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ABSTRACT OF THE THESIS

Towards Robot-Assisted Precision Irrigation:
Proximal Soil Sensing & Physical Leaf Sampling in Orchards

by
Merrick Campbell

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, June 2022
Dr. Konstantinos Karydis, Chairperson

Precision agriculture utilizes sensor networks to inform growers on optimal condi-
tions for applying agronomic inputs (water, fertilizer, pesticides, etc.). Precision irrigation
is a subset of precision agriculture that focuses on optimizing water usage. While some
growers have embraced these techniques, their usage is far from universal due to cost and
labor barriers. Several contemporary works have introduced robotic means for crop mon-
itoring and harvesting. These autonomous systems typically use aerial means for sensing
to cover broad regions of crops and ground-based rovers for harvesting. Yet, considerably
less work has been performed on using ground-based systems to sample and perform direct
measurements. Towards this purpose, two robots are designed and tested. The first robot
for proximal soil sensing uses an ECa sensor to generate soil moisture maps of an orchard.
The second robot for physical sampling uses a 6-DOF robotic arm to pick a leaf from an
avocado tree for stem water potential analysis. These two systems present steps toward a

larger robotic system for irrigation measurements in orchard crops.
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Chapter 1

Introduction

Precision agriculture techniques allow growers to use a network of sensors to
accurately characterize soil-plant-environment processes and monitor current crop condi-
tions [112]. This network can be used to optimize the application of agronomic inputs
(water, pesticides, fertilizer, etc.). The quantity of the applied inputs can change dramat-
ically due to variability in environmental conditions (rainfall, temperatures, pests). This
variability can have a significant impact on the economic viability and profit margin for
growers. Advancing precision agriculture techniques could also mitigate climate change and
droughts are impacting farmers. Yet, the adoption of the precision agriculture techniques
has been slow despite the advantages. For example, only 12% of growers in the USA use
root-zone soil measurements to trigger and budget irrigation events [103, 74].

Precision irrigation is the subset of precision agriculture that focuses on the uti-
lization of water within the farm environment. Field monitoring sensors can increase grower

revenue and decrease the environmental footprint of agriculture by applying water directly



where and when required from the ideal source [112, 104]. Several sensors have been devel-
oped to both directly and indirectly monitor the water applied to and the moisture content
of the fields and orchards. Accurate estimates of water available to plant roots throughout
the soil profile can be obtained with soil sensors [96, 14]. While these sensors can accu-
rately determine the available water, they are typically only installed in a few discrete points
across many acres. This coverage deficiency fails to capture soil spatial variability, which
is a key component of plant-water-environment relationships [69], and leads to an incom-
plete information on irrigation practices. In addition to discrete localized sensors, remote
stand-off sensors can be used to gather data using either unmanned aerial vehicles (UAVs)
and satellites [54, 79, 49]. However, these aerial measurements do not fully capture soil
moisture information in key regions of interest along the drip-lines and below the surface
of the fields. Thus, proximal soil sensing techniques are employed to cover larger areas by
moving a sensor over the ground with either a human driven ATV or a robot.

Beyond remote sensing, an increasing number of robots are performing manip-
ulation and interactive tasks with the crop such as harvesting, pruning, and sampling.
These robots are often unmanned ground vehicles (UGVs) and focus primarily on har-
vesting row (e.g., corn and soybean) and orchard crops (e.g., citrus and avocado). Devel-
opment of agricultural end effectors is an active area of research due to the wide variety
of crops and related manipulation tasks. While there are some commonalities across ap-
proaches, differences in size, weight, shape, texture, and firmness of specialty crops have
led to unique solutions. Some robots can pick strawberries, cucumbers, citrus, and pep-

pers by cutting the stem [35, 102, 101, 6, 7, 88]. These crops can be picked by robots



via wrapping the fruit and twisting it off the stem with either a soft gripper [52, 40, 19],
rigid gripper [57, 56, 24, 22, 23, 67, 100], or vacuum [86, 8, 111]. Other robots can pick
strawberries, cucumbers, citrus, and peppers by cutting the stem [35, 102, 101, 6, 7, 88].
The use of unmanned ground vehicles (UGVs) for precision irrigation has been a
less explored subdomain of agricultural robotics. This thesis explores two related robots for
precision irrigation: one for proximal sensing to generate soil moisture maps and another for
physical leaf sampling to perform stem water potential analysis. The first robot integrates a
apparent electrical conductivity (ECa) sensors on a miniature holonomic platform to profile
the salinity composition of the soil (Chapter 3). The second robot uses a custom end
effector design (Chapter 4) and a custom perception-actuation framework (Chapter 5) to
detect and cleanly cut the stem to remove a leaf from a tree. These robots are preliminary
steps towards increasing the sampling frequency and fidelity of precision irrigation data to

optimize water usage in orchards.



Chapter 2

Background & Related Works

2.1 Precision Agriculture Techniques

Precision agriculture uses networked sensors to monitor different aspects of the
farm environment from soil moisture (SM) content to detecting water leaks. Growers can
also leverage this communication network for actuation (i.e. instead of manually turning a
valve on a pump, the pump can be triggered via a software application). These networks are
usually coupled with GNSS enabled nodes to provide spatial-temporal information about
the current farm environment. Terrestrial sensors can also be coupled with satellite data
for additional data on crop health [65, 110]. Since Landsat 1 launched in 1972, additional
satellites have been launched that contain more sensors and increase data coverage. Today,
satellites can provide crop imaging data in green, red, and near-infrared bands (and more)
with minimal return times. With the increase in data availability and a decreasing cost
of compute resources, the overarching domain of precision agriculture has birthed several

subdomains, including precision irrigation (Section 2.1.1). While many specialized sensors



exist for monitoring field health, there are some manual techniques such as stem water
potential analysis which would need to be automated for optimal integration within precision

irrigation systems (Section 2.1.2).

2.1.1 Precision Irrigation & Soil Sensors

Precision irrigation is the subset of precision agriculture technologies focused on
the application of water as an agronomic input. In traditional irrigation practices, water is
provided to the crops through surface irrigation (flooding furrows or fields). In more mod-
ern irrigation practices, water is deployed using surface-level sprinkler systems, root-zone
drip-lines, or subsurface capillary lines [2]. The overarching goal of the precision irrigation
systems is to replace open-loop (manual-, volume-, or time-based) control of these irriga-
tion systems with closed-loop control. At a minimum, precision irrigation systems typically
involve at least three components: a sensor network to monitor moisture conditions, a
decision-making schema, and an actuation system of pumps to disperse water as neces-
sary [34]. Knowing exactly when and how much to water can be challenging due to varying
weather conditions and inconsistent soil sensor coverage and measurement frequency.

Soil moisture sensors have several different varieties with unique advantages and
drawbacks. Adamchuk et al. provides a comprehensive review of the sensors currently em-
ployed in agriculture [3]. Electromagnetic sensors typically measure electrical capacitance,
inductance, or conductivity and can be heavily impacted by the tested soil composition.
Thus, ground truth calibration should be performed to increase accuracy. (One such sensor
is used in the robotic experiments conducted in Section 3.2.1). Radiometric sensors detect

the energy reflected or absorbed by soil particles using electromagnetic waves. Like the



electromagnetic sensors, these radiometric sensors can also suffer from calibration issues.
While not directly correlated to soil moisture content, mechanical, acoustic, and pneumatic
sensors can reveal useful information about the soil composition, compaction, and tillage
properties. Electrochemical sensors can also be used to derive information about soil com-

position.

2.1.2 Stem Water Potential Analysis

While precision irrigation focused on networked sensors, there are still certain
data collection techniques for monitoring tree stress levels to inform irrigation routines
that are still quite manual. Stem water potential analysis using the Scholander “Pressure
bomb” is one such important, yet still largely manual technique [85]. This is a critical
process performed by agronomists to estimate tree stress levels and hence optimize irrigation
patterns [99]. In this process, an agronomist will cleanly cut the leaf stem and place the
leaf inside a pressurized test chamber (colloquially called the “pressure bomb”) with its cut
end exposed. The agronomist will then gradually increase the pressure until water begins
to exit the cut stem [85, 98]. The pressure at which moisture escapes can then be used to
determine the leaf water potential and can be correlated with decades of empirical research
to optimize irrigation routines [66]. Though effective, the pressure chamber instruments
can be tedious and potentially dangerous to operate [76]. Thus, in practice, a single tree is
often used to assess orchard health leading to infrequent measurements and undersampled
regions.

