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Summary

Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe
consequences for ecosystem function, atmospheric processes, sustainable resources and global
biogeochemical cycles. However, the physiological linkages among drought, tree defences, and
insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality
under on-going climate change. Here we propose an interdisciplinary research agenda for
addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory
experiments, and modelling of insect and vegetation dynamics, and focuses on how drought
affects interactions between conifer trees and bark beetles. We build upon existing theory and
examine several key assumptions: 1) there is a trade-off in tree carbon investment between
primary and secondary metabolites (e.g. growth vs. defence); 2) secondary metabolites are one
of the main component of tree defence against bark beetles and associated microbes; and 3)
implementing conifer-bark beetle interactions in current models improves predictions of forest
disturbance in a changing climate. Our framework provides guidance for addressing a major
shortcoming in current implementations of large-scale vegetation models, the under-

representation of insect-induced tree mortality.

Key words: bark beetles; carbon allocation; climate changes; insects and pathogens; non-

structural carbohydrate storage; secondary metabolites; tree mortality; vegetation models



46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Forests in a drying world

Forests provide vital ecosystem services ranging from commodities such as food and wood to
ecological functions such as climate regulation and biodiversity conservation (Anderegg et al.,
2012). Yet, rapidly changing climate poses an increasing threat to global forest health (Trumbore
et al., 2015). For example, drought-related tree mortality events have been documented across
all forested biomes (Allen et al., 2015), and insect and pathogen outbreaks that often co-occur

with drought have been reported as an important driver of forest decline (Kautz et al., 2017).

As sessile organisms trees respond to drought and biotic attack by strategically allocating
resources, e.g., carbon, nitrogen, and water, to the biosynthesis of a wide range of metabolic
compounds. Compounds that are directly involved in growth, development, and reproduction
are called primary metabolites, while secondary metabolites (SM) fulfil important functions such
as herbivore deterrence (Mithoéfer & Boland, 2012). Over the last decade the roles of primary
carbon metabolism (e.g., assimilation, respiration, phloem transport) during tree mortality have
received considerable attention (Adams et al., 2017), while the mechanistic linkages between
tree physiological processes and SM biosynthesis during drought remain only partially

understood (McDowell et al., 2013; Anderegg et al., 2015).

Here we focus on drought impacts on physiological interactions of conifer species with bark
beetles, the major mortality agents of conifer forests in China (Sun et al., 2013), Europe (Seidl et
al., 2016), and North America (Fig. 1; Raffa et al., 2008). We provide a brief overview of general
aspects of carbon metabolism, including allocation of non-structural carbohydrates (NSC) to the
biosynthesis of SM, and how this process may be influenced by drought. We then briefly review
the current state of knowledge about conifer-bark beetle interactions, relate this to tree survival,
and describe how tree defence and bark beetle infestations are currently simulated in models.
Based on this synthesis, we develop a research agenda spanning field manipulations, laboratory
experiments and vegetation modelling, which can bridge existing key knowledge gaps for
improved predictions of tree mortality under climate change. This agenda focuses on 1)
mechanistic linkages between drought, tree primary, and secondary metabolism; 2) the

functional response of bark beetles to tree SM; and 3) integration of these relationships into next-
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generation vegetation models. Other aspects of climate change, such as elevated CO; (Robinson
et al., 2012) and temperature (Jamieson et al., 2012), nutrient limitation (Bjorkman et al., 1998)
and flooding (Schroeder & Lindeléw, 2003), may dampen or amplify the complex interactions

between trees and insects, but are beyond the scope of our assessment.

Carbon allocation to tree secondary metabolite biosynthesis

Carbon is assimilated by plant via photosynthetic uptake of atmospheric CO, (source activity)
where solar energy is fixed in chemical bonds of carbon-rich compounds, particularly sugars and
starch, referred to as NSC. These are then partitioned among several sinks within the plant,
including respiration, structural growth, reproduction, storage and defence (Fig. 2). Carbon
allocation is traditionally thought to be driven by the source-sink balance between carbon supply
via photosynthesis and carbon demand for growth, a major sink that determines the availability
of NSC for other demands (Le Roux et al., 2001; Dietze et al., 2014). For example, the “growth-
differentiation balance hypothesis” (GDBH, Herms & Mattson, 1992) predicts that during
environmental stress source activity initially outweighs sink activity and increases allocation to
SM but, as stress persists or intensifies this balance shifts as more Cis allocated to growth rather
than to NSC and SM. While the GDBH has been validated for specific metabolic pathways, such
as phenolics, and constitutive defence responses under some forms of stress, such as nutrient
limitation (Koricheva et al., 1998), we note that an increasing number of studies have found that
allocation to terpenoids can increase concurrently with growth, contrary to the nonlinear

relationships predicted by GDBH (Villari et al., 2014; Klutsch & Erbilgin, 2018).

