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Abstract

Pseudoalignment for metagenomic and metatranscriptomic read assignment
By
Lorian Victoria Schaeffer
Doctor of Philosophy in Molecular and Cell Biology
University of California, Berkeley

Professor Lior Pachter, Chair

The first step in many metagenomic and metatranscriptomic analysis workflows is
assigning high-throughput sequencing reads to specific strains or transcripts, providing the basis
for identification and later quantification. However, the high degree of similarity between the
sequences of many strains and genes makes it difficult to assign reads at the lowest level of
taxonomy, and reads are typically assigned to more general taxonomic levels where they are
unambiguous. Recent developments in RNA-Seq analysis have found direct-match k-mer based
methods to be extremely accurate and fast when comparing sequenced RNA-Seq reads to
transcriptomes. While similar methods have been used in metagenomics before now, none are
highly accurate at distinguishing similar strains, and none have been applied to
metatranscriptomic data. We explore connections between metagenomic and metatranscriptomic
read assignment and the quantification of transcripts from RNA-Seq data to develop novel
methods for rapid and accurate quantification of microbiome strains and transcripts.

We find that the recent idea of pseudoalignment introduced in the RNA-Seq context is
highly applicable in the metagenomics and metatranscriptomics settings as well. When coupled
with the Expectation-Maximization (EM) algorithm, reads can be assigned far more accurately
and quickly than is currently possible with state of the art software, making it possible and
practical for the first time to analyze abundances of individual genomes in metagenomics and
metatranscriptomics projects.
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Chapter 1: History of abundance estimation in metagenomics and
metatranscriptomics

1.1 Metagenomics

Microbial ecology, the study of microorganisms and their environmental roles, has been
revolutionized by developments in sequencing technology over the last decade. Until the advent
of Sanger DNA sequencing in the 1970s, the primary method to identify the composition of a
microbiome was through culturing techniques, but it has become evident that culturing fails to
reveal all microbial members (Dunbar et al., 2002). Sanger sequencing revealed a much larger
microbial world than we had previously known about; next-generation sequencing has shown us
even more detail. The ability to sequence a wide variety of microbes has opened up the ability to
analyze microbial communities in great depth, and discover far more about microbial
interactions than we were ever able to before.

To understand and compare microbial communities, we determine which taxa are
present, and then how much of each is present. These two procedures are known as taxa
identification and abundance estimation, respectively. Both are complex problems and are
frequently performed together as a single step, since taxa identification can be thought of as a
special case of abundance estimation where abundance is determined to be either zero or non-
zero.

Taxa identification has been an important problem which has been studied long before
next-generation sequencing. Before sequencing, identification was carried out by culturing
microbiomes, then isolating individual microbes by dilution and identifying them by
morphology. This had obvious weaknesses, most especially the fact that most microbes aren’t
easily culturable (Lagier et al., 2015). The net result of culture-based identification was a very
limited understanding of microbiomes, focusing on the species that grow well under typical
culture conditions. This led us to vastly underestimate the complexity of microbial communities,
especially those from environments particularly different from culture media or those with a very
low density of microbes (Dunbar, et al., 2002).

Culturing can also be used for abundance estimation via dilution and plating, although
there are many additional caveats to this technique: not only are many microbes non-culturable,
but some may grow too slowly to be seen and counted, and many clump together, showing only
a single colony where multiple individuals were. There is also the basic problem of microbes
with incompatible culturing conditions: growing conditions and media nutrients unavoidably
select for some bacteria at the expense of others. All of this means that culturing-based



abundance estimation can lead to an underestimation of actual bacterial counts by several orders
of magnitude (Pepper & Gerba, 2016).

The first significant step forward in identifying the full variety of microbes in microbial
communities was amplicon sequencing, most commonly of the 16S ribosomal RNA gene (Fox et
al., 1977; Olsen et al., 1986). This gene is convenient because it has a common structure across
all prokaryotes and a number of variable regions that are more sequence similar across closely
related taxa. It can be easily amplified through PCR (due to common flanking sequences across
bacteria) and sequenced with Sanger sequencing (Hugenholtz & Pace, 1996). This method was
the first able to effectively investigate unculturable microbiomes.

Unfortunately, while 16S sequencing is cheap and fast, it suffers from insufficient
resolution when applied to taxa identification. Amplicon sequences are initially clustered based
on either their similarity to other sequences in the same dataset, or their similarity to 16S gene
sequences in a reference database, such as Greengenes (DeSantis et al., 2006), the Ribosomal
Database Project (Cole et al., 2014), or SILVA (Quast et al., 2013). Widely adopted pipelines to
handle this task currently include QIIME (Caporaso et al., 2010; Navas-Molina et al., 2013) and
mothur (Schloss et al., 2009). An arbitrary threshold of sequence similarity is used to distinguish
clusters. Often, 97% similarity is used for low-resolution classification; 99% similarity is
considered appropriate for species-level clustering, but this is still too broad to distinguish
between closely related species, like members of the Clostridiaceae or Enterobacteriaceae
families (Jovel et al., 2016).

Basing taxa identification on 16S rRNA gene sequence similarity is complicated due to
both sequencing error rates and the high degree of 16S conservation between some taxa,
especially when using a single variable region (Figure 1.1). Analysis of existing databases of 16S
sequences has demonstrated that 42% of bacterial genera contain pairs of 16S rRNA gene
sequences that can’t be distinguished at the 97% similarity level (Vetrovsky and Baldrian, 2013).
Overall, 16S-based taxa identification is only reliable at the genus level, due to these issues.
Some recent programs have been able to apply machine learning techniques to increase ability to
detect small sequence differences (Callahan et al., 2015), but even in the cases where species can
be determined, important functional differences between strains of the same species are entirely
lost.

Even beyond the specificity issues, 16S sequencing is suboptimal for abundance
estimation because 16S genetic copy number varies across taxa, sometimes inconsistently with
sequence variation. Some species have single copies of their 16S rRNA gene, while others such
as Photobacterium profundum have up to fifteen copies (Lee, Bussema, & Schmidt, 2009). Most
16S studies fail to account for this, and implicitly assume that 16S sequence abundance is
equivalent to taxa abundance, skewing their analysis of community abundance and diversity.
Recent programs have been developed to take copy number into account (Lee, Bussema, &



Schmidt, 2009; Angly et al., 2014; Kembel et al., 2012), but suffer from the fact that the same
16S sequence may be present in different copy numbers in different taxa, as well as the fact that
16S copy number is not known for many taxa. These issues mean that the correlation between
true abundances of simulated datasets and abundances estimated using copy-number-corrected
16S sequences is often 0.80 or less. Additionally, biases in primer binding and slight variations
in common primer binding sites in the 16S gene can lead to unequal amplification of different
taxa, skewing abundance estimations at the sequence generation stage (Kembel et al., 2012).
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Figure 1.1. A phylogenetic tree of the V4 region of the 16S rRNA gene. Significant shared 16S sequence is present
within quite a few genera. Figure from (Jovel et al., 2016).

The current alternative to amplicon sequencing is shotgun metagenomics, in which the
entire metagenome is fragmented and sequenced. This gives a much more complete and
representative picture of the microbiome in question, at the cost of significantly more
sequencing. Using Sanger sequencing, such costs were highly prohibitive, on the order of $1000



per megabase of sequence. As a result, early shotgun metagenomic sequencing was usually
utilized in highly novel environments with mostly uncultured microbes, including samples from
acid mine biofilm (Tyson et al. 2004), seawater (Venter et al. 2004), deep-sea sediment (Hallam
et al. 2004), and soil (Tringe et al. 2005).

Full shotgun metagenomics didn’t become widely popular or cost-effective until the
development of “sequencing-by-synthesis” in the mid-2000s, when Solexa (later Illumina) was
able to both increase the throughput of sequencing and significantly drop the price per base; the
tradeoff was reads a tenth of the length of Sanger reads (Margulies et al. 2005; Zhang et al. 2006)
(Figure 1.2). In addition, as next-generation sequencing does not require cloning before
sequencing, sample generation and library creation became much more straightforward and less
prone to failure. While the yield, price, and ease of use were a boon to the field, the short reads
led to analysis difficulties: algorithms designed for Sanger reads were inaccurate with these
much shorter reads, and the much larger data volumes highlighted their slowness as well. New
algorithms were needed to take full advantage of this new technology.

Cost per Raw Megabase of DNA Sequence

Moore's Law

N I H National Human Genome
Research Institute

genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 1.2. Drop in sequencing cost per megabase since 2001. The sudden decrease in sequencing costs in 2008 is due
to the shift from Sanger-based to next-generation sequencing technology. The price decrease had a profound effect on
the use of high-volume sequencing in a wider range of metagenomic projects. Figure from Wetterstrand, accessed
2016.

The problem of taxa identification and abundance estimation with shotgun metagenomic
sequencing can be likened to being given the mixed-together pieces of several hundred similar

jigsaw puzzles, and attempting to recreate the source puzzles without access to the boxes. High
degrees of similarity between bacteria make this particularly difficult, especially when looking at



the species or strain level. The biggest problem is multimapping reads: reads that could have
come from a number of different genomes. The methods used to address ambiguously aligned
reads have grown more sophisticated over time, and have greatly improved the accuracy and
resolution of taxa identification and abundance estimation.

There are several basic approaches to metagenomic taxa identification via shotgun
sequencing. The most straightforward is to look at specific sets of marker genes, and use their
presence or absence as a barcode to indicate taxon (Gupta & Sharma, 2015; Nguyen, et al., 2014;
Sunagawa et al., 2013); this is an improvement on single amplicon sequencing, but still ignores
most of the information present in metagenomic data. Methods that rely on sequence
composition characteristics can use features like k-mer frequency and GC% content to identify
taxa, but this is only effective for long-read sequencing methods like Sanger and 454, not the
short reads of Illumina sequencing. And while assembly is one of the most effective ways to
identify taxa, it requires more sequencing depth than many metagenomic studies can afford
(Ghurye, Cepeda-Espinoza, & Pop, 2016). So as processing power and the pool of known
bacterial genomes increases, most recent algorithms have been based on the idea of aligning
sequenced reads directly to databases of reference genomes.

