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Abstract 
 

Pseudoalignment for metagenomic and metatranscriptomic read assignment 

 

By 

 

Lorian Victoria Schaeffer 

 

Doctor of Philosophy in Molecular and Cell Biology 

 

University of California, Berkeley 

 

Professor Lior Pachter, Chair 

 

The first step in many metagenomic and metatranscriptomic analysis workflows is 

assigning high-throughput sequencing reads to specific strains or transcripts, providing the basis 

for identification and later quantification. However, the high degree of similarity between the 

sequences of many strains and genes makes it difficult to assign reads at the lowest level of 

taxonomy, and reads are typically assigned to more general taxonomic levels where they are 

unambiguous. Recent developments in RNA-Seq analysis have found direct-match k-mer based 

methods to be extremely accurate and fast when comparing sequenced RNA-Seq reads to 

transcriptomes. While similar methods have been used in metagenomics before now, none are 

highly accurate at distinguishing similar strains, and none have been applied to 

metatranscriptomic data. We explore connections between metagenomic and metatranscriptomic 

read assignment and the quantification of transcripts from RNA-Seq data to develop novel 

methods for rapid and accurate quantification of microbiome strains and transcripts. 

We find that the recent idea of pseudoalignment introduced in the RNA-Seq context is 

highly applicable in the metagenomics and metatranscriptomics settings as well. When coupled 

with the Expectation-Maximization (EM) algorithm, reads can be assigned far more accurately 

and quickly than is currently possible with state of the art software, making it possible and 

practical for the first time to analyze abundances of individual genomes in metagenomics and 

metatranscriptomics projects.
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Chapter 1: History of abundance estimation in metagenomics and 

metatranscriptomics 

1.1 Metagenomics 

Microbial ecology, the study of microorganisms and their environmental roles, has been 

revolutionized by developments in sequencing technology over the last decade. Until the advent 

of Sanger DNA sequencing in the 1970s, the primary method to identify the composition of a 

microbiome was through culturing techniques, but it has become evident that culturing fails to 

reveal all microbial members (Dunbar et al., 2002). Sanger sequencing revealed a much larger 

microbial world than we had previously known about; next-generation sequencing has shown us 

even more detail. The ability to sequence a wide variety of microbes has opened up the ability to 

analyze microbial communities in great depth, and discover far more about microbial 

interactions than we were ever able to before. 

To understand and compare microbial communities, we determine which taxa are 

present, and then how much of each is present. These two procedures are known as taxa 

identification and abundance estimation, respectively. Both are complex problems and are 

frequently performed together as a single step, since taxa identification can be thought of as a 

special case of abundance estimation where abundance is determined to be either zero or non-

zero. 

Taxa identification has been an important problem which has been studied long before 

next-generation sequencing. Before sequencing, identification was carried out by culturing 

microbiomes, then isolating individual microbes by dilution and identifying them by 

morphology. This had obvious weaknesses, most especially the fact that most microbes aren’t 

easily culturable (Lagier et al., 2015). The net result of culture-based identification was a very 

limited understanding of microbiomes, focusing on the species that grow well under typical 

culture conditions. This led us to vastly underestimate the complexity of microbial communities, 

especially those from environments particularly different from culture media or those with a very 

low density of microbes (Dunbar, et al., 2002). 

Culturing can also be used for abundance estimation via dilution and plating, although 

there are many additional caveats to this technique: not only are many microbes non-culturable, 

but some may grow too slowly to be seen and counted, and many clump together, showing only 

a single colony where multiple individuals were. There is also the basic problem of microbes 

with incompatible culturing conditions: growing conditions and media nutrients unavoidably 

select for some bacteria at the expense of others. All of this means that culturing-based 
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abundance estimation can lead to an underestimation of actual bacterial counts by several orders 

of magnitude (Pepper & Gerba, 2016). 

The first significant step forward in identifying the full variety of microbes in microbial 

communities was amplicon sequencing, most commonly of the 16S ribosomal RNA gene (Fox et 

al., 1977; Olsen et al., 1986). This gene is convenient because it has a common structure across 

all prokaryotes and a number of variable regions that are more sequence similar across closely 

related taxa. It can be easily amplified through PCR (due to common flanking sequences across 

bacteria) and sequenced with Sanger sequencing (Hugenholtz & Pace, 1996). This method was 

the first able to effectively investigate unculturable microbiomes. 

Unfortunately, while 16S sequencing is cheap and fast, it suffers from insufficient 

resolution when applied to taxa identification. Amplicon sequences are initially clustered based 

on either their similarity to other sequences in the same dataset, or their similarity to 16S gene 

sequences in a reference database, such as Greengenes (DeSantis et al., 2006), the Ribosomal 

Database Project (Cole et al., 2014), or SILVA (Quast et al., 2013). Widely adopted pipelines to 

handle this task currently include QIIME (Caporaso et al., 2010; Navas-Molina et al., 2013) and 

mothur (Schloss et al., 2009). An arbitrary threshold of sequence similarity is used to distinguish 

clusters. Often, 97% similarity is used for low-resolution classification; 99% similarity is 

considered appropriate for species-level clustering, but this is still too broad to distinguish 

between closely related species, like members of the Clostridiaceae or Enterobacteriaceae 

families (Jovel et al., 2016).  

Basing taxa identification on 16S rRNA gene sequence similarity is complicated due to 

both sequencing error rates and the high degree of 16S conservation between some taxa, 

especially when using a single variable region (Figure 1.1). Analysis of existing databases of 16S 

sequences has demonstrated that 42% of bacterial genera contain pairs of 16S rRNA gene 

sequences that can’t be distinguished at the 97% similarity level (Vetrovsky and Baldrian, 2013). 

Overall, 16S-based taxa identification is only reliable at the genus level, due to these issues. 

Some recent programs have been able to apply machine learning techniques to increase ability to 

detect small sequence differences (Callahan et al., 2015), but even in the cases where species can 

be determined, important functional differences between strains of the same species are entirely 

lost. 

Even beyond the specificity issues, 16S sequencing is suboptimal for abundance 

estimation because 16S genetic copy number varies across taxa, sometimes inconsistently with 

sequence variation. Some species have single copies of their 16S rRNA gene, while others such 

as Photobacterium profundum have up to fifteen copies (Lee, Bussema, & Schmidt, 2009). Most 

16S studies fail to account for this, and implicitly assume that 16S sequence abundance is 

equivalent to taxa abundance, skewing their analysis of community abundance and diversity. 

Recent programs have been developed to take copy number into account (Lee, Bussema, & 
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Schmidt, 2009; Angly et al., 2014; Kembel et al., 2012), but suffer from the fact that the same 

16S sequence may be present in different copy numbers in different taxa, as well as the fact that 

16S copy number is not known for many taxa. These issues mean that the correlation between 

true abundances of simulated datasets and abundances estimated using copy-number-corrected 

16S sequences is often 0.80 or less. Additionally, biases in primer binding and slight variations 

in common primer binding sites in the 16S gene can lead to unequal amplification of different 

taxa, skewing abundance estimations at the sequence generation stage (Kembel et al., 2012). 

 
Figure 1.1. A phylogenetic tree of the V4 region of the 16S rRNA gene. Significant shared 16S sequence is present 

within quite a few genera. Figure from (Jovel et al., 2016). 

The current alternative to amplicon sequencing is shotgun metagenomics, in which the 

entire metagenome is fragmented and sequenced. This gives a much more complete and 

representative picture of the microbiome in question, at the cost of significantly more 

sequencing. Using Sanger sequencing, such costs were highly prohibitive, on the order of $1000 
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per megabase of sequence. As a result, early shotgun metagenomic sequencing was usually 

utilized in highly novel environments with mostly uncultured microbes, including samples from 

acid mine biofilm (Tyson et al. 2004), seawater (Venter et al. 2004), deep-sea sediment (Hallam 

et al. 2004), and soil (Tringe et al. 2005). 

Full shotgun metagenomics didn’t become widely popular or cost-effective until the 

development of “sequencing-by-synthesis” in the mid-2000s, when Solexa (later Illumina) was 

able to both increase the throughput of sequencing and significantly drop the price per base; the 

tradeoff was reads a tenth of the length of Sanger reads (Margulies et al. 2005; Zhang et al. 2006) 

(Figure 1.2). In addition, as next-generation sequencing does not require cloning before 

sequencing, sample generation and library creation became much more straightforward and less 

prone to failure. While the yield, price, and ease of use were a boon to the field, the short reads 

led to analysis difficulties: algorithms designed for Sanger reads were inaccurate with these 

much shorter reads, and the much larger data volumes highlighted their slowness as well. New 

algorithms were needed to take full advantage of this new technology. 

 
Figure 1.2. Drop in sequencing cost per megabase since 2001. The sudden decrease in sequencing costs in 2008 is due 

to the shift from Sanger-based to next-generation sequencing technology. The price decrease had a profound effect on 

the use of high-volume sequencing in a wider range of metagenomic projects. Figure from Wetterstrand, accessed 

2016. 

The problem of taxa identification and abundance estimation with shotgun metagenomic 

sequencing can be likened to being given the mixed-together pieces of several hundred similar 

jigsaw puzzles, and attempting to recreate the source puzzles without access to the boxes. High  

degrees of similarity between bacteria make this particularly difficult, especially when looking at 
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the species or strain level. The biggest problem is multimapping reads: reads that could have 

come from a number of different genomes. The methods used to address ambiguously aligned 

reads have grown more sophisticated over time, and have greatly improved the accuracy and 

resolution of taxa identification and abundance estimation. 

There are several basic approaches to metagenomic taxa identification via shotgun 

sequencing. The most straightforward is to look at specific sets of marker genes, and use their 

presence or absence as a barcode to indicate taxon (Gupta & Sharma, 2015; Nguyen, et al., 2014; 

Sunagawa et al., 2013); this is an improvement on single amplicon sequencing, but still ignores 

most of the information present in metagenomic data. Methods that rely on sequence 

composition characteristics can use features like k-mer frequency and GC% content to identify 

taxa, but this is only effective for long-read sequencing methods like Sanger and 454, not the 

short reads of Illumina sequencing. And while assembly is one of the most effective ways to 

identify taxa, it requires more sequencing depth than many metagenomic studies can afford 

(Ghurye, Cepeda-Espinoza, & Pop, 2016). So as processing power and the pool of known 

bacterial genomes increases, most recent algorithms have been based on the idea of aligning 

sequenced reads directly to databases of reference genomes. 

