
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Research on Generalized Nash Equilibrium Problems

Permalink
https://escholarship.org/uc/item/3nx0017g

Author
Tang, Xindong

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3nx0017g
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Research on Generalized Nash Equilibrium Problems

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Xindong Tang

Committee in charge:

Professor Jiawang Nie, Chair
Professor Zhaowei Liu
Professor Brendon Rhoades
Professor Yixiao Sun
Professor Danna Zhang

2021

Copyright

Xindong Tang, 2021

All rights reserved.

The dissertation of Xindong Tang is approved,

and it is acceptable in quality and form for publi-

cation on microfilm and electronically.

University of California San Diego

2021

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Tables . vi

Acknowledgements . vii

Vita . viii

Abstract of the Dissertation . ix

Chapter 1 Introduction . 1
1.1 GNEPs and some existing work 3
1.2 Existing work on solving GNEPs 4
1.3 Contribution of this thesis . 5

Chapter 2 Preliminaries . 7
2.1 Ideals and positive polynomials 8
2.2 Localizing and moment matrices 9
2.3 The Moment-SOS hierarchy of semidefinite relaxation for solving

polynomial optimization . 10
2.4 Optimality Conditions for GNEPs 12

Chapter 3 Nash Equilibrium Problem of Polynomials 13
3.1 Polynomial optimization formulations 14

3.1.1 Polynomial expresssions for Lagrange Multipliers 14
3.1.2 Optimization based on KKT conditions 16
3.1.3 Convex NEPs . 18
3.1.4 More Nash Equilibria . 20

3.2 On the finiteness of KKT points for generic NEPPs 24
3.3 The Moment-SOS hierarchy for solving optimization 27

3.3.1 The optimization for all players 27
3.3.2 Checking Nash equilibria 31

3.4 Numerical Experiments . 33

Chapter 4 Convex Generalized Nash Equilibrium Problems of Polynomials 41
4.1 Rational expressions for Lagrange Multipliers 41

4.1.1 Optimality conditions and rational expressions 43
4.1.2 Existence of rational expressions 44
4.1.3 A numerical method for finding rational expressions 45

4.2 Parametric expressions for Lagrange multipliers 47
4.2.1 Optimality conditions and parametric expressions 49

4.3 The polynomial optimization reformulation 50

iv

4.3.1 The optimization for all players 53
4.3.2 Checking Generalized Nash Equilibria 55

4.4 Numerical experiments . 58
4.4.1 Comparison with other methods 64

Chapter 5 The Gauss-Seidel Method for Generalized Nash Equilibrium Problems
of Polynomials . 67
5.1 The Gauss-Seidel method for GNEPPs 67

5.1.1 Moment-SOS relaxations for polynomial optimization . . . 68
5.1.2 Some properties of Algorithm 5.1 70

5.2 Generalized potential games . 74
5.2.1 A certificate for GPGs . 77
5.2.2 Putinar Positivstellensatz for the certificate 79

5.3 Numerical experiments . 81
5.3.1 Test problems in [35] . 88

Bibliography . 90

v

LIST OF TABLES

Table 3.1: Computational results for Example 3.20. 37
Table 3.2: The computational results for Example 3.21. 38

Table 4.1: Comparison with some methods . 66

Table 5.1: Computational Results for Example 5.22 85
Table 5.2: Computational Results for Example 5.27 87
Table 5.3: Computational Results for test problems in [35] 89

vi

ACKNOWLEDGEMENTS

Firstly, I would express my greatest appreciation and respect to my advisor, Professor

Jiawang Nie, for his helpfulness and encouragement during my five years of Ph.D. studies. To

me, he is not only the dissertation advisor, but also my role model for research. During these

five years in San Diego, his wonderful advising and encouragement helped me go through

many difficult times in completing this dissertation. I will be forever thankful for this unique

opportunity.

I am also grateful to other members of my dissertation committee. It is my great

honor to have these great experts from different areas form my dissertation committee.

Their expertise offered me valuable help in finishing this dissertation. The Department

of Mathematics at UC San Diego provided fertile ground and an unsurpassable research

environment to complete this dissertation. Its fantastic faculty and excellent staff gave

generous support to my graduate life.

I would like to take this opportunity to thank Professor Lingling Xu, for her help and

professional expertise on the topic of Generalized Nash Equilibrium Problems. Also, I want

to thank Suhan Zhong, Zi Yang for fruitful discussions and all my friends for their help on

my research and my life.

Moreover, I would like to give my deepest gratitude to my family for their endless

support and love. My family is always the backbone of my life. Especially, I want to express

my appreciation with all my heart to Dr. Xueqian Wu, for her unreserved patience and love

in the past eight years.

In this dissertation, some materials have been published, or been submitted for pub-

lication. The Chapter 3, in full, has been submitted for publication. The dissertation author

coauthored this paper with Nie, Jiawang. The Chapter 4, in full, has been submitted for

publication. The dissertation author coauthored this paper with Nie, Jiawang. The Chapter

5, in full, is a reprint of the material as it appears in Computational Optimization and Ap-

plications, Springer Science+Business Media. The dissertation author coauthored this paper

with Nie, Jiawang and Xu, Lingling.

vii

VITA

2016 B. S. in Mathematics, Sichuan University

2021 Ph. D. in Mathematics, University of California San Diego

PUBLICATIONS

J. Nie, X. Tang and L. Xu, “The Gauss-Seidel Method for Generalized Nash Equilibrium
Problems of Polynomials”, Computational Optimization and Applications, 78 (2), 529-557.

J. Nie and X. Tang, “Nash Equilibrium Problems of Polynomials”, Preprint, 2020. arXiv:

2006.09490

J. Nie and X. Tang, “Convex Generalized Nash Equilibrium Problems and Polynomial Op-
timization”, Preprint, 2020. arXiv:2101.06504

viii

ABSTRACT OF THE DISSERTATION

Research on Generalized Nash Equilibrium Problems

by

Xindong Tang

Doctor of Philosophy in Mathematics

University of California San Diego, 2021

Professor Jiawang Nie, Chair

The Generalized Nash Equilibrium Problem (GNEP) is a kind of game to find strate-

gies for a group of players such that each player’s objective function is optimized, given other

players’ strategies. If all the objective and constraining functions involved are polynomials,

we call the problem a Generalized Nash Equilibrium Problem of Polynomials (GNEPP).

When the constraining functions of each player are independent of other player’s strategies,

the GNEP is called a (standard) Nash Equilibrium Problem (NEP). The GNEP is said to be

convex if each player’s optimization is a convex optimization problem, given other players’

strategies.

For nonconvex Nash equilibrium problems that are given by polynomial functions,

we formulate efficient polynomial optimization problems for computing Nash equilibria. We

show that under generic assumptions, the method can find one or even all Nash equilibria

if they exist, or detect nonexistence of Nash equilibria. For convex GNEPPs, we introduce

rational and parametric expressions for Lagrange multipliers to formulate polynomial opti-

mization for computing Generalized Nash Equilibria (GNEs). We prove that under some

specific assumptions, the method can find a GNE if there exists one, or detect nonexistence

ix

of GNEs. Numerical experiments are presented to show the efficiency of the methods. The

Moment-SOS hierarchy of semidefinite relaxations is used to solve the polynomial optimiza-

tion.

Moreover, we study the Gauss-Seidel method for solving the nonconvex GNEPPs.

We give a certificate for a class of GNEPPs such that the Gauss-Seidel method is guaranteed

to converge, and the numerical experiments show that the Gauss-Seidel method can solve

many GNEPPs efficiently.

x

Chapter 1

Introduction

The Generalized Nash Equilibrium Problem (GNEP) is a kind of games to find strate-

gies for a group of players such that each player’s objective function is optimized, for given

other players’ strategies. Suppose there are N players and the ith player’s strategy is a

vector xi ∈ Rni (the ni-dimensional real Euclidean space). We write that

xi := (xi,1, . . . , xi,ni
), x := (x1, . . . , xN).

The total dimension of all strategies is n := n1 + . . .+nN . The main task of the GNEP is to

find a tuple u = (u1, . . . , uN) of strategies such that each ui is a minimizer of the ith player’s

optimization (denote u−i := (u1, . . . , ui−1, ui+1, . . . , uN))

Fi(u−i) :

min
xi∈Rni

fi(u1, . . . , ui−1, xi, ui+1, . . . , uN)

s .t . gi,j(u1, . . . , ui−1, xi, ui+1, . . . , uN) = 0 (j ∈ Ei),
gi,j(u1, . . . , ui−1, xi, ui+1, . . . , uN) ≥ 0 (j ∈ Ii),

(1.1)

where the fi and gi,j are continuously differentiable functions in xi, and the Ei, Ii are disjoint

finite (possibly empty) labeling sets. The point u satisfying the above is called a Generalized

Nash Equilibrium (GNE). For notational convenience, when the ith player’s strategy is

considered, we use x−i to denote the subvector of all players’ strategies except the ith one,

i.e.,

x−i := (x1, . . . , xi−1, xi+1, . . . , xN),

and write x = (xi, x−i) accordingly.

This paper focuses on the Generalized Nash Equilibrium Problem of Polynomials

(GNEPP), i.e., all the functions fi and gi,j are polynomials in x. For each i = 1, . . . , N , let

1

Xi be the point-to-set map such that

Xi(x−i) :=

{
xi ∈ Rni

∣∣∣∣∣ gi,j(xi, x−i) = 0, j ∈ Ei,
gi,j(xi, x−i) ≥ 0, j ∈ Ii

}
. (1.2)

The Xi(x−i) is the feasible strategy set of Fi(x−i). The domain of Xi is

dom(Xi) := {x−i ∈ Rn−ni : Xi(x−i) 6= ∅}.

The tuple x is said to be a feasible point of the GNEP if xi ∈ X(x−i) for all i. Denote the

set

X :=

{
x ∈ Rn

∣∣∣∣∣ gi,j(xi, x−i) = 0, j ∈ Ei, i = 1, . . . , N,

gi,j(xi, x−i) ≥ 0, j ∈ Ii, i = 1, . . . , N

}
. (1.3)

Then x is a feasible point for the GNEP if and only if x ∈ X.

Definition 1.1. The GNEP given by (1.1) is called convex if for all i = 1, . . . , N and for all

given x−i ∈ dom(Xi), the objective fi(xi, x−i) is convex in xi on Xi(x−i), all gi,j(xi, x−i) (j ∈
Ei) are affine linear in xi and all gi,j(xi, x−i) (j ∈ Ii) are concave in xi.

For instance, consider the 2-player GNEPP

min
x1∈R3

3∑
j=1

(x1,j − x2,j)2 min
x2∈R3

3∑
j=1

(
(x2,j)

4 − x2,j
3∏

k=1

x1,k

)
s .t . xT2 x1 − 1 = 0, s .t . ‖x1‖2 − ‖x2‖2 ≥ 0.

(x11, x12, x13) ≥ 0;

(1.4)

In the above, the ‖ · ‖ denotes the Euclidean norm. For each i, the Hessian of fi with respect

to xi is positive semidefinite for all x−i ∈ dom(Xi). All players have convex optimization

problems, so this is a convex GNEPP. One can directly check that it has a unique GNE

u = (u1, u2) with

u1 =

(
3
√

2√
3
,

3
√

2√
3
,

3
√

2√
3

)
, u2 =

(
1

6
√

108
,

1
6
√

108
,

1
6
√

108

)
.

Generalized Nash equilibrium problems have broad applications, for instance, in the

environmental pollution control [19, 34]. Let N be the number of countries involved in the

pollution control and xi,0 denote the (gross) emissions from the ith country. Assume that

the by-product gross emissions are proportional to the industrial output. The revenue of

the ith country depends on xi,0. Typically, the revenue is xi,0(bi − 1/2xi,0) with a given

2

parameter bi. The variable xi,j represents the investment from country i to country j. Let

xi := (xi,0, . . . , xi,N). For an investor, the benefit of the investment lies in the emissions

reduction units γi,jxi,j with given parameters γi,j(i, j = 1, · · · , N). The net emission in

country i is xi,0−
∑N

j=1 γj,ixj,i, which is always nonnegative. The accounted-for-emissions for

the ith country is xi,0−
∑N

j=1 γi,jxi,j. It must be kept below or equal a certain prescribed level

Ei under the environmental control. The pollution in a country may affect other countries.

The pollution damage for the ith country is

pi := xi,0 −
N∑
j=1

γj,ixj,i + 2
N∏
k=1

(xk,0 −
N∑
j=1

γj,kxj,k).

For given parameters bi, γi,j, Ei, the ith country’s optimization problem is

min
xi
−xi,0(bi − 1

2
xi,0) +

N∑
j=1

xi,j + pi

s .t . xi,0 . . . xi,j ≥ 0,

xi,0 −
∑N

j=1 γi,jxi,j ≤ Ei,

xk,0 −
∑N

j=1 γj,kxj,k ≥ 0 (k = 1, . . . , N).

(1.5)

All countries expect to maximize their revenues subtracting investments and pollution dam-

ages. Another application of GNEPP is the model for Internet switching (see Example 5.24).

More applications for GNEPPs can be found in [3, 21,22,104,128].

1.1 GNEPs and some existing work

The GNEP is an extension of the Nash equilibrium problem (NEP) [82, 83]. For

NEPs, the feasible set of each player’s strategy is independent of other players. The GNEP

originated from economics and was studied in [7, 11, 27, 77, 112]. Robinson [109, 110] es-

tablished the shadow prices for measuring the effectiveness in an optimization-based combat

model. Scotti [121] introduced GNEPs into the study of structural design. Recently, GNEPs

have been widely used in many different areas outside economics, such as transportation,

telecommunications, pollution control. We refer to [6,19,102,125,129,131] for related work.

The following is a classical result about existence of solutions for GNEPs [27,34]. We

refer to [111] for the notion of outer and inner semicontinuity and quasi-convexity.

Theorem 1.2. [27, 34] Suppose the GNEP of (1.1) satisfies:

3

(i) There exist N nonempty, convex and compact sets Ki ⊆ Rni such that for every

(xi, x−i) ∈ Rn with xi ∈ Ki and for every i, the set Xi(x−i) is nonempty, closed

and convex, Xi(x−i) ⊆ Ki, and Xi(·), as a point-to-set map, is both outer and inner

semicontinuous.

(ii) For every given x−i, the function fi(· , x−i) is quasi-convex on Xi(x−i).

Then, a generalized Nash equilibrium exists.

1.2 Existing work on solving GNEPs

For Nash Equilibrium Problems, when each feasible set Xi is a finite set, the NEP is

called a finite game. For finite games, Nash Equilibria typically do not exist. People are also

interested in mixed strategies, which are probability distributions on the strategy set. Mixed

strategy solutions always exist for finite games [83]. For the case that f1 + · · · + fN = 0,

the NEP is called a zero-sum game. NEPs have broad applications in Economics modelling.

It is generally hard to solve NEPs [24, 118]. For solving finite games or finding their mixed

strategy solutions, we refer to the work [4, 26, 57, 69]. For two-player zero-sum games, the

NEPs are equivalent to saddle point problems and there are optimization methods for solving

them [20, 101]. More work for solving NEPs can be found in [41, 51, 58, 60, 70, 71, 108, 126].

[10,76,113,123,127]. Applications outside Economics can be found in [14,17,42,73,119]. We

refer to [5, 13,25,80,103,112] for more general work on NEPs.

There exists some work for solving GNEPs. Under some convexity assumptions, the

GNEP is equivalent to a quasi-variational inequality problem(QVIP) [9,31,45,81,105]. The

Karush-Kuhn-Tucker (KKT) optimality conditions for each player’s optimization problem

can be used together with the semismooth Newton-type method [28, 29, 32]. A GNEP can

be transformed to a NEP with the usage of penalty functions [35, 36, 40, 54]. Gap functions

are frequently used for solving GNEPs [53]. A relaxation method for jointly convex GNEPs,

based on inexact line search and Nikaido-Isoda functions, is given in [52]. A study on GNEPs

with linear coupling constraints and mixed-integer variables is in [117]. Facchinei et al. [37]

proposed the Gauss-Seidel method for solving GNEPs. Its main idea is to solve each player’s

optimization problem alternatively. We also refer to [114,115] for studies on the Gauss-Seidel

method for solving GNEPs with discrete and mixed integer variables. Convergence of the

Gauss-Seidel method can be shown for some special GNEPs, such as generalized potential

4

games (GPGs). We refer to [37, 78, 116] for studies on potential games and GPGs. Most of

the existing methods assume that each individual player’s optimization problem is convex.

For more work about GNEPs, we refer to the surveys [34,39]. It is generally quite difficult to

solve GNEPs, even if they are convex. This is because the KKT system of a convex GNEP

may still be difficult to solve. The set of GNEs may be nonconvex, even for convex NEPs

(see [98]). We refer to [33] for a survey on GNEPs.

1.3 Contribution of this thesis

In this thesis, we study Generalized Nash Equilibrium Problems that are defined by

polynomial functions. We formulate efficient polynomial optimization to find the solutions

for Nash Equilibrium Problem of Polynomials and Convex Generalized Nash Equilibrium

Problems of Polynomials. Moreover, we study the Gauss-Seidel Method for solving the

GNEPs of polynomials. The Moment-SOS semidefinite relaxations are used to solve poly-

nomial optimization for finding and verifying GNEs. Our main results are:

• For Nash equilibrium problems that are given by polynomial functions, i.e., the objec-

tives fi and constraining functions gi,j are polynomial functions in their variables, we

formulate efficient polynomial optimization for computing one or more Nash equilibria.

Under generic assumptions, we prove the method can find a Nash equilibrium if there

exists one. Moreover, we can also find all Nash equilibria if there are finitely many ones

of them. The method can also detect nonexistence if there is no Nash equilibrium. For

NEPs that are given by generic polynomials, we further show that there are finitely

many complex KKT points. Therefore, there are at most finitely many NEs for generic

NEPPs. This implies that our method can solve general NEPPs successfully. This is

the first method that can guarantee to solve general nonconvex NEPs, to the best of

author’s knowledge.

• For convex Generalized Nash Equilibrium Problems, we introduce the rational expres-

sion for Lagrange multipliers and study their properties. We prove the existence of

rational expressions and give a sufficient and necessary condition for positivity of de-

nominators. Moreover, we give parametric expressions for Lagrange multipliers for

several cases. For all GNEPs, parametric expressions always exist. Using rational

and parametric expressions, we formulate polynomial optimization and propose an al-

5

gorithm for computing GNEs. Under some general assumptions, we prove that the

algorithm can compute a GNE if it exists, or detect nonexistence of GNEs. This is the

first numerical method that has these properties, to the best of the authors’ knowledge.

• We use the Lasserre type Moment-SOS relaxations [63] to find global minimizers

of the occurring polynomial optimization problems in each loop of the Gauss-Seidel

method. As demonstrated in section 5.3, the Gauss-Seidel method works well in prac-

tice. Moment-SOS relaxations can be used to verify if a computed solution is a GNE

or not. There are no other numerical methods for solving GNEPPs efficiently, espe-

cially for nonconvex ones, to the best of the authors’ knowledge. Moreover, we give a

sufficient condition for checking if a given GNEPP is a GPG or not. Based on it, a

numerical certificate is given for checking GPGs. This is the first numerical method

that can do this, to the best of the authors’ knowledge.

6

Chapter 2

Preliminaries

Notation The symbol N (resp., R, C) stands for the set of nonnegative integers (resp., real

numbers, complex numbers). For a positive integer k, denote the set [k] := {1, . . . , k}. For

a real number t, dte (resp., btc) denotes the smallest integer not smaller than t (resp., the

biggest integer not bigger than t). We use ei to denote the vector such that the ith entry is

1 and all others are zeros. By writing A � 0 (resp., A � 0), we mean that the matrix A is

symmetric positive semidefinite (resp., positive definite). For the ith player’s strategy vector

xi ∈ Rni , the xi,j denotes the jth entry of xi, for j = 1, . . . , ni. When we write (y, x−i), it

means that the ith player’s strategy is y ∈ Rni , while the vector of all other players’ strategy

is fixed to be x−i. Let R[x] denote the ring of polynomials with real coefficients in x, and

R[x]d denote its subset of polynomials whose degrees are not greater than d. For the ith

player’s strategy vector xi, the notation R[xi] and R[xi]d are defined in the same way. For

ith player’s objective fi(x), the notation ∇xifi, ∇2
xi
fi respectively denote its gradient and

Hessian with respect to xi.

In the following, we use the letter z to represent either x, xi or (x, ω) for some new

variables ω, for convenience of discussion. Suppose z := (z1, . . . , zl). For a polynomial

p(z) ∈ R[z], the p = 0 means p(z) is identically zero on Rl. We say the polynomial p is

nonzero if p 6= 0. Let α := (α1, . . . , αl) ∈ Nl, and we denote

zα := zα1
1 · · · z

αl
l , |α| := α1 + . . .+ αl.

For an integer d > 0, denote the monomial power set

Nl
d := {α ∈ Nl : |α| ≤ d}.

7

We use [z]d to denote the vector of all monomials in z whose degree is at most d, ordered in

the graded alphabetical ordering. For instance, if z = (z1, z2), then

[z]3 = (1, z1, z2, z
2
1 , z1z2, z

2
2 , z

3
1 , z

2
1z2, z1z

2
2 , z

3
2).

Throughout the paper, a property is said to hold generically if it holds for all points in the

space of input data except a set of Lebesgue measure zero.

2.1 Ideals and positive polynomials

Let F := R or C. For a polynomial p ∈ F[z] and subsets I, J ⊆ F[z], define the

product and Minkowski sum

p · I := {pq : q ∈ I}, I + J := {a+ b : a ∈ I, b ∈ J}.

The subset I is an ideal if p · I ⊆ I for all p ∈ F[z] and I + I ⊆ I. For a tuple of polynomials

q = (q1, . . . , qm), the set

Ideal[q] := q1 · F[z] + . . .+ qm · F[z]

is the ideal generated by q, which is the smallest ideal containing each qi.

We review basic concepts in polynomial optimization. A polynomial σ ∈ R[z] is said

to be a sum of squares (SOS) if σ = p21 + . . . + p2k for some polynomials pi ∈ R[z]. The set

of all SOS polynomials in z is denoted as Σ[z]. For a degree d, we denote the truncation

Σ[z]d := Σ[z] ∩ R[z]d.

For a tuple g = (g1, . . . , gt) of polynomials in z, its quadratic module is the set

Qmod[g] := Σ[z] + g1 · Σ[z] + . . .+ gt · Σ[z].

Similarly, we denote the truncation of Qmod[g]

Qmod[g]2d := Σ[z]2d + g1 · Σ[z]2d−deg(g1) + . . .+ gt · Σ[z]2d−deg(gt).

The tuple g determines the basic closed semi-algebraic set

S(g) := {z ∈ Rl : g1(z) ≥ 0, . . . , gt(z) ≥ 0}. (2.1)

8

For a tuple h = (h1, . . . , hs) of polynomials in R[z], its real zero set is

Z(h) := {z ∈ Rl : h1(z) = . . . = hs(z) = 0}.

The set Ideal[h] + Qmod[g] is said to be archimedean if there exists ρ ∈ Ideal[h] + Qmod[g]

such that the set S(ρ) is compact. If Ideal[h] + Qmod[g] is archimedean, then Z(h) ∩ S(g)

must be compact. Conversely, if Z(h) ∩ S(g) is compact, say, Z(h) ∩ S(g) is contained in

the ball R−‖z‖2 ≥ 0, then Ideal[h] + Qmod[g,R−‖z‖2] is archimedean and Z(h)∩S(g) =

Z(h) ∩ S(g,R − ‖z‖2). Clearly, if f ∈ Ideal[h] + Qmod[g], then f ≥ 0 on Z(h) ∩ S(g).

The reverse is not necessarily true. However, when Ideal[h] + Qmod[g] is archimedean, if

f > 0 on Z(h) ∩ S(g), then f ∈ Ideal[h] + Qmod[g]. This conclusion is referenced as

Putinar’s Positivestellensatz [106]. Interestingly, if f ≥ 0 on Z(h) ∩ S(g), we also have

f ∈ Ideal[h] + Qmod[g], under some standard optimality conditions [90].

2.2 Localizing and moment matrices

Let RNl
2d denote the space of all real vectors that are labeled by α ∈ Nl

2d. A vector

y ∈ RNl
2d is labeled as

y = (yα)α∈Nl
2d
.

Such y is called a truncated multi-sequence (tms) of degree 2d. For a polynomial f =∑
α∈Nl

2d
fαz

α ∈ R[z]2d, define the operation

〈f, y〉 :=
∑

α∈Nl
2d

fαyα. (2.2)

The operation 〈f, y〉 is a bilinear function in (f, y). For a polynomial q ∈ R[z], with deg(q) ≤
2d, and the integer t = d−ddeg(q)/2e, the outer product q · [z]t([z]t)

T is a symmetric matrix

polynomial in z, with length
(
n+t
t

)
. We write the expansion as

q · [z]t([z]t)
T =

∑
α∈Nl

2d

zαQα,

for some symmetric matrices Qα. Then we define the matrix function

L(d)
q [y] :=

∑
α∈Nl

2d

yαQα. (2.3)

It is called the dth localizing matrix of q and generated by y. For given q, the matrix

L
(d)
q [y] is linear in y. Localizing and moment matrices are important for getting semidefinite

9

relaxations of solving polynomial optimization [61, 88, 89]. They are also useful for solving

truncated moment problems [38, 92] and tensor decompositions [93, 94]. We refer to [63, 64,

67,68,86,91] for more references about polynomial optimization and moment problems.

2.3 The Moment-SOS hierarchy of semidefinite relax-

ation for solving polynomial optimization

In this section, we introduce the Moment-SOS hierarchy of semidefinite relaxation for

solving polynomial optimization. Consider the following polynomial optimization
ϑmin := min

x∈Rn
f(x)

s .t . g1(x) ≥ 0, . . . , gm1(x) ≥ 0,

h1(x) = 0, . . . , hm2(x) = 0.

(2.4)

Denote the degree

d0 := max{ddeg(f)/2e, ddeg(g1)/2e, . . . , ddeg(gm1)/2e,

ddeg(h1)/2e, . . . , ddeg(hm2)/2e},

and we let

g = (g1, . . . , gm1), h = (h1, . . . , hm2).

For d = d0, d0 + 1, . . ., the dth moment relaxation for (2.4) is

ϑd := min
y
〈f, y〉

s .t . Md[y] � 0, L
(d)
g1 [y] � 0, . . . L

(d)
gm1

[y] � 0,

y0 = 1, L
(d)
h1

[y] = 0, . . . L
(d)
hm2

[y] = 0,

y ∈ RNni
2d .

(2.5)

Its dual optimization problem is the SOS relaxation{
max γ

s .t . f − γ ∈ Ideal[h]2d + Qmod[g]2d.
(2.6)

By solving the relaxations (2.5)-(2.6) for d = d0, d0+1, . . ., we get the Moment-SOS hierarchy

for solving (2.4). The following is the algorithm.

10

Algorithm 2.1. (The Moment-SOS hierarchy for solving (2.4)). Let f, g, h be as in (2.4).

Start with d := d0.

Step 1. Solve the semidefinite relaxation (2.5). If (2.5) is infeasible, then (2.4) has no

feasible points and stop; otherwise, solve it for a minimizer y∗ and let t := d1, where

d1 := max(maxi∈[m1]ddeg(gi)/2e,maxi∈[m2]ddeg(hi)/2e).
Step 2. If y∗ satisfies the rank condition

rankMt[y
∗] = rankMt−d1 [y

∗], (2.7)

then extract r := rankMt(y
∗) minimizers for (2.4) and stop.

Step 3. If (2.7) fails to hold and t < d, let t := t+ 1 and then go to Step 2; otherwise, let

d := d+ 1 and go to Step 1.

The rank condition (2.7) is called flat truncation in the literature [88]. It is a sufficient

(and almost necessary) condition for checking convergence of the Moment-SOS hierarchy.