One of the earliest short-read alignment-based metagenomic methods, published in 2007,
was MEGAN (Huson et al., 2007). MEGAN uses BLAST (or other aligners) to compare reads
against a database of sequenced genomes, accepting alignments passing an E-value threshold. An
important aspect of MEGAN, used in many subsequent programs, is its handling of ambiguous
reads: they are assigned to the lowest common ancestor (LCA) of all likely sources. So, for
instance, if a read mapped to several E. coli strains, MEGAN would assign the read simply to E.
coli, rather than any specific strain (Figure 1.3). This avoids potential misassignment, and also
helps account for missing genomes -- a distant LCA assignment may suggest that the actual
genome wasn’t present in the sample -- but often causes assignment results to be unhelpfully
vague.

A subsequent alignment-based tool with improvements in abundance estimation was
GAAS (Angly et al., 2009). GAAS improves on MEGAN by iteratively estimating relative
genome abundance, rather than accepting the initial abundance suggested by raw read alignment.
It also features more complex processing of BLAST results, statistical weighting of similar
BLAST hits, and normalizing estimated abundances by genome length (which the program itself
can estimate, in the case of de novo genomes). However, it still bases its taxa assignment on
alignment E-values directly, with no way to optimize the choice between very similar ambiguous
alignments.
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Figure 1.3. MEGAN's use of lowest common ancestor during read assignment. MEGAN traces the specific BLASTX
matches (on the right) from a single read through their taxonomy, assigning the read to the taxon Campylobacterales
(on the left), as it is the lowest-common taxonomic ancestor of all three matched strains (in the middle). Figure from
(Huson et al., 2007).

GRAMMY (Xia et al., 2011), which explicitly models ambiguous alignments using a
probability matrix incorporated into its mixture model, was a notable improvement. The mixture
parameters are solved via Expectation-Maximization, taking advantage of ambiguous alignments
to estimate similarity between reference genomes. While an improvement over simply taking the
‘best’ ambiguous alignment or the LCA, GRAMMY still has difficulty distinguishing between
very similar genomes.

GASIC (Lindner et al., 2013) is one of the most accurate alignment-based algorithms, but
pays for its accuracy by being extremely slow. GASIC achieves accuracy by simulating reads
from each genome in a sample, then aligning them to their source genome to update basic
alignment-based abundance estimation. Thus, it has multiple full alignment steps, as well as a
time-consuming simulation step, but it handles very similar genomes much better than previous
options.

1.2 k-mer based estimation

While full alignment-based methods can produce highly accurate taxa assignments and
abundance estimations, they suffer from the slowness of standard seed-based alignment
algorithms. Alignment can be reasonably fast when dealing with single eukaryote genomes, but
aligning against the rapidly growing collection of sequenced prokaryotes (50,000 and counting)
becomes prohibitively computationally expensive. Thus, most recent metagenomic programs
have been exploring the opportunities made available by exact-match k-mer comparisons.



Sequence alignment is slow is because it has to allow for some number of mismatches to
the reference genome, due to sequencing errors, SNPS, and indels. Allowing for these
mismatches requires implementation of the Needleman-Wunsch or related algorithms, all of
which are quadratic in the length of the sequences being aligned. However, if you cut sequences
into short enough pieces, you can reasonably expect most of them to be free of errors or
polymorphisms, allowing one to use very fast exact match alignment instead. Methods based on
exact-match k-mers (short subsequences of length k) cut the reference genomes and/or the
sequenced reads into overlapping sequences of 21 to 31 bp, and align or compare these k-mers
directly.

Table 1.1. Performance of selected metagenomic read assignment tools. Fraction is the average % of simulated reads
mapped. Shuffled is the average number of synthetic reads that should not be mapped that mapped. Run time is CPU
time in minutes per metagenome. Correlation is average Pearson correlation coefficient between predicted and known
relative abundance of phyla in the dataset. Table from (Lindgreen, Adair, & Gardner, 2016).

Analysis tool Fraction Shuffled False positives Run time Correlation
CLARK 73.32% 340,607 0.02% 211.50 0.9922
EBI 0.08% 0 41.74% ~12 days 07427
Genometa 39.91% 0 0.83% 401 0.9136
GOTTCHA 43.10% NA 0.00% 229.49 0.1777
Kraken 71.98% 19 0.00% 60.95 0.9915
LMAT 56.61% 1,486,699 0.63% 981.21 0.9395
MEGAN 42.21% NA 0.49% 2489.65 07728
MetaPhlAn 5.09% 0 0.75% 108.51 0.9552
MetaPhyler 0.45% 649 0.05% 26586.15 07989
MG-RAST 56.17% 3 0.27% 16881.8 0.9209
mOTU 0.16% NA 0.10% 45.8 0.9334
One Codex 73.68% 23 0.00% 2777 0.9787
QIIME 58.23% 0 0.28% 8.88 0.7772
Taxator-tk 45.67% 2 14.07% 9147.92 0.8561

LMAT (Ames et al., 2013) was one of the earliest programs to apply k-mers to
metagenomics. The algorithm generates a reference database of k-mers from bacterial genomes,
each of which have been assigned to the lowest common ancestor (LCA) of strains containing
that k-mer. This database is then simplified into a subset of k-mers, which is compared to the k-
mers generated from sequencing reads in a dataset. LMAT then uses the alignment of each k-mer
in a single read to determine the most likely assignment of the read as a whole, choosing the
genome that contains the most k-mers from the read.



Examining only unique or high-specificity regions of the reference genomes is a popular
strategy among k-mer based algorithms, as it solves or at least simplifies the ambiguously-
assigned read problem. GOTTCHA (Freitas et al., 2015) uses this approach to limit the size of
reference sequence: since it does not split the reference genomes into k-mers, examining only
high-specificity genome regions reduces its search space and speeds up alignment. It is still a k-
mer based method, as it breaks the sequenced reads into k-mers, and judges read assignment by
overall matching of k-mers within those high-specificity regions.

Kraken (Wood & Salzberg, 2014), much like LMAT, assigns reference k-mers to the
lowest common ancestor of matching strains. Each read is then broken into k-mers which are
compared to the database; the read is assigned to the taxon with the highest number of mapping
k-mers to itself and its ancestors. While sometimes this can result in assignment to a specific
strain, most often it ends up assigning to higher taxonomic levels.

CLARK (Ounit et al., 2015) also breaks up the reference genomes into k-mers, but then
only keeps the unique k-mers for each genome. Reads are assigned to the target with which they
share the most k-mers, with a confidence score based on k-mers not shared. Unlike many of the
previous programs, CLARK is able to assign most reads at a high taxonomic level, without
resorting to lowest common ancestor assignment; however, its overall accuracy at any given
taxonomic level is less than Kraken’s.

One of the major issues faced by these k-mer based methods is resource intensiveness.
While the comparison of read k-mers to reference k-mers is fast, the process of converting
reference genomes into k-mers can be extremely memory intensive. Both Kraken and CLARK
come in several flavors, depending on the computational resources available. As Kraken loads its
entire k-mer database into memory while running, its ‘memory-light” version, MiniKraken, uses
a much smaller database (4GB instead of 70GB) which drops k-mers from the reference
genomes, resulting in significantly less memory requirements, but sensitivity for read
identification dropped significantly as well (by 11-25%). Kraken also has a ‘fast’ version,
Kraken-Q, which only looks up one k-mer per read, and simply assigns the read to the source of
that k-mer. This significantly speeds up classification, with only small drops in sensitivity and
precision; however, it seems likely that this would result in more LCA assignments, and fewer
strain-level assignments.

CLARK also features several versions. While the default version keeps only completely
unique k-mers for each reference genome, the full version keeps all k-mers; this is slightly more
accurate, but slower. CLARK-E, on the other hand, is optimized for speed, trading it for a slight
drop in precision and sensitivity on most datasets. It does this by only querying non-overlapping
k-mers, and assigning the read to the first target hit (possible because CLARK uses unique k-mer
sets for each target). CLARK-1 (“light”) is a version designed to use less memory; it samples
only one in 5 consecutive k-mers in each reference database target, leading to a similar amount



of memory used as MiniKraken. Finally, CLARK-S is a new version that attempts to prioritize
sensitivity, by allowing specific mismatches between k-mers (Ounit & Lonardi, 2016).

The primary advantage of these k-mer based methods is speed; the more recent entries in
particular can analyze a standard-sized metagenomic dataset within half an hour. But the tradeoff
is a step back in accuracy, as they estimate abundance by straightforward read assignment, like
MEGAN in 2007. Only GOTTCHA adjusts its estimated abundances by genome length. This of
course significantly limits abundance accuracy and suggests a route for further improvement.

In one attempt to address this issue, Kraken has an additional layer called Bracken (Lu et
al., 2016). Bracken takes Kraken’s taxonomy tree for each read and explicitly collapses it to the
most likely species-level target, based on the probability that competing reference genomes share
reads. Specifically, it uses Bayesian conditional probabilities to adjust Kraken’s initial
assignments based on the proportion of k-mers that are unique in a genome. This significantly
improves Kraken’s abundance estimation, and also addresses the issue that lowest common
ancestor assignments are not so helpful for abundance estimation.

Despite the progress made in both speed and accuracy of metagenomic analysis, a
pervasive problem in methods development has been limited or inadequate benchmarking. Most
of the above papers use simulated microbiomes with very few source genomes, ranging from as
few as two (Wu & Ye, 2011) to up to 10 (Wood & Salzberg, 2014) or 20 (Ounit et al., 2015)
genomes. Needless to say, these limited metagenomes are not representative of the highly
complex microbiomes found in nature, containing hundreds of separate strains. This is not due to
lack of sufficiently complex microbiomes; a number of artificial metagenomes with over 100
constituent genomes have been constructed from both simulated or sequenced reads. Without
applying these more realistic metagenomes to new methods, it is difficult to judge the actual
level of improvement over previous methods.