Though Scholander’s pressure chamber has long been the industry standard for

measuring stem water potential, contemporary research has tried to develop a less tedious



alternative measurement procedures. Meron et al. utilized laboratory calibrated osmomet-
ric sensors embedded in peach and tangerine trees to measure their stem water potential [58].
While their results were comparable to the pressure chamber, the readings were delayed by
a few hours and the sensors do require some level of skill to install. Niu et al. developed
a measurement device with a low-cost proximate radio frequency sensor combined with
machine learning algorithms to track changes in stem water potential [70]. However, the
classifications from the network only had an accuracy of 78%. De Bei et al. developed a
technique to estimate the water potential of grape leaves using near infrared (NIR) spec-
troscopy. While his approach could yield rapid results, these sensors require calibration
since the structure of the leaf surface can impact the NIR readings. [25]. Methods have
also been developed to measure the water potential of a tree by analyzing the behavior and
growth of tree trunks [72, 63]. Yet most, if not all, of these methods utilize the pressure
chamber as the experimental baseline. Since these sensors are mostly proxies for the water
potential, automating the stem water potential analysis via robotic means could lead to

higher quality data and higher sampling frequencies than the current manual practice.

2.2 Robotics in Agriculture

The field of robotics as a whole is an interdisciplinary blend of mechanical, electri-
cal, and software engineering focused on autonomous decision-making and precise control
of actuated systems. These systems use input devices, such as cameras and other sensors,
to interact with an uncertain world. While this field has several unique branches such as

path planning, computer vision, and human robot interaction (HRI), agricultural robotics



is a specific subset that contains unique challenges with respect to interacting with dy-
namic farm environments. Robotics research in precision agriculture has largely focused
on remote sensing via ground or aerial robots and harvesting. Section 2.2.1 discusses agri-
cultural robotics focused on monitoring and inspecting crops while Section 2.2.2 discusses

some of the work related to manipulating and harvesting produce.

2.2.1 Monitoring & Inspecting

Mobile sensing robots can be used for a wide variety of tasks such as drought
stress measurements, pathogen detection, weed detection, nutrient evaluation, crop growth
monitoring, and yield prediction [54, 49]. While some of these measurements can be per-
formed with satellites (Section 2.1.1), unmanned aerial systems (UAS) are particularly
advantageous since satellites can be hindered by cloud covers and other related weather
patterns [82]. Both the satellite and UAS systems can fuse multispectral, hyperspectral,
and high-resolution imagery to map crop yield variability [110, 31]. The different classes of
UAS platforms, such as fixed-wing and multi-rotor, present tradeoffs in terms of operator
ease-of-use, payload capacity, and range [79]. Though fixed-wing aircraft can support a
heavier payload over greater distances, they both can support a wide variety of sensors
for crop sensing. Unmanned ground vehicles (UGVs) can also support similar sensors and
perform crop monitoring tasks. While the UGVs cannot cover terrain as quickly as the
UAVs, they can also navigate autonomously and perform high resolution sampling in field
environments [16, 95, 97, 94]. These UGVs are often used for probing the fields to generate

soil moisture maps [87, 77, 75].



2.2.2 Harvesting & Manipulation

Since harvesting is a high value task for growers, significant research effort has
focused on automating this process. Robotic harvesting requires robust methods for both
perception (to identify and localize target crops) and actuation (for manipulating and sep-
arating the crop from the plant). Such works consider robotic harvesting in both row
(e.g., corn and soybean) and tree crops (e.g., citrus and avocado). Despite the unique
nature of each type of crop, harvesting end effectors generally have three primary compo-
nents: the gripping mechanism (mechanical, pneumatic or hybrid), the removal mechanism
(mechanical or electrical), and the sensing modality (monocular camera, stereo camera,
time-of-flight) [62, 88]. Orchard fruits such as apples and citrus require specific motions
to grasp, twist, and pull from the tree without damage [13, 6]. Vine crops such as bell
peppers and cucumbers can be directly cut and harvested [51, 7, 102, 101]. More delicate
crops like strawberries call for manipulators with force feedback and flexible pneumatic ac-
tuators [89, 35, 109, 9]. On the opposite end of the fragility spectrum, end effectors have

also been designed for larger and heavier crops such as pumpkins [80].

2.2.3 Leaf Physical Sampling

While most agricultural robotics work has focused on either remote sensing (Sec-
tion 2.2.1) or harvesting (Section 2.2.2), some work has been performed on physical sampling
in the field. Agronomists utilize specialized instruments that can be difficult to transport
to the field and thus rely upon sample retrieval for later lab analysis. While this has been

mostly a manual process to date, some work has been performed using aerial and ground



robots. Mueller-Sim et al. demonstrated a robotic platform for rapid phenotyping and
capable of manipulating leaves for in-situ measurements [64, 1]. Orol et al. developed a
tele-operated aerial robot for cutting and collecting leaves from trees [71]. Ahlin et al.
presented an algorithm for selecting and grasping tree leaves using a robotic arm [4]. The
latter work demonstrates a high level of control using monoscopic depth analysis (MDA)
and image-based visual servoing, but focuses on grasping and pulling the leaf instead of

cleanly cutting the stem of the leaf, which is useful for stem water potential analysis.

2.3 Computer Vision in Agriculture

Computer Vision is the field of research detected to the signal processing associ-
ated with extracting useful information from images and videos. Conceptually, this field
is comparable to using a computer to “see” like a human would with their eyes. Broadly,
this field has several subdomains including scene reconstruction and understanding, object
detection and tracking, and state (pose and motion) estimation. These subdomains tra-
ditionally draw from a set of classical techniques rooted in signal processing and image
heuristics as well as more modern techniques utilizing neural networks. Computer Vision
techniques has been applied alongside precision agriculture and robotics. Section 2.3.1 dis-
cusses computer vision for crop health monitoring while Section 2.3.2 discusses computer

vision techniques for crop identification, localization, and state estimation.
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2.3.1 Crop Health Monitoring

Both classical and machine learning based computer vision techniques have been
developed to monitor crop growth, mitigate disease through early detection, and assist
with quality control. Zhu et al. developed a computer vision utility to monitor the early
growth stages of corn crops. They trained a machine learning classifier to first identify
early plant growth and then used scale invariant feature transforms (SIFT) to track the
later growth stages [115]. Sadeghi-Tehran et al. used a similar technique to track the
growth of wheat. However, they used a bag-of-words approach to separate early growth to
distinguish new flowering growth and then a combination of SIFT and a spatial pyramid
to extract features for classification with a support vector machine (SVM) [83]. Disease
detection is also an active area of research that utilizes computer vision. Jiang et al.
utilized a convolution neural network (CNN) to detect five common apple leaf diseases
(Alternaria leaf spot, Brown spot, Mosaic, Grey spot, and Rust) [46]. Disease detection
is so important to growers, some research has focused on highly parallel algorithms that
could be deployed widely on embedded devices such as field programmable gate arrays
(FPGAs) [5]. Even after harvesting, computer vision can be used to analyze the crop
quality. Su et al. developed a method for determining the quality of potatoes by studying
the curvature and volume of over 100 candidate potatoes [92]. Similar produce grading has
been performed for tomatoes and other crops [45]. While these techniques are useful within
the context of precision agriculture, additional computer vision methods are necessary for

interacting with and manipulating the crops.

11



2.3.2 Crop Identification, Localization, & State Estimation

Manipulating crops requires computer vision systems that precisely and accurately
identify and localize target crops within the real-world farm environment [48]. Initial re-
search along these lines identify produce targets by harnessing their distinct colors and
shapes. For these approaches, RGB-D cameras that provide both color and depth infor-
mation can be useful [30, 68, 78]. More recent approaches have focused on utilizing neural
network classifiers to identify and track crops from moving video data [17]. Regardless of
method, after segmenting the scene and identifying the target crops, they need to be local-
ized spatially within the coordinate system of the robot to be harvested. Thus, determining
an estimate of the 6D pose (position and orientation) is critical.

Classical 6D pose estimation techniques traditionally perform feature matching
using detected keypoints and then use a RANSAC approach to reconstruct a 3D represen-
tation [61, 12]. However, these methods fail when presented with uniformly textured objects
and highly occluded scenes. Recent research has explored machine learning methods for gen-
erating 3D representations from 2D images [42, 41, 73]. Unfortunately, these learning-based
approaches suffer from the same shortcoming: lack of large training datasets. While syn-
thetic data generators can partially mitigate this shortcoming, this approach still requires

realistic models with multiple variations in size, shape, orientation or curvature [32, 114].

