use those skills to fulfill unseen downstream tasks with only a few
examples from the task.

8.2 Future of Deep Learning in Analog Circuit

Design Automation

On circuit design optimization, I believe that up-scaling the pre-training dataset and down-
stream problems could be an interesting direction for expanding this research. Currently,
in our work, the pre-training dataset is narrowly defined around a single topology or a few
minor topological variations. It would be interesting to see how the pre-trained models
would behave if the pre-training dataset covers more diverse circuit topologies with varying
levels of performance or functionality. Reaching this goal requires novelty in data collection
methods and how one can use software techniques to efficiently scale up the data generation
and simulation processes. For pre-training, we can certainly use fast simulators like NGSPICE
that preserve the functionality and behavioral information of different topologies to learn
re-usable features. Thereby not limiting the pre-training dataset collection procedure by the
long run-times of layout simulations.

Analog circuits generally can be categorized into a handful of classes and every new inven-
tion of a circuit is usually a realization of such category. To name a few we have operational
amplifiers, trans-impedance amplifiers, sense amplifiers, digital to analog converters, analog
to digital converters, charge-pump, phase lock loops, .etc. which are different classes of
functional blocks in circuit systems. As a general road map for the adoption of these models
at scale, it is currently not clear whether having one separate model for each circuit class
is going to be better than a single unified model for all circuits. It would be an interesting
future work to see which one is better; on one hand, one single unified model can leverage
the learning signal encoded in the shared sub-structures of these different classes of circuits
to learn better representations, but on the other hand, finding a coherent learning objective
for pre-training on all these circuit classes on a single model can be a challenge itself. One
idea is to use a single GNN backbone for all circuits but has different prediction heads for
each circuit class that back-propagates the learning error for each one separately.

Overall, this idea of pre-training circuit representations from transistor-level graph de-
scriptions seems to be a promising approach, and scaling it up could result in foundational
transistor-level models that can be used with little to no fine-tuning for novel downstream
tasks including accelerated layout optimization or technology porting which are currently
the biggest pain-points and productivity barriers for analog circuit designers.

Such foundational models, in principle, can be used for improving the sample efficiency

CHAPTER 8. CONCLUSION 100

of any model-based optimization algorithm including Bayesian optimization. In JUMBO we
showed a proof of concept of the effectiveness of pre-training fully-connected architectures.
However, this method can further benefit from the pre-trained GNN architectures discussed
in Chapter 5. Therefore, a natural future research direction would be to see how we can
re-use such general circuit representations in the context of Bayesian optimization to achieve
the state-of-the-art sample efficiency for layout optimization.

8.3 Future of Pre-trained Agents for Sample Efficient

Control

Pre-training agents for sample efficient control is also a research area that is growing at a
significant pace. Especially after the success of recent works on bridging the sample efficiency
of image-based RL and state-based RL [117] via using general visual consistency objectives
like contrastive loss during RL training. We are also seeing emerging works on pre-training
agents for learning visual representations that can be used for control [78, 85] which is another
promising factor we should consider when thinking about pre-trained agents. However, being
able to precisely control the environment with little to no supervision requires more prior
knowledge than just learning the visual representation of the world.

In my opinion, this knowledge should come from two distinct learning paradigms: passive
and active pre-training. Our work, FIST, essentially combined the two paradigms in one
algorithm and learned the permissible skills in the world that the agent could do via looking
at the previously skillful trajectories from the same agent in the environment. To enable
more generalization and easier skill re-use we should decouple these into paradigms and try
to align them later.

In passive pre-training, the agent learns about the world by just observing others. This
stage of pre-training should essentially teach the agent about how the world dynamics work.
There has not been much focus on passive pre-training over the years and with the recent
advent of large datasets relevant for control like Ego4D[36], HM3D[101], and MT-Opt[56],
I think the time is ripe to start leveraging real-world data for learning behavioral repre-
sentation for control. One idea in this direction is to use masked trajectory modeling, a
very successful pre-training objective in language modeling in BERT [18] and even more so
recently in vision in ImageMAE[46], on observed trajectories to learn skills and sub-tasks
that are permissible in the world. The passive pre-training itself has the potential to enable
a lot of new applications: few-shot imitation learning and RL, action recognition, trajectory
retrieval, behavioral prediction, etc.