1.3 Metatranscriptomics

Another important contribution of modern sequencing technology to microbial
communities has been the application of RNA-Seq in the form of metatranscriptomics, which
attempts to do with microbial transcriptomes what metagenomics does with microbial genomes.
Sequencing microbial transcripts can help determine the specific functional roles of constituents
of a community, by revealing the activity level of genes of known pathways. Since meta’omic
sequencing is expensive, it is often infeasible to generate both DNA-Seq and RNA-Seq libraries
for a single sample; thus, metatranscriptomic data is often simultaneously used for taxa
identification and abundance estimation tasks for which DNA-Seq data would normally be used.

These three tasks -- taxa identification, abundance estimation, and functional analysis --
are made harder by the difficulties of performing RNA-Seq for prokaryotes. The lack of mMRNA
poly-A tails makes the physical separation of mMRNA and rRNA more complex and much less
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reliable than in eukaryotes, meaning a much smaller percentage of reads are actually mRNA
(Pascault et al., 2015; Mondav, Schmidt, & Tyson, 2010; Carvalhais & Schenk, 2013). Of
course, the rRNA reads can be used for 16S taxa identification, as in the case of metagenomic
reads; however, this comes with exactly the same issues as was mentioned previously, regarding
insufficient resolution and copy number issues (made worse by the transcription from rDNA to
rRNA).

The absence of MRNA splicing means that metatranscriptome datasets can be processed
by metagenomic programs to determine taxa identification and abundance estimation. However,
it is more common to use metatranscriptomic-specific pipelines which do both taxa identification
and functional gene identification. Unfortunately, these programs tend to lag significantly behind
the state-of-the-art in metagenomic analysis in both accuracy and speed. The ones which do not
rely on 16S sequencing almost exclusively use BLAST, which is slow and handles multiple
alignments poorly.

Many of the early metatranscriptomic pipelines were simply a series of scripts, such as
the one by Hamamura and Meneghin (2010), which is a combination of perl scripts and user-run
BLAST queries on various databases. Taken together, they do an admirable job of cleaning the
raw reads, identifying 16S rRNA sequences, and assigning functional categories to the mRNA
sequences. However, the process is extremely slow (taking many days, even when multithreaded
on a powerful server) and error-prone due to the many individual steps. Other similar pipelines
are those released by Goncalves et al. (2011), Friedman and Maniatis (2011), and Leimena et al.
(2013), all of which suffer from similar problems of ease of use and speed.

Recent improvements in usability include MetaTrans, SAMSA, and COMAN. Both
MetaTrans and SAMSA are more coherent pipelines than previous analysis options; while both
are script-based, they offer essentially end-to-end coverage of all required steps, bringing
together a number of programs for cleaning, filtering, aligning, and annotating
metatranscriptomic data, and requiring minimal configuration for standard use cases.

MetaTrans (Martinez et al., 2016) determines functional abundance of transcripts as well
as using 16S rRNA sequences present in the dataset to identify taxa. Its functional assignment
utilizes gene prediction and clustering, followed by mapping to the MetaHIT database, which is
specific for human gut microbiome genes (Qin et al., 2010). Mapping offers the option of using
SOAP2 or DIAMOND, an improvement in speed over the standard use of BLAST. It can also
perform differential analysis on multiple conditions using DESeq2, a standard R package for
RNAseq differential analysis (Love, Huber, & Anders, 2014).

Building on top of MG-RAST, SAMSA (Westreich et al., 2016), a metagenomic taxa
identification platform, can break down transcriptional activity by organism or by function. It
uses MG-RAST (Meyer et al., 2008) for alignment and annotation, which itself uses translated
protein clustering, then uses BLAT to find the closest reference match. While MG-RAST uses e-
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values to determine best match, it does keep all matches with equal max e-values, allowing for
some amount of multi-aligning. Final transcript abundances, however, are judged solely based on
raw counts. While the pipeline does not itself perform differential analysis, it creates output files
that can be imported into DESeq. Some caveats are that the pipeline requires FASTQ input, and
reads of at least 100bp, although it can join overlapping paired-end reads to achieve this if
necessary.

Additional efforts to minimize required setup have been made with online pipelines such
as COMAN (Ni, Li, & Panagiotou, 2016). While COMAN only does functional analysis, not
taxa identification or abundance estimation, it does judge the contribution of taxa to function if
provided with taxa abundances determined elsewhere. In order to speed up processing, COMAN
uses the aligner DIAMOND (Buchfink, Xie, & Huson, 2015) rather than BLAST or BLAT. It
then uses genome annotations to determine functional contribution, and can infer pathways as
well as determine enriched or depleted functions when comparing conditions.

One of the chief problems with judging the performance of metatranscriptomic programs
is the lack of commonly-shared simulated metatranscriptomic datasets. Transcriptome simulation
is a difficult problem, and most simulated datasets are not made publicly available, so authors of
different programs can’t easily compare their results against the same dataset. This is
compounded by the slowness and complexity of most of the pipelines listed above; installing and
running each of them for comparison purposes is prohibitive. This means that while
metagenomic programs often compare themselves directly to other options, for both accuracy
and speed, none of the above pipelines have any published head-to-head comparisons. The
exception is MetaTrans, which compared itself to metagenomic programs MG-RAST and
Kraken, but only for biological datasets, not datasets where ground truth was known. That said,
it is clear there is definite room for speed and accuracy improvements, especially as the field has
not progressed very far past BLAST, conceptually.
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Chapter 2: Pseudoalignment for metagenomic read assignment?

2.1 Introduction

The analysis of microbial communities via whole-genome shotgun sequencing has led to
exceptional bioinformatics challenges (Chen & Pachter, 2005) that remain largely unsolved
(Sholz et al., 2012). Most of these challenges can be characterized as "de novo™ bioinformatics
problems: they involve assembly of sequences, binning of reads, and annotation of genes directly
from sequenced reads. The emphasis on de novo methods a decade ago was the result of a
paucity of sequenced reference microbial and archaeal genomes at the time. However, this has
begun to change in recent years (Land et al., 2015). As sequencing costs have plummeted, the
number of fully sequenced genomes has increased dramatically, and while a large swath of the
microbial world remains uncharacterized, there are now thousands of "reference quality"
genomes suitable for the application of reference-based methods.

One of the fundamental metagenomics problems that is amenable to reference-based
analysis is that of "sequence classification" or "read assignment”. This is the problem of
assigning sequenced reads to taxa. The MEGAN program (Huson et al., 2007) was one of the
first reference-based read assignment programs and was published shortly after sequencing-by-
synthesis methods started to become mainstream. It provided a phylogenetic context to mapped
reads by assigning reads to the lowest taxonomic level at which they could be uniquely aligned,
and became popular in part because of a powerful accompanying visualization toolkit. One of the
drawbacks of MEGAN was that its approach to assigning ambiguously mapped reads limited its
application to quantification of individual strains, an issue which was addressed in a number of
subsequent programs, for example GRAMMy (Xia et al., 2011) and GASIC (Lindner et al.,
2013), which were the first to statistically assign ambiguously mapped reads to individual
strains. Unfortunately, these approaches all relied on read alignment, a computational problem
that is particularly difficult in the metagenomic setting where reference genome databases are
large and read sets gigantic.

In a breakthrough publication in 2014 (Wood & Salzberg) it was shown that it is possible
to greatly accelerate read assignment utilizing fast k-mer hashing to circumvent the need for read
alignment. An implementation called Kraken was used to show that analyses that previously took
hours were tractable in minutes, and the removal of the read alignment step greatly simplified
workflows and storage requirements. However the Kraken speed came at a cost. An examination
of the Kraken algorithm and output reveals that the method takes a step back from GRAMMy
and GASIC by discarding statistical assignment of reads at the strain level in favor of direct

! This chapter is joint work with Harold Pimentel, Nicolas Bray, Pall Melsted and Lior Pachter, and this material has been included
with their permission.
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taxonomic assignment as in MEGAN. The net effect is that while Kraken is more accurate than
MEGAN (Lindgreen & Renard, 2015), it is unsuitable for quantification. This is because, unlike
GASIC, Kraken is strictly designed to be a read assigner: its only output is a file listing the
taxonomic assignment for each read. A natural question to ask is whether the strengths of
Kraken and GASIC can be combined, i.e. whether it is possible to leverage fast k-mer based
hashing to map reads not at the taxonomic but at the strain level, while assigning the resulting
ambiguously mapped reads using a statistical framework that allows for probabilistic assignment
of reads.

To answer this question we turned to RNA-Seq (Cloonan et al., 2008; Lister et al., 2008;
Nagalakshmi et al., 2008, Mortazavi et al., 2008), an experiment for which there has been
extensive methods development that we hypothesized could be adapted and applied to
metagenomics. Many of the challenges of metagenomic quantification translate to problems in
RNA-Seq via a dictionary that replaces genome targets with transcript targets. For example,
ambiguously mapped genomic reads that are difficult to resolve at the strain level in the
metagenomics setting are analogous to reads that are difficult to assign to specific isoforms in
RNA-Seq. Statistical questions at the heart of "comparative metagenomics" (Huson et al., 2009;
Rodriguez-Brito et al., 2006; Tringe et al., 2005) are analogous to the statistical problems in
differential expression analysis. In fact, the only significant differences between metagenomics
and RNA-Seq are that genome sequences are much larger than transcripts and reference
databases are less complete. These differences have engineering implications, but statistically
and computationally, metagenomics and transcriptomics are very much the same.

