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The massive generation of genetic, epigenetic, transcriptomic, and other sources of

data, allows us to pursue biological questions at scale while simultaneously adding a systems-

level context to hypotheses in biology. Questions about gene expression have driven us to

understand various chromatin components, most recently that has lead to the study of chromatin

conformation via high-throughput methods such as HiC or HiChIP. To obtain a full understanding

of chromatin conformation, integration with genetics variants (e.g. SNPs from GWAS and eQTL

studies) and epigenetics signals (e.g. histone acetylation, open chromatin regions, transcription

factor binding, etc) is essential. Similarly, complex diseases such as cancer can advance via

xix



a system of distinct factors that interact to form a deliberate and potent pathogenic regulatory

network. Thus, it is imperative we build the resources and tools necessary to integrate multiomics

signals together.

Here, I present three chapters derived from two major works that demonstrate the

importance of data integration for a holistic understanding of biology. First, I present a database

of HiChIP data for over 1000 samples (chapter 1) with important applications for the analysis of

motifs, GWAS and eQTL studies, and network analysis (chapter 2). Second, I showcase and

described the nipalsMCIA R package which reduces datasets for a systems level analysis of

multiomics data (chapter 3).
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Introduction

0.1 Integrating Diverse Biological Signals for a Holistic
Understanding of Disease

Disease susceptibility and progression is driven by a variety of factors including both

internal (e.g. genetic variation) and external (e.g. environment, bacteria). In the case of diseases

associated with genetics, the root cause may be a single monogenic mutation as in the case

of Duchenne muscular dystrophy [1] or multifactorial in the case of Type 1 Diabetes [2]. To

better understand multifactorial disease we must generate and integrate diverse biological signals.

Studies have steadily worked toward utilizing multiple sources of data, eventually leading

researchers to coin the term "multiomics". Despite the enthusiasm, it remains a challenge to

systematically and meaningfully integrate multiomic datasets. Depending on the data sources it

may be possible to perform enrichment and/or correlation analyses for overlapping signals [3–7].

When applicable more sophisticated techniques can also be utilized such as joint dimensionality

reduction [8–19]. Indeed, this has been the trajectory of the genetics field, driven by sequencing

technologies that allow the interrogation of genetic variants, gene expression, chromatin marks,

open chromatin region, chromatin interactions, and beyond. In the broader biology field, these

high-throughput methodologies include technologies such as those measuring serological levels

(antibody titers), cell frequency estimations, protein abundance and cytokine levels [20, 21]. The

growing maturity of these techniques has also encouraged large-scale efforts and databases such

as the Roadmap [22], ENCODE [23], 4DN [24], CMI-PB [25] and similar efforts [16, 17, 20,

26]. As alluded to previously, the utilization of multiomics data in genetic and epigenetic studies
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has enabled several advancements that will be discussed in the following sections.

0.2 The Expanding Role of Multiomics Datasets in Uncover-
ing Genetic Contributions to Disease

Genome-wide association studies (GWAS) have revealed pinpoint regions of the genome

with disease-associated variants that predispose us to disease [27, 28]. However, approximately

90% of these variants are located in non-coding regions making it difficult to understand their true

function [29]. This has prompted researchers to develop techniques to study epigenetic signals

in search of regulatory elements such as enhancers. ChIP-seq has contributed substantially to

this endeavour by extracting regions of the genome that are bound by transcription factors or

histones with specialized acetylation or methylation-based modifications [30]. Initial studies

associated different histone marks with expression inducing marks such as H3K27ac, H3K9ac,

H3K4me3 [31]. Ultimately, H3K27ac has been the preferred target for many researchers given

its strong association with enhancer elements [31]. Naturally, several studies applying H3K27ac

ChIP-seq have demonstrated the specificity of enhancer elements within different cell types

thus meaningful integration with GWAS data could reveal whether candidate SNPs are enriched

at these elements and provide evidence as to the cell type or tissue of action [32]. Indeed,

methodologies [3–7] and studies testing the enrichment between ChIP-seq and GWAS signals

have helped prioritize tissues/cell types [33, 34] and find radical difference between cancer and

complex disease-associated variants [35]. Overall, the integration of genetic associations with

enhancer activity has proven quite important however the goal of interpreting GWAS variants

is far from concluded and we need to keep developing resources and frameworks that leverage

other types of epigenetic data [32, 36].

Similarly, the integration of transcriptomics with genomics has been essential to detecting

genetic variants with a strong influence on gene expression levels. Expression quantitative trait

loci (eQTL) studies have undoubtedly been a powerful framework for identifying SNPs that are
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highly correlated with expression of their nearby genes [37–39]. Like ChIP-seq, transciptomics

has revealed eQTLs specific for different tissues, contexts, and timing [40]. Altogether – GWAS,

eQTLs and 1D epigenetic signals have made important advances thereby motivating the creation

of large consortium such as the GWAS Catalog [28] and eQTL Catalogue [38] that systematically

reprocess and make available data on functional variants. Other databases such as the Open

Targets have further built upon omics datasets to provide genetically supported drug targets in

the form of several QTL signals, enhancer-promoter correlation analyses and targeted chromatin

conformation [41]. The design and implementation of powerful integrating methodologies such

as those employed by Open Targets plays an essential role in functional variant characterization

and investigation.

0.3 Linking Genetics with Chromatin Architecture to
Connect Genes and Regulatory Regions

Chromatin conformation enables the genome to interact across long distances, defying

the constraint of the linear genome [42, 43]. This is accomplished through the formation of

compartments, topologically associated domains and loops [44–48]. To study this phenomena at a

genome-wide scale, the HiC assay was developed which captures interactions between all regions

simultaneously, creating comprehensive maps of chromatin conformation [49, 50]. Briefly, HiC

utilizes DNA crosslinking, digestion, biotin marking, re-ligation, and biotin pulldown to then

build a sequencing library that, when fully processed, generates a matrix of interactions between

loci at various resolutions. Studies have associated this organization with biological processes as

diverse as chromatin accessibility [50], conservation of loops between human and mice [49], 1D

epigenetic signals [46], transcriptional changes [51, 52], cell development and differentiation

[53], and disease [54, 55]. To expand upon this methodology, HiChIP has fused HiC together with

ChIP-seq to extract protein-centric interaction pairs [56]. This method has gone on contribute

to similar findings such as changes in loop formation conditional on the presence of specific
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transcription factors [57] and applied to variant prioritization studies [39, 58, 59]. The latter has

been extensively applied to GWAS signals derived from skin [60], kidney [61], ovarian [62–

64], heart [35, 65], and immune-associated [66–70] diseases. The linking nature of chromatin

conformation will continue to promote its popularity within omics studies and the effective

development of resources and tools will be essential to continuing this trend.

0.4 The Evolution of Multiomics within the Broader Biology
Field

Biological events do not occur in isolation, rather, they are the result of complex inter-

actions between environments, cellular programs, and molecular events. The field of systems

biology attempts to capture a holistic understanding of biology through integration of diverse yet

complementary multiomics datasets. Within this broader field, multiomics stands as a significant

topic that includes systems biology subfields such as vaccinology [25, 26, 71–74], pharma-

cology [75] as well as cellular [76, 77] and mechanistic biology [78]. Realizing this growth,

several systems biology researchers have devoted considerable effort to build resources capable

of analyzing and hosting multiomics datasets such as HIPC [21], CMI-PB [25], the Human

Microbiome Project [79, 80], among others [15, 81]. Alongside the buildup of these datasets,

the research community has developed and refined several integrative techniques, including

methods based on joint dimensionality reduction, kernels, networks and deep learning [81].

Notably, joint dimensionality reduction (jDR) based methodologies can be further categorized

into their underlying methods such as tensor extensions of PCA, canonical correlation analysis,

non-negative matrix factorization, tri-factorization, Gaussian latent variable models, principle

component analysis, co-inertia analysis and factor analysis [11]. With such a diverse array of

analytical tools it is imperative we correctly utilize and interpret the results from multiomics

tools like jDR methods. Moreover, the eagerness to conduct studies using multiomics datasets

has also motivated their use for computational modeling, such as predicting vaccine responses
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[25]. These trends underscore the significance of multiomics data to drive the next generation of

biological discoveries and insights into disease.

0.5 Contributions

As previously discussed, the biology field is rapidly evolving towards a landscape abun-

dant with multiomics datasets, where each new assay introduces new analytical and resource

challenges. This work highlights my contributions to large-scale multiomics analysis, partic-

ularly within the chromatin conformation and broader multiomics space. Specifically, I have

developed a comprehensive database of HiChIP data, which I utilized for several applications

including the dissection of GWAS and eQTL signals, as well as analyses of DNA motifs and the

clustering of significant chromatin interactions. Additionally, I will showcase my contributions

to the nipalsMCIA package, where my primary focus was enhancing the interpretability and

visualization of jDR results.

Note: Supplementary tables have been uploaded as additional files. They are briefly mentioned

at the end of chapters 1 and 2 with a title and short description.
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Chapter 1

Developing a comprehensive HiChIP
database of human and mouse samples

1.1 Abstract

HiChIP enables cost-effective and high-resolution profiling of regulatory and structural

loops. To leverage the increasing number of publicly available HiChIP datasets from diverse cell

lines and primary cells, we developed the Loop Catalog (https://loopcatalog.lji.org), a web-based

database featuring HiChIP loop calls for 1319 samples across 133 studies and 44 high-resolution

Hi-C loop calls. Our comprehensive catalog, spanning over 4M unique 5kb loops constitutes an

important resource for studies in gene regulation and genome organization.

1.2 Background

Chromatin folding can impact cell-type-specific function and disease risk via altered

3D interactions between genetic loci [55, 82]. An important feature of chromatin folding is the

existence of chromatin loops that connect regions separated by large genomic distances, often

up to a megabase but with notable cases spanning even larger distances [42, 83–85]. These

loops can be broadly categorized into: i) structural loops demarcating domains of interactions

such as topological domains (TADs) and marked by the binding of CTCF and cohesin at their

anchors, and ii) regulatory loops which join distal gene regulatory elements such as enhancers
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and promoters to modulate gene expression [44, 47, 54, 57, 86–92]. Our understanding of

the exact role these loops/interactions play in cell-type specific gene regulation and ultimately

disease susceptibility is far from complete.

