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Abstract

A cognitive model for learning associations between
words and objects is presented. We first list basic
constraints to which the model must adhere. The con-
straints arise from two sources. First they stem from
observed psychological phenomena including typical-
ity effects, extension errors observed from children
and belief-dependent behavior. Secondly they arise
from our choice o integrate the model in a unified
theory of cognition. In presenting the constraints to
the model’s construction, we motivate our design de-
cisions while describing our algorithm that takes a
symbolic, production-based approach. The model’s
adherence to the constraints is further supported by
some empirical results.

Introduction

In this paper, we present a model for concept acquisition
similar to the learning Lasks in systems such as 1ID3 [Quin-
lan, 1986] and COBWEB (when used to predict features)
[Fisher, 1987]. However, our model has been subjected to
further constraints in its role of a psychological model. In
particular, we account for phenomena observed in children
acquiring new words as well as the more general robust
phenomena observed in conceptual acquisition. Further-
more, in order to ground our model in a broader, existing
theory, we propose to implement the model in a unified
theory of cognition.

In this paper, the task requires our model to predict
object names of unlabeled objects based upon training ex-
amples that include the object name. For our task, we
choose to represent object instances as lists of attribute-
value pairs. For example, a particular instance of a ball
may be represented as follows: [shape:spherical color:blue
texture:smooth size:large]. While limiting instance de-
scriptions to lists of attribute-value pairs admittedly re-
stricts expressibility, the representation still permits spec-
ifications for an adequate assortment of objects and easily
suffices for illustrating some of the model’s interesting be-
haviors.

* A similar version of this paper appecared as [Miller and Laird,
1991].
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Design constraints

In this section, we present the major constraints that led us
to the model’s current design. The psychological motiva-
tions are discussed for each constraint. In the next section
we will explain our model and how these constraints in-
fluenced its design.

Constraint 1 The word-learning model must be consistent
with a unified theory of cognition.

A unified theory of cognition is a proposed system of
mechanisms capable of producing the full range of hu-
man cognition [Newell, 1990]. Ideally a model should not
operate in isolation but rather play an integral and coopera-
tive role with other cognitive activities. By conforming to
a unified theory, the relationship of the various cognitive
faculties becomes more apparent.

Constraint 2 Learning must be incremental.

A child learning words does not have the opportunity
to learn her entire vocabulary before applying it. Instead,
learning and performance are interleaved. The learning
of words is an ongoing, incremental process. For our pur-
poses, we will consider a learning model to be incremental
if the computational complexity of integrating a new in-
stance into the system’s knowledge is roughly constant
relative to the number of training trials.

Constraint 3 The model must exhibit typicality effects.

Typicality effects include: 1) typical instances are gen-
erally processed faster than less typical ones, 2) typical
instances lead to fewer errors in category prediction and
3) typical instances are frequently given as an example to
a category [Rosch, 1978]. In this paper, we limit ourselves
to showing how typical instances are processed faster than
less typical ones.

Constraint 4 The model must exhibit underextension er-
rors in the early stages of learning.

Underextensions result when the child’s application of
a label is too narrow in contrast to the full adult category.
In regard to our model, an underextension occurs when no
object name prediction is delivered for a particular object
instance even though objects of the same category have
been previously encountered. For example, a child may



be able to identify that a softball is a *ball’ bul fail to iden-
tify a football as being one. These underextension errors
often occur during the early stages of lexical development
[Dromi, 1987].

Constraint 5 The model must be sensitive to knowledge
as determined by the system's beliefs, goals and theories.

It is well documented that beliefs, goals and theories
play an important role in human categorization [Murphy
and Medin, 1985, Schank et al., 1986]. Our modecl ad-
dresses this constraint by operating at the dcliberate level,
i.e. it can potentially bring to bear all pertinent knowledge
in guiding its decisions.

Constraining the design

In applying our first constraint, we choose to construct our
model within the confines of Soar, a proposed unified the-
ory of cognition [Newell, 1990]. Soar presents its theory in
the form of an architecture—a system of mechanisms that
applies knowledge, represented as productions, in creating
intclligent behavior. We will further motivate our choice
of Soar, but first let us focus on the new constraints that
result from this choice. They include: 1) all learning oc-
curs through an experience-based leaming mechanism, 2)
the system does not have direct access 10 ils long-term
memory and 3) processing is fully symbolic with no na-
tive support for frequency counts or probabilities. A basic
understanding of the system and its assumptions follow
within this section. In particular, a short review explains
some of the basic ideas of how induction should proceed in
Soar. We will then explain our model and how it coincides
with the rest of our constraints.

