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Abstract

Many statistical learning methods such as matrix completion, matrix regression, and multiple 

response regression estimate a matrix of parameters. The nuclear norm regularization is frequently 

employed to achieve shrinkage and low rank solutions. To minimize a nuclear norm regularized 

loss function, a vital and most time-consuming step is singular value thresholding, which seeks the 

singular values of a large matrix exceeding a threshold and their associated singular vectors. 

Currently MATLAB lacks a function for singular value thresholding. Its built-in svds function 

computes the top r singular values/vectors by Lanczos iterative method but is only efficient for 

sparse matrix input, while aforementioned statistical learning algorithms perform singular value 

thresholding on dense but structured matrices. To address this issue, we provide a MATLAB 

wrapper function svt that implements singular value thresholding. It encompasses both top 

singular value decomposition and thresholding, handles both large sparse matrices and structured 

matrices, and reduces the computation cost in matrix learning algorithms.
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1. Introduction

Many modern statistical learning problems concern estimating a matrix-valued parameter. 

Examples include matrix completion, regression with matrix covariates, and multivariate 

response regression. Matrix completion (Candès and Recht 2009; Mazumder, Hastie, and 

Tibshirani 2010) aims to recover a large matrix of which only a small fraction of entries are 

observed. The problem has sparked intensive research in recent years and is enjoying a 

broad range of applications such as personalized recommendation system (ACM SIGKDD 

and Netflix 2007) and imputation of massive genomics data (Chi, Zhou, Chen, Del Vecchyo, 

and Lange 2013). In matrix regression (Zhou and Li 2014), the predictors are two 
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dimensional arrays such as images or measurements on a regular grid. Thus it requires a 

regression coefficient array of same size to completely capture the effects of matrix 

predictors. Another example is regression with multiple responses (Yuan, Ekici, Lu, and 

Monteiro 2007; Zhang, Zhou, Zhou, and Sun 2017), which involves a matrix of regression 

coefficients instead of a regression coefficient vector.

In these matrix estimation problems, the nuclear norm regularization is often employed to 

achieve a low rank solution and shrinkage simultaneously. This leads to a general 

optimization problem

minimize ℓ(B) + λ B *, (1)

where ℓ is a relevant loss function, B ∈ ℝm × n is a matrix parameter, 

B * = ∑iσi(B) = σ(B) 1 (sum of singular values of B) is the nuclear norm of B, and λ is a 

positive tuning parameter that balances the trade-off between model fit and model 

parsimony. The nuclear norm plays the same role in low-rank matrix approximation that the 

ℓ1 norm plays in sparse regression. Generic optimization methods such as accelerated 

proximal gradient algorithm, majorization-minorization (MM) algorithm, and alternating 

direction method of multipliers (ADMM) have been invoked to solve optimization problem 

(1). See, e.g., Mazumder et al. (2010); Boyd, Parikh, Chu, Peleato, and Eckstein (2011); 

Parikh and Boyd (2013); Chi et al. (2013); Lange, Chi, and Zhou (2014) for matrix 

completion algorithms and Zhou and Li (2014); Zhang et al. (2017) for the accelerated 

proximal gradient method for solving nuclear norm penalized regression. All these 

algorithms involve repeated singular value thresholding, which is the proximal mapping 

associated with the nuclear norm regularization term

A arg min1
2 X − A F

2
+ λ X

*
. (2)

Let the singular value decomposition of A be Udiag σi V ⊤ = ∑iσiuivi⊤. The solution of (2) is 

given by ∑i σi − λ +uivi⊤ (Cai, Candès, and Shen 2010). Some common features characterize 

the singular value thesholding operator in applications. First the involved matrices are often 

large. For matrix completion problems, m, n can be at order of 103 ~ 106. Second only the 

singular values that exceed λ and their associated singular vectors are needed. Third the 

involved matrix is often structured. In this article, we say a matrix is structured if matrix-

vector multiplication is fast. For example, in matrix completion problems, A is of the form 

“sparse + low rank”. That is A = M + LR⊤, where M is sparse and L ∈ ℝm × r and R ∈ ℝn × r

are low rank r ≪ min{m, n}. Although A is not sparse itself, matrix-vector multiplications 

Av and w⊤ A cost O(m+n) flops instead of O(mn). Storing the sparse matrix M and L and R 
also takes much less memory than the full matrix A. All these characteristics favor the 

iterative algorithms for singular value decomposition such as the Lanczos bidiagonalization 

method (Golub and Van Loan 1996).
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Most algorithms for aforementioned applications are developed in MATLAB (The 

