
UC Davis
UC Davis Electronic Theses and Dissertations

Title
H.264 Codec Implementation on a Many-Core Processor Array

Permalink
https://escholarship.org/uc/item/3nz466h2

Author
Callahan, Aidan

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3nz466h2
https://escholarship.org
http://www.cdlib.org/


H.264 Codec Implementation on a Many-Core Processor Array

By

AIDAN THOMAS CALLAHAN

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Bevan M. Baas, Chair

Soheil Ghiasi

Hussain Al-Asaad

Committee in charge
2022

i



© Copyright by Aidan Thomas Callahan 2022
All Rights Reserved



Abstract

Due to the rise of higher resolution video over limited transmission bandwidths,

video compression algorithms have revolutionized the way we view a digital video today.

Video compression has developed into an integral computational block for devices such as

computers, televisions, and phones. H.264, also known as Advanced Video Compression

(AVC), is a popular standard for the compression of video content. H.264/AVC offers excellent

compression performance due to a collection of algorithmic improvements over its predecessors.

The H.264/AVC standard algorithm requires a high level of computational complexity

with the opportunity to compute many subtasks in parallel. Consequently, a fine-grained

many-core platform is a promising solution for the H.264/AVC algorithm. In this work a

baseline H.264/AVC encoder and decoder (codec) is designed and simulated on the KiloCore

II chip. KiloCore II contains 697 independently programmable processors, 16 64kB shared

SRAM memories, and an efficient 2-D mesh topology for inter-core communication - a

promising chip for computationally intensive tasks such as H.264.

In this work, a full H.264 baseline codec is implemented on the KiloCore II platform.

The H.264 bitstream syntax is modified for compliance at the macroblock level - the most

intricate and computationally taxing elements of H.264/AVC. The proposed codec operates

with a 4:2:0 sampled, yuv color space video sequence. All nine intra prediction modes are

supported. Additionally, a 2-D logarithmic search algorithm is utilized for integer motion

estimation. The full codec is tested and verified through QCIF format video test samples.

Both the encoder and decoder are clocked at 1,780 MHz. The encoder processes

27,239 macroblocks-per-second at 449 mW without any algorithm specific hardware. With

the introduction of a motion estimation accelerator, the encoder is able to process 73,010

macroblocks-per-second at 635 mW. The decoder, on the other hand, processes 24,347

macroblocks-per-second at 482 mW. KiloCore II is a competitive platform for video compres-

sion achieving a 1.8× – 49.1× and 1.4× – 8.1× higher throughput relative to compared encoder

and decoder designs, respectively. All in all, KiloCore II outperformed every H.264/AVC

baseline codec compared in this work in throughput performance.
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Chapter 1

Introduction

1.1 Motivation

Today most video is streamed from some device, whether it’s a computer or a cell phone.

Video compression algorithms are critical for both the transmission and storage of high-quality

videos in such devices. Modern network bandwidths provide a hard limit to the transmission rates of

raw video data and memory costs make storing uncompressed video frames unfeasible. Consequently,

video compression has emerged as a lucrative and essential industry today.

While many innovative compression techniques have been proposed and researched, com-

mercial video compression requires standardization to interface across all platforms. Additionally,

the necessity to abstract tradeoffs between complexity and performance for different computational

needs, such as a cellular device and a high-definition television, imply the need for compression

standards. H.264, the compression standard discussed in this work, remains the most used video

encoder/decoder (codec) utilized by 83% of industry developers as of 2022 [6]. The success of

the AVC compression standard is attributed to a collection of many algorithmic and architectural

improvements over its predecessors.

Given the wide acceptance of the H.264 standard, many attempts to optimize throughput

and area efficiency are made. To offer an effective H.264/AVC solution, a programmable fine-grained

processor design is explored in this work. The KiloCore II platform, the computational unit utilized

in this work, contains 697 independently programmable processors. Due to the large opportunity

of task and data level parallelism within H.264/AVC, KiloCore II is a promising platform for this
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compression standard. The goal of this project is to design a fine-grained codec and show that it is

competitive with related works.

1.2 Thesis Organization

The remainder of this work is divided as follows.

Chapter 2 provides an overview of the H.264/AVC standard. Aspects of the standard

specific to this work are highlighted. Additionally, any design choice affected by the proposed

hardware design is noted.

Chapter 3 provides an explanation of the KiloCore platform. Specific details related to the

processor array’s independent processors, shared memories, communication layer, and simulation

platform are explored.

Chapter 4 provides a hardware overview of the register transfer level (RTL) implementation

for both the H.264/AVC encoder and decoder. This model is fully functional and synthesizable.

Each computational block and high-level control algorithms are discussed.

Chapter 5 provides a hardware overview of the fine-grained many-core processor array im-

plementation (KiloCore II) of the H.264 codec. Any variance between the KiloCore II implementation

and RTL implementation are highlighted.

Chapter 6 discusses how the proposed golden reference software model is designed and

verified. Additionally, the RTL and KiloCore II model verification methods are also explained.

Chapter 7 provides results and performance comparisons between the KiloCore II imple-

mentation and related works. Throughput, energy consumption, and area are used as benchmarks

for comparison.

Chapter 8 outlines a summary of this work and provides details regarding future improve-

ments.
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Chapter 2

H.264/AVC Standard Overview

2.1 Overview

H.264/AVC is an industry standard that defines a format for compressed video data.

Known as the Joint Movie Team (JVT), both the ITU Video Coding Experts Group (VCEG)

and ISO/IEC JTC1 Moving Picture Experts Group (MPEG) designed, and currently manage, the

standard. The standard allows flexibility in terms of the choice of compression tools used for an

application. Consequently, H.264/AVC is suitable for a wide range of use cases, such as low-latency

mobile video streaming and high definition consumer TV. Relative to the performance of prior

standards, AVC provides up to a 50% bit rate savings when these techniques are used together

effectively [7].

The H.264 standard document contains a comprehensive collection of semantic information,

essential instructions, and optional design guidance [8]. Most importantly, the standard document

describes: picture formats and scanning processes (Chapter 6); specific bitstream syntax elements

and their allowed values (Chapter 7); details regarding the methods of decoding a video frame

(Chapter 8); and the parsing process used to extract syntax elements from a valid bitstream (Chapter

9). This dissertation primarily focuses on the stages required to decode a video frame as outlined in

Chapter 8 of the H.264/AVC standard.

Another pertinent characteristic of the H.264/AVC standard is that it only specifies the

process for decoding a bitstream. An H.264 compliant encoder is assumed to mirror the basic

semantics and format of a H.264 decoder, as illustrated in figure 2.1. With this in mind, the standard
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Figure 2.1: Scope of the H.264 Standard (highlighted in blue)

intentionally presents the opportunity for the designer to specify the complexity of approach for the

encoder, particularly for the predictive algorithm. An overview of the H.264/AVC standard and the

design choices used for the codec in this dissertation are outlined in the following sections.

2.2 Slices and Macroblocks

The fundamental building block of a frame in H.264 is a macroblock (MB), defined as a

16x16 pixel region within the frame. Every video frame consists of an integral number of MBs. For

example, a QCIF frame (176 x 144 pixels) has a total of 99 macroblocks in one frame. Macroblocks

are processed in raster scan order, which is illustrated below in figure 2.2.

In H.264, frames may be further classified into slice groups. Every video frame consists of

one or more individual slices, each with a slice header and integral number of macroblocks. Each

slice is decoded independently in a frame, which allows the code to prevent error propagation across

the frame. In this work, frames are coded and decoded as one slice group.

2.3 Picture Formats and Pixel Sampling

Chapter 6 of the H.264/AVC standard defines video picture formats. According to the

standard, a video sequence is a collection of frames or fields collectively referred to as a picture [8].

A video signal sampled as a field only transmits either the even or odd lines of an image at a time,
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Figure 2.2: Raster Scan Order

known as interlaced scans. In contrast, a signal sampled as a frame transmits the entire image

of a video picture, known as progressive scans. Since interlaced scans transmit half the data as

progressive scans, twice as many fields per second are transmitted which gives the perception of

smoother motion. While the AVC standard supports both interlaced and progressive scanning, only

progressive scans are implemented in the scope of this dissertation.

Figure 2.3: Interlaced Fields (Left) and Progressive Frame (Right) Sampling [1]

Chapter 6 of the H.264/AVC standard also covers valid pixel formats supported in the

standard. H.264 supports any monochrome or tri-stimulus color sampling. Modern video compression
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algorithms commonly convert video frames into one luma and two chroma samples, referred to as

the YUV color space. Since the human visual system is less sensitive to color than luminance, the

luma component of the YUV color space is often represented with higher resolution than the chroma

samples [2]. The H.264/AVC standard supports three methods for sampling chroma elements: 4:2:0,

4:2:2, 4:4:4 sampling. 4:4:4 sampling preserves the same number of chroma components with respect

to luma components. In 4:2:2 sampling, the chroma components have the same vertical resolution

as luma components but half the horizontal resolution. The sampling scheme followed in this work,

4:2:0 sampling, transmits half the vertical and horizontal chroma resolution with respect to the

luma resolution. An illustration of the three sampling schemes are illustrated in figure 2.4.

Figure 2.4: H.264 Sampling Formats [2]
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2.4 H.264/AVC Bitstream Syntax

Chapter 7 of the H.264/AVC standard outlines the video sequence syntax. The video

syntax serves as a hierarchical guideline for the order and form of transmitted data. Such syntax

specifications are imperative for encoders and decoders to effectively communicate across platforms.

The general syntax hierarchy for H.264 is illustrated in figure 2.5.

Figure 2.5: H.264 Syntax Format

The Natural Abstract Layer (NAL), the highest syntax level in AVC, consists of Natural

Abstraction Layer Units (NALUs) such as Sequence Parameter Sets (SPS), Picture Parameter Sets

(PPS), control information, or coded video data. SPS contain global parameters that are common

to an entire video, video frame size for example. PPS contain local parameters that apply to a

subset of coded frames.

Below the NAL the H.264 standard specifies the slice layer. This syntax layer consists of a

slice header followed by the entire slice bitstream. Within the slice header, specific slice information

is established, such as the slice prediction mode, frame number, and various control flags. The slice

data partition contains all the coded macroblocks within the frame.
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The lowest level syntax layer is the macroblock layer. This syntax layer contains all the

information necessary to decode a single MB, including the macroblock type, prediction parameters,

coded block pattern, quantization parameter, and encoded residual.

Since the scope of this work is to design the fundamental building blocks of an H.264/AVC

codec in hardware, a full industry compliant bit stream syntax is not implemented. Instead this

work implements a macroblock level compliant bitstream, which is fully outlined sequentially in

table 2.1. A top level video sequence header is provided at the beginning of the bitstream to provide

the proposed algorithm with frame attributes, such as frame height and width.

Bitstream Information Description

Frame Mode “1” for intra prediction frame; “0” for inter prediction frame

Luma prediction header Intra prediction mode or motion vectors

Chroma prediction header Intra prediction mode or motion vectors

Coded block pattern (CBP) Indication of whether certain areas of the macroblock contain
a residual of zero

QP Frame quantization parameter

Luma coding CAVLC coded luma residuals

Chroma coding CAVLC coded chroma residuals

Table 2.1: Macroblock level bit syntax proposed in this work

2.5 Video Frame Prediction Methods

In the H.264/AVC standard, macroblock prediction is integral to compression performance.

At the fundamental level, video prediction is the ability to guess the data values within a MB using

previously decoded data. In the realm of video compression we have two prediction tools at our

disposal – temporal and spatial data. Spatial predictions use previously coded pixels from the

current frame while temporal predictions use coded data from a past or future frame. In H.264,

spatially predicted frames and temporally predicted frames are respectively called intra and inter

predicted frames. In figure 2.6, data sample origins for intra (I MB) and inter (P and B MBs)

predictions are illustrated. This work implements both I and P frame prediction capabilities.

2.5.1 Luma Intra Prediction (I Frames)

In the H.264/AVC standard, either 4x4 pixel or 16x16 pixel blocks are used for spatial

prediction (intra prediction). In this dissertation, macroblocks are only predicted in 4x4 sets of
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Figure 2.6: Example of macroblock types and prediction sources [2]
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Figure 2.7: 4x4 intra prediction modes [2]

pixels for intra prediction. The AVC standard supports a total of nine prediction methods that

utilize previously coded, neighboring pixel samples. In the event that a pixel block does not have

access to neighboring pixels, DC prediction, a special method of intra prediction that does not

need a full set of previously decoded spatial samples, is utilized. Figure 2.7 illustrates all nine intra

prediction modes available in H.264.