Functional trade-offs between primary and secondary metabolism in trees

We propose that the dynamics of SM are driven by a functional trade-off (sensu active storage;
Dietze et al., 2014) rather than solely by resource availability. Carbon investment is coordinated
between primary (growth, respiration, and osmoregulation via NSC) and secondary metabolism
(protection and defence via SM) in response to environmental and internal cues (Fig. 2). Trees
may preferentially allocate carbon to SM rather than to growth because their long lifespan
increases the risk of exposure to periods of both abiotic (e.g. drought) and biotic stress (i.e. insect

attacks and pathogen infection). Greenhouse studies with tree seedlings have revealed such a
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conservative strategy, with allocation to storage (Weber et al., 2019) and constitutive SM (Huang
et al., 2019) prioritized over growth under carbon limitation. However, it remains unknown to
what extent the allocation schemes in tree seedlings can be extrapolated to mature trees, with

which bark beetles are associated in nature.

Conifer species can optimize their defence capacity through both constitutive (always
present) SM that reduce the probability of successful herbivore attack, and induced SM that are
newly-produced upon attack or wounding and are usually more effective against a particular
herbivore (Fig. 2; Franceschi et al., 2005; Kessler, 2015). Investment into induced SM occurs only
when needed and therefore plants can avoid unnecessary cost in the absence of herbivores.
However, the activation, synthesis and accumulation of combined constitutive and induced SM
may be too slow to reach effective levels against mass-attacking beetles and prevent lethal
damage, when populations are high (Boone et al., 2011). In addition, field studies have shown
that local NSC storage was used for production of induced SM in response to simulated or actual
bark beetle attack (Raffa et al., 2017; Roth et al., 2018) or fungal infection (Goodsman et al.,
2013; Arango-Velez et al., 2018), while NSC stored in distant organs could not be mobilized to
attacked stem sections (Wiley et al., 2016). Such results indicate that mobilization and transport
of NSC play an important role in allocation to induced defence in conifers. We conclude that trees
need to balance the trade-offs between growth, storage and multipartite defences, especially

when environmental stress causes source limitation.

Drought impacts on the functional trade-offs

Recent meta-analyses of drought manipulations have revealed that reduced NSC during drought
is common, particularly in the roots of conifers where 33.5% reduction was observed (Adams et
al., 2017; Li et al., 2018). This response is often due to reduced starch, which can occur despite
increased sugar concentrations — a finding consistent with the role of soluble sugars as osmolytes
(Dietze et al., 2014). Similar to NSC dynamics, SM response to drought is not consistent, and can
vary with the timing and severity of drought, the age and size of the tree, the type and ontogeny
of the organ, and the class of SM (Jamieson et al., 2017; Holopainen et al., 2018). The lack of

concurrent assessments of NSC and SM in most drought experiments makes it difficult to
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mechanistically link SM dynamics to the carbon balance and to derive allocation trade-offs (Ryan

et al., 2015).

The relationship between NSC and SM during drought can also be altered by the presence of
insects. Drought-induced sink limitation may lead to an increase in NSC which are available for
both constitutive and induced SM. However, when severe drought causes source limitation, NSC
are required for life-maintaining functions like respiration and osmoregulation and thus are less
available for constitutive SM, but may be preferentially used for biosynthesis of induced SM once
attack occurs. Unfortunately, empirical evidence on how severe drought influences the
inducibility of SM is still rare because manipulations of both drought and biotic stress are

challenging in the field.
The role of secondary metabolites in tree defence against bark beetles