MathWorks Inc. 2013), which however lacks a convenient singular value thresholding 

functionality. The most direct approach for SVT is applying full SVD through svd and then 

soft-threshold the singular values. This approach is in practice used in many matrix learning 

problems according to the distributed code, e.g., Kalofolias, Bresson, Bronstein, and 

Vandergheynst (2014); Chi et al. (2013); Parikh and Boyd (2013); Yang, Wang, Zhang, and 

Zhao (2013); Zhou, Liu, Wan, and Yu (2014); Zhou and Li (2014); Zhang et al. (2017); 

Otazo, Candès, and Sodickson (2015); Goldstein, Studer, and Baraniuk (2015), to name a 

few. However, the built-in function svd is for full SVD of a dense matrix, and hence is very 

time-consuming and computationally expensive for large-scale problems. Another built-in 

function svds wraps the eigs function to calculate top singular triplets using iterative 

algorithms. However the current implementation of svds is efficient only for sparse matrix 

input, while the matrix estimation algorithm involves singular value thresholding of dense 

but structured matrices. Another layer of difficulty is that the number of singular values 

exceeding a threshold is often unknown. Therefore singular value thresholding involves 

successively computing more and more top singular values and vectors until hitting below 

the threshold.

To address these issues, we develop a MATLAB wrapper function svt for the SVT 

computation. It is compatible with MATLAB’s svds function in terms of computing a fixed 

number of top singular values and vectors of sparse matrices. However it is able to take 

functional handle input, offering the flexibility to exploit matrix structure. More importantly, 

it automatically performs singular value thresholding with a user-supplied threshold and can 

be easily used as a plug-in subroutine in many matrix learning algorithms.

We discuss implementation details in Section 2 and describe syntax and example usage in 

Section 3. Section 4 evaluates numerical performance of the svt function in various 

situations. We conclude with a discussion in Section 5.

2. Algorithm and implementation

Our implementation hinges upon a well-known relationship between the singular value 

decomposition of a matrix A ∈ ℝm × n, m ≥ n, and the eigenvalue decomposition of the 

symmetric augmented matrix 0 A⊤

A 0
 (Golub and Van Loan 1996, Section 8.6). Let the 

singular value decomposition of A be UΣV⊤, where U ∈ ℝm × n, Σ ∈ ℝn × n and V ∈ ℝn × n. 

Then

0 A⊤

A 0
= 1

2
V V
U −U ⋅ Σ 0

0 −Σ ⋅ 1
2

V V
U −U

⊤
. (3)

Therefore the SVD of A can be computed via the eigen-decomposition of the augmented 

matrix. Our wrapper function utilizes MATLAB’s built-in eigs function for computing the 

top eigenvalues and eigenvectors of large, sparse or structured matrices.
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In absence of a threshold, svt is similar to svds and calculates the top singular values and 

vectors. Since we allow function handle input, users can always take advantage of special 

structure in matrices by writing a user defined function for calculating matrix-vector 

multiplication. This is one merit of svt compared with MATLAB’s svds.

With a user input threshold, svt does singular value thresholding in a sequential manner. It 

first computes the top k (default is 6) singular values and vectors. Two methods have been 

implemented to gradually build up the requested subspace. Let Ur, Vr and σi, i = 1,…,r, be 

the singular values and vectors accrued so far. In the deflation method (Algorithm 1), we 

obtain next batch of incre (default is 5) singular values and vectors by working on the 

deflated matrix A−Urdiag(σ1,…,σr)Vr
⊤. In the succession method (Algorithm 2), originally 

hinted in Cai et al. (2010), we work on A directly and retrieve top k, k+incre, k+2·incre, …

singular values and vectors of the original matrix A successively. Both algorithms terminate 

as soon as a singular value below the threshold is identified. Efficiency of these two 

algorithms are compared in Section 4.5.
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3. The MATLAB function aspect

We demonstrate various usages of svt in this section. A complete demonstration script with 

output is available on the software web page http://hua-zhou.github.io/svt/.