On the encoder side, the designer must specify a decision algorithm used to choose

which intra prediction mode is used from transmitting the residual. As previously mentioned, the

H.264/AVC standard does not define the structure of the encoder. In this work, all intra prediction

modes are executed (when neighboring pixel samples are available) in parallel and the mode with

the smallest sum of absolute difference (SAE) is used.

An H.264/AVC encoder must transmit an intra prediction mode header within the bitstream

so that the decoder knows how to create a prediction for macroblock reconstruction. The transmitted

intra prediction mode is context-adaptive, meaning that the coded form depends on characteristics

of previously decoded samples. Using the prediction modes of the upper and left previously decoded

4 x 4 pixel blocks, the lowest prediction mode number is established as the most probable prediction

mode. Using this model, the prediction mode is decoded from the bitstream as illustrated in

algorithm 1. When a prediction mode is correctly predicted, only one bit is added to the bitstream;

whereas, four bits are required to transmit an unpredicted intra prediction mode.
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Algorithm 1 Decoding Intra Prediction Mode

x = Bitstream(bp)
bp = bp+ 1
n = min(Intra4x4PredModeTop, Intra4x4PredModeLeft)
if x == 1 then
PredOut = n;

else
y = Bitstream(bp : bp+ 2)
bp = bp+ 3
if y < n then
PredOut = y

else
PredOut = y + 1

end if
end if

2.5.2 Chroma Intra Prediction (I Frames)

The chroma samples are encoded in a similar fashion to the luma samples with a few

slight nuances. Chroma samples are processed 8x8 pixel blocks at a time - corresponding to a full

luma macroblock when chroma elements are 4:2:0 sub-sampled. Consequently, chroma elements

have a total of four special 8x8 pixel block prediction modes illustrated in figure 2.8.

Figure 2.8: Chroma Intra prediction modes [2]

As with the luma intra prediction modes, all chroma intra prediction modes are executed,

and the mode with the smallest SAE is transmitted. The selected mode is encoded using an unsigned

exp-golomb coding scheme which is discussed in section 2.8.1.

2.5.3 Luma Inter Prediction (P Frames)

The second prediction mode utilized within the scope of this project is inter prediction
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based on the previously decoded frame. At sufficiently high frame rates, the difference between two

successive frames is small. Consequently, inter prediction searches within a region of the previously

decoded frame and finds the smallest error to bit compression ratio.

The H.264/AVC standard offers flexibility to split macroblocks into partitions, each with

their own residuals and motion vectors. Increased partitions decrease the reconstructed MBs error

at the expense of worse compression compared to MBs with fewer partitions. The four partitions

(full, vertical, horizontal, and quad) are first executed from a 16 x 16 macroblock. If a quad partition

is the selected mode of transmission, the complete inter prediction process is repeated on each 8 x 8

pixel block. All four macroblock and sub-macroblock partitions are illustrated in figure 2.9.

Figure 2.9: Macroblock and sub-macroblock partitions

Along with the macroblock residual, the selected inter prediction mode and corresponding

motion vectors are transmitted in the output bitstream. Motion vectors are simply an offset pair

(delta X and delta Y) corresponding to each partition’s predicted location within the reconstructed

frame with respect to the location in the current frame. In this work, the mode and all motion

vectors for a macroblock are encoded using a signed exp-golomb encoding [9]. The mode values and

motion vectors are transmitted according to the syntax illustrated in figure 2.10.

Like the intra prediction process, a decision algorithm for the selected partition must be

established for the encoder. In this thesis, rate-distortion theory is utilized to balance the trade-off

between video distortion and bit compression performance [10]. The general form of the Langrangian

cost function utilized in H.264/AVC is presented below. Here, SSD(s, c,MODE), R(s, c,MODE),
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Figure 2.10: Macroblock and sub-macroblock partition coding scheme

and λ represent the video distortion (sum of squared difference), bit compression rate (output bit

length), and Lagrange multiplier respectively. In the proposed H.264/AVC encoder, two Lagrangian

cost functions are utilized, one for the mode partition selection (Costmode) and the other for motion

estimation selections (Costme). In this dissertation, the motion estimation Langrangian uses the

sum of absolute difference with a square root scaled Langrange multiplier for the distortion and

multiplier terms respectively. This design choice reduces the number of multipliers needed for the

computationally heavy motion estimation block.

The Lagrange multiplier equations for both mode and motion estimation predictions are

presented below. The multiplier is a function of the quantization parameter (QP) [11], which is

discussed in more detail in section 2.7.2.

Costmode = SSD(s, c,MODE) + λmode ∗R(s, c,MODE)

where, λmode = 0.85 ∗ 2(QP−12)/3

Costme = SAD(s, c,ME) + λme ∗R(s, c,ME)

where, λme =
√
λmode

2.5.4 Chroma Inter Prediction (P Frames)

In order to keep the encoder design lightweight, a motion estimation scheme is not explored

for chroma elements in this work. Consequently, the motion vector for all chroma pixel blocks is

simply (0,0). This ensures that the chroma prediction is always the reconstructed pixel block from

the previous frame at the same index of the current pixel block.
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2.6 Motion Estimation

Motion estimation is a critical block in the H.264/AVC standard for utilizing temporal

redundancy to improve compression performance. Motion estimation defines the process for searching

a region of a previous frame to find a similar M x N region. Motion compensation, on the other

hand, refers to the process of subtracting the candidate region with the current block to form a

residual. Due to its computational complexity, many researchers have devoted effort to efficient

search algorithms. In this dissertation, a three-step 2-D logarithmic search is used as the encoder’s

motion estimation search algorithm [12].

In this work, three iterations of the logarithmic search are performed, unless any iteration

selects the center location as the smallest error. In each iteration 5 regions are compared – center,

top, right, bottom, and left. The minimum motion estimation rate-distortion is selected as the center

position for the next iteration of the logarithmic search. The pixel difference between the bordering

search regions and the center pixel are dictated by the current iteration. The search regions are

separated by four, two, and one pixels for the first, second, and third iterations respectively. Figure

2.11 illustrates a possible scenario for this search algorithm.

The H.264/AVC standard supports sub-pixel interpolation in order to increase motion

vector precision. Adjacent luma and chroma samples are interpolated up to quarter-pel resolution

using a combination of a Finite Impulse Response filter (FIR) and linear interpolation. In this

thesis, sub-pixel interpolation is not supported in order to keep all motion vectors in integer format

for simplicity.

2.7 Transform, Quantization, and Inverse Transform

The improved compression and error performance for H.264/AVC compared to prior

industry standards is attributed to improvements in several blocks of the codec. Innovations in the

transform, quantization, and inverse transform are examples of the development of more efficient

algorithmic blocks in H.264/AVC. The main function of the transform stage is to convert the residual

from the prediction stage into a different mathematical domain that is compressed more efficiently.

Since H.264/AVC is lossy, the quantization of video samples is grouped together in the forward

transform stage.
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Figure 2.11: 2-D Logarithmic Search including iteration 1 (red), iteration 2 (yellow), and iteration 3
(green)
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The three important criteria for the choice of transform are: most of the energy of the

transform should be concentrated in a small number of values, the transform should be reversible,

and the transform should be computationally inexpensive [2]. Predecessor standards to H.264,

such as JPEG, MPEG-2 Video, and MPEG-4 Visual, utilized a two-dimensional Discrete Cosine

Transform (DCT) presented in the equation below. A fundamental problem with the DCT is that

it requires irrational multiplication which produces mismatch between the forward and inverse

transform due to precision errors in hardware. Additionally, the need to operate with floating point

numbers introduces unwanted hardware and performance degradation.

Xij =
∑N−1

x=0

∑N−1
y=0 CxCyYxy cos

(2j+1)yπ
2N cos (2i+1)xπ

2N

2.7.1 Transform and Quantization in H.264/AVC

The H.264/AVC standard specifies a 4x4 pixel Integer Discrete Cosine Transform (IDCT)

that requires only 16-bit arithmetic (no multiplication) with scaling factors that embed the quanti-

zation process within forward transform. This change significantly reduces transform and inverse

transform complexity with a peak signal-to-noise ratio (PSNR) degredation of less than 0.02 dB [13].

The general construction of the Integer Discrete Cosine Transform for forward transform

in H.264/AVC is described below systematically.

1. The traditional DCT (A) is multiplied by 2.5 and rounded to the nearest integer. The

new scaled matrix is referred to as the core matrix (Cf4). It is relevant to note that multiplication

by the core matrix only requires binary shifting and negation within hardware.

A =



a a a a

b c −c −b

a −a −a a

c −b b −c



where a = 1
2 , b =

√
1
2 cos

π
8 , c =

√
1
2 cos

3π
8

16



Cf4 =



1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1


2. A factoring matrix (Rf4) must be multiplied (Hadamard product) to the core matrix in

order to make the transform matrix orthonormal.

A1 = Cf4 •Rf4

where Rf4 =



1
2

1
2

1
2

1
2

1√
10

1√
10

1√
10

1√
10

1
2

1
2

1
2

1
2

1√
10

1√
10

1√
10

1√
10


3. The Integer Discrete Cosine Transform formula without quantization is presented below.

Y = A1 ·X ·AT
1 = [Cf4 •Rf4] ·X · [CT

f4 •RT
f4]

Y = [Cf4 ·X · CT
f4] • [Rf4 •RT

f4]

Sf4 = Rf4 •RT
f4 =



1
4

1
2
√
10

1
4

1
2
√
10

1
2
√
10

1
10

1
2
√
10

1
10

1
4

1
2
√
10

1
4

1
2
√
10

1
2
√
10

1
10

1
2
√
10

1
10


4. Lastly, the scale factor (Sf4) is combined with the quantization factor (Mf4). The

formula for Mf4 is presented below, but the complete derivation is not provided for simplicity. In

total there are six defined Mf4 matrices, chosen based on the value of the quantization parameter

(QP) modulus 6. A binary shift is included in the final forward transform to compensate for the use

of only six quantization matrices.

Mf4 ≈
Sf4·215
Qstep

The complete forward 4x4 Integer Discrete Cosine Transform supported in H.264/AVC is

presented in the equation below. The 215 term cancels out the corresponding constant factor in the

Mf4 matrix. This value is introduced in order to provide higher precision while maintaining fixed

point arithmetic.
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Y = round([Cf4] · [X] · [CT
f4] • [Mf4(QP%6, n)] · 1

215+floor(
QP
6 )

)

2.7.2 Quantization Parameter (QP)

In H.264 the tradeoff between video quality loss and bit compression performance is

controlled by a quantization parameter (QP). QP ranges between 0 and 51, where a value of 51

indicates the highest value of quantization. The value of QP directly controls a scaling matrix for

the forward and inverse transform blocks. Additionally, the quantization parameter is typically used

in the motion estimation cost function as a weight to establish rate-distortion ratios.

In H.264/AVC the quantization parameter is passed as the header component of the

macroblock syntax layer. This implies that QP can be chosen dynamically for each MB in the

encoder to improve compression performance. In this work, the quantization parameter is always

constant for a given video sequence. This eliminates the need for any quantization parameter

estimation hardware within the encoder.

2.7.3 Inverse Transform in H.264/AVC

The inverse Integer Discrete Cosine Transform is derived in a similar method to the

forward transform. Since the derivation closely mirrors the forward transform derivation, the inverse

transform derivation is not presented. The complete inverse IDCT is presented in the equation

below.

Z = round([CT
i4] · [Y • v(QP%6, n) · 2floor(

QP
6

)] · [Ci4] · 1
26
)

2.8 Coding Methods

In this dissertation, two coding algorithms are utilized in the proposed codec. Context-

adaptive variable-length coding (CAVLC) and inverse CAVLC are implemented at both the end

of the encoder and front of the decoder, respectively. CAVLC is a form of entropy coding that is

lossless. It is used to encode the residual output of the transform block on the encoder side. The

second coding algorithm utilized in this dissertation is signed exponential-Golomb (Exp-Golomb)

coding. This coding method is utilized to encode and decode the motion vectors derived from the

inter prediction process outlined in Section 2.5.3.
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2.8.1 Exp-Golomb Coding

Signed Exp-Golomb coding is a variable length code with a regular construction. The

value to be coded is always converted into an unsigned integer referred to as the CodeNum. The

prefix of an Exp-Golomb code is a string of zeros equal to the bit width of the encoded CodeNum.