Co-evolutionary interactions between plants and insects have given rise to an enormous variety
of SM with complex modes of action. While a subcortical habitat provides nutrition and shelter
for bark beetles, they must also contend with substantial constitutive and induced tree defences
(Franceschi et al., 2005; Erbilgin, 2019), which can repel or kill attacking beetles at the time of
colonization. During pheromone-mediated mass attacks, bark beetles may overwhelm these
defences by exploiting plant-derived compounds, and by introducing various microorganisms

that can detoxify tree SM (Table 1).
Conifer-bark beetle interactions

Conifers have elaborate networks of ducts and glands that store large amounts of oleoresin, a
viscous mixture of terpenes that confer anatomical and chemical components of defence (Table
2). Resin exudation can physically entomb or delay attacking beetles while delivering SM that can
adversely affect multiple life history aspects of bark beetles and their symbionts. For example, at
high concentrations, phloem monoterpenes kill bark beetles and their fungal and bacterial
symbionts (Raffa, 2014; Chiu et al., 2017). Interactions can be complex, as bark beetles exploit
lower concentrations of monoterpenes as cues that facilitate host location, recognition, and

acceptance. Furthermore, bark beetles exploit monoterpenes as stimulators, precursors, and
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synergists of aggregation pheromones (Blomquist et al., 2010; Chiu et al., 2018), and some
beetle-associated bacteria degrade monoterpenes (Boone et al., 2013), both of which introduce
feedbacks factoring the beetles. In addition to monoterpenes, diterpenes exert strong antifungal
activity against a broad range of species (Table 2). To date no sesquiterpenes have been shown

to affect bark beetles or their symbionts, but future work on this group of compounds is needed.

In addition to terpenes, conifer phloem also contains a highly diverse array of phenolic
compounds, such as stilbenes, flavonoids, vanilloids, hydroxycinnamic acids, lignans, condensed
tannins, and others. Some flavonoids have shown to directly affect beetles by acting as anti-
feedants (Hammerbacher et al., 2019), and phenylpropanoid 4-allylanisole can inhibit attraction
of several bark beetle species to their aggregation pheromone (Joseph et al., 2001). Several
soluble phenolics, such as stilbenes and some flavonoids, are fungicidal at high concentrations
(Table 2). However, these relationships involve complex feedbacks, as some bark beetle
symbionts can circumvent this anti-fungal activity through the bioconversion of phenolics to
carbon sources for larvae in the dying phloem (Zhao et al., 2019). Likewise, as of yet there is no
evidence of anti-beetle or anti-symbiont activity for many of the phenolics present in conifer

tissue, so a defence function cannot currently be ascribed for these.

Linking SM dynamics to tree defence against bark beetle attack

Higher concentrations of monoterpenes, particularly induced concentrations in response to
challenge inoculations with beetle-vectored fungi that simulate beetle attack, have been shown
to predict tree survival from bark beetle attack in a number of genera, including Pinus, Abies, and
Picea (Raffa et al., 2005; Zhao et al., 2011; Schiebe et al., 2012). In Norway spruce (Picea abies),
enhanced resin flow and accumulation of multiple toxic terpenes induced by treatment with
methyl jasmonate reduced colonization by the European spruce bark beetle (/ps typographus,
Erbilgin et al., 2006) and infection by the blue-stain fungus (Endoconidiophora polonica, Zeneli et
al., 2006). Similarly, increased induced resin flow and higher densities of resin ducts have been
associated with higher tree survival in lodgepole (Pinus contorta), limber (P. flexilis) and loblolly
(P. taeda) pines (Ferrenberg et al., 2014; Denham et al., 2019). The relative proportions of

monoterpene compounds have also been related to tree survival in some systems (Raffa et al.,
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2005; Boone et al., 2011; Erbilgin et al., 2017). It should be noted that the key SM and their
efficacies vary with systems (i.e. tree species, beetle species, fungal and bacterial species). Also,
conifer-bark beetle dynamics are complicated by feedbacks arising from the cooperative
behaviour of pheromone-mediated mass attacks, so the efficacy of both physical and chemical

defences varies with beetle density (Boone et al., 2011).

Drought has facilitated bark beetle outbreaks in central Europe and North America, resulting
in regional scale mortality of spruce and pine forests (Meddens et al., 2015; Seidl| et al., 2016).
Experimental drought manipulations and field observations have related drought-related
mortality to reduced resin flow (Netherer et al., 2015) or reduced resin duct density and area
(Gaylord et al., 2013). Information on drought-induced changes in the composition of resins,
volatile emissions and other defensive SM, is sparse (Ryan et al., 2015). Even less is known about
bark beetle-associated fungi, whose growth and germination rely on soluble sugars from living
cells (Oliva et al., 2014), but may also be inhibited by SM (Table 2). Therefore a depletion of NSC

and SM during severe drought may result in contrasting effects on bark beetle-associated fungi.
Modelling tree defence and bark beetle infestations in dynamic vegetation models