To capture such interactions, the Hi-C procedure was developed as a high-throughput

genome-wide assay that carries proximity ligation either in dilution [50] or in-situ within intact

nuclei [49]. As a subset of interactions, regulatory loops are often associated with regions

enriched for histone modifications such as H3K27ac and H3K4me3, transcription factors or for

accessible chromatin [56, 93–97]. The development of the HiChIP assay represents an extension

of the in-situ Hi-C methodology that can facilitate capture of these protein-specific regulatory

loops by using immunoprecipitation to enrich for interactions involving anchors associated

with the binding of transcription factors (TFs) or histone modifications of interest. Given the

ability to enrich signal for a subset of the genome (e.g., active regulatory elements), HiChIP

enables high-resolution profiling of chromatin interactions of interest with lower sequencing

depth compared to Hi-C [56, 94, 98]. Another advantage of HiChIP, at the time of its initial

development, was that it allowed working with lower numbers of cells as input (1-5M), hence

enabling the characterization of 3D organization in primary cells. Since the introduction of

HiChIP in 2016, the number of publicly available human and mouse HiChIP studies published

has consistently increased each year (Figure 1.1A). This indicates the growing popularity of

the HiChIP assay, particularly as a method of investigating distal interactions between genetic

variants, often in non-coding regions of the genome, and their potential target genes in a cell-type

and context-specific manner [60–63, 66, 83, 99].

Here, we developed the Loop Catalog, a database containing the largest set of uniformly

processed HiChIP data to date, curated from over 130 publications and a total of 1319 samples

(from 2016 to January 2024) leading to over 5 million unique looping interactions at 5 kb

resolution (10M total across all resolutions with 7.7M for human, 3.1M for mouse) with an

accompanying web server that enables visualization, querying and bulk download of looping

data (Figure 1.1B, Supp Figure 1.1). Recent publications and databases, namely HiChIPdb

7



Figure 1.1. Data overview and high-level summary of the Loop Catalog. A) Breakdown of
the number of HiChIP samples generated from 2016 to 2024. The top panel shows the number
of studies broken down by human (blue), mouse (teal), or both (orange). Bottom panel shows
the cumulative trend. B) Breakdown of samples by target protein or histone modification and by
organism. C) Schema for the development of the Loop Catalog starting from raw sequencing
files to processing (top left), database storage (bottom) and web accessible analyses (top right).
D-E) Number of peak calls (left) and FitHiChIP loop calls at three different resolutions (right)
for HiChIP samples with ChIP-seq data for D) human and E) mouse samples.

8



Ta
bl

e
1.

1.
C

om
pa

ri
so

n
of

H
iC

hI
P

pr
oc

es
si

ng
m

et
ho

ds
an

d
w

eb
si

te
fe

at
ur

es
of

L
oo

p
C

at
al

og
,C

hr
om

L
oo

ps
,H

iC
hI

Pd
b,

an
d

C
oh

es
in

-D
B

.C
at

eg
or

ie
si

nc
lu

de
sp

ec
ifi

ca
tio

n
an

d
qu

an
tifi

ca
tio

n
of

da
ta

ty
pe

s,
im

pl
em

en
ta

tio
n

of
lo

op
ca

lli
ng

(s
of

tw
ar

e,
co

nfi
gu

ra
tio

ns
,

re
pl

ic
at

es
),

ea
se

of
da

ta
do

w
nl

oa
d

an
d

vi
su

al
iz

at
io

n,
in

cl
ud

in
g

th
e

ab
ili

ty
to

se
le

ct
an

d
vi

su
al

iz
e

m
ul

tip
le

sa
m

pl
es

si
m

ul
ta

ne
ou

sl
y,

an
d

em
be

dd
ed

bi
ol

og
ic

al
an

al
ys

is
m

od
ul

es
.*

an
no

ta
tio

n
of

ge
ne

s,
SN

Ps
,E

/P
s,

si
le

nc
er

s,
ci

rc
R

N
A

,T
W

A
S,

ch
ro

m
os

om
e

op
en

ac
ce

ss
da

ta
,

al
te

rn
at

iv
e

sp
lic

in
g,

tr
an

sc
ri

pt
io

n
fa

ct
or

s
**

an
no

ta
tio

n
of

ge
ne

s,
SN

Ps
**

*
an

no
ta

tio
n

of
ge

ne
s

G
en

er
al

Fe
at

ur
e

Sp
ec

ifi
c

Fe
at

ur
e

L
oo

p
C

at
al

og
C

hr
om

L
oo

ps
(Z

ho
u

et
al

.,
20

22
)

H
iC

hI
Pd

b
(Z

en
g

et
al

.,
20

22
)

C
oh

es
in

-D
B

(W
an

g
et

al
.,

20
22

)

D
at

a
Ty

pe
s

O
rg

an
is

m
H

om
o

sa
pi

en
s,

M
us

m
us

cu
lu

s
H

om
o

sa
pi

en
s,

M
us

m
us

cu
lu

s,
11

ot
he

rs
H

om
o

sa
pi

en
s

H
om

o
sa

pi
en

s

R
ef

er
en

ce
G

en
om

e
hg

38
,m

m
10

hg
38

,m
m

10
,1

1
ot

he
rs

hg
19

hg
38

H
iC

hI
P

Pr
oc

es
si

ng

To
ta

lH
iC

hI
P

Sa
m

pl
es

13
19

to
ta

l(
10

31
di

st
in

ct
)

77
2

20
0

42
L

oo
p

C
al

lin
g

Fi
tH

iC
hI

P,
H

iC
C

U
PS

C
hI

A
-P

E
T

To
ol

(V
3)

Fi
tH

iC
hI

P,
hi

ch
ip

pe
r

H
iC

C
U

PS
L

oo
p

R
es

ol
ut

io
ns

5k
b,

10
kb

,2
5k

b
va

ri
ab

le
1k

b,
5k

b,
10

kb
,5

0k
b,

va
ri

ab
le

5k
b,

10
kb

,2
5k

b

Pe
ak

Ty
pe

U
se

d
fo

rL
oo

p
C

al
lin

g
H

iC
hI

P-
In

fe
rr

ed
,C

hI
P-

se
q

w
he

n
av

ai
la

bl
e

H
iC

hI
P-

In
fe

rr
ed

H
iC

hI
P-

In
fe

rr
ed

N
/A

R
ep

lic
at

e
H

an
dl

in
g

Te
ch

ni
ca

l/B
io

lo
gi

ca
lR

ep
s

M
er

ge
d,

M
ul

tip
le

D
on

or
s

M
er

ge
d

B
io

lo
gi

ca
lR

ep
lic

at
es

M
er

ge
d

Te
ch

ni
ca

l/B
io

lo
gi

ca
lR

ep
s

M
er

ge
d

Te
ch

ni
ca

lR
ep

s
M

er
ge

d

Pi
pe

lin
e

C
od

e
R

el
ea

se
d

D
at

a
D

ow
nl

oa
d

L
oo

p
C

al
ls

Pe
ak

C
al

ls
U

se
d

fo
rL

oo
p

C
al

lin
g

B
ro

w
se

rT
ra

ck
Fi

le
s

D
at

a
V

is
ua

liz
at

io
n

E
m

be
dd

ed
V

is
ua

liz
at

io
n

E
pi

ge
no

m
e

B
ro

w
se

r
(W

as
hU

)
E

pi
ge

no
m

e
B

ro
w

se
r

(W
as

hU
)

IG
V

E
pi

ge
no

m
e

B
ro

w
se

r
(W

as
hU

)

M
ul

ti-
Sa

m
pl

e
Se

le
ct

io
n

M
ul

ti-
Sa

m
pl

e
V

is
ua

liz
at

io
n

D
at

a
A

na
ly

si
s

C
om

m
un

ity
St

ru
ct

ur
e

A
na

ly
si

s,
L

oo
p

M
ot

if
Pa

ir
A

na
ly

si
s,

SG
L

A
na

ly
si

s

E
m

be
dd

ed
To

ol
s

Fu
nc

tio
na

lA
nc

ho
r

A
nn

ot
at

io
n*

,C
an

ce
r

H
ig

h-
Fr

eq
ue

nc
y

L
oo

ps
,

Sp
ec

ie
s-

Sp
ec

ifi
c

H
ig

h
Fr

eq
ue

nc
y

L
oo

ps

Fu
nc

tio
na

lA
nc

ho
r

A
nn

ot
at

io
n*

*
Fu

nc
tio

na
lA

nc
ho

r
A

nn
ot

at
io

n*
**

,L
oo

p
di

sc
ov

er
y

gi
ve

n
ge

no
m

e
re

gi
on

s,
Pr

ed
ic

tio
n

of
re

gu
la

to
ry

si
te

s
an

d
ta

rg
et

ge
ne

s
A

dd
iti

on
al

D
at

a
H

ig
h

R
es

ol
ut

io
n

H
i-

C
(n

=4
4)

H
i-

C
an

d
O

th
er

C
on

fo
rm

at
io

n
C

ap
tu

re
D

at
a

H
ig

h
R

es
ol

ut
io

n
H

i-
C

(n
=4

4)
PL

A
C

-s
eq

(n
=8

9)
C

hI
A

PE
T

(n
=7

89
)

H
i-

C
(n

=3
85

)C
hI

A
PE

T
(n

=1
19

)

9



[100], ChromLoops [101], and Cohesin-DB [102], were first attempts to catalog HiChIP loops

by curating them from the broader literature. We provide a detailed comparison of Loop Catalog

with these previous databases on the basis of the number of samples processed, the choice of

tools for data processing including loop calling, integrated visualization and additional data

types compiled (Table 1.1). In addition to having the largest number of HiChIP samples, unique

features of Loop Catalog include utilization of matched ChIP-seq data when available, enabling

a broader set of data download and visualization capabilities and additional modalities including

SGL mapping, traditional and pairwise motif enrichment analysis and regulatory network analysis

(Table 1.1; additional modalities will be covered in Chapter 2). The large set of loops cataloged

in this work will enable not only 3D-informed prioritization of genetic variants and enhancers

involved in gene regulation but also will stimulate development of machine learning, deep

learning, and network construction approaches that require large scale data.

1.3 Results

1.3.1 Curating a set of publicly available HiChIP samples for human
and mouse cells

In total, we collected 750 human and 281 mouse samples from 133 studies that cover a

diverse set of cell types and cell lines. For primary human samples there is a concentration of

immune cell types that include monocytes, natural killer (NK) cells, T cell and B cell subsets,

among others (175 designated samples; 140 and 35 for human and mouse, respectively). As

expected, cancer cell lines are well represented (e.g., HCC15, NCI-H1105, MCF7) together with

other cell lines from normal tissue including heart-derived samples (e.g., aortic valve interstitial,

coronary artery smooth muscle, and aortic smooth muscle cells) as listed in Supp Table 1.1.