The suffix is further encoded as illustrated in algorithm 2. Both the prefix and suffix are separated

by a single bit. The following algorithm describes the encoding process for Exp-Golomb code. A

similar process is mirrored to decode an Exp-Golomb code word.

Algorithm 2 Exp-Golomb Encoding

if value > 0 then
CodeNum = 2 ∗ value− 1

else
CodeNum = (−2) ∗ value

end if
M = floor(log2 ∗(CodeNum+ 1))
Suffix = CodeNum+ 1− 2M

Code = [Mzeros][1][Suffix]

2.8.2 Context-Adaptive Variable-Length Coding

CAVLC, the entropy encoder block utilized in this work, encodes and decodes residual data

from the transform block. CAVLC is designed to capitalize on several characteristics of quantized

coefficient blocks. The CAVLC bitstream is derived from a reordered zig-zag scan (figure 2.12) of

the residual 4 x 4 pixel block. The five characteristics utilized for the CAVLC code are discussed

below.

Total Number of Coefficients and Trailing Ones

The first variable length code (VLC) used for CAVLC is the number of coefficients

(coeff token) and trailing ones (T1). coeff token values can range between 0 to 16 for a 4x4 residual.

T1 values are limited to between 0 and 3. If there are more than three +/- 1s, only the last three

are considered in the T1 code. A combination of the coeff token and T1 values map directly to a set

of four look-up tables defined in the H.264/AVC standard [8]. The utilized look-up table is dictated

by the number of coefficients in the upper and left previously coded 4 x 4 residuals, hence the term

context adaptive.

Trailing One Signs
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Figure 2.12: CAVLC 4x4 pixel scan order [2]

The sign of each T1 is coded in this VLC. A value of +1 corresponds to an output of ‘0’ in

the bitstream, and vice versa for a negative T1.

Residual Levels

Each residual value that is not a T1 is coded as a level. Levels are coded in order from

highest frequency to lowest frequency coefficient. In short, levels utilize a combination of a prefix

and suffix value in their coding scheme. For a complete derivation of the level VLC refer to the

standard [8].

Total Number of Zeros

The total zeros VLC is the sum of all the zeros preceding the last coefficient in the reordered

residual array. This VLC is dictated by a look-up table using both the coeff token and total zeros

values as inputs.

Run of Zeros

A series of run before VLCs are established to indicate the total number of zeros between

each non-zero coefficient. Each run before VLC is created using a look-up table with the run before

and the total number of uncoded zeros left (zeros left) in the array as inputs. A run of zeros located

before the first non-zero coefficient does not need to be coded.
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Chapter 3

KiloCore Architecture

This work presents an H.264/AVC implementation on the KiloCore II platform. KiloCore

II is a large array of independent, programmable, single issue, RISC-type processors [3]. Each

processor on KiloCore II contains local memory for data and instructions. Additionally, each

processor has two dual-clocked first in, first out (FIFO) inputs and the ability to fan out to a total

of 8 neighboring processors. On chip, KiloCore II has several large memories capable of interfacing

with processors. The chip also adopts a globally asynchronous, locally synchronous clocking scheme

(GALS clocking [14]) where a 2-D mesh topology passes data between cores. The presence of

many independent processing units make KiloCore II well suited for computationally intensive

applications [15]. Although this work was designed and simulated on the fourth-generation KiloCore

II platform, the following section describes the salient features of the third-generation KiloCore

chip [16].

3.1 Processors

The bulk of the KiloCore platform consists of 1000 independently programmable RISC-like

cores. Each core has dual-clock FIFOs to support locally synchronous communication. Cores also

contain local oscillators (allowing stall controls for increased power performance), a 128x40-bit

instruction memory, and 512 bytes of data memory. Figure 3.1 presents the 7-stage KiloCore pipeline

present within each core. KiloCore processors send and receive data in 16-bit words. While the

processor pipeline is a fixed 16-bit datapath, other word widths are easily handled through software,

such as 32-bit floating point.
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Figure 3.1: KiloCore pipeline [3]

3.2 Memory

The KiloCore chip contains 12 64kB SRAM memories. Each memory is accessible by two

neighboring cores. Random and burst reads/writes are supported for these external memory modules.

KiloCore memories may also be configured to increase instruction memory for a neighboring core.

Each SRAM memory contains two 32x18-bit input buffers, two 32x16-bit output buffers, and one

16x2-bit processor response buffer, and supports 28.4 Gb/s of I/O bandwidth [3].

3.3 Inter-Core Communication

In the KiloCore architecture, data is passed between cores through an efficient 2-D mesh

topology. Communication on chip is accomplished through a high-throughput, low-latency circuit-

switched network [4] and a very small area packet router [17].

Circuit-switched links are source-synchronous and translate to the destination processor’s

clock domain. The KiloCore circuit-switched architecture incorporates an asymmetric and output

buffered inter-processor communication scheme to obtain a good trade-off between dynamic and

static routing architectures [18]. Each processor on the KiloCore chip has two circuit-switched links

entering and exiting the processor at each of the four edges. This allows each processor to fan-out

to a total of 8 other processors. Figure 3.2 illustrates the circuit-switched linked architecture where

only signals related to the west edge are depicted for simplicity.

Each KiloCore processor contains a packet router that takes up 9% of the processor’s total
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Figure 3.2: (a) 2-D mesh interprocessor communication and (b) the generalized communication
routing architecture [4]

area. The packet router is effective for high fan-in communication, high fan-out communication,

and administrative messaging. Each packet router supports 45.5 Gb/s of throughput and has its

own oscillator, allowing for zero active power when there are no packets to process.

3.4 Design Flow and Mapping

Project Manager is an important tool used for simulating and measuring the accuracy

and performance of a design on the KiloCore platform. Project manager utilizes a mix of C++

code, or assembly language, and python scripts to accurately simulate each core and how data is

passed between neighboring cores. This section describes the design flow used to design a many-core

processor with the VCL Project Manager and mapper tools.

Each core on the KiloCore chip is programmed using C++ code that is compiled into

assembly language with a compiler. Cores are represented by a function that takes up to 2 input

pointers and up to 8 output pointers. Core functions may also contain a memory port pointer if

they are accessing data from one of the shared memories.

The datapath between KiloCore inputs, outputs, cores, and memories are all represented

through a python dictionary. Valid elements of the python dictionary utilized in this work are

input handlers (received from text files), output handlers (sent to text files), processors (cores),

and memory (SRAM memory). Each element mentioned above is linked through linking functions

that abstract the functionality of the KiloCore 2-D mesh topology described in the section above.
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Figure 3.3: KiloCore simulation scheme including processor coding, the task script (circuit link
configuration), and the test script (cycle-accurate simulation results)

Linking functions used in this work are circuit links (circuit-switched links), packet links (packet

router links), and memory links (SRAM to core links).

Finally, a python test script is utilized to compile any source code, link the source code

functions, determine the simulation and mapping parameters, and dump the results to a local folder.

The entire Project Manager and mapper workflow is illustrated in figure 3.3.

3.5 Prior Video Codec Works on the KiloCore Platform

In this work, a full H.264 baseline encoder and decoder are designed on the KiloCore

platform. Throughout the years, many research efforts were dedicated to efficient video codec
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architectures on the KiloCore/AsAP platform at the UC Davis VLSI Computation Lab (VCL). This

section highlights the relevant works and their scope in development of H.264/AVC sub-blocks. In

turn, this section provides context as to the fundamental differences proposed in this work as it

relates to prior KiloCore works.

H.264 Baseline Encoder

There is only one prior H.264 encoder work on a many-core array (AsAP2), implemented

by Le [5]. AsAP2, a predecessor to the KiloCore platform outlined previously, has 167 processors, a

motion estimation dedicated hardware, and three shared 16kB memories. Consequently, the AsAP2

platform has both a smaller computation power and memory when compared to the KiloCore

platform. On the other hand, the AsAP2 platform has a motion estimation accelerator which makes

the inter prediction design for the H.264 encoder simpler.

While Le does not present an H.264 decoder, the H.264 encoder is relatively similar to

the encoder proposed in this work. Table 3.1 highlights the exact differences between the encoder

implemented in Le and this work.

Le [5] This Work

3 Intra prediction modes supported 9 Intra prediction modes supported

Single reference frame for Inter prediction Single reference frame for Inter prediction

Full search motion estimation algorithm 2D logarithic motion estimation algorithm

Main partitions for motion estimation Main and sub-block partitions for motion estimation

Forward and inverse transform blocks Forward and inverse transform blocks

No deblocking filter No deblocking filter

CAVLC encoder CAVLC encoder

Table 3.1: Encoder comparisons between Le [5] and this work

H.264 Motion Estimation Accelerators

Braly [19] and Landge [20] devote research efforts to dedicated accelerator hardwares

for general video compression motion estimation. For any video compression algorithm, motion

estimation is the most computationally intensive sub-block. As a result, dedicated motion estimation

hardware can serve as a huge performance boost for a custom H.264 implementation. For this reason,

iterations of the AsAP chips contain dedicated motion estimation hardware for video compression

applications.

Since KiloCore II does not contain a motion estimation accelerator, the motion estimation
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algorithm in this work is implemented on the processor array’s programmable cores. With this said,

the possible performance improvements of the proposed design with a motion estimation accelerator

are estimated later in this work.

H.264 Encoders

Additional researchers in the UC Davis VCL have explored the design of several H.264

compatible entropy encoders. Xiao [21] implements an H.264 CAVLC encoder on the AsAP

architecture. In contrast, Kulkarni [22] implements the alternative and more complex H.264 entropy

encoder CABAC.

This work implements CAVLC as the entropy encoder for the proposed codec. While

the works mentioned above implement entropy encoders, this work implements both a CAVLC

encoder and decoder. The CAVLC decoder presents several differences to the encoder design such

as handling a bitstream of variable length coded units.
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Chapter 4

RTL Implementation

4.1 Design Overview

In order to understand the design requirements of an H.264/AVC codec implementation,

a register-transistor level (RTL) solution is explored in this work. This section discusses an

implementation of a fully synthesizable RTL monochrome codec that is bit-accurate with respect to

the proposed constrained baseline H.264/AVC model.

In order to represent a scalable codec in hardware, large data structures are stored in main

memory. Consequently, as the video frame size increases the algorithm will not need to increase

the number of instantiated registers. Main memory includes reconstructed video frames, number of

coefficients for each neighboring 4x4 block, and previously coded Intra prediction modes. Memory

is represented as a series of 2-D arrays within the high level Verilog testbench. A delay penalty is

not introduced between the main memory fetch in the Verilog testbench and the input to the core

Verilog code. Figure 4.1 illustrates how the main memory modules, inputs, and outputs interface

with the core Verilog code.

The following sections discuss the design of the proposed Verilog codec in detail. The

terms “test bench” code and “core” code used in this section differentiate the Verilog testbench

script and synthesizable Verilog code respectively.
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Figure 4.1: Test bench (blue) and core Verilog (gray) interface

4.2 Encoder Design

4.2.1 Input Handling

A protocol is implemented to handle the relay of data between testbench and core code.

The testbench parses macroblock frame data from a “.txt” file in raster scan order. Macroblocks are

then further parsed into 4x4 pixel blocks, also in raster scan order, and sent to the core Verilog code.