Indeed, the Moment-SOS hierarchy has finite convergence if and only if the flat truncation

is satisfied for some relaxation order, under some generic conditions [88]. When (2.7) holds,

the method in [48] can be used to extract r minimizers for (2.4). The method is implemented

in the software GloptPoly 3 [49]. We refer to [48], [88] and [63, Chapter 6] for more details.

The convergence properties of Algorithm 2.1 are as follows. By solving the hierarchy

of relaxations (2.5)-(2.6), we can get a monotonically increasing sequence of lower bounds

{ϑd}∞d=d0 for the minimum value ϑmin, i.e.,

ϑd0 ≤ ϑd0+1 ≤ · · · ≤ ϑmin.

When Ideal[h]2d + Qmod[g]2d is archimedean, we have ϑd → ϑmin as d → ∞, as shown

in [61]. If ϑd = ϑmin for some d, the relaxation (2.5) is said to be exact (or tight) for solving

(2.4). For such a case, the Moment-SOS hierarchy is said to have finite convergence. The

Moment-SOS hierarchy has finite convergence when the archimedean and some optimality

conditions hold [90]. Although there exist special polynomials such that the Moment-SOS

hierarchy fails to have finite convergence, such special problems belong to a set of measure

zero in the space of input polynomials [90].

11

2.4 Optimality Conditions for GNEPs

We study optimality conditions for GNEs. Consider the ith player’s optimization.

For convenience, suppose Ei ∪ Ii = [mi] and gi = (gi,1, . . . , gi,mi
). For a given x−i, under

some suitable constraint qualifications (e.g., the linear independence constraint qualification

(LICQ), Mangasarian-Fromovite constraint qualification (MFCQ), or the Slater’s Condition;

see [16] for them), if xi is a minimizer of Fi(x−i), then there exists a Lagrange multiplier

vector λi := (λi,1, . . . , λi,mi
) such that
∇xifi(x)−

∑mi

j=1 λi,j∇xigi,j(x) = 0,

λi ⊥ gi(x), gi,j(x) = 0 (j ∈ Ei),
λi,j ≥ 0 (j ∈ Ii), gi,j(x) ≥ 0 (j ∈ Ii).

(2.8)

This is called the first order Karush-Kuhn-Tucker system for Fi(x−i). Such (xi, λi) is called

a critical pair of Fi(x−i). Therefore, if x is a GNE, under constraint qualifications, then (3.4)

holds for all i ∈ [N], i.e., there exist Lagrange multiplier vectors λ1, . . . , λN such that
∇xifi(x)−

∑mi

j=1 λi,j∇xigi,j(x) = 0 (i ∈ [N]),

λi ⊥ gi(x) (i ∈ [N]), gi,j(x) = 0 (i ∈ [N], j ∈ Ei),
λi,j ≥ 0 (i ∈ [N], j ∈ Ii), gi,j(x) ≥ 0 (i ∈ [N], j ∈ Ii).

(2.9)

A point x satisfying (2.9) is called a KKT point for the GNEP. For convex GNEPs, each

KKT point is a GNE [33, Theorem 4.6]. However, if the GNEP is not convex, then a KKT

point may, or may not, be a GNE.

12

Chapter 3

Nash Equilibrium Problem of

Polynomials

The Nash Equilibrium Problem (NEP) is the game such that every player’s feasible

set is independent with other players’ strategies. In a NEP, the ith player’s best strategy xi

is a minimizer for the optimization problem

Fi(x−i) :

min
xi∈Rni

fi(xi, x−i)

s .t . gi,j(xi) = 0 (j ∈ Ei),
gi,j(xi) ≥ 0 (j ∈ Ii),

(3.1)

for given x−i of other players’ strategies. In the above, fi is the ith player’s objective function,

and gi,j are constraining functions in xi. The Ei and Ii are disjoint labeling sets of finite

cardinalities (possibly empty). The feasible set of the optimization Fi(x−i) in (3.1) is

Xi := {xi ∈ Rni : gi,j(xi) = 0 (j ∈ Ei), gi,j(xi) ≥ 0 (j ∈ Ii)}. (3.2)

It is called the feasible strategy set for the ith player. For NEPs, each set Xi does not depend

on x−i. This is different from generalized Nash Equilibrium problems (GNEPs), where each

player’s feasible set depends on other players’ strategies. The entire strategy vector x is a

feasible point if

x = (x1, . . . , xN) ∈ X1 × · · · ×Xn,

that is, each xi ∈ Xi. The NEP can be formulated as

find x∗ ∈ Rn such that each x∗i is a minimizer of Fi(x
∗
−i), (3.3)

13

where x∗ = (x∗1, . . . , x
∗
N). A solution of (3.3) is called a Nash Equilibrium (NE). When all the

defining functions fi and gi,j are polynomials in x, the NEP is then called a Nash Equilibrium

Problem of Polynomials (NEPP). The following is an example.

Example 3.1. Consider the 2-player NEP with the individual optimization

1st player:

 min
x1∈R2

x1,1(x1,1 + x2,1 + 4x2,2) + 2x21,2,

s .t . 1− (x1,1)
2 − (x1,2)

2 ≥ 0,

2nd player:

 min
x2∈R2

x2,1(x1,1 + 2x1,2 + x2,1) + x2,2(2x1,1 + x1,2 + x2,2),

s .t . 1− (x2,1)
2 − (x2,2)

2 ≥ 0.

This NEP has only 3 NEs (see Section 3.1.3), which are

1st NE: x∗1 = (0, 0), x∗2 = (0, 0);

2nd NE: x∗1 = (1, 0), x∗2 = 1√
5
(−1,−2);

3rd NE: x∗1 = (−1, 0), x∗2 = 1√
5
(1, 2).

It is interesting to note that each player’s objective is strictly convex with respect to its

strategy, because their Hessian’s with respect to their own strategies are positive definite.

In the current state of the art, it is mostly an open question to solve general NEPs

efficiently, especially those whose individual optimization problems are nonconvex.

3.1 Polynomial optimization formulations

In this section, we show how to formulate efficient polynomial optimization for solving

the NEP (3.3).

3.1.1 Polynomial expresssions for Lagrange Multipliers

Consider the ith player’s individual optimization problem Fi(x−i) in (3.1), for given

x−i. For convenience, we write the constraining functions as

gi(xi) := (gi,1(xi), . . . , gi,mi
(xi)).

Suppose x = (x1, . . . , xN) is a NE. Under linear independence constraint qualification con-

dition (LICQC) at xi, i.e., the set of gradients for active constraining functions are linearly

14

independent, there exist Lagrange multipliers λi,j such that{ ∑mi

j=1 λij∇xigi,j(xi) = ∇xifi(x),

0 ≤ λi,j ⊥ gi,j(xi) ≥ 0 (j ∈ Ii).
(3.4)

The above is the Karush-Kuhn-Tucker (KKT) condition for the optimization Fi(x−i). The x

satisfying (3.4) is called a KKT point. So x and λi,j satisfy the following polynomial system

(i = 1, . . . , N)

∇xigi,1 ∇xigi,2 · · · ∇xigi,mi

gi,1(x) 0 · · · 0

0 gi,2(x) · · · 0
...

...
. . .

...

0 0 · · · gi,mi
(x)

︸ ︷︷ ︸

Gi(xi)

λi,1

λi,2
...

λi,mi

︸ ︷︷ ︸

λi

=

∇xifi

0
...

0

︸ ︷︷ ︸

f̂i(x)

. (3.5)

Therefore, if there exists a matrix polynomial Hi(xi) such that

Hi(xi)Gi(xi) = Imi
, (3.6)

then we can express λi as

λi = Hi(xi)Gi(xi)λi = Hi(xi)f̂i(x).

Interestingly, the matrix polynomial Hi(xi) satisfying (3.6) exists under the nonsingularity

condition on gi. The polynomial tuple gi is said to be nonsingular if Gi(xi) has full column

rank for all xi ∈ Cni [95]. It is a generic condition. We remark that if gi is nonsingular, then

the LICQC holds at every minimizer of (3.1), so there must exist λi,j satisfying (3.4) and we

can express λi,j as

λi,j = λi,j(x) :=
(
Hi(xi)f̂i(x)

)
j

(3.7)

for all NEs.

Throughout the paper, we assume that every constraining polynomial tuple gi is

nonsingular. This is a generic assumption. So λi,j(x) can be expressed as polynomials as

in (3.7). Then, each Nash equilibrium x satisfies the following polynomial systems (i =

1, . . . , N)

(Si) :

∇xifi(x)−

∑mi

j=1 λij(x)∇xigi,j(xi) = 0,

gi,j(xi) = 0 (j ∈ Ei), λi,j(x)gi,j(xi) = 0 (j ∈ Ii),
gi,j(xi) ≥ 0 (j ∈ Ii), λi,j(x) ≥ 0 (j ∈ Ii).

(3.8)

15

The above are necessary conditions for NEs. When every optimization in (3.1) is convex,

the (3.8) are sufficient conditions for NEs.

3.1.2 Optimization based on KKT conditions

The main task for NEP is to find a tuple x = (x1, . . . , xN) such that each xi is a

minimizer for the optimization problem Fi(x−i). We assume each constraining tuple gi is

nonsingular. Then x must satisfy the polynomial system (3.8). Choose a generic positive

definite matrix

Θ ∈ R(n+1)×(n+1).

Then we consider the following optimization problem

min
x

[x]T1 ·Θ · [x]1

s .t . ∇xifi(x)−
∑mi

j=1 λij(x)∇xigi,j(xi) = 0 (i ∈ [N]),

gi,j(xi) = 0 (j ∈ Ei, i ∈ [N]),

λi,j(x)gi,j(xi) = 0 (j ∈ Ii, i ∈ [N]),

gi,j(xi) ≥ 0 (j ∈ Ii, i ∈ [N]),

λi,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]).

(3.9)

In the above, the vector [x]1 =
[
1 xT

]T
∈ Rn+1. Under the nonsingularity assumptions on

gi, every Nash equilibrium x is a feasible point of (3.9), while the converse is typically not

true. However, for every feasible point x of (3.9), the xi is a critical point for the optimization

Fi(x−i). It is important to observe that if (3.9) is infeasible, then there are no NEs. If (3.9) is

feasible, then it must have a minimizer, because its objective is a positive definite quadratic

function. Moreover, for generic Θ, the minimizer of (3.9) is unique.

Assume that u := (u1, . . . , uN) is an optimizer of (3.9). If each ui is a minimizer for

the optimization problem Fi(u−i), then u is a NE. To this end, for each player, consider the

optimization problem:
ωi := min fi(xi, u−i)− fi(ui, u−i)

s .t . gi,j(xi) = 0 (j ∈ Ei),
gi,j(xi) ≥ 0 (j ∈ Ii).

(3.10)

If all the optimal values ωi ≥ 0, then u is a Nash Equilibrium. However, if one of them is

negative, say, ωi < 0, then u is not a NE. Let Ui be a set of some optimizers of (3.10), then

16

u violates the following inequalities

fi(xi, x−i) ≤ fi(v, x−i) (v ∈ Ui). (3.11)

However, every Nash equilibrium must satisfy (3.11).

When u is not a NE, we aim at finding a new candidate by posing the inequalities in

(3.11). Therefore, we consider the following optimization problem:

min
x

[x]T1 ·Θ · [x]1

s .t . ∇xifi(x)−
∑mi

j=1 λij(x)∇xigi,j(xi) = 0 (i ∈ [N]),

gi,j(xi) = 0 (j ∈ Ei, i ∈ [N]),

λi,j(x)gi,j(xi) = 0 (j ∈ Ii, i ∈ [N]),

gi,j(xi) ≥ 0 (j ∈ Ii, i ∈ [N]),

λi,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]),

fi(v, x−i)− fi(xi, x−i) ≥ 0 (v ∈ Ki, i ∈ [N]).

(3.12)

In the above, each Ki is a set of some optimizers of (3.10). We can solve (3.12) again for

an optimizer. If it is verified to be a NE, then we are done. If it is not, we can add more

inequalities like (3.11). Repeating this procedure, we get the following algorithm.

Algorithm 3.2. For the NEP given as in (3.1) and (3.3), do the following

Step 0 Initialize Ki := ∅ for all i and l := 0. Choose a generic positive definite matrix Θ of

length n+ 1.

Step 1 Solve the polynomial optimization problem (3.12). If it is infeasible, there is no NE

and stop; otherwise, solve it for an optimizer u.

Step 2 For each i = 1, . . . , N , solve the optimization (3.10). If all ωi ≥ 0, u is a NE and stop.

If one of ωi is negative, go to the next step.

Step 3 For each i with ωi < 0, obtain a set Ui of some (may not all) optimizers of (3.10); then

update the set Ki := Ki ∪ Ui. Let l := l + 1, then go to Step 1.

In the Step 0, we can set Θ = RTR for a randomly generated matrix R of length

n+ 1. The objective in (3.12) is a positive definite quadratic function, so it has a minimizer

if (3.12) is feasible. The case is slightly different for (3.10). If the feasible set Xi is compact

or fi(xi, u−i) is coercive for the given u−i, then (3.10) has a minimizer. If Xi is unbounded

17

and fi(xi, u−i) is not coercive, it may be difficult for computing the optimal value ωi. In

applications, we are mostly interested in cases that (3.10) has a minimizer, for the existence

of a NE. In Section 3.3, we will discuss how to solve the optimization problems in Algorithm

3.2, by the Lasserre type Moment-SOS hierarchy of semidefinite relaxations.

The following is the convergence theorem.

Theorem 3.3. Assume each constraining polynomial tuple gi is nonsingular and let λi,j(x)

be Lagrange multiplier polynomials as in (3.7). Let G be the feasible set of (3.9) and G∗ be the

set of all NEs. If the complement G\G∗ is a finite set, i.e., the cardinality ` := |G\G∗| <∞,

then Algorithm 3.2 must terminate within at most ` loops.

Proof. Under the nonsingularity assumption of polynomial tuples gi, the Lagrange multipli-

ers λi,j can be expressed as polynomials λi,j(x) as in (3.7). For each u that is a feasible point

of (3.9), every NE must satisfy the constraint

fi(ui, x−i)− fi(xi, x−i) ≥ 0.

Therefore, every NE must also be a feasible point of (3.12). Since the matrix Θ is positive

definite, the optimization (3.12) must have a minimizer, unless it is infeasible. When Algo-

rithm 3.2 goes to a newer loop, say, from the lth to the (l + 1)th, the optimizer u for (3.12)

in the lth loop is no longer feasible for (3.12) in the (l + 1)th loop. This means that the

feasible set of (3.12) must loose at least one point after each loop, unless a NE is reached.

Also note that the feasible set of (3.12) is contained in G. If G\G∗ is a finite set, Algorithm

3.2 must terminate after some loops. The number of loops is at most `.

When the polynomials fi, gi,j are generic, the NEP (3.3) has finitely many KKT

points, i.e., the feasible set of (3.9) is finite. This is shown in Theorem 3.10 in the Appendix.

The assumptions in Theorem 3.3 are general.

3.1.3 Convex NEPs

An important class of NEPs is that each individual optimization Fi(x−i) is a convex

optimization problem, i.e., each objective fi(xi, x−i) is a convex function in xi for given

x−i, the equality constraining function gi,j(xi) (j ∈ Ei) is linear in xi, and the inequality

constraining function gi,j(xi) (j ∈ Ii) is concave in xi. This requires that each player’s

strategy set Xi is convex and

fi(θa+ (1− θ)b, x−i) ≤ θfi(a, x−i) + (1− θ)fi(b, x−i), (3.13)

18

for all a, b ∈ Xi, θ ∈ [0, 1], and for given x−i.

For convex optimization, the optimizers are equivalent to the KKT points, under

constraint qualification conditions (e.g., the Slater’s condition or the LICQC). In particular,

when the constraining polynomial is nonsingular, a point is a minimizer if and only if it is

a KKT point, which means that every feasible point of (3.9) is a NE. Therefore, we get the

following corollary.

Corollary 3.4. Assume each gi is a nonsingular tuple of polynomials. Suppose each gi,j(xi)

(j ∈ Ei) is linear, each gi,j(xi) (j ∈ Ii) is concave, and each fi(xi, x−i) is convex in xi for

given x−i. Then Algorithm 3.2 must terminate at the first loop with l = 0, returning a NE

or reporting that there is no NE.

For convex optimization problems, there are infinitely many optimizers unless the

optimizer is unique. Moreover, if the objective is strictly convex (i.e., the inequality (3.13)

holds strictly for all a 6= b, 0 < θ < 1), the optimizer is always unique, if it exists. However,

these conclusions are not true for convex NEPs. Even if each player’s objective fi(xi, x−i) is

strictly convex in xi for all given x−i, the NEP might have finitely many NEs. This is the

case for Example 3.1.

Example 3.5. Consider the 2-player NEP in Example 3.1. Each individual optimization is

strictly convex, because the Hessian’s ∇2
x1
f1 and ∇2

x2
f2 are positive definite. The constraints

are the convex ball conditions. The KKT system is

2x1,1 + x2,1 + 4x2,2 = −2λ1x1,1, 4x1,2 = −2λ1x1,2,

x1,1 + 2x1,2 + 2x2,1 = −2λ2x2,1, 2x1,1 + x1,2 + 2x2,2 = −2λ2x2,2,

λ1(1− (x1,1)
2 − (x1,2)

2) = 0, λ2(1− (x2,1)
2 − (x2,2)

2) = 0,

1− (x1,1)
2 − (x1,2)

2 ≥ 0, 1− (x2,1)
2 − (x2,2)

2 ≥ 0,

λ1 ≥ 0, λ2 ≥ 0.

(3.14)

By solving the above directly, one can show that this NEP has only 3 NEs, together with

Lagrange multipliers as follows.

x∗1 = (0, 0), x∗2 = (0, 0), λ∗1 = λ∗2 = 0;

x∗1 = (1, 0), x∗2 = 1√
5
(−1,−2), λ∗1 = 9

√
5

10
− 1, λ∗2 =

√
5
2
− 1;

x∗1 = (−1, 0), x∗2 = 1√
5
(1, 2), λ∗1 = 9

√
5

10
− 1, λ∗2 =

√
5
2
− 1.

19

3.1.4 More Nash Equilibria

Algorithm 3.2 aims at finding a single NE. In some applications, people may be

interested in more NEs. For the case that there is a unique NE, people are also interested

in a certificate for the uniqueness. Here, we give a procedure for computing more NEs or

verifying the uniqueness.

Assume that x∗ is a Nash Equilibrium produced by Algorithm 3.2, i.e., x∗ is also a

minimizer of (3.12). Note that all KKT points x satisfying

[x]T1 Θ[x]1 < [x∗]T1 Θ[x∗]1

are excluded from the feasible set of (3.12) by the constraints

fi(ui, x−i)− fi(xi, x−i) ≥ 0 (∀u ∈ Ki, ∀ i ∈ [N]).

If x∗ is an isolated NE (e.g., this is the case if there are finitely many NEs), there exists a

scalar δ > 0 such that

[x]T1 Θ[x]1 ≥ [x∗]T1 Θ[x∗]1 + δ

for all other NEs x. For such δ, we can try to find a different NE by solving the following

optimization problem

min
x

[x]T1 Θ[x]1

s .t . ∇xifi(x)−
∑mi

j=1 λij(x)∇xigi,j(xi) = 0 (i ∈ [N]),

gi,j(xi) = 0 (j ∈ Ei, i ∈ [N]),

λi,j(x)gi,j(xi) = 0 (j ∈ Ii, i ∈ [N]),

gi,j(xi) ≥ 0 (j ∈ Ii, i ∈ [N]),

λi,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]),

fi(v, x−i)− fi(xi, x−i) ≥ 0 (v ∈ Ki, i ∈ [N]),

[x]T1 Θ[x]1 ≥ [x∗]T1 Θ[x∗]1 + δ.

(3.15)

When an optimizer of (3.15) is computed, we can check if it is a NE or not by solving (3.10).

If it is, we get a new NE that is different from x∗. If it is not, we can union new points to

the set Ki. Repeating the above process, we are able to get more Nash equilibria.

A concern in computation is how to choose the constant δ > 0 for (3.15). We

want a value δ > 0 such that there is no other Nash Equilibrum u such that [u]T1 Θ[u]1 ≤
[x∗]T1 Θ[x∗]1 + δ. To this end, we consider the following maximization problem

20

max
x

[x]T1 Θ[x]1

s .t . ∇xifi(x)−
∑mi

j=1 λij(x)∇xigi,j(xi) = 0 (i ∈ [N]),

gi,j(xi) = 0 (j ∈ Ei, i ∈ [N]),

λi,j(x)gi,j(xi) = 0 (j ∈ Ii, i ∈ [N]),

gi,j(xi) ≥ 0 (j ∈ Ii, i ∈ [N]),

λi,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]),

fi(v, x−i)− fi(xi, x−i) ≥ 0 (v ∈ Ki, i ∈ [N]),

[x]T1 Θ[x]1 ≤ [x∗]T1 Θ[x∗]1 + δ.

(3.16)

Interestingly, if x∗ is also a maximizer of (3.16), then the feasible set of (3.15) contains all

NEs except x∗, under some general assumptions.

Proposition 3.6. Assume Θ is a generic positive definite matrix and x∗ is a minimizer of

(3.12).

(i) If x∗ is also a maximizer of (3.16), then there is no other Nash Equilibrium u satisfying

[u]T1 Θ[u]1 ≤ [x∗]T1 Θ[x∗]1 + δ.

(ii) If x∗ is an isolated KKT point, then there exists δ > 0 such that x∗ is also a maximizer

of (3.16).

Proof. Note that every NE is a feasible point of (3.12).

(i) If x∗ is also a maximizer of (3.16), then the objective [x]T1 Θ[x]1 achieves a constant

value in the following set of (3.16). If u is a Nash equilibrium with [u]T1 Θ[u]1 ≤ [x∗]T1 Θ[x∗]1+

δ, then

[u]T1 Θ[u]1 = [x∗]T1 Θ[x∗]1.

This means that u is also a minimizer of (3.12). When Θ is a generic positive definite matrix,

the optimization (3.12) has a unique optimizer, so u = x∗.

(ii) Since Θ is positive definite, there exists ε > 0 such that

[x]T1 Θ[x]1 ≥ ε(1 + ‖x‖)2

21

for all x. Let C =
√(

[x∗]T1 Θ[x∗]1
)
/ε, then the following set

T :=

y = [x]2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇xifi(x)−
∑mi

j=1 λij(x)∇xigi,j(xi) = 0 (i ∈ [N]),

gi,j(xi) = 0 (j ∈ Ei, i ∈ [N]),

λi,j(x)gi,j(xi) = 0 (j ∈ Ii, i ∈ [N]),

gi,j(xi) ≥ 0 (j ∈ Ii, i ∈ [N]),

λi,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]),

fi(v, x−i)− fi(xi, x−i) ≥ 0 (v ∈ Ki, i ∈ [N]),

‖x‖ ≤ C

.

is compact. Note that [x∗]2 ∈ T . Let θ be the vector such that

[x]T1 Θ[x]1 = θTy

for all y = [x]2. Since x∗ is an isolated KKT point, the y∗ := [x∗]2 is also an isolated point

of T . Then its subset

T1 := T\{y∗}

is also a compact set. Since x∗ is a minimizer of (3.12), the hyperplane H := {θTy = θTy∗}
is a supporting hyperplane for the set T . Since Θ is generic, the optimization (3.12) has a

unique minimizer, which implies that y∗ is the unique minimizer of the linear function θTy

on T . So, H does not intersect T1 and their distance is positive. There exists a scalar τ > 0

such that

[x]T1 Θ[x]1 = θTy ≥ θTy∗ + τ = [x∗]T1 Θ[x∗]1 + τ

for all y = [x]2 ∈ T1. Then, for the choice δ := τ/2, the point x∗ is the only feasible point

for (3.16). Hence, x∗ is also a maximizer of (3.16).

Proposition 3.6 shows the existence of δ > 0 such that (3.12) and (3.16) have the same

optimal value. However, it does not give a concrete lower bound for δ. In computational

practice, we can first give a priori value for δ. If it does not work, we can decrease δ to a

smaller value (e.g., let δ := δ/5). By repeating this, the optimization (3.16) will eventually

have x∗ as a maximizer. The following is the algorithm for an NE that is different from x∗.

Algorithm 3.7. Give an initial value for δ (say, 0.1).

Step 1 Solve the maximization problem (3.16). If its optimal value η equals υ := [x∗]T1 Θ[x∗]1,

then go to Step 2. If η is bigger than υ, then let δ = min(δ/5, η − υ) and repeat this

step.

22

Step 2 Solve the optimization problem (3.15). If it is infeasible, then there are no additional

NEs; if it is feasible, solve it for a minimizer u.

Step 3 For each i = 1, . . . , N , solve the optimization (3.10) for the optimal value ωi. If all

ωi ≥ 0, stop and u is a NE. If one of ωi is negative, go to Step 4.

Step 4 For each i ∈ [N], update the set Ki := Ki ∪ Ui, and then go back to Step 2.

When x∗ is not an isolated KKT point, there may not exist a satisfactory δ > 0 for

the Step 1. For such a case, more investigation is required to verify uniqueness of the NE

or to find other NEs. However, for generic NEPs, there are finitely many KKT points (see

Theorem 3.10 in the appendix). The following is the convergence result for Algorithm 3.7.

Theorem 3.8. Under the same assumptions in Theorem 3.3, if Θ is a generic positive

definite matrix and x∗ is an isolated KKT point, then Algorithm 3.7 must terminate after

finitely many steps, returning a NE that is different from x∗ or reporting the nonexistence of

other NEs.

Proof. Under the given assumptions, Proposition 3.6(ii) shows the existence of δ > 0 sat-

isfactory for the Step 1 of Algorithm 3.7. Again, by Proposition 3.6(i), the feasible set of

(3.15) contains all NEs except x∗. The finite termination of Algorithm 3.7 can be proved in

the same way as for Theorem 3.3.

Once a new NE is obtained, we can repeatedly apply Algorithm 3.7, to compute more

NEs, if they exist. In particular, if there are finitely many NEs, we can eventually get all

of them. Indeed, for generic NEPPs, the number of NEs is finite (see Theorem 3.10 in the

appendix). We can assume the set of equilibria is

{x(1), . . . , x(s)}.

Without loss of generality, we can assume they are ordered as

[x(1)]T1 Θ[x(1)]1 < · · · < [x(s)]T1 Θ[x(s)]1,

since Θ is generic. If the first r NEs, say, x(1), . . . , x(r), are obtained, there exists δ > 0 such

that

[x(j)]T1 Θ[x(j)]1 > [x(r)]T1 Θ[x(r)]1 + δ

for all j = r + 1, . . . , s. Therefore, if we apply Algorithm 3.7 with x∗ = x(r), the next Nash

equilibrium x(r+1) can be obtained, if it exists. Therefore, we have the following conclusion.

23

Corollary 3.9. Under the assumptions of Theorem 3.8, if there are finitely many Nash

equilibria, then all of them can be found by applying Algorithm 3.7 repeatedly.

3.2 On the finiteness of KKT points for generic NEPPs

We discuss the finiteness of KKT points for generic NEPPs. This implies that Al-

gorithm 3.2 and 3.7 has finite convergence. After enumeration of all possibilities of active

inequality constraints, we can generally consider the case that (3.1) has only equality con-

straints. Consequently, the length mi of the ith player’s constraining polynomials can be

assumed less than or equal to ni, the dimension of its strategy xi. To prove the finiteness,

we can ignore the sign conditions λi,j ≥ 0 for Lagrange multipliers. The KKT system for all

players is { ∑mi

j=1 λij∇xigi,j(xi) = ∇xifi(x) (i ∈ [N]),

gi,j(xi) = 0 (i ∈ [N], j ∈ [mi]).
(3.17)

When the objectives fi are generic polynomials in x and each gi,j is a generic polynomial in

xi, we show that (3.17) has finitely many complex solutions.

Theorem 3.10. Let di,j > 0, ai,j > 0 be degrees, for i ∈ [N], j ∈ [mi]. If each gi,j is a

generic polynomial in xi of degree di,j and each fi is a generic polynomial in x and its degree

in xj is ai,j, then the KKT system (3.17) has finitely many complex solutions and hence the

NEP has finitely many KKT points.

