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CandyCodes: simple universally 
unique edible identifiers 
for confirming the authenticity 
of pharmaceuticals
William H. Grover

Counterfeit or substandard medicines adversely affect the health of millions of people and cost an 
estimated $200 billion USD annually. Their burden is greatest in developing countries, where the 
World Health Organization estimates that one in ten medical products are fake. In this work, I describe 
a simple addition to the existing drug manufacturing process that imparts an edible universally 
unique physical identifier to each pill, tablet, capsule, caplet, etc. This technique uses nonpareils (also 
called sprinkles and “hundreds and thousands”), tiny inexpensive multicolor candy spheres that are 
normally added to other candies or desserts as decorations. If nonpareils are applied at random to 
a pill immediately after manufacture, the specific pattern they form is unlikely to ever be repeated 
by random chance; this means that the pattern (or “CandyCode”) can be used to uniquely identify 
the pill and distinguish it from all other pills. By taking a photograph of each CandyCoded pill after 
manufacture and recording the location and color of each nonpareil, a manufacturer can construct 
a database containing the CandyCodes of all known-authentic pills they produce. A consumer can 
then simply use a cellphone to photograph a pill and transfer its image to the manufacturer’s server, 
which determines whether the pill’s CandyCode matches a known-good CandyCode in their database 
(meaning that the pill is authentic) or does not have a match in the database (in which case the 
consumer is warned that the pill may be counterfeit and should not be consumed). To demonstrate 
the feasibility of using random particles as universal identifiers, I performed a series of experiments 
using both real CandyCodes (on commercially produced chocolate candies) and simulated CandyCodes 
(generated by software). I also developed a simple method for converting a CandyCode photo to a 
set of strings for convenient storage and retrieval in a database. Even after subjecting CandyCodes 
to rough handling to simulate shipping conditions, the CandyCodes were still easily verifiable using a 
cellphone camera. A manufacturer could produce at least 1017 CandyCoded pills—41 million for each 
person on Earth—and still be able to uniquely identify each CandyCode. By providing universally-
unique IDs that are easy to manufacture but hard to counterfeit, require no alteration of the existing 
drug formulation and minimal alteration of the manufacturing process, and need only a cameraphone 
for verification, CandyCodes could play an important role in the fight against fraud in pharmaceuticals 
and many other products.

Every year, an estimated $200 billion USD is wasted on medicines that are counterfeit or substandard. These 
fake medicines often appear authentic, but they may not contain the specified amounts of active ingredients, or 
may contain inert (or dangerous) additional ingredients. The problem of adulterated medicines is most acute 
in the developing world, where the World Health Organization estimates that one in ten medical products are 
counterfeit or  adulterated1. When criminals copy or reuse the packaging of authentic brands, fake medicines 
devalue and erode public trust in those brands. Consequently, legitimate drug makers are keenly interested in 
defending their brands and protecting the drug distribution chain connecting their factories to consumers.

Unique identifiers can play an important role in defending the pharmaceutical distribution chain and fighting 
counterfeit medications. For example, legitimate manufacturers already print unique lot numbers on medication 
bottles; concerned consumers could contact the manufacturer and confirm that a given bottle’s number cor-
responds to a known-good lot. However, criminals could thwart this defense by reusing authentic packaging or 
printing known-good lot numbers on their own fake packaging. Additionally, somewhere along the distribution 
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chain, a criminal could obtain an authentic bottle of medicine, replace the contents with a cheaper substitute, and 
re-seal the bottle. Finally, since pharmacies commonly dispense medicines in generic containers, an unscrupu-
lous pharmacy could dispense fraudulent medication in bottles with no traceable lot numbers. In each of these 
scenarios, a unique lot number on drug packaging cannot combat counterfeiting.

The ideal identifier for combatting drug fraud would be part of the drug product itself, permanently linked 
to the medicine at every step from manufacturing all the way to the consumer. A consumer could use this on-
drug identifier to confirm the authenticity of a drug immediately before taking it. Various versions of on-drug 
identifiers have been proposed, but each version has shortcomings that have limited its widespread adoption. 
For example, one technique uses indentations on a drug capsule’s surface to encode an ID, but decoding the ID 
requires the use of a specialized  reader2. Another technique prints a unique QR code on each pill, but a micro-
scope is required to read the  code3. Other techniques use fluorescent  ink4 or  molding5 to create on-pill QR codes 
that can be read using standard smartphone cameras, but integrating these codes into drug products would 
require a significant modification of the drug manufacturing process. Still other approaches propose printing 
IDs onto film-based formulations of a  drug6,7, but this requires a significant reformulation of the drug product. 
In summary, on-drug identifiers could play a role in combatting fraudulent pharmaceuticals, but problems with 
existing approaches to on-drug IDs have precluded their widespread adoption.

Researchers have also shown that random physical patterns can serve as unique IDs. For example, the “physi-
cal one-way functions” developed by Ravikanth Pappu et al.8 consist of small glass particles randomly distrib-
uted in a transparent matrix; when laser light shines through the matrix, the optical speckle fluctuations in the 
transmitted light are unique to that particle pattern and are unlikely to ever be duplicated by chance. Since these 
“physical one-way functions” are easy to make but very difficult to duplicate, Pappu et al. recognized that they 
could be used as authentication tokens in cryptographic applications. Later examples of these “physical unclon-
able functions” or PUFs have used random patterns of molecules, nanotubes, nanoparticles, and other objects to 
uniquely identify  objects9. Most recently, Jung Woo Leem et al.10 demonstrated that fluorescent silk microparticles 
from genetically engineered silkworms can be distributed randomly in a silk film, then a piece of this silk can be 
attached to a pill. By imaging the silk-tagged pill using a fluorescence microscope, the microparticle pattern can 
be read and used to uniquely ID the pill. While these demonstrations confirm that random patterns can be used 
to uniquely identify a pill, they also require specialized equipment for reading the pill’s ID, equipment like lasers 
and fluorescence microscopes which are obviously not available to most consumers. This makes existing meth-
ods unsuitable for at-home use by an individual wishing to verify the authenticity of a pill before consuming it.