The proposed encoder algorithm operates in units of macroblocks, i.e. the top-level FSM

is reset every time a new 16x16 pixel macroblock is processed. Input data into the core Verilog is

designed to remain constant until a 4x4 pixel block is completely encoded. A “CAVLC done flag”

is sent high for one clock cycle to update all inputs into the core code to align with the new 4x4

pixel block to be processed. Additionally, the bitstream output of the core code is transmitted to

a ”.txt” file and the reconstructed frame output is stored in a 2-D memory array within the test

bench, available for either the inta or inter prediction algorithms. Table 4.1 lists all inputs and

outputs to the core encoder logic.
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Encoder Core Inputs Description Encoder Core Outputs Description

go MB go signal REC 4x4 Reconstructed 4x4
pixel output

4x4 pixel block Current pixel block
under process

bitstream MB compressed bit-
stream

Row, Col Top left pixel index
for current MB

bitstream pointer Bitstream length

nU, nL Top and left neigh-
boring total coeffi-
cients

CAVLC done Flag to initiate new
4x4 pixel process

predU, predL Top and left neigh-
boring Intra predic-
tions

MB Done Flag to initiate new
MB process

REC Pixels Sequence of recon-
structed pixels for
predictions

Pred Out Intra prediction
mode output

Pred Mode Current frame pre-
diction mode

nCoeff Out Total coefficients
output

QP Frame quantization
parameter

- -

h, w Frame height and
width

- -

Table 4.1: Verilog encoder inputs and outputs
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4.2.2 Datapath

Within the core Verilog logic, a control scheme is implemented using a finite state machine

triggered by a series of done signals from specific combinational blocks. The primary benefit of this

control scheme is that the top level logic remains unaffected by the number of cycles of lower-level

blocks. The top level finite state machine branches two different combinational blocks (inter and

intra prediction), but both blocks pass a 4x4 pixel prediction and residual to the same forward

transform and CAVLC hardware to conserve area. The proposed encoder finite state machine is

illustrated in figure 4.2.

Figure 4.2: Encoder top finite state machine

ME LOAD

The ME LOAD state is the initial state for the top finite state machine. A go signal is

sent every time a new 16x16 pixel macroblock is processed in the test bench code.

If the prediction mode input indicates an inter prediction frame, this state remains current

for 30 cycles. A row of 30 pixels from the reconstructed memory is loaded one-by-one into a core

local memory during each clock cycle. This 30x30 pixel block is stored in local memory and is used

as the Inter prediction search region. After 30 cycles the state machine passes to the ME state.

If the prediction mode input is Intra prediction, the state machine passes to the MIN INTRA PRED
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state in the next cycle.

MIN INTRA PRED

The MIN INTRA PRED state receives a 4x4 pixel input, neighboring reconstructed pixels,

and neighboring intra prediction modes from the core Verilog input. The intra prediction algorithm

is executed in order to find the lowest error prediction mode, described Section 4.2.3. The outputs

of this state are a done signal, 4x4 pixel residual, and a 4x4 pixel prediction. A done signal initiates

the CODE state.

ME

The ME state calculates a full 16x16 MB prediction for the currently processed macroblock.

Full macroblock and sub-macroblock, if needed, cost estimations are executed in this state. The

entire 16x16 prediction is stored in local memory and a done signal initiates the MEM FETCH

state. A high level description of the ME state is discussed in section 4.2.4.

MEM FETCH

The MEM FETCH state processes 4x4 pixels from the motion estimation pixels stored in

local memory. 4x4 pixels, selected in raster scan order, are passed to the forward transform and

encode block and a done flag initiates the CODE state.

CODE

The CODE state processes a 4x4 pixel residual and performs transform, quantization, and

CAVLC encoding. This state also reconstructs residuals for the prediction mode in the next frame.

When the residual is completely encoded, a done signal initiates either the MIN INTRA PRED or

MEM FETCH state (depending on the frame prediction mode) to fetch the next 4x4 residual. If

the entire MB is processed (16 4x4 residuals), a done signal is sent from the core Verilog code to

indicate the test bench code to pass to the next MB.

4.2.3 Intra Prediction

As previously stated, the Intra prediction decision scheme for this work is to compute

all prediction modes and find the smallest sum of absolute error (SAE). Intra prediction modes

only require a combination of shifts and additions. Each SAE block finds the absolute value of all

residual pixels and sums all the elements. The output of this block is the mode value and residual

produced by the Intra prediction mode with the smallest SAE.
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The complete MIN INTRA PRED datapath is enclosed in one pipeline. Figure 4.3

illustrates the hardware design for the Intra prediction decision process.

Figure 4.3: Encoder Intra prediction block diagram

4.2.4 Inter Prediction

Motion estimation is the most computationally intensive task for an H.264/AVC codec.

Consequently, a great deal of design effort and hardware iterations were required to make this block

synthesizable. The following three subsections discuss salient hardware blocks of the proposed inter

prediction motion estimation engine.

Local Memory

In this work inter prediction is executed using a 2-D logarithmic search algorithm, as

discussed in section 2.6. Unlike intra prediction, inter prediction processes a full MB at a time.

Additionally, the inter prediction pixel search region is significantly larger than the neighboring

reconstructed pixels required for intra prediction, 900 8-bit pixels compared to 9 8-bit pixels

respectively. Figure 4.4 illustrates the discrepancy between pixels processed in the proposed intra
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and inter prediction design. Across all partition modes in inter prediction, it is unfeasible to store

all reconstructed and input pixels in synthesized memory flip-flops dynamically. Consequently, two

separate block memory modules are designed to handle both the reconstructed search window and

input pixels.

Figure 4.4: Input (green) and memory (blue) required for intra (a) and inter (b) prediction

The input local block memory reads and writes one row of the input MB (16x8-bit) in a

single cycle. A read operation is always performed, but memory writing is only achieved if the write

“enable bit” is high.

Like the input block memory, the reconstructed memory writes one row of the reconstructed

search window (30x8-bits) in one cycle. In total, the reconstructed memory is capable of reading

20x16x8-bit pixel rows corresponding to every partition configuration in every cardinal direction,

including center, of the 2-D logarithmic search algorithm. Consequently, independent row and

column read signals are provided to account for every row output. Vertical and quad partitions have

twice as many read indexes to allow independent indexing of the first and second half of the row.

This memory scheme allows each partition mode to operate completely in parallel in the motion

estimation hardware block.
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Figure 4.5: Input block memory

Figure 4.6: Reconstructed block memory
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Motion Estimation Core

A key algorithmic block of the motion estimation algorithm is the SAE calculation for each

partition. To optimize performance, all partitions are calculated in parallel. For each partition the

SAE between the input sequence and reconstructed pixels are calculated one row at a time. Each

partition calculation in figure 4.7 calculates the center, top, right, bottom, and left cost respectively.

After 16 cycles, or 8 cycles in the case of sub-macroblock partitions, the minimum cost for each

direction of a partition is calculated. The indices of the minimum value are passed as the output to

be used as the center point for the next iteration of the 2-D logarithmic search.

Figure 4.7: Core motion estimation block

Motion Estimation Top

The highest level hardware block of the motion estimation engine combines the functionali-
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ties of the local memory and the core motion estimation blocks. The top motion estimation block,

illustrated in figure 4.8, manages the memory blocks to fetch a subsequent row for each partition

condition at each cycle. Additionally, this top block iterates the core motion estimation block a

total of three times. After the last iteration, the index offsets for full, vertical, horizontal, and quad

modes are passed to a block that calculates the sum of squared difference cost for each partition.

The mode with the smallest cost error is passed to the output of this hardware block.

Figure 4.8: Top motion estimation block

4.2.5 Encoder Overview

The proposed H.264/AVC encoder contains a forward transform, inverse transform, and

CAVLC block. All three of these blocks are shared by the outputs of Intra and Inter prediction

mode blocks. While low-level design details regarding the three encoder blocks are not provided,

the top level pipeline for the encoder is provided below.
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Figure 4.9: Encoder prediction and residual generation datapath
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Figure 4.10: Encoder forward transform and quantization datapath
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Figure 4.11: Encoder reconstruction and CAVLC datapath
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4.3 Decoder Design

4.3.1 Input Handling

Input handling for the H.264/AVC decoder differs greatly compared to the encoder. While

the encoder sends a defined width 16 pixel input, the decoder receives a variable length bitstream.

Consequently a protocol between the core decoder and Verilog test bench is created to deal with

the variable length input.

In the proposed Verilog decoder, the test bench sends the bitstream input incrementally in

word widths of 512 bits. Through intensive testing and simulation, a 4x4 output from CAVLC never

exceeds this 512 bit limit. Consequently, it is assumed that a complete inverse CAVLC decoding can

be executed for each bitstream input. After inverse CAVLC is executed, the core Verilog code sends

a CAVLC done flag to update the bitstream input and bitstream pointer with the most current

index within the total bitstream. Table 4.2 lists all inputs and outputs for the core Verilog decoder.

Decoder Core Inputs Description Decoder Core Outputs Description

go MB go signal Done MB completely pro-
cessed

bitstream Compressed bit-
stream

CAVLC done Update bitstream
input

bitstream pointer Current index of bit-
stream

nCoeff Out Total coefficient for
constructed 4x4 pix-
els

Row, Col Top left pixel index
for current MB

Pred Out Intra prediction
mode for 4x4 pixels

nU, nL Top and left neigh-
boring total coeffi-
cients

REC 4x4 Reconstructed pixel
output for 4x4 pix-
els

predU, predL Top and left Intra
prediction modes

bitstream pointer Current index for
bitstream pointer

REC pixels Sequence of recon-
structed pixels for
predictions

- -

QP Frame quantization
parameter

- -

h, w Frame height and
width

- -

Table 4.2: Verilog decoder inputs and outputs
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4.3.2 Datapath

As with the H.264 encoder, a top level finite state machine is designed to handle the

different combinational blocks of the decoder. Since the decoder does not contain prediction decision

hardware, the state machine is simple. Figure 4.12 illustrates the decoder’s top level finite state

machine.

Figure 4.12: Decoder state machine

Prediction Generation

Initially, a macroblock’s prediction header is decoded. This includes the prediction mode

for the macroblock and relevant prediction generation information. In the case of an I macroblock,

the intra prediction mode is decoded. Conversely, P macroblock motion vectors and partition type

are decoded.

Decode

This state decodes a video sequence with the inverse CAVLC block and inverse quantization.

The output of this state is decoded residual pixels.

Reconstruct

This state simply adds the residual from the decode state and the prediction from the

prediction generation state. The output is the reconstructed 4x4 pixel block.

4.3.3 Intra Prediction

The intra prediction mode header is decoded before the residual. Each macroblock has a

mode bit indicating whether the following macroblock is encoded using intra or inter prediction.

In the case of an intra prediction macroblock, the prediction mode is decoded according to the

algorithm in section 2.5.1. The prediction mode value is the control bit to a 9:1 mux. As illustrated

in figure 4.13, the output of this mux is the current 4x4 pixel prediction.
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Figure 4.13: Decoder Intra prediction
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4.3.4 Inter Prediction

The inter prediction decoder derives partition modes and motion vectors from the bitstream.

As seen in figure 4.14, a single set of mode and motion vectors are decoded for macroblock partitions

in comparison to four for sub-macroblock partitions. Using the motion vectors, reconstructed pixels

are fetched from main memory, in the test bench code, in one cycle. 4x4 pixel blocks are passed

from main memory in raster scan order.

Figure 4.14: Decoder Inter prediction

4.3.5 Decoder Overview

The top level pipeline diagram for the proposed decoder is presented in figures 4.15 and

4.16.
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Figure 4.15: Decoder prediction generation and inverse CAVLC
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Figure 4.16: Decoder inverse transform and reconstruction
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4.4 Results and Analysis

The RTL model proposed in this work is simulated using the 45 nm NanGate FreePDF45

Open Cell Library which is an open-source library developed by NanGate, Inc [23]. Results for the

RTL model are synthesized in design compiler, but not implemented on an FPGA. Additionally, the

RTL code discussed in this work handles all large memory structures in the testbench logic where a

memory fetch penalty is not estimated. Video compression hardware critical paths are typically

dictated in large part by memory read and write penalties. Consequently, the following synthesized

results for the proposed RTL model are not provided in the final comparisons of this work.

Total cycles are measured in the RTL testbench in order to calculate throughput perfor-

mance. The results for the RTL model, presented in table 4.3, are a rough indication of FPGA

performance for a first-pass design of the proposed codec. Since power results are inaccurate in

synthesis, only the throughput and area results are presented

Work Technology
Area
(mm2)

Clock
Frequency
(MHz)

Throughput
(mbps*)

Scaled
Throughput
(mbps/mm2)

RTL
Encoder

45 nm 20.4 142 69260 3395

RTL
Decoder

45 nm 12.3 102 64539 5247

*Throughput measured in macroblocks-per-second (mbps)

Table 4.3: The proposed RTL encoder and decoder performance

Although the RTL model is not used as a comparison work, the design of video codec

hardware in RTL offers several key insights that were considered while designing the fine-grained

implementation. Namely, how the area and performance trade-off corresponds to specific motion

estimation configurations in hardware. Additionally, the RTL model indicates the need for well

designed and tested top-level control algorithms when designing dedicated video compression

hardware.
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Chapter 5

Fine-Grained CPU Array

Implementation

5.1 Design Overview

The KiloCore II platform offers two distinct advantages for designing an H.264/AVC codec.