In this chapter we show that technology transfer from RNA-Seq to metagenomics makes
it possible to perform read assignment both rapidly and accurately. Specifically, we show that it
is possible to accurately assign reads at the strain level using a fast k-mer based approach that
goes beyond the hashing of Kraken and takes advantage of the principle of pseudoalignment
(Bray et al., 2015). The idea of pseudoalignment originates with RNA-Seq, where it was
developed to take advantage of the fact that the sufficient statistics for RNA-Seq quantification
are assignments of reads to transcripts rather than their alignments. The same applies in the
metagenomics setting, and we show that, just as in RNA-Seq, application of the EM algorithm to
"equivalence classes" (Nicolae et al., 2011) allows for accurate statistical resolution of mapping
ambiguities. Using a published simulated dataset, a biological dataset from the human
microbiome project, and an implementation of pseudoalignment coupled to the EM algorithm in
kallisto, we demonstrate significant accuracy and performance improvements in comparison to
state-of-the-art programs.

2.2 Results

To test the hypothesis that RNA-Seq quantification methods can be applied in the
metagenomics setting we began by examining the performance of eXpress, a program that
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implements a streaming EM algorithm for RNA-Seq read assignment from alignments, on
simulated data (Roberts & Pachter, 2013). We chose eXpress because it utilizes traditional read
alignments directly to a transcriptome but is more memory efficient than other approaches (e.g.
RSEM (Li & Dewey, 2011)) and therefore more suitable in the metagenomics setting. Other
RNA-Seq quantification tools such as Cufflinks (Trapnell et al., 2010) were not suitable for our
needs because of their dependence on read alignments to genomes and not transcriptomes, a
requirement that does not translate easily to the metagenomics setting.

To test eXpress we aligned a simulated dataset of lllumina-like reads from 100 microbial
genomes to a reference database containing only those genomes, allowing us to compare results
to a ground truth (the 1lluminal00 data) (Mende et al., 2012). We began by comparing eXpress
to GASIC, which also utilizes read alignments for read assignment. The results are shown in
Table 2.1. We found that eXpress outperforms GASIC at the exact genome, species, genus, and
phylum levels, which we believe is because the statistical model of eXpress takes into account
data-dependent read error profiles in assigning reads.

A major problem with GASIC and eXpress is that the alignments they require are slow to
generate. The alignments, made with Bowtie2 (Langmead et al., 2012), took days. As reported in
Kraken and the follow-up, Bracken, which has been specialized for quantification (Lu et al.,
2016), significant speed-ups are possible using hashing methods. The programs require only 35
minutes 39s to assign reads and then estimate abundances at the species level. We also tested
CLARK (Ounit et al., 2015), another recently published k-mer based assignment tool and, in
agreement with the benchmarks in (Lindgreen et al., 2015), we found it to be slightly faster,
taking 20 minutes 30s to estimate abundance. Kallisto was the fastest of all programs tested, with
a run time of 5 minutes 55s. As seen in Table 2.1, both Bracken and CLARK have noticeably
worse performance than both eXpress and kallisto.

We next turned to a comparison of kallisto with Bracken and CLARK using the
Illuminal00 simulated data (i100) but using a full, more realistic reference database of 29,698
bacterial genomes from Ensembl (Kersey et al., 2016). In order to handle such a large database,
which is significantly larger than the maximum index size for all three programs, we first
performed a pre-filtering step using recently-published metagenome distance estimator Mash
(Ondov et al., 2016) (see methods for details). Mash filtered the 29,698 genomes down to 1027
genomes which were judged closest to the 1100 reads being quantified; those 1027 genomes
contained 83 out of the 100 "true" strains present in the 1100 dataset.

The results of estimating reads from all 100 genomes against the Ensembl-based index,
listed in Table 2.1 (where the database is called "Ensembl™) and Figures 2.1 and 2.2, show that
kallisto is significantly more accurate than CLARK at all taxonomic levels, and is only
outmatched by Bracken at the genus level. The dramatic decrease in error from the exact genome
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to species level (from 17.59% to 1.26%) indicates that kallisto is correctly assigning the reads
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Figure 2.1. Results of kallisto on simulated reads from the Ensembl dataset at the exact genome level.

Even at the exact genome level (where neither Bracken nor CLARK offer estimates),
kallisto performs well, given the restriction of missing 17% of the actual genomes present in the
reads. To check the effect of the missing genomes on accuracy, we ran kallisto on the i100 reads
only from the present 83 genomes and achieved an impressive AVGRE of 2.59% at the exact
genome level. Even more promisingly, the species-level error of this 83-genome dataset is

0.77%, which is quite close to the 1.26% species-level error of the full 100-genome dataset. This

further supports kallisto

genomes.

s accuracy in assigning reads from missing genomes to closely related

Mash took 362 minutes on a single core to index the full 30k Ensembl genomes, and another 130

minutes to compare the 1100 reads against those genomes; these steps are easily parallelized to
multiple cores. On a single core, kallisto was slower than CLARK but faster than Bracken --

kallisto took 111 minutes to index and 60 minutes 40s to quantify, while CLARK took 131

minutes 35s to both index and quantify, and Bracken took 235 minutes 35s to index and 169

minutes 29s to quantify.
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Figure 2.2. Comparison of species-level abundance estimation between metagenomic programs. Results of kallisto (a),

Bracken (b) and CLARK (c) on simulated reads from the Ensembl dataset at the species level.

16



Table 2.1. Normalized count-based classification accuracy at four taxonomic ranks. CLARK and Bracken results are
missing at the strain level because they do not output strain level counts. Calculated errors are Average Relative Error
and Relative Root Mean Square Error.

Exact Genome Species Genus Phylum
AVGRE RRMSE AVGRE RRMSE AVGRE RRMSE AVGRE RRMSE
i100
kallisto 0.97 5.42 0.14 0.36 0.13 0.38 0.09 0.10
Bracken - - 1.94 9.51 2.21 10.78 0.91 0.92
CLARK - - 12.28 22.73 10.32 18.22 7.52 7.88
GASIC 7.21 19.31 3.80 10.46 3.72 11.43 2.52 3.10
leXpress 2.57 11.92 0.40 0.61 0.34 0.57 0.13 0.18
Ensembl
kallisto 17.15 39.32 1.26 3.01 0.98 2.17 0.72 0.76
Bracken - - 4.94 16.22 1.10 3.97 0.35 0.38
CLARK - - 59.15 72.40 52.68 67.04 45.44 56.76
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Figure 2.3. Results of kallisto on bacterial reads in human saliva samples at all taxonomic levels.
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To test the performance of kallisto on biological data, we analyzed a set of saliva samples
from the Human Microbiome Project. These three samples -- SRS014468, SRS015055, and
SRS019120 -- consist of a total of 9.3 million 60-100bp paired-end reads, collected from three
separate individuals. We pooled them together to analyze the microbes present in the general
saliva microbiome. Running the same Mash-based pipeline on 30k Ensembl genomes identified
744 likely genomes, and using kallisto to quantify the saliva reads against those genomes found
primarily bacteria of the genera Streptococcus (17.5%), Prevotella (17.1%), Veillonella (11.2%),
and Haemophilus (9.9%) as well as a number of less abundant genera (shown in Figure 3). The
most abundant species are those known to be abundant in the oral microbiome: Streptococcus
mitis, Haemophilus parainfluenzae, Veillonella sp. oral taxon 158, and Prevotella histicola.

2.3 Methods

IIluminal00 dataset

We tested kallisto and alternate programs on a set of simulated reads published in (Mende
etal., 2012). The Illuminal00 dataset consists of 53.33 million 75bp reads, simulated by the
IMESSi metagenomic simulator using an Illumina error model. The reads were simulated from a
set of 100 unique bacterial genomes. The set is of genomes from 85 different species and 63
different genera, over a range of abundances from 0.86% to 2.2%.

Reads were trimmed with the program Trimmomatic (version 0.32) (Bolger et al., 2014)
to a minimum length of 40bp, using its adaptive trimming algorithm MAXINFO with a target
length of 40 and default strictness. Trimming was very permissive, and only 40 reads were
dropped due to quality issues.

Taxonomic identification

We analyzed each program'’s output at four taxonomic ranks: phylum, genus, species, and
"exact genome" level. The latter tests the abundance estimation of the actual 1lluminal00
genomes, which are a combination of strains and substrains and thus aren't taxonomically well
defined. The other three ranks are as assigned by NCBI's Taxonomy Database, as of August,
2016.

Count estimation accuracy calculation

Using a simulated dataset with known abundances allowed us to benchmark programs by
comparing program outputs with true values for each genome. While kallisto is able to output
length-corrected individual genome abundances, most of the programs we compared with only
counts, so for consistency we analyzed the accuracy of assigned or estimated counts for each
program. We normalized the estimated counts by the percent of assigned reads in order to be
able to compare relative count estimates between programs.
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We primarily used the error measures AVGRE (Average Relative Error), which
computes the mean of the difference between truth and estimate, and RRMSE (Relative Root
Mean Square Error), which computes the root mean square average of the difference between
truth and estimate, to judge the accuracy of our estimates. Formally, with n true
genomes/species/genera/phyla, true counts 7; (1 << 7 << n) and estimated counts t; at the
rank, and A aligned reads out of T total reads we computed

n

1 o [t & — 7 i lemfti-f—m7 ’
_JI_TF’GREZ—Z% RRMSE = ;Z ——

= : and i

The scripts used to compile the results are available at
http://github.com/pachterlab/metakallisto

Reference genome database

In addition to aligning the Illuminal00 reads against their originating genomes, we tested
the more realistic case of aligning against a large bacterial database -- Ensembl's bacterial
genomes as of version 30. All 29,698 bacterial genomes were downloaded, combined with the
1100 genomes, and used as-is with Mash (see below). For abundance estimation with Bracken,
CLARK, and kallisto, constituent contigs, chromosomes, and plasmids were concatenated
together with a series of 10 ambiguous bases represented as N, and NCBI's taxonomic ID was
manually added to the headers for Kraken's use.