Proof. For each player i = 1, . . . , N , denote

bi := ai,i − 1 + di,1 + · · ·+ di,mi
−mi.

x̃i := (xi,0, xi,1, . . . , xi,ni
), x̃ := (x̃1, . . . , x̃N).

The homogenization of gi,j is g̃i,j, a form in x̃i. Let Pni be the ni dimensional projective

space, over the complex field. Consider the projective varieties

Ui :=
{

(x̃1, . . . , x̃N) ∈ Pn1 × · · · × PnN : g̃i(x̃i) = 0
}
, i = 1, . . . , N,

U := U1 ∩ · · · ∩ UN .

When gi,j are generic polynomials in xi, the codimension of Ui is mi (see [46]), so U has the

codimension m1 + · · ·+mN .

24

The ith player’s objective fi is a polynomial in x = (x1, . . . , xN), we denote the

multi-homogenization of fi(xi, x−i) as

f̃i(x̃i, x̃−i) := fi(x1/x1,0, . . . , xN/xN,0) · (
N∏
j=1

(xi,0)
ai,j).

It is a multi-homogeneous polynomial in x̃. For each i, consider the determinantal variety

Wi :=
{
x ∈ Cn

∣∣∣ rank[∇xifi(x) ∇xigi,1(xi) · · · ∇xigi,mi
(xi)] ≤ mi

}
.

(The ∇xi denote the gradient with respect to xi.) Its multi-homogenization is

W̃i :=
{
x̃
∣∣∣ rank[∇xi f̃i(x̃) ∇xi g̃i,1(x̃i) · · · ∇xi g̃i,mi

(x̃i)] ≤ mi

}
.

The matrix in the above can be explicitly written as

Ji(x̃i, x̃−i) :=

∂xi,1 f̃i(x̃) ∂xi,1 g̃i,1(x̃i) · · · ∂xi,1 g̃i,mi

(x̃i)

∂xi,2 f̃i(x̃) ∂xi,2 g̃i,1(x̃i) · · · ∂xi,2 g̃i,mi
(x̃i)

...
...

. . .
...

∂xi,ni
f̃i(x̃) ∂xi,ni

g̃i,1(x̃i) · · · ∂xi,ni
g̃i,mi

(x̃i)

 .
The (mi + 1)-by-(mi + 1) minors of the matrix Ji are homogeneous in x̃i of degree bi. They

are homogeneous in x̃j of degree ai,j, for j 6= i. By [87, Proposition 2.1], when gi,j are generic

polynomials in xi, the right mi columns of Ji are linearly independent for all x̃i ∈ Ui. That

is, for every x̃ ∈ Ui, there must exist a nonzero mi-by-mi minor from the right mi columns

of Ji. In the following, we consider fixed generic polynomials gi,j.

First, we show that U ∩ W̃1 have the codimension n1 +m2 + · · ·+mN . Let V be the

projective variety consisting of all equivalent classes of the vectors

m1(x̃) := [x̃1]
hom
b1
⊗ [x̃2]

hom
a1,2
⊗ · · · ⊗ [x̃N]homa1,N

, (3.18)

for equivalent classes of x̃ ∈ U . In the above, ⊗ denotes the Kronecker product, [u]homd

denotes the vector of all monomials in u of degree equal to d. In other words, [u]homd is the

subvector of of [u]d for monomials of the highest degree d. Note that U is birational to V
(consider the natural embedding ϕ : U ↪→ V such that φ(x̃) = m1(x̃)). So U and V have the

same codimension [122]. For each subset I ⊆ [n1] of cardinality m1, we use detI J1 to denote

the m1-by-m1 minor of J1 for the submatrix whose row indices are in I and whose columns

are the right hand side m1 columns. Then

W̃1 =
⋃

I⊆[n1],|I|=mi

XI where

25

XI := {x̃ : rank J1(x) ≤ m1, detIJ1(x) 6= 0}.

For each I, we have x̃ ∈ XI if and only if the (m1+1)-by-(m1+1) minors of J1, corresponding

to the row indices I ∪ {`} with ` ∈ [n1]\I, are equal to zeros. There are totally n1 − m1

such minors. The vanishing of these (m1 + 1)-by-(m1 + 1) minors of J1 gives n1 −m1 linear

equations in the vector m1(x̃) as in (3.18). The coefficients of these linear equations are

linearly parameterized by coefficients of f1. Therefore, when f1 has generic coefficients, the

set

YI := {m1(x̃) : x̃ ∈ XI ∩ U}

is the intersection of V with n1 −m1 generic linear equations. Since XI ∩ U is birational to

YI , they have the same codimension, so the codimension of XI ∩ U is n1 + m2 + · · · + mN .

This conclusion is true for all the above subsets I. Since

U ∩ W̃1 =
⋃

I⊆[n1],|I|=m1

XI ∩ U ,

the codimension of U ∩ W̃1 is equal to n1 +m2 + · · ·+mN .

Second, we can repeat the above argument to show that

(U ∩ W̃1) ∩ W̃2

has codimension n1 + n2 +m3 + · · ·+mN . Let V ′ be the projective variety consisting of all

equivalent classes of the vectors

m2(x̃) := [x̃1]
hom
a2,1
⊗ [x̃2]

hom
b2
⊗ [x̃3]

hom
a2,3
⊗ · · · ⊗ [x̃N]homa2,N

(3.19)

for equivalent classes of x̃ ∈ U ∩ W̃1. Note that U ∩ W̃1 is birational to V ′. They have the

same codimension. Similarly, we have

W̃2 =
⋃

I⊆[n2],|I|=m2

X ′I where

X ′I := {x̃ : rank J2(x) ≤ m2, detIJ2(x) 6= 0}.

When f2 has generic coefficients, the set

Y ′I := {m2(x̃) : x̃ ∈ X ′I ∩ U ∩ W̃1}

26

is the intersection of V ′ with n2−m2 generic hyperplanes. Since X ′I ∩U ∩ W̃1 is birational to

Y ′I , they have the same dimension, so the codimension of X ′I∩U∩W̃1 is n1+n2+m3+· · ·+mN .

This conclusion is true for all Y ′I . Since

U ∩ W̃1 ∩ W̃2 =
⋃

I⊆[n2],|I|=m2

X ′I ∩ U ∩ W̃1,

we know U ∩ W̃1 ∩ W̃2 has the codimension n1 + n2 +m3 + · · ·+mN .

Similarly, by repeating the above, we can eventually show that

U ∩ W̃1 ∩ W̃2 ∩ · · · ∩ W̃N

has codimension n1 + n2 + · · · + nN . This implies the KKT system (3.17) has codimension

n1 + n2 + · · · + nN , i.e., the dimension of the solution set of (3.17) is zero. So, there are

finitely many complex KKT points.

3.3 The Moment-SOS hierarchy for solving optimiza-

tion

In this section, we discuss how to solve the polynomial optimization problems in

Algorithms 3.2 and 3.7 by using the Lasserre type Moment-SOS hierarchy of semidefinite

relaxations. We assume the constraining polynomial tuples gi are all nonsingular. Therefore,

the Lagrange multipliers λi,j can be expressed as polynomial functions λi,j(x) as in (3.7) for

all Nash equilibria. Note that every Nash equilibrium x∗ must satisfy the polynomial system

(3.8).

3.3.1 The optimization for all players

We discuss how to solve the polynomial optimization problems (3.12), (3.15) and

(3.16), by using the Moment-SOS hierarchy of semidefinite programming relaxations [61,63,

64,67,68].

First, we discuss how to solve (3.15). Suppose the set Ki is given, for each player.

27

For notational convenience, denote the polynomial tuples

Φi :=
{
∇xifi(x)−

mi∑
j=1

λij(x)∇xigij

}
∪
{
gi,j : j ∈ Ei

}
∪
{
λi,j(x) · gi,j : j ∈ Ii

}
, (3.20)

Ψi :=
{
gi,j : j ∈ Ii

}
∪
{
λi,j(x) : j ∈ Ii

}
∪
{
fi(v, x−i)− fi(xi, x−i) : v ∈ Ki

}
. (3.21)

In the above, for a vector p = (p1, . . . , ps) of polynomials, the set {p} stands for {p1, . . . , ps},
for notational convenience. Denote the unions

Φ :=
N⋃
i=1

Φi, Ψ :=
N⋃
i=1

Ψi. (3.22)

They are both finite sets of polynomials. Then, the optimization (3.12) can be equivalently

written as
ϑmin := min

x∈Rn
θ(x) := [x]T1 Θ[x]1

s .t . p(x) = 0 (∀ p ∈ Φ),

q(x) ≥ 0 (∀ q ∈ Ψ).

(3.23)

Denote the degree

d0 := max{ddeg(p)/2e : p ∈ Φ ∪Ψ}.

For a degree k ≥ d0, consider the the kth order moment relaxation for (3.23)

ϑk := min
y
〈θ, y〉

s .t . y0 = 1, L
(k)
p [y] = 0 (p ∈ Φ),

Md[y] � 0, L
(k)
q [y] � 0 (q ∈ Ψ),

y ∈ RNn
2k .

(3.24)

Its dual optimization problem is the kth order SOS relaxation{
max γ

s .t . θ − γ ∈ Ideal[Φ]2k + Qmod[Ψ]2k.
(3.25)

For relaxation orders k = d0, d0 + 1, . . ., we get the Moment-SOS hierarchy of semidefinite

relaxations (3.24)-(3.25). This produces the following algorithm for solving the polynomial

optimization problem (3.23).

28

Algorithm 3.11. Let θ,Φ,Ψ be as in (3.23). Initialize k := d0.

Step 1 Solve the moment relaxation (3.24). If it is infeasible, (3.23) has no feasible points

and stop; otherwise, solve it for a minimizer y∗.

Step 2 Let u = (y∗e1 , . . . , y
∗
en). If u is feasible for (3.23) and ϑk = θ(u), then u is a minimizer

of (3.23). Otherwise, let k := k + 1 and go to Step 1.

In the Step 2, ei denotes the labeling vector such that the ith entry is 1 while all

other entries are 0. For example, when n = 4, then ye2 = y0100.

The conclusions of Algorithm 3.11 are justified as follows. The optimization (3.24) is

a relaxation of (3.23). This is because if x is a feasible point of (3.23), then y = [x]2k must

be feasible for (3.24). Hence, if (3.24) is infeasible, then (3.23) must be infeasible, which also

implies the nonexistence of a NE. Moreover, the optimal value ϑk of (3.24) is a lower bound

for the minimum value of (3.23), i.e., ϑk ≤ θ(x) for all x that is feasible for (3.23). In the

Step 2, if u is feasible for (3.23) and ϑk = θ(u), then u must be a minimizer of (3.23). The

convergence of Algorithm 3.11 is shown as follows.

Theorem 3.12. Assume the matrix Θ is a generic positive definite matrix and Ideal[Φ] +

Qmod[Ψ] is archimedean.

(i) If the optimization (3.23) is infeasible, then the moment relaxation (3.24) must be

infeasible when the order k is big enough.

(ii) Suppose the optimization (3.23) is feasible. Let u(k) be the point u produced in the

Step 2 of Algorithm 3.11 in the kth loop. Then u(k) converges to the unique minimizer

of (3.23). In particular, if the real zero set of Φ is finite, then u(k) is the unique

minimizer of (3.23), when k is sufficiently large.

Proof. (i) If (3.23) is infeasible, the constant polynomial −1 can be viewed as a positive

polynomial on the feasible set of (3.23). Since Ideal[Φ] + Qmod[Ψ] is archimedean, we have

−1 ∈ Ideal[Φ]2k+Qmod[Ψ]2k, for k big enough, by the Putinar’s Positivstellensatz [106]. For

such big k, the SOS relaxation (3.25) is unbounded from above, hence the moment relaxation

(3.24) must be infeasible.

(ii) When the optimization (3.23) is feasible, it must have a unique minimizer, say,

x∗, because its objective is a generic positive definite quadratic polynomial. The convergence

29

of u(k) to x∗ is shown in [120] or [88, Theorem 3.3]. For the special case that Φ(x) = 0 has

finitely many real solutions, the point u(k) must be equal to x∗, when k is large enough. This

is shown in [65] (also see [89]).

The archimedeanness of Ideal[Φ] + Qmod[Ψ] is essentially requiring that the feasible

set of (3.23) is compact. If the real zero set of Φ is compact, then Ideal[Φ] + Qmod[Ψ]

must be archimedean. In particular, if the NEPP has finitely many real KKT points, then

Ideal[Φ] + Qmod[Ψ] is archimedean. Interestingly, when the objective and constraining

polynomials are generic, there are finitely many KKT points. See Theorem 3.10 in the

appendix. In fact, as shown in the proof of Theorem 3.10, the zero set of Φ is finite for

generic NEPPs, and hence Algorithm 3.11 has finite convergence.

The other polynomial optimization problem (3.15) can be solved in the same way by

the Moment-SOS hierarchy of semidefinte relaxations like (3.24)-(3.25). The convergence

property is the same. For cleanness of the paper, we omit the details.

For the maximization (3.16), we denote the set of polynomials

Φ :=
N⋃
i=1

Φi, Ψ :=
N⋃
i=1

Ψi ∪
{

[x∗]T1 Θ[x∗]1 + δ − [x]T1 Θ[x]1

}
. (3.26)

Then (3.16) can be equivalently written as
ϑmin := min

x∈Rn
θ(x) := −[x]T1 Θ[x]1

s .t . p(x) = 0 (∀ p ∈ Φ),

q(x) ≥ 0 (∀ q ∈ Ψ).

(3.27)

Similarly, the hierarchy of moment relaxations (3.24) can be used to solve (3.27). The

following is the algorithm.

Algorithm 3.13. Let Φ,Ψ, θ be as in (3.26)-(3.27). Initialize k := d0.

Step 1 Solve the moment relaxation (3.24) for the minimum value ϑk and a minimizer y∗

and let t := d0.

Step 2 If ϑk ≥ −[x∗]T1 Θ[x∗]1, stop; otherwise, go to Step 3.

Step 3 If y∗ satisfies the rank condition

rankMt[y
∗] = rankMt−d0 [y

∗], (3.28)

then extract a set Ui of r := rankMt(y
∗) minimizers for (3.27)) and stop.

30

Step 4 If (3.28) fails to hold and t < k, let t := t+ 1 and then go to Step 3; otherwise, let

k := k + 1 and go to Step 1.

The optimization (3.27) is always feasible because x∗ is a feasible point. Therefore,

the moment relaxation (3.24) is also feasible. Since the minimum value ϑk is a lower bound

of ϑmin, if ϑk ≥ −[x∗]T1 Θ[x∗]1, then

ϑk = ϑmin = −[x∗]T1 Θ[x∗]1

and hence x∗ is a maximizer of (3.16). In Step 3, the rank condition (3.28) is called flat

truncation [88]. It is a sufficient (and almost necessary) condition to check convergence of

moment relaxations. When (3.28) holds, the method in [48] can be used to extract r mini-

mizers for (3.27)). The method is implemented in the software GloptPoly [49]. Moreover,

Algorithms 3.11 and 3.13 can be implemented in GloptPoly.

The convergence of Algorithm 3.13 is as follows. Note that Ideal(Φ) + Qmod(Ψ) is

archimedean, since it contains the polynomial [x∗]T1 Θ[x∗]1 + δ − [x]T1 Θ[x]1. Therefore, we

always have ϑk → ϑmin as k →∞ [61]. Under some classical optimality conditions, we have

ϑk = ϑmin when k is large enough [90]. Moreover, if the real zero set of Φ is finite, then

Algorithm 3.13 has finite convergence [89].

3.3.2 Checking Nash equilibria

Suppose u is a minimizer of (3.12). To check if u = (ui, u−i) is a NE or not, we need

to solve the individual optimization (3.10) for each player. For notational convenience, we

denote the polynomial tuples

Hi(u) :=
{
gi,j : j ∈ Ei

}
∪
{
λi,j(xi, u−i) · gi,j : j ∈ Ii

}
∪
{
∇xifi(xi, u−i)−

mi∑
j=1

λij(xi, u−i)∇xigij
}
, (3.29)

Gi(u) :=
{
gi,j : j ∈ Ii

}
∪
{
λi,j(xi, u−i) : j ∈ Ii

}
. (3.30)

Like the earlier case, the set {p} stands for {p1, . . . , ps}, when p = (p1, . . . , ps) is a vector of

polynomial. The sets Hi(u), Gi(u) are finite collections of polynomials in xi and parameter-

ized by u. If the optimization (3.10) has a minimizer, then it is equivalent to the following

31

optimization
ωi := min

xi∈Rni
fi(xi, u−i)

s .t . p(xi) = 0 (p ∈ Hi(u)),

q(xi) ≥ 0 (q ∈ Gi(u)).

(3.31)

The above is a polynomial optimization problem in xi. Denote the degree for its constraining

polynomials

di := max
{
ddeg(p)/2e : p ∈ Hi(u) ∪Gi(u)

}
. (3.32)

For a degree k ≥ di, the kth order moment relaxation for (3.23) is

ω
(k)
i := min

y
〈fi(xi, u−i), y〉

s .t . y0 = 1, L
(k)
p [y] = 0 (p ∈ Hi(u)),

Mk[y] � 0, L
(k)
q [y] � 0 (q ∈ Gi(u)),

y ∈ RNni
2k .

(3.33)

Its dual optimization problem is the kth order SOS relaxation{
max γ

s .t . fi(xi, u−i)− γ ∈ Ideal[Hi(u)]2k + Qmod[Gi(u)]2k.
(3.34)

By solving the above relaxations for k = di, di + 1, . . ., we get the Moment-SOS hierarchy of

relaxations (3.33)-(3.34). This gives the following algorithm.

Algorithm 3.14. For the ith player’s individual optimization (3.31), assume u is a minimizer

of (3.12).

Step 0 Construct the sets Hi(u), Gi(u) of polynomials as in (3.29), (3.30). Initialize k := di.

Step 1 Solve the moment relaxation (3.33) for the minumum value ω
(k)
i and a minimizer

y∗. If ω
(k)
i ≥ 0, then ωi = 0 and stop; otherwise, go to the next step.

Step 2 Let t := di as in (3.32). If y∗ satisfies the rank condition

rankMt[y
∗] = rankMt−di [y

∗], (3.35)

then extract a set Ui of r := rankMt(y
∗) minimizers for (3.31)) and stop.

Step 3 If (3.35) fails to hold and t < k, let t := t+ 1 and then go to Step 2; otherwise, let

k := k + 1 and go to Step 1.

32

We would like to remark that the optimization (3.31) is always feasible, because u is

a minimizer of (3.12). The moment relaxation (3.33) is also feasible. Because ω
(k)
i is a lower

bound for ωi, and ωi ≤ fi(ui, u−i) = 0, if ω
(k)
i ≥ 0, then ωi must be 0. The Algorithm 3.14 can

be implemented in GloptPoly. The following theorem is the convergence for Algorithm 3.14.

Its proof follows from [101, Theorem 4.4].

Theorem 3.15. Assume the ith player’s constraining polynomial tuple gi is nonsingluar and

its optimization (3.10) has a minimizer for the given u−i. Assume either one of the following

conditions hold:

(i) The set Ideal[Hi(u)] + Qmod[Gi(u)] is archimedean,

(ii) The real zero set of polynomials in Hi(u) is finite.

If each minimizer of (3.10) is an isolated critical point, then all minimizers of (3.33) must

satisfy the flat truncation (3.35), for all k big enough. Therefore, Algorithm 3.14 must

terminate within finitely many loops.

We would like to remark the following inclusion

Ideal[gi,j : j ∈ Ei] ⊆ Ideal[Hi(u)], Qmod[gi,j : j ∈ Ii] ⊆ Qmod[Gi(u)].

If Ideal[gi,j : j ∈ Ei] + Qmod[gi,j : j ∈ Ii] is archimedean, then Ideal[Hi(u)] + Qmod[Gi(u)] is

also archimedean. Therefore, if the archimedeanness holds for the ith player’s optimization

(3.1), then the condition (i) in Theorem 3.15 is satisfied.

3.4 Numerical Experiments

This section reports numerical experiments for solving NEPs by using Algorithm 3.2

and 3.7. We apply the software GloptiPoly 3 [49] and SeDuMi [124] to solve the Moment-

SOS relaxations for the polynomial optimization (3.12), (3.10), (3.15) and (3.16). The com-

putation is implemented in an Alienware Aurora R8 desktop, with an Intel® Core(TM)

i7-9700 CPU at 3.00GHz×8 and 16GB of RAM, in a Windows 10 operating system. To im-

plement Algorithm 3.2, we need Lagrange multiplier representations as in [95]. The following

cases are frequently used.

33

• For the constraint {xi ∈ Rni :
∑ni

j=1 xi,j ≤ 1, xi ≥ 0}, the constraining polynomials are

gi,0 = 1 −
∑ni

j=1 xi,j, gi,1 = xi,1, · · · , gi,ni
= xi,ni

. The Lagrange multipliers λi,j can be

represented as

λi,0 = xTi ∇xifi, λi,j =
∂fi
∂xi,j

− xTi ∇xifi, j = 1, . . . , ni.

• For the sphere constraint 1 − xTi xi = 0 or the ball constraint 1 − xTi xi ≥ 0, the

constraining polynomial is gi,1 = 1−xTi xi and the Lagrange multiplier can be expressed

as λi,1 = −1
2
xTi ∇xifi.

In Step 2 of Algorithm 3.2 and Step 3 of Algorithm 3.7, if the optimal value ωi ≥ 0

for all players, then the point u is a NE. In numerical computation, we cannot have ωi ≥ 0

exactly, due to round-off errors. Therefore, we use the parameter

ω∗ := min
i=1,...,N

ωi

to measure the accuracy of the computed NE. Typically, if ω∗ is small, say, ω∗ ≥ −10−6, we

regard the computed solution as an accurate NE.

For the convex NEP in Example 3.1, Algorithm 3.7 found all the 3 NEs correctly

with ω∗ = −1.9512 · 10−9. The following is another example of convex NEPs.

Example 3.16. Consider the convex NEP

1st player:

 min
x1∈R2

x1,1(x1,1 + x2,1 + 4x2,2) + 4x21,2,

s .t . 1− (x1,1)
2 − (x1,2)

2 ≥ 0,

2nd player:

min
x2∈R2

2x22,1 + 2x22,2 + (x1,1 − 2x1,2)x2,1

+(4x1,1 + x1,2)x2,2,

s.t. 1− x2,1 − x2,2 ≥ 0, x2,1 ≥ 0, x2,2 ≥ 0.

For the second player, the Lagrange multipliers can be represented as

λ2,1 = −∇x2f
T
2 x2, λ2,2 =

∂f2
∂x2,1

+ λ2,1, λ2,3 =
∂f2
∂x2,2

+ λ2,1.

For this NEP, Algorithm 3.7, found two NEs:

x∗1 = (0.0000,−0.0000), x∗2 = (0.0000, 0.0000), ω∗ = −7.4772 · 10−9;

x∗1 = (−1.0000,−0.0000), x∗2 = (0.1250, 0.8750), ω∗ = −3.3640 · 10−8.

The computation took about 1 second.

34

Example 3.17. Consider the 2-player NEP

1st player:

 min
x1∈R3

∑3
j=1 x1,j(x1,j − j · x2,j)

s.t. 1− x1,1x1,2 ≥ 0, 1− x1,2x1,3 ≥ 0, x1,1 ≥ 0,

2nd player:

min
x2∈R3

∏3
j=1 x2,j +

∑
1≤i<j≤3
1≤k≤3

x1,ix1,jx2,k +
∑

1≤i≤3
1≤j<k≤3

x1,ix2,jx2,k

s.t. 1− (x2,1)
2 − (x2,2)

2 = 0.

The first player’s optimization is non-convex, with an unbounded feasible set. The Lagrange

multipliers for the first player’s optimization are

λ1,1 = (1− x1,1x1,2) ∂f1
∂x1,1

, λ1,2 = −x1,1 ∂f1
∂x1,2

, λ1,3 = x1,1
∂f1
∂x1,1
− x1,2 ∂f1

∂x1,2
.

Applying Algorithm 3.7, we get four NEs:

x∗1 = (0.3198, 0.6396,−0.6396), x∗2 = (0.6396, 0.6396,−0.4264);

x∗1 = (0.0000, 0.3895, 0.5842), x∗2 = (−0.8346, 0.3895, 0.3895);

x∗1 = (0.2934,−0.5578, 0.8803), x∗2 = (0.5869,−0.5578, 0.5869);

x∗1 = (0.0000,−0.5774,−0.8660), x∗2 = (−0.5774,−0.5774,−0.5774).

Their accuracy parameters are respectively

−7.1879 · 10−8, −3.5040 · 10−7, −4.3732 · 10−7,−6.4360 · 10−7.

It took about 30 seconds. If the second player’s objective becomes

−
3∏
j=1

x2,j +
∑
1≤i≤3

1≤j<k≤3

x1,ix2,jx2,k −
∑

1≤i<j≤3
1≤k≤3

x1,ix1,jx2,k,

then there is no NE, which is detected by Algorithm 3.2. It took around 16 seconds.

Example 3.18. Consider the 3-player NEP

1st player:

min
x1∈R2

(2x1,1 − x1,2 + 3)x1,1x2,1

+[(2x1,2)
2 + (x3,2)

2]x1,2

s .t . 1− xT1 x1 ≥ 0,

2nd player:

min
x2∈R2

[(x2,1)
2 − x1,2]x2,1

+[(x2,2)
2 + 2x3,2 + x1,2x3,1]x2,2

s .t . xT2 x2 − 1 = 0, x2,1 ≥ 0, x2,2 ≥ 0,

35

3rd player:

min
x3∈R2

(x1,1x1,2 − 1)x3,1 − [3(x3,2)
2 + 1]x3,2

+2[x3,1 + x3,2]x3,1x3,2

s .t . 1− (x3,1)
2 ≥ 0, 1− (x3,2)

2 ≥ 0.

The Lagrange multipliers can be represented as

λ2,1 = 1
2
(xT2∇x2f2), λ2,2 = ∂f2

x2,1
− 2x2,1λ2,1, λ2,3 = ∂f2

x2,2
− 2x2,2λ2,1,

λ3,1 = −x3,1
2

∂f3
∂x3,1

, λ3,2 = −x3,2
2

∂f3
∂x3,2

.

Applying Algorithm 3.7, we get the unique NE

x∗1 = (−0.3558,−0.9346), x∗2 = (1.0000, 0.0000), x∗3 = (−0.3331, 1.0000).

The accuracy parameter is −9.2310 · 10−9. It took around 9 seconds. If the third player’s

objective becomes −f1(x)− f2(x), then the NEP becomes a zero-sum game and there is no

NE. Algorithm 3.2 detected the nonexistence. It took around 3 seconds.

Example 3.19. Consider the 2-player NEP

1st player:

min
x1∈R2

2x1,1x1,2 + 3x1,1(x2,1)
2 + 3(x1,2)

2x2,2

s .t . (x1,1)
2 + (x1,2)

2 − 1 ≥ 0,

2− (x1,1)
2 − (x1,2)

2 ≥ 0

2nd player:

min
x2∈R2

(x2,1)
3 + (x2,2)

3 + x1,1(x2,1)
2

+x1,2(x2,2)
2 + x1,1x1,2(x2,1 + x2,2)

s .t . (x2,1)
2 + (x2,2)

2 − 1 ≥ 0,

2− (x2,1)
2 + (x2,2)

2 ≥ 0.

The Lagrange multipliers can be represented as (i = 1, 2):

λi,1 =
1

2
∇xif

T
i xi(2− xTi xi), λi,2 =

1

4
∇xif

T
i xi(1− xTi xi).

By Algorithm 3.7, we get the unique NE

x∗1 = (−1.3339, 0.4698), x∗2 = (−1.4118, 0.0820),

with the accuracy parameter −3.5186 · 10−8. It took around 5 seconds.