To find the top k singular values and vectors of a matrix A, the usage is the same as 

MATLAB’s built-in function svds. A can be either full or sparse. By default, it computes the 

top 6 singular values and vectors

[U, S, V] = svt(A)

To request top 15 singular values and vectors, we use

[U, S, V] = svt(A, ‘k’, 15)

Users can also supply a function handle, instead of the matrix itself, that computes matrix-

vector multiplication. This allows svt to utilize a special structure other than sparsity. For 

example, suppose A is a 1000-by-1000 “sparse plus low rank” matrix M + LR⊤, where M is 

sparse and L, R ∈ ℝ1000 × 5 are two skinny and tall matrices. To compute the top 15 singular 

values and vectors, we first define a function that computes Av or w⊤A for arbitrary vectors 

v, w of compatible dimensions

function Av = Afun(v, trans)

 if trans

  Av = (v’ * M)’ + R * (v’ * L)’;

 else

  Av = M * v + L * (R’ * v);
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 end

end

and then call

[U, S, V] = svt(Afun, ‘k’, 15, ‘m’, 1000, ‘n’, 1000)

Note the function Afun needs to have access to the variables M, L and R and is best declared 

as a sub-function in the main computation routine. The dimensions of matrix are required 

when using a functional handle. ‘m’ is the number of rows and ‘n’ is the number of columns.

Great convenience of svt comes from singular value thresholding. That is to compute the 

singular values that exceed a threshold λ and associated singular vectors. The code

[U, S, V] = svt(A, ‘lambda’, 0.1)

computes the singular values and vectors of a matrix A that exceed 0.1. A can be either full 

or sparse. For a non-sparse, structured matrix, we can use the same function handle for 

singular value thresholding

[U, S, V] = svt(Afun, ‘lambda’, 0.1, ‘m’, 1000, ‘n’, 1000)

Again the dimensionality of the matrix must be specified by setting ‘m’ and ‘n’. By default, 

svt uses the deflation method for locating all singular values and vectors above the threshold. 

Users can change to the succession method by

[U, S, V] = svt(A, ‘lambda’, 0.1, ‘method’, ‘succession’)

or

[U, S, V] = svt(Afun, ‘lambda’, 0.1, ‘m’, 1000, ‘n’, 1000, ‘method’, … 

‘succession’)

For singular value thresholding, users can specify the number of top singular values to try in 

the first iteration and then increment the size in subsequent iterations by the ‘k’ and ‘incre’ 

options respectively. The command

[U, S, V] = svt(A, ‘lambda’, 0.1, ‘k’, 15, ‘incre’, 3)

computes the top 15 singular values and vectors in the first iteration and then adds 3 more in 

each subsequent iteration until hitting the singular values below threshold 0.1. This option is 
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useful when users have a rough idea how many singular values are above the threshold and 

can save considerable computation time. The default values are k = 6 and incre = 5.

4. Numerical experiments

In this section, we evaluate the numerical performance of svt in different scenarios and 

compare it with the MATLAB built-in functions svd and svds. We conduct these 

experiments on a desktop with an Intel Quad Core CPU @ 3.20 GHz and 12 GB of RAM. 

Computing environment is Linux MATLAB R2013a 64-bit version. For testing purpose, we 

use 5 square sparse matrices and 4 rectangular sparse matrices of varying sizes downloaded 

from the University of Florida sparse matrix collection (Davis and Hu 2011). For each 

numerical task, 10 replicate runs are performed and the average run time and standard error 

are reported, unless stated otherwise. Sparsity of a matrix A is defined as the proportion of 

zero entries, 1 − nnz(A)/numel(A).

4.1. Top k singular values and vectors of sparse matrices

Table 1 reports the run times of svt, svds and svd for computing the top 6 singular values and 

associated vectors of sparse matrices. In this case, svt internally calls svds thus their run 

times should be indistinguishable. The huge gain of svt/svds in large sparse matrices simply 

demonstrates the advantage of the iterative method over the full decomposition method 

implemented in svd.

4.2. Top k singular values and vectors of “sparse + low rank” matrices

This example tests the capability of svt to take functional handle input. We generate 

structured matrices by adding a low rank perturbation to a sparse matrix. Let M ∈ ℝn × n be a 

sparse test matrix. We form a “sparse + low rank” matrix A = M + LR⊤, where L, 

R ∈ ℝn × 10 have independent standard normal distributed entries. Table 2 shows the average 

run times of svt with function handle input and svds with input A itself to compute the top 6 

singular values and vectors based on 10 simulation replicates. It clearly shows the advantage 

of exploiting the special matrix structure over applying the iterative algorithm to the full 

matrix directly. The speed-up is up to 100 fold for large matrices.