Learning in Soar

Problem solving in Soar [Laird er al., 1987] consists of
the sequenual selection and application of operators to a
representational state within a problem space. Both the
selection and application of operators is determined by the
knowledge represented in a long-term recognition memory
encoded as productions. Leamning involves the construc-
tion of new productions, called chunks, which summa-
rize the results of a subgoal. A chunk in Soar is similar
to an operationalized result in explanation based learn-
ing [Mitchell er al., 1986, Dejong and Mooney, 1986].
Subgoals are bomn out of impasses caused by conflicting
knowledge or a lack of knowledge. Subgoaling relies on
additional knowledge to consider the alternatives, ofien re-
quiring further search. During subgoaling, the system may
try out the alternatives or it may recast the problem. In
any case, the subgoal resolves the problem that causcd the
impasse. Furthermore, the architecture traces back through
the conditions that led to the impasse’s resolution. Using
these conditions, a new production is created that summa-
rizes the subgoal’s result so that, in analogous applications,
the summarizing information is retricved. This avoids the
impasse and thus the costly search cncountered when the
chunk was first created. In this scenario, the knowlcdge in
the problem space has been partially operationalized in that
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an increase in efficiency has occurred. Although counter-
intuitive, previous work with Soar has demonstrated that
this technique can also increase the total knowledge of the
system [Roscnbloom et al., 1988]. This approach, called
data-chunking, is a precurser to the work we present here.

Describing the model

For our approach, we rely exclusively on chunking to
monotonically add productions that predict a concept name
given a partial description of an object. The definition of
a concept is not localized to a single production, or even
a small set of productions. Instead, a concept definition
is distributed across the sct of productions that predict the
concept name, plus a process that creates abstractions of
object descriptions, attempting to find an object description
that can be matched by the productions. The search plays
an integral role in defining the concept; for it is here that
Soar brings 1o bear its knowledge in determining which
abstractions should be considered and in what order. In
the model presentation that follows, we will see how this
fully symbolic learning process adheres to the constraints
described in the previous section.

When attempting to predict the object’s category, the
object’s description serves as the initial state in a problem
space. For examplc, if we want to classify a blue, smooth,
spherical object as a ball, the initial state would contain the
following object description: [shape:spherical color:blue
texture:smooth).

The operators of the problem space recognize descrip-
tions and predict categories. Initially, the system will
have very few operators and be able to predict only a
few categories, but with experience, more operators will
be learned. For our example, let’s assume that the system
already has acquired the following productions for creating
word-prediction operators:

[spherical, red, smooth] -->
create-operator(predict word:ball)
[spherical, red] -->
create-operator (predict word:ball)
[spherical] -->
create-operator (predict word:ball)

If one of these productions exactly matched the object de-
scription, it would fire, create an operator which would
then be selected and predict a word and we would be
done. However, for a production to apply, we insist
that it matches every feature in the object description, so
that a general production will only maich an abstracted
description.! This means that even the third production is
not applicable for our initial object description because it
has no feature match for color and texture,

If an object can not be classified by the existing knowl-
edge, no operators are created and an impasse results.
Within the ensuing subgoal, a search is performed to find

'Although Soar’s production matching generally does not
have this property, by representing object descriptions appro-
priately (i.e., as linked lists), the object recognition productions
will have this property.



an abstraction that modifies the object description in such
a way as to allow it to be categorized. For our example,
the abstraction operators render an object description more
gencral by removing one of the attribute-value pairs from
the description. Let us assume the chosen operator re-
moves the texture feature from the description, producing
the description (spherical, blue). Following an abstraction,
there is the potential that the new description can be cal-
egorized. However in this example, no match occurs, and
another impasse and subgoal are created. Only after the
color has been abstracted out, will the object description
be recognized by the third production and a prediction for
the word will be made. For performance trials, the cor-
rectness of the prediction will depend on the object recog-
nition productions store in long-term memory, as well as
the abstraction performed during the search for a match.

In this formulation, there is no explicit abstraction hier-
archy; instead the abstractions are generated dynamically.
This allows knowledge to be used to determine which ab-
stractions should be made first. The ramifications of this
approach are that novel objects will be classified into ex-
isting categories if it differs only in features that are ab-
stracted early on.