36

Example 3.20. Consider the NEP

1st player:

 min
x1∈Rn1

∑
1≤i≤j≤n1

x1,ix1,j(x2,i + x2,j)

s .t . 1− (x21,1 + · · ·+ x21,n1
) = 0,

2nd player:

 min
x2∈Rn2

∑
1≤i≤j≤n2

x2,ix2,j(x1,i + x1,j)

s .t . 1− (x22,1 + · · ·+ x22,n2
) = 0,

where the dimension n1 = n2. The computational results for cases n1 = n2 = 3, 4, 5, 6

are shown in Table 3.1. The time is displayed in seconds. The accuracy parameter ω∗ is

Table 3.1: Computational results for Example 3.20.

n1 x∗1 x∗2 time
3 (−0.5774, −0.5774, −0.5774) (−0.5774, −0.5774, −0.5774) 1.31

4
(0.8381, 0.5024,
−0.0328, −0.2098)

(−0.1791, −0.0683,
0.4066, 0.8933)

62.85

5
(0.8466, 0.4407, 0.1744,

−0.0101, −0.2418)
(−0.1944, −0.0512, 0.1238,

0.3370, 0.9114)
682.67

6
(0.8026, 0.4724, 0.1799,

0.1799, −0.0637, −0.2527)
(−0.1979, −0.0772, 0.1091,

0.1091, 0.4040, 0.8762)
18079.99

respectively

−1.0689 · 10−7, −1.4459 · 10−9, −2.7551 · 10−9, −7.0354 · 10−9.

Because of the relatively large amount of computational time, we only compute one NE for

each case in the above.

We would like to remark that our method can also be applied to solve NEPs for which

the individual optimization has no constraints, or equivalently, the feasible set Xi for (3.1)

is the entire space Rni . For unconstrained NEPs, the KKT system (3.4) becomes

∇xifi(x
∗) = 0, i = 1, . . . , N.

The Algorithms 3.2 and (3.7) can be implemented in the same way.

37

Example 3.21. Consider the unconstrained NEP

1st player:

min

n1∑
i=1

(x1,i)
4 +

∑
0≤i≤j≤k≤n1

x1,ix1,j(x1,k+x2,i+x3,j)

(n1)2

s .t . x1 ∈ Rn1 ,

2nd player:

min

n2∑
i=1

(x2,i)
4 +

∑
0≤i≤j≤k≤n2

x2,ix2,j(x2,k+x3,i+x1,j)

(n2)2

s .t . x2 ∈ Rn2 ,

3rd player:

min

n3∑
i=1

(x3,i)
4 +

∑
0≤i≤j≤k≤n3

x3,ix3,j(x3,k+x1,i+x2,j)

(n3)2

s .t . x3 ∈ Rn3 ,

where x1,0 = x2,0 = x3,0 = 1, and n1 = n2 = n3. We implement Algorithm 3.7 for the cases

n1 = n2 = n3 = 2, 3, 4, 5, 6. The computational results are shown in the following table. For

all cases, we computed a NE successfully and obtained that x∗1 = x∗2 = x∗3 (up to round-off

errors). There is a unique NE for each case. The computational results are reported in

Table 3.2. The time is displayed in seconds.

Table 3.2: The computational results for Example 3.21.

n1 x∗1 = x∗2 = x∗3 ω∗ time
2 (−0.8410, −0.7125) −8.8291 · 10−9 0.34
3 (−0.6743,−0.6157,−0.5236) −6.6507 · 10−9 1.58

4
(−0.5950,−0.5606

−0.5097,−0.4363)
−1.0577 · 10−9 16.86

5
(−0.5476,−0.5247,−0.4919,

−0.4472,−0.3860)
−4.4438 · 10−9 177.63

6
(−0.5157,−0.4992,−0.4762,
−0.4457,−0.4060,−0.3534)

−3.7536 · 10−9 1379.27

The following are some examples of NEPs from applications.

Example 3.22. Consider the environmental pollution control problem for three countries for

the case autarky [19]. Let xi,1(i = 1, 2, 3) denote the (gross) emissions from the ith country.

The revenue of the ith country depends on xi,1, e.g., a typically one is xi,1(bi − 1
2
xi,1). The

variable xi,2 represents the investment by the ith country to local environmental projects.

The net emission in country i is xi,1 − γixi,2, which is always nonnegative and must be kept

below or equal a certain prescribed level Ei > 0 under an environmental constraint. The

damage cost of the ith country is assumed to be di(xi,1 − γxi,2) +
∑

j 6=i ci,jxi,2xj,1. For given

38

parameters bi, ci,j, di, γi, Ei, the ith (i = 1, 2, 3) country’s optimization problem is
min
xi∈R2

−xi,1(bi − 1
2
xi,1) +

(xi,2)
2

2
+ di(xi,1 − γixi,2) +

∑
j 6=i

ci,jxi,2xj,1

s .t . xi,2 ≥ 0, xi,1 ≤ bi,

0 ≤ xi,1 − γixi,2 ≤ Ei.

We consider the general cases that bi 6= Ei. The Lagrange multipliers can be expressed as

λi,4 = 1
(bi−Ei)Ei

(
∂fi
∂xi,2

xi,2(xi,1 − γixi,2)− ∂fi
∂xi,1

(bi − xi,1)(xi,1 − γixi,2)
)
,

λi,3 = 1
bi

(
(bi − xi,1)(∂fi

∂xi,1
+ λi,4)− xi,2(∂fi

∂xi,2
− γiλi,4)

)
,

λi,2 = λi,3 − λi,4 − ∂fi
∂xi,1

,

λi,1 = ∂fi
∂xi,2

+ γiλi,3 − γiλi,4.

We solve the NEP for the following typical parameters:

b1 = 1.5, b2 = 2, b3 = 1.8, c1,2 = 0.2, c1,3 = 0.3, c2,1 = 0.4,

c2,3 = 0.2, c3,1 = 0.5, c3,2 = 0.1, d1 = 0.8, d2 = 1.2, d3 = 1.0,

E1 = 3, E2 = 4, E3 = 2, γ1 = 0.7, γ2 = 0.5, γ3 = 0.9.

By Algorithm 3.7, we get the unique NE

x∗1 = (0.7000, 0.1600), x∗2 = (0.8000, 0.1600), x∗3 = (0.8000, 0.4700),

with the accuracy parameter −1.1059 · 10−9. It took about 10 seconds.

Example 3.23. Consider the NEP of the electricity market problem [21, 35]. There are

three generating companies, and the ith company possesses si generating units. For the

ith company, the power generation of his jth generating unit is denoted by xi,j. Assume

0 ≤ xi,j ≤ Ei,j, where the nonzero parameter Ei,j represents its maximum capacity, and

the cost of this generating unit is 1
2
ci,j(xi,j)

2 + di,jxi,j, where ci,j, di,j are parameters. The

electricty price is given by

φ(x) := b− a(
3∑
i=1

si∑
j=1

xi,j).

The aim of the each company is to maximize its profits, that is, to solve the following

optimization problem:

ith player:

 min
xi∈Rsi

1
2

∑si
j=1(ci,j(xi,j)

2 + di,jxi,j)− φ(x)(
∑si

j=1 xi,j).

s .t . 0 ≤ xi,j ≤ Ei,j (j ∈ [si]).

39

The Lagrange multipliers according to the constraints gi,2j−1 := Ei,j−xi,j ≥ 0, gi,2j := xi,j ≥ 0

can be represented as

λi,2j−1 = − ∂fi
∂xi,j

· xi,j/Ei,j, λi,2j =
∂fi
∂xi,j

+ λi,2j−1. (j ∈ [si])

We run Algorithm 3.7 for the following setting:

si = i, a = 1, b = 10,

c1,1 = 0.4, c2,1 = 0.35, c2,2 = 0.35, c3,1 = 0.46, c3,2 = 0.5, c3,3 = 0.5,

d1,1 = 2, d2,1 = 1.75, d2,2 = 1, d3,1 = 2.25, d3,2 = 3, d3,3 = 3,

E1,1 = 2, E2,1 = 2.5, E2,2 = 0.67, E3,1 = 1.2, E3,2 = 1.8, E3,3 = 1.6.

We found the unique NE

x∗1 = 1.7184, x∗2 = (1.8413, 0.6700), x∗3 = (1.2000, 0.0823, 0.0823).

The accuracy parameter is −5.1183 · 10−7. It took about 8 seconds.

Acknowledgments. This Chapter, in full, has been submitted for publication. The

dissertation author coauthored this paper with Nie, Jiawang.

40

Chapter 4

Convex Generalized Nash Equilibrium

Problems of Polynomials

Consider the Generalized Nash Equilibrium Problem

Fi(u−i) :

min
xi∈Rni

fi(u1, . . . , ui−1, xi, ui+1, . . . , uN)

s .t . gi,j(u1, . . . , ui−1, xi, ui+1, . . . , uN) = 0 (j ∈ Ei),
gi,j(u1, . . . , ui−1, xi, ui+1, . . . , uN) ≥ 0 (j ∈ Ii),

(4.1)

where the fi and gi,j are continuously differentiable functions in xi, and the Ei, Ii are disjoint

finite (possibly empty) labeling sets. The point u satisfying the above is called a Generalized

Nash Equilibrium (GNE).

Recall that the GNEP given by (1.1) is called convex if for all i = 1, . . . , N and for all

given x−i ∈ dom(Xi), the objective fi(xi, x−i) is convex in xi on Xi(x−i), all gi,j(xi, x−i) (j ∈
Ei) are affine linear in xi and all gi,j(xi, x−i) (j ∈ Ii) are concave in xi. In this chapter, we

study how to solve convex GNEPPs.

4.1 Rational expressions for Lagrange Multipliers

In Section 3.1, a polynomial expression for the ith player’s Lagrange multipliers exists

if and only if the matrix Gi(x) is nonsingular. For classical NEPs of polynomials, the

nonsingularity holds generically [95,98]. However, this is often not the case for GNEPs. Let

gi = (gi,1, . . . , gi,mi
) be the tuple of constraining polynomials in Fi(x−i) and Gi(x) be the

matrix polynomial as in (3.5). If there exists a matrix polynomial L̂i(x) and a nonzero scalar

41

polynomial qi(x) such that

L̂i(x)Gi(x) = qi(x) · Imi
, (4.2)

then qi(x)λi = L̂i(x)f̂i(x) for all critical pairs (xi, λi) of Fi(x−i). Let

λ̂i(x) := L̂i(x)f̂i(x). (4.3)

Denote by λ̂i,j(x) the jth entry of λ̂i(x).

Definition 4.1. For the ith player’s optimization Fi(x−i), if there exist polynomials λ̂i,j, j ∈
[mi] and a nonzero polynomial qi such that qi(x) ≥ 0 for all x ∈ X, and λ̂i,j(x) = qi(x)λi,j

holds for all critical pairs (xi, λi), then we call the tuple

λ̂i/qi := (λ̂i,1(x)/qi(x), . . . , λ̂i,mi
(x)/qi(x))

a rational expression for Lagrange multipliers.

The following is an example of rational expression.

Example 4.2. Consider the 2-player convex GNEP

min
x1∈R2

f1(x1, x2) min
x2∈R1

f2(x1, x2)

s .t . 2− xT1 x1 − x2 ≥ 0; s .t . 3x2 − xT1 x1 ≥ 0, 1− x2 ≥ 0.
(4.4)

The matrices of polynomials G1(x) and G2(x) are

G1(x) :=

−2x1,1

−2x1,2

2− xT1 x1 − x2

 , G2(x) :=

3 −1

3x2 − xT1 x1
1− x2

 .
For x1 = (0, 0) and x2 = 2, the G1(x) is the zero vector. For x1 = (

√
3, 0) and x2 =

1, rank(G2(x)) = 1. Both G1(x), G2(x) are not nonsingular, so there are no polynomial

expressions for Lagrange multipliers. However, the (4.2) holds for

q1(x) = 2− x2, q2(x) = 1− 1
3
xT1 x1,

L̂1(x) =
[
−x1,1

2
−x1,2

2
1
]
, L̂2(x) =

[
1
3
− 1

3
x2

1
3

1
3

1
3
xT1 x1 − x2 1 1

]
.

(4.5)

The Lagrange multiplier expressions are

λ1 =
−xT1∇x1f1

2q1
, λ2,1 =

(1− x2)
3q2

· ∂f2
∂x2

, λ2,2 =
xT1 x1 − 3x2

3q2
· ∂f2
∂x2

. (4.6)

In section 4.1.2, we show that if none of the gi,j is identically zero, then a rational

expression for λi always exists.

42

4.1.1 Optimality conditions and rational expressions

Suppose for each i, there exists a rational expression λ̂i/qi for the ith player’s Lagrange

multiplier vector. Since qi(x)λi,j = λ̂i(x) and qi(x) ≥ 0 for all x ∈ X, the following holds for

all GNEs
qi(x)∇xifi(x)−

∑mi

j=1 λ̂i,j(x)∇xigi,j(x) = 0 (i ∈ [N]),

λ̂i(x) ⊥ gi(x), gi,j(x) = 0 (j ∈ Ei, i ∈ [N]),

gi,j(x) ≥ 0, λ̂i,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]).

(4.7)

Under some constraint qualifications, if x is a GNE, then it satisfies (4.7). For convex

GNEPs, if x satisfies (4.7) and qi(x) > 0, then x must be a GNE, since it satisfies (2.9)

with λi,j given by λi,j = λ̂i,j(x)/qi(x). This leads us to consider the following optimization

problem

min
x∈X

[x]T1 Θ[x]1

s .t . qi(x)∇xifi(x)−
∑mi

j=1 λ̂i,j(x)∇xigi,j(x) = 0 (i ∈ [N]),

λ̂i,j(x) ⊥ gi,j(x) (j ∈ Ei ∪ Ii, i ∈ [N]),

λ̂i,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]).

(4.8)

In the above, Θ is a generically chosen positive definite matrix. The following proposition is

straightforward.

Proposition 4.3. For the GNEPP given by (1.1), suppose for each i ∈ [N], the Lagrange

multiplier vector λi has the rational expression as in Definition 4.1.

(i) If (4.8) is infeasible, then the GNEP has no KKT points. Therefore, if every GNE is

a KKT point, then the infeasibility of (4.8) implies the nonexistence of GNEs.

(ii) Assume the GNEP is convex. If u is a feasible point of (4.8) and qi(u) > 0 for all

i ∈ [N], then u must be a GNE.

In Proposition 4.3 (ii), if qi(u) = 0, then u may not be a GNE. The following is such

an example.

Example 4.4. [35, Example A.8] Consider the 3-player convex GNEP

min
x1∈R1

−x1 min
x2∈R1

(x2 − 0.5)2 min
x3∈R1

(x3 − 1.5x1)
2

s .t . x3 ≤ x1 + x2 ≤ 1, s .t . x3 ≤ x1 + x2 ≤ 1, s .t . 0 ≤ x3 ≤ 2.

x1 ≥ 0; x2 ≥ 0;

43

The first two players have rational expressions for Lagrange multipliers (i = 1, 2):

λi,1 = xi(1−x1−x2)
qi

∂fi
∂xi
, λi,2 = −xi(x1+x2−x3)

qi

∂fi
∂xi
,

λi,3 = ∂fi
∂xi
− λi,1 + λi,2, qi(x) = xi(1− x3).

(4.9)

For the third player, we have the polynomial expression

λ3,1 =
2− x3

2

∂f3
∂x3

, λ3,2 = λ3,1 −
∂f3
∂x3

. (4.10)

Let q3(x) = 1. Then u1 = 0, u2 = 0.5, u3 = 0 satisfy (2.9) with q1(u) = 0. However, u1 = 0

is not a minimizer for the first player’s optimization F1(u−1). It is interesting to note that

for u1 = 2
3
, u2 = 1

3
, u3 = 1, the tuple u = (u1, u2, u3) satisfies (2.9) with q1(u) = q2(u) = 0,

but u is still a GNE [35].

We would like to remark that for some special GNEPs, the equality qi(u) = 0 may

imply that ui is a minimizer of Fi(u−i). See Example 4.8 for such a case.

4.1.2 Existence of rational expressions

We study the existence of rational expressions with nonnegative qi(x). The following

is a useful lemma.

Lemma 4.5. For the ith player’s optimization Fi(x−i), if every gi,j(x) is not identically zero,

then a rational expression exists for λi.

Proof. Let Hi(x) = Gi(x)TGi(x), where Gi(x) is the matrix polynomial in (3.5). If every

gi,j(x) is not identically zero, then the determinant detHi(x) is also not identically zero. Let

adjHi(x) denote the adjoint matrix of Hi(x), then

Hi(x) · adjHi(x) = detHi(x) · Imi
.

For L̂i(x) := Gi(x)T · adjHi(x), we get the rational expression

λi,j(x) =
1

detHi(x)
L̂i(x) · f̂i(x). (4.11)

Moreover, qi(x) ≥ 0 for all x, since Hi(x) is positive semidefinite everywhere.

The rational expression in (4.11) may not be very practical, because the determinantal

polynomials often have high degrees. In practice, we usually have rational expressions with

44

low degrees. If each qi(x) > 0 for all x ∈ X, then every solution of (4.8) is a GNE. One

wonders when a rational expression exists with qi(x) > 0 on X. The matrix polynomial Gi is

said to be nonsingular on X if Gi(x) has full column rank for all x ∈ X. For the GNEP given

in Example 4.2, both G1(x) and G2(x) are nonsingular on X. The following proposition is

useful.

Proposition 4.6. The matrix Gi(x) is nonsingular on X if and only if there exists a matrix

polynomial L̂i(x) satisfying (4.2) with qi(x) > 0 on X.

Proof. First, if Gi(x) has full column rank for all x ∈ X, let Hi(x) := Gi(x)TGi(x), then

Hi(x) is positive definite and the determinant detHi(x) > 0 for all x ∈ X. Therefore, for

L̂i(x) := adjHi(x), the equation (4.11) is satisfied with qi(x) := detHi(x) > 0 over X.

Second, if (4.2) holds with qi(x) > 0 on X, then Gi(x) is clearly nonsingular on X.

If Gi(x) is nonsingular on X, then the LICQ must hold for the ith player’s optimiza-

tion. For such a case, every GNE must be a KKT point. We remark that even for the case

qi(x) < 0 for some x ∈ X, it is still possible to get a GNE. We refer to Example 4.23 for

such a case.

4.1.3 A numerical method for finding rational expressions

We give a numerical method for finding rational expressions for Lagrange multipliers.

It was introduced in [100] for solving bilevel optimization problems. Let Gi(x) be the matrix

polynomial defined in (3.5). For convenience, denote the tuples

gE := (gi,j)i∈[N],j∈Ei , gI := (gi,j)i∈[N],j∈Ii .

For a priori degree d, consider the following linear convex optimization:

max
L̂i,qi,γ

γ

s .t . L̂i ·Gi = qi · Imi
, qi(v) = 1,

qi − γ ∈ Ideal[gE]2d + Qmod[gI]2d,

L̂i ∈ (R[x]2d−degGi
)mi×(mi+ni).

(4.12)

In the above, the first equality is the same as (4.2). The second equality ensures that qi is not

identically zero, where v is a priori point in X. The constraint qi−γ ∈ Ideal[gEi]+Qmod[gEi]

forces the qi(x) ≥ γ on X. Therefore, if the maximum γ is positive, then qi(x) > 0 on X. By

45

Lemma 4.5, one can always find a feasible γ ≥ 0 satisfying (4.12), for some d ≤ deg(H(x)), if

none of gi,j(x) is identically zero. By Proposition 4.6, if each Gi(x) is nonsingular on X and

the archimedeanness holds for X, then there must exist γ > 0 satisfying (4.12) for some d.

If (L̂i, qi, γ) is a feasible point of (4.12), then one can get a rational expression for Lagrange

multipliers by letting λ̂i,j(x) = L̂i(x)f̂i.

Example 4.7. Consider the GNEP in Example 4.2. We have

gE = ∅, gI = (2− xT1 x1 − x2, 3x2 − xT1 x1, 1− x2).

Let L̂1(x) and L̂2(x) be the matrix polynomials in (4.5), and q1(x) = 2−x2, q2(x) = 1− 1
3
xT1 x1.

Let v := (0, 0, 1) for both players, and γ1 = 1, γ2 = 1/2. Then, the (L̂1(x), q1(x), γ1) and

(L̂2(x), q2(x), γ2) are feasible points of (4.12), for i = 1, 2 respectively. In fact, we have

q1(v) = q2(v) = 1, and

q1(x)− γ1 = 1− x2 = 0 + 1 · (1− x2) ∈ Qmod[gI]2,

q2(x)− γ2 = 1
2
− 1

3
xT1 x1 = 0 + 1

4
(2− xT1 x1 − x2) + 1

12
(3x2 − xT1 x1) ∈ Qmod[gI]2.

The rational expressions for Lagrange multipliers are given by (4.6).

Example 4.8. Consider the following GNEP

min
x1∈R3

f1(x1, x2) min
x2∈R3

f2(x1, x2)

s .t . 1− xT1 x1 − xT2 x2 ≥ 0; s .t . 1− xT1 x1 − xT2 x2 ≥ 0.

The constraining tuples gE := ∅, gI := (1 − xT1 x1 − xT2 x2). Let v := (0, 0, 0), γ1 = γ2 = 0,

q1(x) = 1− xT2 x2, q2(x) = 1− xT1 x1, and

L̂1 =

[
−1

2
x1,1, −

1

2
x1,2, −

1

2
x1,3, 1

]
, L̂2 =

[
−1

2
x2,1, −

1

2
x2,2, −

1

2
x2,3, 1

]
.

One can verify that q1(v) = q2(v) = 1 and

q1(x)− γ1 = 1− xT2 x2 = xT1 x1 + 1 · (1− xT1 x1 − xT2 x2) ∈ Qmod[gI]2,

q2(x)− γ2 = 1− xT1 x1 = xT2 x2 + 1 · (1− xT1 x1 − xT2 x2) ∈ Qmod[gI]2.

By Proposition 4.6, we know (L̂1(x), q1(x), γ1) and (L̂2(x), q2(x), γ2) are minimizers of (4.12)

for i = 1, 2 respectively. Therefore, we get the rational expression

λ1 =
−xT1∇x1f1
2 · q1(x)

, λ2 =
−xT2∇x2f2
2 · q2(x)

. (4.13)

46

For each i = 1, 2, if qi(x) = 0, then 0 ≤ xi
Txi ≤ 1− x−iTx−i = 0. This implies xi = (0, 0, 0)

is the only feasible point of the ith player’s optimization and hence it is the minimizer.

Therefore, each feasible point of (4.8) is a GNE.

One can solve (4.12) numerically for getting rational expressions. This is done in

Example 4.22.

4.2 Parametric expressions for Lagrange multipliers

For some GNEPs, it may be difficult to find convenient rational expressions for La-

grange multipliers. Sometimes, the denominators may have high degrees. This is the case

especially when mi > ni. If some qi has high degree, the polynomial optimization (4.7) also

has a high degree, which makes the result moment SDP relaxations (see subsections 4.3.1

and 4.3.2) very difficult to be solved. To fix such issues, we introduce parametric expressions

for Lagrange multipliers.

Definition 4.9. For the ith player’s optimization Fi(x−i), a parametric expression for the

Lagrange multipliers is a tuple of polynomials

λ̂i(x, ωi) := (λ̂i,1(x, ωi), . . . , λ̂i,mi
(x, ωi)),

in x and in a parameter ωi := (ωi,1, . . . , ωi,si) with si ≤ mi, such that (xi, λi) is a critical

pair if and only if there is a value of ωi such that (3.4) is satisfied for λi,j = λ̂i,j(x, ωi) with

j ∈ [mi].

The following is an example of parametric expressions.

Example 4.10. Consider the 2-player convex GNEP

min
x1∈R2

f1(x1, x2) min
x2∈R2

f2(x1, x2)

s .t . x1,1 − 2x1,2 + x2,2 ≥ 0, s .t . x1,2 + x2,2 − x22,1 + 1 ≥ 0,

1− x2,1 · xT1 x1 ≥ 0, 2− x2,2 ≥ 0, 1 + x2,2 ≥ 0,

x1,1 ≥ 0, x1,2 ≥ 0; x2,1 ≥ 0.

47

The Lagrange multipliers can be expressed as

λ1,1 = ω1,1,

λ1,2 = 1
2
x1,1(

∂f1
∂x1,1
− ω1,1) + 1

2
x1,2(

∂f1
∂x1,2

+ 2ω1,1),

λ1,3 = ∂f1
∂x1,1
− ω1,1 + 2x2,1x1,1λ1,2,

λ1,4 = ∂f1
∂x1,2

+ 2ω1,1 + 2x2,1x1,2λ1,2;

λ2,1 = ω2,1,

λ2,2 = −1
3
·
[
(∂f2
∂x2,1

+ 2x2,1ω2,1)x2,1 + (∂f2
∂x2,2
− ω2,1)(x2,2 + 1)

]
,

λ2,3 = ∂f2
∂x2,2

+ λ2,2 − ω2,1,

λ2,4 = ∂f2
∂x2,1

+ 2x2,1ω2,1.

(4.14)

Parametric expressions are quite useful for solving the GNEPs. The following are

some useful cases.

(i) Suppose the ith player’s optimization Fi(x−i) contains the nonnegative constraints,

i.e., its constraints are

xi,1 ≥ 0, . . . , xi,ni
≥ 0, gi,j(x) ≥ 0 (j = ni + 1, . . . ,mi).

Let si := mi − ni, then a parametric expression is

(λi,1, . . . , λi,ni
) = ∇xifi −

∑si
k=1 ωi,k · ∇xigi,k+ni

,

(λi,ni+1, . . . , λi,mi
) = (ωi,1, . . . , ωi,si).

(4.15)

(ii) Suppose the ith player’s optimization Fi(x−i) contains box constraints, i.e., its con-

straints are
xi,j − ai,j ≥ 0, bi,j − xi,j ≥ 0, j = 1, . . . , ni

gi,j(x) ≥ 0. j = ni + 1, . . . ,mi

Let si := mi − 2ni, then a parametric expression is

λi,j =
b−xi,j
b−a ·

(
∂fi
∂xi,j
−
∑si

k=1 ωi,k ·
∂gi,k+2ni

∂xi,j

)
, j = 1, 3, . . . , 2ni − 1

λi,j =
a−xi,j
b−a ·

(
∂fi
∂xi,j
−
∑si

k=1 ωi,k ·
∂gi,k+2ni

∂xi,j

)
, j = 2, 4, . . . , 2ni

λi,j = ωi,j−2ni
. j = 2ni + 1, . . . ,mi

(4.16)

(iii) Suppose the ith player’s optimization Fi(x−i) contains simplex constraints, i.e., its

constraints are

1− eTxi ≥ 0, xi,1 ≥ 0, . . . , xi,ni
≥ 0, gi,j(x) ≥ 0, j = ni + 2, . . . ,mi.

48

Let si := mi − ni − 1, then a parametric expression is

λi,j = (∇xifi −
∑si

k=1 ωi,k · ∇xigi,k+ni+1)
Txi, j = 1

λi,j = ∂fi
∂xi,j−1

−
∑si

k=1 ωi,k ·
∂gi,k+ni+1

∂xi,j−1
− λi,1, j = 2, . . . , ni + 1

λi,j = ωi,j−ni−1. j = ni + 2, . . . ,mi

(4.17)

(iv) Suppose the ith player’s optimization Fi(x−i) contains linear constraints, i.e., its con-

straints are

aTj xi − bj(x−i) ≥ 0, j = 1, . . . , r, gi,j(x) ≥ 0, j = r + 1, . . . ,mi,

where each bj is a polynomial in x−i. Let A =
[
a1 · · · ar

]T
. Assume rankA = r. If

we let si := mi − r, then a parametric expression is

(λi,1, . . . , λi,r) = (AAT)−1A(∇xifi −
∑si

k=1 ωi,k · ∇xigi,k+r),

(λi,r+1, . . . , λi,mi
) = (ωi,1, . . . , ωi,si).