In this work, I describe a simple addition to the standard pharmaceutical manufacturing process that imparts 
to each pill a universally unique identifier that can be read using an ordinary cameraphone. This method was 
inspired by the chocolate candies coated in tiny multicolored candy “nonpareils” shown in Fig. 1. If enough mul-
ticolored nonpareils are applied at random to the chocolate, the pattern the nonpareils make can be considered 
universally unique and unlikely to ever be replicated by chance on another chocolate. Moreover, these patterns 
are simple to create (simply apply nonpareils at random), but it would be very difficult and time-consuming to 
duplicate an existing pattern by hand. These properties make multicolored nonpareil coatings (or “CandyCodes”) 
highly suitable for use as on-drug identifiers for combatting fraudulent pharmaceuticals. As a proof-of-concept, 
I created both real and simulated CandyCodes and tested their suitability as universally-unique identifiers. My 
findings suggest that CandyCodes could be a useful tool in the fight against fraudulent medicines.

Figure 1.  If enough multicolored particles (like these candy “nonpareils,” top) are randomly attached to objects, 
the odds of two objects having the same pattern of particles are essentially zero. This means that every candy-
coated chocolate (left) is likely unique and one-of-a-kind in the entire world. By attaching the same multicolored 
candies to pharmaceutical products (like the acetaminophen/paracetamol caplets at right), each pill receives an 
edible universally unique identifier—a “CandyCode”—that a consumer can use to confirm the authenticity of 
the product.
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Results
The overall process of using CandyCodes to guarantee the authenticity of a pharmaceutical product is summa-
rized in Fig. 2. Each pill is coated in random multicolored candy nonpareils and photographed before leaving 
the manufacturer. These photographs can be stored in a database as is, or they can be converted to a more-
easily-searchable format (a method for converting a CandyCode photo to a set of text-based strings is described 
later in this work). Either way, a database is created containing CandyCode patterns belonging to known-good 
pills. When a consumer receives a pharmaceutical product and wishes to check the authenticity of a pill, they 
merely snap a photograph of the pill using a cellphone and upload it to the manufacturer’s server. The suspect 
pill’s CandyCode is then compared to the database of known-good CandyCodes. If a close match is found, the 
consumer is informed that the pill is authentic, but if no matching pattern is found, the consumer is warned 
that the drug product is not authentic and should be discarded. CandyCodes can be added to existing drug 
products without having to reformulate the product or significantly alter the manufacturing process, they need 
no specialized equipment to read, and they would be extremely difficult and time-consuming to duplicate in an 
attempt to circumvent the security they provide.

Materials for CandyCodes. Some existing drug products take the form of several small drug-containing 
spheres enclosed in a transparent capsule. Often these drug-containing spheres are a mixture of two or more 
colors and are clearly visible from the outside of the capsule. For these particular products, if the drug-contain-
ing spheres do not move or shift positions inside the capsule, it is possible that the existing visible pattern made 
by the multicolor drug-containing spheres could already function as an intrinsic CandyCode, and manufactur-
ers could use them as such with no alterations whatsoever to their manufacturing process. However, for drug 
formulations (like the caplets shown in Fig. 1) that do not contain intrinsic CandyCodes, we can add a Candy-
Code to the drug using particles.

In principle, any small edible particles with a variety of discernible appearances (different colors, sizes, shapes, 
etc.) could be used to create a CandyCode on a pill. In this work, I used commercially produced multicolor non-
pareils (also known as “sprinkles” and “hundreds and thousands”11). Nonpareils come from the manufacturer 
as a mixture of millimeter-sized candy spheres of different colors. One common variety which was used in this 
study has eight different sphere colors (each of which is referred to in this work by a single-letter abbreviation as 
shown): dark blue (D), green (G), light blue (L), orange (O), pink (P), red (R), white (W), and yellow (Y). These 
nonpareils are available in bulk for around $15 USD per kilogram. At 2.3 milligrams per nonpareil, they cost 
$0.000 034 5 USD per nonpareil (or 29 000 nonpareils per USD). Additionally, since each nonpareil can have eight 
different colors, each nonpareil can theoretically encode three binary bits of information ( 23 = 8 ), so as a data 
storage medium, a kilogram of nonpareils could store a theoretical maximum of 1.3 million bits of information.

Adding CandyCodes to drug products. To add CandyCodes to a drug product, a manufacturer needs 
a method for adhering an adequate number of nonpareils to each pill, tablet, capsule, etc. The method needs to 
maintain the visibility of nonpareils on the surface of the drug (for photography), be safe for human consump-
tion, and survive mechanical agitation during shipping. As a small-scale pilot test, I used a variety of edible 
adhesives to affix nonpareils to a typical commercial drug product, 500 mg caplets of acetaminophen/paraceta-
mol (brand name Tylenol). These adhesives included commercial “edible adhesives” (often used to attach edible 
decorations to cakes), melted edible waxes, and melted sugar. The best results (shown in Fig. 1 at right) were 
obtained using two edible adhesives (details in Materials and Methods below). Anecdotally, I found that these 
“homemade” CandyCoded caplets retained their nonpareil coatings during handling and were actually more 
pleasant to swallow than plain caplets (confirming Mary Poppins’ classic observation about the relationship 
between sugar and medicine).

For actual testing, I wanted to use CandyCodes that were more representative of those that would be produced 
commercially, not my “homemade” versions. I found that commercially produced nonpareil-coated chocolate 
candies (shown in Fig. 1 at left) provide an excellent substitute for actual CandyCoded drug products. These 
chocolate candies are inexpensive (roughly $0.007 USD per candy when purchased in bulk), already mass-
produced by several manufacturers, and roughly the same size as pills and capsules, so they made reasonable 
and convenient substitutes for actual mass-produced CandyCoded drugs in this study.

Photographing CandyCodes. Once a drug product has received a random coating of nonpareils, the 
manufacturer must next photograph each CandyCoded pill before packaging. Since many manufacturers already 
use photographic machine vision systems for quality control purposes, obtaining photographs of CandyCoded 
drugs should require minimal (if any) alteration to current drug production methods.

To generate a library of CandyCode photos for testing, I randomly selected 120 nonpareil-coated chocolate 
candies from a one-pound bag and photographed them. I intentionally photographed the candies in groups (12 
candies at a time) using a conventional smartphone camera; this resulted in relatively low-resolution images of 
each CandyCode (shown in Fig. 3) as might be obtained in a manufacturing facility or by an at-home consumer. 
I also intentionally used ambient room lighting and made no special effort to create consistent lighting condi-
tions between photographs, although a smartphone’s built-in flash could be used to create consistent lighting 
for at-home use if  necessary12–18.

The 120 CandyCodes in Fig. 3 have between 72 and 108 nonpareils per CandyCode, with an average number 
of 92.6 nonpareils per CandyCode and a median number of 94 nonpareils per CandyCode.