Mash genome pre-filtering

To lower the number of genomes to index to a reasonable level, we ran the Illuminal00
dataset against all 30,000 Ensembl genomes using Mash, a genome distance calculator. We used
only the top 10 genomes from each species that were judged closest to the reads in subsequent
abundance estimation, to get a reasonable number of genomes for indexing.

The scripts used to filter the genomes based on Mash results are available at
http://github.com/pachterlab/metakallisto

2.4 Conclusions

The idea of translating RNA-Seq methodology to and from metagenomics was, to our
knowledge, first proposed in (Paulson et al., 2013) where statistical methods for identifying
differential abundances in microbial marker genes were developed. In that paper, there were
comparisons between the proposed metagenomics method and RNA-Seq differential analysis
methods implemented in DESeq (Anders & Huber, 2010) and edgeR (Robinson et al., 2010).
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Notably, the central idea of the paper, the specific consideration of zero inflated distributions to
account for undersampling, is also used in single cell expression analysis (McDavid et al., 2013).

Our results show that RNA-Seq methods for quantification are also applicable in the
metagenomics setting, and our results with kallisto demonstrate that it is possible to accurately
and rapidly quantify the abundance of individual strains. With a few exceptions, e.g. (Bradley et
al., 2015), most metagenomic analyses have focused on higher taxonomy, a point highlighted in
the recent benchmarking paper (Lindgreen et al., 2015) which compares predictions at the
phylum level because "[comparisons at that level are] less prone to differences”. The phylum
level is four levels removed from genus, let alone species or strain. Our results suggest that the
door is now open to metagenome analyses at the highest possible resolution.

While our benchmarks are primarily based on simulated data, our experiments are much
more realistic than previous analyses. For example, the Kraken and CLARK papers report results
on simulations with ten genomes, whereas we have simulated from 100 genomes and mapped
against nearly 30,000. One of the difficulties we faced in our analyses was the technical issue of
taxonomic naming and annotation in collating results. This seemingly trivial matter is
complicated by the lack of attention paid to low taxonomic level analysis in previous studies.

As reference databases grow in size, there will be continued challenges in quantification
and downstream analysis. While the two-step Mash-kallisto workflow we have described here
can scale for the time being, novel algorithmic ideas are needed to that can leverage large
databases for individual genome analysis, yet efficiently discard irrelevant information.
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Chapter 3: K-mer based metatranscriptome analysis

3.1 Introduction

While metagenomic sequencing and analysis is useful for determining which microbes
are present in a microbiome, it does not tell us the functional activity of these communities. The
best approach to answering that question is metatranscriptomic sequencing: sequencing the
coding mRNA of a microbial community. This area of microbial ecology is younger and less
well-researched than metagenomics, in large part because of the additional challenges of
enriching for prokaryotic mRNA: the inability to fully remove rRNA sequences from microbial
total RNA means that deeper sequencing is required to get a useful number of mMRNA reads,
because up to 91% of reads can still be rRNA (He et al., 2010).

In addition to the technical difficulties with metatranscriptomics, the pipelines available
for analysis remain limited and based almost entirely on BLAST and standard alignment
algorithms, with no significant handling of ambiguous reads. Because there is a significant
amount of shared sequence between bacterial genes, this is a particularly challenging problem.
As a result, metatranscriptomic pipelines are slow and often awkward to run, with an inability to
make use of the full range of bacterial reference sequence. Several recent pipelines are all or
primarily available online, to deal with the issues of required computational resources and
complex install procedures. While this is effective in some respects, it has its drawbacks: users
can only utilize the database provided, and are unable to control when their data is analyzed.

Following kallisto’s success at metagenomic read assignment (Schaeffer et al., 2015), in
this chapter, we apply kallisto to the related problem of metatranscriptome read assignment. At
first glance, metatranscriptomics is even more similar to the RNA-Seq analysis kallisto was
designed for than metagenomics; however, in addition to the size problem common to all
meta’omics analysis, there is also the difficulty of high transcript similarity between
transcriptomes. In general, coding sequences are more strongly conserved than non-coding
sequences, so metatranscriptomes focus on sequence regions that often show little variation
between strains. As kallisto has no way of knowing which transcripts are grouped into strains, it
does not preferentially identify transcripts from a smaller number of strains, and so
distinguishing between similar transcripts from multiple genomes becomes very difficult. To
address this problem, we use a two-step process: an identification stage and a quantification
stage. The identification stage (pseudoaligning against a wide variety of targets) attempts to
narrow down the possible strains present in the sample, and the quantification stage
(pseudoaligning against the strains the previous stage identified as present) uses kallisto's
pseudoalignment and EM algorithm to judge how much of each transcript is in the sample.

This two-step process is also intended to address kallisto’s biggest flaw: large indexes for
pseudoalignment take an enormous amount of memory. Indexing several thousand genomes
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takes hundreds of gigabytes of RAM, prohibitive even for large computing resources. While this

is not a problem for traditional RNA-Seq, it is clearly a big issue for meta’omics, which often
has tens of thousands of reference genomes or transcriptomes. Ideally, the identification stage

can accommodate more index flexibility (and thus smaller indexes), because it is only needed for

a present/absent determination, while the quantification stage will need a smaller index because

it’s only comparing between a small number of pre-identified strains.

3.2 Results

In order to test whether kallisto could successfully calculate transcript abundance at all,
we pseudoaligned a simulated 7.5-million read single end metatranscriptome dataset directly to
its 109 source transcriptomes. As not all of the transcriptomes were available from Ensembl, we
removed the simulated reads that were derived from unavailable transcriptomes; with this
modification, 72% of the simulated reads were assigned by kallisto. After summing the

transcripts into their source transcriptomes, overall accuracy at the strain level was nearly
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perfect, with an average relative error of 0.86%; this is comparable to the accuracy seen at a
metagenomic level.
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Figure 3.2. Estimated counts of transcripts in simulated data. True (blue line) and estimated (red dots) transcript-level
counts of simulated metatranscriptome reads pseudoaligned against only transcripts present in dataset. (a) High
abundance transcripts with thousands of reads present in dataset; (b) Low abundance transcripts with approximately
100 reads present. Kallisto shows high accuracy estimating the abundance of with highly expressed transcripts, but
produces significant errors with lower abundance transcripts. Note that the apparent structure of the errors is an
artifact of sorting by first “true” counts, then by estimated counts.

At the transcript level, calculated errors were much worse, with an average relative error
of 34%. Some of the error is due to recent changes in the transcriptomes, causing them to no
longer fully match the simulated data being used; this is likely responsible for some of the 28%
of the reads failing to align at all. As seen in Figure 3.2, actual alignment was reasonable among
the most abundant transcripts, but varied much more in the lower abundance transcripts. It is
clear that the errors within a transcriptome balance out, since the above results summed by
genome are extremely accurate; this suggests that the abundance estimation errors are essentially
randomly distributed, rather than being systemic to certain strains or transcripts.

Despite the lackluster transcript abundance estimation, the highly accurate strain-level
abundance estimation was encouraging. In order to test the ability of kallisto to identify the
source strains from a large set of possible strains, we created a representative transcriptome
index, containing the transcriptome of a single strain from every available species.
Pseudoalignment of the simulated dataset to this representative transcriptome index, however,
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gave very poor species-level identification results, as seen in the below graph. Any read that did
not have an exact-match strain was likely to be misassigned, resulting in a large amount of false
positives and an average error of 66%.
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Figure 3.3. Estimated counts at species level aligned against representative transcriptomes. True (blue line) and
estimated (red dots) strain-level counts of simulated metatranscriptome reads pseudoaligned against a representative
transcriptome index containing only a single strain from 4,412 species.

The above issues are most likely a result of kallisto failing to take into account that
transcripts come from single strains. From kallisto’s point of view, if a read could come from
two transcripts, there’s no reason to prefer pseudoaligning to one versus the other, and most
likely, kallisto will end up concluding that two identical transcripts are present in equal
abundances in the metatranscriptome. However, from an external viewpoint, it would be better if
it gave extra weight to transcripts that come from strains with multiple transcripts present in the
sample. Future plans include adapting kallisto's model to regularize abundance across genomes,
by including the ability to pass along information to kallisto of the form “these transcripts are
linked, and should be present or absent as a group”. This could be implemented as a penalty for
transcripts with highly unbalanced coverage within a single strain during the expectation-
maximization step. In the short term, we tested identifying strains using genomic
pseudoalignment to improve accuracy of metatranscriptome abundance estimation.

Pseudoaligning metatranscriptome reads to bacterial genomes should lead to sufficiently
accurate identification for pre-filtering potential source genomes, since kallisto doesn't consider
coverage when determining abundance, thus the uneven coverage of a transcriptome is not a
problem. Additionally, as these are prokaryotes, there are no splicing issues to confuse genome-
level alignment. For identification purposes, we created a species-level representative index,
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picking one strain from each species present in Ensembl. Due to the fact that Ensembl has fewer
genomes than transcriptomes, some of the source transcriptomes of my simulated dataset were
not available as genomes (even at the species level), so the dataset used for this test had 30
additional strains removed, leaving a total of 80 strains remaining.

Kallisto’s performance on the simulated dataset, when aligning to the representative
genome index, showed an impressive degree of strain- and species-level accuracy in its
abundance calculations, given that many of the true source strains of the simulated reads were
not present. At the species level, average relative error was 27%, with only 9% of the reads being
attributed to species not actually present in the sample. As can be seen in the species-level graph
below, the overall trend of abundance estimation is reasonably accurate, given the limitations.
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Figure 3.4. Estimated counts at species level aligned against representative genomes. True (blue line) and estimated
(red dots) species-level counts of simulated metatranscriptome reads pseudoaligned against a representative genome
index containing only a single strain from 4,412 species.