Regarding the target protein in the HiChIP experiment, active regulatory element-associated

histone mark H3K27ac was the most highly represented, accounting for 62% of human samples

and 53% of mouse samples. Other frequently represented ChIP targets include CTCF for human

10



datasets and H3K4me3 for mouse datasets. Cohesin subunits such as SMC1A was also a frequent

protein of choice in both human and mouse samples (Figure 1.1C). It is evident that, while the

majority of studies target functional interactions via H3K27ac or H3K4me3 pulldown, structural

interactions via CTCF and cohesin pull-down are also well-represented among human and mouse

HiChIP studies. Overall, this dataset provides a comprehensive coverage of HiChIP samples that

investigate structural as well as regulatory loops profiled across hundreds of samples.
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Figure 1.2. Layout of the Loop Catalog portal. A) Screenshot of the main entry page to
the Loop Catalog. B) Main data page which includes an embedding of the WashU Epigenome
Browser followed by a table of HiChIP samples with various metadata fields. C) Screenshot of a
HiChIP sample page with statistics on the loop calls and the enhancer-promoter network visual-
ization with an associated table on ranking of identified network communities. Subcommunities
are color coded with nodes belonging to either enhancers (circles), promoters (squares) or other
(triangles). D) Screenshot of the SGL entry page where disease, locus/gene and HiChIP samples
are selected. E) Screenshot of the SGL analysis page which includes an embedded browser and
a table with SGL metadata including buttons for navigation.
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1.3.2 Uniform processing of HiChIP samples and quality controls

The raw HiChIP data aligned to human (hg38) or mouse (mm10) genomes were processed

to generate high-confidence loops utilizing multiple loop calling approaches: i) FitHiChIP with

ChIP-seq peaks (FC), ii) FitHiChIP with HiChIP-inferred peaks (FH), and iii) HiCCUPS (Supp

Figure 1.1). In addition, we performed loop calling using Mustache [103] for 44 high-resolution

Hi-C samples available from the 4DN data portal (Supp Table 1.9). To visualize these loops, we

developed a webpage with a highly interactive table that allows selection of multiple samples,

loop calling settings, resolutions and corresponding peaks (Figure 1.2). These selections can

then be plugged into an embedding of the WashU Epigenome Browser, downloaded as track

files or WashU hub files for additional use cases (Figure 1.2B). The Loop Catalog was initialized

with loops called for 1031 unmerged HiChIP samples and 282 merged samples that were created

after combining biological replicates from the same study that pass a correlation threshold for

pairwise similarity of individual replicates (Supp Figure 1.3). An additional 6 immune cell-based

mega-merged samples were created by merging across all donors and all biological replicates

using data from two previous publications [39, 104]. Overall, the Loop Catalog provides access

to loops for 1319 HiChIP samples with FH loop calls for all samples and, of these, 386 samples

had matching ChIP-seq data that enable loop calling using FC. In addition, we called HiCCUPS

loops genome-wide for 426 samples, for which we had at least a certain number of loop calls

from chr1 (200 for human, 100 for mouse) (Supp Figure 1.4). In particular, when comparing

these figures to other databases, the Loop Catalog stands out with the highest number of HiChIP

samples, totaling 1031 distinct and 1319 overall with merged samples. ChromLoops provides

loop calls for 816 samples (772 HiChIP), however this total is spread across 13 different species,

whereas HiChIPdb and CohesinDB offer significantly fewer HiChIP samples, with only 200 and

42, respectively (Table 1.1). It is noteworthy that various loop-calling methods were employed

across all databases. With this consideration, HiChIPdb is most similar to the Loop Catalog, using

mainly FitHiChIP for loop calling (Table 1.1). However, unlike the Loop Catalog, HiChIPdb

14



derives peaks solely from HiChIP data, which tends to have a low recall rate with respect to

ChIP-seq based peaks (Supp Figure 1.2). Conversely, Chromloops opted to use ChIA-PET Tool

(V3), a tool specifically designed to address concerns for ChIA-PET experiments and may fail to

correct for HiChIP biases. With regards to Cohesin-DB, this database used HiCCUPS, a software

that is originally designed for high-depth Hi-C data [105] (Table 1.1). Despite using HiCCUPS

in addition to FitHiChIP, we found that, for most of our curated HiChIP samples, the number of

HiCCUPS loops were quite low (e.g., less than 200 for human chr1) likely limiting the utility of

those loop calls for downstream analysis. Another important feature unique to Loop Catalog is

the extent of quality control that is performed on both peak (ChIP-seq or HiChIP-derived) and

loop level to provide QC flags for each set of loop calls to inform users of the inferred quality

of the data they are about to visualize or download for further analysis (Supp Figure 1.5, Supp

Table 1.7).

1.3.3 Visualization and exploration of loop calls through a web interface

The Loop Catalog is underpinned by a comprehensive database that incorporates pro-

cessed HiChIP data from GEO and dbGaP, high-resolution Hi-C data from the 4DN data portal,

along with fine-mapped GWAS data for a number of immune-associated diseases and eQTLs for

major immune cell types (Figure 1.1). When first accessing the platform, users are presented

with an entry page featuring a selection for reference genome and analysis type including loops,

SNP-Gene linking (SGLs) and statistics (Figure 1.2A). Subsequently, once an analysis has been

selected, a secondary page will render the corresponding analysis with a navigation menu to

switch between other analyses and website-related information. The data page offers immedi-

ate and extensive visualization of HiChIP and Hi-C samples with their associated loop calls,

spanning various methods and resolutions, as illustrated in Figure 1.2B. For specific sample

information, each sample is linked to a dedicated page displaying metadata, loop data, regulatory

network analyses and a motif scanning analysis (Figure 1.2C). Furthermore, the SGL page grants

access to the integration of immune-based HiChIP samples and fine-mapped GWAS SNPs and
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eQTLs. Lastly, the statistics page provides a higher-level overview of all HiChIP data stored for

a given reference genome.

1.4 Conclusion

The HiChIP assay has empowered the field of chromatin structure by providing a rela-

tively inexpensive, high-resolution and targeted approach to mapping chromatin interactions. It

is no surprise that the number of HiChIP studies published annually keeps growing each year and

will continue to do so until superior methods are developed. The Loop Catalog is a public hub

that centralizes 1319 HiChIP samples from these studies and, through the use of user-facing tools,

lowers the bar for exploring 3D genome organization datasets, which would require substantial

bioinformatics skills otherwise. As previewed by our applications, we foresee the Loop Catalog

becoming a valuable resource for a broad range of chromatin studies including but not limited to

variant-gene prioritization, machine learning, and deep learning approaches for loop prediction

or utilizing loops to predict other functional measurements including gene expression as well as

benchmarking analyses of such methods.

At its current state, the Loop Catalog allows the community to access and bulk download

uniformly processed chromatin looping data from HiChIP experiments and intermediate files, as

desired. Looking ahead, we plan to continue expanding the Loop Catalog as newly published

datasets become available. Our overarching and ongoing goal is to build a chromatin-centric

database that seamlessly expands in terms of data as well as computational utilities offered that

will eventually become the go-to platform for access and analysis of all published HiChIP data.

1.5 Methods

1.5.1 Curating HiChIP and ChIP-seq Samples

To identify a comprehensive list of publicly-released HiChIP datasets, we developed a

pipeline that scans NCBI’s Gene Expression Omnibus (GEO) database [106] for studies perform-
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ing HiChIP experiments. To extract information on these studies the BioPython.Entrez [107]

and metapub.convert (https://pypi.org/project/metapub/) packages were used. Raw sequencing

data associated to these studies was then identified from the SRA database using the pysradb

Python package (https://github.com/saketkc/pysradb) and the results were manually examined to

extract HiChIP samples. ChIP-seq samples corresponding to these studies were also extracted if

there was a record of them within the same GEO ID as the HiChIP sample.

1.5.2 Populating Sample Metadata

To automatically add metadata, such as organ and cell type, to the curated HiChIP data,

the BioPython.Entrez package was used to perform a search query within the GEO database.

GSM IDs from the previous query were used with an esummary query to the biosample database

[107]. From these results organism, biomaterial, celltype, GSM ID, SRA ID, disease, organ,

treatment, tissue, and strain (only for mouse) were extracted. To improve classes for organ and

biomaterial, a dictionary of classes as keys and synonyms as value (e.g. heart is a key and its

synonyms are cardiovascular, atrium, aorta, etc) as used to search across GEO and Biosample

reports. “N/A ” was used to indicate fields that are not applicable for a given sample and for the

remaining fields, “Undetermined” was assigned when the information could not be retrieved.

1.5.3 Downloading Raw Sequencing Datasets

HiChIP FASTQ files were systematically downloaded using one of three methods

and prioritized in the following order: SRA-Toolkit’s prefetch and fasterq-dump (2.11.2)

(https://hpc.nih.gov/apps/sratoolkit.html), grabseqs (0.7.0) [108], or EBI URLs generated from

SRA Explorer (1.0) [109]. In addition, FASTQ files for phs001703v3p1 and phs001703v4p1

were downloaded that pertain to two previously published HiChIP studies from the Database of

Genotypes and Phenotypes (dbGaP) [39, 104, 110] (Supp Table 1.1). Additionally, ChIP-seq

FASTQ files were downloaded from GEO using grabseqs (0.7.0).
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1.5.4 Processing Reads from HiChIP Data

Human samples were aligned to hg38 while mouse samples were aligned to mm10

using the HiC-Pro (3.1.0) pipeline [111] (Supp Table 1.2). Reference genomes were down-

loaded for hg38 (https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/), and for mm10

(https://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/) and indexed with bowtie2 (2.4.5)

using default parameters. All technical replicates were grouped into their respective biological

replicate before read alignment. Restriction enzymes and ligation sequences were determined

during the HiChIP literature search (Supp Table 1.3) and restriction fragments were generated

with the HiC-Pro digestion.py tool using default parameters. HiC-Pro was then run in parallel

mode by splitting FASTQ files into chunks of 50,000,000 reads using HiC-Pro’s split_reads.py

utility with a minimum MAPQ threshold of 30. HiC-Pro generated contact maps at the 1kb, 2kb,

5kb, 10 kb, 20kb, 40kb, 100kb, 500kb, and 1Mb resolutions. For all other HiC-Pro configuration

parameters, the defaults were used.