Creating a database of known-good CandyCodes. In the next step, the CandyCodes need to be stored 
in a database for later querying by consumers wishing to verify the authenticity of their CandyCoded medicines. 
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There are many different ways in which this database of known-good CandyCodes could be constructed. Per-
haps the most obvious approach would be simply saving the raw CandyCode photos taken by the manufacturer 

Figure 2.  Using CandyCodes to authenticate pharmaceuticals. By randomly affixing a number of 
distinguishable edible particles (in this case, multicolored nonpareil candies) to each pill after manufacturing, 
a pharmaceutical company gives each pill a universally-unique “CandyCode.” Each CandyCoded pill is 
photographed before packaging and distribution, and the pattern of particles in each photo is recorded (in this 
example, the manufacturer converts each photo into a set of text strings using a process detailed later in this 
work) and stored in a database of known-good CandyCodes. When a consumer receives the drug and wishes 
to verify its authenticity, the consumer uses their cameraphone to take a photo of a CandyCoded pill and 
uploads this photo to the manufacturer’s server, which performs the same pattern conversion and searches for a 
CandyCode with a matching or similar pattern in the database. In this example, Consumer 1’s CandyCoded pill 
has 27 strings (shown in green) that match the strings of a known-good CandyCoded pill in the manufacturer’s 
database, so the server informs Consumer 1 that their medication is authentic. However, Consumer 2’s 
CandyCode strings have no matches in the database of known-good CandyCodes, so Consumer 2’s drug must 
not have originated in the manufacturer’s facility and is not authentic, and the server warns Consumer 2 not to 
consume the medication.
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Figure 3.  Photographs of 120 candies used to create a test library of CandyCodes. These commercially 
produced candies were used as proxies for actual CandyCoded medications. Each chocolate candy is coated by 
the manufacturer with an eight-color mixture of nonpareil spheres; the candies shown here received between 72 
and 108 nonpareils each, with an average of 92.6 nonpareils per candy. Each CandyCode photo was converted 
to a set of strings using the process described in Fig. 4 and analyzed to determine its uniqueness. Additionally, 
three of these CandyCodes (numbers 103, 104, and 109) were selected at random and subjected to one week of 
physical abuse to determine if mechanical wear sustained during shipping could affect the information content 
of CandyCodes.
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on the production line. When a consumer uploads a photo of a suspect CandyCoded medicine, image similarity 
algorithms could be used to determine whether there is a match in the database of known-good CandyCode 
photos. This approach would require a manufacturer to digitally store large numbers of CandyCode photos, 
but based on the file sizes of the photos used in this study (about 2.7 MB for each photo of 12 CandyCodes, or 
about 200 kB per CandyCode), a single TB-size hard drive could store millions of CandyCode photos. As image 
similarity algorithms grow more sophisticated, this raw-image-based approach could be a powerful way to build 
and query a CandyCode database.

Another approach to building a database of known-good CandyCodes would rely upon converting the Can-
dyCode image into standard binary data. This is how one-dimensional barcodes (like EAN/UPC  codes19) and 
two-dimensional barcodes (like QR  codes20) work: a pattern of lines or pixels is decoded to binary data, often 
interpreted as alphanumeric text. With an average of around 93 nonpareils per CandyCode and 8 different colors 
per nonpareil, a CandyCode could theoretically encode log2 893 = 279 bits of information. How likely is it that a 
random 279-bit code could ever be repeated by chance? For comparison, digital “version 4” universally-unique 
identifiers (UUIDs) commonly used in computing have just 122 random  bits21, and programmers take it for 
granted that these digital UUIDs will never repeat in normal applications. Thus, a 93-nonpareil CandyCode 
encoding 279 random bits—more than double the bits of a digital UUID—should easily serve as a physical UUID 
that will never be duplicated by random chance.

However, this analysis ignores a crucial difference between barcodes and CandyCodes: barcodes have well-
defined structures, like regularly spaced lines or regular grids of pixels, and these structures greatly facilitate 
their decoding. In other words, each line or pixel in a barcode has a well-defined location, and by reading the 
lines or pixels at each location, barcodes can easily be decoded and converted into binary information. In con-
trast, CandyCodes cannot be decoded using a simple barcode-like method because, unlike the lines or pixels in 
a barcode, the nonpareils in a CandyCode are placed in random locations. This random placement is useful—it 
makes CandyCodes easy to produce and difficult to counterfeit—but it also complicates the process of converting 
CandyCodes into a binary representation.

That being said, close inspection of CandyCodes like those in Figs. 1 and 3 reveals patterns that can be used 
for imparting some local structure to the nonpareil locations, structure that can be useful for decoding Candy-
Codes. In particular, spherical nonpareils tend to pack onto the flat surface of a pill in a hexagonal pattern, at 
least in some local areas. This hexagonal pattern lets us identify the nonpareil “neighbors” (usually six of them) 
that are closest to a given nonpareil. And over larger areas, where the curvature of the pill surface influences 
the packing of the nonpareils, the patterns start resembling those encountered by mathematicians studying 
spherical codes and the so-called “Tammes problem”22. Local structures like these make it possible to create 
reasonably robust algorithms for reproducibly identifying “neighborhoods” of nonpareils on the CandyCode. 
If each neighborhood could be converted to a binary representation, then a CandyCode could be decoded even 
if it has no overall regular structure.

To test this idea, I wrote a Python program (available in this project’s GitHub  repository23) that converts a 
CandyCode photograph into a set of binary text strings. Figure 4 illustrates the individual steps required to con-
vert a specific randomly chosen CandyCode (number 44 from Fig. 3) into a set of strings. In Step 1 of Figure 4, 
the program records the location (in Cartesian coordinates) and color (using the single-letter abbreviations 
from "Materials for CandyCodes" Section) of each of the 94 nonpareils visible in the CandyCode photo. These 
nonpareil coordinates are treated like vertices in a graph. Two vertices in this graph are considered connected 
by an edge if the corresponding two nonpareils are physically located close enough to be considered “neighbors.” 
To identify these neighbors, the code calculates the Delaunay  triangulation24 of the nonpareil vertices using an 
implementation of the Quickhull  algorithm25 in  SciPy26. In the resulting graph (shown in Step 2 of Fig. 4), two 
vertices connected by an edge are considered neighboring nonpareils.