We used the successful genome-level taxonomic identification to determine which
transcriptomes were possible read sources. At the predefined cutoff of 1000 estimated counts,
109 species were considered as sources of the metatranscriptomic data, containing all 80 source
transcriptomes of the simulated reads. Ensembl contains 500 transcriptomes from those species,
which were used to generate the index for the abundance estimation stage. The resulting
quantification was quite accurate, with an average strain-level relative error of 9.22%, and only
5.79% of the reads misassigned to absent taxa.
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Figure 3.5. Estimated counts at strain level aligned against pre-filtered transcriptomes. True (blue line) and estimated
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(red dots) strain-level counts of simulated metatranscriptome reads pseudoaligned against an index containing only

transcriptomes that had significant read assignment from a representative genome index.

On the strength of the simulated results, we then applied this pipeline to sequenced
human gut microbiome reads collected by Franzosa et al. (2014). As with the simulated data, we
first pseudoaligned the reads to a representative species genome index, to identify potential

strains in the sample. 255 species passed the cutoff of 1000 counts, for a total of 5072
level of genome-based identification, using the 5692 genome strains associated with the 255

transcriptomes. As this is beyond the workable limits of kallisto’s indexing, we ran a second
species found in the first pass.
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Figure 3.6. Estimated counts of human gut metatranscriptome at species level aligned against representative genomes.
(a) First pre-filtering pass. Representative index contained a single strain from 4,412 species, and resulted in 255

species considered ‘present’. (b) Second pre-filtering pass. As the 255 species had too many strain-level transcriptomes
for a single index, another set of indexes was built with the 5,692 strains associated with 255 species, and sequenced

reads were pseudoaligned to them. This resulted in only 71 species considered ‘present’, but they are still associated

with 4,641 individual strains, too many for a single index.
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Our hope was that this further refinement would result in a smaller list of species from
which to select transcriptomes. Even with the second-pass list of potential genomes passing a
higher threshold of 10,000 counts, although the number of species was lowered to 71, the
number of actual strains only dropped to 4641, because E. coli remained among the top 3 species
in overall abundance, and it has 2597 sequenced strains by itself. This is beyond kallisto’s
indexing ability as a single index, and more than two thousand E. coli strains alone meant that
partitioning to 1000 transcriptomes per index would not work for quantification purposes.

Instead, we used the strain-level results directly, which gave 556 strains with more than
1000 counts assigned, 477 of which had Ensembl transcriptomes. We created a new index with
only these transcriptomes, and pseudoaligned the gut microbiome data to it. The resulting
estimated abundances at the genus level are seen in the figure below. Most notably, the top 3
genera in this metatranscriptomic sample are Prevotella, Bacteroides, and Megamonas, with
significantly more counts than other genera. All three are known human gut inhabitants, and both
Bacteroides and Prevotella are considered two of the most common “core” human gut genera
(Xiao et al., 2015).
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Figure 3.7. Estimated counts of human gut metatranscriptome at genus level aligned against pre-filtered
transcriptomes. RNA-Seq reads were pseudoaligned against 477 microbial transcriptomes, derived from a
representative transcriptome index containing a single strain from each of 4,412 species.

As this metatranscriptome dataset has a paired metagenome dataset -- DNA and RNA
collected from the same fecal sample -- we ran the paired DNA sample through kallisto as well.
We used the same two-step filtering process to filter then pseudoalign the metagenomic dataset.
We pre-filtered with the same representative-strain genome indexes, which resulted in 142
strains being indicated as present in the sample. Much as with the metatranscriptome data, this
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included species with thousands of strains present in the reference genome database, so we
couldn’t index all indicated species. Instead we used only these strains to make a sample-specific
index; 6 million of the 18 million metagenomic reads aligned to this index. The estimated counts
at the genus level are listed in Figure 3.8.

The top three most abundant genera in the revised, DNA-Seq-based estimate are
Bacteroides, Prevotella, and Faecalibacterium, with Megamonas no longer in the top 10. All
three of these genera are among the most common human gut microbes, as in fact are 9 of the top
10, and the remaining genus Barnesiella is a known gut inhabitant that was found to be
associated with the reduction of vancomycin-resistant Enterococcus (VRE) colonization (Ubeda

etal., 2013).
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Figure 3.8. Estimated counts of human gut metagenome at genus level aligned against pre-filtered transcriptomes.
DNA-Seq reads pseudoaligned against 142 microbial genomes, derived from a representative genome index containing
a single strain from 4,412 species.

While obviously we cannot calculate the true accuracy of this quantification, we can
compare it to the results from (Franzosa et al., 2014) as seen below, which lists the top 10 genera
found in all samples (unfortunately not listing which sample was associated with which column).
Their top genera are all present in both the metatranscriptome and metagenome abundance
estimations performed by kallisto, albeit in slightly different abundances and with additional
genera interspersed. Most notable is Prevotella, a genus present in high abundance in both the
metatranscriptome and metagenome, but not reported at all in Franzosa et al.’s abundance
summary. The specific species that was assigned the most reads was Prevotella copri, which
according to Franzosa et al.’s supplementary dataset was found only in subject X316192082’s
stool samples, and had several hundred thousand reads aligned to their custom reference pan-
genome of Prevotella copri. Thus, both kallisto and Franzosa et al. agree on the genera present in

this gut microbiome sample.
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Figure 3.9. Estimated relative abundance of top genera in human gut metagenomes. Only genera that make up at least

Eli;%l ggfg samples are included. Taxa identification was determined based on marker genes. Figure from (Franzosa et

The lack of complete consistency between Franzosa et al.’s results and kallisto’s is not
surprising, as the former was primarily based on results from MetaPhlAn, which estimates
taxonomic identity via clade-specific marker genes rather than full genome alignment. Franzosa
et al. performed more detailed alignment to the clades identified by MetaPhlAn via Bowtie2 and
a custom database of concatenated clustered genes from each species, although these results were
not indicated in their abundance summary figure. Their final mapping rate was 31%,
approximately the same as kallisto’s 33%, suggesting that the unmapped reads are most likely
from unsequenced microbes. Unfortunately for further comparison, MetaPhlAn does not list
which species are contained in their core gene catalog, but it is between 1,221-3000 species,
depending on which version was used. This is of course significantly fewer than the nearly
30,000 genomes that kallisto was able to effectively use for pseudoalignment, which would be
expected to change the resulting distribution of read assignments.

Of course, metatranscriptomic data is not usually used for strain-level abundance
estimation, but rather for functional analysis, in hopes of understanding what the community is
doing. While the source paper analyzed the transcriptome only for comparative purposes
between samples, we looked at the abundance of functional categories for the single sample used
above. We used the KEGG MGENES functionally-annotated microbiome gene database to
construct a series of kallisto pre-filtering indexes (see methods), then selected the highly
abundant genes to create a final index. Summing the counts associated with each top-level
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KEGG pathway showed a high prevalence of genes associated with metabolism pathways,
translation, membrane transport, and replication and repair.

100

75

a0

25

=

11

B infectious diseases
B =l growth and death

B metabolism of terpenoids
and polyketides

B Liosynthesis of other
secondary metabolites

I drug resistance
I cellular community
B sianal transduction

0 metabolism of other amino
acids

I lipid metabolism

B folding, sorting and
degradation

B olycan biosynthesis and
metabolism

I replication and repair
I translation

B membrane transport
B nucleotide metabolism
B :nergy metabolism

I metabolism of cofactors
and vitamins

[ amino acid metabolism

B overview
B carbohydrate metabolism

Figure 3.10. Percentage of kallisto-estimated human gut microbiome transcripts assigned to listed KEGG functional
pathways. Remainder of transcripts were assigned to functional pathways with less than 1% overall abundance.

To compare these results to a standard functional analysis pipeline, we used COMAN, an
online metatranscriptomic analysis pipeline (Ni, Li, & Panagiotou, 2016) which uses the aligner
DIAMOND to align the sequenced transcript reads to 2700 complete microbial genomes from
RefSeq. Subsequently, it assigns functional annotations from KEGG to genes with a 1e-5 cutoff
using KOBAS 2.0. The overall method is very similar to BLAST, but significantly faster.

The COMAN functional analysis shows an extremely similar pattern to kallisto’s results.
Specifically, the top most abundant functional categories that kallisto identified, with close to or
more than 200,000 counts assigned, are all the same as the top categories that COMAN found:
carbohydrate metabolism, overview genes, amino acid metabolism, cofactor and vitamin
metabolism, energy metabolism, membrane transport, and translation. The minor differences --
such as kallisto indicating a higher expression of amino acid metabolism genes than COMAN --
may be the result of using different gene databases, or could be an effect of kallisto more
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effectively handling ambiguously-aligned reads. Distinguishing between these would require
indexing COMAN’s gene database in kallisto (difficult due to the lack of descriptive information
about it), or ideally creating a simulated metatranscriptome with known functional content -- the
simulated metatranscriptome used here is insufficient, because COMAN accepts only inputs in
the FASTQ format.
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Figure 3.11. Estimated percentage of genes present in KEGG functional pathways, as estimated by COMAN.

3.3 Methods

Transcriptome and Genome Databases

All reference transcriptomes and genomes used are from Ensembl’s bacterial database at
ftp://ftp.Ensemblgenomes.org/pub/current/bacteria/fasta/. 39,586 complete and partial
transcriptomes were downloaded in May 2016, containing a total of 137,567,837 transcripts, and
29,698 complete and partial genomes were downloaded in May 2016, matching approximately
4412 bacterial species.

Both transcriptomes and genomes were left as individual FASTA files, but were
processed so FASTA headers contained the strain name, and spaces were replaced with
underscores so full header information would be retained by Kkallisto.
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Representative Species Indexes

To handle kallisto’s memory limitations while indexing, instead of indexing all tens of
thousands of available strains, representative indexes were created from a single strain for each
species. Pseudoaligning against these representative strains allows for some level of taxa
identification, if not quantification. The largest strain (transcriptome or genome) of each species
present in the database was chosen for indexing. While this does select for the most sequence, it
does not select for the most contiguous sequence, so presumably many of the genomes are
incompletely assembled.