In active pre-training, the agent learns about the world and its impact by acting in the
environment. The ideas have been recently proliferated in the context of active pre-training
[71, 67] which has shown promising signs of life for this paradigm of learning.

I think that decoupling the two learning paradigms and performing active pre-training
on agents that have been already passively pre-trained is an interesting future work that can

CHAPTER 8. CONCLUSION 101

enable truly general purpose control agents that can seamlessly adapt to the ever-changing
environment dynamics in the real world with minimal supervision.

102

Bibliography

[1] Anurag Ajay et al. “{OPAL}: Offline Primitive Discovery for Accelerating Offline
Reinforcement Learning”. In: International Conference on Learning Representations.
2021. url: https://openreview.net/forum?id=V69LGwJ0lIN.

[2] Vincentelli et al. “Support vector machines for analog circuit performance represen-
tation”. In: (2003), pp. 964–969.

[3] G. Alpaydin, S. Balkir, and G. Dundar. “An evolutionary approach to automatic
synthesis of high-performance analog integrated circuits”. In: IEEE Transactions on
Evolutionary Computation 7.3 (June 2003), pp. 240–252.

[4] Shikhar Bahl et al. “Neural dynamic policies for end-to-end sensorimotor learning”.
In: arXiv preprint arXiv:2012.02788 (2020).

[5] Manuel F. M. Barros, Jorge M. C. Guilherme, and Nuno C. G. Horta. Analog Circuits
and Systems Optimization based on Evolutionary Computation Techniques. Vol. 294.
Studies in Computational Intelligence. Springer Berlin Heidelberg, 2010.

[6] Aude Billard et al. Survey: Robot programming by demonstration. Tech. rep. Springrer,
2008.

[7] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[8] Pieter-Tjerk de Boer et al. “A Tutorial on the Cross-Entropy Method”. In: Annals of
Operations Research 134.1 (Feb. 2005), pp. 19–67.

[9] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[10] Tom B Brown et al. “Language models are few-shot learners”. In: arXiv preprint
arXiv:2005.14165 (2020).

[11] Roberto Calandra et al. “Manifold Gaussian processes for regression”. In: 2016 In-
ternational Joint Conference on Neural Networks (IJCNN). IEEE. 2016, pp. 3338–
3345.

[12] Eric Chang et al. “BAG2: A process-portable framework for generator-based AMS
circuit design”. In: 2018 IEEE Custom Integrated Circuits Conference (CICC). San
Diego, CA: IEEE, Apr. 2018, pp. 1–8.

https://openreview.net/forum?id=V69LGwJ0lIN

BIBLIOGRAPHY 103

[13] Konstantinos Chatzilygeroudis et al. “A survey on policy search algorithms for learn-
ing robot controllers in a handful of trials”. In: IEEE Transactions on Robotics 36.2
(2019), pp. 328–347.

[14] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual Represen-
tations”. In: International conference on machine learning. 2020.

[15] Andrea Coraddu et al. “Machine learning approaches for improving condition-based
maintenance of naval propulsion plants”. In: Proceedings of the Institution of Mechan-
ical Engineers, Part M: Journal of Engineering for the Maritime Environment 230.1
(2016), pp. 136–153.

[16] Antoine Cully et al. “Robots that can adapt like animals”. In: Nature 521.7553 (2015),
pp. 503–507.

[17] Marc G R Degrauwe et al. “IDAC: An Interactive Design Tool for Analog CMOS
Circuits”. In: ().

[18] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language
understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[19] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. “Speeding up auto-
matic hyperparameter optimization of deep neural networks by extrapolation of learn-
ing curves”. In: Twenty-fourth international joint conference on artificial intelligence.
2015.

[20] Jeffrey Donahue et al. “Long-term recurrent convolutional networks for visual recog-
nition and description”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 2625–2634.

[21] Yan Duan et al. “One-Shot Imitation Learning”. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon et al. 2017,
pp. 1087–1098. url: https : / / proceedings . neurips . cc / paper / 2017 / hash /
ba3866600c3540f67c1e9575e213be0a-Abstract.html.