These advantages are exploited in the following fine-grained, many-core video compression design.

The first benefit of KiloCore II is that data is fundamentally handled in a “data in, data

out” format. Consequently once data is polled from a processor’s FIFO, it manipulates the data

according to its programmed function and passes data downstream to the next processor. KiloCore

II processors will stall and wait for FIFO inputs if unavailable, eliminating the need for counters as

common with RTL code. This offers a significant advantage because complex control structures are

not needed during design.

The other advantage the KiloCore II platform offers is a substantial opportunity to

parallelize code. The design choices in this section are chosen to exploit this trait.

5.2 Shared Memories

The utilization of the 64 kB shared memories is identical for both the encoder and decoder.

The memories utilized in this work are outlined in table 5.1.

The four number of coefficients and intra prediction mode memories read two words (top

and left neighboring components) and store one word successively. Consequently both memories are
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Memory Description

Luma REC0 First luma reconstructed pixel memory

Luma REC1 Second luma reconstructed pixel memory

Chroma u REC U-component chroma reconstructed pixel memory

Chroma v REC V-component chroma reconstructed pixel memory

nCoeff luma Number of coefficients for luma 4x4 blocks

nCoeff u Number of coefficients for U-component 4x4 blocks

nCoeff v Number of coefficients for V-component 4x4 blocks

IntraPred mode Intra prediction modes for 4x4 blocks

Table 5.1: KiloCore II shared memory utilization

Figure 5.1: Number of coefficients memory

designed to read two words, stall until the output is received, and store the resulting value. This

entire algorithm is implemented using one processor linked with a SRAM memory as illustrated in

figure 5.1. Since data is stored in memory before the next value is read, compression performance is

affected by memory read and write speeds.

Figure 5.2 illustrates the architecture for chroma reconstructed pixels. The intra prediction

memory core always reads reconstructed pixel samples for either intra or inter prediction. Since

intra prediction accesses reconstructed pixels from the same frame, data is not accessed until the

current macroblock is reconstructed and written back into memory. Inter prediction does not have

this requirement because the previous frame is used as the predictive reference. Since all motion

vectors are 0 for chroma inter prediction, current frame reconstructed pixels just overwrite the

previous frame’s reconstructed pixels.
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Figure 5.2: Memory architecture design for reconstructed chroma elements

The memory scheme required for luma reconstructed pixels is the most complex in this

work. For inter prediction frames, a reconstructed pixel memory is needed for prediction generation

and the other is needed for the next frame’s prediction generation. For this reason, a control scheme

must be established to ensure memory conflicts do not ensue. In the proposed H.264 codec two

SRAM memories are alternated for even and odd frames as depicted in figure 5.3.

5.3 Encoder

The KiloCore II encoder is bit accurate to the proposed H.264 encoder software model.

The input video sequence passed onto the KiloCore II chip is assumed to be sequenced in raster

scan order and the output is structured in the exact same manner as the input. Unlike the RTL

encoder, the KiloCore II encoder does not require off-chip memory. Relevant data structures are

stored in the SRAM shared memories. The proposed encoder is tested using a QCIF video sequence

where it is possible to store an entire video frame in one 64kB memory. Five global inputs are

passed into the encoder before the beginning of the video sequence. These inputs include frame

height, frame width, quantization parameter, frame start, and frame end. The following sections

discuss key hardware blocks for the encoder.
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Figure 5.3: Inter prediction memory switch

Inputs Description Outputs Description

SEQ pixels Video sequence input bitstream Compressed bitstream

h, w Frame height and width - -

QP Video sequence quantization
parameter

- -

f start, f stop Frame start and stop - -

Table 5.2: KiloCore II encoder inputs and outputs
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Figure 5.4: KiloCore II luma intra prediction decision

5.3.1 Intra Prediction

Intra prediction on KiloCore II is performed in a similar manner to the RTL implementation.

All nine intra prediction modes are executed in parallel in hardware. These prediction modes are

calculated once the input sequence pixels and neighboring reconstructed pixels are available. Eight

cores are used to find the minimum SAE among all modes and route the desired prediction to a

singular core output. The final output is a block of residual pixels for encoding and a block of

prediction pixels for reconstruction. Additionally, the selected prediction mode is stored in memory

for future intra predictions. The intra prediction mode is also encoded and sent to the bitstream

prediction header as depicted in figure 5.5.

Intra prediction for the chroma elements is executed in a similar fashion to the luma

elements. The key caveat is that chroma intra prediction is performed on blocks of 8x8 pixels and

only has four available prediction modes. In order to handle a larger block size, the intra prediction

algorithm for each mode is split into four parallel computations. Next, the residuals and predictions
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Figure 5.5: KiloCore II chroma intra prediction decision

are recombined and the minimum SAE is found similar to how the luma elements are chosen. The

mode for chroma elements is coded using an unsigned exp-golomb scheme. Figure 5.5 illustrates the

design choices utilized in this work.

5.3.2 Inter Prediction

The inter prediction motion estimation computational kernel can be broken into three

fundamental sections.

• The ME CNTRL block orchestrates which reconstructed pixels are pulled from memory

based on the current macroblock partition. All iterations listed in table 5.3 are executed in

one inter prediction MB partition cycle; total iterations are doubled in the scenario that a

sub-macroblock partition is selected. There are a range of SAE calculation iterations in this

work’s motion estimation algorithm (see section 2.6). As a result, the following table lists the
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range of possible iterations the algorithm may execute in a single data cycle.

Partition SAE Calculations SSD Calculations Total Iterations

Full 5 - 13 1 6 - 14

Vertical 10 - 26 2 12 - 28

Horizontal 10 -26 2 12 - 28

Quad 20 - 52 4 24 - 56
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Table 5.3: KiloCore COST ENGINE iterations

• The COST ENGINE block finds the motion estimation for each iteration in the ME CNTRL

block. Error is calculated one row at a time and accumulated until the full height of the

partition under test is reached. The block also passes four SSD error values (one for each

partition mode) to the next block.

• Finally, the MODE COST block finds the minimum mode mode error for each partition.

If the selected macroblock partition is quad mode, all three bullets are repeated for the

sub-macroblock partitions.

Figure 5.6 illustrates the top-level block diagram for the inter prediction motion estimation

computational kernel. The 30x30 pixel search region and 16x16 input MB are stored in processor

DMEM for faster fetch times. Each key algorithmic block is highlighted in figure 5.6 and discussed

further in the following sections. The output of the entire motion estimation block is a 16x16 pixel

residual and prediction block. Additionally, an exp-golomb coded prediction mode and motion

vector are passed as outputs to the bitstream prediction header.

5.3.3 Motion Estimation Control

The ME CNTRL algorithm is limited to a single core. This core orchestrates what

reconstructed and input pixels are sent to the cost engine module. Once the smallest SAE for a

given partition is chosen, the ME CNTRL core sends a flag to calculate the SSD for the mode.

Algorithm 3 outlines the logic for this core.

5.3.4 Motion Estimation Cost Engine

The COST ENGINE block performs all SAE and SSD calculations for inter prediction.
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Figure 5.6: KiloCore II Inter prediction top-level block diagram

Algorithm 3 Motion Estimation Control Algorithm

Load DMEM core pixels
stride = 4
repeat
c = Find center SAE
t = Find top SAE
r = Find right SAE
b = Find bottom SAE
l = Find left SAE
idx = min(c, t, r, b, l)
stride = stride >> 1

until (idx == c)|(stride == 0)
ssd = Find SSD(idx)
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Figure 5.7: KiloCore II cost engine

One cycle of this module includes between 5 and 13 block SAE calculations depending on the

outcome of Algorithm 3. This block will always end with a SSD calculation for mode prediction. This

module will iterate 9 times and 18 times if a full or sub-macroblock partition is chosen, respectively.

A full reconstructed and pixel block are loaded into the SAE calculation block. SAE is

calculated row-by-row and accumulated until the height of the partition is reached. Figure 5.7

illustrates the total algorithm.

5.3.5 Mode Cost Engine

The MODE COST block accumulates all four SSD error values for each partition mode.

The minimum mode cost is calculated and the output is a set of motion vectors for the selected

mode and a sub-macroblock partition flag to indicate whether the motion estimation algorithm

must be iterated. Figure 5.8 depicts the hardware architecture for this design.

5.3.6 Critical Path Optimization

Due to the computational intensity of the inter predictive algorithm. In this work, the
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Figure 5.8: KiloCore II mode cost engine

Figure 5.9: Motion estimation critical path optimization

entire motion estimation kernel is instantiated three times to improve the critical path delay.

Whereas for one computational kernel 9 iterations are required, the optimized algorithm requires

three, as depicted in figure 5.9. While the entire motion estimation algorithm could be parallelized

further, three datapaths is a good tradeoff between throughput and area.

5.3.7 Forward Transform

In H.264/AVC forward transform and quantization is a culmination of additions, shifts,

and multiplications. On KiloCore this is implemented by executing the four core transform rows on

separate processors. Every element of the scale factor calculation, which requires multiplication, is
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Figure 5.10: KiloCore II forward transform

calculated in parallel (16 total). Overall, this design prioritizes throughput with a highly parallel

datapath. Figure 5.10 illustrates the forward transform algorithm.

5.3.8 CAVLC

The CAVLC entropy encoder is depicted in figure 5.11. A single core (CAVLC in) processes

the total coefficients, trailing ones, levels, total zeros, and run of zeros. This processor iterates

through the entire 4x4 pixel block. All downstream cores, except for the levels core, generate their

respective VLCs through a series of look-up tables. The bitstream is built-up through a series of

routing cores as depicted in figure 5.11.

5.3.9 Reconstruction

Reconstruction is an important step for generating valid pixels for future predictions. Figure

5.12 illustrates the reconstruction process of KiloCore II. As depicted, the cores are programmed

to handle data successively - a key feature of the KiloCore platform. For any given macroblock,

memory is fetched, reconstructed, and stored back in memory in that order. Complex control

algorithms are not required.
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Figure 5.11: KiloCore II CAVLC

Figure 5.12: KiloCore II reconstruction
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5.4 Decoder

The following sections discuss the design of the KiloCore II H.264 decoder. Unlike the

encoder, global inputs are not passed as inputs to the decoder because these are decoded in the

bitstream header. The sole input to this design is the bitstream from the encoder terminated by an

end of file (EOF) flag of -1. The EOF flag allows the decoder to parse the end macroblocks from

H.264 bitstream without the possibility of hang-ups due to empty FIFOs.

Algorithm 4 EOF Handler

if EOF == 0 then
in = bitstream(bp)

else
in = 0

end if
if in = -1 then
EOF = 1
in = 0

end if

5.4.1 Bitstream Handling

A scheme is designed to handle the collection of variable length codes that make up the

H.264/AVC bitstream. Bits from the compressed bitstream are generated into a series of 32-bit

packets and passed to and from the inverse CAVLC block. The inverse CAVLC block may send

a flag to the packet generation core to pass the current bit from the bitstream. Additionally, the

inverse CAVLC block may pass back the 32-bit packet to find the prediction header and update the

packet for the next pixel block. Figure 5.13 depicts the bitstream handler scheme.

5.4.2 Prediction Decoding

Decoding the prediction header is a relatively simple task on KiloCore II. An initial header

decoding core decodes either a prediction mode value or a series of motion vectors. In either

case, values are passed to a router core along with the current prediction mode. A reconstructed

memory core will subsequently pass previously reconstructed pixels for intra prediction or motion

compensation.
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Figure 5.13: KiloCore II bitstream handler

Figure 5.14: KiloCore II prediction decoding
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Figure 5.15: KiloCore II inverse CAVLC

5.4.3 Inverse CAVLC

The block diagram for inverse CAVLC is depicted in 5.15. A central processing core,

inv CAVLC in, offloads decoding tasks for all VLCs in CAVLC. Data is returned back to the

inv CAVLC in core through a series of routing cores where a 4x4 pixel block is eventually recon-

structed.