1.5.5 Processing Reads and Calling Peaks for ChIP-seq Data Using
ChIPLine

Our previously developed ChIPLine pipeline (https://github.com/ay-lab/ChIPLine) was

used to align ChIP-seq reads with Bowtie2 [112] and call peaks using MACS2 (2.2.7.1) [113]

(Supp Table 1.4). If available, the corresponding input ChIP-seq files were used by MACS2 in

ChIPLine for peak calling using input vs treatment mode. MACS2 peak calls were made without

an input file if no such file was available for the sample. For ChIP-seq datasets with multiple

biological replicates, the replicate with the largest number of peak calls was selected as the peak

set to be used in downstream analyses for loop calling.

1.5.6 Calling Peaks from Reads of HiChIP Data Using FitHiChIP

In the absence of matching ChIP-seq data, we turned to inferring peaks directly from

HiChIP data. We called HiChIP peaks the PeakInferHiChIP.sh utility function of FitHiChIP 10.0
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version [114], which takes processed interaction pairs generated by HiC-Pro as input (i.e., one

valid read pair corresponds to two individual reads) and utilizes MACS2 for peak calling using

the PeakInferHiChIP.sh script by specifying the correct HiC-Pro output directory, reference

genome, and read length as reported by SRA Run Selector entry for a given sample (Supp Table

1.4). If read lengths differed across technical replicates for a single HiChIP biological replicate,

the mode read length was used. For cases in which there was no single mode read length, the

longest read length was selected. For merged biological replicates, the mode read length of

all individual biological replicates for a given sample was chosen, and similarly, the longest

read length was selected in the case of multiple modes. We additionally used HiChIP-Peaks

(0.1.2) [60] with its default parameters to infer peaks from HiChIP data; however, these peak

calls spanned untypically large-sized genomic regions (median 2.15 kb and up to 122 kb) and we

decided to not utilize these peak calls.

1.5.7 Performing Recall Analysis of 1D Peaks Inferred from HiChIP
Data

Peaks called from ChIP-seq datasets were considered the ground truth set and peaks

inferred directly from HiChIP datasets were assessed for their overlap with ChIP-seq peaks

(Supp Figure 1.2). To measure the validity of HiChIP-inferred peaks, we compared them to

the peaks from ChIP-seq data and computed the percentage of ChIP-seq peaks recovered using

HiChIP-inferred peaks. To obtain the intersection, each pair of corresponding HiChIP and

ChIP-seq peak sets were intersected using bedtools allowing for 1kb slack on both sides.

1.5.8 Integration of Biological Replicates of HiChIP Data

In order to generate more deeply sequenced contact maps from the initial set of samples,

we grouped together samples originating from the same study, pulldown and biological replicate

set for both human and mouse datasets (Supp Table 1.1). Before merging the biological replicates,

the reproducibility was assessed using hicreppy (0.1.0) which generates a stratum-adjusted
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correlation coefficient (SCC) as a measure of similarity for a pair of HiChIP contact maps

(https://github.com/cmdoret/hicreppy) (Supp Table 1.5). Briefly, contact maps in hic format were

converted to cool format for hicreppy input at 1kb, 5kb, 10kb, 25kb, 50kb, 100kb, 250kb, 500kb,

and 1mb resolutions using hic2cool (0.8.3) (https://github.com/4dn-dcic/hic2cool). hicreppy was

run on all pairwise combinations of biological replicates from a given HiChIP experiment as

follows: first, hicreppy htrain was used to determine the optimal smoothing parameter value,

or h, for a pair of input HiChIP contact matrices at 5kb resolution. htrain was run on a subset

of chromosomes (chr1, chr10, chr17, and chr19) and with a maximum possible h-value of 25.

Default settings were used otherwise. Next, hicreppy scc was ran to generate a SCC for the

matrix pair using the optimal h-value reported by htrain and at 5kb resolution considering chr1,

chr10, chr17, and chr19 only. A group of biological replicates were merged if all pairwise

combinations of replicates in that group resulted in a SCC greater than 0.8 (Supp Figure 1.3).

Merging of biological replicates was performed by concatenating HiC-Pro validpairs files from

which we performed all downstream peak and loop calling steps of our pipeline.

1.5.9 Identifying Significant Chromatin Loops from HiChIP Data

Loop calling was performed for both unmerged and merged HiChIP biological replicates

by (a) HiCCUPS (JuicerTools 1.22.01) [49], (b) FitHiChIP with HiChIP-inferred peaks (FH

loops), and (c) FitHiChIP with ChIP-seq peaks (FC loops), when available [105] (Supp Table 1.6,

Supp Figure 1.4). Briefly, HiC-Pro validpairs files for each sample were converted to .hic format

using HiC-Pro’s hicpro2juicebox utility with default parameters. HiCCUPS loop calling was

initially performed for chr1 only with the following parameters: –cpu, –ignore-sparsity, -c chr1,

-r 5000,10000,25000, and -k VC. Samples which passed the thresholds of at least 200 loops from

chromosome 1 for human samples and at least 100 loops from chromosome 1 for mouse samples,

both at 10kb resolution, were processed further with HiCCUPS for genome-wide loop calling

using the same parameters. FitHiChIP loop calling was run with HiC-Pro validpairs as input at

the 5kb, 10kb, and 25kb resolutions for the Stringent (S) background model with coverage bias
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regression, merge filtering, peak-to-all interactions and an FDR threshold of 0.01. Default values

were used for all other FitHiChIP parameters.

1.5.10 Assigning QC Flags to Peak and Loops Calls

To assign a set of comprehensive QC flags to all HiChIP samples (unmerged and merged

biological replicates), we derived criteria from quantifying numbers of peak and loop calls

(Supp Table 1.7, Supp Figure 1.5). For both FH and ChIP-seq peaks, we assigned a “Poor”

flag to samples with <=1000 peaks, “Warning” to samples with >1000 and <5000 peaks, and

“Good” to samples with >=5000 peaks. To establish intermediate flags for loops, each one of

the six FitHiChIP loop call configurations (Stringent 5kb, Loose 5kb, Stringent 10kb, Loose

10kb, Stringent 25kb, and Loose 25kb) was assigned a flag as follows: “Poor” if the number of

Stringent loops was greater than the number of Loose loops at a given resolution or the sample

possessed <=100 loops, “Warning” for >100 and <1000 loops, or “Good” for >= 1000 loops.

Lastly, we set a final loop flag on each loop call configuration which considers both the peak and

intermediate loop flags. This final loop flag similarly takes on the values of “Poor”, “Warning”,

or “Good”. “Good” was only assigned in cases where both the peak and intermediate flags were

“Good”. All other possible cases are further described in Supp Table 1.7.

1.5.11 Establishing a Set of High-Confidence Regulatory HiChIP Loops

We established a high-confidence set of 53 unique human H3K27ac HiChIP samples from

the pool of 120 human H3K27ac HiChIP datasets with either merged or unmerged biological

replicates and over 10,000 stringent 5kb FC loops, henceforth called the HCRegLoops-All

sample set. We additionally established two subsets of the HCRegLoops-All sample set as

follows: HCRegLoops-Immune contains 27 samples from immune-associated cell types and

HCRegLoops-Non-Immune contains 26 samples from non-immune cell types (Supp Table 1.8).

21



1.5.12 Identifying Significant Chromatin Loops from High Resolution
Hi-C Data

Loop calling was performed for 44 high resolution Hi-C samples gathered from the 4DN

data Portal’s (https://data.4dnucleome.org) “High-Resolution Hi-C Datasets” Collection using

Mustache (Roayaei Ardakany et al., 2020). Processed .hic files were downloaded and Mustache

was run with default parameters across chr1 through chr22 using raw, KR, and VC normalized

contact matrices (-norm) to determine loops at 1kb, and 5kb resolutions (-r) (Supp Table 1.9).

1.5.13 Designing the Internal Database and Filesystem

The database is composed of two main parts, the first contains high sample-level and

low-level loop information while the second contains SGL specific tables with auxiliary tables

used to add additional annotations. For the first part, we atomized the data into the following

tables: hic_sample, celltype, hicpro, chipseq_merged, fithichip_cp, fithichip_cp_loop, hiccup,

fithichip_hp and reference which allowed us to capture important metadata and the uniqueness

of loops using different loop callers. The second part includes the gwas_study, gwas_snp, snp,

gene, fcp_fm_sgl, eqtl_study, eqtl, and fcp_eqtl_sgl tables which allowed us to capture important

relationships for SGLs and to facilitate their query. The full database schema can be found in

Supp Figure 1.6.

1.5.14 Designing and Implementing the Web Interface

Loop Catalog was built using Django v3.2 (https://www.djangoproject.com/) as the

backend framework with all data stored using the Postgresql v9 (https://www.postgresql.org/)

database management system. To style the frontend interface, we used Bootstrap 5.2 (https:

//getbootstrap.com/docs/5.2/). For implementing advanced tables and charts DataTables v1.12.1

(https://datatables.net), Charts.js v4.0 (https://www.chartjs.org/), and D3 v4.13.0 (https://d3js.

org/) were used. To visualize genetic and epigenetic data the WashU Epigenome Browser

v53.6.3 (https://epigenomegateway.wustl.edu/) was used which maintains an easily accessible
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web embedding. Lastly, CytoscapeJS v3.26.0 (https://js.cytoscape.org/) was used to visualize

enhancer-promoter networks.

1.6 Availability of data and materials

The Loop Catalog is freely available at https://loopcatalog.lji.org to all users without any

log-in or registration requirements. The main processing pipeline has been released on Github as

Loop-Catalog-Pipelines (https://github.com/ay-lab-team/Loop-Catalog-Pipelines). Similarly, we

developed GEO-Resources (https://github.com/ay-lab-team/GEO-Resources) to locate HiChIP

datasets in NCBI GEO. Versions of all software included in our pipeline are recorded (Supp

Table 1.10). Raw sequencing reads for HiChIP and ChIP-seq were downloaded from NCBI

GEO (https://www.ncbi.nlm.nih.gov/geo/) and NCBI dbGaP (https://www.ncbi.nlm.nih.gov/gap).