2.3.3 Leaf Detection & Localization

Leaf detection and localization is a special case of plant segmentation. While most

of the research discussed in Section 2.3.2 is motivated by harvest-related manipulation ap-
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plications, much of the work associated with leaf detection revolves around path planning
for harvesting or leaf segmentation. The process of leaf segmentation can be used to identify
leaf components which can be useful for crop health monitoring (see Section 2.3.1). Leaf
segmentation can be performed using either classical computer vision tools [18, 60, 27] or
machine learning [33, 50, 84]. However, the classical methods are susceptible to environ-
mental changes (changing light, occlusions or hidden surfaces, etc.). The learning-based
methods also require large datasets and might not generalize well due to varying environ-
mental factors [36]. These computer vision methods have rarely been deployed on embedded
computers as part of a physical sampling system that identifies, localizes, and manipulates
a leaf. Such a system presents similar yet unique challenges to crop manipulation, yet
presents an inverted problem. Instead of filtering out the leaves to extract the crop, the

objective is now to retain the leaves and their individual leaf poses.
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Chapter 3

Robotic Proximal Soil Sensing

3.1 Overview

Precision agriculture, and specifically precision irrigation, utilizes near-ground
sensing data such as geospatial measurements of soil apparent electrical conductivity (ECa)
to optimize water usage. While near-ground sensors provide valuable information to grow-
ers, the labor-intensive process of collecting, assessing, and interpreting measurements cre-
ates real-world deployment challenges. Performing the measurements with mobile robots
could decrese the labor burden while increasing the overall adoption of ECa technology and
the accuracy and frequency of data collections. To automate the geospatial ECa measure-
ments and map soil moisture content in micro-irrigated orchard systems, a small wheeled
mobile robot was retrofitted with a small electromagnetic induction sensor. The sensor
placement considered the potential measurement interference caused by the robot’s chassis.
The developed software stack integrated the sensor along with a GNSS unit to perform time-

stamped geospatial measurements. The prototype robotic ECa measurement method was
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evaluated by mapping a 50m x 30m field against a human-conducted measurement baseline
obtained by walking the sensor in the same field and following the same path. Despite the
robot’s small form factor, preliminary experiments suggest that the robotic approach yields

comparable measurement to human-conducted ones. This chapter is derived from [15].

3.2 Technical Approach

3.2.1 Measuring Soil Conductivity

Directly measuring soil moisture (SM) is challenging; a reliable proxy for SM spa-
tial variability is geospatial electromagnetic induction (EMI) measurements of soil apparent
electrical conductivity (ECa) [20]. These ECa measurements treat the complex interaction
of salinity, water content, and soil composition as a bulk conductivity value [20]. The EMI
sensor produces a primary electric field that induces eddy currents into moist soil. These
eddy currents generate a secondary magnetic field measured by the sensor’s receiver to
determine the conductivity value [53]. Figure 3.1 depicts the sensor’s operating principle.
However, these measurements need to be calibrated with a ground-truth baseline to produce
accurate SM readings. The ECa measurements can be calibrated at the field-scale with con-
current in-situ measurements of soil moisture using physically-based stochastic modelling
to generate accurate root-zone soil moisture maps [69]. Since each orchard contains unique
soil compositions, experts can then conduct site-specific ECa-to-SM calibrations using con-
current SM data from either soil cores or discrete, in-situ SM monitoring stations. Once

the calibrations have been completed, the soil moisture surveys can be conducted using the
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Figure 3.1: Schematic of the operation of the CMD-Tiny probe. Modified from Lesch et al.
[53]. This sensor can measure apparent conductivity up to 1000 mS/m with a resolution of
0.1 mS/m with an accuracy of £4% at 50 mS/m.

EMI sensors.

The SM surveys with EMI sensors are typically conducted manually either by
walking the sensor in the field or by driving field vehicles with a trailing sensor (Fig. 3.2).
Both approaches are time-consuming, labor-intensive, and limit broad-scale adoption of
this technology for frequent SM mapping. Established standard operation procedures [20]
recommend that ECa measurements should not be carried out on very dry soils, especially
in arid, semi-arid and Mediterranean climates where the space between tree rows of micro-
irrigated orchards are generally very dry because irrigation only wets soils very close to the
drip emitters [90]. Depending on soil type and irrigation strategy, moist soil is often found
up to 1 — 1.5 m away from drip emitters [91]. In these orchard systems, ECa measurements
should thus be carried out close to the trees, along the drip-lines.

The two primary barriers to widespread adoption of ECa surveys using EMI sensors
are 1) the cost associated with conducting reliable and consistent surveys [20], and 2)

challenges with calibrating the sensor readings to generate an accurate SM estimate. Both
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Figure 3.2: Current and envisioned soil moisture (SM) survey techniques using electromag-
netic induction (EMI) sensors in traditional and precision agriculture. Current methods
include manually-collected data obtained by walking the sensor in the field (left panel), and
data obtained by a person driving a field vehicle that pulls the sensor secured on a trailer
(central panel). Both methods are labor-intensive. In contrast, the proposed robotic method
seeks to automate this process via the use of small and portable agricultural robotics (right
panel). The robot prototype is significantly smaller than the ATV and sensor trailer. Due
to its small size, it is able to navigate closer to the drip-lines at the base of the trees and ex-
ert more control over the spatial component of apparent Soil Electrical Conductivity (ECa)
measurements. The robot contains all necessary equipment to perform the measurement
including the EMI sensor, a GNSS receiver, and router to provide a local field network.

of these challenges could be mitigated with miniature, portable robotic systems. Robots are
ideal for executing precise and repeatable actions such as performing survey measurements.
Furthermore, once appropriately calibrated, these robotic systems could automatically re-
calibrate to maintain the ability to perform precise and accurate measurements. Prior SM
sensing robots encompass very expensive sensor technology, such as cosmic-ray sensors,
mounted on large mobile platforms [87, 77, 75]. Such configurations constrain the sensor
placement by removing the sensor from the region of interest (close to the trees, along the
drip-lines) and reduce the survey frequency due to cost and mobility issues. Thus, miniature,
portable, and cost-effective SM survey robots may improve ECa measurement accuracy by

bringing the EMI sensor closer to the tree roots and increase survey frequency [44].
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3.2.2 Robotic Platform Selection & System Integration

The selection of the base robotic platform for transporting the EMI sensor needs
to satisfy several unique design criteria including portability and minimal electromagnetic
sensor interference. Since the EMI sensors use an emitter/receiver pair to generate the
ECa measurements, they are subject to interference from external magnetic fields. Thus,
the placement of the sensor relative to the robot’s chassis is a critical design constraint
to reduce the possibility that the robot’s metal and electrical components could interfere
with the ECa measurements. However, the ultimate placement of the sensor relative to the
robot is constrained by size, weight, and power (SWaP) requirements to remain portable and
effective at traversing uneven terrain. During the traversal, the robot needs to carry a CMD-
Tiny (GF Instruments') conductivity sensor which is a small-form sensor representative of
many typical sensors on the market. The sensor has diameter 42.5 mm and length 500 mm
and weighs 424 g.

A ROSbot 2.0 Pro (Husarion Robotics?) [26] wheeled mobile robot was ultimately
selected as the base platform due to it’s small size, low weight, and high payload capacity.
The CMD-Tiny sensor only consumes 4% of ROSbot’s total payload capacity of 10 kg. The
optimal placement of the sensor relative to the robot was determined empirically to minimize
interference on the measurements without sacrificing mobility (Section 3.3.1). ROSbot
is also a good candidate for integration due to the system’s existing software API. The
system’s software needs to serve two primary functions: 1) EMI sensor communication and

data logging and 2) navigation. For the former, the software also needs to log the recorded

LGF Instruments: http://www.gfinstruments.cz
*Husarion Robotics: https://husarion.com
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ECa soil measurements in conjunction with spatial information such as GNSS. This spatial
information is imperative for comparing the measurements with a ground truth baseline as
established through core measurements. This data should be stored in a file format such as
.CSV that can be processed through several different software tool sets. For the navigation,
the robot should be able to be controlled via either manual input or by a waypoint-based
trajectory planner.

The system software architecture utilizes ROS as the foundation for automatic
geospatial mapping of ECa measurements and soil moisture content in micro-irrigated or-
chard systems. The system contains ROS nodes for navigation, measurement collection, and
data logging. The navigation node utilizes an external GNSS receiver and ROSbot’s odom-
etry information fused from motor encoders and IMU to compute the robot’s real-time pose
(i.e. position and orientation) with an Extended Kalman Filter [47]. The navigation node
can receive commands either from manual inputs or a waypoint-based trajectory planner.
(Data collected in Section 3.4 used teleoperation.) While not implemented for this analysis,
fully autonomous navigation in the field [10, 81, 37, 107] is possible by integrating measure-
ments from the onboard LiDAR [55, 39] and RGB-D camera [28, 43]. A second ROS node
extracts SM information from the EMI sensor and publishes the readings. A third ROS
node synchronizes the ECa data with GNSS spatial coordinates. This Geospatial SM data
is simultaneously displayed in real time and loffed to a local CSV file for post-processing

with ArcMap 10.8 (ESRI, Redlands, CA).
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3.3 System Validation

3.3.1 Sensor Placement Feasibility Study

The compact and light-weight ROSbot 2.0 Pro was selected as the mobile platform
to deploy in the field since it contains the necessary integrated hardware to enable stable
maneuverability, remote control, and autonomous navigation. After selecting the platform,
the optimal sensor placement needed to be be determined. Figure 3.3 shows how the EMI
sensor is orientated with respect to the robot with angle 6, installed with ground clearance
d,, and located away from the robot’s back with distance dp, to improve the SM measurement
accuracy and reduce the robot’s interference. These parameters also constrain the approach
angle o and the departure angle 5 which could limit the capability of overcoming obstacles
in the uneven terrain. With careful design parameter selection, the fully-equipped robot
can traverse common field terrains with deviation of £25 mm. The first step in determining
these parameters is to identify a mapping between the distance dj, and EMI interference to

determine a viable sensor placement to minimize this interference.
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Figure 3.3: The proposed robotic platform. Design parameters dy, d,, 0, « and 8 are deter-
mined in this work. The arrow (shown in yellow) denotes the forward-looking direction of
the robot.