5.4.4 Inverse Transform

As with the forward transform module on KiloCore II, the inverse transform block

is optimized to utilize a high level of parallelization. The scale factor contains 16 independent

multiplication cores which are recombined and eventually matrix multiplied. Figure 5.16 presents

the inverse transform block diagram for KiloCore II.
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Figure 5.16: KiloCore II inverse transform
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Chapter 6

Verification Methods

The proposed KiloCore and RTL implementation are tested and verified using a MATLAB

golden reference model that conforms to the proposed H.264/AVC bitstream syntax. The golden

reference software used in this design is verified by parsing sections of the H.264 reference software

- designed by the standard creators. Additionally, characteristic traits of the proposed codec are

observed to conform to characteristics of any generic video compression algorithm. Such traits include

the trade-off between compression performance and peak-signal-to-noise ratio, visual inspection of

the video frames, and a complete comparison of the reference frames generated independently by

the encoder and decoder. In the final section of this chapter, the scope of verification between the

software golden reference model and hardware models are discussed.

6.1 JM Software

The JM software is the H.264/AVC reference software developed by the joint team of

ISO/IEC MPEG and ITU-T VCEG [24]. In this work, the JM software is used as a tool to verify

the functional blocks of the proposed H.264 codec.

The JM software accepts a “.yuv” file for encoding and a “.264” file containing a bitstream

for decoding. A trace function is generated which highlights relevant data regarding the generated

bitstream. Header parameters and coded macroblock VLCs are all labeled descriptively in the

output of the trace function.

Figure 6.1 presents an excerpt from the JM software trace function. In blue, the prediction

mode header is highlighted which contains all information to reconstruct a prediction for the luma
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and chroma samples. The green highlighted section presents the coded block pattern (CBP),

indicating which quadrants of a macroblock have non-zero coefficients. Next, the red section exhibits

the quantization parameter value used for this macroblock. Finally, the yellow field describes the

entire residual bit stream. This section clearly illustrates each of the five CAVLC VLCs, which are

reconstructed into a 4x4 pixel sample.

Figure 6.1: JM trace function output

The codec designed in this work is compliant with JM at a macroblock level. While the

proposed codec cannot directly interface with the JM software, special care is taken to mimic the

syntax of the macroblock layer of the JM reference software. The following sections discuss how the

proposed codec was designed for accuracy.
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6.2 Matlab Golden Reference Verification

The following two sections describe two methods for testing the general functionality of

the proposed codec golden reference model. The first section discusses definitive outputs of the

JM software trace function that were verified to bit accuracy. The following section describes key

characteristics of an H.264/AVC codec that were verified by observation.

6.2.1 JM Verification

The proposed H.264 codec model is functionally verified and bit accurate to all the features

listed in table 6.1. Each element is individually tested using the JM software trace function output

for an entire intra prediction frame for two sample QCIF video sequences, “foreman.qcif” and

“suzie.qcif”. The pure functionality of the motion estimation algorithm is not tested as the standard

does not specify motion estimation search algorithms. Additionally, the functionality of exp-Golomb

encoding is not explored as this is a trivial block with a structured and uniform output.

Functional Block

Intra Prediction

Forward Transform

CAVLC

Inverse CAVLC

Inverse Transform

Table 6.1: JM reference software verified algorithmic block

The JM software trace file output was parsed with a python script using the textparser

library [25]. Pertinent information regarding the proposed CODEC model was extracted from this

trace file. Each section below describes how that information was utilized in order to verify accuracy.

Forward and inversely related blocks were verified in tandem using the output from the JM software

encoder.

Intra Prediction

Intra prediction mode selection is verified by parsing the “Intra 4x4 mode” descriptor from

the JM trace function. Each 4x4 pixel block is verified with 100% accuracy to yield the appropriate

Intra prediction mode and corresponding variable length code.
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As illustrated in figure 6.1, intra prediction modes are described either as “predicted” or

through a number representing one of the nine possible modes supported in the standard. If this

field is labeled as predicted, the chosen prediction mode is the minimum mode number between

the neighboring top and left 4x4 pixel predictions. If the selected intra prediction mode is not the

minimum of the neighboring modes, the selected prediction mode is explicitly stated in the trace

function output.

Intra prediction verification was achieved by recreating a prediction mode memory from

the JM trace function and cross referencing it with the memory created in the golden reference

model. An overview of how an intra prediction memory is parsed from the JM software is described

in algorithm 5.

Algorithm 5 Decode Intra Prediction Mode

if (KEY == “Intra 4x4 mode”) then
predU = predMEM(row,col-1)
predL = predMEM(row-1,col)
n = min(predU, predL)
if (code == “predicted”) then
predMEM(row,col) = n

else
predMEM(row,col) = code

end if
end if

Forward Transform and Inverse Transform

A residual data set is used to verify the transform and inverse transform algorithm blocks.

The residual data set is generated by subtracting the raw input video sequence with the previously

verified prediction pixels. The output of the golden reference transform is cross-verified with the

generated transform output of the JM software (the input into the CAVLC encoder). Due to varying

rounding schemes, the proposed H.264 CODEC did vary from the forward and inverse transform

outputs slightly. Regardless, transform outputs were verified with high accuracy by accounting for

rounding errors with a tolerance of two integer values. Figure 6.2 illustrates how the transform

block was functionally verified.
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Figure 6.2: Transform golden reference verification (gray) using verified parameters (green)

Figure 6.3: Sample JM CAVLC 4x4 pixel encoding
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CAVLC and Inverse CAVLC

The CALC and inverse CAVLC blocks were verified to have a bit accurate output when

compared to the JM reference software. This was confirmed by simply comparing the generated

bitstream from the JM trace function to the generated bitstream output of the proposed codec

golden reference model. To illustrate the process, the luma block highlighted in figure 6.3 is rebuilt

programmatically. In practice the reference data set is generated utilizing a python script.

First, an array is generated that contains the ordered level and trailing ones data.

9 -12 3 3 -3 -11 -5 1 -1 -2 1

Table 6.2: JM reference total coefficients and T1s

Next, zero run data is parsed to insert the relevant string of zeros as depicted in table 6.3.

9 -12 3 3 -3 -11 -5 1 -1 0 0 -2 0 1

Table 6.3: JM reference total zeros and run of zeros

Finally, the scanned 1-D array is reverted to its 4x4 pixel form.

9 -12 -11 -5

3 -3 1 0

3 -1 -2 1

0 0 0 0

Table 6.4: JM reference reconstructed 4x4 pixel block

6.2.2 Characteristic Verification

Along with the functional verification from the JM reference software, a few characteristic

traits for a general video codec are verified in the proposed golden reference model.

For any functioning codec, it is expected to observe a clear tade-off between the compression

performance and peak-signal-to-noise ratio (PSNR). To see this behavior, the quantization parameter

for the proposed H.264/AVC golden reference software is varied and the compression ratio and PSNR

are monitored. Figure 6.4 and figure 6.5 display the compression ratio and PSNR, respectively, for

the same video sequence frame as the quantization parameter increases.
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Figure 6.4: H.264 golden reference compression ratio

Figure 6.5: H.264 golden reference PSNR

Along with the calculated metrics above, the functionality of the video compression

algorithm is also confirmed by inspection. For both the encoder and decoder, side-by-side images

for the compressed and uncompressed video frames are displayed in the MATLAB golden reference

model. By observation it is easy to note any disconformity beyond expected compression artifacts.
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Figure 6.6 displays an original and compressed video frame of “suzie.qcif” using the proposed golden

reference model.

Figure 6.6: Golden reference frame comparison for frame 1 of “suzie.qcif” (QP of 15) with original
frame (left) and reconstructed frame (right)

6.3 RTL and KiloCore Verification

After a golden reference software was established, both the RTL and KiloCore models

were designed and verified. Functionality for the two hardware models were simply verified using a

combination of python scripts and a compare plugin on the Notepad++ editor [26]. A complete list

of the all the bit accurate test cases verified for the encoder and decoder are listed in table 6.5 and

table 6.6, respectively. Test cases are varied across quantization parameters to ensure that all six

scaling factors are utilized and tested.

Both datasets utilized three video sequences: “suzie qcif.yuv”, “claire qcif.yuv”, and

“foreman qcif.yuv”. All three video sequences are commonly used in evaluating video compression

performance and are downloaded from the video trace library [27].
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Video
Sequence

Frame
Number

Prediction
Mode

QP
(mod(QP,6))

PSNR
Compression

Ratio
Verified

suzie qcif 0 Intra 15 (3) 36.02 10.32 yes

suzie qcif 1 Intra 28 (4) 31.35 33.67 yes

suzie qcif 2 Intra 50 (2) 18.23 151.65 yes

claire qcif 0 Intra 24 (0) 29.15 29.75 yes

claire qcif 1 Intra 19 (1) 28.93 20.54 yes

claire qcif 2 Intra 34 (4) 25.07 64.40 yes

foreman qcif 0 Intra 11 (5) 33.61 6.93 yes

foreman qcif 1 Intra 12 (0) 26.36 7.38 yes

foreman qcif 2 Intra 13 (1) 22.64 7.74 yes

suzie qcif 1 Inter 15 (3) 39.03 25.39 yes

suzie qcif 2 Inter 26 (2) 34.42 66.91 yes

claire qcif 1 Inter 24 (0) 34.63 81.67 yes

claire qcif 2 Inter 25 (1) 35.43 83.37 yes

foreman qcif 1 Inter 28 (4) 32.10 52.53 yes

foreman qcif 2 Inter 35 (5) 27.70 148.68 yes

Table 6.5: Encoder RTL and KiloCore test dataset

Video
Sequence

Frame
Number

Prediction
Mode

QP
(mod(QP,6))

Verified

suzie qcif 0 Intra 15 (3) yes

suzie qcif 1 Inter 28 (4) yes

suzie qcif 2 Inter 50 (2) yes

claire qcif 0 Intra 24 (0) yes

claire qcif 1 Inter 19 (1) yes

claire qcif 2 Inter 35 (6) yes

foreman qcif 0 Intra 11 (5) yes

foreman qcif 1 Inter 12 (0) yes

foreman qcif 2 Inter 13 (1) yes

Table 6.6: Decoder RTL and KiloCore test dataset (PSNR and compression performance labeled in
figure 6.5)
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Chapter 7

Results and Comparisons

The proposed H.264/AVC encoder and decoder is simulated on the KiloCore II chip. All

results discussed in the following section are provided through simulation results from the Project

Manager software. Area results are interpolated from the fact that each processor has a total area

of 0.055 mm2 [3].

The following sections analyze how core processors are distributed within the compression

algorithm. Additionally, energy and throughput results are discussed followed by a comparison of

other CODECs from related work.

The proposed H.264/AVC CODEC in this work was tested utilizing QCIF video sequences.

Larger video formats are provided by interpolating the achieved macroblock per second (mbps)

throughput. For both the encoder and decoder of this work, throughput and energy analytics are

derived from an even weighted average between all test conditions outlined in Table 6.5 and Table

6.6. This ensures that results are well compensated for variance in video sequences and quantization

parameters.

7.1 Core Utilization

7.1.1 Encoder

The encoder utilizes a total of 333 cores on the KiloCore II platform. With each core

consuming an area of 0.055 mm2, the total area of the encoder is interpolated as 18.315 mm2.

Table 7.1 outlines how cores are distributed across all algorithmic blocks. The cores used for the
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prediction mode data are separated by luma (y components) and chroma (both u and v components)

datapaths. The forward transform, inverse transform, CAVLC, and control fields account for all the

cores utilized to encode the three color space components.

As depicted in figure 7.1, the luma inter prediction algorithm dominates the area con-

sumption. Inter prediction is the most computationally heavy task in the H.264/AVC standard.

Consequently, a high number of parallel cores are utilized in this work to speed up this block’s

critical path. Additionally, the inter prediction algorithm designates the most cores as local memory

(utilizing their DRAM) when compared to other algorithmic blocks. In total, 18 cores alone are

used to store pixel data for the motion estimation algorithm in this work.