Since there are several thousand unique species in Ensembl’s databases of both genomes
and transcriptomes -- still too many for kallisto to index at once -- the collection of representative
strains was broken into chunks of approximately 1000 strains for indexing, grouped by genus
where possible. This meant, for most of the indexes in this chapter, 5 to 7 chunks per
“representative index.” While these separate indexes are definitely less accurate than a single
index, in this case we care far more about false negatives than false positives, so the accuracy hit
is acceptable.

Simulated Dataset

To test the performance of kallisto with a known ground truth, we used a simulated
metatranscriptomic dataset of 100bp single-end reads, modeled in abundance off the popular
“simulated low complexity” Sanger metagenomic dataset. The transcript reads were simulated by
Toseland et al. (2014), and the reads and descriptions were generously shared by Andrew
Toseland via private correspondence. “True” abundance of strains and transcripts was calculated
by raw read counts, unadjusted for sequencing bias or error rate.

The simulated dataset consists of 7.5 million single-end reads from 112 strains, with the
majority of strains being at approximately equal abundance, and a few strains being at
significantly higher abundance; this is a relatively common form for microbiome populations to
take, with a few abundant strains, and the remainder being present at low levels. Due to
limitations of the Ensembl bacterial transcriptome database, three of the strains present in the
simulated dataset were not available: "Burkholderia cepacia 383", "Cronobacter turicensis
z3032”, and “Prochlorococcus marinus MIT 9312.” I removed all reads from those strains from
the dataset fasta for the majority of experiments, unless indicated otherwise, leaving 7,351,496
reads.

Biological Dataset

To test the performance of kallisto on a biological sequenced metatranscriptome, we used
a human gut microbiome RNA-Seq dataset with 5.5 million 100bp paired-end reads (SRA
SRR769395), originally generated and analyzed by Franzosa et al. (2014). The dataset is the
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microbiome of a stool sample preserved in RNAlater, from a single healthy individual. This
dataset is paired with a DNA-Seq dataset (SRR769516) from the same individual’s stool sample.

Taxa-Level and Transcript-Level Analysis

The estimated abundance of the simulated and sequenced datasets was calculated and
analyzed using the uploaded python script “compare metagenomic results to truth.py.” In
short, the kallisto output file is processed and fasta headers are converted to NCBI taxonomic
IDs (in the case of taxa-level analysis) or the format “strain name bp location” (in the case of
transcript-level analysis). Counts are summed in the case of duplicates, and a normalization
factor is computed based on the percentage of reads that were assigned. The normalized
estimated counts are then subtracted from the true counts for a given taxa/transcript, divided by
the true counts, and the mean is given as the average relative error.

Functional Analysis

The estimated abundance of KEGG functional pathways was determined by
pseudoaligning to the KEGG MGENES annotated environmental gene catalog (Kanehisa &
Goto, 2000). As the full catalog is 83Gb, we divided it into 87 1Gb indexes for gene
identification purposes. These were run in parallel, and took approximately 3-5 minutes to
quantify against each index. Genes with an estimated TPM less than 10 were then removed from
the FASTA, and the remaining genes were reindexed and quantified against. The resulting gene
abundances were subsequently labeled with their KEGG pathways, and sums of total transcript
count per pathway were computed.

3.4 Conclusions

Our results show that using a two-step process of taxa identification followed by
quantification allows kallisto to functionally take advantage of much larger databases than it can
actually index. For the purposes of transcriptome analysis, it is clear that the identification stage
works much better on genomes rather than transcriptomes, while quantification works best on
exact-match transcriptomes. Identification also does not require the target representative
sequences to be in a single index; thousands of taxa can be spread across multiple indexes, and
the combined abundance outputs will still give a fairly accurate picture of which taxa are present
in the sample. Of concern, however, is that accuracy of both identification and quantification
goes down when exact-match transcriptomes are not present; this is a significant problem, as
most microbes are not sequenced, and thus exact-match sequences are only guaranteed to be
available if they are assembled by the user. While this is certainly a doable task, and is
commonly performed in metagenomic analysis, it would be nice to remove this obstacle.

As currently implemented, kallisto can effectively use metatranscriptome data to estimate
strain-level abundance, but only performs well at estimating transcript-level abundance for high

34



abundance transcripts. This is likely due to the extremely low count of transcripts that are not

highly expressed, in the moderate coverage datasets used in these example analyses; as seen in
figure 3.2(b), the true counts are on the order of 100 reads in the simulated metatranscriptomic
dataset, which may very well be insufficient for kallisto to determine a reasonable abundance.

Of course, most actual analysis of metatranscriptome datasets is not at the transcript
level, but the functional level, grouping together transcripts that have a similar purpose (and thus
grouping together those with similar sequences). This solves the transcript similarity problem,
while giving information on what interests most researchers in RNA-Seq data: the likely
pathways currently active. Kallisto’s functional-level results were highly similar to those of
standard functional analysis pipelines, indicating it is well-suited for this informative form of
analysis.

While the field of metatranscriptomics grows in importance, the pipelines available for
analysis remain limited and based almost entirely on BLAST and standard alignment algorithms,
with no significant handling of ambiguous reads. This is, to my knowledge, the first use of a k-
mer based algorithm on metatranscriptomic data, as well as the most complex handling of
ambiguities. These results indicate that these RNA-Seg-based methods are equally applicable to
metatranscriptomics, and should be examined further.
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Chapter 4: Concluding remarks on low-memory k-mer indexing
improvements

As demonstrated in the previous chapters, the primary limitation to kallisto’s ability to
pseudoalign to multiple genomes or transcriptomes is the high memory requirements of its
indexes. The current form of the index is such that more than a couple thousand microbial
genomes overwhelms even large servers with extensive RAM, making it impossible for kallisto
to be used on meta’omic data for the average individual laptop, as well as making it impossible
for kallisto to directly pseudoalign against the current 50,000 microbial genomes contained by
Ensembl, or the 83Gb of annotated microbial genes available from KEGG.

In this work, we investigated two separate options for handling this issue: pre-filtering
using the genome distance estimator Mash, and pre-filtering by breaking up a collection of
genomes or genes into smaller, more feasible indexes, then iteratively pseudoaligning to each
one. There are advantages and disadvantages to each: Mash is extremely fast, even on tens of
thousands of genomes, but has a hard time distinguishing between similar genomes, which is
obviously a significant limitation. This results in a significant level of false negatives at the strain
level, which is an area of increasing interest for metagenomic analysis. Conversely, while using
kallisto sub-indexes for pre-filtering is extremely accurate -- no false negatives were observed in
the simulated metatranscriptomic analysis -- it is also much slower than Mash alone. Pre-filtering
to the split 83Gb KEGG annotated gene database took over 7 hours, on 10 cores. This obviates
the primary advantage of a k-mer based method, that of speed, and adds a significant level of
complexity to the abundance estimation process.

Ideally, we need a method that combines the speed of Mash with the accuracy of kallisto.
This is most achievable by discarding k-mers to reduce computational costs. Most k-mers in a
genome are not necessary or even useful for discriminating between microbes. As seen in many
of the current k-mer based metagenomic identification programs, and as implemented in Mash
itself, a subset of k-mers that are distinctive between genomes can be used instead of the full
genome. Previous applications of this idea have demonstrated that, while workable, this results in
lower accuracy than using all available k-mers from the reference genomes. This makes it
entirely suitable for a fast “first-pass” filtering step to determine which genomes are present in
the sample, with detailed abundance estimation occurring with a “full” index of just present
genomes subsequently.

The most obvious implementation of a sparse k-mer index is to pick only k-mers that are
unique to a genome, which is how CLARK selects its indexed k-mers. However, this can fail in
the case where two strains are identical except for an indel: in such a case, the only k-mers
unique to the smaller genome would be those spanning the deletion junction, and per-strain
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metagenomic coverage is not always high enough to be assured of sequencing those k-mers. So
for the sake of robustness to low sequencing depth, we need a significant number of k-mers from
each genome, which means we cannot limit ourselves to truly unique ones.

Another implementation that is frequently used is selecting an evenly-distributed set of k-
mers across each genome. MiniKraken, for instance, throws out 18 of each 19 sequential k-mers
in its index in order to remain within 4GB. While this ensures a reasonable coverage of each
genome (roughly 5% in this case), it does not enrich for discriminatory k-mers, and thus can
make it harder to distinguish between very similar genomes.

Other approaches include that used by LMAT, which groups k-mers by which genomes
they are found in, and indexes all such groups that contain at least 1000 different k-mers. While
this does reduce the size of the index, it neither ensures the k-mers are the most discriminatory,
nor ensures that all genomes contribute a significant number of k-mers.

For alternate approaches that maintain both high coverage and high discrimination,
consider the set of all genomes to be indexed, G = {g1, 92, ... On}, and the set of all k-mers
contained in those genomes, K = {k, ko, ... kn}. In order to reliably judge the approximate
abundance of each genome, we should have a set number of k-mers from each one; specifically,
we should have at least enough k-mers to cover € % of a given genome gn. We want the k-mers
associated with gn to be the most discriminatory (that is, to contain the most information
regarding gn) while also minimizing the set S of all k-mers selected to index, in order to keep the
index as small and memory-efficient as possible.

There is another reason to minimize S: if two strains g1 and g2 are mostly similar with a
small number of differences, obviously S will contain all the discriminatory k-mers. However, if
those k-mers are less than € % of g: and g2, more k-mers must be chosen for S, from the
sequences shared between g1 and g». If the k-mers chosen for g; are different than those chosen
for gz, then an additional source of error has been created, and meaningless differences in
sequenced coverage over the genomes can cause abundances to be misjudged. Making sure the
k-mers that are not discriminatory between g; and g are the same will prevent that problem,
while keeping the index as small as possible.