To determine the ideal sensor placement, the robot was placed at different lo-
cations of interest, and at different times and days to establish a rich basis, and sev-
eral discrete ECa measurements were taken at fixed distance intervals from the robot,
d, = {25,30,36,41,46,51,56,61} cm, and at two orientations, # = {0°,90°}. Control
measurements without the robot present were also taken at all sampled locations. Mea-
surements were taken with two sets of spacers to bound the vertical standoff distance
d, = {6.35,51} mm. These tests were conducted in Riverside, California at the Agricultural
Experimental Station of the University of California, Riverside and at the USDA-ARS U.S.
Salinity Laboratory with test environments that included grass, bare-soil, and tree roots.
These soils were sandy loam with sand content greater than 50%. Future work will measure
soil with greater variability in sand, clay, and silt content. Table 3.1 lists all test cases,
and Fig. 3.4 depicts an example from testing on irrigated turf. Measurements were per-

formed with the CMD-Tiny sensor in the ‘high’ mode, which is tuned by the manufacturer
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Table 3.1: Conductivity Measurements (mS/m) at Varying Distances dj, (cm)

Test Configuration E— Distance: oo 25 30 36 41 46 51 56 61

26.7 41.8 354 319 295 288 279 275 272
198 303 259 243 221 211 208 204 20.1
21.4 327 281 264 243 231 227 222 217
Citrus Grove, 6 = 0° 183 299 28 25,3 239 225 215 211 202
181 343 279 236 212 20 193 188 184
224 335 28 26.1 247 236 229 23 22.7
195 354 30.1 269 235 225 215 21.1 206

30.6 42.7 39.1 353 335 324 31.8 313 308
32.6 471 422 382 357 348 33.7 333 328
26.6 415 36.1 323 296 288 279 27.1 269
Irrigated Turf, 6 = 0° 28.20 42.90 37.80 33.50 31.60 30.40 29.70 29.20 28.90
32.20 47.50 41.60 38.70 35.70 34.80 33.90 33.20 33.00
28.70  39.20 35.10 33.10 31.30 30.40 29.80 29.50 28.90

28.30 31.20 30.20 29.40 29.10 28.50 28.60 28.40 28.30
Irrigated Turf, 6 = 90° 3240 35.50 33.90 33.20 33.00 32.80 32.80 32.70 32.60
28.80 31.10 29.70 29.10 28.80 28.60 28.70 28.60 28.40

1490 26.30 23.20 20.10 18.30 17.00 16.30 15.80 15.30

Tree roots, § = 0° 139 281 239 196 168 159 152 144 143
16,5 31.1 252 215 191 183 176 172 16.9
Tree roots, § = 90° 14.70 18.30 16.60 15.70 15.20 14.90 14.90 14.70 14.70

232 395 335 281 267 249 243 238 235
Bare Soil, § = 0° 2240 35.00 31.30 28.10 25.90 24.80 23.90 23.40 23.10
17.20 2540 23.40 21.20 19.90 19.10 18.50 1820 17.90

22,40 25.20 23.90 23.30 22.90 22.70 22.60 22.50 22.50
18.50 20.90 20.10 19.60 19.20 19.00 18.90 18.90 18.90

Bare Soil, 8 = 90°

to provide high-accuracy ECa measurements in [0,0.7] m soil depth.

The tests reveal that the optimal horizontal distance dj, for the sensor would need
to be at least 457 mm to minimize the influence of the main robot chassis on the EMI sensor
measurements. At smaller distances, the robot affects the sensor measurements but it does
not saturate the sensor. Table 3.1 contains the soil conductivity measurements at different
test configurations. The column marked with co denotes the control measurement at that
location where the robot was not present. Figure 3.5 shows how the ECa measurements
differ from the 1:1 control line along with the Pearson coefficient and regression slope and

intercept for each distance. As the control vs ROSbot measurements all had a slope very
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Figure 3.4: In field tests to identify EMI interference, the sensor (orange cylinder) was
operated in a manual configuration to record a series of measurements at multiple distances
and fixed orientation (either 0° or 90°) from the robot, over diverse fields. Here we show
an instance from testing over irrigated turf at dj = 25 mm and 6 = 0°.

close to 1, the influence of the ROSbot on the sensor measurements was considered constant
in the range of conductivity measured in this experiment.

After determining dj,, further experiments were conducted to determine the effect
of the sensor angle #. Data suggest that the sensor should be mounted sideways and par-
allel to the direction of motion of the robot (# = 90°). While this configuration is ideal
from a sensor measurement standpoint, this configuration could make the miniature robotic
platform unstable. The final configuration of the sensor on the robot was a compromise be-

tween optimal signal to noise ratio and maneuverability. The final prototype constructed in

this preliminary research utilized the horizontal sensor orientation with the sensor mounted
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Figure 3.5: For the different field locations, ECa measurements were averaged for each dis-
tance dj. The resulting average values were plotted against the 1:1 control line to determine
the constant linear offset. Values that have a line with a slope of 1, parallel to the 1:1 line,
and a Pearson correlation close to 1 can be treated as constant linear offsets. Distances
greater than 46 cm represent the best candidates for linear offsets, while additional mea-
surements are needed to determine the true relationship at closer distances.

perpendicular to the direction of motion (f = 0°). Since mounting the sensor at the ideal
distance from the robot would reduce mobility, a closer distance of d = 235 mm was
selected and a correction factor was calculated to account for any remaining bias (Sec-
tion 3.3.1). This correction factor accounts for the small, yet noticeable effect of the robot
on the sensor’s measurements. Though further refinement of the robotic system could re-
duce bias, our platform conforms to, and potentially exceeds, standard practices. While the
ideal placement would eliminate sensor bias, current best practices often mount the ECa

sensors with metal brackets to farm equipment [108], which introduces a measurement bias.
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Finally, a set of measurements were conducted to determine the vertical distance
d, by placing the sensor on two spacers: one short spacer (6.35 mm) and another tall
spacer (80 mm). The field readings of the ECa values were consistent within the resolution
of the measurements between the two spacers. Thus, the value of d,, was determined to be
bounded between 6.35 mm and 80 mm. To provide a large margin for the departure angle
(as described in Section 3.3.2), the vertical distance d,, was selected to be 50 mm to provide

sufficient ground clearance without obstructing the LiDAR’s field of view.

3.3.2 Vehicle Integration & Traversal Tests

After the ideal values were determined through field measurements with the EMI
sensor and ROSbot, an additional set of validation tests were conducted to verify the plat-
form’s mobility. The goal of theses experiments were to determine the maximum practical
sensor mounting distance dj, and angles o and § that allow the robot to traverse uneven
terrain with deviations of 425 mm from level after mounting the sensor without tipping,
stalling, or colliding the sensor into the ground. A series of traversal tests were conducted
in the lab using foam obstacles on a foam surface to confirm that the robot could indeed
navigate the desired terrain (Fig. 3.3.1). Sensor mounting components were designed so
that the sensor distance dj, can be adjusted during the traversal tests.

The EMI sensor was mounted on the robotic platform using a combination of
carbon fiber rods and custom 3D printed brackets. Using carbon fiber rods is an ideal
choice to suspend the sensor behind the robotic platform since the rods have high strength-

to-weight ratio, high rigidity, and non-metallic composition. The lightweight nature of
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Figure 3.6: To test the system’s maneuverability with the sensor attached, an obstacle
course was created with several stacks of 12.5 mm thick foam tiles for a total height of
25 mm. The robot was driven over the tiles at various angles and speeds to ensure no
unwanted portion of the system made contact with the ground.

carbon fiber aids the design goal of maximum portability. Rigidity is beneficial because this
material property minimizes the likelihood that the cantilever sensor arm will vibrate or flex
while the robot is traversing obstacles. Finally, metal support rods were not an option since
they would affect the conductivity measurements. Use of metal fasteners was minimized to
reduce interference with the sensor, though they could not be completely avoided for the
sensor mounting.

While the ideal integration configuration would eliminate interference between the
robotic platform and the sensor, the sensor placement is constrained by the need to have
approach («) and departure (/3) angles that allow the robot to traverse a field with deviations
of +25 mm from level terrain. As such, the ideal distance dj, determined in Section 3.3.1
is not possible to achieve. Instead, the maximum distance that prevented tipping while
still allowing the vehicle to traverse the desired terrain was empirically determined at d;, =

235 mm. Following the tests discussed in this and the previous section, and with reference

to Fig. 3.3, the selected system mechanical parameters are summarized in Table 3.2.