4.3. Singular value thresholding of sparse matrices

In this example we compare the singular value thresholding capability of svt with the 

strategy of full singular value decomposition by svd followed by thresholding on sparse test 

matrices. The threshold value is pre-determined such that the top 50 singular values are 

above threshold. By default, svt starts with k = 6 singular values and then add more than 5 in 

each subsequent iteration. Results are presented in Table 3. For matrices of size less than 

1000, svt is less efficient due to the overhead of repeated calling iterative algorithms until 

hitting the threshold. For large matrices, svt shows 100 ~ 1000 fold speed-ups.

4.4. Singular value thresholding of “sparse + low rank” matrices

This example investigates singular value thresholding of structured matrices. “Sparse + low 

rank” matrices are generated by the same mechanism as in Section 4.2. Results in Table 4 
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show roughly the same pattern as in Table 3. Speed-up of svt is most eminent for large 

matrices. To evaluate the effectiveness of exploiting structure in singular value thresholding, 

we also call svt with input A directly, which apparently compromises efficiency.

4.5. Deflation versus succession method for singular value thresholding

Table 5 compares the efficiency of the deflation and succession strategies for singular value 

thresholding of sparse test matrices. The threshold value is pre-determined such that the top 

50 singular values are above the threshold. Both methods start with k = 6 singular values and 

then add 5 more in each subsequent iteration. The deflation method is in general faster than 

the succession method.

A similar comparison is done on “sparse + low rank” structured matrices, which are 

generated in the same way as in Section 4.2. The threshold is again set at the 50th singular 

value of each matrix. The average run time and standard error are reported in Table 6. We 

found non-convergence of the underlying ARPACK routine when applying the deflation 

method to the rdb800l and mhd4800 matrices. The non-convergence is caused by clustered 

eigenvalues. It is well known that ARPACK works best for finding eigenvalues with large 

separation between unwanted ones, and non-convergence is typical when dealing with ill 

conditioned matrices (Lehoucq and Sorensen 1996). When this happens, we restart with the 

succession method and continue from the current subspace.

4.6. Large-scale singular value thresholding

The purpose of this section is to demonstrate the performance of svt on large rectangular 

matrices. For the first two test matrices (bibd_20_10 and bibd_22_8), “sparse + low rank” 

matrices are generated by the same mechanism as in Section 4.2. For the other two matrices 

(sotrmG2_1000 and tp-6), singular value thresholding is performed on the original sparse 

matrices. The threshold is set at the 5th, 20th, and 50th singular value of each matrix 

respectively. Table 7 displays the run time of svt from one replicate. The full singular value 

decomposition svd takes excessively long time for these 4 problems so its results are not 

reported.

4.7. Application to matrix completion problem

To demonstrate the effectiveness of svt as a plug-in computational routine in practice, we 

conduct a numerical experiment on the spectral regularization algorithm for matrix 

completion (Mazumder et al. 2010), which minimizes

1
2 ∑

(i, j) ∈ Ω
xij − yij

2 + λ‖X‖* (4)

at a grid of tuning parameter values λ. Here Ω indexes the observed entries yij and X = (xij) 

is the completed matrix. Algorithm 3 lists the computational algorithm, which involves 

repeated singular value thresholding (lines 4–6). See Chi et al. (2013) for a derivation from 

the majorization-minimization (MM) point of view. Although A(t) is is a dense matrix, it can 

be written as
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A(t) = PΩ(Y ) + PΩ⊥ X(t)

= PΩ(Y ) − PΩ X(t) + X(t),

where X(t) is a low rank matrix at large values of λ (only few singular values survive after 

thresholding), and PΩ(·) is a binary projection operator onto the observed entries. 

Fortunately, in many applications, large values of λ are the regime of interest, which 

encourages low rank solutions. That means most of the time A(t) is of the special form 

“sparse + low rank” that enables extremely fast matrix-vector multiplication.

In the numerical experiment, we generate a rank-5 matrix by multiplying two matrices M = 

LR⊤, where L, R ∈ ℝn × 5 have independent standard normal distributed entries. Then, we 

add independent standard Gaussian noise to corrupt the original parameter matrix M, that is 

Y = M + ϵ. 5% entries of Y are randomly chosen to be observed. The dimension n of our 

synthetic data ranges from 500 to 5000. For each n, we minimize (4) at a grid of 20 points. 