(v) Suppose there exists a label subset Ti := (t1, . . . , tr) ⊆ [mi] such that

Ĝi(x) :=

∇xigi,t1(x) . . . ∇xigi,tr(x)

gi,t1(x)
. . .

gi,tr(x)

is nonsingular for all x ∈ Cn. By [95, Proposition 5.1], there exists a matrix polynomial

Di(x) such that Di(x) · Ĝi(x) = Ir. Let si := mi − r, then a parametric expression is

(λi,1, . . . , λi,r) = Di(x)(∇xifi −
∑si

k=1 ωi,k · ∇xigi,k+r),

(λi,r+1, . . . , λi,mi
) = (ωi,1, . . . , ωi,si).

We would like to remark that a parametric expression always exists. For instance, one

can set ωi,j = λi,j for all j. However, it is preferable to have small si, to save computational

costs.

4.2.1 Optimality conditions and parametric expressions

Suppose all players have parametric expressions for their Lagrange multipliers as in

Definition 4.9. Let s := s1 + . . .+ sN , and denote

x := (x, ω1, . . . , ωN).

49

The optimality conditions (2.9) can be equivalently expressed as
∇xifi(x)−

∑mi

j=1 λ̂i,j(x)∇xigi,j(x) = 0 (i ∈ [N]),

λ̂i(x) ⊥ gi(x), gi,j(x) = 0 (j ∈ Ei, i ∈ [N]),

gi,j(x) ≥ 0, λ̂i,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]).

(4.18)

For convex GNEPs, a point x is a GNE if and only if there exists ω := (ω1, . . . , ωN) such

that x satisfies (4.18). Therefore, we consider the optimization

min
x∈X×Rs

[x]T1 Θ [x]1

s .t . ∇xifi(x)−
∑mi

j=1 λ̂i,j(x)∇xigi,j(x) = 0 (i ∈ [N]),

λ̂i,j(x) ⊥ gi,j(x) (j ∈ Ei ∪ Ii, i ∈ [N]),

λ̂i,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]).

(4.19)

In the above, the Θ is a generically chosen positive definite matrix. The following proposition

is straightforward

Proposition 4.11. For the GNEPP given by (1.1), suppose each player’s optimization has

a parametric expression for their Lagrange multipliers as in Definition 4.9.

(i) If (4.19) is infeasible, then the GNEP has no KKT points. If every GNE is a KKT

point, then the infeasibility of (4.19) implies nonexistence of GNEs.

(ii) Assume the GNEP is convex. If (u,w) is a feasible point of (4.19), then u is a GNE.

4.3 The polynomial optimization reformulation

In this section, we give an algorithm for solving convex GNEPs. We assume each

λi has either a rational or parametric expression, as in Definition 4.1 or 4.9. If λi has a

polynomial or parametric expression, we let qi(x) := 1. If λi has a polynomial or rational

expression, then we let si = 0. Recall the notation

x := (x, ω1, . . . , ωN).

50

Choose a generic positive definite matrix Θ. Then solve the following polynomial optimiza-

tion

min
x

[x]T1 Θ [x]1

s .t . qi(x)∇xifi(x)−
∑mi

j=1 λ̂i,j(x)∇xigi,j(x) = 0 (i ∈ [N]),

λ̂i,j(x) ⊥ gi,j(x) (j ∈ Ei ∪ Ii, i ∈ [N]),

gi,j(x) = 0 (j ∈ Ei, i ∈ [N]),

gi,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]),

λ̂i,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]).

(4.20)

If (4.20) is infeasible, then there are no KKT points. Since Θ is positive definite, if (4.20)

is feasible, then it must have a minimizer, say, (u,w) ∈ X × Rs. For convex GNEPs, if

qi(u) > 0 for all i, then u must be a GNE. If qi(u) ≤ 0 for some i, then u may or may not be

a GNE. To check this, we solve the following optimization problem for those i with qi(u) ≤ 0 δi := min
xi

fi(xi, u−i)− fi(ui, u−i)

s .t . gi,j(xi, u−i) = 0 (j ∈ Ei), gi,j(xi, u−i) ≥ 0 (j ∈ Ii).
(4.21)

This is a polynomial optimization in xi. Since u ∈ X, the point ui is feasible for (4.21), so

δi ≤ 0. If δi ≥ 0 for all i, then u must be a GNE. The following is an algorithm for solving

the GNEP.

Algorithm 4.12. For the convex GNEP given by (1.1), do the following:

Step 0 Choose a generic positive definite matrix Θ of length n+ s+ 1.

Step 1 Solve the polynomial optimization (4.20). If it is infeasible, then there are no KKT

points and stop; otherwise, solve it for a minimizer (u,w).

Step 2 If all qi(u) > 0, then u is a GNE. Otherwise, for those i with qi(u) ≤ 0, solve the

optimization (4.21) for the minimum value δi. If δi ≥ 0 for all such i, then u is a GNE;

otherwise, it is not.

In Step 0, we can choose Θ = RTR for a randomly generated square matrix R of

length n + s + 1. The objective in (4.20) is a positive definite quadratic function, so it

must have a minimizer if (4.20) is feasible. Since the objective fi(xi, u−i) is assumed to be

convex in xi, if it is bounded from below on Xi(u−i), then (4.21) must have a minimizer

(see [15, Theorem 3]). In applications, we are mostly interested in cases that (4.21) has a

51

minimizer, for the existence of a GNE. In the subsections 4.3.1 and 4.3.2, we will discuss how

to solve polynomial optimization problems in Algorithm 4.12, by the Moment-SOS hierarchy

of semidefinite relaxations. The convergence of Algorithm 4.12 is shown as follows.

Theorem 4.13. For the convex GNEPP given by (1.1), suppose each Lagrange multiplier

vector λi has a rational expression as in Definition 4.1 or a parametric expression as in

Definition 4.9.

(i) If (u,w) is a feasible point of (4.20) such that qi(u) > 0 for all i, then u is a GNE.

(ii) Assume every GNE is a KKT point. If (4.20) is infeasible, then the GNEP has no

GNEs. If Θ is positive definite and every qi(x) > 0 for all feasible x of (4.20), then

Algorithm 4.12 will find a GNE if it exists.

Proof. (i) This is directly implied by Propositions 4.3 and 4.11.

(ii) If (4.20) is infeasible, then there is no GNE, because every GNE is assumed to

be a KKT point and it must be feasible for (4.20). Next, assume (4.20) is feasible. Since

Θ is positive definite, the optimization (4.20) has a minimizer, say, (u,w). By the given

assumption, we have qi(u) > 0 for all i. So u is a GNE, by the item (i).

In Theorem 4.13(ii), if qi(x) > 0 for all x ∈ X, then we must have qi(x) > 0 for all

feasible x of (4.20). Suppose (u,w) is a computed minimizer of (4.20). If u is not a GNE, i.e.,

δi < 0 for some i, we can let N ⊆ [N] be the labeling set of i with δi < 0. By Theorem 4.13,

we know qi(u) = 0 for all i ∈ N . For a priori small ε > 0, we can add the inequalities

qi(x) ≥ ε (i ∈ N) to the optimization (4.20), to exclude u from the feasible set. Then we

solve the following new optimization

min
x∈X×Rs

[x]T1 Θ [x]1

s .t . qi(x)∇xifi(x)−
∑mi

j=1 λ̂i,j(x)∇xigi,j(x) = 0 (i ∈ [N]),

λ̂i,j(x) ⊥ gi,j(x) (j ∈ Ei ∪ Ii, i ∈ [N]),

λ̂i,j(x) ≥ 0 (j ∈ Ii, i ∈ [N]),

qi(x) ≥ ε (i ∈ N).

(4.22)

If ε > 0 is not small, the constraint qi(x) ≥ ε may also exclude some GNEs. If the new

optimization (4.22) is infeasible, one can heuristically get a candidate GNE by choosing a

different generic positive definite Θ in (4.20). In computational practice, when a GNE exists,

52

it is very likely that we can get one by doing this. However, how to detect nonexistence of

GNEs when (4.20) is feasible can be theoretically difficult. The theoretical side of this

problem is mostly open, to the best of the authors’ knowledge.

4.3.1 The optimization for all players

We discuss how to solve the polynomial optimization problems in Algorithm 4.12, by

using the Moment-SOS hierarchy of semidefinite relaxations [61, 63, 64, 67, 68]. We refer to

the notation in subsections 2.1 and 2.2.

First, we discuss how to solve the optimization (4.20). Denote the polynomial tuples

Φi :=
{
qi(x)∇xifi(x)−

mi∑
j=1

λ̂i,j(x)∇xigi,j(x)
}
∪
{
gi,j(x) : j ∈ Ei

}
∪
{
λ̂i,j(x) · gi,j(x) : j ∈ Ii

}
, (4.23)

Ψi :=
{
gi,j(x) : j ∈ Ii

}
∪
{
λ̂i,j(x) : j ∈ Ii

}
. (4.24)

For notational convenience, for a vector p = (p1, . . . , ps), the set {p} stands for {p1, . . . , ps},
in the above. Denote the unions

Φ :=
N⋃
i=1

Φi, Ψ :=
N⋃
i=1

Ψi.

They are both finite sets of polynomials. Then, the optimization (4.20) can be equivalently

written as
ϑmin := min

x
θ(x) := [x]T1 Θ[x]1

s .t . p(x) = 0 (∀ p ∈ Φ),

q(x) ≥ 0 (∀ q ∈ Ψ).

(4.25)

Denote the degree

d0 := max{ddeg(p)/2e : p ∈ Φ ∪Ψ}.

For a degree k ≥ d0, consider the kth order Lasserre type semidefinite moment relaxation

for solving (4.25)

ϑk := min
y
〈θ, y〉

s .t . y0 = 1, L
(k)
p [y] = 0 (p ∈ Φ),

Mk[y] � 0, L
(k)
q [y] � 0 (q ∈ Ψ),

y ∈ RNn+s
2k .

(4.26)

53

Its dual optimization problem is the kth order SOS relaxation{
max γ

s .t . θ − γ ∈ Ideal[Φ]2k + Qmod[Ψ]2k.
(4.27)

For relaxation orders k = d0, d0 + 1, . . ., we get the Moment-SOS hierarchy of semidefinite

relaxations (4.26)-(4.27). This produces the following algorithm for solving the polynomial

optimization problem (4.25).

Algorithm 4.14. Let θ,Φ,Ψ be as in (4.25). Initialize k := d0.

Step 1 Solve the semidefinite relaxation (4.26). If it is infeasible, then (4.25) has no feasible

points and stop; otherwise, solve it for a minimizer y∗.

Step 2 Let u = (u,w) := (y∗e1 , . . . , y
∗
en+s

). If u is feasible for (4.25) and ϑk = θ(u), then u is a

minimizer of (4.25). Otherwise, let k := k + 1 and go to Step 1.

In the Step 2, ei denotes the labeling vector such that its ith entry is 1 while all

other entries are 0. For instance, when n = s = 2, ye3 = y0010. The optimization (4.26) is

a relaxation of (4.25). This is because if x is a feasible point of (4.25), then y = [x]2k must

be feasible for (4.26). Hence, if (4.26) is infeasible, then (4.25) must be infeasible, which

also implies the nonexistence of KKT points. Moreover, the optimal value ϑk of (4.26) is

a lower bound for the minimum value of (4.25), i.e., ϑk ≤ θ(x) for all x that is feasible for

(4.25). In the Step 2, if u is feasible for (4.25) and ϑk = θ(u), then u must be a minimizer

of (4.25). The Algorithm 4.14 can be implemented in GloptPoly [49]. The convergence of

Algorithm 4.14 is shown as follows.

Theorem 4.15. Assume the set Ideal[Φ] + Qmod[Ψ] ⊆ R[x] is archimedean.

(i) If (4.25) is infeasible, then the moment relaxation (4.26) must be infeasible when the

order k is big enough.

(ii) Suppose (4.25) is feasible and Θ is a generic positive definite matrix. Let u(k) be the

point u produced in the Step 2 of Algorithm 4.14 in the kth loop. Then u(k) converges

to the unique minimizer of (4.25). In particular, if the real zero set of Φ is finite, then

u(k) is the unique minimizer of (4.25), when k is sufficiently large.

Proof. (i) If (4.25) is infeasible, the constant polynomial −1 can be viewed as a positive

polynomial on the feasible set of (4.25). Since Ideal[Φ] + Qmod[Ψ] is archimedean, we have

54

−1 ∈ Ideal[Φ]2k + Qmod[Ψ]2k, for k big enough, by the Putinar Positivstellensatz [106].

For such a big k, the SOS relaxation (4.27) is unbounded from above, hence the moment

relaxation (4.26) must be infeasible.

(ii) When the optimization (4.25) is feasible, it must have a unique minimizer, say,

x∗, because its objective is a generic positive definite quadratic polynomial. The convergence

of u(k) to x∗ is shown in [120] or [88, Theorem 3.3]. For the special case that Φ(x) = 0 has

finitely many real solutions, the point u(k) must be equal to x∗, when k is large enough. This

is shown in [65] (also see [89]).

The archimedeaness of the set Ideal[Φ] + Qmod[Ψ] is essentially requiring that the

feasible set of (4.25) is compact. The archimedeaness is sufficient but not necessary for

Algorithm 4.14 to converge. Even if the archimedeaness fails to hold, Algorithm 4.14 is

still applicable for solving (4.20). If the point u(k) is feasible and ϑk = θ(u(k)), then u(k)

must be a minimizer of (4.20), regardless of the archimedeaness holds or not. Moreover,

without archimedeaness, the infeasibility of (4.26) still implies that (4.20) is infeasible. In

our computational practice, Algorithm 4.14 almost always has finite convergence.

The polynomial optimization (4.22) can be solved in the same way by the Moment-

SOS hierarchy of semidefinite relaxations. The convergence property is the same. For the

cleanness of this paper, we omit the details.

4.3.2 Checking Generalized Nash Equilibria

Suppose u = (u,w) ∈ Rn × Rs is a minimizer of (4.20). For convex GNEPPs, if all

qi(u) > 0, then u is a GNE, by Theorem 4.13(i). If qi(u) ≤ 0 for some i, we need to solve the

optimization (4.21), to check if u = (ui, u−i) is a GNE or not, Note that (4.21) is a convex

polynomial optimization problem in xi. For given u−i, if it is bounded from below, then

(4.21) achieves its optimal value at a minimizer.

Consider the ith player’s optimization with qi(u) ≤ 0. For notational convenience,

we denote the polynomial tuples

Hi(u) :=
{
gi,j(xi, u−i) : j ∈ Ei

}
∪
{
λ̂i,j(xi, u−i) · gi,j(xi, u−i) : j ∈ Ii

}
∪
{
qi(xi, u−i)∇xifi(xi, u−i)−

mi∑
j=1

λ̂i,j(xi, u−i)∇xigi,j(xi, u−i)
}
, (4.28)

Ji(u) :=
{
gi,j(xi, u−i) : j ∈ Ii

}
∪
{
λ̂i,j(xi, u−i) : j ∈ Ii

}
. (4.29)

55

Like in (4.23)-(4.24), the set {p} stands for {p1, . . . , ps}, when p = (p1, . . . , ps) is a vector of

polynomial. The sets Hi(u), Ji(u) are finite collections.

Under some suitable constraint qualification conditions (e.g., the Slater’s Condition),

when (4.21) has a minimizer, it is equivalent to
ηi := min

xi∈Rni
ζi(xi) := fi(xi, u−i)− fi(ui, u−i)

s .t . p(xi) = 0 (p ∈ Hi(u)),

q(xi) ≥ 0 (q ∈ Ji(u)).

(4.30)

Denote the degree in variables xi for its constraining polynomials

di := max
{
ddeg(ζi(xi, u−i))/2, deg(p(xi))/2,

deg(q(xi))/2 : p ∈ Hi(u), q ∈ Ji(u)e
}
. (4.31)

For a degree k ≥ di, the kth order moment relaxation for (4.25) is

η
(k)
i := min

y
〈ζi(xi), y〉

s .t . y0 = 1, L
(k)
p [y] = 0 (p ∈ Hi(u)),

Mk[y] � 0, L
(k)
q [y] � 0 (q ∈ Ji(u)),

y ∈ RNni
2k .

(4.32)

The dual optimization problem of (4.32) is the kth order SOS relaxation{
max γ

s .t . ζi(xi)− γ ∈ Ideal[Hi(u)]2k + Qmod[Ji(u)]2k.
(4.33)

By solving the above relaxations for k = di, di + 1, . . ., we get the Moment-SOS hierarchy of

relaxations (4.32)-(4.33). This gives the following algorithm.

Algorithm 4.16. For a minimizer u = (ui, u−i) of (4.20) with qi(u) ≤ 0, solve the ith

player’s optimization (4.30). Initialize k := di.

Step 1 Solve the moment relaxation (4.32) for the minimum value η
(k)
i and a minimizer y∗. If

η
(k)
i ≥ 0, then ηi = 0 and stop; otherwise, go to the next step.

Step 2 Let t := di as in (4.31). If y∗ satisfies the rank condition

rankMt[y
∗] = rankMt−di [y

∗], (4.34)

then extract a set Ui of r := rankMt(y
∗) minimizers for (4.30) and stop.

56

Step 3 If (4.34) fails to hold and t < k, let t := t + 1 and then go to Step 2; otherwise, let

k := k + 1 and go to Step 1.

We would like to remark that the optimization (4.30) is always feasible, because ui

is a feasible point since u is a minimizer of (4.20). The moment relaxation (4.32) is also

feasible. Because η
(k)
i is a lower bound for ηi, and ηi ≤ ζi(ui, u−i) = 0, if η

(k)
i ≥ 0, then ηi

must be 0. In Step 2, the rank condition (4.34) is called flat truncation [88]. It is a sufficient

(and almost necessary) condition to check convergence of moment relaxations. When (4.34)

holds, the method in [48] can be used to extract r minimizers for (4.30). The Algorithm 4.16

can also be implemented in GloptPoly [49]. If Ideal[Hi(u)] + Qmod[Ji(u)] is archimedean,

then η
(k)
i → ηi as k →∞ [61]. It is interesting to remark that

I1 := Ideal[gi,j(xi, u−i) : j ∈ Ei] ⊆ Ideal[Hi(u)],

I2 := Qmod[gi,j(xi, u−i) : j ∈ Ii] ⊆ Qmod[Ji(u)].

If I1 + I2 is archimedean, then Ideal[Hi(u)] + Qmod[Ji(u)] must also be archimedean. Fur-

thermore, we have the following convergence theorem for Algorithm 4.16.

Theorem 4.17. For the convex polynomial optimization (4.21), assume its optimal value is

achieved at a KKT point. If either one of the following conditions hold,

(i) The set I1 + I2 is archimedean, and the Hessian ∇2
xi
ζi(x

∗
i , u−i) � 0 for a minimizer x∗i

of (4.30); or

(ii) The real zero set of polynomials in Hi(u) is finite,

then Algorithm 4.16 must terminate within finitely many loops.

Proof. Since its optimal value is achieved at a KKT point, the optimization problem (4.21)

is equivalent to (4.30).

(i) If I1 + I2 is archimedean and ∇2
xi
ζi(x

∗
i , u−i) � 0 if x∗i is a minimizer of (4.30), then

ζi(xi)− ηi ∈ I1 + I2, by [56, Corollary 3.3]. Since

I1 + I2 ⊆ Ideal[Hi(u)] + Qmod[Ji(u)],

we have ζi(xi) − ηi ∈ Ideal[Hi(u)]2k + Qmod[Ji(u)]2k for all k big enough. Therefore, Algo-

rithm 4.16 must terminate within finitely many loops, by the duality theory.

(ii) If the real zero set of polynomials in Hi(u) is finite, then the conclusion is implied

by [89, Theorem 1.1] and [88, Theorem 2.2].

57

Remark. If the objective polynomial in (4.21) is SOS-convex and its constraining ones are

SOS-concave (see [47] for the definition of SOS-convex polynomials), then Algorithm 4.16

must terminate in the first loop (see [62]). If the optimal value of (4.21) is not achieved

at a KKT point, the classical Moment-SOS hierarchy of semidefinite relaxations can be

used to solve it. We refer to [56, 61–64, 67, 68] for the work for solving general polynomial

optimization.

4.4 Numerical experiments

In this section, we apply Algorithm 4.12 to solve convex GNEPs. To use it, we need

Lagrange multiplier expressions. This can be done as follows.

• When polynomial expressions exist, we always use them. In particular, we use poly-

nomial expressions for the first player of the GNEP given by (1.4), the third player in

Example 4.4, the production unit and market players in Example 4.25.

• We use rational expressions for all players in Examples 4.19, 4.20 and 4.22. Moreover,

rational expressions are used for the second player of the GNEP given by (1.4), the

first two players in Example 4.4, the first and third players in Example 4.23 and

the consumer players in Example 4.25. For Example 4.22, the rational expression is

obtained by solving (4.12) numerically.

• When it is difficult to find convenient or rational expressions, we use parametric ex-

pressions for Lagrange multipliers. For all players in Examples 4.21, 4.24, for the first

player in Example 4.21, for the second player in Example 4.23, we use parametric

expressions.

We apply the software GloptiPoly 3 [49] and SeDuMi [124] to solve the Moment-SOS

relaxations for the polynomial optimization (4.25) and (4.30). We use the software YALMIP

for solving (4.12). The computation is implemented in an Alienware Aurora R8 desktop,

with an Intel® Core(TM) i7-9700 CPU at 3.00GHz×8 and 16GB of RAM, in a Windows

10 operating system. For neatness of the paper, only four decimal digits are shown for the

computational results.

In Step 2 of Algorithm 4.12, if the optimal values δi ≥ 0 for each i such that qi(u) ≤ 0,

then the computed minimizer of (4.20) is a GNE. In numerical computations, we may not

58

have δi ≥ 0 exactly due to round-off errors. Typically, when δi is near zero, say, δi ≥ −10−6,

we regard the computed solution as an accurate GNE. In the following, all the GNEPs are

convex.

Example 4.18. (i) For the GNEP given by (1.4), the first player has a polynomial expression

for Lagrange multipliers given by

λ1,1 = xT1∇x1f1, λ1,j+1 =
∂f1(x)

∂x1,j
− λ1,1x2,j (j = 1, 2, 3).

For the second player, the matrix polynomial G2(x) is not nonsingular, and polynomial

expressions do not exist. In section 4.4, we give a rational expression for the second player’s

Lagrange multipliers. and the second player has a rational expression given as

λ2,1 =
−xT2∇x2f2

2q2(x)
, q2(x) = xT1 x1.

For each i, the qi(x) > 0 for all x ∈ X. We ran Algorithm 4.12 and obtained the GNE

u = (u1, u2) with

u1 ≈ (0.7274, 0.7274, 0.7274), u2 ≈ (0.4582, 0.4582, 0.4582).

It took around 3.06 seconds.

However, if the first player’s objective is changed to

f1(x) = (x2,1 + x2,2 − 2x2,3)(x1,1 + x1,2 − 2x1,3)
2 + x1,1 + x1,2 − 2x1,3,

then the GNEP has no GNE, detected by Algorithm 4.12. It took around 70 seconds to

detect the nonexistence. The matrix polynomials G1(x) and G2(x) are nonsingular on X, so

all GNEs must be KKT points if they exist.

(ii) For the GNEP in Example 4.4, we use the rational expression given by (4.9) for the first

two players, and polynomial expression (4.10) for the third player. By Algorithm 4.12, we

obtained a feasible point û = 10−4 ·(0.1274, 0.4102, 0.3219) of (4.20) with q1(û) ≈ 0.1274·10−4

and q2(û) ≈ 0.4102 · 10−4. We solved (4.21), for i = 1, 2, to check if û is a GNE or not,

and got δ1 ≈ −1.0000, δ2 ≈ −1.8996 · 10−10. Therefore, we solved (4.22) with N = {1} and

ε = 0.1, and obtained a GNE u = (u1, u2, u3) with

u1 ≈ 0.5000, u2 ≈ 0.5000, u3 ≈ 0.7500, q1(u) ≈ q2(u) ≈ 0.1250.

It took around 0.89 second.

59

Example 4.19. Consider the GNEP in Example 4.2 with objectives

f1(x) =
2∑
j=1

(x1,j − 1)2 + x2(x1,1 − x1,2), f2(x) = (x2)
3 − x1,1x1,2x2 − x2.

The rational expressions for both players are given by (4.6). For each i, the qi(x) > 0 for all

x ∈ X. We ran Algorithm 4.12 and got the GNE u = (u1, u2) with

u1 ≈ (0.4897, 1.0259), u2 ≈ 0.7077.

It took around 0.62 second.

Example 4.20. Consider the GNEP in Example 4.8 with objectives

f1(x) = 10xT1 x2 −
3∑
j=1

x1,j, f2(x) =
3∑
j=1

(x1,jx2,j)
2 + (3

3∏
j=1

x1,j − 1)
3∑
j=1

x2,j.

We use rational expressions as in (4.13). From Example 4.8, we know all feasible points of

(4.20) are GNEs. By Algorithm 4.12, we got the GNE u = (u1, u2) with

u1 ≈ (0.9864, 0.0088, 0.0088), u2 ≈ (0.0836, 0.0999, 0.0999).

It took around 2.03 seconds.

Example 4.21. Consider the GNEP in Example 4.10 with objectives

f1(x) = x2,1(x1,1)
3 + (x1,2)

3 −
2∑
j=1

x1,j ·
2∑
j=1

x2,j,

f2(x) = (x1,1 + x1,2)(x2,1)
3 − 3x2,1 + (x2,2)

2 + x1,1x1,2x2,2.

We use parametric expressions as in (4.14). For each i, the qi(x) > 0 for all x ∈ X. By

Algorithm 4.12, we got the GNE u = (u1, u2) with

u1 ≈ (0.6475, 0.2786), u2 ≈ (1.0391,−0.0902).

It took around 63.97 seconds.

Example 4.22. Consider the 2-player GNEP

min
x1∈R2

(x1,1)
4 + 2(x1,2)

2 min
x2∈R2

1
2
‖x1‖2 · ‖x2‖2 + x2,1 − x2,2

+
2∑
j=1

x1,j(x2,j)
2 +2x1,1x1,2x2,1x2,2

s .t . x1,1 + 2x1,2 − x2,1 ≤ 1, s .t . (x2,1)
2 + x1,2x2,2 ≤ 2,

3x1,1 + 2x1,2 − x2,1 ≤ 1.5, (x1,1)
2 + (x2,2)

2 ≤ 3,

(x1,2)
2 + (x2,1)

2 ≤ 3, x2,2 ≥ 0.

x1,1 ≥ 0,

60

The objective functions are given by We solve (4.12) numerically for i = 1, 2 with v =

(0, 0, 0, 0), d = 2 to get rational expressions for λi’s. By Algorithm 4.12, we got the GNE

u = (u1, u2) with

u1 ≈ (0.0000,−0.7500), u2 ≈ (−1.0881, 1.7321), q1(u) ≈ 0.2591, q2(u) ≈ 2.4028.

It took around 0.34 second in solving (4.12) for both players, and 8.40 seconds to find the

GNE. For neatness of the paper, we do not display Lagrange multiplier expressions obtained

by solving (4.12).

Example 4.23. Consider the 3-player GNEP min
x1∈R2

x2,2(x1,1)
2 − x1,2x3,1

s .t . xT1 x1 + xT2 x2 + (x2,1 + x2,2)x
T
3 x3 ≤ 1; min

x2∈R2
+

(x2,1)
2 + (x1,1 − 1)x2,1 + (x3,2x2,2)

2 − x3,1x2,2

s .t . x1,1x2,1x3,1 + x1,2x2,2x3,2 + 0.1 ≥ 0, 1−
∑2

j=1 x2,j ≥ 0; min
x3∈R2

(x3 − x1 + x2)
Tx3

s .t . (x3,1 − x3,2)2 ≤ x2,1, (x3,1 + x3,2)
2 ≤ 3.

The first player’s Lagrange multipliers have a rational expression, that

λ1 =
−xT1∇x1f1

2q1(x)
, q1(x) = 1− xT2 x2 − (x2,1 + x2,2)x

T
3 x3.

For the second player, we use the parametric expression in (4.17), with s2 = 1. For λ3, if we

let q3 = 2x2,1 − 2(x3,1)
2 + 2(x3,2)

2, then

λ3,1 =
1

q3

(
− xT3∇x3f3 + (x3,1 + x3,2)

∂f3
∂x3,1

)
, λ3,2 =

1

6

(
− 2x2,1λ3,1 −

xT3∇x3f3
q3

)
.