26



Table 3.2: Implemented System Mechanical Parameters
dp, dy 0 @ I6;
235 mm 50 mm 0° 18.4° 12.2°

3.4 Experimental Methods & Results

3.4.1 Establishing a Manual Baseline & Robotic Comparison

Once the preliminary validation tests were complete and the sensor integrated onto
the ROSbot platform, the experiments focused on field experiments with the robot. The
first experiment aimed to quantify the impact the mounting distance dp = 235 mm has
on the ECa measurements and determine if the introduced measurement bias is linear or
nonlinear. For this experiment, a row of olive trees was selected as a comparison region
between robotic- and manually-collected data. First, the robot with the integrated sensor
was driven down the row multiple times to collect ECa measurements along with GNSS
coordinates. Then, the same measurements were collected by a human carrying the sensor.
These paired measurements were then compared to determine if there are any transients
from the robot during operation that could impact the EMI measurement. These tests also
served to validate the robot’s ability to traverse the field terrain, though these observations
were qualitative not quantitative.

Since the mechanical constraints impact sensor placement, the goal here is to
determine if the presence of the robot introduced a constant linear offset into the ECa
Measurements. Figure 3.7 shows ECa measurements captured via a hand-held manual and

robotic data acquisition process. The robotic- and manually-collected datasets were filtered
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to remove outliers, averaged, and then compared. The average of the hand-held ECa data
set was 16.9 mS/m. The average of the dataset collected with ROSbot was 48.6 mS/m.
The average difference was 31.7 mS/m. The slope of the linear relationship between the
two datasets was 0.69 with a Pearson correlation coefficient of 0.72. A stronger correlation
would be preferred, yet the obtained accuracy offers an acceptable trade-off between sensor

measurement accuracy and compact robot design.

Raw and Averaged Data
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Figure 3.7: ECa Measurements Comparison. Raw data measured with hand-held approach
(top) and ROSbot (bottom) are scattered in colors for different trials. Average measure-
ments are plotted in lines.
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3.4.2 Generating a Soil Moisture Map

After establishing the measurement baseline, a larger scale survey was conducted
to generate ECa maps at a selected study site for comparison of the robotic- and manually-
collected measurement data. A study site was selected that encompassed a 50 m x 30 m
subset of a drip-irrigated olive orchard located within the Agricultural Experimental Station
of the University of California in Riverside (33°58’24.5”N 117°19’10.3”W). At this location,
the soils in the [0,0.7] m depth range were sandy loam with sand content ranging between
54.6% and 65.9% [11]. Two ECa surveys were carried out on March 12, 2021 at the study
site to compare hand-held measurements with these acquired with the integrated robotic
soil sensor platform. The GNSS position was recorded along with the ECa measurements
to assist in constructing the SM maps for comparison. The robot also recorded its pose (po-
sition and orientation), although these measurements were not available during the manual
hand-held process. The hand-held survey collected 461 ECa measurements, whereas the
ROSbot survey collected 6901. Collected data were sampled at the same frequency, but
the robot was moving slower than the human counterpart, thus leading to the increased
number of samples via the robotic approach. While the robot collected data at a slower rate
than manual operation, this actually provides more accurate measurements [93]. Current
commercial practices can suffer from sensor biases and inconsistent practices. A fleet of
robots could provide more consistent data and broader coverage of field regions (such as
near tree roots, under dense canopies) where a human could not regularly access.

Following collection, the data was processed to generate the SM map from the ECa

measurements. These ECa measurements use a bulk soil conductivity model to capture the
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Figure 3.8: Maps of soil apparent electrical conductivity (ECa) for the 0-0.7m soil profile at
the study site: a) hand-held survey and b) ROSbot semi-autonomous survey. Color scales
are characterized with the quantile method. The maps’ ECa frequency distribution are
reported on a histogram on the bottom-right of each panel.

complex interplay of soil composition and serve as a good proxy for soil moisture. First,
the ECa data were normalized with a natural logarithm transformation following commonly
used data filtering procedures [21, 53]. Then, also in line with the standard of practice, any
values outside the range of £2.5 standard deviation around the average values were deemed
as outliers and removed. The hand-held ECa dataset had 2 outliers (0.4%), whereas the
ROSbot dataset had 137 (2%). The increased number of outliers in robotic measurements is
linked to the fact that those measurements were substantially more compared to manually-
collected ones. The average of the hand-held ECa dataset was 19.0 mS/m. The average
ECa value measured with the ROSbot was 53.5 mS/m. The difference (34.5 mS/m) was
removed from all ECa measurements in the ROSbot dataset to compare the variability
and spatial distribution of the two datasets. In ArcMap 10.8 (ESRI, Redlands, CA), the
ECa for the two datasets were spatially interpolated using simple kriging with exponential
semivariogram to generate maps with 0.5 m x 0.5 m resolution. These spatial maps are

displayed in Fig. 3.8.
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The ECa map obtained from the hand-held survey had mean = 18.78 mS/m,
standard deviation = 2.31 mS/m, minimum = 12.94 mS/m, and maximum = 26.48 mS/m.
The ECa map derived from the ROSbot survey had mean = 19.94 mS/m, standard deviation
= 1.85 mS/m, minimum = 15.35 mS/m, and maximum = 26.72 mS/m (Table 3.3). The two
maps revealed similar ECa spatial patterns, with the highest ECa values observed at the SE
and SW portions of the study site, and the lowest ECa measured in the N and the center of
the site. At the pixel-by-pixel level, the maps had a Pearson correlation coefficient = 0.65.
This indicates that there are some inconsistencies between the maps, possibly associated
with: non-constant influence of the ROSbot on the sensor measurements, different sensor
distance to soil and tilt across the two surveys, and higher detail (and variance) captured
in the ROSbot survey than in the hand-held one. Observed geolocation inaccuracies are

because of the employed low-resolution GPS that also introduces inconsistencies.

Table 3.3: ECa Map Statistics. All values are in mS/m.

Survey 1 c MIN MAX

Hand-held 18.78 2.31 12.94 26.48
ROSbot 19.94 1.85 15.35 26.72

3.5 Discussion & Outlook

The prototype robot demonstrates the feasibility of conducting ECa surveys using
an EMI sensor mounted on a small, portable robotic platform. The ECa geospatial mea-
surements provide real-time spatial information that can be used to infer soil water status.

Precision irrigation (i.e. for distinct zones in a field) or traditional irrigation (i.e. the whole
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field is managed uniformly) can be scheduled based on soil water status spatial information
derived from the prototype platform. The size of the platform is particularly advantageous
because it brings the ECa sensor closer to the sample regions of interest such as irrigation
drip-lines and tree roots where current handheld, human operated surveys cannot access.
The integration approach developed in Section 3.3 highlights some of the design trade-offs
with respect to the sensor position relative to the robotic chassis, and quantifies how the
robot might bias the sensor readings. Ultimately, the system is capable of gathering the
data necessary to create spatial maps and accurate spatio-temporal soil moisture informa-
tion, which is key to increasing the environmental and economic sustainability of irrigation
management in precision and traditional agricultural systems.

Despite the promising initial capabilities, the system could be improved with a few
modifications to 1) optimize the relationship between the sensor’s signal to noise ratio and
platform mobility, and 2) examine sensor performance with different soil types. Additional
ECa surveys should sample a wider variety of soil types not present in the initial data
set. Current tested soils were sandy loam with sand content greater than 50%, and soil
with greater variability in sand, clay, and silt content could produce different calibration
conditions. As part of these experiments, future robot iterations should test towing the
sensor parallel to robot direction or mounting the sensor in different planes to minimize
impact. Although the software foundations are in place with the sensor’s ROS integration,
the robot’s software should implement more intelligent path planning and autonomous
navigation capabilities. Finally, robot-gathered ECa data can pair with existing precision

agriculture systems to determine optimal irrigation strategies.
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Chapter 4

Leaf Cutting End Effector Design

4.1 Overview

The manual nature of stem water potential analysis prevents integration with pre-
cision irrigation systems. To conduct this analysis, growers use cleanly cut leaf stems from
trees in this industry-standard analysis to determine the irrigation schedules for their or-
chards. (See Section 2.1.2 for additional details on this methodology.) New end effector
designs are necessary for cutting and capturing leaves to enable full automation of stem
water potential analysis. While the ultimate goal is to automate this entire process, the
first step is to design the mechanism to cut and capture the leaves. While several end effec-
tors exist for harvesting and pruning (Section 2.2.2), no designs currently exist for cutting
and capturing leaves for stem water potential analysis. This chapter covers the mechanism
design to cleanly cut the stem of a leaf (Section 4.2.1) and retain it, perception component
selection (Section 4.2.2) and the mechatronics design to enable safe and repeatable auto-

mated stem leaf cutting. The prototype end effector’s efficacy is evaluated by cutting leaves
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(Section 4.4.2) which are then used for stem water potential analysis with a Scholander

pressure chamber, and compared to a manually-cut leaf benchmark (Section 4.4.3).