Bark beetle infestations can be simulated across a wide range of spatial scales, from stand to
continental. An increasing number of process-based infestation models have emerged over the
last two decades (Fig. 3), addressing a variety of different bark beetle species, research questions,
and management contexts (Seidl et al., 2011). Historically, model development has progressed
mainly in two directions. First, spatially-explicit agent-based models (ABMs) of bark beetles have
been developed from principles established in earlier quantitative aggregation and attack models
(Burnell, 1977; Berryman et al., 1989). ABMs enable the detailed simulation of host-bark beetle
interactions at the level of individual trees and beetles, and explicitly consider processes such as
dispersal, tree defence, aggregation, and colonization explicitly (e.g., Kautz et al., 2014;
Honkaniemi et al., 2018). However, ABMs are currently only applicable locally, and typically
neglect vegetation dynamics and variation in climate. Second, model development has focused
on integrating bark beetle dynamics into models of vegetation dynamics, specifically into forest

landscape models (FLMs, Seidl & Rammer, 2017) and dynamic global vegetation models (DGVMs,
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Landry et al., 2016). These developments are motivated by the growing awareness of the
importance of bark beetles for vegetation dynamics (Running, 2008), and the high climate
sensitivity of the host—bark beetle system (Raffa et al., 2008). The level of process representation
(e.g., insect development, dispersal and aggregation) in these integrated models, however, is
usually lower than in the dedicated ABMs. In the following we will first show the effects of tree
defence on simulated bark beetle dynamics, and subsequently review the current state-of-the-

art in modelling tree defence to bark beetles.

Simulating the impact of tree defence on bark beetle infestations

An example for a DGVM simulating bark beetle infestation is the FATES-IMAP model (Functionally
Assembled Terrestrial Ecosystem Simulator (Fisher et al., 2015) coupled to an Insect Mortality
and Phenology module (Goodsman et al., 2018; Method S1). To gauge the effect that varying
levels of tree vigour and defence have on vegetation-insect dynamics, we conducted simulation
experiments in which we varied the incipient-epidemic threshold (i.e. the beetle population
density that starts mass attacking healthy trees and is a proxy of tree defence) of the FATES-IMAP
model in a stand undergoing a MPB outbreak (Fig. 4). When the incipient-epidemic threshold was
decreased to the endemic MPB population level, all the appropriate host trees in the stand were
quickly depleted in the simulation, whereas when the incipient epidemic threshold was
increased, the outbreak duration increased while the outbreak severity decreased (Fig. 4). Low
severity outbreaks could take a long time to deplete the hosts and thus increase the likelihood
that the outbreak will be prematurely terminated by an extremely cold winter, as simulated bark
beetle populations suffer high winter mortality that diminishes their populations to endemic
levels. These simulation results imply that dynamically varying levels of tree defence (e.g., in
response to changing drought regimes) could have profound impacts on outbreak trajectories,

and consequently on projections of future vegetation dynamics.

Approaches to simulate tree defence against bark beetle infestation

In our comprehensive review of simulation models (Method S2 and Table S3), we found that how
tree defence against bark beetles is considered in models varies widely, and ranges from detailed

approaches linking a tree’s physiological status to its defence capacity to not explicitly
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considering the process of tree defence in modelling (Fig. 3). In the majority of the models
reviewed (74%), host susceptibility — i.e. the inverse of tree resistance and defence — is
determined as a function of parameters related to vegetation structure, such as tree age, size,
basal area, growth, and distance to previously infested trees (Seidl et al.,, 2011). As tree
susceptibility increases, the number of attacking beetles required for successful colonization is
reduced (Fig. 4). A smaller subset of simulation approaches (21%), also explicitly considers
climatic variables and their effect on tree defence and bark beetle susceptibility. Specifically,
indicators of water usage and drought stress are employed, e.g., tree evapotranspiration relative
to potential evapotranspiration (Temperli et al., 2015). Other approaches to account for drought
stress include a tree-specific threshold relating water demand to water supply (Jonsson et al.,
2012), or a climatic drought index (Scheller et al., 2018). We found only one model (3%) relating
defence capacity directly to a tree’s physiological status, which simulated susceptibility as a

function of the NSC reserves in individual host trees (Seidl & Rammer, 2017).