[22] Yan Duan et al. “RL2: Fast Reinforcement Learning via Slow Reinforcement Learn-
ing”. In: arXiv:1611.02779 (2016).

[23] Scott Emmons et al. “Sparse Graphical Memory for Robust Planning”. In: Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by
Hugo Larochelle et al. 2020. url: https://proceedings.neurips.cc/paper/2020/
hash/385822e359afa26d52b5b286226f2cea-Abstract.html.

[24] Matthias Feurer, Benjamin Letham, and Eytan Bakshy. “Scalable meta-learning for
Bayesian optimization”. In: arXiv preprint arXiv:1802.02219 (2018).

https://proceedings.neurips.cc/paper/2017/hash/ba3866600c3540f67c1e9575e213be0a-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/ba3866600c3540f67c1e9575e213be0a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/385822e359afa26d52b5b286226f2cea-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/385822e359afa26d52b5b286226f2cea-Abstract.html

BIBLIOGRAPHY 104

[25] Matthias Feurer, Jost Springenberg, and Frank Hutter. “Initializing bayesian hyper-
parameter optimization via meta-learning”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 29. 1. 2015.

[26] Matthias Fey and Jan Eric Lenssen. “Fast graph representation learning with PyTorch
Geometric”. In: arXiv preprint arXiv:1903.02428 (2019).

[27] Chelsea Finn et al. “One-Shot Visual Imitation Learning via Meta-Learning”. In:
1st Annual Conference on Robot Learning, CoRL 2017, Mountain View, California,
USA, November 13-15, 2017, Proceedings. Vol. 78. Proceedings of Machine Learning
Research. PMLR, 2017, pp. 357–368. url: http://proceedings.mlr.press/v78/
finn17a.html.

[28] Peter I Frazier. “A tutorial on Bayesian optimization”. In: arXiv preprint arXiv:1807.02811
(2018).

[29] Justin Fu et al. “D4rl: Datasets for deep data-driven reinforcement learning”. In:
arXiv preprint arXiv:2004.07219 (2020).

[30] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning”. In: (June 2015). url: http://arxiv.
org/abs/1506.02142.

[31] Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. “Dealing with categorical
and integer-valued variables in bayesian optimization with gaussian processes”. In:
Neurocomputing 380 (2020), pp. 20–35.

[32] G. Gielen, P. Wambacq, and W.M. Sansen. “Symbolic analysis methods and applica-
tions for analog circuits: a tutorial overview”. In: Proceedings of the IEEE 82.2 (Feb.
1994), pp. 287–304.

[33] G. Gielen et al. “An analogue module generator for mixed analogue/digital asic de-
sign”. In: International Journal of Circuit Theory and Applications 23.4 (July 1995),
pp. 269–283.

[34] Daniel Golovin et al. “Google vizier: A service for black-box optimization”. In: Pro-
ceedings of the 23rd ACM SIGKDD international conference on knowledge discovery
and data mining. 2017, pp. 1487–1495.

[35] Franz Graf et al. “2d image registration in ct images using radial image descriptors”.
In: International Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer. 2011, pp. 607–614.

[36] Kristen Grauman et al. “Ego4d: Around the world in 3,000 hours of egocentric video”.
In: arXiv preprint arXiv:2110.07058 (2021).

[37] Abhishek Gupta et al. “Relay policy learning: Solving long-horizon tasks via imitation
and reinforcement learning”. In: arXiv preprint arXiv:1910.11956 (2019).

http://proceedings.mlr.press/v78/finn17a.html
http://proceedings.mlr.press/v78/finn17a.html
http://arxiv.org/abs/1506.02142
http://arxiv.org/abs/1506.02142

BIBLIOGRAPHY 105

[38] Kourosh Hakhamaneshi et al. “BagNet: Berkeley analog generator with layout opti-
mizer boosted with deep neural networks”. In: 2019 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD). IEEE. 2019, pp. 1–8.

[39] Kourosh Hakhamaneshi et al. “Hierarchical Few-Shot Imitation with Skill Transition
Models”. In: arXiv preprint arXiv:2107.08981 (2021).