One of the earliest short-read alignment-based metagenomic methods, published in 2007, 

was MEGAN (Huson et al., 2007). MEGAN uses BLAST (or other aligners) to compare reads 

against a database of sequenced genomes, accepting alignments passing an E-value threshold. An 

important aspect of MEGAN, used in many subsequent programs, is its handling of ambiguous 

reads: they are assigned to the lowest common ancestor (LCA) of all likely sources. So, for 

instance, if a read mapped to several E. coli strains, MEGAN would assign the read simply to E. 

coli, rather than any specific strain (Figure 1.3). This avoids potential misassignment, and also 

helps account for missing genomes -- a distant LCA assignment may suggest that the actual 

genome wasn’t present in the sample -- but often causes assignment results to be unhelpfully 

vague.  

A subsequent alignment-based tool with improvements in abundance estimation was 

GAAS (Angly et al., 2009). GAAS improves on MEGAN by iteratively estimating relative 

genome abundance, rather than accepting the initial abundance suggested by raw read alignment. 

It also features more complex processing of BLAST results, statistical weighting of similar 

BLAST hits, and normalizing estimated abundances by genome length (which the program itself 

can estimate, in the case of de novo genomes). However, it still bases its taxa assignment on 

alignment E-values directly, with no way to optimize the choice between very similar ambiguous 

alignments. 

 



6 

 
Figure 1.3. MEGAN’s use of lowest common ancestor during read assignment. MEGAN traces the specific BLASTX 

matches (on the right) from a single read through their taxonomy, assigning the read to the taxon Campylobacterales 

(on the left), as it is the lowest-common taxonomic ancestor of all three matched strains (in the middle). Figure from 

(Huson et al., 2007). 

GRAMMY (Xia et al., 2011), which explicitly models ambiguous alignments using a 

probability matrix incorporated into its mixture model, was a notable improvement. The mixture 

parameters are solved via Expectation-Maximization, taking advantage of ambiguous alignments 

to estimate similarity between reference genomes. While an improvement over simply taking the 

‘best’ ambiguous alignment or the LCA, GRAMMY still has difficulty distinguishing between 

very similar genomes. 

GASiC (Lindner et al., 2013) is one of the most accurate alignment-based algorithms, but 

pays for its accuracy by being extremely slow. GASiC achieves accuracy by simulating reads 

from each genome in a sample, then aligning them to their source genome to update basic 

alignment-based abundance estimation. Thus, it has multiple full alignment steps, as well as a 

time-consuming simulation step, but it handles very similar genomes much better than previous 

options. 

1.2 k-mer based estimation 

While full alignment-based methods can produce highly accurate taxa assignments and 

abundance estimations, they suffer from the slowness of standard seed-based alignment 

algorithms. Alignment can be reasonably fast when dealing with single eukaryote genomes, but 

aligning against the rapidly growing collection of sequenced prokaryotes (50,000 and counting) 

becomes prohibitively computationally expensive. Thus, most recent metagenomic programs 

have been exploring the opportunities made available by exact-match k-mer comparisons. 
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Sequence alignment is slow is because it has to allow for some number of mismatches to 

the reference genome, due to sequencing errors, SNPS, and indels. Allowing for these 

mismatches requires implementation of the Needleman-Wunsch or related algorithms, all of 

which are quadratic in the length of the sequences being aligned. However, if you cut sequences 

into short enough pieces, you can reasonably expect most of them to be free of errors or 

polymorphisms, allowing one to use very fast exact match alignment instead. Methods based on 

exact-match k-mers (short subsequences of length k) cut the reference genomes and/or the 

sequenced reads into overlapping sequences of 21 to 31 bp, and align or compare these k-mers 

directly. 

LMAT (Ames et al., 2013) was one of the earliest programs to apply k-mers to 

metagenomics. The algorithm generates a reference database of k-mers from bacterial genomes, 

each of which have been assigned to the lowest common ancestor (LCA) of strains containing 

that k-mer. This database is then simplified into a subset of k-mers, which is compared to the k-

mers generated from sequencing reads in a dataset. LMAT then uses the alignment of each k-mer 

in a single read to determine the most likely assignment of the read as a whole, choosing the 

genome that contains the most k-mers from the read. 

Table 1.1. Performance of selected metagenomic read assignment tools. Fraction is the average % of simulated reads 

mapped. Shuffled is the average number of synthetic reads that should not be mapped that mapped. Run time is CPU 

time in minutes per metagenome. Correlation is average Pearson correlation coefficient between predicted and known 

relative abundance of phyla in the dataset. Table from (Lindgreen, Adair, & Gardner, 2016). 
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Examining only unique or high-specificity regions of the reference genomes is a popular 

strategy among k-mer based algorithms, as it solves or at least simplifies the ambiguously-

assigned read problem. GOTTCHA (Freitas et al., 2015) uses this approach to limit the size of 

reference sequence: since it does not split the reference genomes into k-mers, examining only 

high-specificity genome regions reduces its search space and speeds up alignment. It is still a k-

mer based method, as it breaks the sequenced reads into k-mers, and judges read assignment by 

overall matching of k-mers within those high-specificity regions. 

Kraken (Wood & Salzberg, 2014), much like LMAT, assigns reference k-mers to the 

lowest common ancestor of matching strains. Each read is then broken into k-mers which are 

compared to the database; the read is assigned to the taxon with the highest number of mapping 

k-mers to itself and its ancestors. While sometimes this can result in assignment to a specific 

strain, most often it ends up assigning to higher taxonomic levels. 

CLARK (Ounit et al., 2015) also breaks up the reference genomes into k-mers, but then 

only keeps the unique k-mers for each genome. Reads are assigned to the target with which they 

share the most k-mers, with a confidence score based on k-mers not shared. Unlike many of the 

previous programs, CLARK is able to assign most reads at a high taxonomic level, without 

resorting to lowest common ancestor assignment; however, its overall accuracy at any given 

taxonomic level is less than Kraken’s. 

One of the major issues faced by these k-mer based methods is resource intensiveness. 

While the comparison of read k-mers to reference k-mers is fast, the process of converting 

reference genomes into k-mers can be extremely memory intensive. Both Kraken and CLARK 

come in several flavors, depending on the computational resources available. As Kraken loads its 

entire k-mer database into memory while running, its ‘memory-light’ version, MiniKraken, uses 

a much smaller database (4GB instead of 70GB) which drops k-mers from the reference 

genomes, resulting in significantly less memory requirements, but sensitivity for read 

identification dropped significantly as well (by 11-25%). Kraken also has a ‘fast’ version, 

Kraken-Q, which only looks up one k-mer per read, and simply assigns the read to the source of 

that k-mer. This significantly speeds up classification, with only small drops in sensitivity and 

precision; however, it seems likely that this would result in more LCA assignments, and fewer 

strain-level assignments. 

CLARK also features several versions. While the default version keeps only completely 

unique k-mers for each reference genome, the full version keeps all k-mers; this is slightly more 

accurate, but slower. CLARK-E, on the other hand, is optimized for speed, trading it for a slight 

drop in precision and sensitivity on most datasets. It does this by only querying non-overlapping 

k-mers, and assigning the read to the first target hit (possible because CLARK uses unique k-mer 

sets for each target). CLARK-l (“light”) is a version designed to use less memory; it samples 

only one in 5 consecutive k-mers in each reference database target, leading to a similar amount 
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of memory used as MiniKraken. Finally, CLARK-S is a new version that attempts to prioritize 

sensitivity, by allowing specific mismatches between k-mers (Ounit & Lonardi, 2016). 

The primary advantage of these k-mer based methods is speed; the more recent entries in 

particular can analyze a standard-sized metagenomic dataset within half an hour. But the tradeoff 

is a step back in accuracy, as they estimate abundance by straightforward read assignment, like 

MEGAN in 2007. Only GOTTCHA adjusts its estimated abundances by genome length. This of 

course significantly limits abundance accuracy and suggests a route for further improvement. 

In one attempt to address this issue, Kraken has an additional layer called Bracken (Lu et 

al., 2016). Bracken takes Kraken’s taxonomy tree for each read and explicitly collapses it to the 

most likely species-level target, based on the probability that competing reference genomes share 

reads. Specifically, it uses Bayesian conditional probabilities to adjust Kraken’s initial 

assignments based on the proportion of k-mers that are unique in a genome. This significantly 

improves Kraken’s abundance estimation, and also addresses the issue that lowest common 

ancestor assignments are not so helpful for abundance estimation. 

Despite the progress made in both speed and accuracy of metagenomic analysis, a 

pervasive problem in methods development has been limited or inadequate benchmarking. Most 

of the above papers use simulated microbiomes with very few source genomes, ranging from as 

few as two (Wu & Ye, 2011) to up to 10 (Wood & Salzberg, 2014) or 20 (Ounit et al., 2015) 

genomes. Needless to say, these limited metagenomes are not representative of the highly 

complex microbiomes found in nature, containing hundreds of separate strains. This is not due to 

lack of sufficiently complex microbiomes; a number of artificial metagenomes with over 100 

constituent genomes have been constructed from both simulated or sequenced reads. Without 

applying these more realistic metagenomes to new methods, it is difficult to judge the actual 

level of improvement over previous methods. 

1.3 Metatranscriptomics 

Another important contribution of modern sequencing technology to microbial 

communities has been the application of RNA-Seq in the form of metatranscriptomics, which 

attempts to do with microbial transcriptomes what metagenomics does with microbial genomes. 

Sequencing microbial transcripts can help determine the specific functional roles of constituents 

of a community, by revealing the activity level of genes of known pathways. Since meta'omic 

sequencing is expensive, it is often infeasible to generate both DNA-Seq and RNA-Seq libraries 

for a single sample; thus, metatranscriptomic data is often simultaneously used for taxa 

identification and abundance estimation tasks for which DNA-Seq data would normally be used. 