A research agenda for filling knowledge gaps toward more mechanistic predictions of bark

beetle damage under drought

Lacking a detailed understanding of the physiological mechanisms by which tree defence and
herbivores respond to drought, we have shown how modellers often rely on simplified metrics
for simulations of tree-bark beetle interactions in vegetation models. Here, we identify three
major knowledge gaps and propose research actions that can help inform future projections with
more mechanistic insights. Although not exhaustive, the agenda outlined below would produce
substantial progress toward understanding tree defence and bark beetle attack, and allow more

accurate simulations of forest dynamics.

1. Determine mechanistic linkages between primary and secondary metabolism and their

responses to drought (Fig. 5 Partitioning).

Action: Drought experiments and observational studies will be needed to achieve this objective.
Hundreds of drought experiments have been conducted in recent years (Hoover et al., 2018), but
investigations have mostly focused on primary metabolisms. We propose to add new

perspectives on defence metabolism into existing drought field experiments, specifically:
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e Establish a standardized cross-calibrated protocol for sampling and analysing concentrations of
NSC (e.g., soluble sugars and starch; Landhausser et al., 2018) and SM (e.g., phenolics and
terpenes) relevant for defence from a broad range of species and/or functional groups across a
gradient of water availability. Archived sample material from previous drought studies can also
be suitable for analysing concentrations of SM. Note that for volatile terpenoids samples should

be stored under —80 °C.

e Normalize NSC and SM data within each species and field site before relating them, following
the approach of Adams et al. (2017). Complementary data such as photosynthesis and growth
are also needed to better understand the role of source vs. sink limitation on SM dynamics (Ryan

etal., 2015).

e Future in-situ drought studies should — where possible — apply isotope labelling (e.g., 13C0,) to
trace the flow of metabolites within the trees and from trees to insects, which can help identify
the key physiological processes. This includes assessing the potential of phloem failure during
drought to inhibit carbon transport to tissues attacked by bark beetles and pathogens (Sevanto,
2018); partitioning the relative contribution of newly-assimilated vs. old stored carbon to the
production of SM (Huang et al., 2018), and unravelling the role of terpenoids in anatomical and

chemical components of tree defence.

2. Assess the role of secondary metabolites on the attack behaviour, development, and survival

of bark beetles and their microbial associates as well as tree survival (Fig. 5: Functioning).

Action: Conduct laboratory assays and field surveys to identify the key defence compounds and

how they influence bark beetle dynamics and tree survival.

e Bioassays with bark beetles at concentrations present in constitutive and induced phloem
tissues will help determine which secondary compounds are bioactive among the vast array of
compounds present. Behavioural assays should assess effects of both non-volatile compounds in
bark and volatile compounds emitted by trees and fungi on beetle host selection and pheromone

communication (Chiu et al., 2018; Kandasamy et al., 2019). Fitness assays can benefit from
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metrics of beetle life cycle (e.g. fecundity, growth rate, size, and survival) in combination with

various levels of phloem nutritional quality and bioactive defence components.

e Field surveys are needed to establish the relationships of SM-based anatomical and chemical
defence to bark beetle dynamics in different tree species that are attacked by different species
of bark beetles and their associated microbiota. Within each species, resin flow, terpene
chemistry and phenolic chemistry, should be analysed in mature trees that are subsequently not
attacked or attacked, during endemic, transitory, and epidemic phases of bark beetles (Boone et
al., 2011; Amin et al., 2013; Ghimire et al., 2016). Note that analyses of total concentrations are
more effective when focused on groups that have documented bioactivity, such as total
monoterpenes or diterpenes rather than total terpenoids, and likewise to total stilbenes or

phenylpropanoids rather than total phenolics.

3. Simulate drought-mediated tree defence against bark beetles by incorporating the functional

mechanism derived from suggestions 1 and 2 (Fig. 5: Modelling).

Action: Implement the linkages between primary and secondary metabolism (and their responses
to drought) as proxy mechanisms, where validated, for tree defence into vegetation models. This
requires an improved physiological foundation in modelling vegetation dynamics, as many
vegetation models still employ phenomenological or statistical approaches rather than first

principles of ecophysiology for simulating vegetation growth and survival (Bugmann et al., 2019).

e An explicit representation of physiology-based tree defence in large-scale models requires the
consideration of species-specific differences in tree traits and physiology (rather than the use of

plant functional types).