Next, each nonpareil and its immediate neighbors are converted to a text string. For a specific example of 
this process, find the pink nonpareil marked with “ ⋆ ” in the left-of-center region of CandyCode 44 in Fig. 4 Step 
1. This pink nonpareil has six neighboring nonpareils: two white nonpareils to the left, one dark blue nonpareil 
above, a green and red nonpareil to the right, and another pink nonpareil below. Now examine the Delaunay 
triangulation of this CandyCode in Step 2 of Fig. 4. The original pink nonpareil’s vertex (again marked “ ⋆ ” in 
Fig. 4 Step 2) is connected to six other vertices; these correspond to the pink nonpareil’s six neighboring non-
pareils. A closeup showing just the pink nonpareil’s vertex and its six neighboring vertices is shown in Step 3 of 
Fig. 4. To convert this neighborhood of nonpareils to a text string, we start with the single-letter abbreviation 
of the central nonpareil’s color: P for pink. Next, we sort the single-letter abbreviations of the six connected 
nonpareils by alphabetical order. The D (dark blue) nonpareil at the top comes first in alphabetical order, so D is 
added to the string. The remaining neighboring nonpareils are added to the string by moving clockwise around 
the neighborhood, first to G, then R, then P, then W, and finally the second W. There are no more neighboring 
nonpareils to add, so the string is complete: PDGRPWW is the string representation of the neighborhood cen-
tered on the nonpareil marked “ ⋆.”

For neighborhoods in which there are two or more surrounding nonpareils of the same color coming first in 
alphabetical order, the code sorts the two or more following vertices by alphabetical order and uses this order 
to select the next letter for the string. For example, consider the neighborhood centered on the white nonpareil 
(W) marked with ’’ ’’  in Fig. 4 Step 3. The string representation of this neighborhood starts with W. Sorting the 
surrounding nonpareils by alphabetical order reveals that the next letter will be a G, but it is unclear whether 
this corresponds to the green nonpareil at the top or the second green nonpareil on the bottom. To determine 
which green nonpareil should come next in the string, the code examines the nonpareils following each green 
nonpareil moving clockwise. The letter following the top green nonpareil, W, comes earlier in alphabetical order 
than the letter following the bottom nonpareil, Y. Thus, the top G is chosen as the next letter in the string, the 
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Figure 4.  Converting a photograph of a CandyCode (number 44 from Fig. 3) into a set of strings suitable for 
storage and querying in a database. In Step 1, the locations and colors of all visible nonpareils are recorded. 
In Step 2, the nonpareil locations and colors are interpreted as vertices on a graph, and the Delaunay 
 triangulation24–26 of these vertices connects neighboring nonpareils via the edges on the graph. Next, for each 
nonpareil and its immediate neighbors, the colors of each nonpareil and their arrangement around the central 
nonpareil are used to create a text string. Step 3 shows three example string conversions, for the nonpareil 
neighborhoods marked with “ ⋆ ,” “ ’’ and “ ” in each step (details in main text). In Step 4, any low-quality 
strings (e.g., those containing too-few different colors or located on the edge of the graph) are discarded. The 
remaining set of 53 strings represents this CandyCode, and this set is saved to the database of known-good 
CandyCodes. This process is repeated for every CandyCoded pill before leaving the manufacturer. When a 
consumer photographs a CandyCoded product and submits the photo for analysis, this process is repeated using 
the consumer’s photo, and the resulting set of strings is compared with the database of known-good string sets. 
If a known-good CandyCode is found that contains many of the same strings as the user’s CandyCode, then the 
user likely has an authentic product.
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remaining letters are added in the usual clockwise order, and the final string representation for the neighbor-
hood marked “ ” is WGW WGY .

The number of letters in each string is determined by the number of nonpareils in each neighborhood. Many 
neighborhoods (like the one centered on the nonpareil marked “ ⋆ ” in Fig. 4) yield seven-letter strings; this is the 
number predicted by hexagonal packing of spheres as described earlier. However, other string sizes are possible, 
including smaller strings (like the six-letter string resulting from the neighborhood centered on the nonpareil 
marked  in Fig. 4) and larger strings (like the eight-letter string resulting from the neighborhood centered on 
the nonpareil marked “ ” in Fig. 4).

After using this process to convert each nonpareil and its neighbors to a text string as shown in Step 4 of 
Fig. 4, the code discards certain low-quality strings. For example, vertices at the edge of the Delaunay triangula-
tion graph naturally have fewer neighbors, which gives these vertices shorter strings that are more likely to be 
found repeated in other CandyCodes; discarding these short strings reduces the frequency of “false positives” 
when searching the database of known-good CandyCodes. Another discard criterion was created in response to 
an unexpected oddity of the chocolate candies used as substitutes for CandyCoded drugs in this study: I found 
that white nonpareils appear on these candies almost five times more often than any other color. In fact, 41.5% 
of the nonpareils are white, with the remaining seven colors present at only 7.3% to 8.1% each (details in Fig. 7). 
These excess white nonpareils were undoubtedly added intentionally by the manufacturer, but they also have 
the unfortunate effect of reducing the diversity of letters in the CandyCode strings (nearly half of the letters are 
W) and again increasing the likelihood of “false positive” strings that appear in multiple CandyCodes. So to 
eliminate strings with excessive Ws, the code discards strings with fewer than four different colors (like the one 
marked “ ” in Fig. 4). In this example, the 94 nonpareils in CandyCode 44 were converted into 94 strings, 41 of 
which were discarded as low-quality, leaving 53 good strings (shown in the list in Step 4 of Fig. 4) that represent 
this CandyCode in the database of known-good CandyCodes.

This process was repeated for each of the 120 CandyCode images in Fig. 3. My proof-of-concept analysis code 
converted all 120 CandyCodes into string lists in 1.5 seconds on a conventional desktop computer, or about 12.5 
milliseconds per CandyCode. On average, there were 52.8 good strings per CandyCode. The CandyCode with 
the smallest number of strings was CandyCode 30, which had just 19 good strings. This is significantly fewer 
strings than the other CandyCodes, so I examined CandyCode 30 to determine why it stored considerably less 
information than the other CandyCodes in the test library. I found that CandyCode 30 had an even higher excess 
of white nonpareils than the other CandyCodes: 55.6% of CandyCode 30’s nonpareils were white, compared to 
an average of 41.5% white across all 120 CandyCodes. With over half of CandyCode 30’s nonpareils the same 
color, my algorithm unsurprisingly discarded 44 of the CandyCode’s strings for having fewer than four different 
colors. Additionally, CandyCode 30 had only 81 total nonpareils, compared to an average of 92.6 nonpareils 
across all 120 CandyCodes; this gave CandyCode 30 fewer potential strings to begin with. The combination of 
these two deficiencies—low color diversity and a small nonpareil count—meant that CandyCode 30 had only a 
third as many strings as the average CandyCode. Both of these deficiencies could easily be eliminated by using 
equal amounts of each nonpareil color (as discussed later) and ensuring that all CandyCodes receive at least a 
minimum number of nonpareils.