4.2 Technical Approach

The end effector design is constrained by three key requirements that must be
addressed for the leaf water potential analysis. First, the end effector needs to cleanly
cut the leaf stem to separate the test specimen from the host tree. Damaging the stem
could negatively impact the stem water potential analysis. Second, the end effector needs
to capture and retain the cut leaf for analysis. Failing to retain the leaf sample would
make analysis impossible. Finally, the end effector needs to maintain a target weight of less
than 50% of a typical robotic arm’s payload of 2.6 kg to ensure mobility throughout the
arm’s workspace. While arms can support larger payloads, this payload limit is typical of

commercially available collaborative robotic arms.

4.2.1 Cleanly Cutting the Leaf Stem

Stem water potential analysis requires a test leaf specimen with a cleanly cut
stem since a damaged or mangled stem would negatively impact the analysis [85]. The
force required to cut a stem can be calculated as F' = 7r?7 if the radius of the leaf stem is
known. The diameter of ten leaves from four different trees (avocado, clementine, grapefruit,
and lemon) were measured to determine a reasonable value for . The average leaf stem
diameter was 2.09 mm with a standard deviation of 0.51 mm. Literature indicates that the

shear stress (7) for cutting organic plant matter ranges from 0.85 to 5.9 MPa [106, 38].
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Considering the best and worst case scenarios, upper and lower bounds can be determined
for the forces. Using these values, the required force to cut the average leaf ranged from 2.9
to 20 N.

However, organic matter such as leaf stems exhibit visco-elastic properties which
means that cutting force needs to be applied at the appropriate rate. When stress is applied
to a viscous material, the material resists the deformation linearly with time. When stress
is removed from an elastic material, the material returns to the original non-deformed
state. Based on visco-elastic material principles, faster cuts will require less force and result
in less deformation of the leaf stem. Hence, the rate of cut is equally important to the
delivered force. The cutting rate for the leaf stem was determined empirically through
a series of experiments (Section 4.4.1). These tests revealed that the minimum cutting
speed should be 0.312 m/s. With both a worst-case cutting force estimated and a minimum
cutting rate determined, the end effector design target was set to deliver a target force of
20 N at 1.1 m/s. This cutting blade velocity provides sufficient margin over the empirically
determined minimum cutting speed of 0.312 m/s to account for any losses and work with a

wide variety of tree leaves (e.g., avocado, clementine, grapefruit, and lemon).

4.2.2 Camera Selection and Placement

Several cameras were evaluated to provide a perception component for the end
effector (Table 4.1). All the cameras considered could provide both RGB color images as
well as depth information. Although the ZED and ZED2 generated high quality images and
depth maps, they were excluded because their wide baselines produced fragmented depth

maps at close ranges within the tree canopy. The three other cameras were evaluated in
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different indoor and outdoor environments. The obtained results show that the Realsense
(RS) D435i has the best performance, especially outdoors where it is able to provide a
viable depth image at close ranges. Furthermore, this camera produced high-quality point
clouds at a lower depth range than the manufacturer specifications (0.1 m). Sample images

collected using the RS D435i are shown in Fig. 4.1.

Table 4.1: Candidate Cameras Specifications

Baseline Depth Range

Camera Field of View
[mm] [m]

ZED 120 0.3-25 90° x 60° x 100°

ZED2 120 0.3-20 110° x 70° x 120°

ZED mini 63 0.1 -15 90° x 60° x 100°

RS D435i 50 0.2-3 87° x 58° x 95°

RS D455 95 04-6 87° x 58° x 95°

Two eye-on-hand configurations were considered for the placement of the camera
on the end effector (Fig. 4.2). While the configuration in panel (a) can lead to longer look-
ahead distances the configuration in panel (b)—angled downward at 45°—was ultimately
selected. This configuration strikes a balance between providing useful depth information
about the tree (which is needed for obstacle avoidance and navigation around tree branches)
and allowing for leaf detection and tracking (which is needed for aligning the end effector
with the leaf to cut it). While tree branch avoidance and leaf tracking is not currently im-
plemented, the design herein is cognizant of next steps that need to follow to fully automate

leaf stem water potential analysis.
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Figure 4.1: Sample RGB and depth images collected from RS D435i in an outdoor environ-
ment at (a)—(b) 15 cm, (¢)—(d) 20 cm, and (e)—(f) 25 cm.

Figure 4.2: Two main camera positions were tested for the end effector: a) straight ahead,
and b) angled downward at at 45°.
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4.3 System Design

After evaluating the required actuation (Section 4.2.1) and perception (Section 4.2.2)
subsystems, an integrated prototype was constructed. The cutting mechanism utilizes two
four-bar linkages to actuate a set of sliding gates, one of which contains a razor blade to
cleanly sever the stem without damaging the leaf (Fig. 4.3). The gates also help retain the
leaf within the end effector’s chamber after removal from the tree. These four-bar mecha-
nisms are connected via a geartrain to achieve synchronized motion. A low-cost, high-torque
R/C servo (FEETECH FT5335M) drives the geartrain while being amenable to adequate
position control. The end effector’s chamber has an opening of 110 mm x 45 mm and a
depth of 185 mm to accommodate typical avocado leaves (which are the largest of the four
tree crops considered in this chapter). The end effector is constructed with miniature alu-
minum extrusions, lightweight 3D printed parts, and laser-cut acrylic panels. The assembly
weighs a total of 1.09 kg, which is 42% of the robotic arm’s 2.6 kg payload.

The end effector operates symbiotically with the Robot Operating System (ROS).
High-level control commands are handled via a ROS node running on the robot’s embedded
computer. This node receives commands from published ROS topics and issues commands
to the end effector via Serial UART communication. The end effector contains an embedded
microcontroller (Arduino Due) to parse the received serial commands and control the motor
that drives the cutting mechanism. A breakout board connected to the Arduino contains
a “safe/armed” switch along with LED indicators to reduce the risk of accidental injury
from the razor blade. (For redundancy, the high-level ROS control node also has a software

“safe/armed” switch.) A 7.4 V 2S LiPo battery powers the end effector mechanism.
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Figure 4.3: Exploded view of the end effector. The design contains several critical com-
ponents, including the Intel RealSense D435i Depth Camera (A) and an interchangeable
robotic arm mount (B). The FEETECH FT5335M R/C servo (C) is connected via a
geartrain (D) to four-bar linkages (E). This mechanism closes the gates (F) to cut the
leaf with the razor blade (G). This separates the leaf from the tree and retains it within the
enclosure for subsequent SWP analysis.

4.4 Experimental Methods & Results

4.4.1 Cutting Speed Tests

To determine the minimum speed necessary to cleanly cut the leaf stem, a prelim-
inary prototype leaf cutter was placed on a level platform above a measuring stick with a
high-speed camera positioned to face the cutting blades (Fig. 4.4). Three distinct gear sets

were 3D-printed so that they could be inserted between the servo motor and the cutting
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mechanism to adjust the speed. For each gear ratio (7:13, 22:13, 41:13), four leaves were
inserted into the mechanism and the high-speed camera recorded the cutting attempt for
each leaf. The selected motor had sufficient torque margins so that the desired cutting force
could be delivered with all tested gearing setups. Recorded frames were analyzed to deter-
mine the terminal speed of the cutting mechanism. Since the camera frame rate (240 fps)
and the travel distance (19.1 mm) are known, the terminal cutter speed can be calculated

as:

ox N Az

(4.1)

E - frame rate x frame count

Figure 4.4: Experimental setup for the leaf cutting tests. A first prototype end effector
mechanism was placed above a level. A high-speed camera was used to record the cutting
operation.
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Of the three gear ratios, only the fastest gearing resulted in a cleanly cut leaf.
Table 4.2 shows results from all trials and Fig. 4.5 depicts sample frames of the process.
From this analysis, we determined that the minimum cutting speed for the cutter should
be 0.312 m/s. This result was used in iterative design of the final end effector prototype to
optimize the gearing of the four-bar mechanism and the gearing on the servo motor. The
final design had a fixed gear ratio that works on the four leaves identified in the preliminary

analysis (avocado, clementine, grapefruit, and lemon).

b) ¥ : : C)
1 | § (el 1T
JANW._ . - |\ |/

Figure 4.5: Sample frames from one test trial showing the leaf cutting mechanism in action.
In frame (f), the mechanism has cut the stem. In these tests, a leaf was already removed
from the tree and the mechanism was tested to cut the stem.

4.4.2 Field Leaf Cutting Tests

The integrated prototype developed in Section 4.3 was brought to a local orchard
to evaluate the cutting performance on avocado, clementine, grapefruit, and lemon leaves.