The grid is set up in a linear manner as in Mazumder et al. (2010).

lambdas = linspace(maxlambda * 0.9, maxlambda / 5, 20)

Here maxlambda is the largest singular value of the input matrix Y with missing entries set 

at 0. Warm start strategy is used. That is the solution at a previous λ is used as the start point 

for the next λ. Path following is terminated whenever all 20 grid points are exhausted or the 

rank of the solution exceeds 10 (twice the true rank). Three methods for singular value 

thresholding are tested: svt using functional handle input, svt using matrix input A(t), and full 

singular value thresholding by svd followed by thresholding. Table 8 shows the run time in 

minutes for obtaining the whole solution path. Speed-up of svt increases with matrix size 

and utilizing the “sparse + low rank” structure via functional handle boosts the performance.

5. Discussion

We develop a MATLAB wrapper function svt for singular value thresholding. When a fixed 

number of top singular values and vectors are requested, svt expands the capability of 

MATLAB’s built-in function svds by allowing function handle input. This enables 

application of the iterative method to dense but structured large matrices. More conveniently, 

svt provides a simple interface for singular value thresholding, the key step in many matrix 

learning algorithms. Our numerical examples have demonstrated efficiency of svt in various 
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situations. The svt package is continuously developed and maintained at GitHub http://hua-

zhou.github.io/svt/.

We describe a few future directions here. Our wrapper function utilizes the well-known 

relationship between SVD and eigen-decomposition of the augmented matrix (3) and builds 

on the MATLAB’s eigs function, which in turn calls the ARPACK subroutines (Lehoucq, 

Sorensen, and Yang 1997) for solving large scale eigenproblems. An alternative is to use the 

PROPACK library (Larsen 1998), an efficient package for singular value decomposition of 

sparse or structured matrices. This involves distributing extra source code or compiled 

programs but may further improve efficiency. Both ARPACK and PROPACK implement 

Krylov subspace method and compute a fixed number of top eigenvalues or singular values. 

Thus singular value thresholding has to be done in a sequential manner. The recent FEAST 
package (Plizzi and Kestyn 2012) is an innovative method for solving standard or 

generalized eigenvalue problems, and is able to compute all the eigenvalues and eigenvectors 

within a given search interval, which is particularly attractive for the singular value 

thresholding task. However users must provide an initial value for the number of eigenvalues 

in the search interval. If the initial guess is too small, the program will exit. In real 

applications of singular value thresholding, such an estimate may be hard to obtain. Further 

investigation of the feasibility of using FEAST for singular value thresholding is underway.
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Table 1:

Top 6 singular values and vectors of sparse matrices by svt, svds and svd. Reported are the average run time 

(in seconds) and standard error (in parentheses) based on 10 runs.

Matrix Size Sparsity svt svds svd

bfwb398 398 0.9816 0.0396 (0.0003) 0.0393 (0.0004) 0.0450 (0.0001)

rdb800l 800 0.9928 0.0944 (0.0008) 0.0941 (0.0009) 0.2184 (0.0007)

tols1090 1090 0.9970 0.0549 (0.0007) 0.0592 (0.0005) 0.4377 (0.0006)

mhd4800b 4800 0.9988 0.0579 (0.0029) 0.0536 (0.0026) 249.1995 (0.0143)

cryg10000 10000 0.9995 0.1550 (0.0019) 0.1580 (0.0017) 1773.6812 (0.2014)
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Table 2:

Top 6 singular values and vectors of “sparse + low rank” matrices by svt and svds. Structured matrices are 

formed by adding a random rank-10 matrix to the original sparse test matrix. Reported are the average run 

time (in seconds) and standard error (in parentheses) based on 10 simulation replicates.

Matrix Size Sparsity svt (fh input) svds

bfwb398 398 0.9816 0.0176 (0.0011) 0.0408 (0.0009)

rdb800l 800 0.9928 0.0240 (0.0005) 0.2115 (0.0014)

tols1090 1090 0.9970 0.0780 (0.0009) 0.9396 (0.0079)

mhd4800b 4800 0.9988 0.0471 (0.0001) 5.6700 (0.0166)

cryg10000 10000 0.9995 0.1909 (0.0022) 44.2213 (0.4373)
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Table 3:

Singular value thresholding of sparse matrices by svt and svd. Reported are the average run time (in seconds) 

and standard error (in parentheses) based on 10 runs. The threshold value is pre-determined to catch the top 50 

singular values.