Note that q3(x) 6≥ 0 on X. So we change the constraint λ̂3,j(x) ≥ 0 in (4.20) to q3,j · λ̂3,j(x) ≥
0, to make it work. By Algorithm 4.12, we got the GNE u = (u1, u2, u3) with

u1 ≈ (0.0000,−0.7993), u2 ≈ (0.5000, 0.0000), u3 ≈ (−0.2500,−0.3997),

q1(u) ≈ 0.6389, q2(u) = 1, q3(u) ≈ 1.1944.

It took around 10.44 seconds.

61

Example 4.24. [35, Example A.3] Consider the GNEP of 3 players. For i = 1, 2, 3, the ith

player aims to minimize the quadratic function

fi(x) =
1

2
xTi Aixi + xTi (Bix−i + bi).

All variables have box constraints −10 ≤ xi,j ≤ 10, for all i, j. In addition to them, the first

player has linear constraints x1,1+x1,2+x1,3 ≤ 20, x1,1+x1,2−x1,3 ≤ x2,1−x3,2+5; the second

player has x2,1−x2,2 ≤ x1,2+x1,3−x3,1+7; and the third player has x3,2 ≤ x1,1+x1,3−x2,1+4.

The values of parameters are set as follows

A1 =

20 5 3

5 5 −5

3 −5 15

 , A2 =

[
11 −1

−1 9

]
, A3 =

[
48 39

39 53

]
,

B1 =

−6 10 11 20

10 −4 −17 9

15 8 −22 21

 , B2 =

[
20 1 −3 12 1

10 −4 8 16 21

]
,

B3 =

[
10 −2 22 12 6

9 19 21 −4 20

]
, b1 =

1

−1

1

 , b2 =

[
1

0

]
, b3 =

[
−1

2

]
.

We use parametric expressions for Lagrange multipliers as in (4.16). It is clear qi(x) for all

x ∈ X and for all i = 1, 2, 3. By Algorithm 4.12, we got the GNE u = (u1, u2, u3) with

u1 ≈ (−0.0270,−0.1116,−0.0522), u2 ≈ (−0.0796,−0.2692),

u3 ≈ (−0.0018, 0.1245).

It took around 7.63 seconds.

Example 4.25. Consider the GNEP based on the Arrow and Debreu model of a competitive

economy [7, 35]. The first N1 players are consumers, the second N2 players are production

units, and the last player is the market, so N = N1 + N2 + 1. Each player has P variables.

Let Qi ∈ RP×P , bi ∈ RP , ξi ∈ RP
+ and ai,k ∈ R+ be parameters. These players’ optimization

problems are:

The ith player (a consumer):

 min
xi∈RP

+

1
2
xTi Qixi − bTi xi

s .t . xTNxi ≤ xTNξi +
∑N−1

k=N1+1 ai,kx
T
Nxk.

62

The ith player (a production unit):

 min
xi∈RP

+

−xTNxi

s .t . xTi xi ≤ i−N1.

The Nth player (the market):

 min
xN∈RP

+

xTN

(∑N−1
k=N1+1 xk −

∑N1

k=1(xk − ξk)
)

s .t .
∑P

j=1 xN,j = 1.

For each i ∈ [N1], the Lagrange multipliers have rational expressions as

λi,1 =
−xTi ∇xifi
qi(x)

, λi,j =
∂fi
∂xi,j

+ xN,j · λi,1 (j = 1, . . . , P),

where qi(x) = xTNξi +
∑N−1

k=N1+1 ai,kx
T
Nxk > 0 for all x ∈ X. For each i = N1 + 1, . . . , N1 +N2,

the ith player (a production unit) has polynomial expressions

λi,1 =
−xTi ∇xifi
2(i−N1)

, λi,j =
∂fi
∂xi,j

+ 2xi,j · λi,1 (j = 1, . . . , P).

For the last player (the market), we substitute xN,P by 1−
∑P−1

j=1 xN,j, then the constraints

become 1−
∑P−1

j=1 xN,j ≥ 0, xN,1 ≥ 0, . . . , xN,P−1 ≥ 0, and hence

λN,1 = −
∑P−1

j=1

∂fN
∂xN,j

· xN,j, λN,j+1 =
∂fN
∂xN,j

+ λN,1 (j = 1, . . . , P − 1).

For the case N1 = 2, N2 = 2, P = 3, we run the Algorithm 4.12 with the following parameter

setting:

Q1 =

6 1 0

1 7 −5

0 −5 7

 , Q2 =

6 −1 1

−1 7 −5

1 −5 7

 , b1 =

11

12

13

 , b2 =

12

13

11

 ,

ξ1 =

2

3

4

 , ξ2 =

3

4

5

 , a1,3 = 0.3, a1,4 = a2,3 = a2,4 = 0.4.

By the algorithm, we got the GNE u = (u1, u2, u3, u4, u5) with

u1 ≈ (0.0001, 0.9688, 0.2479), u2 ≈ (0.0002, 1.3701, 0.3507),

u3 ≈ (1.1996, 3.8026, 4.3554), u4 ≈ (2.0488, 5.0572, 4.7642),

u5 ≈ (0.0000, 0.7962, 0.2038).

It took around 67.12 seconds.

63

4.4.1 Comparison with other methods

We compare our Algorithm 4.12 with some other classical methods for solving convex

GNEPPs, such as the two-step method in [44] based on Quasi-variational formulation, the

penalty method in [35], and the interior point method based on the KKT system in [29].

The tested GNEPPs are those in (1.4), Example 4.19-4.20 and Example 4.22. For the jointly

convex GNEP in Example 4.20, we also compare with the relaxation method based on the

Nikaido-Isoda function in [52].

For a computed tuple u := (u1, . . . , uN), we use the value

ξ := max
{

max
i∈[N],j∈Ii

{−gi,j(u)}, max
i∈[N],j∈Ei

{|gi,j(u)|}
}

to measure the feasibility violation. Clearly, the point u is feasible if and only if ξ ≤ 0. If

we solve (4.21) for all i ∈ [N], the accuracy parameter of u is δ := maxi∈[N] |δi|. For these

methods, we use the following stopping criterion: For each time we get a new iterate u, if

its feasibility violation ξ < 10−6, then we compute the accuracy parameter δ. If δ < 10−6,

then we stop the iteration. For all these methods, the parameters are chosen the same

as in [29, 35, 44, 52], except the penalty method, for which the maximum number of inner

iterations is 100. Moreover, we allow 1000 maximum iterations for the QVI method and

NI-function method, 1000 maximum outer iterations for the penalty method, and 100, 000

maximum iterations for the interior point method. For initial points, we use (1, 0, 0, 1, 0, 0)

for (1.4), and the zero vectors for other GNEPs. If the maximum number of iterations is

achieved but the stopping criterion is not met, we still solve the (4.21) to check if the latest

iterate is a GNE or not.

The computational results are shown in Table 4.1. The “QVI” stands the QVI

method,, “Penalty” for the penalty method, “IPM” for the interior point method, “NI”

for the NI function method, and “ALG 4.12” is for Algorithm 4.12. The “u” is the latest

iterate for each method, “time” is the consumed time (in seconds), and max{δ, ξ} is the

bigger one of the feasibility violation and accuracy parameter of u. “Not convergent” means

the sequence cannot reach a limit point, or the limit point is far from being a GNE.

For the GNEP (1.4), the QVI method seems to converge, but the accuracy parameter

after 1000 iterations is still around 1.5627 · 10−4. The penalty method and the interior

point failed to converge. For Example 4.19, the QVI method and the interior point method

successfully got a GNE in 1.83 and 0.02 seconds respectively, and the penalty method got a

candidate GNE with accuracy parameter around 3.86 · 10−6 after 1000 outer iterations. For

64

Example 4.20, the penalty method got a candidate GNE with accuracy parameter around

2.80 · 10−5 at the maximum number of iterations. However, the QVI method, the interior

point method and the NI-function method did not converge. For Example 4.22, the QVI

method, the penalty method and the interior point method failed to find a GNE. In contrast,

Algorithm 4.12 can solve all these convex GNEPPs very quickly, with accuracy parameters

less than 6 · 10−7. Algorithm 4.12 is more reliable for solving convex GNEPs given by

polynomials.

Acknowledgment: This Chapter, in full, has been submitted for publication. The

dissertation author coauthored this paper with Nie, Jiawang.

65

Table 4.1: Comparison with some methods

Algorithm u time max{δ, ξ}
Problem (1.4)

QVI
(0.7273, 0.7273, 0.7273,

0.4582, 0.4582, 0.4582)
219.05 1.5627 · 10−4

Penalty
10−14 · (9.5356, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000)
not convergent

IPM
(1.3857, 1.4202, 1.4202,

0.8602, 0.0587, 0.0587)
not convergent

ALG 4.12
(0.7274, 0.7274, 0.7274,

0.4582, 0.4582, 0.4582)
2.61 4.7929 · 10−9

Example 4.19
QVI (0.4897, 1.0259, 0.7077) 1.83 2.5563 · 10−7

Penalty (0.4897, 1.0259, 0.7077) 6.49 3.8589 · 10−6

IPM (0.4897, 1.0259, 0.7077) 0.02 7.9280 · 10−8

ALG 4.12 (0.4897, 1.0259, 0.7077) 0.62 9.4049 · 10−9

Example 4.20

QVI
(−0.5199,−0.5199,−0.5199,

0.5771, 0.5771, 0.5771)
not convergent

Penalty
(0.5762, 0.5762, 0.5762,

0.0364, 0.0364, 0.0364)
3.54 2.7980 · 10−5

IPM
(0.6387, 0.6366, 0.6336,

0.0681, 0.0674, 0.0665)
not convergent

NI
(0.1021, 0.1021, 0.1021,

0.1021, 0.1021, 0.1021)
not convergent

ALG 4.12
(0.9864, 0.0088, 0.0088,

0.0836, 0.0999, 0.0999)
2.03 4.3014 · 10−7

Example 4.22
QVI (0.0000,−0.6300,−1.1339, 1.5875) not convergent
Penalty (0.3776,−0.5895, 0.0700, 1.5318) not convergent
IPM (0.9407,−0.0471, 1.2194,−0.0360) not convergent
ALG 4.12 (0.0000,−0.7500,−1.0881, 1.7321) 8.40 5.4972 · 10−7

66

Chapter 5

The Gauss-Seidel Method for

Generalized Nash Equilibrium

Problems of Polynomials

5.1 The Gauss-Seidel method for GNEPPs

In this chapter, we study the Gauss-Seidel method for solving Generalized Nash

Equilibrium Problems of Polynomials. We consider the case that the GNEPP only has

inequality constraints, i.e., find x = (x1, . . . , xN) such that each xi is an optimizer of the ith

player’s optimization problem min
xi∈Rni

fi(xi, x−i)

s .t . gi,j(xi, x−i) ≥ 0 (j = 1, . . . , si),
(5.1)

where all fi(xi, x−i) and gi,j(xi, x−i) are polynomial functions in x. A solution x satisfying

the above is called a generalized Nash equilibrium (GNE).

Let gi = (gi,1, . . . , gi,si) : Rn → Rsi be the vector-valued function. The inequality

gi(xi, x−i) ≥ 0 is defined componentwisely. Then (5.1) can be rewritten as min
xi∈Rni

fi(xi, x−i)

s .t . gi(xi, x−i) ≥ 0.
(5.2)

For given x−i, the feasible strategy set for the ith player is

Xi(x−i) := {xi ∈ Rni : gi(xi, x−i) ≥ 0}. (5.3)

67

The Gauss-Seidel method was introduced in [37] for solving GNEPs. The following

is the general framework of the Gauss-Seidel method.

Algorithm 5.1. For the GNEP of (5.1), do the following:

Step 1. Choose a feasible starting point x(0) = (x
(0)
1 , . . . , x

(0)
N), a positive regularization

parameter τ (0) and let k := 0.

Step 2. If x(k) satisfies a suitable termination criterion, stop.

Step 3. For i = 1, . . . , N, compute a global minimizer x
(k+1)
i of the optimization min

xi∈Rni
fi(x

(k+1)
1 , . . . , x

(k+1)
i−1 , xi, x

(k)
i+1, . . . , x

(k)
N) + τ (k)‖xi − x(k)i ‖2

s .t . gi(x
(k+1)
1 , . . . , x

(k+1)
i−1 , xi, x

(k)
i+1, . . . , x

(k)
N) ≥ 0.

(5.4)

Step 4. Choose a new regularization parameter τ (k+1) ∈ [0, τ (k)].

Step 5. Let x(k+1) := (x
(k+1)
1 , . . . , x

(k+1)
N), k := k + 1, and go to Step 2.

In practice, Algorithm 5.1 performs well for solving GNEPPs. It can compute equi-

libria for many problems. This is demonstrated in numerical experiments in Section 5.3. The

GNEPPs are very hard to be solved by other existing methods, to the best of the authors’

knowledge. On the other hand, Algorithm 5.1 is not theoretically guaranteed to converge

for all GNEPPs. Its convergence can be shown for some special GNEPs, such as GPGs.

In the following, we show how to implement Algorithm 5.1 when the defining functions are

polynomials. After that, we review some properties of Algorithm 5.1.

5.1.1 Moment-SOS relaxations for polynomial optimization

We discuss how to implement Algorithm 5.1 when all the objective and constraining

functions are given by polynomials. In its Step 3, the sub-optimization (5.4) is a polynomial

optimization problem whose variable is xi ∈ Rni . For convenience, denote{
f
(k)
i := fi(x

(k+1)
1 , . . . , x

(k+1)
i−1 , xi, x

(k)
i+1, . . . , x

(k)
N) + τ (k)‖xi − x(k)i ‖2,

g
(k)
i := gi(x

(k+1)
1 , . . . , x

(k+1)
i−1 , xi, x

(k)
i+1, . . . , x

(k)
N).

(5.5)

They are polynomials in xi. One can rewrite (5.4) equivalently as ϑmin = min
xi∈Rni

f
(k)
i (xi)

s .t . g
(k)
i (xi) ≥ 0.

(5.6)

68

Denote the degree

d0 := max{ddeg(f
(k)
i)/2e, ddeg(g

(k)
i)/2e}.

For d = d0, d0 + 1, . . ., the dth moment relaxation for (5.6) is
ϑd := min

y

〈
f
(k)
i , y

〉
s .t . Md[y] � 0, L

(d)

g
(k)
i

� 0,

y0 = 1, y ∈ RNni
2d .

(5.7)

Its dual optimization problem is the SOS relaxation{
max γ

s .t . f
(k)
i − γ ∈ Qmod(g

(k)
i)2d.

(5.8)

By solving the relaxations (5.7)-(5.8) for d = d0, d0 + 1, . . ., we get the Moment-SOS

hierarchy for solving (5.6). The following is the algorithm.

Algorithm 5.2. (The Moment-SOS hierarchy for solving (5.6)). Let f
(k)
i , g

(k)
i be as in (5.5).

Start with d := d0.

Step 1. Solve the semidefinite relaxation (5.7). If (5.7) is infeasible, then (5.6) has no

feasible points and stop; otherwise, solve it for a minimizer y∗ and let t := d1, where

d1 := ddeg(g
(k)
i)/2e.

Step 2. If y∗ satisfies the rank condition

rankMt[y
∗] = rankMt−d1 [y

∗], (5.9)

then extract r := rankMt(y
∗) minimizers for (5.6) and stop.

Step 3. If (2.7) fails to hold and t < d, let t := t+ 1 and then go to Step 2; otherwise, let

d := d+ 1 and go to Step 1.

The rank condition (5.9) is called flat truncation in the literature [88]. It is a sufficient

(and almost necessary) condition for checking convergence of the Moment-SOS hierarchy.

When Qmod(g
(k)
i) is archimedean, we have ϑd → ϑmin as d → ∞, as shown in [61]. If

ϑd = ϑmin for some d, the relaxation (5.7) is said to be exact (or tight) for solving (5.4). For

such a case, the Moment-SOS hierarchy is said to have finite convergence. The Moment-

SOS hierarchy has finite convergence when the archimedean and some optimality conditions

hold [90]. We refer to Section 2.3 for more details about the Moment-SOS relaxations, for

cleaness of this thesis.

69

5.1.2 Some properties of Algorithm 5.1

Although Algorithm 5.1 converges for many problems, it is possible that it does not

converge for some special ones. For instance, it is possible that (5.4) becomes infeasible after

some loops even if the starting point x(0) is feasible. The following is such an example.

Example 5.3. Consider the 2-player GNEP

min
x1∈R1

−x1 − x2 min
x2∈R1

x1x2

s .t . 0 ≤ x1 ≤ 2 s.t. x1 + (x2)
2 ≤ 1.

(5.10)

If Algorithm 5.1 begins with (x
(0)
1 , x

(0)
2) = (0, 1) and uses the constant τ (k) = 0.05, then

x
(1)
1 = 2 and (5.4) is infeasible for k = 1 and i = 2.

When a GNEP has a shared constraint, i.e., there exists a set X ⊆ Rn such that

Xi(x−i) = {xi : (xi, x−i) ∈ X} for all players, then the suboptimization (5.4) is feasible for

all k, provided that the initial point x(0) is feasible [37]. Beyond the concern of infeasibility,

the sequence of x(k) produced by Algorithm 5.1 might be alternating and does not converge.

Let’s see the following example.

Example 5.4. Consider the 2-player GNEP

min
x1∈R1

x1 min
x2∈R1

x1x2

s .t . x1 ≥ x2 s .t . (x1)
2 + (x2)

2 = 2.
(5.11)

If Algorithm 5.1 starts with (x
(0)
1 , x

(0)
2) = (1, 1) and uses the constant τ (k) = 0.001, the

sub-optimization (5.4) for the first player is min
x1∈R1

x1 + 0.001(x1 − 1)2

s .t . x1 ≥ 1.

Its minimizer x
(1)
1 = 1. After plugging (x

(1)
1 , x

(0)
2) into (5.4), the sub-optimization (5.4) for

the second player is min
x2∈R1

x2 + 0.001(x2 − 1)2

s .t . x22 = 1,

whose minimizer x
(1)
2 = −1. After one iteration, Algorithm 5.1 produced the point x(1) =

(1,−1). For the loop of k = 1, the sub-optimization problem (5.4) for the first player is min
x1∈R1

x1 + 0.001(x1 − 1)2

s .t . x1 ≥ −1,

70

whose minimizer x
(2)
1 = −1, and the sub-optimization (5.4) for the second player is min

x2∈R1
−x2 + 0.001(x2 + 1)2

s .t . x22 = 1,

whose minimizer x
(2)
2 = 1. So, (x

(2)
1 , x

(2)
2) = (−1, 1). Continuing this process, one can show

that x(k) is alternating in the pattern

(1, 1) −→ (1,−1) −→ (−1,−1) −→ (−1, 1) −→ (1, 1) −→ · · · .

Algorithm 5.1 does not converge for this GNEP.

We would like to remark that even for the case that Algorithm 5.1 converges, the

limit of x(k) is not necessarily a GNE for (5.1). This is shown in the following example.

Example 5.5. For instance, the following GNEP with two players

min
x1∈R1

x1 min
x2∈R1

(x2)
2 − (x1 − 1)x2

s .t . x2(x1 − x2 − 1) ≥ 0, s .t . (x1)
2 + (x2)

2 ≤ 3,

x1 ≥ 0, x2 ≥ 0

(5.12)

is a GNEPP. The dimensions n1 = n2 = 1 and

X1(x−1) = {x1 ∈ R : x2(x1 − x2 − 1) ≥ 0, x1 ≥ 0},
X2(x−2) = {x2 ∈ R : (x1)

2 + (x2)
2 ≤ 3, x2 ≥ 0}.

For the first player, when x2 > 0, its feasible set is x1 ≥ x2 + 1, and its best strategy is

x1 = x2 + 1. When x2 = 0, the first player’s best strategy is x1 = 0. For any fixed x1 with

x21 ≤ 3, the second player’s problem is feasible and its best strategy is max((x1 − 1)/2, 0).

One can verify that (0, 0) is a GNE for this GNEPP.

For the first player, when x2 > 0, its feasible set is x1 ≥ x2+1, so the sub-optimization

(5.4) in the kth loop is min
x1∈R1

x1 + τ (k)(x1 − x(k)1)2

s .t . x1 ≥ 1 + x
(k)
2 .

(5.13)

For 0 < τ (k) < 0.5, the minimizer of (5.13) is 1 + x
(k)
2 . For the second player, the sub-

optimization (5.4) in the kth loop is min
x2∈R1

(x2)
2 − x2x(k)2 + τ (k)(x2 − x(k)2)2

s .t . (x2)
2 ≤ 3− (x

(k)
2 + 1)2, x2 ≥ 0.

(5.14)

71

When (5.14) is feasible, its minimizer is

min

{
1 + 2τ (k)

2 + 2τ (k)
x
(k)
2 ,

√
3− (x

(k)
2 + 1)2

}
.

Therefore, for any constant 0 < τ (k) < 0.5 or a decreasing τ (k) with τ (0) < 0.5, if 0 < x
(0)
2 ≤√

3−1 (to make (5.14) feasible), then x(k) → (1, 0) as k →∞. However, (1, 0) is not a GNE,

because when x2 = 0, x1 = 0 is feasible and it is the minimizer. Indeed, (0, 0) is a GNE.

This shows that a limit point produced by Algorithm 5.1 is not necessarily a GNE.

In practice, however, the performance of Algorithm 5.1 is good. Under certain con-

ditions, Algorithm 5.1 converges and the limit is a GNE. This requires some assumptions

on the feasible sets of (5.2). Let G be a set-valued map defined on a set U , i.e., G(x) is

a subset of a range Y , for all x ∈ U . Its domain, domG, is the set of x ∈ U such that

G(x) 6= ∅ [8]. The map G is said to be inner semicontinuous at x ∈ U relative to domG

if for all y ∈ G(x) and for all sequences {x`} ⊆ domG such that that x` → x, there ex-

ists a sequence of y` ∈ G(x`) converging to y. The map G is called inner semicontinuous

relative to domG if it is inner semicontinuous relative to domG at every point in domG.

For instance, if the set Xi(x−i) = {xi : (xi, x−i) ∈ Ci} for Ci ⊆ Rn being a polyhedron or a

ball, then the set-valued map x−i 7→ Xi(x−i) is inner semicontinuous relative to its domain

at all points x−i [111]. However, for the GNEP in (5.12), the set-valued map x2 → X1(x2)

is not inner semicontinuous at (0, 0) (see the end of this section). We refer to [12, 111] for

the inner semicontinuity of set-valued maps. The following is a useful lemma about inner

semicontinuity.

Lemma 5.6. For two closed sets U and V , let f : U × V → R and h : U × V → Rm be two

continuous functions. For y ∈ V , define the set-valued map

G(y) = {x ∈ U : h(x, y) ≥ 0}.

Consider two sequences {x(k)} ⊆ domG and {y(k)} ⊆ V such that x(k) → x∗ and y(k) → y∗.

Suppose 0 ≤ τ (k) → 0 as k →∞. Assume that each x(k) is a minimizer of the optimization

problem min
x∈U

f(x, y(k)) + τ (k)‖x− x(k−1)‖2,

s .t . h(x, y(k)) ≥ 0.
(5.15)

72

If the set-valued map G(y) is inner semicontinuous relative to domG, then x∗ is also a

minimizer of min
x∈U

f(x, y∗)

s .t . h(x, y∗) ≥ 0.
(5.16)

Proof. We prove it by a contradiction argument. Suppose otherwise that x∗ is not a mini-

mizer of (5.16), then there exists z∗ ∈ G(y∗) such that

f(z∗, y∗) < f(x∗, y∗). (5.17)

Since the mapping G is inner semicontinuous, there exists a sequence of z(k) such that

z(k) → z∗ and z(k) ∈ G(y(k)). The sequence {z(k)} is clearly bounded. Because xk is a

minimizer of
min f(x, y(k)) + τ (k)‖x− x(k−1)‖2

s.t. x ∈ G(y(k)),

we have that

f(z(k), y(k)) + τ (k)‖z(k) − x(k−1)‖2 ≥ f(x(k), y(k)) + τ (k)‖x(k) − x(k−1)‖2. (5.18)

Because f(x, y) is continuous, it holds that

f(x(k), y(k))→ f(x∗, y∗), f(zk, yk)→ f(z∗, y∗)

as k →∞. For all ε > 0, there exists K1 such that

f(x(k), y(k))− f(x∗, y∗) > − ε
4
,

f(z(k), y(k))− f(z∗, y∗) < ε
4

for all k > K1. Combining the two inequalities, we can get

f(x(k), y(k))− f(z(k), y(k)) + f(z∗, y∗)− f(x∗, y∗) > −ε
2
.

Therefore, we have

f(z∗, y∗)− f(x∗, y∗) +
ε

2
> f(z(k), y(k))− f(x(k), y(k))

≥ τ (k)
(
‖x(k) − x(k−1)‖2 − ‖z(k) − x(k−1)‖2

)
. (5.19)

The last inequality follows from (5.18). Because {x(k)}, {z(k)} are convergent sequences and

τ (k) → 0, there must exist K2 such that

τ (k)(‖x(k) − x(k−1)‖2 − ‖z(k) − x(k−1)‖2) > −ε
2

73

whenever k > K2. Let K := max{K1, K2}, then for all k > K

f(z∗, y∗)− f(x∗, y∗) + ε > 0.

Since ε can be arbitrarily small, the above implies that

f(z∗, y∗)− f(x∗, y∗) ≥ 0,

which contradicts (5.17). Therefore, x∗ is a minimizer of (5.16).

Lemma 5.6 immediately implies the following result.

Theorem 5.7. Let x(k) be the sequence produced by Algorithm 5.1 for the GNEP of (5.1).

Assume that x(k) → x∗ and τ (k) → 0. If for each i the set-valued map Gi : x−i 7→ Xi(x−i)

is inner semicontinuous relative to its domain domGi, then the limit x∗ is a GNE for the

GNEP of (5.1).

Remark: Theorem 5.7 assumes that the sequence of x(k) produced by Algorithm 5.1 con-

verges. However, the theorem does not give a sufficient condition for this sequence to con-

verge. To ensure convergence, we need to assume the GNEPs are GPGs; see Theorems 5.10

and 5.11. There exists a convergence result [116, Lemma 1] that is similar to Lemma 5.6

and Theorem 5.7.

In the proof of Lemma 5.6, it is required that τ (k) → 0, which is also assumed in

Theorem 5.7. However, in the implementation of Algorithm 5.1, we do not need τ (k) → 0.

Sometimes, a constant τ (k) works very well. We refer to Theorem 5.11 and examples in

Section 5.3.

For Examples 5.3 and 5.4, Algorithm 5.1 does not produce a convergent sequence.

For Example 5.5, the set-valued map G1 : x2 7→ X1(x2) for the first player is not inner

semicontinuous relative to its domain domG1. In fact, at the point (x1, x2) = (0, 0), it is

clear that x1 ∈ G1(x2). However, for every sequence {x(k)2 } such that 0 < x
(k)
2 → x2 = 0,

G1(x
(k)
2) = [x

(k)
2 +1,∞). Since each x

(k)
2 > 0, there does not exist a sequence {x(k)1 } converging

to x1 = 0 and x
(k)
1 ∈ G1(x

(k)
2) = [x

(k)
2 +1,∞). Therefore, the inner semicontinuity assumption

in Theorem 5.7 fails for Example 5.5.

5.2 Generalized potential games

The Gauss-Seidel method is frequently used for solving GNEPs. However, its con-

vergence is not guaranteed for all of them. One wonders for what kind of GNEPs the

74

Gauss-Seidel method converges. The generalized potential game (GPG) is such a GNEP.

The following is the definition of GPGs in [37].

Definition 5.8. ([37]) The GNEP of (5.1) is a generalized potential game if:

(i) There exists a closed set ∅ 6= X ⊆ Rn such that

Xi(x−i) ≡ {xi ∈ Di : (xi, x−i) ∈ X}

for all players, where each Di ⊆ Rni is a closed set such that (D1×· · ·×DN)∩X 6= ∅.