For these tests, the end effector was manually placed around leaves and activated. Twenty
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Table 4.2: Leaf Cutting Velocity Tests

Gear Ratio Frame Count Time (s) Speed (m/s) Success

7:13 48 0.200 0.095 No
7:13 40 0.167 0.114 No
7:13 39 0.163 0.117 No
7:13 41 0.171 0.112 No
22:13 20 0.083 0.229 No
22:13 25 0.104 0.183 No
22:13 17 0.071 0.269 No
22:13 18 0.075 0.254 No
41:13 16 0.067 0.286 Yes
41:13 20 0.083 0.229 Yes
41:13 11 0.046 0.416 Yes
41:13 14 0.058 0.327 Yes

cutting attempts were performed for each leaf type. For each attempt, a successful cut
occurs when the enclosed leaf is removed from the tree. A clean cut occurs when the leaf is
severed cleanly at the stem such that it can be used for stem water potential analysis. The
end effector was able to successfully cut 93.75% of the leaves (75 out of 80) with 61.25%
being clean cuts. Results are shown in Table 4.3. Lower success rates were observed for the
lemon and grapefruit leaves due to their very short stems which make it harder to position
the end effector around the stem without interference from branches or other leaves. The
end effector worked consistently on clementine and avocado leaves. An instance of one trial

and retrieved leaf in the enclosure of the end effector are shown in Fig. 4.6.

4.4.3 Stem Water Potential Analysis Comparison

A series of stem water potential measurements were performed using both manual

and end effector cut leaves to verify that the cutting mechanism did not damage the stem.
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Figure 4.6: For the field leaf cutting tests, the battery-operated end effector was manually
placed about the stem and activated by a button press on the on-board microcontroller
(top). Normally, the cut leaf falls into the end effector for retention, but the stem was
pulled out for visual inspection (bottom).
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Table 4.3: End Effector Field Tests

Crop Clean cut Near missed cut Missed cut
Avocado 15 5 0
Clementine 15 5 0
Grapefruit 11 8 1
Lemon 8 8 4
Rate 61.25% 32.50% 6.25%

Following best practices, all tested leaves were bagged with a water potential reflective
foil bag for at least ten minutes before cutting. This helps mitigate transpiration, thus
increasing the accuracy of SWP measurements [59]. A total of ten leaves (five for each
method) were cut and had their SWP measured.

Preliminary results suggest that the end effector cut leaves produce similar re-
sults to the manually cut leaves. The resulting SWP average measurements and standard
deviation are tabulated in Table 4.4. The average pressure for the manually-cut leaves
was 10.84 Bar, while the end effector cut leaves were 11.34 Bar. The pressure range for
the manually-cut leaves is 10.4 to 12.6 Bar, while for the end-effector-cut leaves it ranged
from 9.5 to 12.4 Bar. These variations are minor and the manually-cut and end-effector-cut

leaves are in essence of same quality for use in SWP analysis.

Table 4.4: Stem Water Potential Measurements

Cut Method # of Leaves Avg. Pressure (Bar) Std. Dev (Bar)

Manual 5 11.34 0.96
end effector 5 10.84 1.14
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4.5 Discussion & Outlook

This chapter covered the development of a novel end effector design capable of
cleanly cutting the stem of a leaf for use in stem water potential analysis. The system can
cut leaves from different types of trees (avocado, clementine, grapefruit, and lemon) with a
success rate of 93.75%. However, only 61.25% were clean cuts with suitable stem length for
pressure chamber analysis. The enclosure of the end effector allows capturing a bagged leaf
without affecting the reliability of the SWP measurement. The average measured pressure
for the end effector and manual cuts align closely (cf. 10.84 to 11.34 Bar, respectively).
The camera placement on the end effector allows for detection of the leaf on the tree, while
providing useful information about the position of the stem.

While the tests conducted in this chapter validate the design of the end effector,
the next step is to place the end effector on a robotic arm to determine how the device
could be integrated with a leaf picking system. This system could form the foundation of a
complete autonomous robotic system to detect, localize, cut, and retain bagged leaves for
stem water potential analysis. An optimization of the design will enhance the performance
of the system and allow the robot to reach leaves within the canopy closer to the trunk.
Chapter 5 seeks to determine the end effector’s efficacy when incorporated in such a leaf

cutting and retrieval system.
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Chapter 5

Action Perception Framework for

Leaf Retrieval

5.1 Overview

Picking a leaf requires two key components: actuation and perception. For ac-
tuation, a custom-built leaf-cutting end effector (Chapter 4) is mounted on a mobile ma-
nipulation base platform (Kinova Gen-2 six degree of freedom [6-DOF] robot arm mounted
on a Clearpath Robotics Husky wheeled robot). The perception component utilizes point
cloud data from a depth camera (Intel RealSense D4351) for the leaf detection and local-
ization algorithm developed herein (Section 5.2.1). This technique is tested on both indoor
and outdoor point clouds from avocado trees. Experimental testing with a real avocado
tree demonstrates the proposed approach can enable the mobile manipulator and custom

end effector system to successfully detect, localize, and cut leaves (Section 5.3). Figure 5.1
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Figure 5.1: The a custom-built end-effector developed in Chapter 4 mounted on an off-the-
shelf 6-DOF robotic arm to detect, localize and cut leaves at their stem.

depicts the integrated test setup used for the experiments conducted in this chapter.

5.2 Technical Approach

The perception component revolves around the detection and localization of a
viable leaf using RGB-D data. Section 5.2.1 outlines the algorithm and process used to
determine a leaf’s 6D-pose (position and orientation). This information is then passed to
the arm controller to initialize a leaf picking routine (Section 5.2.2). These software systems
are run on an Intel i7-10710U CPU. Figure 5.2 highlights how the components interact in

a leaf-cutting system.
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Figure 5.2: The approach jointly considers perception and actuation. The perception mod-
ule processes point cloud data to segment leaves and deposit leaf candidates into a queue.
Candidate leaves are then passed to the robot arm controller to actuate the end effector. If
a cut is successful, the routine ends. If unsuccessful, the arm controller requests the next
leaf in the queue.

Failure

5.2.1 Leaf Detection

The leaf detection and localization pipeline uses a 3D point cloud processed through
the Open3D library [113]. The detection phase seeks to obtain the 3D bounding box of
leaves candidates from the point cloud captured from the depth camera. First, noisy out-
liers resulting from sensor measurement inaccuracies are removed. Next, the background
is segmented at a specific distance threshold from the camera frame. Then, downsampling
is applied to optimize the performance of the upcoming step. Finally, the remaining point
cloud segments are grouped into clusters using the Density Based Spatial Clustering of Ap-
plications with Noise (DBSCAN) approach [29]. It relies on two parameters, the minimum

distance between two points to be considered as neighbors (eps) and the number of mini-
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Figure 5.3: Key steps in the proposed leaf detection and localization process. The sample
here corresponds to an outdoor point cloud: (a) corresponding RGB image of the tree, (b)
raw point cloud, (c) distance filtered ROI, (d) downsampled point cloud, (e) segmented
clusters, and (f) detected candidate leaves without 6D pose bounding boxes.

mum points to form a cluster (MinPoints). Each resulting cluster is considered a potential
leaf and described by a 3D bounding box defined by center C' = [c,, cy,cz]T, dimensions
D = [h,w,d], and orientation R(#,®,«). Then, filtering is applied on the clusters using
geometric features of the bounding box: number of points, volume, leaf ratio. Finally, the

pose of the center of each bounding box is returned as the 6D pose of a potential leaf.
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The detection pipeline was evaluated through offline tests with ROSbags contain-
ing indoor and outdoor environments. Indoors (lab with constant light conditions), the
Kinova arm collected data with the camera placed at different distances (0.2 — 0.3 m) from
a potted tree. Outdoors (local orchard with varying light conditions), data was collected
manually. A wide range (0.5 — 1.6 m) of distances from trees were considered; an example
is shown in Fig. 5.3.a. A total of 25 point clouds were collected (10 indoor and 15 out-
door) and tested offline with different combinations for eps and MinPoints parameters, to
determine optimal values for later use. Table 5.1 shows the outcome of the experiments on
the 10 indoor point clouds and 15 outdoor point clouds. The pipeline attains an average
of 80.0% of detection with a maximum of 90% for indoor dataset, and an average of 79.8%
with a maximum 85% for outdoor. Further, the distance between the camera and the tree
impacts the optimal values for the point cloud processing. The greater the distance from

the camera, the higher eps while MinPoints decreases.

Table 5.1: Leaf Point Cloud Detection
Point Clouds Total # Leaves Average Detection Percentage

Indoor 10 20 16 80.0%
Outdoor 15 99 79 79.8%

5.2.2 Arm Control

Identified and segmented leaves serve as target for the arm to move and align the
end effector along a viable leaf (to be defined in Section 5.3), at an offset position from

the center of the leaf. The offset distance is equivalent to the length of the leaf. Once at

50



the offset position, the arm moves linearly toward the leaf to capture it. When the leaf is

enclosed, the end effector cuts the leaf. Then, the arm returns home.

5.3 Experimental Methods & Results

The overall leaf detection, localization and cutting pipeline was tested with a real
potted avocado tree in an indoor laboratory environment. The mobile manipulator and end
effector system was positioned at random poses near the base of the tree so that the end
effector was at distances ranging between 0.2 — 0.3 m from the edge of the tree canopy. An
experimental trial consisted of collecting a point cloud, storing the identified and localized
potential leaves in a queue, and then sending the queued leaves to the arm for a retrieval
attempt. Each trial concluded once the queue was depleted and the tree was repositioned
for the next trial. Figure 5.4 outlines this process.