Hi-C contact matrices were retrieved from the 4DN Data Portal (https://data.4dnucleome.org).
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1.7 Supplementary Figures

Supp Figure 1.1. Schematic of the HiChIP and ChIP-seq data processing pipeline we
developed for the Loop Catalog. Raw sequencing reads are downloaded from NCBI GEO
and dbGaP and are aligned to the reference genome (hg38 or mm10). Loops are called for
HiChIP (both unmerged and merged biological replicates, as indicated by the shaded circles)
using HiCCUPS and FitHiChIP at the 5kb, 10kb, and 25kb resolutions. Peaks derived from both
ChIP-seq and HiChIP are used for FitHiChIP loop calling. High-confidence sample sets of top
H3K27ac HiChIP samples are curated from the final set of loop calls. Red borders indicate usage
in downstream database application analyses. Yellow stars indicate that the data type is available
for download from the Loop Catalog web platform.
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Supp Figure 1.2. Recall analysis of ChIP-seq peaks using peaks called from HiChIP reads.
A) Distribution of recall rates of ChIP-seq peaks by peaks inferred from HiChIP by FitHiChIP
in hg38. B) Scatter plot of recall rate versus the number of peaks in hg38. Samples with zero
percent recall or with zero peak calls derived from HiChIP are not included. C) Scatter plot of
the recall rate versus the total peak span in hg38. Samples with zero peak calls derived from
HiChIP are not included. D-F) Represent the same analysis as A-C but using mouse HiChIP
samples.
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Supp Figure 1.3. Reproducibility analysis for HiChIP biological replicates. Stratum ad-
justed correlation coefficient scores (SCCs) for all pairwise combinations of HiChIP biological
replicates for 291 HiChIP samples with at least two biological replicates were generated using
hicreppy. SCCs for pairwise combinations of HiChIP biological replicates are displayed for
the 29 HiChIP samples with a minimum SCC below 0.90. SCCs for pairwise combinations of
replicates for samples with more than 2 replicates are connected with vertical lines. Samples
passed the SCC threshold if the SCC of all pairwise combinations of replicates was greater than
0.80 (n = 282 samples, a subset of 20 passing samples shown in blue). Samples which possessed
at least one replicate combination with a SCC less than 0.80 did not pass the threshold (n = 9
samples, all shown in red).
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Supp Figure 1.4. Number of FH loop calls by protein pulldown. Distributions of number
of FH loop calls by protein pulldown are displayed for A) human and B) mouse samples with
>100 loops. Proteins represented by >10 samples are individually displayed while all others are
grouped into the “Other” category. These include proteins such as RNA-Pol-II, GATA1, STAG1,
STAG2, RAD21, etc.
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Supp Figure 1.5. Assignment of QC Flags to HiChIP Samples. 13 flags were assigned to all
samples. For peak calls, a flag of “Poor” was assigned if the sample possessed <=1000 peaks,
“Warning” to >1000 and <5000 peaks, and “Good” to >=5000 peaks. Each configuration of
FitHiChIP loop calls were each similarly assigned “Poor” (number of Stringent loops > number
Loose loops at that resolution, or <=100 loops), “Warning” (>100 and <1000 loops), or “Good”
(>= 1000 loops). A final flag was assigned based on the logic in Supplemental Table 7. The
distribution of each flag type is displayed for A) human FC loops, unmerged and merged, B)
human FH loops, unmerged and merged, C) mouse FC loops, unmerged and merged, and D)
mouse FH loops, unmerged and merged. Distributions of final flags are highlighted with black
borders.
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Supp Figure 1.6. Schema for the Loop Catalog database tables. Lines connect tables based
on relationships with children tables represented by a forked edge and asterisk.
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1.8 Supplementary Tables

Supp Table 1.1: Summary of HiChIP Sequence Files

Supp Table 1.2: HiC-Pro Quality Control Statistics

Supp Table 1.3: Restriction Enzyme Sequences Used in the HiC-Pro Pipeline

Supp Table 1.4: Peak Call Statistics for HiChIP and ChIP-seq

Supp Table 1.5: Assessment of HiChIP Reproducibility by Stratum-Adjusted Correlation

Coefficients

Supp Table 1.6: HiChIP Loop Call Statistics for FitHiChIP and HiCCUPS Loop Calling

Supp Table 1.7: Quality Control Flag Definitions for FitHiChIP Loop Calling

Supp Table 1.8. List of High Confidence H3K27ac HiChIP Sample Sets

Supp Table 1.9: Hi-C Loop Call Statistics for Mustache Loop Calling

Supp Table 1.10: Software and Package Versions

Chapters 1 and 2, in full, has been submitted for publication of the material as it may

appear in Genome Biology 2024, Joaquin Reyna, Kyra Fetter, Romeo Ignacio, Cemil Can Ali

Marandi, Nikhil Rao, Zichen Jiang, Daniela Salgado Figueroa, Sourya Bhattacharyya, Ferhat Ay.

The dissertation author was one of the primary investigators and authors of this paper.
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Chapter 2

Utilizing the Loop Catalog to Identify Im-
portant Regulatory Elements

2.1 Abstract

Chromatin conformation is the infrastructure of the genome, from loop to compartments,

the organization of elements within the genome is essential to cellular specialization and function.

Thus, detection of regulatory elements within HiChIP data and integrating with functional

variants can deliver meaningful insights. In this chapter we look at the following: i) linking of

target genes for GWAS signals, ii) prioritizing of eQTL signals with an overlapping loop, iii) 1D

motif analysis, iv) paired motif analysis, v) community detection, and vi) the incorporation of

these analyses to the Loop Catalog website for wider use. From these efforts we can see that the

Loop Catalog provides much more that just HiChIP loop calls, these can be widely analyzed and

integrated with various other datasets to derive a new understanding of genetics and disease.

2.2 Background

In the context of human disease, HiChIP and similar assays provide a 3D view for the

annotation of disease associations of non-coding genetic variants identified from GWAS [58,

59, 99, 115, 116]. Combined with efforts from multiple large consortia for cataloging putative

regulatory elements spanning distinct cell types (e.g., ENCODE, BLUEPRINT and Roadmap

31



Epigenomics), mapping such 3D maps of chromatin organization has become a critical piece of

the epigenetics puzzle, which led to formation of the 4D Nucleome Consortium [24, 117]. In

parallel, other large-scale efforts identified SNPs associated with gene expression (i.e., expression

quantitative trait loci or eQTLs) for different tissues and primary cell types [22, 23, 37, 104, 118,

119].

Motivated by these large scale analyses that demonstrate the importance of chromatin

conformation, we expanded upon the Loop Catalog to develop three new analyses and full-fledged

features that leverage our high confidence loop calls. In the first application, we intersected

fine-mapped GWAS SNPs from CAUSALdb for four autoimmune diseases [27] with HiChIP

loops derived from various immune cell types to identify potential target genes for these disease

associated SNPs in each cell type (SNP to gene linking with loops or SGLs). Across all diseases

we located 3048 unique SNPs, 1486 genes, 3411 loops and 13672 SGLs that span a median

genomic distance of ~140kb. One example was a fine-mapped Type 1 Diabetes (T1D) GWAS

SNP which was linked to multiple genes through HiChIP loops in multiple lymphoid cells but

not in monocytes. As the second application, we investigated TF motifs in loop anchors using

motif enrichment analysis [120] and pairs of TF motifs at loop anchors through pairwise motif

enrichment using a bootstrapping approach. Our analysis of regulatory loop anchors conserved

across a large majority of samples identified hundreds of enriched motifs including known

and novel zinc finger transcription factors some of which were also enriched for significantly

overrepresented combinations of motif pairs across samples (e.g., ZNF460, ZNF135). For the

last application, we constructed enhancer-promoter networks using H3K27ac HiChIP loops

as the underlying connections between these regulatory elements. Analysis of this network

via community detection and community ranking algorithms resulted in the identification of

tightly connected network communities, which may act as modular units of gene regulation.

These features showcase the richness of chromatin conformation data from the Loop Catalog.

From integration with GWAS, eQTLs, ChIP-seq and DNA motifs, the Loop Catalog enables

the investigation of regulatory connectivity across the genome, that may influence molecular
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mechanisms and disease.

2.3 Results

2.3.1 Expanding the use of HiChIP data for annotating GWAS SNPs
and eQTLs using SNP-to-Gene Loops

Leveraging the Loop Catalog we integrated loops for immune-related HiChIP samples,

we identified 79 samples with nonzero FC loops at 5kb (63 unmerged, 10 bio-rep merged, and 6

all donors merged). We then used these loop calls together with fine-mapped GWAS SNPs from

CAUSALdb to find target genes for each SNP that we term a SNP-gene pair with a loop (SGL)

(Figure 2.1A). Briefly, across T1D, RA, PS and AD there are 7729, 1121, 590, and 674 unique

fine-mapped GWAS SNPs, respectively. After overlapping these SNPs with our loop anchors

and genes connected through such loops, we found 74 samples with at least one SGL and a

total of 182,306 SGL instances across 18 studies covering the four diseases. When removing

duplicate SGLs we found 28,162 distinct SGLs which included 4241 SNPs, 2354 genes and

7269 loops (Figure 2.1B, Supp Table 2.1). To store these results into the database and to allow

querying, we constructed SNP, GWAS, gene and loop-level tables with genomic coordinates.

To then browse these results, an SGL entry page allows users to first select their target disease,

locus and samples from which the loops will be derived (Figure 1.2D). Subsequently, the Loop

Catalog returns an SGL analysis page that includes an embedded WashU Epigenome Browser

element loaded with a track for fine-mapped SNPs and loops tracks for each sample. Below the

browser users will find an interactive table that lists all mapped SGLs for their selection. This

table also allows navigating between loops and within loops including the left or right anchor

and SNP positions (Figure 1.2E).