7.1.2 Decoder

Table 7.2 outlines the total core utilization for the proposed H.264 decoder. This design

utilized a total of 131 cores resulting in a total area of 7.205 mm2. The decoder utilizes a significantly

smaller area compared to the encoder primarily due to the lack of an intra and inter predictive

algorithm scheme. Additionally, the encoder utilizes both forward and inverse transform blocks

while the decoder only requires an inverse transform block.

As seen in figure 7.2, the inverse transform and inverse CAVLC blocks dominate the area

consumption for the decoder. The large area consumption required for inverse transform is a result

of utilizing a parallel datapath for the luma and chroma reconstructions. In turn, this requires a

total of three instantiated inverse transform modules.

While it is possible to parallelize all three color component datapaths in encoding, the

bitstream can only be decoded sequentially for the decoder. Consequently, the encoder utilizes three

CAVLC modules to optimize throughput while the decoder may only have one inverse CAVLC

block. For this reason, the CAVLC algorithm is nearly double the area than its inverse CAVLC

counterpart for the decoder.
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Figure 7.1: KiloCore II encoder core distribution by function

Algorithmic Block Number of Cores Area mm2

Intra Prediction (Luma) 17 0.935

Inter Prediction (Luma) 95 5.225

Intra Prediction (Chroma) 48 2.64

Inter Prediction (Chroma) 6 0.33

Forward Transform 24 1.32

Inverse Transform 60 3.3

CAVLC 57 3.135

Control 19 1.045

Total 333 18.315

Table 7.1: KiloCore encoder core usage
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Figure 7.2: KiloCore II decoder core distribution by function

Algorithmic Block Number of Cores Area mm2

Intra Prediction (Luma) 23 1.265

Inter Prediction (Luma) 3 0.165

Intra Prediction (Chroma) 13 0.715

Inter Prediction (Chroma) 3 0.165

Inverse Transform 47 2.585

Inverse CAVLC 32 1.76

Control 10 0.55

Total 131 7.205

Table 7.2: KiloCore decoder core usage
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7.2 Throughput by Stage

7.2.1 Encoder

The following section discusses how throughput varies across all the stages of the encoder.

Throughput is measured as the number of macroblocks a stage is able to process in one second

(mbps). Table 7.3 outlines each stage’s throughput for the encoder.

As depicted in figure 7.3, inter prediction has the lowest throughput by far. This stage

requires a significant number of iterative and computationally intensive tasks. Consequently, the

critical path of the encoder inter prediction algorithm is dictated by this block’s datapath.

The limiting block for the intra prediction mode is more complex than inter prediction.

While inter prediction derives its prediction from the previously decoded frame, the intra prediction

algorithm derives its prediction from previously decoded pixels of the same frame. Consequently,

the next macroblock in intra prediction is not processed until the current macroblock is predicted,

transformed, reconstructed, and stored back into memory. As a result, the intra prediction critical

path is defined by the prediction, transform, and inverse transform throughputs.

7.2.2 Decoder

Table 7.4 and figure 7.4 depict the throughput by stage for the decoder.

Decoder throughput is severely limited by the inverse CAVLC algorithm. Since H.264/AVC

uses a series of variable length codes to optimize compression performance, it is not possible to

parallelize bitstream decoding. Consequently, it is only possible to include one inverse CAVLC in

hardware. On top of this, the inverse CAVLC algorithm is highly combinational and does not allow

room for parallel computation within the algorithm itself.

Besides the inverse CAVLC algorithm, the luma intra prediction and inter prediction

blocks provided the next worst throughput performance. These two algorithms require four times

more memory reads and writes than the chroma counterparts. For this reason, throughput in this

case is dictated by characteristics of the hardware.
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Figure 7.3: Encoder throughput, in macroblocks-per-second, by stage

Stage Throughput (mbps)

Intra prediction (Luma) 165000

Intra prediction (Chroma) 310896

Inter Prediction (Luma) 17926

Inter Prediction (Chroma) 570685

Forward Transform 253051

Inverse Transform 636168

CAVLC 140284

Table 7.3: Encoder throughput, in macroblocks-per-second, by stage
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Figure 7.4: Decoder throughput, in macroblocks-per-second, by stage

Stage Throughput (mbps)

Intra prediction (Luma) 324788

Intra prediction (Chroma) 3393898

Inter Prediction (Luma) 239317

Inter Prediction (Chroma) 951998

Inverse Transform 936138

Inverse CAVLC 8684

Table 7.4: Decoder throughput, in macroblocks-per-second, by stage
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7.3 Total Energy

Energy consumption results are derived from the cycle-accurate simulator tailored to

KiloCore II. Each assembly language operation for a given task has a defined energy consumption [3].

Through a program instruction trace, accurate energy consumption values for the encoder and

decoder are derived. The total energy results presented in the following sections are in micro-Joules

per QCIF frame.

7.3.1 Encoder

Both figure 7.5 and table 7.5 outline the total energy consumption for the proposed

encoder. Total energy consumption has a strong correlation with throughput. Slower and more

computationally intensive tasks, such as luma inter prediction, require a large number of operations

and consequently a large energy output.

Inter prediction is clearly the dominant algorithmic block in terms of energy consumption

for the proposed encoder. Since the choice of motion estimation algorithm is not established in

the H.264/AVC standard, metrics such as energy consumption for this module are specific to the

application. Regardless, inter prediction still dominates in energy consumption for most high

performance compression algorithms.

7.3.2 Decoder

Both figure 7.6 and table 7.7 outline the total energy consumption for the proposed

decoder. As with the encoder, the block with the worst throughput performance dominates the

total energy consumption.

The inverse CAVLC module consumes the most total energy for the decoder. This

algorithmic block requires many loops and branches to decode variable length codes. On KiloCore

II an incorrect instruction branch guess produces the largest energy penalty at 41.0 pJ. Additionally,

the inverse CAVLC block decodes the luma and both chroma elements without room for parallel

optimizations.
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Figure 7.5: Encoder energy distribution by function

Algorithmic Block Total Energy (uJ / frame) Percentage (%)

Intra prediction (Luma) 436.1 12.6

Intra prediction (Chroma) 165 4.8

Inter Prediction (Luma) 1857.8 54

Inter Prediction (Chroma) 33 1.2

Forward Transform 288.8 8.4

Inverse Transform 100.7 2.9

CAVLC 555.4 16.1

Total 3437.1 -

Table 7.5: KiloCore encoder power distribution by task
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Figure 7.6: Decoder energy distribution by function

Algorithmic Block Total Energy (uJ / frame) Percentage (%)

Intra prediction (Luma) 136.4 5

Intra prediction (Chroma) 23.3 0.8

Inter Prediction (Luma) 131.3 4.8

Inter Prediction (Chroma) 36.4 1.3

Inverse Transform 100.7 3.7

Inverse CAVLC 2317.3 84.4

Total 3437.1 -

Table 7.6: KiloCore decoder power distribution by task
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7.4 Scaling with Voltage

A key advantage of the KiloCore II architecture is the ability to scale processor supply

voltage. This feature offers extreme versatility when balancing the tradeoffs between throughput

and energy consumption for a given application. Table 7.7 lists the results for the proposed codec’s

throughput, energy, and power performance with respect to varying supply voltages. Results are

split between intra and inter prediction frames.

For each defined supply voltage, processor frequency is proportionally scaled. The encoder

and decoder algorithms are simulated and the total number of assembly operations are calculated.

The measured KiloCore II frequencies and energy scaling constants [28] are used in conjunction

with the total operations to calculate throughput, energy, and power across all voltages.

The results presented in figures 7.7 through 7.18 make sense intuitively. As processor

supply voltage increases, throughput performance improves along with faster clocking frequencies.

The improved throughput performance comes at the expense of higher power consumption.

Encoder Decoder

Voltage
(V)

Throughput
(mpbs)

Energy
(uJ)

Power
(mW)

Throughput
(mpbs)

Energy
(uJ)

Power
(mW)

I
Frame

0.56 3908.3 70.1 2.7 561.6 201.0 1.1

0.75 21682.8 119.7 26.2 3116.1 343.0 10.8

0.9 42040.1 166.9 70.9 6041.8 478.2 29.1

1.1 60562.3 264.9 162.0 8703.8 758.9 66.7

P
Frame

0.56 1156.8 312.1 3.6 861.1 165.2 1.4

0.75 6417.9 532.7 34.5 4777.3 282.1 13.6

0.9 12443.5 742.6 93.3 9262.7 393.2 36.7

1.1 17925.9 1178.5 213.3 13343.7 624.1 84.1

Table 7.7: KiloCore decoder power distribution by task
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Figure 7.7: Encoder throughput with respect to voltage (intra)

Figure 7.8: Encoder energy with respect to voltage (intra)

Figure 7.9: Encoder power with respect to voltage (intra)
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Figure 7.10: Encoder throughput with respect to voltage (inter)

Figure 7.11: Encoder energy with respect to voltage (inter)

Figure 7.12: Encoder power with respect to voltage (inter)

84



Figure 7.13: Decoder throughput with respect to voltage (intra)

Figure 7.14: Decoder energy with respect to voltage (intra)

Figure 7.15: Decoder power with respect to voltage (intra)
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Figure 7.16: Decoder throughput with respect to voltage (inter)

Figure 7.17: Decoder energy with respect to voltage (inter)

Figure 7.18: Decoder power with respect to voltage (inter)
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7.5 Mapping

The proposed H.264/AVC encoder designed on the KiloCore II platform is mapped

utilizing the Mapper2 software [29]. The Mapper2 tool is a general place-and-route framework. It is

capable of mapping to a N-dimensional architectural model. In this work, it is used to map a 2-D

processor array on KiloCore II.

7.5.1 Encoder

Figure 7.19 presents the processor core mapping of the proposed encoder.

All shared SRAM memory modules reside at the bottom of the image. These include the

four memories for reconstructed pixels for the y, u, and v components. The other five memories are

for previous intra prediction modes and number of coefficients for the y, u, and, v samples.

The left side contains three separate inputs containing pixel inputs for the luma and both

chroma inputs. One output on the right side contains the encoded bitstream, while the other two

outputs were utilized for debugging.

7.5.2 Decoder

Figure 7.20 presents the processor mapping for the proposed decoder.

The decoder mapping is significantly simpler than the encoder due to the lack of a predictive

algorithm scheme. Additionally, the decoder requires two less shared memories due to the fact that

the inverse CAVLC algorithm is not parallelized. Consequently, the number of coefficient values for

the luma and chroma components are stored in the same SRAM module.
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Figure 7.19: KiloCore II encoder place and routed map of cores
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Figure 7.20: KiloCore II decoder place and routed map of cores
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7.6 Comparisons

While ASICs typically optimize performance for a given task, they require a large amount of

design time and money. FPGAs, on the other hand, compromise design flexibility and computational

performance. Digital signal processors (DSP) are special programmable units that accelerate several

functions common to video compression, such as multiplication and addition. General purpose CPUs

offer the widest range of capabilities, but lack any dedicated hardware to accelerate performance.

KiloCore II is a high performance programmable CPU array aimed to offer both excellent

flexibilty and performance [30]. KiloCore II aims to balance the performance and design tradeoffs

between ASICs and other programmable platforms. It is generally accepted that the highest level

of performance is obtained through ASICs. In the following section, the KiloCore II platform is

compared to other implentations of H.264/AVC codecs on programmable platforms. Additionally,

the synthesis results for the proposed RTL implementation in this work is provided.

The following sections discuss how performance results are abstracted for KiloCore II.

Additionally, the comparison works are introduced briefly. Finally, the compared results are presented

in tables 7.13, 7.14, 7.15, and 7.16. The results are split among two tables for both the encoder

and decoder, where each respective table compares special purpose and programmable architectures

seperately.

7.6.1 KiloCore II Performance

The throughput and energy performance of the H.264 codec in this work varies across

quantization parameters and video sequence. In order to provide a reasonable performance indication,

the throughput and energy results for all test cases listed in table 7.8 and 7.9 are collected.

The results listed in table 7.8 and 7.9 split intra and inter prediction results due to lengthy

simulation times from Project Manager. In order to provide a single metric for both the encoder

and decoder, it is assumed that video sequences contain an intra prediction frame every fifth frame.

Consequently, a weighted average is used to combine intra and inter prediction frames together.