In contrast, the CandyCode with the largest number of strings was CandyCode 70, which had 73 good strings. 
This CandyCode had a more diverse selection of colors, with only 36.6% of its nonpareils being white (this is still 
an excess of white nonpareils, but a smaller excess than the average of 41.5% white). Additionally, CandyCode 
70 has a larger-than-average number of nonpareils (101, compared to the average of 92.6). These advantages 
combine to make CandyCode 70 the most information-rich of all 120 CandyCodes in the test library.

Assessing the uniqueness of CandyCode strings. Normally, once a manufacturer converts a Candy-
Code photo to a set of strings and adds the set to their database of known-good CandyCodes, a consumer would 
then take their own photo of the CandyCode and upload it to the manufacturer’s server for analysis and compar-
ison with the database. But before testing a consumer-like interaction with the database, I wanted to determine 
how different the database’s CandyCodes were when compared with each other. Specifically, I examined all pair-
wise combinations of the 120 CandyCodes to determine how many strings the CandyCodes had in common.

Out of the 7140 possible pairwise comparisons among the 120 CandyCodes in the test library:

• 6811 CandyCode pairs (95.4%) had 0 strings in common
• 326 CandyCode pairs (4.56%) had 1 string in common
• 3 CandyCode pairs (0.04%) had 2 strings in common

and no CandyCode pairs had more than 2 strings in common. Stated differently, these results mean that if you 
choose two CandyCodes at random from the library, over 95% of the time the two codes will have no strings 
in common. Of the small fraction of CandyCode pairs that do have strings in common, the vast majority have 
only a single string shared between the CandyCodes. Note that this is a single shared string among the over 
100 combined strings (on average) from both CandyCodes. Finally, an extremely small number of CandyCode 
pairs (less than one in 2000) have two shared strings. These results show that while repeated strings sometimes 
appear between two CandyCodes, they are vastly outnumbered by strings that are unique to a single CandyCode, 
at least for this small-scale test library. Finally, my proof-of-concept analysis code completed all 7140 pairwise 
comparisons of the 120 CandyCodes in about 2.6 seconds on a conventional desktop computer, or about 360 
microseconds per comparison.
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Searching for suspect CandyCodes in the known-good database. Next, to test the experience of 
consumers using CandyCodes to confirm the authenticity of their medicines, I selected three of the 120 Can-
dyCoded chocolates at random (numbers 103, 104, and 109) and photographed them again (Fig. 5A). I made 
no special effort to reproduce the lighting, orientation, or other aspects of the original photos. I then converted 
these new “suspect” CandyCode photos to string sets as described above, and searched for matching strings in 
the database of known-good CandyCodes. The results are as follows:

• Suspect CandyCode 103 had:

• 32 strings in common with known-good CandyCode 103
• 1 string in common with 9 other CandyCodes
• 0 strings in common with the remaining 110 CandyCodes

• Suspect CandyCode 104 had:

• 30 strings in common with known-good CandyCode 104
• 1 string in common with 7 other CandyCodes
• 0 strings in common with the remaining 112 CandyCodes

• Suspect CandyCode 109 had:

• 23 strings in common with known-good CandyCode 109
• 2 strings in common with 1 other CandyCode
• 1 string in common with 3 other CandyCodes
• 0 strings in common with the remaining 115 CandyCodes.

In other words, the suspect CandyCode photos had an average of 28 strings in common with their corresponding 
photos in the known-good database; this proves that the suspect CandyCodes have matches in the known-good 
database and are therefore authentic. In addition, the suspect CandyCodes had zero strings in common with 
most of the non-matching CandyCodes in the database, and never had more than 2 strings in common with 
non-matching CandyCodes.

While there are many strings in common between the “suspect” photo and the “known-good” photo of the 
same CandyCode, the string sets are not identical between the pairs of photos. Specifically, CandyCode 103’s 
photos had 32 matching strings out of 53 (or 60% of the strings matching), CandyCode 104 had 30 matching 
strings out of 49 (61% matching), and CandyCode 109 had 23 matching strings out of 57 (40% matching). 
Stated differently, two photos of the same CandyCode do not always result in the exact same set of strings. This 
can be attributed to the process used to convert CandyCode photos to string sets. In particular, the Delaunay 
triangulation (which is used to identify neighboring nonpareils) is very sensitive to the angles formed between 

Figure 5.  To replicate the experience of a consumer interacting with CandyCoded medications, three 
CandyCodes from the test library of 120 chocolate-based CandyCodes shown in Fig. 3 were selected at random 
and photographed again (A). These “suspect” CandyCode photos were converted to sets of strings using 
the process described in Fig. 4 and compared with the library of known-good CandyCodes. The matching 
CandyCodes were found in the library, proving that these “suspect” CandyCodes are indeed authentic (details in 
the text in "Searching for suspect CandyCodes in the known-good database" Section). To test whether shipping-
induced damage might adversely affect CandyCoded medicines, the same three CandyCodes were added to 
medicine bottles containing commercial pharmaceutical tablets and capsules (B), and the CandyCodes were 
then subjected to extreme physical abuse by tumbling the bottles in a modified rock tumbler nonstop for one 
week. The CandyCodes were then removed from the bottles and photographed again (C), and the photographs 
were again converted to sets of strings. Even after undergoing physical abuse far greater than that experienced by 
pharmaceuticals during conventional shipping, the CandyCodes could still be matched with their entries in the 
library of known-good CandyCodes to confirm their authenticity (details in the text in "Verifying CandyCodes 
after physical abuse" Section).
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nearby nonpareils, angles that could vary in different photographs taken from slightly different vantage points. 
But even though different photos of the same CandyCode have only about half of their strings in common, this 
is still more than enough shared strings to determine that the CandyCodes are the same.

Verifying CandyCodes after physical abuse. CandyCodes use nonpareils attached to a pill to impart 
a unique identifier to the pill. These attached nonpareils make CandyCoded medicines easier to produce com-
pared to anti-counterfeiting measures that require reformulation of a drug product. But if the nonpareils are not 
firmly affixed to the medication, they could become detached during the mechanical agitation that might accom-
pany shipping and distributing the product. If enough nonpareils are lost, a consumer’s CandyCoded medication 
might no longer match the manufacturer’s record of that CandyCode, and the consumer would be told that the 
product is fraudulent when in fact it is authentic.