These three tasks -- taxa identification, abundance estimation, and functional analysis -- 

are made harder by the difficulties of performing RNA-Seq for prokaryotes. The lack of mRNA 

poly-A tails makes the physical separation of mRNA and rRNA more complex and much less 
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reliable than in eukaryotes, meaning a much smaller percentage of reads are actually mRNA 

(Pascault et al., 2015; Mondav, Schmidt, & Tyson, 2010; Carvalhais & Schenk, 2013). Of 

course, the rRNA reads can be used for 16S taxa identification, as in the case of metagenomic 

reads; however, this comes with exactly the same issues as was mentioned previously, regarding 

insufficient resolution and copy number issues (made worse by the transcription from rDNA to 

rRNA). 

The absence of mRNA splicing means that metatranscriptome datasets can be processed 

by metagenomic programs to determine taxa identification and abundance estimation. However, 

it is more common to use metatranscriptomic-specific pipelines which do both taxa identification 

and functional gene identification. Unfortunately, these programs tend to lag significantly behind 

the state-of-the-art in metagenomic analysis in both accuracy and speed. The ones which do not 

rely on 16S sequencing almost exclusively use BLAST, which is slow and handles multiple 

alignments poorly. 

Many of the early metatranscriptomic pipelines were simply a series of scripts, such as 

the one by Hamamura and Meneghin (2010), which is a combination of perl scripts and user-run 

BLAST queries on various databases. Taken together, they do an admirable job of cleaning the 

raw reads, identifying 16S rRNA sequences, and assigning functional categories to the mRNA 

sequences. However, the process is extremely slow (taking many days, even when multithreaded 

on a powerful server) and error-prone due to the many individual steps. Other similar pipelines 

are those released by Goncalves et al. (2011), Friedman and Maniatis (2011), and Leimena et al. 

(2013), all of which suffer from similar problems of ease of use and speed. 

Recent improvements in usability include MetaTrans, SAMSA, and COMAN. Both 

MetaTrans and SAMSA are more coherent pipelines than previous analysis options; while both 

are script-based, they offer essentially end-to-end coverage of all required steps, bringing 

together a number of programs for cleaning, filtering, aligning, and annotating 

metatranscriptomic data, and requiring minimal configuration for standard use cases.  

MetaTrans (Martinez et al., 2016) determines functional abundance of transcripts as well 

as using 16S rRNA sequences present in the dataset to identify taxa. Its functional assignment 

utilizes gene prediction and clustering, followed by mapping to the MetaHIT database, which is 

specific for human gut microbiome genes (Qin et al., 2010). Mapping offers the option of using 

SOAP2 or DIAMOND, an improvement in speed over the standard use of BLAST. It can also 

perform differential analysis on multiple conditions using DESeq2, a standard R package for 

RNAseq differential analysis (Love, Huber, & Anders, 2014). 

Building on top of MG-RAST, SAMSA (Westreich et al., 2016), a metagenomic taxa 

identification platform, can break down transcriptional activity by organism or by function. It 

uses MG-RAST (Meyer et al., 2008) for alignment and annotation, which itself uses translated 

protein clustering, then uses BLAT to find the closest reference match. While MG-RAST uses e-

http://alrlab.research.pdx.edu/aquificales/jennifer.html
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values to determine best match, it does keep all matches with equal max e-values, allowing for 

some amount of multi-aligning. Final transcript abundances, however, are judged solely based on 

raw counts. While the pipeline does not itself perform differential analysis, it creates output files 

that can be imported into DESeq. Some caveats are that the pipeline requires FASTQ input, and 

reads of at least 100bp, although it can join overlapping paired-end reads to achieve this if 

necessary. 

Additional efforts to minimize required setup have been made with online pipelines such 

as COMAN (Ni, Li, & Panagiotou, 2016). While COMAN only does functional analysis, not 

taxa identification or abundance estimation, it does judge the contribution of taxa to function if 

provided with taxa abundances determined elsewhere. In order to speed up processing, COMAN 

uses the aligner DIAMOND (Buchfink, Xie, & Huson, 2015) rather than BLAST or BLAT. It 

then uses genome annotations to determine functional contribution, and can infer pathways as 

well as determine enriched or depleted functions when comparing conditions.  

One of the chief problems with judging the performance of metatranscriptomic programs 

is the lack of commonly-shared simulated metatranscriptomic datasets. Transcriptome simulation 

is a difficult problem, and most simulated datasets are not made publicly available, so authors of 

different programs can’t easily compare their results against the same dataset. This is 

compounded by the slowness and complexity of most of the pipelines listed above; installing and 

running each of them for comparison purposes is prohibitive. This means that while 

metagenomic programs often compare themselves directly to other options, for both accuracy 

and speed, none of the above pipelines have any published head-to-head comparisons. The 

exception is MetaTrans, which compared itself to metagenomic programs MG-RAST and 

Kraken, but only for biological datasets, not datasets where ground truth was known.  That said, 

it is clear there is definite room for speed and accuracy improvements, especially as the field has 

not progressed very far past BLAST, conceptually. 
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Chapter 2: Pseudoalignment for metagenomic read assignment1 

2.1 Introduction 

The analysis of microbial communities via whole-genome shotgun sequencing has led to 

exceptional bioinformatics challenges (Chen & Pachter, 2005) that remain largely unsolved 

(Sholz et al., 2012). Most of these challenges can be characterized as "de novo" bioinformatics 

problems: they involve assembly of sequences, binning of reads, and annotation of genes directly 

from sequenced reads. The emphasis on de novo methods a decade ago was the result of a 

paucity of sequenced reference microbial and archaeal genomes at the time. However, this has 

begun to change in recent years (Land et al., 2015). As sequencing costs have plummeted, the 

number of fully sequenced genomes has increased dramatically, and while a large swath of the 

microbial world remains uncharacterized, there are now thousands of "reference quality" 

genomes suitable for the application of reference-based methods. 

One of the fundamental metagenomics problems that is amenable to reference-based 

analysis is that of "sequence classification" or "read assignment". This is the problem of 

assigning sequenced reads to taxa. The MEGAN program (Huson et al., 2007) was one of the 

first reference-based read assignment programs and was published shortly after sequencing-by-

synthesis methods started to become mainstream. It provided a phylogenetic context to mapped 

reads by assigning reads to the lowest taxonomic level at which they could be uniquely aligned, 

and became popular in part because of a powerful accompanying visualization toolkit. One of the 

drawbacks of MEGAN was that its approach to assigning ambiguously mapped reads limited its 

application to quantification of individual strains, an issue which was addressed in a number of 

subsequent programs, for example GRAMMy (Xia et al., 2011) and GASiC (Lindner et al., 

2013), which were the first to statistically assign ambiguously mapped reads to individual 

strains. Unfortunately, these approaches all relied on read alignment, a computational problem 

that is particularly difficult in the metagenomic setting where reference genome databases are 

large and read sets gigantic. 

In a breakthrough publication in 2014 (Wood & Salzberg) it was shown that it is possible 

to greatly accelerate read assignment utilizing fast k-mer hashing to circumvent the need for read 

alignment. An implementation called Kraken was used to show that analyses that previously took 

hours were tractable in minutes, and the removal of the read alignment step greatly simplified 

workflows and storage requirements. However the Kraken speed came at a cost. An examination 

of the Kraken algorithm and output reveals that the method takes a step back from GRAMMy 

and GASiC by discarding statistical assignment of reads at the strain level in favor of direct 

                                                 

1 This chapter is joint work with Harold Pimentel, Nicolas Bray, Páll Melsted and Lior Pachter, and this material has been included 

with their permission. 
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taxonomic assignment as in MEGAN. The net effect is that while Kraken is more accurate than 

MEGAN (Lindgreen & Renard, 2015), it is unsuitable for quantification. This is because, unlike 

GASiC, Kraken is strictly designed to be a read assigner: its only output is a file listing the 

taxonomic assignment for each read.  A natural question to ask is whether the strengths of 

Kraken and GASiC can be combined, i.e. whether  it is possible to leverage fast k-mer based 

hashing to map reads not at the taxonomic but at the strain level, while assigning the resulting 

ambiguously mapped reads using a statistical framework that allows for probabilistic assignment 

of reads. 

To answer this question we turned to RNA-Seq (Cloonan et al., 2008; Lister et al., 2008; 

Nagalakshmi et al., 2008, Mortazavi et al., 2008), an experiment for which there has been 

extensive methods development that we hypothesized could be adapted and applied to 

metagenomics. Many of the challenges of metagenomic quantification translate to problems in 

RNA-Seq via a dictionary that replaces genome targets with transcript targets. For example, 

ambiguously mapped genomic reads that are difficult to resolve at the strain level in the 

metagenomics setting are analogous to reads that are difficult to assign to specific isoforms in 

RNA-Seq. Statistical questions at the heart of "comparative metagenomics" (Huson et al., 2009; 

Rodriguez-Brito et al., 2006; Tringe et al., 2005) are analogous to the statistical problems in 

differential expression analysis. In fact, the only significant differences between metagenomics 

and RNA-Seq are that genome sequences are much larger than transcripts and reference 

databases are less complete. These differences have engineering implications, but statistically 

and computationally, metagenomics and transcriptomics are very much the same. 

In this chapter we show that technology transfer from RNA-Seq to metagenomics makes 

it possible to perform read assignment both rapidly and accurately. Specifically, we show that it 

is possible to accurately assign reads at the strain level using a fast k-mer based approach that 

goes beyond the hashing of Kraken and takes advantage of the principle of pseudoalignment 

(Bray et al., 2015). The idea of pseudoalignment originates with RNA-Seq, where it was 

developed to take advantage of the fact that the sufficient statistics for RNA-Seq quantification 

are assignments of reads to transcripts rather than their alignments. The same applies in the 

metagenomics setting, and we show that, just as in RNA-Seq, application of the EM algorithm to 

"equivalence classes" (Nicolae et al., 2011) allows for accurate statistical resolution of mapping 

ambiguities. Using a published simulated dataset, a biological dataset from the human 

microbiome project, and an implementation of pseudoalignment coupled to the EM algorithm in 

kallisto, we demonstrate significant accuracy and performance improvements in comparison to 

state-of-the-art programs. 