e Important thresholds of various tree-bark beetle systems, such as the number of beetles
required to overcome trees defences, need to be made context-specific in models, accounting
for the interactive effects of environmental drivers (e.g., drought) and beetle population

dynamics (endemic vs. epidemic conditions).
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e The multi-scaled nature of bark beetle outbreaks should be considered more explicitly in
models, by simulating the cross-scale amplification that allows some beetle species to
intermittently transition from killing individual or small patches of trees to killing trees across the
spatial extent of subcontinents (Raffa et al., 2008). A promising avenue of model development in
this regard is the integration of ABM approaches (individual tree-beetle interactions) via carbon
relations and defence metabolism into FLMs and DGVMs that are able to track ecosystem

dynamics at the landscape to global scale.

e Better reference data for model calibration and evaluation are needed. Remote sensing data
hold high potential in this regard, as they are becoming increasingly available and can provide
long-term and consistent estimates of forest canopy mortality across large spatial extents (Senf
et al., 2018). However, improved attribution of mortality agents is needed for a consistent
benchmarking of models against remotely sensed disturbance data (Kautz et al., 2017).
Additional data on insect populations are also needed for calibration of insect component for

host-bark beetle interactions.

Conclusions and outlook

In this Viewpoint we propose an ambitious research agenda bridging carbon partitioning, defence
functioning and vegetation modelling, which will provide substantial progress toward projecting
future tree mortality from bark beetle outbreaks. Our synthesis strongly suggests that much
knowledge necessary to improve vegetation models can be achieved through modification of
existing research protocols and by capitalizing on the wealth of data and samples already
collected from field manipulations. There are many aspects of climate-plant-insect interactions
that have not been addressed here, in particular the interactive effects of drought, nutrient
limitation, elevated CO; and temperature on carbon balance and allocation of NSC to SM; the
role of volatile emissions for selection and aggregation of insects; and the interactions of insects
and their associated microbiota. Many of these interactions are currently not well understood

and should be addressed in future work to fully understand ecological impacts.
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Our framework provides a mechanistic linkage between carbon allocation, which plays a key
role in general plant responses to environmental changes (Mooney, 1972), and secondary
metabolites, a critical and fundamental component of plant defence against insects and
pathogens (Kessler, 2015). Thus, despite its focus on interactions between conifer species and
bark beetles our research agenda also serves as a framework for improving the general
understanding of plant-herbivore interactions and can be used as a blueprint for predicting other
types of plant-insect system in a changing climate. Implementing our framework in other plant
biological systems must take into account that impacts of climate change on carbon allocation to
defence may vary among plant functional groups (e.g., evergreen vs deciduous, woody vs
herbaceous plants) and with the mode of action of SM against different types of herbivores (e.g.,
defoliator vs stem borer). Also, the spatial and temporal scales at which a biological system
operates will determine the type and structure of the most adequate vegetation model (e.g.,
ABM vs. FLM) for simulation and prediction. Implementing our research agenda in any plant-
herbivore system will thus require interdisciplinary collaborations among ecologists,

entomologists and vegetation modellers.
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589  Table 1 Major bark beetle species known to promote or cause significant mortality on conifers.

590 Categorization of life history strategy is based on physiological condition of trees beetles

591 commonly colonize, although this can vary with population phase (Raffa et al., 1993). For an

592  extensive list of species, please see Supporting Information Table S1.

Grosmannia penicillata,
Grosmannia europhioides,
Ophiostoma bicolor,
Ophiostoma ainoae

Common name Scientific name Common host Known fungal symbionts Life history
strategy
Southern Pine Beetle Dendroctonus frontalis Pinus echinata, Entomocorticium sp. A, Primary
Pinus engelmanni, Ceratocystiopsis ranaculosus
Pinus leiophylla,
Pinus ponderosa,
Pinus rigida,
Pinus taeda,
Pinus virginiana
Mountain Pine Beetle Dendroctonus ponderosae Pinus contorta, Grosmannia clavigera, Primary
Pinus ponderosa, Ophiostoma montium,
Pinus albicaulis Leptographium longiclavatum,
Entomocorticium dendroctoni
North American Spruce beetle Dendroconus rufipennis Picea engelmannii, | Leptographium abietinum, Primary
Picea glauca, Endoconidiophora rufipenni
Picea sitchensis
Pifion Ips Ips confusus Pinus edulis, Secondary
Pinus monophylla
European Spruce Bark Beetle Ips typographus Picea abies Endoconidiophora polonica , Primary

593
594
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595  Table 2 Multiple chemical groups function in complementary fashion to inhibit bark beetle-fungal