[40] Kourosh Hakhamaneshi et al. “JUMBO: Scalable Multi-task Bayesian Optimization
using Offline Data”. In: arXiv preprint arXiv:2106.00942 (2021).

[41] Kourosh Hakhamaneshi et al. “Pretraining Graph Neural Networks for few-shot Ana-
log Circuit Modeling and Design”. In: arXiv preprint arXiv:2203.15913 (2022).

[42] Nikolaus Hansen. “The CMA evolution strategy: A tutorial”. In: arXiv preprint
arXiv:1604.00772 (2016).

[43] R. Harjani, R.A. Rutenbar, and L.R. Carley. “OASYS: a framework for analog circuit
synthesis”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 8.12 (Dec. 1989), pp. 1247–1266.

[44] J.P. Harvey, M.I. Elmasry, and B. Leung. “STAIC: an interactive framework for syn-
thesizing CMOS and BiCMOS analog circuits”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 11.11 (Nov. 1992), pp. 1402–1417.

[45] Mohsen Hassanpourghadi et al. “Circuit Connectivity Inspired Neural Network for
Analog Mixed-Signal Functional Modeling”. In: 2021 58th ACM/IEEE Design Au-
tomation Conference (DAC). IEEE. 2021, pp. 505–510.

[46] Kaiming He et al. “Masked autoencoders are scalable vision learners”. In: arXiv
preprint arXiv:2111.06377 (2021).

[47] Kaiming He et al. “Momentum contrast for unsupervised visual representation learn-
ing”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2020, pp. 9729–9738.

[48] Kaiming He et al. “Momentum contrast for unsupervised visual representation learn-
ing”. In: Conference on Computer Vision and Pattern Recognition. 2020.

[49] M.delM. Hershenson, S.P. Boyd, and T.H. Lee. “Optimal design of a CMOS op-amp
via geometric programming”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 20 (Jan. 2001).

[50] Irina Higgins et al. “beta-vae: Learning basic visual concepts with a constrained vari-
ational framework”. In: (2016).

[51] Weihua Hu et al. “Open graph benchmark: Datasets for machine learning on graphs”.
In: arXiv preprint arXiv:2005.00687 (2020).

[52] Wenbing Huang et al. “Scalable gaussian process regression using deep neural net-
works”. In: Twenty-fourth international joint conference on artificial intelligence.
Citeseer. 2015.

BIBLIOGRAPHY 106

[53] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning:
methods, systems, challenges. Springer Nature, 2019.

[54] Andrew Jaegle et al. “Perceiver io: A general architecture for structured inputs &
outputs”. In: arXiv preprint arXiv:2107.14795 (2021).

[55] Paras Jain et al. “Representing Long-Range Context for Graph Neural Networks with
Global Attention”. In: Advances in Neural Information Processing Systems 34 (2021).

[56] Dmitry Kalashnikov et al. “Mt-opt: Continuous multi-task robotic reinforcement
learning at scale”. In: arXiv preprint arXiv:2104.08212 (2021).

[57] Dmitry Kalashnikov et al. “Scalable deep reinforcement learning for vision-based
robotic manipulation”. In: Conference on Robot Learning. PMLR. 2018, pp. 651–
673.

[58] Kirthevasan Kandasamy et al. “Multi-fidelity gaussian process bandit optimisation”.
In: Journal of Artificial Intelligence Research 66 (2019), pp. 151–196.

[59] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convo-
lutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[60] Aaron Klein and Frank Hutter. “Tabular benchmarks for joint architecture and hy-
perparameter optimization”. In: arXiv preprint arXiv:1905.04970 (2019).

[61] Aaron Klein et al. “Fast bayesian optimization of machine learning hyperparameters
on large datasets”. In: Artificial Intelligence and Statistics. PMLR. 2017, pp. 528–536.

[62] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural Networks
for One-shot Image Recognition”. In: 2015.

[63] H.Y. Koh, C.H. Sequin, and P.R. Gray. “OPASYN: a compiler for CMOS operational
amplifiers”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 9.2 (Feb. 1990), pp. 113–125.

[64] Michael Krasnicki et al. “MAELSTROM: Efficient Simulation-Based Synthesis for
Custom Analog Cells”. In: ().