To examine the likelihood of CandyCoded medications sustaining damage during shipping, I took the same 
three chocolate-based CandyCodes examined in the previous section (numbers 103, 104, and 109) and subjected 
them to physical abuse far in excess of that which pharmaceuticals would normally receive. Each CandyCode 
was placed in its own standard pill bottle accompanied by assorted commercial medications (tablets and cap-
sules) as shown in Fig. 5B. To intentionally maximize the mechanical stresses on the CandyCodes, the bottles 
were not fully filled and the CandyCodes were free to rattle and collide with the pills. The pill bottles were then 
placed into a modified rock tumbler and subjected to constant tumbling for one full week. The tumbler inverted 
the pill bottles once every two seconds, or over 300 000 inversions over the course of the experiment; this is far 
greater physical abuse than pharmaceuticals normally experience in e.g. a bottle (which usually contains cotton 
batting to fill empty space and keep pills from bumping against each other) or a blister pack (which physically 
separates pills from each other). After a week of tumbling, the CandyCodes were removed from the bottles 
and photographed again (Fig. 5C), and each CandyCode photo was converted to a set of strings as described 
above. Finally, I compared these post-tumbling CandyCode strings to the original library of 120 CandyCodes 
to determine if the CandyCodes that underwent extreme physical abuse could still be identified in the library.

The results show that physical abuse had little effect on the appearance or function of the CandyCodes. 
Close comparison of the before and after photos in Fig. 5 show that a couple of CandyCode 109’s nonpareils 
were chipped during a week of constant agitation, but the colors of these nonpareils were still recognizable. 
Converting the photos of the physically abused CandyCodes to string sets and comparing them with the original 
120-CandyCode library had these results:

• Physically abused CandyCode 103 had:

• 27 strings in common with known-good CandyCode 103
• 1 string in common with 9 other CandyCodes
• 0 strings in common with the remaining 110 CandyCodes

• Physically abused CandyCode 104 had:

• 21 strings in common with known-good CandyCode 104
• 1 string in common with 8 other CandyCodes
• 0 strings in common with the remaining 111 CandyCodes

• Physically abused CandyCode 109 had:

• 27 strings in common with known-good CandyCode 109
• 1 string in common with 2 other CandyCodes
• 0 strings in common with the remaining 117 CandyCodes.

Comparing these results to the pre-abuse results for the same CandyCodes in the previous section, we see that 
after significant physical abuse, two CandyCodes had small decreases in the number of strings shared with the 
same CandyCode in the known-good database (CandyCode 103’s string matches dropped from 32 to 27, and 
CandyCode 104’s string matches dropped from 30 to 21), and one CandyCode actually had a small increase 
in the number of matching strings (CandyCode 109’s matches rose from 23 to 27). In light of these seemingly 
random changes, I attributed the changes to variations in the Delaunay triangulation from different photos of 
the same CandyCode as described earlier, not effects of physical abuse. Since these CandyCodes were virtually 
unchanged and still functional after this significant physical abuse, it is highly likely that commercially-produced 
CandyCodes would survive the much-less-severe stresses that accompany conventional shipping.

Simulating CandyCode libraries. The experiments described above used a test library of just 120 Can-
dyCodes. In real-world applications involving a commercial pharmaceutical, the library of CandyCodes would 
be far larger. To explore larger CandyCode libraries without using enormous numbers of chocolate candies, I 
created a Python-based simulator (available on this project’s GitHub  repository23) that generates CandyCodes 
on a computer. The simulator replicates real CandyCode production by randomly placing small non-overlapping 
circles of different colors (the nonpareils) onto a larger circular area (the pill). The user can also specify the num-
ber of nonpareils per CandyCode, the number and probability of nonpareil colors, and the total number of Can-
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dyCodes to generate. The simulated CandyCodes are then subjected to the same analysis as the test library above, 
including conversion to string sets and analysis for matching strings between pairs of CandyCodes. Finally, this 
entire process was repeated 100 times for each set of simulation parameters, and the results were collected for 
statistical analysis.

To test the CandyCode simulator, I first used it to replicate the results of the experimental 120-CandyCode 
test library described above. Each of the 120 simulated CandyCodes had 94 nonpareils (the median number of 
nonpareils per CandyCode in the test library). The simulated nonpareil color frequency also matched the test 
library, with white nonpareils appearing five times more frequently than the other individual colors. After simu-
lating and analyzing the 120-CandyCode library 100 separate times, I found that the largest number of strings 
shared between any two different CandyCodes in a library was 2.26 on average. This result is consistent with the 
experiments in "Assessing the uniqueness of CandyCode strings" Section above, which found no more than 2 
shared strings among the 120 real (chocolate-based) CandyCodes.

Having replicated the experimental results using the simulator, I then simulated CandyCode libraries with 
sizes ranging from 1 to 100 000 CandyCodes per library (and still simulating each library size 100 times for 
statistical analysis). The results are shown in red in Fig. 6A, which plots the largest number of strings shared 
between any two different CandyCodes (on a linear scale) versus the total number of CandyCodes in the library 
(on a logarithmic scale). Not surprisingly, as the size of the CandyCode library increases, shared strings between 
the CandyCodes become more common. But the increase in shared strings follows a logarithmic function of 
library size, and least-squares fitting shows that increasing the library size by a factor of 10 only increases the 
largest number of shared strings by 1.2. So the largest library I simulated, 100 000 CandyCodes, would only be 
expected to have about 5.5 strings shared between any two different CandyCodes in the library. Since the small-
est number of strings shared between two photos of the same CandyCode was 21 (determined in "Verifying 
CandyCodes after physical abuse" Section above), it would be trivial to distinguish a correct CandyCode with 21 
or more matching strings from incorrect CandyCodes with only 5 or 6 matching strings. So even with an excess 
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Figure 6.  Results from analyzing simulated CandyCode libraries of different designs and sizes. Each point 
represents the average of 100 separate simulations of the CandyCode library, with error bars ±1 standard 
deviation. (A) A simulation of Figure 3’s 120-CandyCode test library with eight colors and a 5 × excess of white 
nonpareils (black point) predicts an maximum of 2.26 strings shared between any two different CandyCodes; 
this is in good agreement with the experimentally observed value of 2 maximum shared strings for this library. 
Simulating larger libraries of eight-color CandyCodes with excess white nonpareils (red points) reveals a 
logarithmic relationship with library size (red line); increasing the library size by a factor of 10 increases the 
largest number of shared strings by a factor 1.2. Using CandyCodes with eight equal-probability colors (green 
points and line) reduces the number of strings shared between any two different Codes, so that the same 10× 
increase in library size only increases the largest number of shared strings by 0.9. Finally, using CandyCodes 
with 15 equal-probability colors (blue points and line) further reduces the number of shared strings, so that the 
same 10× increase in library size only increases the largest number of shared strings by 0.6. (B) By extrapolating 
these results to a CandyCode library size of 1017 (the number of “version 4” digital  UUIDs21 that must be 
generated before the odds of having a repeated UUID reach 1%27), we can predict that a CandyCode library of 
that size using eight colors and a 5 × excess of white nonpareils would have up to 21 strings shared between any 
two CandyCodes; this equals the smallest number of strings shared between two photos of the same CandyCode 
in my experiments, so CandyCodes from this library would probably not be suitable for use as universally 
unique identifiers. However, a similarly-sized library using eight equal-probability colors is predicted to have 
only up to 15 strings shared, and a library using 15 equal-probability colors should have only up to 10 strings 
shared. These projections suggest that CandyCodes from these libraries could be used as universally-unique 
identifiers, and each CandyCode in the library could be distinguished from the 1017 other CandyCodes in the 
library.
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of white nonpareils, these simulations suggest that the eight-color CandyCodes could support at least 100 000 
different and distinguishable CandyCodes.