Similar to GWAS variants, we expanded our annotation of genomic elements using eQTL

SNP-gene pairs. We started by downloading uniformly processed eQTL studies from the eQTL

Catalogue and focused on cell types from Schmiedel et al 2018 dataset that include eQTLs for
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Figure 2.1. SGL analysis overview and results. A) Schema of the SGL analysis using
fine-mapped SNPs from CAUSALdb, 156 Loop Catalog immune-related samples, and TSS
coordinates. B) Summary of results across all 4 diseases including the total number of GWAS
hits (blue), SNPs found in a SGL (orange), genes found in SGL (green) and total SGLs (red).
C) Distribution of SNP counts with respect to each SGL gene (left) and the distribution of gene
counts with respect to each SGL SNP (right) for T1D. D) Evaluating the number of SGL genes
which belong to a consensus list of T1D genes (green) and unique (orange). E) Example of an
SGL between rs61839660 (red) and the genes IL15RA (red arc) and RBM17 (blue arc). Tracks
contain H3K27ac HiChIP tracks for naïve CD4 T-cell, naïve CD8 T-cell, naïve B cell, Natural
Killer, monocytes, nonclassical monocytes derived from the Chanra et al 2021 and Schmiedel et
al 2021 samples that were merged across all donors.

naive CD4 T-cells (n=64386), naive CD8 T-cells (n=67793), naive B cells (n=60629), NK cells

(n=48221), monocytes (n=66024) and nonclassical monocytes (58069). For these cell types, we

also have the HiChIP data derived from a subset of the same donors [39, 104, 121]. For these cell

types, we then located 11604 unique eQTL-SGLs that cover 11053 SNPs and 1128 genes (Supp

Figure 2.2, Supp Table 2.2). These results are made available through a similar web interface as

SGLs derived from GWAS (Supp Figure 2.3). It is possible to extend our eQTL-based SGLs

analysis to the remainder of the eQTL Catalogue, however, matching cell types from eQTL

studies to those from HiChIP studies is not a trivial task for most of the cases.
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2.3.2 Utilizing T1D SGLs for SNP and Gene Prioritization

To better understand the utility of using SGLs for linking GWAS SNPs and genes, we

focused our attention on analyzing SGLs in T1D. When compared to all other diseases, T1D has

the highest number of unique SGLs (n=16,534) mainly due to the high number of fine-mapped

GWAS SNPs as our starting point (Figure 2.1B). In post-GWAS analyses, it is important to

distinguish putative causal SNPs among those that are in linkage disequilibrium (high LD). In

cases where the phenotypic effect of the SNP is mainly through regulation of a distal gene, SGLs

can corroborate important information to accurately annotate SNP function and to prioritize

GWAS genes and SNPs while utilizing information on their 3D proximity. Investigating this for

T1D, we observed that at least half of the CAUSALdb SNPs participate in an SGL, these SNPs

are often in contact with multiple genes (Figure 2.1B). We further explored the multiplicity of

SNP and gene links within T1D and found that 26% of SGL genes are linked to a single SNP,

and the median number of SNP links per gene is 3. On the other hand, 27% of SGL SNPs are

linked to a single gene and the median number of gene links per gene is 3 (Figure 2.1C).

To understand if SGL genes overlap genes with known T1D associations, we built a

consensus gene list using MalaCards [122], eDGAR [123], OpenTargets [41], and GWAS Catalog

[28] and a T1D review paper [124]. The union of the gene lists across these five resources had

497 genes in total, of which 106 overlapped with our 1532 SGL genes identified for T1D. The

1426 genes uniquely found by our SGL approach, although likely to involve false positives,

are potential targets for future investigations (Figure 2.1D). One of these genes was IL15RA, a

cytokine receptor that binds the pro-inflammatory cytokine IL-15 with high affinity and through

cis and trans presentation of IL-15 impacts cellular functions of CD8 T cells as well as Natural

Killer (NK) cells [125]. Despite IL15RA not being within the consensus T1D gene list, the

IL15RA/IL-15 axis has been associated with T1D but whether this axis has a pathogenic or

protective role has not been clear [126–128]. Through our SGL analysis of H3K27ac HiChIP

loop calls from major immune cells, we identified looping between the IL15RA promoter and
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rs61839660, a SNP 75kb away that is highly associated with T1D and has been further prioritized

by fine-mapping in three out of four T1D-GWAS studies with a posterior probability greater

than 0.70. The corresponding loops are found for T cells, Naive B cells and NK cells but not

for monocytes suggesting an important role for this SGL within the adaptive immune system.

The more likely scenario is that rs61839660’s T1D association is mediated through IL2RA given

that this SNP falls within a constituent intron. However, specific loops connecting rs61839660

to IL15RA (P-value < 10-9) as well as to RBM17 (P-value < 10-11) suggest the possibility

of a pleiotropic effect for this SNP (Figure 2.1E, Supp Table 2.1). In addition, RBM17, an

RNA-binding protein, has been previously shown to affect other autoimmune diseases such

as rheumatoid arthritis [129]. As exemplified here, SGL analysis with the Loop Catalog may

provide further evidence and/or mechanisms of action for a genetic variant and its target gene. In

addition, it may help to find targets for GWAS variants whose target gene remains elusive.

2.3.3 Identifying Significant Sequence Motifs at Regulatory Loop
Anchors

In order to examine binding patterns of TFs in regulatory loops (H3K27ac HiChIP), we

performed 1D motif enrichment analysis on highly conserved regulatory loop anchors from three

high-confidence (HC) sample sets (Figure 2.2A). The HCRegLoops-All sample set contains

the 53 H3K27ac HiChIP samples with over 10000 stringent 5kb FC loops. These samples

encompass diverse cell types including immune cells, heart cells, and various cancer cell lines.

The HCRegLoops-Immune sample set contains the subset of 27 samples from the HCRegLoops-

All set which are from immune-associated cell types and the remaining 26 samples are contained

in HCRegLoops-Non-Immune. In terms of conserved anchors that were derived for motif

enrichment analysis, we annotated an anchor as conserved if was involved in at least one loop

call in 90 or more of the samples from the given sample set and identified 879, 2766, and 721

anchors fitting this criterion for HCRegLoops-All, HCRegLoops-Immune, and HCRegLoops-

Non-Immune, respectively. Using the Simple Enrichment Analysis tool SEA from the MEME
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Suite, we identified 205, 313, and 177 significantly enriched motifs (p-value < 1e-6) for the

three sample sets, respectively (Supp Table 2.3). The top 3 most significantly enriched motifs

were ZNF460, ZNF135, and MEF2D or MEF2A across all three sets (Figure 2.2B). ZNF460

demonstrated strikingly high enrichment relative to other motifs, especially in the HCRegLoops-

Immune set, with over 58-fold enrichment compared to control regions in this sample set, in

comparison to 2.15-fold enrichment for CTCF (Figure 2.2C). Although similar to CTCF in

regard to possessing 11 zinc finger domains [130], ZNF460 also harbors a KRAB domain (like

one third of all ZNFs [131] that is associated with transcriptional repression. It is therefore

surprising to have ZNF460 motif enrichment in anchors of loops detected through enrichment of

H3K27ac, an active histone mark. It is possible that ZNF460 may be playing an important role in

looping and one that is more pronounced for immune cells. However, recent studies highlight the

importance of caution and the requirement for functional validation by showing that, for ZNF143,

another ZNF with a presumed role in looping, such an association was a result of antibody

cross-reactivity [132, 133]. Our motif enrichment analysis also identified two other ZNFs, MAZ

and PATZ1, which are recently shown to have novel chromatin insulating activities, similar to

CTCF [134, 135]. Regardless of the specific transcription factors, our provided analysis of TF

enrichment at loop anchors for a diverse set of samples is useful for developing hypotheses about

generic and cell-type-specific regulators or correlates of looping.

2.3.4 Identifying Significant Motif-Pairs Across Loop Anchors

Transcription factors often work together, through co-binding, dimerization, or multimer-

ization, to promote gene expression. With this motivation, we expanded our motif analysis at

conserved anchors to a search for significantly overrepresented motif pairs connected by loops.

Since the brute-force approach of scanning all possible motifs across the genome for enrichment

would have been infeasible, we performed bootstrap analysis to calculate an empirical p-value.

We used the frequency of a given motif pair across the entire set of loops as our statistic and

tested whether the frequency of this motif pair appeared greater than expected by chance for
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Figure 2.2. Motif and paired-motif analysis of loop anchors. A) Schematic of the 1D and
2D (paired) motif enrichment analysis. B) Bubble plot for the union of the top 15 motifs from
each sample set (20 total motifs). The E-value is represented on a range from 0 (gray) to 2000
(magenta) and the log2(enrichment ratio) is represented by a circle radius from 1 to 7. C-D)
Motif plot of ZNF460 and CTCF with the significance and enrichment ratio values as reported
for each sample set. D) Q-Q plot testing p-values for Naive CD4 T-cell 1829-RH-1 sample.
E) Heatmap of significant motif pairs (center) where rows and columns represent motifs on
opposite anchors and each cell represents the proportion of samples where the given motif pair is
significant. The distributions of a given motif across the whole genome and within the top 25
motif pairs are represented on the top and right, respectively.
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a given loop set. Bootstrap was used to build a simulated null distribution by shuffling loop

anchors and thus motif pairs (see methods “Performing Enrichment Analysis for Motif Pairs”).

A p-value was then calculated as the fraction of simulations greater than our observed frequency

(Figure 2.2A (bottom); Supp Figure 2.1). We performed this analysis on the HCRegLoops-ALL

sample sets (Supp Table 2.4) and, to ensure our bootstrapping approach does not lead to inflated

p-values, we investigated the Q-Q plots of our samples. We observed that most p-values lie along

the diagonal for non-significant p-values suggesting no inflation (Figure 2.2D). Summarizing

this analysis across all of our samples, we found signals for ZNF460 paired with motifs such

as ZNF135 and THRA across a majority of samples (Figure 2.2E). Self pairs of ZNF135 and

ZNF460 were also overrepresented across multiple samples. Overall, this is an interesting finding

which suggests an association for zinc finger proteins other than CTCF with chromatin loops

and their anchor regions.

2.3.5 Investigating topological properties of enhancer-promoter interac-
tions networks derived from HiChIP loops

In addition, for a subset of human H3K27ac HiChIP samples, we provide a network

analysis with nodes being genomic regions (including regulatory elements such as enhancers and

promoters) and edges representing connections by significant loops we detected. The network

analysis was run for 240 human samples with 5kb FC loops of which 151 had at least one

community (strongly connected set of nodes also referred to as network modules) detected. For

these, we performed a two-level community detection for each chromosome where we first

defined communities and then defined sub-communities for those with a large number of nodes.

For both communities and sub-communities, we used CRank, an unsupervised technique for

prioritization of network communities depending on their connectivity and topology parameters

such as conductance, modularity and randomness [136]. Sub-communities are then visualized

using CytoscapeJS to provide a dynamic interface and users can switch between sub-communities

using an interactive table that allows filtering on various CRank variables (Figure 1.2C). The
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provided functionalities for interrogating and ranking network communities at multiple levels

will allow downstream analysis such as hyperconnected cliques [137] and multi-enhancer hubs

[138] that were previously studied in the context of oncogenes and immune cell development,

respectively.