[65] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems. 2012.

[66] Wim Kruiskamp and Domine Leenaerts. “DARWIN: CMOS opamp Synthesis by
means of a Genetic Algorithm”. In: ().

[67] Michael Laskin et al. “CIC: Contrastive Intrinsic Control for Unsupervised Skill Dis-
covery”. In: arXiv preprint arXiv:2202.00161 (2022).

[68] Guohao Li et al. “Deepergcn: All you need to train deeper gcns”. In: arXiv preprint
arXiv:2006.07739 (2020).

BIBLIOGRAPHY 107

[69] Lisha Li et al. “Hyperband: A novel bandit-based approach to hyperparameter op-
timization”. In: The Journal of Machine Learning Research 18.1 (2017), pp. 6765–
6816.

[70] Yaping Li et al. “An artificial neural network assisted optimization system for ana-
log design space exploration”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 39.10 (2019), pp. 2640–2653.

[71] Hao Liu and Pieter Abbeel. “Behavior from the void: Unsupervised active pre-training”.
In: Advances in Neural Information Processing Systems 34 (2021).

[72] Kara Liu et al. “Hallucinative Topological Memory for Zero-Shot Visual Planning”.
In: Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event. Vol. 119. Proceedings of Machine Learning
Research. PMLR, 2020, pp. 6259–6270. url: http://proceedings.mlr.press/
v119/liu20h.html.

[73] Mingjie Liu et al. “Parasitic-Aware Analog Circuit Sizing with Graph Neural Net-
works and Bayesian Optimization”. In: 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2021, pp. 1372–1377.

[74] Yuzhe Ma et al. “High performance graph convolutional networks with applications
in testability analysis”. In: Proceedings of the 56th Annual Design Automation Con-
ference 2019. 2019, pp. 1–6.

[75] Viktor Makoviychuk et al. “Isaac gym: High performance gpu-based physics simula-
tion for robot learning”. In: arXiv preprint arXiv:2108.10470 (2021).

[76] Azalia Mirhoseini et al. “A graph placement methodology for fast chip design”. In:
Nature 594.7862 (2021), pp. 207–212.

[77] Ashvin Nair et al. AWAC: Accelerating Online Reinforcement Learning with Offline
Datasets. 2020. eprint: arXiv:2006.09359.

[78] Suraj Nair et al. “R3M: A Universal Visual Representation for Robot Manipulation”.
In: arXiv preprint arXiv:2203.12601 (2022).

[79] Radford M. Neal. Bayesian Learning for Neural Networks. Ed. by P. Bickel et al.
Vol. 118. Lecture Notes in Statistics. New York, NY: Springer New York.

[80] Andrew Y. Ng and Stuart J. Russell. “Algorithms for Inverse Reinforcement Learn-
ing”. In: Proceedings of the Seventeenth International Conference on Machine Learn-
ing (ICML 2000), Stanford University, Stanford, CA, USA, June 29 - July 2, 2000.
Ed. by Pat Langley. Morgan Kaufmann, 2000, pp. 663–670.

[81] W. Nye et al. “DELIGHT.SPICE: an optimization-based system for the design of
integrated circuits”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 7 (Apr. 1988), pp. 501–519.

http://proceedings.mlr.press/v119/liu20h.html
http://proceedings.mlr.press/v119/liu20h.html
arXiv:2006.09359

BIBLIOGRAPHY 108

[82] E.S. Ochotta, R.A. Rutenbar, and L.R. Carley. “Synthesis of high-performance analog
circuits in ASTRX/OBLX”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 15 (Mar. 1996), pp. 273–294.

[83] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with
contrastive predictive coding”. In: arXiv preprint arXiv:1807.03748 (2018).

[84] Takayuki Osa et al. “An algorithmic perspective on imitation learning”. In: arXiv
preprint arXiv:1811.06711 (2018).

[85] Simone Parisi et al. “The Unsurprising Effectiveness of Pre-Trained Vision Models
for Control”. In: arXiv preprint arXiv:2203.03580 (2022).