2.2 Results 

To test the hypothesis that RNA-Seq quantification methods can be applied in the 

metagenomics setting we began by examining the performance of eXpress, a program that 
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implements a streaming EM algorithm for RNA-Seq read assignment from alignments, on 

simulated data (Roberts & Pachter, 2013). We chose eXpress because it utilizes traditional read 

alignments directly to a transcriptome but is more memory efficient than other approaches (e.g. 

RSEM (Li & Dewey, 2011)) and therefore more suitable in the metagenomics setting. Other 

RNA-Seq quantification tools such as Cufflinks (Trapnell et al., 2010) were not suitable for our 

needs because of their dependence on read alignments to genomes and not transcriptomes, a 

requirement that does not translate easily to the metagenomics setting. 

To test eXpress we aligned a simulated dataset of Illumina-like reads from 100 microbial 

genomes to a reference database containing only those genomes, allowing us to compare results 

to a ground truth (the Illumina100 data) (Mende et al., 2012). We began by comparing eXpress 

to GASiC, which also utilizes read alignments for read assignment. The results are shown in 

Table 2.1. We found that eXpress outperforms GASiC at the exact genome, species, genus, and 

phylum levels, which we believe is because the statistical model of eXpress takes into account 

data-dependent read error profiles in assigning reads. 

A major problem with GASiC and eXpress is that the alignments they require are slow to 

generate. The alignments, made with Bowtie2 (Langmead et al., 2012), took days. As reported in 

Kraken and the follow-up, Bracken, which has been specialized for quantification (Lu et al., 

2016), significant speed-ups are possible using hashing methods. The programs require only 35 

minutes 39s to assign reads and then estimate abundances at the species level.  We also tested 

CLARK (Ounit et al., 2015), another recently published k-mer based assignment tool and, in 

agreement with the benchmarks in (Lindgreen et al., 2015), we found it to be slightly faster, 

taking 20 minutes 30s to estimate abundance. Kallisto was the fastest of all programs tested, with 

a run time of 5 minutes 55s. As seen in Table 2.1, both Bracken and CLARK have noticeably 

worse performance than both eXpress and kallisto. 

We next turned to a comparison of kallisto with Bracken and CLARK using the 

Illumina100 simulated data (i100) but using a full, more realistic reference database of 29,698 

bacterial genomes from Ensembl (Kersey et al., 2016). In order to handle such a large database, 

which is significantly larger than the maximum index size for all three programs, we first 

performed a pre-filtering step using recently-published metagenome distance estimator Mash 

(Ondov et al., 2016) (see methods for details). Mash filtered the 29,698 genomes down to 1027 

genomes which were judged closest to the i100 reads being quantified; those 1027 genomes 

contained 83 out of the 100 "true" strains present in the i100 dataset. 

The results of estimating reads from all 100 genomes against the Ensembl-based index, 

listed in Table 2.1 (where the database is called "Ensembl") and Figures 2.1 and 2.2, show that 

kallisto is significantly more accurate than CLARK at all taxonomic levels, and is only 

outmatched by Bracken at the genus level. The dramatic decrease in error from the exact genome 



15 

to species level (from 17.59% to 1.26%) indicates that kallisto is correctly assigning the reads 

from the missing strains to closely related strains from the same species. 

 
Figure 2.1. Results of kallisto on simulated reads from the Ensembl dataset at the exact genome level. 

Even at the exact genome level (where neither Bracken nor CLARK offer estimates), 

kallisto performs well, given the restriction of missing 17% of the actual genomes present in the 

reads. To check the effect of the missing genomes on accuracy, we ran kallisto on the i100 reads 

only from the present 83 genomes and achieved an impressive AVGRE of 2.59% at the exact 

genome level. Even more promisingly, the species-level error of this 83-genome dataset is 

0.77%, which is quite close to the 1.26% species-level error of the full 100-genome dataset. This 

further supports kallisto's accuracy in assigning reads from missing genomes to closely related 

genomes. 

Mash took 362 minutes on a single core to index the full 30k Ensembl genomes, and another 130 

minutes to compare the i100 reads against those genomes; these steps are easily parallelized to 

multiple cores. On a single core, kallisto was slower than CLARK but faster than Bracken -- 

kallisto took 111 minutes to index and 60 minutes 40s to quantify, while CLARK took 131 

minutes 35s to both index and quantify, and Bracken took 235 minutes 35s to index and 169 

minutes 29s to quantify. 
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Figure 2.2. Comparison of species-level abundance estimation between metagenomic programs. Results of kallisto (a), 

Bracken (b) and CLARK (c) on simulated reads from the Ensembl dataset at the species level. 
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Table 2.1. Normalized count-based classification accuracy at four taxonomic ranks. CLARK and Bracken results are 

missing at the strain level because they do not output strain level counts. Calculated errors are Average Relative Error 

and Relative Root Mean Square Error. 

 Exact Genome Species Genus Phylum 

 AVGRE RRMSE AVGRE RRMSE AVGRE RRMSE AVGRE RRMSE 

i100         
kallisto 0.97 5.42 0.14 0.36 0.13 0.38 0.09 0.10 
Bracken – – 1.94 9.51 2.21 10.78 0.91 0.92 
CLARK – – 12.28 22.73 10.32 18.22 7.52 7.88 
GASiC 7.21 19.31 3.80 10.46 3.72 11.43 2.52 3.10 
eXpress 2.57 11.92 0.40 0.61 0.34 0.57 0.13 0.18 
Ensembl         
kallisto 17.15 39.32 1.26 3.01 0.98 2.17 0.72 0.76 
Bracken – – 4.94 16.22 1.10 3.97 0.35 0.38 
CLARK – – 59.15 72.40 52.68 67.04 45.44 56.76 

 

Figure 2.3. Results of kallisto on bacterial reads in human saliva samples at all taxonomic levels. 
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To test the performance of kallisto on biological data, we analyzed a set of saliva samples 

from the Human Microbiome Project. These three samples -- SRS014468, SRS015055, and 

SRS019120 -- consist of a total of 9.3 million 60-100bp paired-end reads, collected from three 

separate individuals. We pooled them together to analyze the microbes present in the general 

saliva microbiome. Running the same Mash-based pipeline on 30k Ensembl genomes identified 

744 likely genomes, and using kallisto to quantify the saliva reads against those genomes found 

primarily bacteria of the genera Streptococcus (17.5%), Prevotella (17.1%), Veillonella (11.2%), 

and Haemophilus (9.9%) as well as a number of less abundant genera (shown in Figure 3). The 

most abundant species are those known to be abundant in the oral microbiome: Streptococcus 

mitis, Haemophilus parainfluenzae, Veillonella sp. oral taxon 158, and Prevotella histicola. 

2.3 Methods 

Illumina100 dataset 

We tested kallisto and alternate programs on a set of simulated reads published in (Mende 

et al., 2012). The Illumina100 dataset consists of 53.33 million 75bp reads, simulated by the 

iMESSi metagenomic simulator using an Illumina error model. The reads were simulated from a 

set of 100 unique bacterial genomes. The set is of genomes from 85 different species and 63 

different genera, over a range of abundances from 0.86% to 2.2%. 

Reads were trimmed with the program Trimmomatic (version 0.32) (Bolger et al., 2014) 

to a minimum length of 40bp, using its adaptive trimming algorithm MAXINFO with a target 

length of 40 and default strictness. Trimming was very permissive, and only 40 reads were 

dropped due to quality issues. 

Taxonomic identification 

We analyzed each program's output at four taxonomic ranks: phylum, genus, species, and 

"exact genome" level. The latter tests the abundance estimation of the actual Illumina100 

genomes, which are a combination of strains and substrains and thus aren't taxonomically well 

defined. The other three ranks are as assigned by NCBI's Taxonomy Database, as of August, 

2016. 

Count estimation accuracy calculation 

Using a simulated dataset with known abundances allowed us to benchmark programs by 

comparing program outputs with true values for each genome. While kallisto is able to output 

length-corrected individual genome abundances, most of the programs we compared with only 

counts, so for consistency we analyzed the accuracy of assigned or estimated counts for each 

program. We normalized the estimated counts by the percent of assigned reads in order to be 

able to compare relative count estimates between programs. 
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We primarily used the error measures AVGRE (Average Relative Error), which 

computes the mean of the difference between truth and estimate, and RRMSE (Relative Root 

Mean Square Error), which computes the root mean square average of the difference between 

truth and estimate, to judge the accuracy of our estimates. Formally, with n true 

genomes/species/genera/phyla, true counts   and estimated counts ti at the 

rank, and A aligned reads out of T total reads we computed 

 and  

The scripts used to compile the results are available at 

http://github.com/pachterlab/metakallisto 

Reference genome database 

In addition to aligning the Illumina100 reads against their originating genomes, we tested 

the more realistic case of aligning against a large bacterial database -- Ensembl's bacterial 

genomes as of version 30. All 29,698 bacterial genomes were downloaded, combined with the 

i100 genomes, and used as-is with Mash (see below). For abundance estimation with Bracken, 

CLARK, and kallisto, constituent contigs, chromosomes, and plasmids were concatenated 

together with a series of 10 ambiguous bases represented as N, and NCBI's taxonomic ID was 

manually added to the headers for Kraken's use. 

Mash genome pre-filtering 

To lower the number of genomes to index to a reasonable level, we ran the Illumina100 

dataset against all 30,000 Ensembl genomes using Mash, a genome distance calculator. We used 

only the top 10 genomes from each species that were judged closest to the reads in subsequent 

abundance estimation, to get a reasonable number of genomes for indexing. 