596 complexes. Modified from Raffa et al. (2005). For references, please see Supporting Information

597  Table S2.
Biological effect Monoterpenes Diterpene acids  Phenolics
Adult repellency ++ ? +
Adult toxicity ++ ? +
Egg & larval toxicity + ? ?
Pheromone inhibit + ? +
Microbial inhibition + +++ ++

598 The biological effects of secondary metabolites are shown as inhibitory (+) or untested (?).

599
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Figure captions

Figure 1 Cumulative tree mortality caused by mountain pine beetle (percent/1-km? grid cell)
across the western United States (1997 — 2012) and British Columbia (2001 — 2010) from aerial
survey data. The forest areas were adjusted according to Simard et al. (2011). The data presented
here are the middle estimate (as detailed in Hicke et al. (2015) and Meddens et al. (2012)). In
western US (1997-2012) and British Columbia (2001-2010), c. 3.04 and 5.10 millions of hectares

of conifers has been killed by mountain pine beetles.

Figure 2 Schematic representation of how climate changes impact tree carbon allocation and its
interactions with biotic agents such as bark beetles and pathogens. Under environmental stress
like drought and heat, tree coordinate carbon supply via photosynthesis (1) and the demands for
growth and reproduction (2), respiration (3), storage of non-structural carbohydrates (NSC) (4)
and production of constitutive and induced secondary metabolites (CSM (5) and ISM (6),
respectively). However, long-term severe stress can strongly limit photosynthesis and thus
remobilization of storage compounds (7) may play an important role in allocation to tree defence.
The production of CSM provides a first line of defence that allows repelling and/or poisoning
insects and pathogens (8), while investment into ISM occurs after biotic attacks (9). Trees
integrate constitutive and induced defence to enhance resistance to bark beetle-fungal complex
(20), which in turn contend with tree defence by exploiting host monoterpenes (e.g., a-pinene)
for production of aggregation pheromones and utilizing the host phenolic compounds (e.g.,

stilbenes and flavan-3-ols) as a carbon source (11). Figure adapted from Huang et al. (2019).

Figure 3 Distribution of bark beetle infestation models (n = 34) across three variables: bark beetle
genus, implemented defence mechanism, and model type (DGVM = dynamic global vegetation
model, FLM = forest landscape model, ABM = agent-based model). For the full list of models and
methodological details see Table S3 and Methods S2 in the Supplementary Information. Flow
width represents the number of models for each block of the three variables that are assigned to
vertically-arranged axes. Both level of process detail in defence mechanism (centred axis) and
spatial scope of the model type (right axis) typically increase from bottom to top. Structural

parameters (e.g. tree age or size) play a major role in simulated tree defence yet, while climate-
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driven defence triggers (e.g. drought indices) are less frequent, and only one model explicitly

accounts for tree physiology-based defence (NSC pool) against bark beetles.

Figure 4 Stand level trajectories for live trees larger than 20 cm diameter at breast height due to
mountain pine beetle outbreaks simulated using the FATES-IMAP (Functionally Assembled
Terrestrial Ecosystem Simulator — Insect Mortality and Phenology) model with different stand-
level attack (incipient-epidemic) thresholds. This threshold is used as proxy for tree defence of
all trees in a stand. The fitted estimate is approximately 343 beetles per ha, which corresponds
to the trajectory with open circles. The endemic population level is 40 beetles per ha. When the
incipient-epidemic threshold is decreased to the endemic population level, all suitable host trees

in the stand are quickly depleted.

Figure 5 A simplified representation of framework showing the proposed three interdependent
areas: (1) partitioning, that is, the trade-offs between primary and secondary metabolisms in a
changing climate; 2) functioning, that is, the effectiveness of secondary metabolites, including
constitutively expressed and also induced by biotic attacks (dashed line), on behaviour,
development and survival of biotic agents (e.g. bark beetle and its associated fungi); (3)
modelling, that is, the implementation of mechanistic relationships derived in 1) and 2) into

current vegetation models.
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Supporting Information

Table S1 A list of common beetle species known to promote or cause significant mortality on

conifers

Table S2 Multiple chemical groups function in complementary fashion to inhibit bark beetle-

fungal complexes.

Table S3 A list of the 34 bark beetle infestation models included in the review

Method S1 Description of the Insect Mortality and Phenology module incorporated into the
FATES-IMAP

Method S2 Host tree defence implementation in process-based bark beetle models