(ii) There exist a continuous function P (x) : Rn → R and a forcing function σ : R+ → R+

(i.e., limk→∞ σ(tk) = 0 implies limk→∞ tk = 0) such that for all yi, xi ∈ Xi(x−i)

fi(yi, x−i)− fi(xi, x−i) > 0 =⇒
P (yi, x−i)− P (xi, x−i) ≥ σ(fi(yi, x−i)− fi(xi, x−i)).

(5.20)

The item (i) in Definition 5.8 is from the concept of shared constraint [34]. It implies

that if x(0) is feasible, then the sub-optimization problem (5.4) is feasible for all k and i. The

item (ii) means that there exists a single “dominant function” P that measures the changes

on each player’s objective functions [37].

Some special GNEPs can be directly verified as GPGs. For instance, for the GNEP

of (5.1), if each objective fi can be expressed as

fi(x) = f0(x) +
M∑
j=1

fi,j(xj) (5.21)

for some functions f0 and fi,j and the item (i) holds, then the GNEP of (5.1) is a GPG

because P, σ can be chosen as

P (x) = f0(x) +
N∑
i=1

M∑
j=1

fi,j(xj), σ(t) = t.

One can easily check that the above P (x) and σ(t) satisfy (5.20) [78].

GPGs are extensions of potential games, which were originally introduced for NEPs

[78]. They have broad applications [84]. The following is an example of GPG arising from

applications.

75

Example 5.9. The GNEPP from the environmental pollution control, described in the

introduction, is a GPG. The functions P and σ can be chosen as

P (x) = 2
N∏
i=1

(xi,0 −
N∑
j=1

γj,ixj,i) +
N∑
i=1

[
N∑
j=0

xi,j −
N∑
j=1

γj,ixj,i − xi,0(bi − 1/2xi,0)

]
,

σ(t) = t.

The numerical results of Algorithm 5.1 are shown in the next section.

The following is the convergence result for Algorithm 5.1 when it is applied to solve

GPGs.

Theorem 5.10. ([37, Theorem 5.2]) Consider the GNEP of (5.1) such that all the functions

are continuous. Assume that (5.1) is a GPG and each set-valued map Gi : x−i 7→ Xi(x−i)

is inner semicontinuous relative to its domain. In Algorithm 5.1, suppose each x
(k+1)
i is a

minimizer of (5.4) and the parameters τ (k) are updated as

τ (k+1) := max
{

min
[
τ (k), max

i=1,...,N
(‖x(k+1)

i − x(k)i ‖)
]
, 0.1τ (k)

}
. (5.22)

Then every limit point of the sequence {x(k)}∞k=0 produced by Algorithm 5.1 is a GNE for

(5.1).

The updating scheme (5.22) for τ (k) is a bit complicated. However, if each player’s

optimization problem (5.2) is convex, then the parameter τ (k) can be chosen to be constant.

Theorem 5.11. ([37, Theorem 4.3]) Consider the GNEP of (5.1) such that all the functions

are continuous. Assume that (5.1) is a GPG and each set-valued map Gi : x−i 7→ Xi(x−i)

is inner semicontinuous relative to its domain. Suppose the objectives fi(· , x−i) and the

feasible sets Xi(x−i) are all convex. In Algorithm 5.1, suppose each x
(k+1)
i is a minimizer of

(5.4) and the parameter τ (k) = τ > 0 is a constant. Then every limit point of the sequence

{x(k)}∞k=0 produced by Algorithm 5.1 is a GNE for (5.1).

Beyond GPGs, the Gauss-Seidel method has convergence for GNEPs with discrete

strategy sets [114] or mixed-integer variables [115]. In general, when (5.1) is not a GPG,

the convergence of Algorithm 5.1 is not known very much. We have seen examples in

Section 5.1 such that Algorithm 5.1 fails to converge. On the other hand, the performance

of Algorithm 5.1 is actually very good in our computational experiments (see Section 5.3).

In the following, we discuss how to certify that a GNEP is a GPG.

76

5.2.1 A certificate for GPGs

Generally, it is hard to check whether a GNEP is a GPG or not. The main challenge

is to verify the item (ii) in Definition 5.8. In this subsection, we give a certificate for (5.20)

to hold. For the ith player, denote the set

Ki =

{
(xi, yi, x−i) ∈ Rni × Rni × Rn−ni

∣∣∣∣∣ xi, yi ∈ Xi(x−i)

fi(yi, x−i)− fi(xi, x−i) ≥ 0

}
. (5.23)

For convenience, denote the differences of functions{
4Pi := P (yi, x−i)− P (xi, x−i),

4fi := fi(yi, x−i)− fi(xi, x−i).
(5.24)

The following lemma is straightforward for verification.

Lemma 5.12. For the GNEP of (5.1), if the item (i) in Definition 5.8 holds, and there exist

polynomials P ∈ R[x], pi,0, pi,1 ∈ R[xi, yi, x−i] (i = 1, . . . , N) such that pi,0 ≥ 0, pi,1 ≥ 0 on

Ki and

4Pi = (pi,0 + 1)4fi + pi,1 (5.25)

for all i, then (5.1) is a GPG.

In the equation (5.25), we can replace the constant 1 by any positive number ε > 0,

up to scaling coefficients. For numerical reasons, we prefer the constant 1. Lemma 5.12 gives

a certificate for GPGs. The following are examples of GPGs certified by (5.25).

Example 5.13. Consider the 2-player GNEP with the sets

X = {(x1, x2) : 1 ≤ x1, x2 ≤ 10, x1 ≥ x2},

X1(x−1) = {x1 : (x1, x2) ∈ X}, X2(x−2) = {x2 : (x1, x2) ∈ X}.

The two players’ optimization problems are respectively

min
x1

x1 + x2 min
x2

−x1x2

s .t . (x1, x2) ∈ X, s .t . (x1, x2) ∈ X.
(5.26)

Let P (x1, x2) = (x1)
3 − x1x2 + x1, we have
4P1 = (y1 − x1)[(y1 − x1)2 + 1] + (3y1x1 − x2)(y1 − x1),
4P2 = −x1(y2 − x2),
4f1 = y1 − x1,
4f2 = −x1(y2 − x2).

(5.27)

77

The equation (5.25) is satisfied for

p1,0 = (y1 − x1)2, p1,1 = (3y1x1 − x2)(y1 − x1), p2,0 = p2,1 = 0.

It is clear that p1,0, p2,0, p2,1 are nonnegative. By the definition of K1, 4f1 ≥ 0, and 3y1x1−
x2 ≥ 3y1 − x2 ≥ 0, so p1,1 ≥ 0 on K1.

Example 5.14. Consider the 2-player GNEP with the sets

X = {(x1, x2) : (x1)
3 + (x2)

3 ≤ 2, x1 ≥ 6x2},

X1(x−1) = {x1 : (x1, x2) ∈ X}, X2(x−2) = {x2 : (x1, x2) ∈ X}.

The two players’ optimization problems are respectively

min
x1

(x1)
2x2 + (x2)

2x1 − 4(x1)
4 min

x2
x1x2 − 3(x2)

2

s .t . x1 ≥ 0, (x1, x2) ∈ X, s .t . x2 ≥ 0.125, (x1, x2) ∈ X.
(5.28)

For P (x1, x2) = (x1)
2x2 + (x2)

2x1 − 4(x1)
4,

4P1 = 4f1 = (y1)
2x2 + (y2)

2x1 − 4(y1)
4

−(x1)
2x2 − (x2)

2x1 + 4(x1)
4,

4P2 = (x1)
2(y2 − x2) + x1((y2)

2 − (x2)
2),

4f2 = x1(y2 − x2)− 3(y2)
2 + 3(x2)

2.

(5.29)

The equation (5.25) holds with

p1,0 = 0, p1,1 = 0, p2,0 = x1, p2,1 = (y2 − x2)[4x1(y2 + x2) + 3(y2 + x2)− x1].

Clearly, p1,0, p1,1, p2,0 ≥ 0. Note that

4f2 = (y2 − x2)(x1 − 3(y2 + x2)) ≥ 0

on K2. Then, either x1 − 3(y2 + x2) > 0 hence y2 − x2 ≥ 0, or x1 − 3(y2 + x2) = 0, which

forces y2− x2 = 0. This is because x1 ≥ 6y2, x1 ≥ 6x2 and y2, x2 > 0, if x1− 3(y2 + x2) = 0,

then the only possible case is x1 = 6y2 = 6x2. Thus from

4x1(y2 + x2) + 3(y2 + x2)− x1 > x1(4y2 + 4x2 − 1) ≥ 0,

we know p2,1 ≥ 0 on K2.

78

Example 5.15. Consider the 2-player GNEP with the sets

X =

(x1, x2)

∣∣∣∣∣∣∣∣
x1 = (x1,1, x1,2) ∈ R2, x2 ∈ R,
x1,1, x1,2, x2 ≥ 0.5,

x2 − 0.3 ≤ x1,1 + x1,2 ≤ x2 + 0.3

 ,

and X1(x−1) = {x1 : (x1, x2) ∈ X}, X2(x−2) = {x2 : (x1, x2) ∈ X}. The optimization

problems are respectively

min
x1

x1,1x2 + x1,2x2 min
x2

x1,1 · x1,2 · x2

s .t . ‖x1‖ = 2, (x1, x2) ∈ X, s .t . (x1, x2) ∈ X.
(5.30)

For P (x1, x2) = (x1,1 + x1,2 + 1)3x2,
4P1 = x2((y1,1 + y1,2 + 1)3 − (x1,1 + x1,2 + 1)3),

4P2 = (y2 − x2)(x1,1 + x1,2 + 1)3,

4f1 = x2(y1,1 + y1,2 − x1,1 − x1,2),
4f2 = x1,1x1,2(y2 − z2).

(5.31)

The equation (5.25) holds with

p1,0 = (y1,1 + y1,2 + 1)2 + (x1,1 + x1,2 + 1)2 + (y1,1 + y1,2)(x1,1 + x1,2)

+y1,1 + y1,2 + x1,1 + x1,2,

p1,1 = 0, p2,0 = 3x1,1 + 3x1,2 + 5,

p2,1 = (y2 − x2)
[
(x1,1)

3 + (x1,2)
3 + 3(x1,1)

2 + 3(x1,2)
2 + 3x1,1 + 3x1,2 + 1

]
.

The equality 4P1 = (1 + p1,0)4f1 follows from the identity

a3 − b3 = (a− b)(a2 + ab+ b2)

with a = y1,1 + y1,2 + 1 and b = x1,1 + x1,2 + 1. Clearly, p1,0, p1,1 ≥ 0 on K1, and p2,0 ≥ 0 on

K2. Since x1,1x1,2 > 0, 4f2 ≥ 0 implies y2 − x2 ≥ 0, so p2,1 ≥ 0 on K2.

5.2.2 Putinar Positivstellensatz for the certificate

Lemma 5.12 gives a convenient certificate for checking GPGs. One needs to find

polynomials pi,0, pi,1 and P satisfying (5.25) and pi,0, pi,1 ≥ 0 on Ki. For a polynomial tuple

h, we have seen that if p ∈ Qmod(h), then p ≥ 0 on the semialgebraic set S(h). This

motivates us to use Putinar’s Positivstellensatz for verifying that.

79

For the set Ki as in (5.23), let hi := (hi,t)
mi
t=1 be a tuple of polynomials in R[xi, yi, x−i]

such that

Ki = {(xi, yi, x−i) : hi(xi, yi, x−i) ≥ 0}.

Moreover, let hi,0 = 1 for all i. When the item (i) in Definition 5.8 holds, the GNEP of (5.1)

is a GPG if there exist P ∈ R[x] and qi,0, qi,1 ∈ Qmod(hi) such that

4Pi = (qi,0 + 1)4fi + qi,1 (5.32)

for all players. For an even degree 2d, we parameterize P, qi,0, qi,1 as

P (x) = pT [x]2d, qi,0 =
∑mi

t=0

(
[x, yi]d−dit

)T ·Qt
i,0 ·
(
[x, yi]d−dit

)
· hi,t,

qi,1 =
∑mi

t=0

(
[x, yi]d−dit

)T ·Qt
i,1 ·
(
[x, yi]d−dit

)
· hi,t.

In the above, the degree dit = ddeg(hi,t)/2e. One can show that qi,0, qi,1 ∈ Qmod(hi) if and

only if there exist psd matricesQt
i,0, Q

t
i,1 in the above parametrization, for some d [63, Chapter

2]. For notational convenience, denote

Q :=
(
Qt
i,0, Q

t
i,1

)
i=1,...,N,t=1,...,mi

. (5.33)

Therefore, the certificate (5.25) in Lemma 5.12 can be checked by solving the semidefinite

program

min
p,Q

∑
i,t

trace
(
Qt
i,0 +Qt

i,1

)
s .t . 4Pi ≡ (qi,0 + 1)4fi + qi,1 (∀ i),

P ∈ R[x]2d,

Qt
i,0 � 0, Qt

i,1 � 0 (∀ i, t).

(5.34)

The certificate given by solving (5.34) does not require to have priori polynomials

P, qi,0 and qi,1. Instead, the coefficients of these polynomials are variables in (5.34) that are

awaiting to be solved numerically.

Example 5.16. Consider the 2-player GNEP such that the two players’ optimization prob-

lems are
min
x1∈R1

2x2 − x1 min
x2∈R1

(x1)
2 − 2x1x2 − (x2)

2

s .t . (x1)
2 + (x2)

2 ≤ 1, s .t . (x1)
2 + (x2)

2 ≤ 1,

x1 ≥ 0, x2 ≥ 0.

(5.35)

80

The ∆f1 = x1 − y1, ∆f2 = 2x1(x2 − y2) + (x2)
2 − (y2)

2, and the defining polynomial tuples

h1, h2 for the sets K1, K2 are respectively,

h1 = {1− (x1)
2 − (x2)

2, 1− (y1)
2 − (x2)

2, x1, y1, ∆f1},
h2 = {1− (x1)

2 − (x2)
2, 1− (x1)

2 − (y2)
2, x2, y2, ∆f2}.

For the degree d = 2, the semidefinite program (5.34) becomes

min
p,Q

2∑
i=1

6∑
t=0

trace
(
Qt
i,0 +Qt

i,1

)
s .t . pT ([y1, x2]4 − [x]4) =

(
6∑
t=0

[x, y1]
T
2−ditQ

t
1,0[x, y1]2−dith1,t + 1

)
·∆f1

+
6∑
t=0

[x, y1]
T
2−ditQ

t
1,1[x, y1]2−dith1,t,

pT ([x1, y2]4 − [x]4) =

(
6∑
t=0

[x, y2]
T
2−ditQ

t
2,0[x, y2]2−dith2,t + 1

)
·∆f2

+
6∑
t=0

[x, y2]
T
2−ditQ

t
2,1[x, y2]2−dith2,t,

p ∈ RN2
4 ∼= R15, Qt

i,0 � 0, Qt
i,1 � 0 (∀ i, t).

(5.36)

By solving (5.36), we can numerically verify that this GNEP is a GPG. The computed

solution of (5.36) is displayed as follows (the coefficients are displayed with 6 decimal digits)

P (x) = −3.176290x1 − 1.000000(x2)
2 − 0.000006(x1)

2

−2.000000x1x2 + 0.219805(x1)
3 − 0.000002(x1)

4,

q10(x, y1) = 2.176289 + 0.000006x1 + 2.000000x2 + 0.000006y1

−0.219805(y1)
2 + 0.000002(y1)

3 − 0.219805(x1)
2 + 0.000002(x1)

3

−0.219805x1y1 + 0.000002x1(y1)
2 + 0.000002(x1)

2y1,

q11(x, y1) = q20(x, y2) = q21(x, y2) = 0.

The semidefinite program (5.34) is useful for checking GPGs. For instance, GNEPPs

in Example 5.19 and 5.20 are numerically checked to be GPGs by solving (5.34). Moreover,

the problems A11-13,A15,A17-A18 in [35] (see section 5.1) can be verified to be GPGs in

the same way.

5.3 Numerical experiments

This section reports numerical experiments for solving GNEPPs by using Algorithm 5.1.

The subproblem (5.4) is a polynomial optimization problem. We apply the software GloptiPoly 3

81

[49] and SeDuMi [124] to solve Moment-SOS relaxations of (5.4). The semidefinite program

(5.34) for certifying GPGs is implemented by the software YALMIP [72]. The computation

is implemented in a Dell XPS 15 9550 Laptop, with an Intel® Core(TM) i7-6700HQ CPU

at 2.60GHz×4 and 16GB of RAM, in a Windows 10 operating system. In the computation,

the sequence {x(k)}∞k=0 is regarded to converge if for some k it holds that

‖x(i) − x(j)‖∞ ≤ 10−8 for all i, j ∈ {k − 10, . . . , k}. (5.37)

The point x(k) is regarded as a GNE with the accuracy parameter ε > 0 if

|fi(x(k))− fi∗| ≤ ε (5.38)

for all players, where fi
∗ is the minimum value of (5.2) with x−i = x

(k)
−i . Our computational

results show that Algorithm 5.1 performs very well for solving GNEPPs, even if for nonconvex

ones. First, we see some examples of the GPGs from Section 5.2.

Example 5.17. Consider the environmental pollution problem in the introduction and Ex-

ample 5.9. We have seen that it is a GPG. Assume the number of players is N = 2 and

the parameters b1 = b2 = 2, E1 = E2 = 1, γ1,1 = 0.7, γ1,2 = 0.9, γ2,1 = γ2,2 = 0.8. We run

Algorithm 5.1 with x
(0)
1,0 = x

(0)
1,1 = · · · = x

(0)
2,2 = 0.5, and τ (0) = 0.1, τ (k+1) updated as in (5.22).

After 21 iterations, we get

x
(21)
1,0 = 0.9999, x

(21)
1,1 = 0, x

(21)
1,2 = 0, x

(21)
2,0 = 0.7500, x

(21)
2,1 = 0, x

(21)
2,2 = 0.9375.

Its accuracy parameter ε = 1.7856 · 10−8. It costs about 7 seconds.

Example 5.18. i) Consider the GNEP in Example 5.13. It is a GPG. All the individual

optimization problems are convex. We run Algorithm 5.1 with the initial point (x
(0)
1 , x

(0)
2) =

(3, 2) and fixed τ (k) = 0.02, and get a GNE (2.0000, 2.0000) with ε = 6.1541 · 10−8. It runs

12 iterations and costs 2.6289 seconds.

ii) Consider the GNEP in Example 5.14. It is a GPG. We run Algorithm 5.1 with the initial

point (x
(0)
1 , x

(0)
2) = (1, 0.125) and fixed τ (k) = 0.02. It returns the GNE (1.2595, 0.1250) with

ε = 2.2891 · 10−9. It runs 12 iterations and costs around 2 seconds.

iii) Consider the GNEP in Example 5.15. It is a GPG. All the individual optimization

problems are convex. We run Algorithm 5.1 with the initial point (x
(0)
1,1, x

(0)
1,2, x

(0)
2) = (1, 1, 2)

and fixed τ (k) = 0.02. It returns the GNE (1.3229, 0.5000, 1.5229) with ε = 1.3631 · 10−7. It

runs 12 costs around 3 seconds.

82

iv) Consider the GNEP in Example 5.16. It is numerically verified to be a GPG. We run

Algorithm 5.1 with the initial point (x
(0)
1 , x

(0)
2) = (0.2, 0.3) and fixed τ (k) = 0.02. For k = 12,

we get x(12) = (0.9539, 0.3). The iteration difference is 2.1792 · 10−8 and the GNE accuracy

ε = 5.4170 · 10−9. It costs about 1.6 seconds.

Example 5.19. Consider the 2-player GNEP such that the individual optimization problems

are respectively

min
x1∈R2

x1,1(x1,2 + 2x2,1 + 2x2,2) min
x2∈R2

(x1,1)
2 + (x1,2)

2

+x1,2(x2,1 + x2,2) + 2x2,1x2,2 −(x2,1)
2 − (x2,2)

2

s .t .
2∑
i=1

2∑
j=1

xi,j = 1, s .t .
2∑
i=1

2∑
j=1

xi,j = 1,

x1,1 ≥ 0, x1,2 ≥ 0, x2,1 ≥ 0, x2,2 ≥ 0.

By solving the semidefinite program (5.34), we can numerically check that this GNEP is a

GPG. Run Algorithm 5.1 with the initial points x
(0)
1 = (0.2, 0.3), x

(0)
2 = (0.2, 0.3) and fixed

τ (k) = 0.02. After 19 loops, we get that

x(19) = (0, 0.5, 0, 0.5).

It is a GNE with accuracy parameter ε = 5.1857 · 10−7. It costs about 5.36 seconds.

Example 5.20. Consider the 2-player GNEP whose optimization problems are

min
x1∈R2

−2(x1,2)
2 + x2,1x1,2 + x1,1x2,1 min

x2∈R2
(x2,1)

2 − 2x1,2x2,2

−2x1,1x2,2 + (x2,2)
2

s .t . x1,1 + x1,2 + x2,1 + x2,2 = 1 s .t . x1,1 + x1,2 + x2,1 + x2,2 = 1

x1,1, x1,2 ≥ 0.1 x2,1, x2,2 ≥ 0.1

By solving the semidefinite program (5.34), one can numerically check that this GNEP is a

GPG. We run Algorithm 5.1 with

x(0) = (0.25, 0.25, 0.25, 0.25), τ (0) = 0.1,

and τ (k+1) updated as (5.22). For k = 12, we get

x(12) = (0.1000, 0.4000, 0.1000, 0.4000),

which is a GNE. The accuracy ε = 1.14611 · 10−8. It costs around 2.7 seconds.

83

Example 5.21. Consider the GNEP whose optimization problems are

min
x1∈R2

(x1,1)
2 + (x1,2)

2 + x1,1 + x1,2 min
x2∈R2

(x2,2)
2 − x2,1x2,2

s .t . ‖x1‖2 + ‖x2‖2 ≤ 1, s .t . ‖x1‖2 + ‖x2‖2 ≤ 1,

x1,1 ≥ 0, x1,2 ≤ 0.5, x2,1 ≤ 0, 0.3 ≤ x2,2 ≤ 0.8.

This is a GPG [37]. We run Algorithm 5.1 with

x
(0)
1 = (0.5, 0.5), x

(0)
2 = (−0.6, 0.6), τ (0) = 0.1,

and τ (k+1) updated as (5.22). For k = 16, we get x(16) = (0,−0.5, 0, 0.3) as a GNE with

accuracy parameter ε = 4.1908 · 10−10. It costs around 4.11 seconds.

Example 5.22. Consider the 3-player GNEP whose optimization problems are

min
x1∈R1

(x1 − x2)2 min
x2∈R1

(x2 − x3)2 min
x3∈R1

(x3 − x1)2

s .t .
∑3

i=1(xi)
2 ≤ 10 s .t . x2 ≤ 3 s .t .

∑3
i=1 xi ≤ 6.

Any feasible point x with x1 = x2 = x3 is a GNE, with optimal value 0 for all players. If we

run Algorithm 5.1 with (x
(0)
1 , x

(0)
2 , x

(0)
3) = (0, 1, 2) and τ (k) = 0 (which is actually not allowed

since we require τ > 0, but we still show the result of τ = 0 in order to show the necessity

of a positive τ), then we get an alternating sequence

(0, 1, 2) −→ (1, 1, 2) −→ (1, 2, 2) −→ (1, 2, 1) −→ (2, 2, 1)

−→ (2, 1, 1) −→ (2, 1, 2) −→ (1, 1, 2) −→ · · · .

If we run Algorithm 5.1 with the same initial point x(0) = (0, 1, 2) but different regularization

parameter τ (k), the computational results are reported in Table 5.1. We run it for five

different τ (k). Two of them are fixed values 0.1, 0.05, and the other one is τ0 = 0.5, τ (k+1)

updated as (5.22). In the table, “Iteration Difference” is the value of

max
291≤i<j≤300

‖x(i) − x(j)‖∞

since none of these five sequence satisfies (5.37) at the 300 iteration. The “ε” is the value

such that x(300) can be verified up to accuracy ε as a GNE.

Example 5.23. Consider the following 2-player GNEP

min
x1∈R2

(x1,1)
3 + x1,2x2,1 + x1,1x1,2 + x2,2 min

x2∈R2
−(x2,1)

4 + x1,1(x2,2)
2

s .t . (x1,1)
2 + (x1,2)

2 ≤ 1 s .t . x1,1 ≤ (x2,1)
2 + (x2,2)

2 ≤ 1.

84

Table 5.1: Computational Results for Example 5.22

τ (k+1) x1 x2 x3 Iteration Difference ε
0.1000 1.4289 1.4289 1.4289 1.9139 · 10−5 10−7

0.0500 1.4494 1.4494 1.4494 5.2015 · 10−5 10−7

(5.22) 1.4116 1.4106 1.4116 0.0020 10−6

It can be observed that both objective functions are nonconvex. Further the feasible set of

the second player is not convex neither. We run Algorithm 5.1 with x(0) = (0.5, 0.5, 0.6, 0.6)

and fixed τ (k) = 0.02. For k = 16, we get

x(16) = (−0.9342, −0.3568, 1.0000, −3.7839 · 10−5),

which is a GNE. The accuracy ε = 6.1075 · 10−8. It costs around 3.68 seconds.

Example 5.24. ([32, 55]) Consider the example of a model for Internet switching [32, 55].

Assume there are N users, and the maximum capacity of the buffer is B. The xi denotes the

amount of ith user’s “packets” in the buffer. It is clear xi ≥ 0 for any i. We also suggest the

buffer is managed with “drop-tail” policy, which means if the buffer is full, further packets

will be lost and resent. Let xi
x1+···+xN

be the transmission rate of user i, and x1+···+xN
B

represent

the congestion level of the buffer, and 1− x1+···+xN
B

measure the decrease in the utility of the

ith user as the congestion level increases. The ith user’s optimization problem is min
xi

fi(x) = − xi
x1+···+xN

(1− x1+···+xN
B

)

s .t . xi ≥ 0, x1 + · · · xN ≤ B.

It can be transformed into a polynomial optimization problem by introducing a new variable

yi for each player. The GNEP is then equivalent to that
min
xi,yi

−xiyi(1−
∑
xi
B

)

s .t . xi ≥ 0, x1 + · · ·xN ≤ B

(x1 + · · ·+ xN)yi = 1.

Here, we consider the case that B = 1 and N = 10, and run Algorithm 5.1 with the initial

point

(0.4, 0.01, 0.01, . . . , 0.01︸ ︷︷ ︸
9 times

, 1/0.49, 1/0.49, . . . , 1/0.49︸ ︷︷ ︸
10 times

),

85

and τ (0) = 0.1. The parameters τ (k) are updated as in (5.22). After 47 iterations, Algo-

rithm 5.1 returned the point (here we only show the result of x1, . . . , x10)

(0.09, 0.09, . . . , 0.09).

with accuracy parameter ε = 1.6344 · 10−8. It costs around 61.93 seconds.

Example 5.25. ([35, A. 1]) Consider a variation of the GNEP in the last example that

we change the constraints of the first player to 0.3 ≤ xi ≤ 0.5. This GNEP can also be

transformed into a GNEPP by introducing a new variable yi for each player and it is then

equivalent to that

player i = 1 player i > 1

min
x1,y1∈R

−x1y1(1−
∑
x1
B

) min
xi,yi∈R

−xiyi(1−
∑
xi
B

)

s .t . 0.3 ≤ x1 ≤ 0.5 s .t . x1 + · · ·+ xN ≤ B, xi ≥ 0.001

(x1 + · · ·+ xN)y1 = 1 (x1 + · · ·+ xN)yi = 1.

Here, we consider the case that B = 1 and N = 10, the same as in [35]. We run Algorithm 5.1

with the initial point

(0.3, 0.01, 0.01, . . . , 0.01︸ ︷︷ ︸
9 times

, 1/0.39, 1/0.39, . . . , 1/0.39︸ ︷︷ ︸
10 times

)

and τ (0) = 0.1. The parameters τ (k) are updated as in (5.22). After 47 iterations, Algo-

rithm 5.1 returned the point (here we only show the result of x1, . . . , x10)

(0.3, 0.06943, 0.06943, . . . , 0.06943).

with accuracy parameter ε = 1.1261 · 10−8. It costs around 60.69 seconds.