The scripts used to filter the genomes based on Mash results are available at 

http://github.com/pachterlab/metakallisto 

2.4 Conclusions 

The idea of translating RNA-Seq methodology to and from metagenomics was, to our 

knowledge, first proposed in (Paulson et al., 2013) where statistical methods for identifying 

differential abundances in microbial marker genes were developed. In that paper, there were 

comparisons between the proposed metagenomics method and RNA-Seq differential analysis 

methods implemented in DESeq (Anders & Huber, 2010) and edgeR (Robinson et al., 2010). 
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Notably, the central idea of the paper, the specific consideration of zero inflated distributions to 

account for undersampling, is also used in single cell expression analysis (McDavid et al., 2013). 

Our results show that RNA-Seq methods for quantification are also applicable in the 

metagenomics setting, and our results with kallisto demonstrate that it is possible to accurately 

and rapidly quantify the abundance of individual strains. With a few exceptions, e.g. (Bradley et 

al., 2015), most metagenomic analyses have focused on higher taxonomy, a point highlighted in 

the recent benchmarking paper (Lindgreen et al., 2015) which compares predictions at the 

phylum level because "[comparisons at that level are] less prone to differences". The phylum 

level is four levels removed from genus, let alone species or strain. Our results suggest that the 

door is now open to metagenome analyses at the highest possible resolution. 

While our benchmarks are primarily based on simulated data, our experiments are much 

more realistic than previous analyses. For example, the Kraken and CLARK papers report results 

on simulations with ten genomes, whereas we have simulated from 100 genomes and mapped 

against nearly 30,000. One of the difficulties we faced in our analyses was the technical issue of 

taxonomic naming and annotation in collating results. This seemingly trivial matter is 

complicated by the lack of attention paid to low taxonomic level analysis in previous studies.  

As reference databases grow in size, there will be continued challenges in quantification 

and downstream analysis. While the two-step Mash-kallisto workflow we have described here 

can scale for the time being, novel algorithmic ideas are needed to that can leverage large 

databases for individual genome analysis, yet efficiently discard irrelevant information. 
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Chapter 3: K-mer based metatranscriptome analysis 

3.1 Introduction 

While metagenomic sequencing and analysis is useful for determining which microbes 

are present in a microbiome, it does not tell us the functional activity of these communities. The 

best approach to answering that question is metatranscriptomic sequencing: sequencing the 

coding mRNA of a microbial community. This area of microbial ecology is younger and less 

well-researched than metagenomics, in large part because of the additional challenges of 

enriching for prokaryotic mRNA: the inability to fully remove rRNA sequences from microbial 

total RNA means that deeper sequencing is required to get a useful number of mRNA reads, 

because up to 91% of reads can still be rRNA (He et al., 2010). 

In addition to the technical difficulties with metatranscriptomics, the pipelines available 

for analysis remain limited and based almost entirely on BLAST and standard alignment 

algorithms, with no significant handling of ambiguous reads. Because there is a significant 

amount of shared sequence between bacterial genes, this is a particularly challenging problem. 

As a result, metatranscriptomic pipelines are slow and often awkward to run, with an inability to 

make use of the full range of bacterial reference sequence. Several recent pipelines are all or 

primarily available online, to deal with the issues of required computational resources and 

complex install procedures. While this is effective in some respects, it has its drawbacks: users 

can only utilize the database provided, and are unable to control when their data is analyzed. 

Following kallisto’s success at metagenomic read assignment (Schaeffer et al., 2015), in 

this chapter, we apply kallisto to the related problem of metatranscriptome read assignment. At 

first glance, metatranscriptomics is even more similar to the RNA-Seq analysis kallisto was 

designed for than metagenomics; however, in addition to the size problem common to all 

meta’omics analysis, there is also the difficulty of high transcript similarity between 

transcriptomes. In general, coding sequences are more strongly conserved than non-coding 

sequences, so metatranscriptomes focus on sequence regions that often show little variation 

between strains. As kallisto has no way of knowing which transcripts are grouped into strains, it 

does not preferentially identify transcripts from a smaller number of strains, and so 

distinguishing between similar transcripts from multiple genomes becomes very difficult. To 

address this problem, we use a two-step process: an identification stage and a quantification 

stage. The identification stage (pseudoaligning against a wide variety of targets) attempts to 

narrow down the possible strains present in the sample, and the quantification stage 

(pseudoaligning against the strains the previous stage identified as present) uses kallisto's 

pseudoalignment and EM algorithm to judge how much of each transcript is in the sample. 

This two-step process is also intended to address kallisto’s biggest flaw: large indexes for 

pseudoalignment take an enormous amount of memory. Indexing several thousand genomes 
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takes hundreds of gigabytes of RAM, prohibitive even for large computing resources. While this 

is not a problem for traditional RNA-Seq, it is clearly a big issue for meta’omics, which often 

has tens of thousands of reference genomes or transcriptomes. Ideally, the identification stage 

can accommodate more index flexibility (and thus smaller indexes), because it is only needed for 

a present/absent determination, while the quantification stage will need a smaller index because 

it’s only comparing between a small number of pre-identified strains. 

3.2 Results 

In order to test whether kallisto could successfully calculate transcript abundance at all, 

we pseudoaligned a simulated 7.5-million read single end metatranscriptome dataset directly to 

its 109 source transcriptomes. As not all of the transcriptomes were available from Ensembl, we 

removed the simulated reads that were derived from unavailable transcriptomes; with this 

modification, 72% of the simulated reads were assigned by kallisto. After summing the 

transcripts into their source transcriptomes, overall accuracy at the strain level was nearly 

Figure 3.1. Estimated counts at strain level aligned against present transcriptomes. True (blue line) and estimated (red 

dots) strain-level counts of simulated metatranscriptome reads pseudoaligned against only transcriptomes present in 

dataset. 
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perfect, with an average relative error of 0.86%; this is comparable to the accuracy seen at a 

metagenomic level. 

At the transcript level, calculated errors were much worse, with an average relative error 

of 34%. Some of the error is due to recent changes in the transcriptomes, causing them to no 

longer fully match the simulated data being used; this is likely responsible for some of the 28% 

of the reads failing to align at all. As seen in Figure 3.2, actual alignment was reasonable among 

the most abundant transcripts, but varied much more in the lower abundance transcripts. It is 

clear that the errors within a transcriptome balance out, since the above results summed by 

genome are extremely accurate; this suggests that the abundance estimation errors are essentially 

randomly distributed, rather than being systemic to certain strains or transcripts. 

Despite the lackluster transcript abundance estimation, the highly accurate strain-level 

abundance estimation was encouraging. In order to test the ability of kallisto to identify the 

source strains from a large set of possible strains, we created a representative transcriptome 

index, containing the transcriptome of a single strain from every available species. 

Pseudoalignment of the simulated dataset to this representative transcriptome index, however, 

Figure 3.2. Estimated counts of transcripts in simulated data. True (blue line) and estimated (red dots) transcript-level 

counts of simulated metatranscriptome reads pseudoaligned against only transcripts present in dataset. (a) High 

abundance transcripts with thousands of reads present in dataset; (b) Low abundance transcripts with approximately 

100 reads present. Kallisto shows high accuracy estimating the abundance of with highly expressed transcripts, but 

produces significant errors with lower abundance transcripts. Note that the apparent structure of the errors is an 

artifact of sorting by first “true” counts, then by estimated counts. 
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gave very poor species-level identification results, as seen in the below graph. Any read that did 

not have an exact-match strain was likely to be misassigned, resulting in a large amount of false 

positives and an average error of 66%. 

The above issues are most likely a result of kallisto failing to take into account that 

transcripts come from single strains. From kallisto’s point of view, if a read could come from 

two transcripts, there’s no reason to prefer pseudoaligning to one versus the other, and most 

likely, kallisto will end up concluding that two identical transcripts are present in equal 

abundances in the metatranscriptome. However, from an external viewpoint, it would be better if 

it gave extra weight to transcripts that come from strains with multiple transcripts present in the 

sample. Future plans include adapting kallisto's model to regularize abundance across genomes, 

by including the ability to pass along information to kallisto of the form “these transcripts are 

linked, and should be present or absent as a group”. This could be implemented as a penalty for 

transcripts with highly unbalanced coverage within a single strain during the expectation-

maximization step. In the short term, we tested identifying strains using genomic 

pseudoalignment to improve accuracy of metatranscriptome abundance estimation. 

Pseudoaligning metatranscriptome reads to bacterial genomes should lead to sufficiently 

accurate identification for pre-filtering potential source genomes, since kallisto doesn't consider 

coverage when determining abundance, thus the uneven coverage of a transcriptome is not a 

problem. Additionally, as these are prokaryotes, there are no splicing issues to confuse genome-

level alignment. For identification purposes, we created a species-level representative index, 

Figure 3.3. Estimated counts at species level aligned against representative transcriptomes. True (blue line) and 

estimated (red dots) strain-level counts of simulated metatranscriptome reads pseudoaligned against a representative 

transcriptome index containing only a single strain from 4,412 species. 
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picking one strain from each species present in Ensembl. Due to the fact that Ensembl has fewer 

genomes than transcriptomes, some of the source transcriptomes of my simulated dataset were 

not available as genomes (even at the species level), so the dataset used for this test had 30 

additional strains removed, leaving a total of 80 strains remaining. 

Kallisto’s performance on the simulated dataset, when aligning to the representative 

genome index, showed an impressive degree of strain- and species-level accuracy in its 

abundance calculations, given that many of the true source strains of the simulated reads were 

not present. At the species level, average relative error was 27%, with only 9% of the reads being 

attributed to species not actually present in the sample.  As can be seen in the species-level graph 

below, the overall trend of abundance estimation is reasonably accurate, given the limitations. 

We used the successful genome-level taxonomic identification to determine which 

transcriptomes were possible read sources. At the predefined cutoff of 1000 estimated counts, 

109 species were considered as sources of the metatranscriptomic data, containing all 80 source 

transcriptomes of the simulated reads. Ensembl contains 500 transcriptomes from those species, 

which were used to generate the index for the abundance estimation stage. The resulting 

quantification was quite accurate, with an average strain-level relative error of 9.22%, and only 

5.79% of the reads misassigned to absent taxa. 