2.4 Conclusion

The Loop Catalog portal offers a powerful way to access HiChIP data while providing

additional analyses that are highly valuable to the scientific community. One such analysis is the

SGL analysis, initially developed for GWAS studies in four immune-related diseases. This tool

enables researchers to query variants or genes of interest, including GWAS SNPs or prioritized

subsets like fine-mapped SNPs. SGL analysis has also been extended to eQTLs, allowing for

the exploration of how gene expression influences chromatin conformation. For instance, the

SNP rs61839660, associated with T1D, overlaps the intron of IL2RA. While many researchers

might consider this association sufficient, chromatin conformation data from the Loop Catalog

reveals that rs61839660 also interacts with the promoters of IL15RA and RBM17 in various

adaptive immune cells. This example showcases the invaluable insights that can be gained when

integrating the Loop Catalog with genetic and other epigenetic datasets. Moreover, HiChIP data

is rich in information, enabling analyses such as motif and paired motif analysis, which have

uncovered the high prevalence of zinc finger family motifs. Additionally, enhancer-promoter net-

works facilitated by HiChIP data offer a deeper understanding of interaction clusters. Overall, we

have leveraged the foundational HiChIP data from Chapter 1 to develop integrative analyses that

significantly broaden our understanding of chromatin conformation. These additional features

will benefit the scientific community, and as shown in this chapter, the Loop Catalog facilitates

researchers’ efforts to achieve a system-level understanding of their biological questions.
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2.5 Methods

2.5.1 Identifying SGLs in Immune-based Diseases

SGLs were identified utilizing fine-mapped GWAS SNPs from CAUSALdb for Type 1

Diabetes (T1D), Rheumatoid Arthritis (RA), Psoriasis (PS), and Atopic Dermatitis (AD) which

included 7, 7, 3, and 1 individual studies, respectively (Supp Table 2.1). The fine-mapped data

was downloaded and lifted over from hg19 to hg38 using the MyVariantInfo Python package

[139]. We downloaded the GENCODE v30 transcriptome reference, filtered transcripts for type

equal to “gene” and located coordinates of the transcription start site (TSS) [140]. For genes on

the plus strand, the TSS would be assigned as a 1bp region at the start site and, for the minus

strand, the 1bp region at the end site. Lastly, we extracted all HiChIP samples whose organ was

classified as “Immune-associated”. To integrate these datasets, loop anchors were intersected

with fine-mapped GWAS SNPs and TSSs independently using bedtools pairtobed. Subsequently,

loops were extracted as an SGL if at least one anchor contained a GWAS SNP and the opposing

anchor contained a TSS.

2.5.2 Identifying SGLs with Immune-associated eQTL Studies

SGLs were identified utilizing eQTLs from the eQTL Catalog which included CD4

T-cells, CD8 T-cells, B cells, Natural Killer cells and monocytes (Supp Table 2.2). Similarly to

GWAS-SGLs, we used GENCODE v30 to locate the TSS and extracted a subset of the GWAS-

SGL HiChIP samples whose cell type matched the eQTL studies. To integrate these datasets,

loops were intersected with pairs of SNP-gene pairs using bedtools pairtopair. Subsequently,

loops were extracted as an SGL if at least one anchor contained an eQTL SNP and the opposing

anchor contained a promoter.
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2.5.3 Building a Consensus Gene List for T1D

From the MalaCards database (https://www.malacards.org/) a query was made using

the term “type_1_diabetes_mellitus” and the list of associated genes was downloaded. For

eDGAR (https://edgar.biocomp.unibo.it/gene_disease_db/), “diabetes mellitus, 1” was queried

under the Main Tables tab and all gene symbols were extracted. OpenTargets hosts a disease

based search with gene association scores and a query was made to the MONDO ID for T1D

(MONDO_0005147). The corresponding genes were downloaded and filtered for an association

score > 0.5. For the GWAS Catalog, a query was made using the previous MONDO ID and all

associated genes were extracted. Table 1 of Klak et al [124] summarizes genes that have been

associated with T1D and gene symbols were extracted from this resource.

2.5.4 Performing Motif Enrichment Analysis across Conserved Anchors

Motif enrichment analysis on the HCRegLoops-All, HCRegLoops-Immune, and

HCRegLoops-Non-Immune sample sets was performed. Briefly, for each sample set, we identi-

fied highly conserved loop anchors by compiling loops across all samples in the set, extracting

anchors, and filtering the anchors for those involved in at least one loop call in at least 90% of

samples from the given sample set. We downloaded 727 known human motifs from the 2022

JASPAR CORE database [141]. Motif enrichment analysis was directly applied to the conserved

anchor sites using MEME Suite SEA (Simple Enrichment Analysis) version 5.5.0 [120] using a

match p-value threshold of 1e-6 and default values for all other parameters (Supp Table 2.3).

2.5.5 Identifying Pairs of Motifs Overlapping Loop Anchors

Briefly, for each sample in HCRegLoops-All, unique loop anchors were extracted and

these were intersected with sample-specific corresponding ChIP-seq peaks using bedtools inter-

sect with no slack. We selected the peak with the highest signal value to represent that anchor

for cases in which multiple H3K27ac peaks overlapped one loop anchor. The resulting peak

sets were deduplicated since a single peak may overlap multiple loop anchors. To determine
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the genomic coordinates of motifs from the 2022 JASPAR CORE database (n = 727 motifs) in

these representative peak sets, MEME Suite FIMO (Find Individual Motif Occurrences) version

5.5.0 [142] was applied to the HCRegLoops-All sample set on a sample-by-sample basis using a

match p-value threshold of 1e-6 and default values for all other parameters. For each sample, we

intersected motif coordinates with loop coordinates using bedtools pairtobed and annotated loop

anchors with the motifs falling within the anchor.

2.5.6 Performing Enrichment Analysis for Motif Pairs

Statistical analyses were performed via a bootstrapping method for HCRegLoops-All

HiChIP samples (Supp Table 2.4, Supp Figure 2.1). Bootstrapping was performed using a block

bootstrap with anchors as the unit analysis and anchors were randomly shuffled within their

corresponding chromosomes. To get the null distribution, we shuffled the dataset through the

location of unique instances of anchors. From there, we assigned a uniform probability of

drawing a given anchor within each chromosome with replacement and used a total of 100,000

simulations. P-values were then determined for each sample by counting up the total number

of simulated pairs that were greater than or equal to observed pairs in the original sample. Due

to the large number of pairs ranging from tens to hundreds of thousands for each sample, we

only focused on motif pairs with both motifs within the top 50 most frequently enriched motifs

for that sample. A multiple testing correction using Benjamini-Hochberg was then utilized with

these filtered pairs to obtain adjusted p-values.

2.5.7 Constructing Chromatin Interaction Networks using Loops

To construct a network from chromatin loops, each anchor was considered a node and

each significant loop an edge. In addition, anchors were labeled as promoters by intersecting

with TSS coordinates (slack of +/- 2.5kb) and allowing the promoter label to take priority over

any other possible label. For H3K27ac HiChIP data, non-promoter nodes/anchors are labeled

as enhancers when they overlap with ChIP-seq peaks (no slack). All other nodes that are not a
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promoter or an enhancer were designated as “other”. After obtaining the annotated anchors, we

created a weighted undirected graph using the loops as edges and loop strength as edge weights

calculated as the -log10(q-value) of FitHiChIP loop significance. To trim outliers, we set values

larger than 20 to 20 and further scaled these values to between 0 and 1 for ease of visualization.

2.5.8 Detecting and Prioritizing Communities

Community detection was applied to the networks created using FC loops at 5kb. Two

levels of community detection were applied, the first detected communities within the overall

network created for each chromosome (high-level) followed by a second round that detected sub-

communities of the communities reported in the first round (low-level). High-level communities

were located by running the Louvain algorithm using default parameters as implemented by the

CDlib Python package. Starting with each high-level community, subcommunities were called

using the same Louvain parameters. CRank [136] was then applied at both levels to obtain a

score that aggregates several properties related to the connectivity of a community into a single

score for ranking.

2.6 Availability of data and materials

Relevant code for this chapter has been released on Github at motif_pair_enrichment

(https://github.com/ay-lab-team/motif_pair_enrichment) to perform enrichment analyses for

motif pairs, Community-Detection-Using-Chromatin-Loops (https://github.com/ay-lab-team/

Community-Detection-Using-Chromatin-Loops) to locate communities formed by chromatin

loops, and T1D-Loop-Catalog (https://github.com/ay-lab-team/T1D-Loop-Catalog) to detect

immune-associated SGLs. Versions of all software included in our pipeline are recorded (Supp

Table 1.10). Fine-mapped GWAS SNPs were retrieved from CAUSALdb (http://www.mulinlab.

org/causaldb).
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2.8 Supplementary Figures

Supp Figure 2.1. Schema of Bootstrap Analysis for Motif Pairs. Loops are depicted with
an arc and horizontal lines are used to denote their anchors. Each loop has a distinct color to
emphasize the true loop composition and overlapping motifs are depicted with horizontal lines
and a separate color for each (top right). Observed motif pairs are tabulated (bottom left). To
simulate a new set of loops, anchors are shuffled thereby bringing together new combinations of
motifs (top middle). Motif pairs from these simulations are tabulated across 100,000 simulations
(top right) to then build a null distribution (bottom right). The observed counts for a given motif
are then evaluated against their respective null distribution (bottom).
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Supp Figure 2.2. Summary of SGLs derived from HiChIP and eQTL intersections. A)
Breakdown by cell type for the total number of eQTLs (blue) and SNPs (orange) within the
original eQTL dataset. B) Breakdown by cell type for the total number of genes from the eQTL
study (green) followed by SGL summaries for unique SGLs (red), SNPs (purple) and genes
(brown).
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Supp Figure 2.3. Example analysis for CD4 T cells using SGLs derived from their corre-
sponding eQTLs. Depicted is the IKZF3/ORMDL3 locus with the top gray track containing
SNPs derived from eQTLs followed by H3K27ac HiChIP loops for six CD4 T cell samples.
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2.9 Supplementary Tables

Supp Table 2.1: GWAS SGL Statistics for RA, AD, T1D, and PS

Supp Table 2.2: eQTL SGL Statistics for 6 Immune Cell Types

Supp Table 2.3: 1D Conserved Anchor Motif Enrichment Analysis Statistics

Supp Table 2.4: Paired Motif Enrichment Analysis Statistics
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Chapter 3

nipalsMCIA: Flexible Multi-Block Dimen-
sionality Reduction in R via Non-linear
Iterative Partial Least Squares

3.1 Abstract

With the increased reliance on multiomics data for bulk and single cell analyses, the

availability of robust approaches to perform unsupervised analysis for clustering, visualization,

and feature selection is imperative. Joint dimensionality reduction methods can be applied to

multiomics datasets to derive a global sample embedding analogous to single-omic techniques

such as Principal Components Analysis (PCA). We introduce nipalsMCIA, an MCIA imple-

mentation that solves the objective function using an extension to Non-linear Iterative Partial

Least Squares (NIPALS), and shows significant speed-up over earlier implementations that rely

on eigendecompositions for single cell multi-omics data. It also removes the dependence on an

eigendecomposition for calculating the variance explained, and allows users to perform out-of-

sample embedding for new data. nipalsMCIA provides users with a variety of pre-processing

and parameter options, as well as ease of functionality for down-stream analysis of single-omic

and global-embedding factors.
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3.2 Background

Prior to the birth of high-throughput methods, the biology field has long relied on

analyzing biological phenomena with limited data and assays per study. DNA sequencing, when

first established in the 1970’s, was a slow process that only sequenced about 10kb per day

[143]. Fast forward to today and sequencing is available to study RNA [144], DNA binding

proteins [145, 146], chromatin conformation [50], DNA accessibility [147, 148] and much more

[149]. The same growth has been seen for other biological signals such as proteomics and cell

frequencies via methods such mass spectrometry [150] and mass cytometry [151]. This surge

in data generation has also results in the ability to ask more complex questions, demanding

well-conceived integration strategies [149, 152, 153]. To pave the way, several methods known

as joint dimensionality reduction (jDR) methods, have constructed mathematical formulation

for deriving signals shared between blocks or derived from within a single block of data [11].