[86] Rémi Pautrat, Konstantinos Chatzilygeroudis, and Jean-Baptiste Mouret. “Bayesian
optimization with automatic prior selection for data-efficient direct policy search”.
In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2018, pp. 7571–7578.

[87] Xue Bin Peng et al. “Advantage-Weighted Regression: Simple and Scalable Off-Policy
Reinforcement Learning”. In: CoRR abs/1910.00177 (2019). arXiv: 1910.00177. url:
http://arxiv.org/abs/1910.00177.

[88] Valerio Perrone et al. “Learning search spaces for bayesian optimization: Another view
of hyperparameter transfer learning”. In: arXiv preprint arXiv:1909.12552 (2019).

[89] Valerio Perrone et al. “Scalable hyperparameter transfer learning”. In: Proceedings of
the 32nd International Conference on Neural Information Processing Systems. 2018,
pp. 6846–6856.

[90] Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. “Accelerating Reinforcement Learn-
ing with Learned Skill Priors”. In: Conference on Robot Learning (CoRL). 2020.

[91] Johann Petrak. “Fast subsampling performance estimates for classification algorithm
selection”. In: Proceedings of the ECML-00 Workshop on Meta-Learning: Building Au-
tomatic Advice Strategies for Model Selection and Method Combination. 2000, pp. 3–
14.

[92] Rodney Phelps and James R Hellums. “Anaconda: Simulation-Based Synthesis of
Analog Circuits Via Stochastic Pattern Search”. In: 19 ().

[93] Matthias Poloczek, Jialei Wang, and Peter I Frazier. “Warm starting Bayesian op-
timization”. In: 2016 Winter Simulation Conference (WSC). IEEE. 2016, pp. 770–
781.

[94] Dean Pomerleau. “ALVINN: An Autonomous Land Vehicle in a Neural Network”. In:
Advances in Neural Information Processing Systems 1, [NIPS Conference, Denver,
Colorado, USA, 1988]. Ed. by David S. Touretzky. Morgan Kaufmann, 1988, pp. 305–
313. url: http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-
vehicle-in-a-neural-network.

https://arxiv.org/abs/1910.00177
http://arxiv.org/abs/1910.00177
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network

BIBLIOGRAPHY 109

[95] Pankaj P. Prajapati and Mihir V. Shah. “Two stage CMOS operational amplifier
design using particle swarm optimization algorithm”. In: IEEE, Dec. 2015.

[96] Thomas Quarles et al. SPICE 3 Version 3F5 User’s Manual. 1994.

[97] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In:
(2019).

[98] Alec Radford et al. “Language models are unsupervised multitask learners”. In: Ope-
nAI blog 1.8 (2019), p. 9.

[99] Alec Radford et al. Learning Transferable Visual Models From Natural Language Su-
pervision. 2021. eprint: arXiv:2103.00020.

[100] Maithra Raghu et al. “Transfusion: Understanding transfer learning for medical imag-
ing”. In: Advances in neural information processing systems 32 (2019).

[101] Santhosh K Ramakrishnan et al. “Habitat-Matterport 3D Dataset (HM3D): 1000
Large-scale 3D Environments for Embodied AI”. In: arXiv preprint arXiv:2109.08238
(2021).

[102] PS Rana. “Physicochemical properties of protein tertiary structure data set”. In: UCI
Machine Learning Repository (2013).

[103] Carl Edward Rasmussen. “Gaussian processes in machine learning”. In: Summer
school on machine learning. Springer. 2003, pp. 63–71.

[104] Haoxing Ren et al. “ParaGraph: Layout parasitics and device parameter prediction
using graph neural networks”. In: 2020 57th ACM/IEEE Design Automation Confer-
ence (DAC). IEEE. 2020, pp. 1–6.

[105] Stephane Ross, Geoffrey J. Gordon, and Drew Bagnell. “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning”. In: Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011. Ed. by Geoffrey J. Gordon,
David B. Dunson, and Miroslav Dudik. Vol. 15. JMLR Proceedings. JMLR.org, 2011,
pp. 627–635. url: http://proceedings.mlr.press/v15/ross11a/ross11a.pdf.

[106] Rob A. Rutenbar, Georges G. E. Gielen, and Brian A. Antao. Computer-Aided Design
of Analog Integrated Circuits and Systems. IEEE, 2002.