The simplest memory-efficient algorithm would be as follows: first, count the number of
genomes that each k-mer k, appears in, across the whole reference genome. Next, for genome g,
identify the k-mers present in that genome, and select those k-mers that have the lowest total
number of genomes they are present in -- these will be the most unique k-mers available in that
genome. Most genomes will not have € % of their sequence covered only by unique k-mers, of
course, and so some k-mers added to S will be present in other genomes. This is fine. For
genome g, do the same, but when you have a choice of k-mers that are present in the same
number of genomes, always select those that are already in S. Repeat for all genomes in the
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reference. While this will not strictly minimize S, it will act to keep S reasonably compact, and
will keep the non-unique k-mers that are shared between genomes as shared as possible.

An algorithm that would be more complex but more certain to give us the results we need
would be to use column subset selection (CSS) methods to reduce the dimensions of a matrix
containing all k-mers (McCurdy, Ntranos, & Pachter, 2016). In this case, the columns would be
genomes and the rows would be k-mers, with each element indicating the count of that k-mer in
that genome, and the selection algorithm would be acting on rows. CSS has been shown to
preserve clustering structure in single-cell RNA-Seq datasets while reducing the number of
features, keeping the data that is most distinctive and representative. While this algorithm usually
requires full matrix creation, there is an online streaming CSS algorithm that may be more useful
for our low-memory uses (Cohen, Musco, & Musco, 2015).

Once S is finalized, each k-mer is linked to the genomes it is present in and hashed to
create the minimized index. The k-mers from the sequenced reads are then compared to the
index, with the EM algorithm handling reads that could come from multiple genomes, as usual.
The output will be a set of estimated abundances for each genome in the reference, with the
accuracy of these estimates primarily depending on the size of €. This allows for a direct trade-
off between accuracy and memory efficiency, making this ideal for pre-filtering using tens of
thousands of genomes.
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Appendix A: Notes on collecting microbiome samples from D.
melanogaster guts

While the gut microbiomes of mammals has been extensively studied, sequencing gut
microbes from invertebrates is more difficult. The primary issues are related to the near-
impossibility of separating gut contents from host tissue; because of this, host DNA and RNA
can easily overwhelm metagenomic and metatranscriptomic sequences. This is exacerbated by
the yeast-based diet, which results in significant yeast DNA and RNA in gut samples; up to 60%
of a DNA library can consist of non-microbial DNA (Elya, et al., 2016).

Because of this, published analyses of the Drosophila melanogaster gut microbiome are
exclusively based on 16S rRNA gene sequences, because they can be easily amplified and
sequenced while avoiding host and food contamination. However, as explained earlier, this limits
the detail in which the microbiome can be examined, and makes it impossible to judge functional
activity. In order to get a more complete picture of the D. melanogaster microbiome, | attempted
to develop the following protocol to extract paired DNA and RNA samples from the same guts,
and build them as libraries.

A.1 Gut dissection

Previous studies have found that third instar D. melanogaster have the most diverse gut
microbiome, as based on 16S rRNA gene sequencing (Wong, Ng, & Douglas, 2011). For this
reason, | focused on extracting guts from this stage alone. Third instar larva are easy to identify
and have the longest stage length of any larval stage, so collecting a significant number is
straightforward. Following collection, the larvae are bleached to remove surface microbes, and
then the gut is dissected in RNAlater to protect RNA from degradation.

Dissection protocol

Let larva feed on food mixed with food coloring, for easy gut identification, for at least
half an hour. Collect third instar larva in mesh egg collecting dish, and rinse food away with
water. Transfer larva to fresh 10% bleach solution and surface sterilize for 5 minutes. Transfer
larva to PBS solution to rinse. Transfer larva individually to RNAlater under a dissecting scope,
and remove cuticle and surrounding fat, leaving only gut tissue. Be careful not to pierce the gut
while dissecting, to avoid losing microbial contents.
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Figure A.1 Dissected third instar larva gut. Pink and purple color is due to food coloring added to food before
dissection.

A.2 DNA/RNA extraction

Extracting either DNA or RNA from D. melanogaster guts is straightforward, and there
are a number of commercial kits and protocols that will work. However, collecting both DNA
and RNA simultaneously, at significant concentrations and with acceptable quality, required
more trial and error. | was guided in this process by a paper by Triant & Whitehead (2009),
which compared a number of protocols for simultaneous DNA/RNA extraction.

Extracting both nucleic acids from prokaryotes, especially gram positive bacteria,
requires both enzymatic and mechanical treatments. First, the host gut cells are dissociated using
proteinase K, then the bacterial cells are opened up by being vortexed with 0.1 mm zirconium
beads. While RNA can be extracted without the proteinase K digestion, DNA requires it, which
limits buffers to those that allow the digestion and also protect RNA during the mechanical bead
beating process.

TRIzol, while enormously effective at protecting and extracting RNA, does not allow for
proteinase K digestion, and the addition of any buffer used during digestion to TRIzol later in the
protocol interferes with the phenol/chloroform extraction later. The buffer that finally worked for
both purposes is RLT Plus, which is the Qiagen buffer that's used in the RNeasy Plus Micro kit.
Because it’s used for homogenization in an RNA extraction Kit, it clearly is sufficient for RNA
protection, and it does not interfere with proteinase K digestion.
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The homogenized supernatant resulting from the bead beating protocol is in a Qiagen
buffer that should be compatible with a variety of Qiagen columns. It could also be ethanol
precipitated, but | found that resulted in low yields, as well as a higher risk of ethanol
contamination in downstream library-building steps. I wasn’t able to get any of the protocols to
separate the DNA and RNA from the same sample working, so | attempted to split the
homogenate and extract DNA from half and RNA from the other half.

Initially, it looked like both protocols were successful: I extracted 1.4ug of RNA and
400ng of DNA, according to Qubit measurements. However, the DNA sample also contained
1.8ug of RNA, according to Qubit measurements, which | successfully removed after treatment
with RNaseA for 1 hour at 37 C. Surprisingly, though, the DNA was also nearly eliminated:
from 20ng/ul to 1ng/ul, as measured by Qubit. This was a very unexpected outcome, and | have
no satisfying explanation for it.
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Figure A.2 Bioanalyzer trace of RNA sample extracted from gut.
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Figure A.3 Bioanalyzer trace of DNA sample extracted from gut.

In the absence of further time to refine this protocol, I did not explore additional avenues
of extraction, but a reasonable next step would be to try the Qiagen AllPrep DNA/RNA Micro
kit, as recommended by Triant & Whitehead. It should allow for simultaneous extraction of
DNA and RNA from the same sample, although in lower concentrations than individual
extractions might produce. Given the difficulties of extracting nucleic acids from these samples,
this commercial kit seems like a good avenue to explore.
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Homogenization protocol

Homogenization protocol is modified from Elya, et al.’s Drosophila gut homogenization
(2016). Transfer dissected gut to clean nonstick tube, and add 180ul of buffer RLT Plus and 20ul
of proteinase K, then incubate at 56 C for half an hour. After incubation, food coloring should be
dispersed throughout the solution, no longer concentrated in the gut tissue (although the gut
tissue will still appear coherent). Add 50-100ul of 0.1mm zirconium beads and 200ul of chilled
RLT Plus to the tube, and perform subsequent bead beating in 4 C cold room:

Vortex at maximum power for 1 minute

Allow samples to rest for 30 seconds

Vortex at maximum power for 1 minute

Allow samples to rest for 30 seconds

Centrifuge samples 5 minutes at maximum speed

Transfer supernatant to a new tube and save

Wash beads with 400 uL cold RLT Plus (mix beads and additional buffer by pipetting up

and down)

8. Vortex at maximum power for 1 minute

9. Allow samples to rest for 30 seconds

10. Centrifuge samples 5 minutes at maximum speed

11. Transfer supernatant to tube from step 6

12. Wash beads with 400 uL cold RLT Plus (mix beads and additional buffer by pipetting up
and down)

13. Centrifuge samples 5 minutes at maximum speed

14. Transfer supernatant to tube from step 11

15. Centrifuge pooled supernatant from step 14 5 minutes at maximum speed

16. Remove supernatant (leaving beads behind) and transfer to new tube

17. Let sit for 5 minutes at room temperature before proceeding, to allow proteins to

dissociate.

Nooohk~ownE

A.3 Microbial mMRNA enrichment

One of the chief difficulties of metatranscriptomics is enriching the microbial mMRNA
over the microbial rRNA, in addition to the host and yeast RNA. There are a number of systems
and kits designed to preferentially remove rRNA reads or enrich non-rRNA reads, several of
which | have tested on Drosophila gut RNA.

Initially I attempted an unreleased protocol developed by Dr. Alexandra McCorkindale
(2015) to deplete Drosophila rRNA, combined with a protocol to deplete microbial rRNA
(Kukutla, Steritz, & Xu, 2013). These protocols use custom biotin-labeled RNA probes to bind to
and then remove rRNA sequences. However, they require a significant amount of optimization
and modification for use with specific samples. Because of this, | was unable to get these
protocols to work effectively.
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There are commercial Kits that perform the same technique, but each generally only
removes the rRNA from a single source, meaning several Kits are required to fully deplete rRNA.
For instance, the MicrobExpress Bacterial mMRNA Enrichment Kit uses capture oligonucleotides
and magnetic microbeads to remove up to 95% of the 16S and 23S rRNA from total RNA of
some bacterial species. The Ribominus Transcriptome Isolation Kit has biotin-labeled probes
that can similarly remove up to 98% of large yeast rRNA molecules, 18S and 25/26S subunits.

Use of both these kits leaves, hopefully, only Drosophila rRNA to be removed. As
Drosophila is a less popular model organism for sequencing experiments than mammals like
mice or humans, there are fewer rRNA removal kits available. One such kit is the Ovation RNA-
Seq System V2, which preferentially primes and transcribes non-rRNA reads, leaving behind
Drosophila rRNA. Because this kit transcribes RNA into cDNA, it can only be used as the last
step of rRNA removal, after removing all other unwanted RNA.
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