Libraries with more than 100 000 CandyCodes were too large to generate and analyze in a reasonable amount 
of computing time, but by extrapolating the simulation results, we can try to predict the feasibility of much larger 
CandyCode libraries. The red line in the zoomed-out plot in Fig. 6B shows that for eight-color nonpareils with 
a 5× excess of whites, the predicted largest number of strings shared between any two different CandyCodes in 
the library will exceed 21 after about 1017 CandyCodes are generated. I chose 1017 as a target number of Can-
dyCodes because it is roughly equal to the number of “version 4” digital  UUIDs21 that can be generated on a 
computer before the probability of a duplicated UUID reaches 1%27. These digital UUIDs are routinely treated 
as universally unique in computing, so if 1017 CandyCodes can be distinguished from each other, we can assume 
that the CandyCodes are also universally unique and could be used to uniquely identify one pill out of 1017 pills 
(this enormous number equals 41 million pills for every person on Earth).

In the case of CandyCodes with eight-color nonpareils and a 5× excess of white nonpareils, the prediction in 
red in Fig. 6B suggests that a library of 1017 CandyCodes is likely not suitable for use as a unique identifiers. Some 
mismatched CandyCodes in this library will still have up to 21 strings in common, and it would be impossible to 
distinguish these mismatched codes from correctly-matched CandyCodes that may have as few as 21 strings in 
common. So while the commercially produced candies used in this study could probably be uniquely identified 
in libraries of ∼ 1010 CandyCodes (which may be more than large enough for many pharmaceutical applications), 
they probably cannot be considered universally unique at the same level as digital UUIDs.

Simulating CandyCode libraries with unbiased nonpareil colors. While the commercially-pro-
duced candies we used as test CandyCodes had a 5× excess of white nonpareils, it would be trivial for a manu-
facturer to use equal amounts of each color of nonpareil. I hypothesized that by using equal amounts of each 
nonpareil color, fewer strings would be discarded for having too-few unique colors, and the resulting Candy-
Codes could still be distinguishable even in larger libraries.

To test this hypothesis, I repeated the eight-color CandyCode simulations described in the previous section, 
but with each color having the same (12.5%) probability as shown in Fig. 7B. The simulation results shown in 
green in Fig. 6 confirm that using equal amounts of each nonpareil color does reduce the number of strings 
shared between different CandyCodes. In this model, increasing the size of an equal-colored CandyCode library 
by a factor of 10 only increases the largest number of strings shared between any two different CandyCodes by 
0.9 (compared to 1.2 for CandyCodes with 5× excess whites). This means that larger CandyCode libraries are 
feasible using equal amounts of nonpareil colors: the extrapolation in Fig. 6B predicts that up to 15 strings would 
be shared between different CandyCodes in a universally-unique library of 1017 CandyCodes. This number is 
lower than 21, the smallest number of strings shared between photos of the same CandyCode observed in my 
experiments, so this projection suggests that an eight-color CandyCode with equal color probabilities could 
serve as a universally unique identifier, with CandyCodes still distinguishable from each other even after 1017 
of them have been made.

Simulating CandyCode libraries with additional colors. The experiments and simulations described 
above all use eight colors of nonpareils because many commercial products with nonpareils have eight colors. 
However, nothing fundamentally limits CandyCodes to using just eight colors. In principle, one could use as 
many different nonpareil colors as can be reliably discriminated using a camera. While modern smartphone 
cameras can distinguish a massive number of different colors, CandyCodes should probably limited to a subset 
of colors that can be reliably distinguished even under sub-optimal lighting and other adverse conditions.

I theorized that I could add seven additional colors to the original eight colors to create a set of 15 nonpareil 
colors that could still be reliably distinguished in a photograph. The seven new colors—black, dark gray, light 

Figure 7.  Probabilities of nonpareil colors in the three CandyCode systems analyzed in this work: (A) the 
commercial eight-color chocolate candies with excess white nonpareils, used in the 120-CandyCode test 
library in "Materials for CandyCodes, Adding CandyCodes to drug products, Photographing CandyCodes, 
Creating a database of known-good CandyCodes, Assessing the uniqueness of CandyCode strings, Searching 
for suspect CandyCodes in the known-good database and Verifying CandyCodes after physical abuse" Sections 
and simulated in Section Simulating CandyCode libraries; (B) the proposed eight-color CandyCode with 
equal probabilities for each color, simulated in "Simulating CandyCode libraries with unbiased nonpareil 
colors" Section ; and (C) the proposed fifteen-color CandyCode system with equal probabilities for each color, 
simulated in " Simulating CandyCode libraries with additional colors" Section.
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gray, dark green, magenta, purple, and brown—are shown along with the original eight colors in Fig. 7C. With 
so many colors of nonpareils, the odds of discarding a text string due to too-few colors become very small, and 
even-larger libraries of CandyCodes should be feasible.