Matrix Size Sparsity svt svd

bfwb398 398 0.9816 0.3633 (0.0012) 0.0456 (0.0001)

rdb800l 800 0.9928 0.7716 (0.0047) 0.2237 (0.0005)

tols1090 1090 0.9970 0.4295 (0.0012) 0.4451 (0.0011)

mhd4800b 4800 0.9988 1.3733 (0.0075) 249.4558 (0.0423)

cryg10000 10000 0.9995 3.1157 (0.0152) 1773.0692 (0.3403)
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Table 4:

Singular value thresholding of “sparse + low rank” matrices. Reported are the average run time (in seconds) 

and standard error (in parentheses) based on 10 simulation replicates. Structured matrices are formed by 

adding a random rank-10 matrix to the original sparse test matrix. The threshold value is pre-determined to 

catch the top 50 singular values.

Matrix Size Sparsity svt (fh input) svt (matrix input) svd

bfwb398 398 0.9816 1.3540 (0.1486) 1.4209 (0.1744) 0.0502 (0.0002)

rdb800l 800 0.9928 2.4144 (0.0089) 2.8655 (0.0194) 0.2569 (0.0005)

tols1090 1090 0.9970 0.5100 (0.0023) 1.3044 (0.0051) 0.4455 (0.0005)

mhd4800b 4800 0.9988 5.6852 (0.1462) 89.9854 (3.3959) 48.9117 (0.0122)

cryg10000 10000 0.9995 3.5793 (0.0145) 104.0540 (0.2411) 443.3518 (0.1034)
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Table 5:

Comparison of deflation and succession methods for singular value thresholding of sparse matrices. Reported 

are the average run time (in seconds) and standard error (in parentheses) based on 10 runs. The threshold is 

pre-determined to catch the top 50 singular values.

Matrix Size Sparsity Deflation Succession

bfwb398 398 0.9816 0.3626 (0.0012) 0.4055 (0.0026)

rdb800l 800 0.9928 0.7636 (0.0048) 0.8670 (0.0019)

tols1090 1090 0.9970 0.4250 (0.0016) 0.5167 (0.0013)

mhd4800b 4800 0.9988 1.3761 (0.0110) 2.3382 (0.0227)

cryg10000 10000 0.9995 3.1782 (0.0173) 5.8789 (0.0648)
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Table 6:

Comparison of deflation and succession methods for singular value thresholding of “sparse + low rank” 

matrices. Reported are the average run time (in seconds) and standard error (in parentheses) based on 10 

simulation replicates. The threshold is pre-determined to catch the top 50 singular values.

Matrix Size Sparsity Deflation Succession

bfwb398 398 0.9816 1.2936 (0.0588) 2.0956 (0.0059)

rdb800l 800 0.9928 2.3758 (0.0187) 1.3863 (0.0118)

tols1090 1090 0.9970 0.5084 (0.0022) 0.6088 (0.0011)

mhd4800b 4800 0.9988 5.6008 (0.1598) 4.4027 (0.0396)

cryg10000 10000 0.9995 3.5636 (0.0129) 6.3697 (0.0621)
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Table 7:

Singular value thresholding of large rectangular matrices. Reported are the run time (in minutes) of svt from 

one replicate. The threshold value is pre-determined to catch the top 5, 20, and 50 singular values respectively.

Matrix Size Sparsity 5th 20th 50th

bibd_20_10 (190, 184756) 0.7632 0.0350 0.6152 11.2083

bibd_22_8 (231, 319770) 0.8788 0.0372 2.6438 4.1058

stormG2_1000 (528185, 1377306) 0.9999 0.2518 1.0394 12.6890

tp-6 (142752, 1014301) 0.9999 1.6373 20.2409 41.3021
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Table 8:

Run time of matrix completion problem using different singular value thresholding methods. Reported are the 

run time (in minutes) for the whole solution path. Path following is terminated whenever 20 grid points are 

exhausted or the rank of solution goes beyond 10 (twice the true rank).

Size Sparsity Rank Grid points svt (fh input) svt (matrix input) svd

500 0.95 5 15 0.8541 0.7335 0.5466

1000 0.95 5 19 2.9359 4.0803 4.2763

2000 0.95 5 20 10.3611 35.7058 40.1562

3000 0.95 5 20 20.6781 69.3164 138.8011

4000 0.95 5 20 52.2150 175.2524 335.2373

5000 0.95 5 20 71.8051 246.3738 630.2729
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