[107] David Salinas, Huibin Shen, and Valerio Perrone. “A quantile-based approach for hy-
perparameter transfer learning”. In: International Conference on Machine Learning.
PMLR. 2020, pp. 8438–8448.

[108] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. “Semi-parametric topolog-
ical memory for navigation”. In: 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. url: https://openreview.net/forum?
id=SygwwGbRW.

arXiv:2103.00020
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
https://openreview.net/forum?id=SygwwGbRW
https://openreview.net/forum?id=SygwwGbRW

BIBLIOGRAPHY 110

[109] Keertana Settaluri et al. “AutoCkt: deep reinforcement learning of analog circuit
designs”. In: 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2020, pp. 490–495.

[110] Dhruv Shah et al. “ViNG: Learning Open-World Navigation with Visual Goals”. In:
arXiv preprint arXiv:2012.09812 (2020).

[111] Bobak Shahriari et al. “Taking the human out of the loop: A review of Bayesian
optimization”. In: Proceedings of the IEEE 104.1 (2015), pp. 148–175.

[112] Evan Shelhamer, Jonathan Long, and Trevor Darrell. “Fully convolutional networks
for semantic segmentation”. In: IEEE transactions on pattern analysis and machine
intelligence 39.4 (2016), pp. 640–651.

[113] Alistair Shilton et al. “Regret bounds for transfer learning in Bayesian optimisation”.
In: Artificial Intelligence and Statistics. PMLR. 2017, pp. 307–315.

[114] Avi Singh et al. “Parrot: Data-Driven Behavioral Priors for Reinforcement Learning”.
In: International Conference on Learning Representations. 2020.

[115] Jasper Snoek et al. “Scalable bayesian optimization using deep neural networks”. In:
International conference on machine learning. PMLR. 2015, pp. 2171–2180.

[116] Jost Tobias Springenberg et al. “Bayesian optimization with robust Bayesian neural
networks”. In: Proceedings of the 30th International Conference on Neural Informa-
tion Processing Systems. 2016, pp. 4141–4149.

[117] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. “CURL: Contrastive Unsuper-
vised Representations for Reinforcement Learning”. In: International Conference on
Machine Learning. 2020.

[118] Niranjan Srinivas et al. “Gaussian Process Optimization in the Bandit Setting: No Re-
gret and Experimental Design”. In: Proceedings of the 27th International Conference
on Machine Learning. Omnipress. 2010.

[119] Freek Stulp and Olivier Sigaud. “Robot skill learning: From reinforcement learning to
evolution strategies”. In: Paladyn, Journal of Behavioral Robotics 4.1 (2013), pp. 49–
61.

[120] Kevin Swersky, Jasper Snoek, and Ryan P Adams. “Multi-Task Bayesian Optimiza-
tion”. In: Advances in Neural Information Processing Systems 26 (2013), pp. 2004–
2012.

[121] Yuval Tassa et al. “Deepmind control suite”. In: arXiv preprint arXiv:1801.00690
(2018).

[122] A. Torralba, J. Chavez, and L.G. Franquelo. “FASY: a fuzzy-logic based tool for
analog synthesis”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 15 (July 1996), pp. 705–715.

BIBLIOGRAPHY 111

[123] Athanasios Tsanas et al. “Enhanced classical dysphonia measures and sparse regres-
sion for telemonitoring of Parkinson’s disease progression”. In: 2010 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing. IEEE. 2010, pp. 594–
597.

[124] Petar Veličkovic et al. “Graph attention networks”. In: arXiv preprint arXiv:1710.10903
(2017).

[125] Oriol Vinyals et al. “Grandmaster level in StarCraft II using multi-agent reinforcement
learning”. In: Nature 575.7782 (2019), pp. 350–354.

[126] Oriol Vinyals et al. “Matching Networks for One Shot Learning”. In: Advances in
Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain. Ed. by Daniel D.
Lee et al. 2016, pp. 3630–3638. url: https://proceedings.neurips.cc/paper/
2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html.

[127] Michael Volpp et al. “Meta-learning acquisition functions for transfer learning in
bayesian optimization”. In: arXiv preprint arXiv:1904.02642 (2019).