For training trials, the purpose is not to predict a word,
but instead to learn the association between an object de-
scription and a word. Consistent with earlier work in data
chunking, our approach is to treat a training trial like a
performance trial, so that the system will attempt to pre-
dict which word it already would associate with the given
object. The prediction will be verified by comparing it
against the given word before accepting it. If necessary,
abstraction will continue until a very abstract production
for predicting the word is found. When the correct pre-
diction is finally made, the training trial is finished.

How has the training resulted in any learning? Recall
that in Soar, leaming happens when a result is produced
in a subgoal. In this case, the result is the correct pre-
diction created in the final subgoal where the object is
correclly categorized. For a performance trial, when no
word accompanies the description, there is no attempt at
verification and no chunk is created. For training, learn-
ing occurs for the subgoal lying just above the subgoal
where recognition was achieved and verified. There the
object description [spherical, blue] eventually led, follow-
ing abstraction, to the results created in the lower subgoal
(predict word:ball). Chunking summarizes the abstraction
and recognition processing in the subgoal, and builds a
new production:

[spherical, blue] -->
create-operator (predict word:ball)

In future training trials, this production will be avail-
able and allow a prediction (o be made even earlier, and
thus allow an even more specific production to be learned.
As practice continues, more and more specific productions
are acquired. So that, although the search for a category
proceeds from a specific example through varying levels
of abstraction, the learning proceeds from most abstract to
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more specific. Thus, this leamns the same way as discrim-
ination leaming and previous data-chunking work in Soar
[Rosenbloom et al., 1988] (abstract to specific), but this
scheme attempts to perform classification by moving from
specific to general (through abstraction operators) while in
a discrimination test it is from general to specific (through
successive tests for the values of more and more features).

Before continuing with our model’s description, let us
address how the approach already fulfills some of our ini-
tial constraints. First of all, since training and performance
runs can be interleaved, learning is incremental, thus ful-
filling our second constraint. In a sense, the Soar architec-
ture already enforces this by disallowing direct access to
long-term memory, i.e. productions cannot directly access,
delete or modify productions. This simply prohibits any
action of massively reorganizing the long-term memory
every time a new leamning instance is encountered. The
model itself has a surprising consequence in that learning
time per instance can potentially decrease as new instances
are acquired. This is a result of having each learning trial
build upon chunks acquired on previous learning trials.
The more instances the system has encountered, the less
likely a new object description will have to be fully ab-
stracted in order to be integrated with the current set of
productions.

The typicality effects (Constraint 3) are also a result
of how the model searches for the best and most specific
match first and then slowly generalizes until a match is
found. Here queries using frequent and typical objects will
find a match that is not only a better match, but they will
also find it quicker. This assumption stems from the notion
that typical instances will already have several stored ex-
emplars that nearly (if not completely) match them. There-
fore little abstraction is required in order to find the match.

So far we have assumed that there was always some
way of classifying an object correctly, even if it had not
been seen before. Within our model, that translates into
productions that do not test any features and predict the
words. Thus, the system must be “bootstrapped” with
productions of this form:

[] --> word:ball
[] --> word:book
[1 --> word:apple

Where do these productions come from? They in turn
must be learned from lower-level components such as
phonemes. This recursion bottoms out in some primitive
set of components that the system can inherently generate.

The consequences of starting with these very general
productions could cause one to think that many over-
generalized predictions during performance would initially
result, thereby contradicting our fourth constraint, that
underextensions must initially result. Some overexten-
sions will be produced for this reason, but surprisingly,
the choice of these very generalized productions actually
lead to many initial underextensions. During performance,
these very general productions will often suggest conflict-
ing predictions. Since the system has no way 0 choose
which prediction is correct, no prediction is made when-



ever there is a conflict in predictions.> Because the pro-
ductions are so general, initially there will be many ab-
stractions in trying to categorize a word, and thus there
will be many conflicts. Therefore, there will initially be
many underextensions.

We have already discussed how our choice of Soar
has led to an incremental learning model. Our choice
has also contributed to fulfilling some of our other con-
straints.  First of all, we argue that placing the task
on Soar’s deliberate processing level is the appropriate
for modeling typicality effects. In several psycholog-
ical experiments, it was shown that differences in re-
sponse times due to differences of similarity varicd on
the order by several hundreds of milliseconds [Rosch
et al., 1976]. Results from other research and analy-
sis of Soar has led us to conclude that the application
of a primitive operator in Soar corresponds to a human
time of approximately 50 milliseconds [Newell, 1990,
Wiesmeyer and Laird, 1990]. Since difference in response
times in our model vary by several operator applications,
these results suggest that we are in the ball park and that
our explanation of typicality effects on an algorithmic level
is reasonable. This contrasts with other previous work
that secks a quantitative approach (i.e. typicality is repre-
sented in the form of frequency counts or probabilities) for
explaining typicality effects. In taking these approaches,
strong assumptions are required concerning the underlying
implementation in order to explain similarity-dependent
response times. For example, in COBWEB, category pre-
diction involves traveling to a node that explicitly rep-
resents the instance’s category. Typicality timing effects
come only with the strong implementational assumption
that “the time required to reach a node is inversely pro-
portional to the total predictiveness towards that node.”
[Fisher, 1988].