The 15-color CandyCode model was then subjected to the same simulation and analysis as the previous 
models. The results, shown in blue in Fig. 6, confirm that adding additional colors of nonpareils further reduces 
the number of strings shared between different CandyCodes. In a 15-color CandyCode library, increasing the 
number of CandyCodes by a factor of 10 only increases the largest number of strings shared between any two 
different CandyCodes by 0.6; this means that a 15-color CandyCode library should have roughly half as many 
strings shared between different CandyCodes as an equivalently sized library containing 8-color CandyCodes 
with 5× excess whites. Consequently, even larger libraries are feasible using 15 nonpareil colors, and Fig. 6B 
predicts that a library containing 1017 15-color CandyCodes should have a maximum of only about 10 strings 
shared between different CandyCodes. This number is well below the minimum observed number of strings 
shared between photos of the same CandyCode in my experiments, so determining whether a given 15-color 
CandyCode exists in a library of 1017 CandyCodes should be quite feasible (though further experimental test-
ing would be necessary to confirm that common cellphone cameras can indeed reliably distinguish 15 different 
colors of nonpareils).

Discussion
This work demonstrates the feasibility of using random patterns of multicolored particles as universal identi-
fiers. The specific implementation of CandyCodes described here is functional, but there is definitely room for 
improvement. In this section, I conclude by commenting on possible enhancements and applications for this 
technique in the future.

Perhaps most significantly, the process I developed for storing known-good CandyCodes in a searchable 
database could be dramatically improved. Converting each CandyCode photograph into a set of strings, as was 
done here, makes for a compact and easily searchable database, and my projections suggest that this string-based 
approach can scale to UUID-sized libraries ( ∼ 1017 CandyCodes), but text conversion also discards a great deal of 
useful information contained in the CandyCode photographs. Storing known-good CandyCodes as raw photos 
instead of strings, and then using existing image search/comparison algorithms to quantify CandyCode similar-
ity and find matches, could unlock much more of the information content of CandyCodes and further reduce 
the risk of erroneously classifying a fraudulent product as authentic (or vice versa). Recent breakthroughs in the 
fields of machine learning and computer vision could prove especially useful in CandyCode analysis.

Additionally, modifications to the CandyCode design shown here could impart additional robustness or 
error-resistance to CandyCodes. For example, I used identically-sized and -shaped spherical nonpareils in this 
work because they are readily available, but CandyCodes are not limited to using these exact nonpareils. Using 
two or three different sizes of nonpareils would double or triple the number of distinguishable particles used to 
create the CandyCode. Similarly, using different shapes of nonpareils (like triangles, rods, squares, and so on) 
would add additional uniqueness to the CandyCodes. For CandyCodes applied to noncircular forms of medica-
tions (like the oblong caplets shown in Fig. 1), the shape of the medication could be used to impose an overall 
orientation or alignment on the CandyCode, simplifying its analysis and comparison with other CandyCodes.

Finally, while this work focused on using CandyCodes to combat fraudulent pharmaceuticals, many other 
products are routinely counterfeited and passed as authentic. In 2019, the US Customs and Border Protection 
agency seized over $1.5 billion USD worth of counterfeit  goods28. Cosmetics, perfumes, wine, spirits, apparel, 
and accessories are some of the most-frequently counterfeited types of goods. To defend their genuine products, 
a manufacturer could simply apply a drop of glue to the cap of a perfume or beverage bottle, then randomly apply 
colored particles on the glue during the manufacturing process, forming a universally-unique CandyCode on the 
product (as shown in Fig. 8). Similarly, the tag on a dress, handbag, or wallet could receive a sticker that has been 
dusted with multicolored glitter. In each of these cases, a consumer would be encouraged to use their smartphone 
to snap a photo of the CandyCode and submit it to the manufacturer for confirmation before purchasing the 
product. Since CandyCodes are simple to make but difficult to duplicate, they can add value and defend against 
fraud in a wide variety of different products.

Materials and methods
In principle, any suitably sized and distinguishable particles could be used to make CandyCodes. The materi-
als used in this demonstration were chosen for their commercial availability and low cost. The bulk nonpareils 
shown in Fig. 1 were “Over the Top” brand (manufactured by Topco Associates, Elk Grove Village, IL, USA). 
These nonpareils contain five different standard food colorants: Allura Red AC (FD&C Red 40; E129), tartrazine 
(FD&C Yellow 5; E102), brilliant blue FCF (FD&C Blue 1; E133), sunset yellow FCF (FD&C Yellow 6; E110), 
and erythrosine (FD&C Red 3; E127). These compounds have a long history of use in many food, pharmaceuti-
cal, and cosmetic products. In fact, many pharmaceuticals already contain these and other colorants for drug 
recognition and branding  purposes29, so their suitability for use in pharmaceuticals is already well validated. 
Additionally, the stability of these colorants is well established if they are protected from exposure to ultraviolet 
light; since many drug packages are already designed to block UV to protect the drug’s active ingredients from 
 damage30, this same packaging would also protect CandyCode colors from fading.

These nonpareils were affixed to caplets of a commercial drug (500 mg caplets of acetaminophen or par-
acetamol, brand name Tylenol; manufactured by McNeil Consumer Healthcare, Fort Washington, PA, USA) 
using edible adhesive. After testing several different types of edible adhesive, I found two brands that gave the 
best results: “Sugarcraft Essentials” edible glue (containing water, preservative, acetic acid, and carboxymethyl 
cellulose; manufactured by Rainbow Dust Colors, Cuerden Green Mill, UK), and “Dab-N-Hold” edible adhesive 
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(containing water, tapioca dextrin, dextrose, citric acid, xanthan gum, propylene glycol, sodium benzoate, and 
artificial flavors; manufactured by Wilton Industries, Naperville, IL, USA). The bulk nonpareil-coated chocolate 
candies shown in Fig. 1 and used in Figs. 3, 4 and 5 were purchased from “Nuts.com” (Cranford, NJ, USA). The 
∼850 µ m diameter multicolored plastic spheres shown in Fig. 8 were “Slime Metallic Microbeads,” produced 
for arts and crafts applications by Maddie Rae’s (Trumbull, CT, USA); they were adhered to the cap of a small 
perfume bottle using silicone adhesive (GE brand; Momentive Performance Materials, Huntersville, NC, USA). 
All CandyCodes were photographed using a conventional smartphone camera (iPhone 11 Pro; Apple, Cupertino, 
CA, USA) under ordinary room lighting conditions. A set of custom Python programs (available at this project’s 
GitHub  repository23) was used to analyze the library of 120 chocolate-candy-based CandyCodes shown in Fig. 3 
and simulate the CandyCode libraries in Fig. 6.

Data availability
All datasets and analysis code used in this study are available in the associated GitHub repository at https:// 
github. com/ grove rlab/ candy codes.
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