The results of this calculation are provided in table 7.10 and are used to compare with other works.
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Video
Sequence

Frame
Number

Prediction
Mode

QP
Throughput

(mbps)
Energy

(uJ/MB)

suzie qcif 0 Intra 15 60563 4.9

suzie qcif 1 Intra 28 60563 3.9

suzie qcif 2 Intra 50 60563 0.6

claire qcif 0 Intra 24 60563 2.7

claire qcif 1 Intra 19 60563 3.4

claire qcif 2 Intra 34 60563 1.8

foreman qcif 0 Intra 11 60563 4.9

foreman qcif 1 Intra 12 60563 4.9

foreman qcif 2 Intra 13 60563 4.9

suzie qcif 1 Inter 15 17926 18.7

suzie qcif 2 Inter 26 18242 18.4

claire qcif 1 Inter 24 15391 21.8

claire qcif 2 Inter 25 17235 19.5

foreman qcif 1 Inter 28 14906 22.5

foreman qcif 2 Inter 35 14033 23.9

Average - Intra - 60563 3.6

Average - Inter - 16131 20.8

Table 7.8: KiloCore II encoder performance

Video
Sequence

Frame
Number

Prediction
Mode

QP
Throughput

(mbps)
Energy

(uJ/MB)

suzie qcif 0 Intra 15 8704 24.1

suzie qcif 1 Inter 28 13344 26.8

suzie qcif 2 Inter 50 20124 21.2

claire qcif 0 Intra 24 15431 13.5

claire qcif 1 Inter 19 44561 15.1

claire qcif 2 Inter 35 44963 15.1

foreman qcif 0 Intra 11 8749 23.9

foreman qcif 1 Inter 12 18484 22.1

foreman qcif 2 Inter 13 31389 17.2

Average - Intra - 10961 20.5

Average - Inter - 28810 19.6

Table 7.9: KiloCore II decoder performance

Throughput Energy

Encoder 27239 16.5

Decoder 24347 19.8

Table 7.10: KiloCore II final weighted performance metrics
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7.6.2 KiloCore II Performance with Motion Estimation Accelerator

Motion estimation is clearly the most computational and area intensive task for a given

H.264 encoder. While the KiloCore II platform does not include a dedicated motion estimation

accelerator processor, prior generations of KiloCore did contain such hardware [31]. In order to

observe the potential of a KiloCore II platform equipped with a motion estimation accelerator, the

following section presents an analysis to estimate the power and throughput for this configuration.

The motion estimation accelerator provided on chip for AsAP 2 (the second generation

fine-grained many-core processor array) offers several search algorithm configurations with varying

compression and computation performance [20]. One such search algorithm is the three step search

algorithm which is identical to the search algorithm proposed in this work. The performance for the

AsAP 2 motion estimation accelerator with a three step search algorithm is provided in table 7.11.

Area
(mm2)

Frequency
(MHz)

Active Power
(mW)

Cycles
Throughput

mbps
Energy
(uJ)

AsAP 2
ME ACC

0.67 938 196 174582 531910 36.4

Table 7.11: AsAP 2 motion estimation accelerator throughput and power performance for a single
QCIF frame

The total throughput and power consumption for the encoder with a motion estimation

accelerator is estimated through extrapolating the results from the throughput and energy by stage

results outlined in section 7.2 and 7.3, respectively. The total energy is simply summed across all

algorithmic blocks, including the chroma datapath. The throughput is estimated by summing the

total time to complete the critical path. For the inter prediction mode of an encoder the critical path

is dictated by the prediction , forward transform, and CAVLC blocks. Finally, a weighted average is

calculated in order to find the total encoder performance metrics including intra prediction. Table

7.12 highlights the full results.

Throughput
(mbps)

Energy
(uJ/MB)

(Area)
(mm2)

Intra Prediction 60563 3.6 13.76

Inter Prediction 77159 10.5 13.76

Average 73010 8.7 13.76

Table 7.12: KiloCore II encoder performance with motion estimation accelerator
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7.6.3 Comparisons

The following sections compare relevant works to the proposed design in this paper. In all

proceeding tables the best performance for a given category is in bold. The implemented H.264/AVC

codec achieves up to 49.1× and 8.1× higher throughput than all compared encoders and decoders,

respectively. The final column in each table provides a normalized ratio between each respective work

and the proposed design (i.e. normalized throughput = compared throughput / lowest throughput).

For both the encoder and decoder two tables are presented which are divided into special purpose

and fully programmable architectures. The compared works for both the encoder and decoder are

introduced briefly below.

Encoder Comparisons

FPGAs offer a good trade-off between performance and flexibility making them a common

platform for encoder designs. Hamzaoglu [32] presents a low power H.264 encoder. In Li [33], a

SoC FPGA implementation is compared to the performance of CPUs and DSPs. Finally, Lee [34]

implements a high throughput FPGA encoder design. A CPU encoder implementation by Rao [35]

achieves the lowest throughput of the compared encoders.

An implementation of an H.264 encoder on a DSP is presented in Ouyang [36] and

Mohammadnia [37]. DSPs offer dedicated hardware for many arithmetic functions making their

throughput competitive.

Huang [38] presents a custom architecture for an H.264 encoder. This design offers a high

performance encoder for real-time 720p encoding. In Le [5], the H.264 encoder is implemented on

KiloCore II’s predecessor KiloCore.

Decoder Comparisons

Both Lee [39] and Peng [40] present a real-time baseline decoder on a SoC FPGA capable

of encoding a QCIF video sequence at 20 frame-per-second. The design of an H.264 decoder is

explored in Jian [41] and Pescador [42]. Since CPUs do not contain dedicated hardware, the

throughputs are comparable. A custom IC by Major [43] achieves a competitive throughput. The

proposed platform is a highly reconfigurable fabric of interconnected instruction cells which can be

dynamically reconfigured to provide highly parallel FPGA-like representations of typical software

operations. Similarly, an implementation of another decoder on a reconfigurable course-grained

custom IC (referred to as ADRES) is presented in Mei [44].
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Work Technology
Area
(mm2)

Clock
Frequency
(MHz)

Power
(mW)

Energy
( uJ/MB)

Throughput
(mbps*)

Normalized
Throughput**

Hamzaoglu [32]
FPGA

Xilinx Virtex 6
40 nm - 135 174 7.98 21,780 14.6

Li [33]
SoC FPGA

Xilinx Zynq-7000
28 nm - 190 - - 26,030 17.5

Lee [34]
FPGA

Xilinx XC2V6000
150 nm 8.003 40 - - 40,500 27.2

Rao [35]
CPU

ARM 11
- - 69 - - 1,485 1.0

This Work
KiloCore II
(Without
ME ACC)

32 nm 18.315 1,780 449 16.5 27,239 18.3

This Work
KiloCore II

(With
ME ACC)

32 nm 13.76 1,780 635 8.7 73,010 49.1

*Throughput measured in macroblocks-per-second (mbps)

**Normalized throughput = comparison throughput/lowest throughput

Table 7.13: Comparison of H.264 programmable encoders
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Work Technology
Area
(mm2)

Clock
Frequency
(MHz)

Power
(mW)

Energy
( uJ/MB)

Normalized
(mbps*)

Scaled
Throughput

Ouyang [36]
DSP

ADSP-BF561
- - 600 - - 21,600 5.3

Mohammadnia [37]
DSP

DM648
- - 900 - - 11,880 2.9

Huang [38]
UMC 180 nm
Custom IC

180 nm 31.718 108 785 19.3 40,500 9.9

Le [5]
Custom IC

AsAP 3, Intra
65 nm 18.87 1,200 702 172.9 4,059 1.0

Le [5]
Custom IC

AsAP 3, Inter
65 nm 19.2 1,200 955 44 21,384 5.2

This Work
(Without
ME ACC)

32 nm 18.315 1,780 449 16.5 27,239 6.7

This Work
(With

ME ACC)
32 nm 13.76 1,780 635 8.7 73,010 17.9

*Throughput measured in macroblocks-per-second (mbps)

**Normalized throughput = comparison throughput/lowest throughput

Table 7.14: Comparison of H.264 special purpose encoders
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Work Technology
Area
(mm2)

Clock
Frequency
(MHz)

Power
(mW)

Energy
( uJ/MB)

Throughput
(mbps*)

Normalized
Throughput

Lee [39]
FPGA

Simulation
150 nm 10.6 30 - - 11,880 3.5

Peng [40]
FPGA

Simulation
130 nm - 120 8 0.67 11,880 3.5

Jian [41]
CPU
ARM

- - 800 - - 5,032 1.4

Pescador [42]
CPU

3 GHz dual-core
- - - - - 3,368 1.0

This Work
KiloCore II

32 nm 7.205 1,780 482 19.8 24,347 7.2

*Throughput measured in macroblocks-per-second (mbps)

**Normalized throughput = comparison throughput/lowest throughput

Table 7.15: Comparison of H.264 programmable decoders
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Work Technology
Area
(mm2)

Clock
Frequency
(MHz)

Power
(mW)

Energy
( uJ/MB)

Throughput
(mbps*)

Normalized
Throughput

Major [43]
Custom IC

RICA
130 nm - - 25.1 1.49 16,848 5.6

Liu [45]
Custom IC

180 nm 1P6M CMOS
180 nm 11.289 1.2 0.865 0.29 2,970 1.0

Mei [44]
Custom IC
ADRES

- - - - - 11,880 4.0

Chattopadhyay [46]
DSP

TMS320
- - 150 - - 2,970 1.0

This Work
KiloCore II

32 nm 7.205 1,780 482 19.8 24,347 8.1

*Throughput measured in macroblocks-per-second (mbps)

**Normalized throughput = comparison throughput/lowest throughput

Table 7.16: Comparison of H.264 special purpose decoders
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Chapter 8

Summary and Future Work

8.1 Summary

The KiloCore architecture offers both a flexible and powerful platform for video compression

algorithms, as found in works [21], [47], and [48]. This work implements the first baseline H.264

CODEC on the KiloCore II platform. The proposed CODEC is macroblock-level compliant and

verified using the syntax structure generated from the JM reference software [24]. This work’s

implementation supports all nine luma element Intra prediction modes and all four chroma element

Intra prediction modes. Motion estimation does not use sub-pixel interpolation. Luma motion

estimation utilizes a 2-D logarithmic search algorithm while chroma elements use the prior frame’s

elements at the current index.

The proposed design on KiloCore II utilizes a high degree of parallelization to exploit

various tasks in the H.264/AVC algorithm. A fully parallel design is not explored to balance power

dissipation with throughput performance.

8.2 Future Work

Several H.264/AVC offers design flexibility with respect to computational complexity and

bit compression performance. Consequently, the performance on any given implementation can

drastically change with algorithmic tweeks. For example, the H.264 standard does not require that

a motion estimation algorithm is used. If the motion estimation algorithm is removed and replaced

with uniform motion vector generation, bit compression performance will drop but throughput and
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power performance will increase significantly.

In order to fully understand the benefits of the KiloCore II platform, a complete evaluation

of computational performance scaled to the consequent compression ratio must be explored for a

variety of search algorithms. Without such a test, it is challenging to accurately compare how a

KiloCore II architecture matches up with the state of the art. Additionally, testing how KiloCore

II performs relative to various search algorithms will highlight the algorithm best fitted for the

platform.

Additional improvements to the proposed motion estimation algorithm are also possible.

The encoder utilized under half the available cores. This leaves significant room for increased

parallelization and improved throughput as a result. In the proposed motion estimation design, the

motion estimation kernel is instantiated three times as depicted in Figure 8.1. This had the effect of a

three fold improvement in motion estimation when neglecting the introduction of additional routing

hardware. For a baseline H.264 encoder there are nine total partitions required for calculation. In

future works it is possible to instantiate six more motion estimation kernels and still map to the

KiloCore array.

Figure 8.1: Parallel architecture for motion estimation

In the proposed design all context elements (i.e. number of coefficients and Intra prediction
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modes) are stored in the shared memory modules. Memory read and writes induce a sizeable

throughput penalty compared to arithmetic instructions. Since all macroblocks are processed in

raster scan order, elements directly to the left of the current macroblock are processed most recently.

This provides the opportunity to store all left context elements in processor DMEM for faster

fetch and writes. This requires half the number of memory read and writes utilized by the current

implementation.

Figure 8.2: Memory optimization scheme for local memory (green) and SRAM (orange)
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