For each retrieval attempt, leaf candidates and viable leaves are determined. Leaf
candidates are leaves that have a pose within the arm’s workspace. Viable leaves are leaf
candidates that have a retrieval path within the arm’s workspace. For testing the point cloud
detection, both successful captures and successful cuts of the leaf are recorded. A successful
capture occurs when the end effector is placed around a viable leaf while a successful cut
occurs when the enclosed leaf is removed from the tree. A clean cut occurs when the leaf is
severed cleanly at the stem such that it could be used for stem water potential analysis.

Out of 46 trials, 63 potential leaves were detected by the point cloud. (Note that
each point cloud in the trial could produce a variable amount of leaves, hence a higher

number of potential leaves than trials.) After filtering the potential leaves to remove the
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Figure 5.4: Overall leaf retrieval process. During the perception phase, (a) the point cloud
is processed to determine a potential leaf. If a viable leaf is detected, (b) the arm will move
to an offset position. (c¢) The arm will then perform a linear motion to capture the leaf.
Once in position, (d) the arm will cut the leaf and (e) the leaf will fall into the enclosed
chamber. (f) After completing the cut, the arm will return to the home position.

leaves outside of the work space, 39 viable leaves remained. Out of these leaves, 27 were
captured successfully (69.2%) while 21 of the 27 captured leaves were cut (77.8%). Table 5.2
summarizes retrieval results while Table 5.3 highlights the process times. The mean point
cloud processing (perception) time was 5.6 sec and the mean cutting (actuation) time was

10.6 sec. The mean total retrieval time was 16.2 sec.

Table 5.2: Leaf Retrieval Numbers & Rates

Stage Number Rate

Potential Leaves 63 N/A

Candidate Leaves 51 81.0%
Viable Leaves 39 76.5%
Successful Captures 27 69.2%
Successful Cuts 21 77.8%
Clean Cuts 4 19.0%
Near Misses 7 30.0%

52



The system was able to remove a total of 21 leaves from the tree. However, not all
leaves were clean cuts on the stem; four were classified as clean cuts for use in stem water
potential analysis. The majority of the leaves were severed at the top of the leaf and not
at the stem (Fig. 5.5). The system produced seven near-misses where the stem was leaf
was cut within an average of 9.58 mm from the stem (std dev: 6.1 mm). The remaining
10 leaves were severed closer to the middle of the leaf, largely due to collisions with the
branches. Similar branch interference also lead to four out of the six missed cuts from the
captured leaf. These two problems could be solved in future work through a refined end
effector design, more robust path planning to account for branches, and implementing visual

servoing for continuous stem alignment as the end effector approaches a viable leaf.

Table 5.3: Leaf Retrieval Performance Time (Seconds)

Metric ~ Perception Part Actuation Part Overall Retrieval

Min 0.5 4.6 6.1
Max 11.0 61.7 62.5
Mean 5.6 10.6 16.2
Median 7.7 8.1 15.3
Std dev 3.9 10.4 10.2

5.4 Discussion & Outlook

This chapter developed a co-designed actuation and perception method for leaf
identification, 6D pose estimation and cutting. The 3D point cloud algorithm successfully
detected an average of 80.0% of leaves indoors and 79.8% outdoors. Experimental testing of

the overall proposed framework for leaf cutting reveals that the system can capture 69.2% of
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Figure 5.5: Sample leaves cut from the lab’s avocado tree during automated indoor tests.
(a) The four leaves represent clean cuts suitable for stem water potential analysis. (b)
The system also cut seven leaves that were classified as near-misses, which removed the leaf
without the stem. (c¢) The remaining leaves were cut closer to the center, due to interference
between the end effector and the branches. (d) In two cases, collateral damage occurred
when a second leaf was removed along with the target leaf. These instances were classified
as a single successful cut, but not a clean cut since the two leaves would need to be separated
for stem water potential analysis.

viable leaves and cut 77.8% of those captured leaves. These results offers a promising initial
step toward automated stem water potential analysis, nonetheless several steps remain and

are exciting avenues for future work.
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While the current path planning approach enables cutting of leaves that are on the
periphery of the tree’s canopy, leaves closer to the trunk are out of reach. Alternate path
planning strategies can be explored to reach leaves within the canopy closer to the trunk
by avoiding other leaves, branches, and fruits. Furthermore, implementing visual servoing
could better align the cutter with the stem of the leaf as it is about to cut it. These changes
would likely require hardware and software co-design of the end effector and integrated
robotic system. Finally, to enable automated stem water potential analysis, the captured
leaf will need to be transferred from the end effector into a pressure chamber. Once these
steps are completed, a robotic leaf sampling system for stem water potential analysis could

be fully integrated into a precision irrigation system.
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Chapter 6

Conclusions

Robots can increase the frequency and consistency of collecting moisture data
for use in orchard precision irrigation systems. Existing irrigation techniques still largely
rely upon certain manually collected data which can limit the frequency and consistency
of measurements due to labor shortages. The first measurement practice considered for
automation was salinity and moisture map generation using an EMI sensor to conduct
ECa measurements. The second measurement practice considered for automation was the
stem water potential analysis. While other methods such as in-situ and satellite sensors
can produce soil moisture information, they each have their benefits and drawbacks. In-
situ sensors can provide accurate information, but they rely upon interpolation to provide
information across the field. While satellites can also suffer from resolution issues, they
can cover large swathes of land frequently. Hence automating near-ground soil moisture
data collection and stem water potential analysis could lead to consistent and frequent

high-resolution measurements.
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Ground-based mobile robots have an important role to play in generating soil
moisture maps. A majority of current mapping techniques utilize aerial systems to cover
large terrain areas quickly. However, these systems generally fly over the fields and do
not conduct measurements close to regions of interest near drip-lines in micro-irrigated
orchards. In these types of orchards, measurements are generally performed manually or
via an ATV. This manual process leads to inconsistent and infrequent measurements. The
design of the mobile robot and experiments conducted in this thesis demonstrate that these
measurements can be conducted with a miniature mobile robot. A path for the hardware
design has been pioneered, yet significant work remains on fully developing the autonomy
and navigation stack to consistently align the robot with the drip lines. While these maps
are useful when assessing the soil and field conditions in the orchards, they do not provide
information about moisture levels within the trees themselves.

Leaves can be cut from trees for stem water potential analysis to gauge the stress
level of the plant. For this analysis to be effective, the stem needs to be cleanly cut and the
leaf retained for future analysis. This process has traditionally been performed manually.
The first step towards analyzing the process is the design and validation of an end effector
to cut and capture these leaves automatically. The end effector developed in this thesis
can cleanly cut and capture the leaves. The design was tested in stages to determine the
appropriate force and application rate to cleanly cut the visco-elastic leaf stems. These
parameters were verified empirically in a laboratory environment before the end effector
was taken to an orchard for testing on avocado, clementine, grapefruit, and lemon leaves.

While the end effector was able to successfully cut and capture the leaves, the prototype
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design is relatively bulky and could be further refined. However, the design enabled the
development of an action-perception framework for leaf retrieval.

The leaf retrieval process can be automated using the leaf cutting end effector
and a robotic arm. The process developed in this thesis detected and localized leaves on
the tree using 3D point cloud data from an RGB-D camera. The related software pipeline
produces the 6D pose of leaves within the robotic arm’s workspace and then executes the
picking commands. This process is able to remove leaves from the tree with varying levels
of success. The system was able to successfully capture 69.2% of viable leaves within
the robot’s workspace by placing the end effector around the target. Of these successful
captures, 77.8% were removed from the tree and recorded as successful cuts. However, only
19.0% of these cut leaves would be considered clean enough for stem water potential analysis.
Often, branches or other leaves would interfere with the cutting mechanism. These issues
could be mitigated by optimizing the end effector size, developing robust path planning for
branch avoidance, and implementing visual servoing for stem/cutter alignment. Once these
challenges are resolved, a leaf could be picked autonomously by a robot to automate stem
water potential analysis and generate useful information for a precision irrigation system.

While the experiments with robotic proximal soil sensing and physical leaf sam-
pling “demonstrate the feasibility” of new robots for precision irrigation systems, significant
work remains before field deployment and wide-scale adoption. Challenges remain on both
the technical implementation and human acceptance domains. The first technical challenge
is the development of fully autonomous control which is the key to offsetting agricultural

labor shortages. The second challenge revolves around the data fusion required to integrate
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these robots with other sensors within precision irrigation systems. The future of precision
irrigation data collection will likely be multi-model and include input from satellites, un-
manned aerial vehicles, and ground based mobile robots as explored in this thesis. Even
after the technical challenges are resolved, growers may not rush to adopt the robots. New
methods can often be met with skepticism and it can be a challenge to replace old habits and
routines with new processes. Yet, as the world’s demand for food and sustenance increases
with the growing population, new techniques will need to be adopted to better allocate
diminishing resources. Over time, robots will have a major role to play in optimizing water

utilization in farm environments.
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