 

Figure 3.4. Estimated counts at species level aligned against representative genomes. True (blue line) and estimated 

(red dots) species-level counts of simulated metatranscriptome reads pseudoaligned against a representative genome 

index containing only a single strain from 4,412 species. 
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On the strength of the simulated results, we then applied this pipeline to sequenced 

human gut microbiome reads collected by Franzosa et al. (2014). As with the simulated data, we 

first pseudoaligned the reads to a representative species genome index, to identify potential 

strains in the sample. 255 species passed the cutoff of 1000 counts, for a total of 5072 

transcriptomes. As this is beyond the workable limits of kallisto’s indexing, we ran a second 

level of genome-based identification, using the 5692 genome strains associated with the 255 

species found in the first pass. 

Figure 3.5. Estimated counts at strain level aligned against pre-filtered transcriptomes. True (blue line) and estimated 

(red dots) strain-level counts of simulated metatranscriptome reads pseudoaligned against an index containing only 

transcriptomes that had significant read assignment from a representative genome index. 
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Figure 3.6. Estimated counts of human gut metatranscriptome at species level aligned against representative genomes. 

(a) First pre-filtering pass. Representative index contained a single strain from 4,412 species, and resulted in 255 

species considered ‘present’. (b) Second pre-filtering pass. As the 255 species had too many strain-level transcriptomes 

for a single index, another set of indexes was built with the 5,692 strains associated with 255 species, and sequenced 

reads were pseudoaligned to them. This resulted in only 71 species considered ‘present’, but they are still associated 

with 4,641 individual strains, too many for a single index. 
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Our hope was that this further refinement would result in a smaller list of species from 

which to select transcriptomes. Even with the second-pass list of potential genomes passing a 

higher threshold of 10,000 counts, although the number of species was lowered to 71, the 

number of actual strains only dropped to 4641, because E. coli remained among the top 3 species 

in overall abundance, and it has 2597 sequenced strains by itself. This is beyond kallisto’s 

indexing ability as a single index, and more than two thousand E. coli strains alone meant that 

partitioning to 1000 transcriptomes per index would not work for quantification purposes.  

Instead, we used the strain-level results directly, which gave 556 strains with more than 

1000 counts assigned, 477 of which had Ensembl transcriptomes. We created a new index with 

only these transcriptomes, and pseudoaligned the gut microbiome data to it. The resulting 

estimated abundances at the genus level are seen in the figure below. Most notably, the top 3 

genera in this metatranscriptomic sample are Prevotella, Bacteroides, and Megamonas, with 

significantly more counts than other genera. All three are known human gut inhabitants, and both 

Bacteroides and Prevotella are considered two of the most common “core” human gut genera 

(Xiao et al., 2015). 

As this metatranscriptome dataset has a paired metagenome dataset -- DNA and RNA 

collected from the same fecal sample -- we ran the paired DNA sample through kallisto as well. 

We used the same two-step filtering process to filter then pseudoalign the metagenomic dataset. 

We pre-filtered with the same representative-strain genome indexes, which resulted in 142 

strains being indicated as present in the sample. Much as with the metatranscriptome data, this 

Figure 3.7. Estimated counts of human gut metatranscriptome at genus level aligned against pre-filtered 

transcriptomes. RNA-Seq reads were pseudoaligned against 477 microbial transcriptomes, derived from a 

representative transcriptome index containing a single strain from each of 4,412 species. 
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included species with thousands of strains present in the reference genome database, so we 

couldn’t index all indicated species. Instead we used only these strains to make a sample-specific 

index; 6 million of the 18 million metagenomic reads aligned to this index. The estimated counts 

at the genus level are listed in Figure 3.8.  

The top three most abundant genera in the revised, DNA-Seq-based estimate are 

Bacteroides, Prevotella, and Faecalibacterium, with Megamonas no longer in the top 10. All 

three of these genera are among the most common human gut microbes, as in fact are 9 of the top 

10, and the remaining genus Barnesiella is a known gut inhabitant that was found to be 

associated with the reduction of vancomycin-resistant Enterococcus (VRE) colonization (Ubeda 

et al., 2013). 

While obviously we cannot calculate the true accuracy of this quantification, we can 

compare it to the results from (Franzosa et al., 2014) as seen below, which lists the top 10 genera 

found in all samples (unfortunately not listing which sample was associated with which column). 

Their top genera are all present in both the metatranscriptome and metagenome abundance 

estimations performed by kallisto, albeit in slightly different abundances and with additional 

genera interspersed. Most notable is Prevotella, a genus present in high abundance in both the 

metatranscriptome and metagenome, but not reported at all in Franzosa et al.’s abundance 

summary. The specific species that was assigned the most reads was Prevotella copri, which 

according to Franzosa et al.’s supplementary dataset was found only in subject X316192082’s 

stool samples, and had several hundred thousand reads aligned to their custom reference pan-

genome of Prevotella copri. Thus, both kallisto and Franzosa et al. agree on the genera present in 

this gut microbiome sample. 

Figure 3.8. Estimated counts of human gut metagenome at genus level aligned against pre-filtered transcriptomes. 

DNA-Seq reads pseudoaligned against 142 microbial genomes, derived from a representative genome index containing 

a single strain from 4,412 species. 
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Figure 3.9. Estimated relative abundance of top genera in human gut metagenomes. Only genera that make up at least 

1% of 2/8 samples are included. Taxa identification was determined based on marker genes. Figure from (Franzosa et 

al., 2014). 

The lack of complete consistency between Franzosa et al.’s results and kallisto’s is not 

surprising, as the former was primarily based on results from MetaPhlAn, which estimates 

taxonomic identity via clade-specific marker genes rather than full genome alignment. Franzosa 

et al. performed more detailed alignment to the clades identified by MetaPhlAn via Bowtie2 and 

a custom database of concatenated clustered genes from each species, although these results were 

not indicated in their abundance summary figure. Their final mapping rate was 31%, 

approximately the same as kallisto’s 33%, suggesting that the unmapped reads are most likely 

from unsequenced microbes. Unfortunately for further comparison, MetaPhlAn does not list 

which species are contained in their core gene catalog, but it is between 1,221-3000 species, 

depending on which version was used. This is of course significantly fewer than the nearly 

30,000 genomes that kallisto was able to effectively use for pseudoalignment, which would be 

expected to change the resulting distribution of read assignments. 

Of course, metatranscriptomic data is not usually used for strain-level abundance 

estimation, but rather for functional analysis, in hopes of understanding what the community is 

doing. While the source paper analyzed the transcriptome only for comparative purposes 

between samples, we looked at the abundance of functional categories for the single sample used 

above. We used the KEGG MGENES functionally-annotated microbiome gene database to 

construct a series of kallisto pre-filtering indexes (see methods), then selected the highly 

abundant genes to create a final index. Summing the counts associated with each top-level 
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KEGG pathway showed a high prevalence of genes associated with metabolism pathways, 

translation, membrane transport, and replication and repair. 

 
Figure 3.10. Percentage of kallisto-estimated human gut microbiome transcripts assigned to listed KEGG functional 

pathways. Remainder of transcripts were assigned to functional pathways with less than 1% overall abundance. 

To compare these results to a standard functional analysis pipeline, we used COMAN, an 

online metatranscriptomic analysis pipeline (Ni, Li, & Panagiotou, 2016) which uses the aligner 

DIAMOND to align the sequenced transcript reads to 2700 complete microbial genomes from 

RefSeq. Subsequently, it assigns functional annotations from KEGG to genes with a 1e-5 cutoff 

using KOBAS 2.0. The overall method is very similar to BLAST, but significantly faster.  

The COMAN functional analysis shows an extremely similar pattern to kallisto’s results. 

Specifically, the top most abundant functional categories that kallisto identified, with close to or 

more than 200,000 counts assigned, are all the same as the top categories that COMAN found: 

carbohydrate metabolism, overview genes, amino acid metabolism, cofactor and vitamin 

metabolism, energy metabolism, membrane transport, and translation. The minor differences -- 

such as kallisto indicating a higher expression of amino acid metabolism genes than COMAN -- 

may be the result of using different gene databases, or could be an effect of kallisto more 
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effectively handling ambiguously-aligned reads. Distinguishing between these would require 

indexing COMAN’s gene database in kallisto (difficult due to the lack of descriptive information 

about it), or ideally creating a simulated metatranscriptome with known functional content -- the 

simulated metatranscriptome used here is insufficient, because COMAN accepts only inputs in 

the FASTQ format. 

 
Figure 3.11. Estimated percentage of genes present in KEGG functional pathways, as estimated by COMAN. 

3.3 Methods 

Transcriptome and Genome Databases 

All reference transcriptomes and genomes used are from Ensembl’s bacterial database at 

ftp://ftp.Ensemblgenomes.org/pub/current/bacteria/fasta/. 39,586 complete and partial 

transcriptomes were downloaded in May 2016, containing a total of 137,567,837 transcripts, and 

29,698 complete and partial genomes were downloaded in May 2016, matching approximately 

4412 bacterial species.  

Both transcriptomes and genomes were left as individual FASTA files, but were 

processed so FASTA headers contained the strain name, and spaces were replaced with 

underscores so full header information would be retained by kallisto. 
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Representative Species Indexes 

To handle kallisto’s memory limitations while indexing, instead of indexing all tens of 

thousands of available strains, representative indexes were created from a single strain for each 

species. Pseudoaligning against these representative strains allows for some level of taxa 

identification, if not quantification. The largest strain (transcriptome or genome) of each species 

present in the database was chosen for indexing. While this does select for the most sequence, it 

does not select for the most contiguous sequence, so presumably many of the genomes are 

incompletely assembled. 

Since there are several thousand unique species in Ensembl’s databases of both genomes 

and transcriptomes -- still too many for kallisto to index at once -- the collection of representative 

strains was broken into chunks of approximately 1000 strains for indexing, grouped by genus 

where possible. This meant, for most of the indexes in this chapter, 5 to 7 chunks per 

“representative index.” While these separate indexes are definitely less accurate than a single 

index, in this case we care far more about false negatives than false positives, so the accuracy hit 

is acceptable. 