Finally Soar provides us with the support of fulfilling
our last constraint—goal and belief dependent behavior in
categorization. In Soar, the selection of an operator is a
deliberate act, i.e. all applicable knowledge can poten-
tially influence the choice of an operator. This knowl-
edge, expressed through productions preferring some op-
erators over others, can also be learned through the result
of subgoaling. Although this paper does not emphasize
the learning of this knowledge, the issues presented here
remain a central concern of our research work. Briefly
we can say that we are concentrating on three kinds of
knowledge: 1) default preferences that prefer abstracting
out some features before others, 2) abstraction preferences
learned from prediction failures and 3) abstraction prefer-
ences favoring features that lead to the system’s goals.

Empirical results

In this section, we present two experiments that confirm
our predictions on extensional errors and typicality effects.

2Conflicting predictions do not arise during training because
operators that suggest incorrect predictions are rejected. This is
possible because the correct answer is provided.
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Average ume in decision cycles

Training Similarity groups
Trials [ S<=20]20<S5S<=30]30<S
1 230 18.2 17.0
2 230 12.2 9.8

Table 1: Response time according to similarity group

For both of these, we chose an assortment of objects that
are simply described by attribute-value pairs, similar to the
cxamples given so far. For all our data, we chose objects
that roughly correspond with physical objects children are
likely to encounter. The abstraction operators generalize
the instance descriptions by removing a feature. Further-
more, we have included additional heuristics that guide the
selection of these abstraction operators.

Our first experiment demonstrates the effect that simi-
larity has on response time. A training set was presented
twice to the system. It is a collection of object descrip-
tions, all of them representing different kinds of balls.
With each description, the appropriate French word for
ball was given (either ballon or balle). In French, ballon
is used to refer to balls that are inflated (basketballs, vol-
leyballs, footballs, etc.), while balle refers to solid balls
(baseballs, golf balls, tennis balls). Thus, the system must
learn to distinguish between objects in the two categories
even though the critical feature (inflatable or not) is not
included in the input. Between the training trials, a set of
object descriptions were run on the system. For each of the
performance object descriptions, the similarity was math-
ematically calculated based upon the number of shared
features the object description has with the training object
descriptions of the same category. We have divided the
performance descriptions into three groups of low, medium
and high similarity and average their response times in
terms of decision cycles. Table 1 shows that the instances
with a lower similarity measure require a longer response
time. This table also shows how learning times can im-
prove as new knowledge is acquired. The performance is
faster after the second training trial because more specific
chunks have been acquired. This means less abstraction
need occur in order to make a prediction.

In the second experiment, we trace extensional errors
by testing performance on one category of objects. Here
training instances drawn from several categories are given
one at a time. Between each training instance, a set of
testing instances, all from the same category, are run on
the system. Figure 1 shows the results of the trace. Here
we see an initial onslaught of underextensions and overex-
tensions before correct predictions dominate. We consider
the category to be underextended whenever the system
fails to make a prediction. The category is overshadowed
by another category whenever a wrong response is given
for the catcgory we are testing. The latter is a case of
overextension, and we have included in our figure a trace
of these ecrrors for the sake of completeness. The par-



Extension results

- OPercent underextended O Percent Overshadowed APercent correct
i 0 - - " - e

0 2 4 [ 8 10 12 14 16 18 20 22
Number of training Instances

Figure 1: Trace of extensional errors

ticular conclusion that can be drawn from this figure is
that several initial underextensions result from our model
even though the system starts by learning more general
productions first. As we have said before, this is the result
of several general conflicting rules matching at the same
time.

Future work

The model we have presented here is a first pass at a sys-
tem which conforms to our selected set of constraints. For
future work, we intend to improve the model by expanding
its capabilities while also having it adhere (0 more con-
straints. The expansion of capabilities include the learn-
ing of abstraction heuristics, extending learning to predict
missing features, and increasing instance description ex-
pressibility. For adding more constraints, we are looking
at covering additional typicality effects and basic-level ef-
fects.
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