Example 5.26. Consider the GNEP which is the same as in Example 5.25 except we change

the objective function to

fi(x) =
xi

x1 + · · ·+ xN
(1− x1 + · · ·+ xN

B
).

We still consider the case that B = 1 and N = 10, and the same technique to transform each

player’s subproblem into polynomial optimization problems. Start from the initial point

(0.3, 0.01, 0.01, . . . , 0.01︸ ︷︷ ︸
9 times

, 1/0.39, 1/0.39, . . . , 1/0.39︸ ︷︷ ︸
10 times

)

86

with τ (0) = 0.1 and τ (k) updated as in (5.22). After 44 iterations, Algorithm 5.1 returns the

GNE (here we only show the result of x1, . . . , x10)

(0.5000, 0.4920, 0.0010, . . . , 0.0010)

with the accuracy parameter ε = 3.7773 · 10−7. It took about 59 seconds.

Example 5.27. (Random GNEPPs with joint simplex/ball constraints) We randomly gen-

erate objective polynomials for each player with the joint simplex/ball constraint

N∑
i=1

ni∑
j=1

xi,j = 1, xi,j ≥ 0, or ‖x1‖2 + · · ·+ ‖xN‖2 ≤ 1.

We generate 100 random instances and count the number of problems that was solved suc-

cessfully by Algorithm 5.1. The accuracy parameter is set to be ε = 10−6 for checking x(k)

as a GNE, i.e., we regard (x(k)) as a GNE if (5.38) was satisfied with ε = 10−6. For each

instance, we run Algorithm 5.1 for at most 200 loops with τ (0) = 0.1, τ (k+1) updated as in

(5.22). If it does not return a GNE with required accuracy, we regard that it fails to solve

the GNEP. The performance of Algorithm 5.1 is reported in Table 5.2. The number N is

the number of players, ni is the dimension of the ith player’s strategy vector, and d is the

degree of objective polynomials. The time is measured in seconds.

Table 5.2: Computational Results for Example 5.27

Joint Simplex Joint Ball
N (n1, . . . , nN) d Succ. Rate Ave. Time Succ. Rate Ave. Time
3 (2,2,2) 3 100% 9.97 94 % 16.71
3 (2,2,2) 4 92% 46.10 83 % 37.88
3 (3,3,3) 2 95% 11.21 97 % 9.93
3 (3,3,3) 3 92% 36.21 96 % 38.44
3 (3,3,3) 4 84% 98.76 88 % 88.98
4 (3,3,3,3) 2 94% 19.50 96 % 19.10
2 (4,3) 3 97% 13.53 92 % 17.55
2 (4,3) 4 92% 52.54 94 % 55.65
3 (3,2,4) 2 96% 9.43 97 % 9.09
3 (3,2,4) 3 92% 44.53 98 % 26.06
4 (3,2,4,2) 2 93% 19.52 95 % 22.73
4 (3,2,4,2) 3 94% 70.76 96 % 89.46

87

5.3.1 Test problems in [35]

We apply Algorithm 5.1 to solve the GNEPs in [35] that are GNEPPs or that can

be transformed into GNEPPs. We normalize the objective functions such that the greatest

absolute values of the coefficients are equal to one. For example, the problem A.17 in [35] is

normalized as follows:

min
x1∈R2

1
38

((x1,1)
2 + x1,1x1,2 + (x1,2)

2) min
x2∈R1

1
25

(x1,1 + x1,2)x2,1

+(x1,1 + x1,2)x2,1 − 25x1,1
38
− x1,2 + 1

25
(x2,1)

2 − x2,1
s .t . x1,1 + 2x1,2 − x2,1 ≤ 14, s .t . x1,1 + 2x1,2 − x2,1 ≤ 14,

3x1,1 + 2x1,2 + x2,1 ≤ 30, 3x1,1 + 2x1,2 + x2,1 ≤ 30,

x1 ≥ 0, x1 ≥ 0.

For the test problem A.2 and A.14, we use the same technique as shown in Example 5.25

to transform these non-polynomial GNEPs into GNEPPs. For the test problem A.10a, we

run Algorithm 5.1 with the same initial point as in [35] and yield an alternative sequence

that that is not convergent. Moreover, we also run Algorithm 5.1 with randomly generated

feasible initial points for 100 times and no convergent sequence can be obtained. All the

parameters are settled the same as in [35] for each problem. The computational results

are shown in Table 5.3, where e denotes the vector of all ones. All the problems, except

problem A.10a, were solved successfully by Algorithm 5.1.

Acknowledgments. This Chapter, in full, is a reprint of the material as it appears

in Computational Optimization and Applications, Springer Science+Business Media. The

dissertation author coauthored this paper with Nie, Jiawang and Xu, Lingling.

88

Table 5.3: Computational Results for test problems in [35]

problem initial point τ0 τ (k+1) iterations time ε
A.2 0.05e 0.1 (5.22) 27 37.61 0.73 · 10−7

A.3 0.1e 0.1 (5.22) 46 13.13 0.10 · 10−5

A.4 0.1e 0.1 (5.22) 12 10.96 0.32 · 10−6

A.5 0.1e 0.1 (5.22) 25 10.21 0.16 · 10−7

A.6 e 0.1 (5.22) 38 11.38 0.41 · 10−6

A.7 e 0.1 (5.22) 17 10.74 0.21 · 10−7

A.8 0.5e 0.1 (5.22) 54 14.84 0.52 · 10−6

A.10a see [35] 0.1 (5.22) 200 not convergent
A.11 0.5e 0.1 (5.22) 37 4.86 0.11 · 10−6

A.12 e 0.1 (5.22) 65 7.22 0.17 · 10−7

A.13 e 0.1 (5.22) 12 2.01 0.71 · 10−8

A.14 0.1e 0.1 (5.22) 42 50.50 0.56 · 10−8

A.15 e 0.0001 (5.22) 200 45.51 0.13 · 10−5

A.17 e 0.001 (5.22) 200 25.82 0.19 · 10−7

A.18 e 0.5 (5.22) 200 59.11 0.29 · 10−5

89

Bibliography

[1] A.A. Ahmadi and P.A. Parrilo. Sum of squares and polynomial convexity, Proc. IEEE
Conf. Decision Control, 2009.

[2] A.A. Ahmadi and P.A. Parrilo. A complete characterization of the gap between con-
vexity and SOS-convexity SIAM Journal on Optimization, 23.2 (2013): 811-833.

[3] J. Anselmi, D. Ardagna and M. Passacantando, Generalized nash equilibria for
saas/paas clouds, European Journal of Operational Research, 236.1 (2014): 326-339.

[4] A. A. Ahmadi and J. Zhang, Semidefinite programming and Nash equilibria in bimatrix
games, INFORMS Journal on Computing, to appear.

[5] J.P. Aubin, Optima and equilibria: an introduction to nonlinear analysis, vol. 140,
Springer Science & Business Media, 2013.

[6] D. Ardagna, M. Ciavotta and M. Passacantando, Generalized Nash equilibria for the
service provisioning problem in multi-cloud systems, IEEE Transactions on Services
Computing, 10 (2017), pp. 381–395.

[7] K. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econo-
metrica: Journal of the Econometric Society, 22 (1954), pp. 265–290.

[8] J. Aubin and H. Frankowska, Set-Valued Analysis, Springer Science & Business Media,
2009.

[9] D. Aussel and S. Sagratella, Sufficient conditions to compute any solution of a quasi-
variational inequality via a variational inequality, Mathematical Methods of Operations
Research, 85(1), 3-18, (2017).

[10] R. Aumann, and A. Brandenburger, Epistemic conditions for Nash equilibrium, Econo-
metrica: Journal of the Econometric Society (1995): 1161-1180.

[11] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, SIAM, 23 (1999).

[12] B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Non-Linear Parametric
Optimization, Akademie-Verlag, Berlin (1982).

[13] T. Başar and G. J. Olsder, Dynamic noncooperative game theory, SIAM, 1998.

90

[14] M. G. Bell, A game theory approach to measuring the performance reliability of trans-
port networks, Transportation Research Part B: Methodological, 34(6), 533-545, 2000.

[15] E.G. Belousov and D. Klatte, A Frank–Wolfe type theorem for convex polynomial pro-
grams, Computational Optimization and Applications, 22.1 (2002): 37-48.

[16] D. Bertsekas. Nonlinear programming, second edition, Athena Scientific, 1995.

[17] J. Björnerstedt and J.W. Weibull, Nash equilibrium and evolution by imitation, No.
407, IUI Working Paper, 1994.

[18] J. Bochnak, M. Coste, and M. F. Roy, Real algebraic geometry, 293.C310, Vol. 36.
Springer Science & Business Media, 2013.

[19] M. Breton, G. Zaccour, and M. Zahaf, A game-theoretic formulation of joint imple-
mentation of environmental projects, European Journal of Operational Research, 168
(2006), pp. 221–239.

[20] Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods for a class of saddle
point problems. SIAM J. Optim., 24(4), 1779–1814, 2014.

[21] J. Contreras, M. Klusch and J.B. Krawczyk. Numerical solutions to Nash-Cournot equi-
libria in coupled constraint electricity markets, IEEE Transactions on Power Systems
19.1 (2004): 195-206.

[22] E. Couzoudis and P. Renner, Computing generalized Nash equilibria by polynomial
programming, Mathematical Methods of Operations Research, 77.3 (2013), pp. 459-472.

[23] R. E. Curto, and L. A. Fialkow, Truncated K-moment problems in several variables,
Journal of Operator Theory, pp.189-226, 2005.

[24] C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou, The complexity of computing
a Nash equilibrium, SIAM Journal on Computing, 39(1), 195-259, 2009.

[25] R.S. Datta, Universality of Nash equilibria, Mathematics of Operations Research, 28
(2003), no. 3, 424–432.

[26] R.S. Datta, Finding all Nash equilibria of a finite game using polynomial algebra,
Economic Theory, 42 (2010), no. 1, 55–96.

[27] G. Debreu, A social equilibrium existence theorem, Proceedings of the National Academy
of Sciences, 38 (1952), pp. 886–893.

[28] A. Dreves, F. Facchinei, A. Fischer, and M. Herrich, A new error bound result for
Generalized Nash Equilibrium Problems and its algorithmic application, Computational
Optimization and Applications, 59 (2014), pp. 63–84.

[29] A. Dreves, F. Facchinei, C. Kanzow, and S. Sagratella, On the solution of the KKT
conditions of Generalized Nash Equilibrium Problems, SIAM Journal on Optimization,
21 (2011), pp. 1082–1108.

91

[30] F. Facchinei, A. Fischer, and V. Piccialli, On generalized nash games and variational
inequalities, Operations Research Letters, 35 (2007), pp. 159–164.

[31] F. Facchinei, A. Fischer, and V. Piccialli, On generalized nash games and variational
inequalities, Operations Research Letters, 35 (2007), pp. 159–164.

[32] F. Facchinei, A. Fischer, and V. Piccialli, Generalized Nash Equilibrium Problems and
Newton methods, Mathematical Programming, 117 (2009), pp. 163–194.

[33] F. Facchinei and C. Kanzow, Generalized Nash Equilibrium Problems, Annals of Oper-
ations Research, 175.1 (2010): 177-211.

[34] F. Facchinei and C. Kanzow, Generalized nash equilibrium problems, 4OR, 5 (2007),
pp. 173–210.

[35] F. Facchinei and C. Kanzow, Penalty methods for the solution of Generalized Nash
Equilibrium problems, SIAM Journal on Optimization, 20 (2010), pp. 2228–2253.

[36] F. Facchinei and L. Lampariello, Partial penalization for the solution of Generalized
Nash Equilibrium Problems, Journal of Global Optimization, 50(1):39-57, 2011.

[37] F. Facchinei, V. Piccialli, and M. Sciandrone, Decomposition algorithms for generalized
potential games, Computational Optimization and Applications, 50 (2011), pp. 237–262.

[38] L. Fialkow and J. Nie, The truncated moment problem via homogenization and flat
extensions, Journal of Functional Analysis, 263(6), 1682–1700, 2012.

[39] A. Fischer, M. Herrich, and K. Schönefeld, Generalized Nash Equilibrium Problems-
recent advances and challenges, Pesquisa Operacional, 34 (2014), pp. 521–558.

[40] M. Fukushima, Restricted generalized Nash equilibria and controlled penalty algorithm,
Computational Management Science, 8 (2011), pp. 201–208.

[41] G. Gürkan and J.S. Pang, Approximations of Nash equilibria, Mathematical Program-
ming, 117(1-2), pp. 223–253, 2009.

[42] M.R. Garfinkel, Domestic politics and international conflict, The American Economic
Review, 1294-1309, 1994.

[43] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville and Y. Bengio, Generative adversarial nets, In Advances in neural infor-
mation processing systems (pp. 2672-2680), 2014

[44] D. Han, H. Zhang, G. Qian, and L. Xu, An improved two-step method for solving
Generalized Nash Equilibrium Problems, European Journal of Operational Research,
216(3), 613-623, 2012.

[45] P. Harker, Generalized nash games and quasi-variational inequalities, European Journal
of Operational Research, 54 (1991), pp. 81–94.

92

[46] J. Harris, Algebraic Geometry A First Course., Springer Verlag, Berlin, 1992.

[47] J.W. Helton and J. Nie, Semidefinite representation of convex sets, Mathematical
Programming, 122.1 (2010): 21-64.

[48] D. Henrion and J. Lasserre, Detecting global optimality and extracting solutions in
GloptiPoly, Positive polynomials, 293.C310, in controlLecture Notes in Control and
Inform. Sci. 312,Springer, Berlin, 2005.

[49] D. Henrion, J. Lasserre, and J. Löfberg, Gloptipoly 3: moments, optimization and
semidefinite programming, Optimization Methods and Software, 24(4-5):761–779, 2009.

[50] B. He and X. Yuan. Convergence analysis of primal-dual algorithms for a saddle-point
problem: from contraction perspective. SIAM J. Imaging Sci. 5 (2012), no. 1, 119–149.

[51] P.J.J. Herings, and R. Peeters. Homotopy methods to compute equilibria in game theory,
Economic Theory 42.1 (2010): 119-156.

[52] A. von Heusinger and C. Kanzow, Relaxation methods for Generalized Nash Equilibrium
Problems with inexact line search, Journal of Optimization Theory and Applications,
143 (2009), pp. 159–183.

[53] A. von Heusinger and C. Kanzow, Optimization reformulations of the Generalized Nash
Equilibrium Problem using Nikaido-Isoda-type functions, Computational Optimization
and Applications, 43 (2009), pp. 353–377.

[54] C. Kanzow and D. Steck, Augmented Lagrangian methods for the solution of Gen-
eralized Nash Equilibrium Problems, SIAM Journal on Optimization, 26 (2016), pp.
2034–2058.

[55] A. Kesselman, S. Leonardi and V. Bonifaci, Game-theoretic analysis of internet switch-
ing with selfish users, In: International Workshop on Internet and Network Economics,
26 (2005), pp. 236-245.

[56] E De Klerk, and M Laurent, On the Lasserre hierarchy of semidefinite programming re-
laxations of convex polynomial optimization problems, SIAM Journal on Optimization,
21.3 (2011): 824-832.

[57] S.C. Kontogiannis, P.N. Panagopoulou and P.G. Spirakis. Polynomial algorithms for
approximating nash equilibria of bimatrix games, International Workshop on Internet
and Network Economics, Springer, Berlin, Heidelberg, 2006.

[58] J.B. Krawczyk, and U. Stanislav, Relaxation algorithms to find Nash equilibria with
economic applications, Environmental Modeling & Assessment, 5.1 (2000): 63-73.

[59] J.B. Krawczyk, ECON 407 - Economic Dynamics B, Introduction to Dynamic Games
with Application - Course Notes, Works and Services, Printing Unit, Victoria University
of Wellington (May 1995) p. 1774.

93

[60] R. Laraki and J. Lasserre. Semidefinite programming for min-max problems and games,
Mathematical Programming, 131, pp. 305–332, 2012).

[61] J. Lasserre, Global optimization with polynomials and the problem of moments, SIAM
Journal on Optimization, 11 (2001), pp. 796–817.

[62] J. Lasserre, Convexity in semialgebraic geometry and polynomial optimization, SIAM
Journal on Optimization 19.4 (2009): 1995-2014.

[63] J. Lasserre, An introduction to polynomial and semi-algebraic optimization, Cambridge
University Press, Volume 52, 2015.

[64] J. Lasserre, The Moment-SOS Hierarchy, Proceedings of the International Congress of
Mathematicians (ICM 2018), vol. 3, B. Sirakov, P. Ney de Souza and M. Viana (Eds.),
pp. 3761–3784, World Scientific, 2019.

[65] J. Lasserre, M. Laurent and P. Rostalski, Semidefinite characterization and computa-
tion of zero-dimensional real radical ideals, Foundations of Computational Mathematics,
8(5), 607–647, 2008.

[66] M. Laurent, Revisiting two theorems of Curto and Fialkow on moment matrices, Pro-
ceedings of the American Mathematical Society, 133(10), 2965-2976, 2005.

[67] M. Laurent, Sums of squares, moment matrices and optimization over polynomials,
Emerging Applications of Algebraic Geometry of IMA Volumes in Mathematics and its
Applications, vol. 149, pp. 157–270, Springer, 2009.

[68] M. Laurent, Optimization over polynomials: Selected topics, Proceedings of the Inter-
national Congress of Mathematicians, ICM 2014, S. Jang, Y. Kim, D-W. Lee, and I. Yie
(eds.), pp. 843-869, 2014.

[69] C.E. Lemke, J.T. Howson, Jr, Equilibrium points of bimatrix games. Journal of the
Society for industrial and Applied Mathematics, Journal of the Society for industrial
and Applied Mathematics, 12(2), pp.413-423,1964.

[70] S. Li and T. Başar, Distributed algorithms for the computation of noncooperative
equilibria, Automatica, vol. 23, no. 4, pp. 523–533, 1987.

[71] R.J. Lipton and E. Markakis, Nash Equilibria via Polynomial Equations, In: Farach-
Colton M. (eds) LATIN 2004: Theoretical Informatics, LATIN 2004. Lecture Notes in
Computer Science, vol 2976. Springer, Berlin, Heidelberg.

[72] J. Lofberg, YALMIP: A toolbox for modeling and optimization in MATLAB, 2004 IEEE
international conference on robotics and automation (IEEE Cat. No. 04CH37508),
IEEE, 2004.

[73] A.B. MacKenzie and S.B. Wicker, Game theory in communications: Motivation, expla-
nation, and application to power control, In GLOBECOM’01. IEEE Global Telecom-
munications Conference (Cat. No. 01CH37270) (Vol. 2, pp. 821-826). IEEE.

94

[74] X. Mao, Q. Li, H. Xie, R.Y. Lau, Z. Wang, and S. Paul Smolley, Least squares generative
adversarial networks, In Proceedings of the IEEE International Conference on Computer
Vision, (pp. 2794-2802), 2017.

[75] D. Maistroskii. Gradient methods for finding saddle points, Matekon 13, 3–22 (1977).

[76] E. Maskin, Nash equilibrium and welfare optimality, The Review of Economic Studies,
6(1), 23-38, 1999.

[77] L. McKenzie, On the existence of a general equilibrium for a competitive market, Econo-
metrica, 27 (1959), pp. 54-C71.

[78] D. Monderer and L. Shapley, Potential games, Games Econ. Behav., 14 (1996), pp.
124–143.

[79] R.B. Myerson, Nash equilibrium and the history of economic theory, Journal of Eco-
nomic Literature, 37.3 (1999): 1067-1082.

[80] R.B. Myerson, Game theory, Harvard University Press, 2013.

[81] K. Nabetani, P. Tseng, and M. Fukushima, Parametrized variational inequality ap-
proaches to Generalized Nash Equilibrium Problems with shared constraints, Compu-
tational Optimization and Applications, 48 (2011), pp. 423–452.

[82] J. Nash, Equilibrium points in n-person games, Proc. Natl. Acad. Sci., 36 (1950), pp.
48–49.

[83] J. Nash, Non-cooperative games, Annals of mathematics, (1951): 286-295.

[84] J. Neel, J. Reed, and R. Gilles, The role of game theory in the analysis of software radio
networks, In Proceedings of SDR forum technical conference, (2002), 2250–2255.

[85] A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities
with Lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM J. Optim. 15 (2004), no. 1, 229–251.

[86] J. Nie and B. Sturmfels, Matrix cubes parameterized by eigenvalues, SIAM journal on
matrix analysis and applications, 31 (2), 755–766, 2009.

[87] J. Nie and R. Kristian, Algebraic degree of polynomial optimization, SIAM Journal on
Optimization, 20.1 (2009): 485-502.

[88] J. Nie, Certifying convergence of Lasserre’s hierarchy via flat truncation, Mathematical
Programming, 142(1-2):485–510, 2013.

[89] J. Nie, Polynomial optimization with real varieties, SIAM Journal On Optimization
23.3 (2013): 1634-1646.

[90] J. Nie, Optimality conditions and finite convergence of Lasserre’s hierarchy. Mathemat-
ical programming, 146(1-2):97–121, 2014.

95

[91] J. Nie, The hierarchy of local minimums in polynomial optimization, Mathematical
Programming 151 (2), pp. 555–583, 2015.

[92] J. Nie, Linear optimization with cones of moments and nonnegative polynomials, Math-
ematical Programming, 153(1), 247–274, 2013.

[93] J. Nie, Generating polynomials and symmetric tensor decompositions, Foundations of
Computational Mathematics 17 (2), 423–465, 2017.

[94] J. Nie, Low rank symmetric tensor approximations, SIAM Journal on Matrix Analysis
and Applications, 38(4), 1517–1540, 2017.

[95] J. Nie, Tight relaxations for polynomial optimization and Lagrange multiplier expres-
sions, Mathematical Programming 178, no.1-2, pp. 1–37, 2019.

[96] J. Nie and K. Ye, Hankel tensor decompositions and ranks, SIAM Journal on Matrix
Analysis and Applications, vol. 40, no. 2, pp. 486–516, 2019.

[97] J. Nie, X. Tang and L. Xu, The Gauss-Seidel Method for Generalized Nash Equilibrium
Problems of Polynomials, Computational Optimization and Applications, (2020).

[98] J. Nie and X. Tang, Nash Equilibrium Problems of Polynomials, Preprint, 2020. arXiv:
2006.09490

[99] J. Nie and X. Tang, Convex Generalized Nash Equilibrium Problems and Polynomial
Optimization, Preprint, 2021. arXiv:2101.06504

[100] J. Nie, L. Wang, J. Ye and S. Zhong, A Lagrange Multiplier Expression Method for
Bilevel Polynomial Optimization, Preprint, 2020. arXiv:2007.07933

[101] J. Nie, Z. Yang and G. Zhou, The Saddle Point Problem of Polynomials, Preprint,
2018. arXiv:1809.01218

[102] G. Oggioni, Y. Smeers, E. Allevi, and S. Schaible, A Generalized Nash Equilibrium
model of market coupling in the european power system, Networks and Spatial Eco-
nomics, 12 (2012), pp. 503–560.

[103] M.J. Osborne and A. Rubinstein, A course in game theory, MIT press, 1994.

[104] D. Paccagnan, B. Gentile, F. Parise, M. Kamgarpour and J. Lygeros, Distributed
computation of generalized Nash equilibria in quadratic aggregative games with affine
coupling constraints, IEEE 55th Conference on Decision and Control (CDC), pp. 6123–
6128, IEEE, 2016.

[105] J. Pang and M. Fukushima, Quasi-variational inequalities, generalized nash equilibria,
and multi-leader-follower games, Computational Management Science, 2 (2005), pp.
21–56.

[106] M. Putinar, Positive polynomials on compact semi-algebraic sets. Indiana University
Mathematics Journal, 42(3):969–984, 1993.

96

[107] A. Radford, L. Metz and S. Chintala, Unsupervised representation learning with deep
convolutional generative adversarial networks, arXiv preprint, arXiv:1511.06434, 2015

[108] L.J. Ratliff, S.A. Burden, and S.S Sastry. Characterization and computation of local
nash equilibria in continuous games, 2013 51st Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton), IEEE, 2013.

[109] S. Robinson, Shadow prices for measures of effectiveness, I: Linear model, Operations
Research, 41 (1993), pp. 518–535.

[110] S. Robinson, Shadow prices for measures of effectiveness, II: General model, Operations
Research, 41 (1993), pp. 536–548.

[111] R. Rockafellar and R. Wets, Variational Analysis, Springer Science & Business Media,
Volume 317, 2009.

[112] J. Rosen, Existence and uniqueness of equilibrium points for concave n-person games,
Econometrica, 33 (1965), 520–534.

[113] A. Rubinstein, Perfect equilibrium in a bargaining model Econometrica: Journal of
the Econometric Society, 97-109, 1982.

[114] S. Sagratella, Computing all solutions of Nash equilibrium problems with discrete
strategy sets, SIAM Journal on Optimization, 26(4): 2190-2218, 2016.

[115] S. Sagratella, Computing equilibria of Cournot oligopoly models with mixed-integer
quantities, Mathematical Methods of Operations Research 86, no. 3 (2017): 549-565.

[116] S. Sagratella, Algorithms for generalized potential games with mixed-integer variables,
Computational Optimization and Applications 68, no. 3 (2017): 689-717.

[117] S. Sagratella, On Generalized Nash Equilibrium Problems with linear coupling con-
straints and mixed-integer variables, Optimization, 68.1 (2019): 197-226.

[118] R. Savani, and B. Von Stengel. Hard-to-solve bimatrix games, Econometrica, 74.2
(2006): 397-429.

[119] N. Schofield and I. Sened, Local Nash equilibrium in multiparty politics, Annals of
Operations Research, 109(1-4), 193-211.

[120] M. Schweighofer, Optimization of polynomials on compact semialgebraic sets, SIAM
J. Optim., vol. 15, no. 3, pp. 805–825, 2005.

[121] S. Scotti, Structural design using equilibrium programming formulations, Ph.D Thesis,
1995.

[122] I. R. Shafarevich, Basic Algebraic Geometry 1, Springer-Verlag Berlin Heidelberg 2013

[123] A. Shaked, Existence and computation of mixed strategy Nash equilibrium for 3-firms
location problem The Journal of Industrial Economics, (1982): 93-96.

97

[124] J. Sturm, Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones.
Optimization methods and software, 11(1-4):625–653, 1999.

[125] L. Sun and Z. Gao, An equilibrium model for urban transit assignment based on game
theory, European Journal of Operational Research, 181 (2007), pp. 305–314.

[126] S. Uryas’ev and R.Y. Rubinstein, On relaxation algorithms in computation of non-
cooperative equilibria, IEEE Transactions on Automatic Control, vol. 39, no. 6, pp.
1263–1267, 1994.

[127] D.E. Wildasin, Nash equilibria in models of fiscal competition. Journal of public
economics, 35(2), 229-240, 1988.

[128] H. Yin, U.V. Shanbhag, and P.G. Mehta, Nash equilibrium problems with congestion
costs and shared constraints, In Proceedings of the 48h IEEE Conference on Decision
and Control (CDC), held jointly with 2009 28th Chinese Control Conference (pp. 4649-
4654). IEEE.

[129] D. Yue and F. You, Game-theoretic modeling and optimization of multi-echelon supply
chain design and operation under stackelberg game and market equilibrium, Computers
& Chemical Engineering, 71 (2014), 347–361.

[130] I. Zabotin. A subgradient method for finding a saddle point of a convex-concave func-
tion. Issled. Prikl. Mat. 15, 6–12 (1988).

[131] J. Zhou, W. Lam, and B. Heydecker, The Generalized Nash Equilibrium model
for oligopolistic transit market with elastic demand, Transportation Research Part B:
Methodological, 39 (2005), pp. 519–544.

98