Canonical correlation analysis was an early pioneer of these methods that analyzes two blocks

of data together, utilizing an optimization function that attempts to optimize for the covariance

between blocks of data [154]. Naturally, there has been an extension of CCA and other methods

to much larger blocks of data as our capacity to assay different phenomena has increased [11,

155].

The biology community needs a comprehensive and systems-wide understanding of

mechanisms for various biological phenomena and sophisticated jDR methods can play a crucial

role. The complexity of immune responses, cancer progression, human development and many

other biological events has prompted the use of multiple assays with some advancements being

attributed to the use of multiomics data [156–167]. MCIA is a member of the jDR family that

extends unsupervised dimension reduction techniques such as Principal Components Analysis

(PCA) and Non-negative Matrix Factorization (NMF) to datasets with multiple data blocks

(alternatively called views) ([11, 168]). Such methods, also known as multi-block or multi-view

analysis algorithms, are becoming increasingly important in the field of bioinformatics, where
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data is often collected simultaneously using multiple omics technologies such as transcriptomics,

proteomics, epigenomics, metabolomics, etc [14].

Here, we present a new implementation in R/Bioconductor of MCIA, nipalsMCIA, that

uses an extension with proof of monotonic convergence of Non-linear Iterative Partial Least

Squares (NIPALS) to solve the MCIA optimization problem [169]. This implementation shows

significant speed-up over existing Singular Value Decomposition (SVD)-based approaches for

MCIA [12, 170] on large datasets. Furthermore, nipalsMCIA offers users several options for

pre-processing and deflation to customize algorithm performance, methodology to perform

out-of-sample global embedding, and analysis and visualization capabilities for efficient results

interpretation. We show application of nipalsMCIA to both bulk and single cell multi-omics

data. The overall workflow that includes the optimization steps and analyses for nipalsMCIA is

outlined in Figure 3.1.

3.3 Results

3.3.1 Package Design and Goals

The overall goal of nipalsMCIA is to make multiomics analysis accessible and inter-

pretable. Previous attempts at making packages for MCIA existed in the form of Omicade and

MOGSA however their implementations made it difficult to use beyond integration and data

reduction. To promote the adoption of these methods within the bioinformatics community,

nipalsMCIA was developed as an extensible software hosted on Bioconductor. This ensured

nipalsMCIA was rigorously evaluated and revisions were suggested. This process resulted in a

highly accessible version of nipalsMCIA that utilizes MultiAssayExperiment to load multiomics

data, several pre-processing options to allow within- and whole-block normalizations, and a

nipalsResults object especially tailored for downstream analyses. The latter feature includes

various visualization methods to extract insights from global scores, global loadings, weights

as well as their block level counterparts. To succinctly demonstrate nipalsMCIA’s use, we
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included three vignettes that cover: 1) the basics of jDR, 2) prediction of MCIA scores for novel

datasets (not shown), and 3) application to single cell analysis. As will be shown, nipalsMCIA

comes with an example dataset from the National Cancer Institute 60 tumor-cell line screen

(NCI60 data) [13, 171]. It includes RNA-Seq, miRNA, and protein data from 21 cell lines that

correspond to three cancer subtypes (brain, leukemia, and melanoma). Processed single cell data

for is also available and sourced from 10x Genomics. It includes both gene expression and cell

surface antibody data obtained from a CITE-seq experiment on approximately 5000 immune

cells derived from blood [172].
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Figure 3.1. A breakdown of the NIPALS algorithm for performing MCIA. Data blocks are
normalized before scores and loadings are computed to satisfy the objective function. Higher-
order results are then computed after the data has been deflated with the current scores or
loadings.
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3.3.2 Analysis & Interpretation

The nipals_multiblock function is used to run MCIA in nipalsMCIA. The function

outputs an object of the NipalsResult class, which includes the global scores and loadings,

block scores and loadings, the global score eigenvalues, and the block score contributions vector

for all orders up to the maximum specified via the num_PCs argument. The global scores represent

the projection of the multi-block data in the reduced space (Figure 3.2i). MCIA is a completely

unsupervised method, however, using the NCI60 dataset it can capture underlying signals that

separate sample based on cancer type (Figure 3.2ii, left) (global_scores_heatmap function).

In addition, factors can be plotted against each other to further dissect findings within this

reduced space (Figure 3.2ii, right) (projection_plot function). This analysis is reminiscent of

PC1 versus PC2 plots from PCA and, once again, highlights the ability of nipalsMCIA to derive

informative factors for analysis goals such as sample separation. In addition, this last analysis

can be extended by overlaying the corresponding block scores. These represent the projection of

a sample given a single omic (square, triangle, circle) with lines connected to the global score

(middle).

Each multiomics dataset is able to contribute a unique signal that may be captured in

a single factor or across a variety of factors. These contributions to the global score can be

easily described using the global weights and visualized using the block_weights_heatmap

function (Figure 3.2iii). As shown in this figure, factor 1 signals are mainly derived from mRNA

levels with some contribution from miRNA but very little contribution from proteins levels. This

is in stark contrast to factor 5 where mRNA levels do not contribute but miRNA has a strong

contributions with some additional contribution from protein levels. Deeper dives can also be

performed for which we took factor 4 as an example. Unlike the other factors, contributions

to factor 4 are concentrated most strongly within mRNA levels. The global loadings contains

coefficients associated with the contribution of a single feature to the global score. To analyze

these coefficients we made available the vis_load_ord function where features are on the X
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axis and loading values are on the Y axis. Using this plot we can see that out of the top 60

features, 47 are coming from mRNA, 12 from protein and only one from miRNA (Figure 3.2iv).
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Figure 3.2. Scheme for interpreting the global loadings and scores performed on the three-
block NCI60 data from the main text. (i) Global scores are calculated from the global data
matrix and global loadings. (ii) Global scores represent low-dimensional embeddings of the data
used to cluster samples via hierarchical clustering. Colors represent the three different cancer
types associated with each sample (iii) Block contributions vectors plotted to visualize the weight
of each block on each order of global score. (iv) The first global loadings vector is plotted to
identify the top features for the first global score.
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Given the prevalence of RNAseq in many multiomics datasets we also integrated a GSEA

analysis via the gsea_report function. GSEA analyzes genes utilizing an associated scoring

metric for which the global loadings provide an impact score. When interpreted, these scores can

reveal important gene expression pathways that are relevant at this system-wide level. Results are

provided in table 3.1 where we see that cell cycle and DNA replication processes are enriched,

reciprocating the cancer context of the NCI60 dataset.

Table 3.1. GSEA results utilizing mRNA loading scores as input and the Reactome 6.2 gene
set.

Pathway Adjusted P-value
REACTOME CELL CYCLE 1.59e-20
REACTOME CELL CYCLE MITOTIC 4.50e-18
REACTOME GENERIC TRANSCRIPTION PATHWAY 5.81e-13
REACTOME DNA REPLICATION 1.92e-09
REACTOME MITOTIC M M G1 PHASES 2.24e-09
REACTOME PROCESSING OF CAPPED INTRON CONTAINING PR. . . 4.43e-09

3.3.3 Application to scRNA-seq Data

Given the growth of single cell technologies with powerful platforms such as 10X we

also demonstrate the utility of nipalsMCIA to decompose the resulting high dimensional data

into biologically relevant factors. We downloaded CITE-seq data from the 10X website that

contains approximately 5000 peripheral blood mononuclear cells from a single donor as well

as 33,538 genes and 32 cell surface markers [172] and applied nipalsMCIA using 10 factors.

Factors from this analysis are able to separate immune cells from one another (Figure 3.3A).

By hierarchically clustering using global factor scores we can further dissect that signals for

macrophages are strongly captured in factor 1 whereas B cells signals are captured by factor 3.

In addition, Natural Killers appear to be captured by a strong negative signal in factor 2 (Figure

3.3B).
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3.3.4 Out-of-sample embedding

The loadings vectors generated by MCIA on a dataset X represent linear combinations of

the original features of X . Therefore, after computing MCIA on a training dataset, one can use the

associated loadings vectors to predict global embeddings for a test dataset of new observations

of the same features. nipalsMCIA provides the predict_gs function for this task.

This can be valuable for testing the quality of the embedding, as well as embedding new

data without rerunning the decomposition. We provide a vignette in the package showing how

this can be done using the NCI60 data set, using 70% of the data to train the model, and then

deriving global scores for the remaining 30%.

Figure 3.3. Analysis of global loading values derived from a CITE-seq dataset for 5,247
immune cells from the PMBC. A) Global factors scores for factor 1 and 2. B) Heatmap of
global factor scores across all cells.

3.4 Discussion

The accessibility of next-generation sequencing and other high-throughput biological

assays are resulting in an increase of multi-block (or multi-modal) datasets [15–18]. Analysis

of these data are facilitated by the application of joint dimensionality reduction methods such

as MCIA. nipalsMCIA is a comprehensive R package that implements MCIA in a highly
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efficient manner using the NIPALS algorithm. The package features various pre-processing

and analysis options, is much faster for large input datasets compared with existing packages,

supports the projection for out-of-sample scores, and offers visualization options for scores and

top-magnitude loadings at each order. To showcase its applicability to emerging technologies,

we applied nipalsMCIA to single cell data as part of our introductory vignettes and released

our package on Bioconductor to further enhance its adoption across the wider bioinformatics

community.

3.5 Supplementary Materials

The Supplementary Materials include additional information on the NIPALS algorithm

implemented in nipalsMCIA, in-depth discussion of data pre-processing options, detailed

overview of the calculations for variance explained and out-of-sample embedding, as well

as a summary of the results (detailed more fully in the vignettes) corresponding to out-of-sample

embedding of NCI60 data and application of nipalsMCIA to single cell data.
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