Simulated Dataset 

To test the performance of kallisto with a known ground truth, we used a simulated 

metatranscriptomic dataset of 100bp single-end reads, modeled in abundance off the popular 

“simulated low complexity” Sanger metagenomic dataset. The transcript reads were simulated by 

Toseland et al. (2014), and the reads and descriptions were generously shared by Andrew 

Toseland via private correspondence. “True” abundance of strains and transcripts was calculated 

by raw read counts, unadjusted for sequencing bias or error rate. 

The simulated dataset consists of 7.5 million single-end reads from 112 strains, with the 

majority of strains being at approximately equal abundance, and a few strains being at 

significantly higher abundance; this is a relatively common form for microbiome populations to 

take, with a few abundant strains, and the remainder being present at low levels. Due to 

limitations of the Ensembl bacterial transcriptome database, three of the strains present in the 

simulated dataset were not available: "Burkholderia cepacia 383", "Cronobacter turicensis 

z3032”, and “Prochlorococcus marinus MIT 9312.” I removed all reads from those strains from 

the dataset fasta for the majority of experiments, unless indicated otherwise, leaving 7,351,496 

reads. 

Biological Dataset 

To test the performance of kallisto on a biological sequenced metatranscriptome, we used 

a human gut microbiome RNA-Seq dataset with 5.5 million 100bp paired-end reads (SRA 

SRR769395), originally generated and analyzed by Franzosa et al. (2014). The dataset is the 
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microbiome of a stool sample preserved in RNAlater, from a single healthy individual. This 

dataset is paired with a DNA-Seq dataset (SRR769516) from the same individual’s stool sample. 

Taxa-Level and Transcript-Level Analysis 

The estimated abundance of the simulated and sequenced datasets was calculated and 

analyzed using the uploaded python script “compare_metagenomic_results_to_truth.py.” In 

short, the kallisto output file is processed and fasta headers are converted to NCBI taxonomic 

IDs (in the case of taxa-level analysis) or the format “strain name_bp location” (in the case of 

transcript-level analysis). Counts are summed in the case of duplicates, and a normalization 

factor is computed based on the percentage of reads that were assigned. The normalized 

estimated counts are then subtracted from the true counts for a given taxa/transcript, divided by 

the true counts, and the mean is given as the average relative error. 

Functional Analysis 

The estimated abundance of KEGG functional pathways was determined by 

pseudoaligning to the KEGG MGENES annotated environmental gene catalog (Kanehisa & 

Goto, 2000). As the full catalog is 83Gb, we divided it into 87 1Gb indexes for gene 

identification purposes. These were run in parallel, and took approximately 3-5 minutes to 

quantify against each index. Genes with an estimated TPM less than 10 were then removed from 

the FASTA, and the remaining genes were reindexed and quantified against. The resulting gene 

abundances were subsequently labeled with their KEGG pathways, and sums of total transcript 

count per pathway were computed. 

3.4 Conclusions 

Our results show that using a two-step process of taxa identification followed by 

quantification allows kallisto to functionally take advantage of much larger databases than it can 

actually index. For the purposes of transcriptome analysis, it is clear that the identification stage 

works much better on genomes rather than transcriptomes, while quantification works best on 

exact-match transcriptomes. Identification also does not require the target representative 

sequences to be in a single index; thousands of taxa can be spread across multiple indexes, and 

the combined abundance outputs will still give a fairly accurate picture of which taxa are present 

in the sample. Of concern, however, is that accuracy of both identification and quantification 

goes down when exact-match transcriptomes are not present; this is a significant problem, as 

most microbes are not sequenced, and thus exact-match sequences are only guaranteed to be 

available if they are assembled by the user. While this is certainly a doable task, and is 

commonly performed in metagenomic analysis, it would be nice to remove this obstacle. 

As currently implemented, kallisto can effectively use metatranscriptome data to estimate 

strain-level abundance, but only performs well at estimating transcript-level abundance for high 
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abundance transcripts. This is likely due to the extremely low count of transcripts that are not 

highly expressed, in the moderate coverage datasets used in these example analyses; as seen in 

figure 3.2(b), the true counts are on the order of 100 reads in the simulated metatranscriptomic 

dataset, which may very well be insufficient for kallisto to determine a reasonable abundance. 

Of course, most actual analysis of metatranscriptome datasets is not at the transcript 

level, but the functional level, grouping together transcripts that have a similar purpose (and thus 

grouping together those with similar sequences). This solves the transcript similarity problem, 

while giving information on what interests most researchers in RNA-Seq data: the likely 

pathways currently active. Kallisto’s functional-level results were highly similar to those of 

standard functional analysis pipelines, indicating it is well-suited for this informative form of 

analysis. 

While the field of metatranscriptomics grows in importance, the pipelines available for 

analysis remain limited and based almost entirely on BLAST and standard alignment algorithms, 

with no significant handling of ambiguous reads. This is, to my knowledge, the first use of a k-

mer based algorithm on metatranscriptomic data, as well as the most complex handling of 

ambiguities. These results indicate that these RNA-Seq-based methods are equally applicable to 

metatranscriptomics, and should be examined further. 
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Chapter 4: Concluding remarks on low-memory k-mer indexing 

improvements 

As demonstrated in the previous chapters, the primary limitation to kallisto’s ability to 

pseudoalign to multiple genomes or transcriptomes is the high memory requirements of its 

indexes. The current form of the index is such that more than a couple thousand microbial 

genomes overwhelms even large servers with extensive RAM, making it impossible for kallisto 

to be used on meta’omic data for the average individual laptop, as well as making it impossible 

for kallisto to directly pseudoalign against the current 50,000 microbial genomes contained by 

Ensembl, or the 83Gb of annotated microbial genes available from KEGG. 

In this work, we investigated two separate options for handling this issue: pre-filtering 

using the genome distance estimator Mash, and pre-filtering by breaking up a collection of 

genomes or genes into smaller, more feasible indexes, then iteratively pseudoaligning to each 

one. There are advantages and disadvantages to each: Mash is extremely fast, even on tens of 

thousands of genomes, but has a hard time distinguishing between similar genomes, which is 

obviously a significant limitation. This results in a significant level of false negatives at the strain 

level, which is an area of increasing interest for metagenomic analysis. Conversely, while using 

kallisto sub-indexes for pre-filtering is extremely accurate -- no false negatives were observed in 

the simulated metatranscriptomic analysis -- it is also much slower than Mash alone. Pre-filtering 

to the split 83Gb KEGG annotated gene database took over 7 hours, on 10 cores. This obviates 

the primary advantage of a k-mer based method, that of speed, and adds a significant level of 

complexity to the abundance estimation process. 

Ideally, we need a method that combines the speed of Mash with the accuracy of kallisto. 

This is most achievable by discarding k-mers to reduce computational costs. Most k-mers in a 

genome are not necessary or even useful for discriminating between microbes. As seen in many 

of the current k-mer based metagenomic identification programs, and as implemented in Mash 

itself, a subset of k-mers that are distinctive between genomes can be used instead of the full 

genome. Previous applications of this idea have demonstrated that, while workable, this results in 

lower accuracy than using all available k-mers from the reference genomes. This makes it 

entirely suitable for a fast “first-pass” filtering step to determine which genomes are present in 

the sample, with detailed abundance estimation occurring with a “full” index of just present 

genomes subsequently. 

The most obvious implementation of a sparse k-mer index is to pick only k-mers that are 

unique to a genome, which is how CLARK selects its indexed k-mers. However, this can fail in 

the case where two strains are identical except for an indel: in such a case, the only k-mers 

unique to the smaller genome would be those spanning the deletion junction, and per-strain 
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metagenomic coverage is not always high enough to be assured of sequencing those k-mers. So 

for the sake of robustness to low sequencing depth, we need a significant number of k-mers from 

each genome, which means we cannot limit ourselves to truly unique ones.  

Another implementation that is frequently used is selecting an evenly-distributed set of k-

mers across each genome. MiniKraken, for instance, throws out 18 of each 19 sequential k-mers 

in its index in order to remain within 4GB. While this ensures a reasonable coverage of each 

genome (roughly 5% in this case), it does not enrich for discriminatory k-mers, and thus can 

make it harder to distinguish between very similar genomes. 

Other approaches include that used by LMAT, which groups k-mers by which genomes 

they are found in, and indexes all such groups that contain at least 1000 different k-mers. While 

this does reduce the size of the index, it neither ensures the k-mers are the most discriminatory, 

nor ensures that all genomes contribute a significant number of k-mers. 

For alternate approaches that maintain both high coverage and high discrimination, 

consider the set of all genomes to be indexed, G = {g1, g2, ... gn}, and the set of all k-mers 

contained in those genomes, K = {k1, k2, ... kn}. In order to reliably judge the approximate 

abundance of each genome, we should have a set number of k-mers from each one; specifically, 

we should have at least enough k-mers to cover ε % of a given genome gn. We want the k-mers 

associated with gn to be the most discriminatory (that is, to contain the most information 

regarding gn) while also minimizing the set S of all k-mers selected to index, in order to keep the 

index as small and memory-efficient as possible. 

There is another reason to minimize S: if two strains g1 and g2 are mostly similar with a 

small number of differences, obviously S will contain all the discriminatory k-mers. However, if 

those k-mers are less than ε % of g1 and g2, more k-mers must be chosen for S, from the 

sequences shared between g1 and g2. If the k-mers chosen for g1 are different than those chosen 

for g2, then an additional source of error has been created, and meaningless differences in 

sequenced coverage over the genomes can cause abundances to be misjudged. Making sure the 

k-mers that are not discriminatory between g1 and g2 are the same will prevent that problem, 

while keeping the index as small as possible. 