[128] P. Wambacq et al. “Efficient symbolic computation of approximated small-signal char-
acteristics of analog integrated circuits”. In: IEEE Journal of Solid-State Circuits 30.3
(Mar. 1995), pp. 327–330.

[129] Yaqing Wang et al. “Generalizing from a Few Examples: A Survey on Few-shot Learn-
ing”. In: ACM Comput. Surv. 53.3 (2020), 63:1–63:34. doi: 10.1145/3386252. url:
https://doi.org/10.1145/3386252.

[130] Chris Williams, Edwin V Bonilla, and Kian M Chai. “Multi-task Gaussian process
prediction”. In: Advances in neural information processing systems (2007), pp. 153–
160.

[131] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. “Learning hyperpa-
rameter optimization initializations”. In: 2015 IEEE international conference on data
science and advanced analytics (DSAA). IEEE. 2015, pp. 1–10.

[132] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. “Scalable gaussian
process-based transfer surrogates for hyperparameter optimization”. In:Machine Learn-
ing 107.1 (2018), pp. 43–78.

[133] G.A Wolfe. “Performance macro-modeling techniques for fast analog circuit synthesis.
Ph.D. dissertation, Dept. of Electrical and Computer Engineering and Computer
Science, College of Engineering, University of Cincinnati, USA”. PhD thesis. 1999.

[134] Glenn Wolfe and Ranga Vemuri. “Extraction and use of neural network models in
automated synthesis of operational amplifiers”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 22.2 (2003), pp. 198–212.

https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252

BIBLIOGRAPHY 112

[135] Yifan Wu, George Tucker, and Ofir Nachum. “Behavior Regularized Offline Rein-
forcement Learning”. In: CoRR abs/1911.11361 (2019). arXiv: 1911.11361. url:
http://arxiv.org/abs/1911.11361.

[136] Guo Zhang, Hao He, and Dina Katabi. “Circuit-GNN: Graph neural networks for dis-
tributed circuit design”. In: International Conference on Machine Learning. PMLR.
2019, pp. 7364–7373.

[137] Tianhao Zhang et al. “Deep Imitation Learning for Complex Manipulation Tasks from
Virtual Reality Teleoperation”. In: 2018 IEEE International Conference on Robotics
and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018. IEEE, 2018,
pp. 1–8. doi: 10.1109/ICRA.2018.8461249. url: https://doi.org/10.1109/
ICRA.2018.8461249.

https://arxiv.org/abs/1911.11361
http://arxiv.org/abs/1911.11361
https://doi.org/10.1109/ICRA.2018.8461249
https://doi.org/10.1109/ICRA.2018.8461249
https://doi.org/10.1109/ICRA.2018.8461249

	Contents
	List of Figures
	List of Tables
	Introduction
	Integrated Analog Mixed Signal Circuit Design Automation
	Market Overview
	Analog IC Design Flow
	History of Analog IC Design Automation

	Developing Software Tools for Circuit Design Automation
	Motivation
	Definition of Analog Sizing Problem
	Black-box Evaluation Engine
	Schematic Simulator engine using NGSPICE
	Layout Simulator engine Using BAG
	Conclusion

	Boosting Sample Efficiency of Evolutionary Algorithms
	Population-Based Methods: Benefits and Drawbacks
	Model for Imitating the Oracle
	Algorithm
	Experiments
	Conclusion

	Improving Circuit Models via Pre-training and Fine-tuning
	Related Work
	Learning representations for analog circuits
	Experiments
	Conclusion

	Boosting Sample efficiency of Bayesian Optimization Methods via Pre-training
	Background
	Related Work
	Scalable MBO via JUMBO
	Theoretical Analysis
	Experiments
	Ablations
	Implementation Details
	Conclusion

	Few-shot Imitation Learning via Skill Extraction Pre-training
	Introduction
	Related Work
	Approach
	Experiments
	Broader Impacts and Limitations
	Conclusion

	Conclusion
	Thesis Contribution
	Future of Deep Learning in Analog Circuit Design Automation
	Future of Pre-trained Agents for Sample Efficient Control

	Bibliography