The simplest memory-efficient algorithm would be as follows: first, count the number of 

genomes that each k-mer kn appears in, across the whole reference genome. Next, for genome g1, 

identify the k-mers present in that genome, and select those k-mers that have the lowest total 

number of genomes they are present in -- these will be the most unique k-mers available in that 

genome. Most genomes will not have ε % of their sequence covered only by unique k-mers, of 

course, and so some k-mers added to S will be present in other genomes. This is fine. For 

genome g2, do the same, but when you have a choice of k-mers that are present in the same 

number of genomes, always select those that are already in S. Repeat for all genomes in the 
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reference. While this will not strictly minimize S, it will act to keep S reasonably compact, and 

will keep the non-unique k-mers that are shared between genomes as shared as possible.  

An algorithm that would be more complex but more certain to give us the results we need 

would be to use column subset selection (CSS) methods to reduce the dimensions of a matrix 

containing all k-mers (McCurdy, Ntranos, & Pachter, 2016). In this case, the columns would be 

genomes and the rows would be k-mers, with each element indicating the count of that k-mer in 

that genome, and the selection algorithm would be acting on rows. CSS has been shown to 

preserve clustering structure in single-cell RNA-Seq datasets while reducing the number of 

features, keeping the data that is most distinctive and representative. While this algorithm usually 

requires full matrix creation, there is an online streaming CSS algorithm that may be more useful 

for our low-memory uses (Cohen, Musco, & Musco, 2015). 

Once S is finalized, each k-mer is linked to the genomes it is present in and hashed to 

create the minimized index. The k-mers from the sequenced reads are then compared to the 

index, with the EM algorithm handling reads that could come from multiple genomes, as usual. 

The output will be a set of estimated abundances for each genome in the reference, with the 

accuracy of these estimates primarily depending on the size of ε. This allows for a direct trade-

off between accuracy and memory efficiency, making this ideal for pre-filtering using tens of 

thousands of genomes. 
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Appendix A: Notes on collecting microbiome samples from D. 

melanogaster guts 

While the gut microbiomes of mammals has been extensively studied, sequencing gut 

microbes from invertebrates is more difficult. The primary issues are related to the near-

impossibility of separating gut contents from host tissue; because of this, host DNA and RNA 

can easily overwhelm metagenomic and metatranscriptomic sequences. This is exacerbated by 

the yeast-based diet, which results in significant yeast DNA and RNA in gut samples; up to 60% 

of a DNA library can consist of non-microbial DNA (Elya, et al., 2016). 

Because of this, published analyses of the Drosophila melanogaster gut microbiome are 

exclusively based on 16S rRNA gene sequences, because they can be easily amplified and 

sequenced while avoiding host and food contamination. However, as explained earlier, this limits 

the detail in which the microbiome can be examined, and makes it impossible to judge functional 

activity.  In order to get a more complete picture of the D. melanogaster microbiome, I attempted 

to develop the following protocol to extract paired DNA and RNA samples from the same guts, 

and build them as libraries.  

A.1 Gut dissection 

Previous studies have found that third instar D. melanogaster have the most diverse gut 

microbiome, as based on 16S rRNA gene sequencing (Wong, Ng, & Douglas, 2011). For this 

reason, I focused on extracting guts from this stage alone. Third instar larva are easy to identify 

and have the longest stage length of any larval stage, so collecting a significant number is 

straightforward. Following collection, the larvae are bleached to remove surface microbes, and 

then the gut is dissected in RNAlater to protect RNA from degradation.  

Dissection protocol 

Let larva feed on food mixed with food coloring, for easy gut identification, for at least 

half an hour. Collect third instar larva in mesh egg collecting dish, and rinse food away with 

water. Transfer larva to fresh 10% bleach solution and surface sterilize for 5 minutes. Transfer 

larva to PBS solution to rinse. Transfer larva individually to RNAlater under a dissecting scope, 

and remove cuticle and surrounding fat, leaving only gut tissue. Be careful not to pierce the gut 

while dissecting, to avoid losing microbial contents. 
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Figure A.1 Dissected third instar larva gut. Pink and purple color is due to food coloring added to food before 

dissection. 

A.2 DNA/RNA extraction 

Extracting either DNA or RNA from D. melanogaster guts is straightforward, and there 

are a number of commercial kits and protocols that will work. However, collecting both DNA 

and RNA simultaneously, at significant concentrations and with acceptable quality, required 

more trial and error. I was guided in this process by a paper by Triant & Whitehead (2009), 

which compared a number of protocols for simultaneous DNA/RNA extraction. 

Extracting both nucleic acids from prokaryotes, especially gram positive bacteria, 

requires both enzymatic and mechanical treatments. First, the host gut cells are dissociated using 

proteinase K, then the bacterial cells are opened up by being vortexed with 0.1 mm zirconium 

beads. While RNA can be extracted without the proteinase K digestion, DNA requires it, which 

limits buffers to those that allow the digestion and also protect RNA during the mechanical bead 

beating process. 

TRIzol, while enormously effective at protecting and extracting RNA, does not allow for 

proteinase K digestion, and the addition of any buffer used during digestion to TRIzol later in the 

protocol interferes with the phenol/chloroform extraction later. The buffer that finally worked for 

both purposes is RLT Plus, which is the Qiagen buffer that's used in the RNeasy Plus Micro kit. 

Because it’s used for homogenization in an RNA extraction kit, it clearly is sufficient for RNA 

protection, and it does not interfere with proteinase K digestion. 
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The homogenized supernatant resulting from the bead beating protocol is in a Qiagen 

buffer that should be compatible with a variety of Qiagen columns. It could also be ethanol 

precipitated, but I found that resulted in low yields, as well as a higher risk of ethanol 

contamination in downstream library-building steps. I wasn’t able to get any of the protocols to 

separate the DNA and RNA from the same sample working, so I attempted to split the 

homogenate and extract DNA from half and RNA from the other half.  

Initially, it looked like both protocols were successful: I extracted 1.4ug of RNA and 

400ng of DNA, according to Qubit measurements. However, the DNA sample also contained 

1.8ug of RNA, according to Qubit measurements, which I successfully removed after treatment 

with RNaseA for 1 hour at 37 C. Surprisingly, though, the DNA was also nearly eliminated: 

from 20ng/ul to 1ng/ul, as measured by Qubit. This was a very unexpected outcome, and I have 

no satisfying explanation for it. 

 
Figure A.2 Bioanalyzer trace of RNA sample extracted from gut. 

 
Figure A.3 Bioanalyzer trace of DNA sample extracted from gut. 

In the absence of further time to refine this protocol, I did not explore additional avenues 

of extraction, but a reasonable next step would be to try the Qiagen AllPrep DNA/RNA Micro 

kit, as recommended by Triant & Whitehead. It should allow for simultaneous extraction of 

DNA and RNA from the same sample, although in lower concentrations than individual 

extractions might produce. Given the difficulties of extracting nucleic acids from these samples, 

this commercial kit seems like a good avenue to explore. 
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Homogenization protocol 

Homogenization protocol is modified from Elya, et al.’s Drosophila gut homogenization 

(2016). Transfer dissected gut to clean nonstick tube, and add 180ul of buffer RLT Plus and 20ul 

of proteinase K, then incubate at 56 C for half an hour. After incubation, food coloring should be 

dispersed throughout the solution, no longer concentrated in the gut tissue (although the gut 

tissue will still appear coherent). Add 50-100ul of 0.1mm zirconium beads and 200ul of chilled 

RLT Plus to the tube, and perform subsequent bead beating in 4 C cold room: 

1. Vortex at maximum power for 1 minute 

2. Allow samples to rest for 30 seconds 

3. Vortex at maximum power for 1 minute 

4. Allow samples to rest for 30 seconds  

5. Centrifuge samples 5 minutes at maximum speed  

6. Transfer supernatant to a new tube and save 

7. Wash beads with 400 uL cold RLT Plus (mix beads and additional buffer by pipetting up 

and down) 

8. Vortex at maximum power for 1 minute 

9. Allow samples to rest for 30 seconds 

10. Centrifuge samples 5 minutes at maximum speed 

11. Transfer supernatant to tube from step 6 

12. Wash beads with 400 uL cold RLT Plus (mix beads and additional buffer by pipetting up 

and down) 

13. Centrifuge samples 5 minutes at maximum speed 

14. Transfer supernatant to tube from step 11 

15. Centrifuge pooled supernatant from step 14 5 minutes at maximum speed 

16. Remove supernatant (leaving beads behind) and transfer to new tube 

17. Let sit for 5 minutes at room temperature before proceeding, to allow proteins to 

dissociate. 

A.3 Microbial mRNA enrichment 

One of the chief difficulties of metatranscriptomics is enriching the microbial mRNA 

over the microbial rRNA, in addition to the host and yeast RNA. There are a number of systems 

and kits designed to preferentially remove rRNA reads or enrich non-rRNA reads, several of 

which I have tested on Drosophila gut RNA.  

Initially I attempted an unreleased protocol developed by Dr. Alexandra McCorkindale 

(2015) to deplete Drosophila rRNA, combined with a protocol to deplete microbial rRNA 

(Kukutla, Steritz, & Xu, 2013). These protocols use custom biotin-labeled RNA probes to bind to 

and then remove rRNA sequences. However, they require a significant amount of optimization 

and modification for use with specific samples. Because of this, I was unable to get these 

protocols to work effectively. 
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There are commercial kits that perform the same technique, but each generally only 

removes the rRNA from a single source, meaning several kits are required to fully deplete rRNA. 

For instance, the MicrobExpress Bacterial mRNA Enrichment Kit uses capture oligonucleotides 

and magnetic microbeads to remove up to 95% of the 16S and 23S rRNA from total RNA of 

some bacterial species. The Ribominus Transcriptome Isolation Kit has biotin-labeled probes 

that can similarly remove up to 98% of large yeast rRNA molecules, 18S and 25/26S subunits. 

Use of both these kits leaves, hopefully, only Drosophila rRNA to be removed. As 

Drosophila is a less popular model organism for sequencing experiments than mammals like 

mice or humans, there are fewer rRNA removal kits available. One such kit is the Ovation RNA-

Seq System V2, which preferentially primes and transcribes non-rRNA reads, leaving behind 

Drosophila rRNA. Because this kit transcribes RNA into cDNA, it can only be used as the last 

step of rRNA removal, after removing all other unwanted RNA. 




