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Homeostatic synaptic scaling: molecular regulators of synaptic
 AMPA-type glutamate receptors [version 1; referees: 4 approved]

Dhrubajyoti Chowdhury, Johannes W Hell
Department of Pharmacology, University of California Davis, Davis, California, USA

Abstract
The ability of neurons and circuits to maintain their excitability and activity
levels within the appropriate dynamic range by homeostatic mechanisms is
fundamental for brain function. Neuronal hyperactivity, for instance, could
cause seizures.  One such homeostatic process is synaptic scaling, also known
as synaptic homeostasis. It involves a negative feedback process by which
neurons adjust (scale) their postsynaptic strength over their whole synapse
population to compensate for increased or decreased overall input thereby
preventing neuronal hyper- or hypoactivity that could otherwise result in
neuronal network dysfunction. While synaptic scaling is well-established and
critical, our understanding of the underlying molecular mechanisms is still in its
infancy. Homeostatic adaptation of synaptic strength is achieved through
upregulation (upscaling) or downregulation (downscaling) of the functional
availability of AMPA-type glutamate receptors (AMPARs) at postsynaptic sites.
 Understanding how synaptic AMPARs are modulated in response to
alterations in overall neuronal activity is essential to gain valuable insights into
how neuronal networks adapt to changes in their environment, as well as the
genesis of an array of neurological disorders. Here we discuss the key
molecular mechanisms that have been implicated in tuning the synaptic
abundance of postsynaptic AMPARs in order to maintain synaptic
homeostasis.
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Introduction
Homeostatic synaptic scaling allows neurons to maintain their 
activity within a dynamic range despite ongoing alterations in 
input activity, thereby ensuring normal propagation of signal  
through the neuronal network. For instance, synaptic modifi-
cations underlying memory formation are inherently destabi-
lizing because of the positive feedback nature of the cellular  
correlates, long-term potentiation (LTP) and long-term depres-
sion (LTD), and necessitate the existence of homeostatic  
adaptations to normalize overall synaptic strength. Homeostatic 
regulation of synaptic strength preserves the excitation/inhibition  
balance in the brain, which is critical for proper brain functions 
and often dysregulated in several neurological disorders1. Syn-
aptic scaling of excitatory synaptic transmission is a negative  
feedback process involving adjustment in post-synaptic strength 
to compensate for input activity. Such a phenomenon was  
initially described, about 20 years ago, in dissociated neuronal 
cultures upon pharmacological manipulation of neuronal activ-
ity. Accordingly, chronic silencing by the voltage-gated sodium 
channel blocker tetrodotoxin (TTX) resulted in upregulation  
(upscaling) of synaptic strength2,3. Chronic elevation of neu-
ronal activity by the GABAA receptor antagonist bicuculline 
(Bic) caused downregulation (downscaling) of synaptic strength.  
These alterations in synaptic strength are observed as an 
increase or decrease in the amplitude of miniature excitatory  
post-synaptic current (mEPSC) mediated by AMPA-type gluta-
mate receptors (AMPARs), which account for the majority 
of fast excitatory transmission in the central nervous system.  
Bidirectional scaling of AMPAR–mEPSC amplitude in princi-
pal neurons of rat primary visual cortex in response to changes 
in visual experience of the animal was demonstrated thereafter4,  
thus establishing the existence of this phenomenon in vivo. 
Such functional changes are the consequences of altered syn-
aptic AMPAR content, which is regulated by diverse molecular  
mechanisms, and these form the theme of this article. Apart 
from the homeostatic adaptation in excitatory post-synaptic  
strength, other processes such as change in pre-synaptic  
neurotransmitter release5, change in intrinsic excitability6, and  
scaling of inhibitory synapses7 are known to stabilize neuronal 
activity.

Molecular mechanisms
The molecular mechanisms underlying synaptic scaling of excita-
tory synapses converge upon the regulation of synaptic AMPARs 
in terms of number or subunit composition or both. AMPARs  
are hetero-tetrameric glutamate-gated ion channels assembled as 
a dimer of dimers comprising GluA1–GluA4 subunits8. Subunit 
composition dictates key channel properties, including agonist  
affinity, gating kinetics, and calcium permeability, and subu-
nit switching offers an effective means to alter synaptic  
transmission without changing receptor number. AMPARs are 
highly mobile, and their synaptic abundance is tightly regulated 
by a host of mechanisms that impact their trafficking to/from  
the synapse, mobility along the plasma membrane, and sta-
bilization at the post-synaptic density (PSD)9. Such mecha-
nisms include a variety of post-translational modifications of the  
receptor itself as well as post-synaptic scaffolding and acces-
sory proteins that interact with AMPARs at specific steps of the  

receptor’s life cycle. In this review, we highlight some of the 
key molecular regulators of synaptic AMPARs that have been  
implicated in synaptic scaling.

Phosphorylation of GluA1 on Ser845
Phosphorylation of Ser845 on the GluA1 subunit of AMPARs by 
protein kinase A (PKA) promotes the insertion of AMPARs into 
the cell surface10–13 and especially in the perisynaptic space14–16. 
This mechanism augments the accumulation of AMPARs at post-
synaptic sites upon the induction of LTP10,17. Dephosphoryla-
tion of Ser845 by the calcium-dependent phosphatase calcineurin 
is correlated with endocytosis of AMPARs18, which is necessary 
for LTD19–21. In addition, this phosphorylation increases channel  
open probability and hence potentiates individual receptor 
function22. GluA1–Ser845 phosphorylation within the PSD is 
increased during TTX-induced upscaling and decreased upon  
Bic-induced downscaling in cultured neurons23. Such bidirec-
tional change in GluA1–Ser845 phosphorylation matches the  
enhanced and reduced AMPAR synaptic levels in upscaling and 
downscaling, respectively, although only TTX-induced scal-
ing up was impaired in neurons from S845A GluA1 knock-in 
mice. Moreover, the upregulation of AKAP5-anchored PKA  
activity was suggested to drive scaling up23. In another study using 
dissociated cultures, reduced activity of calcineurin was found 
to underlie upscaling mediated by Ca2+-permeable AMPARs 
(CP-AMPARs) via increased GluA1–Ser845 phosphorylation24.  
Moreover, increased Ser845 phosphorylation is correlated with 
and necessary for AMPAR–mEPSC scaling up in visual cortex  
following visual deprivation25,26. This finding highlights its 
importance in in vivo sensory experience-induced synaptic  
upscaling. However, enhanced GluA1–Ser845 phosphoryla-
tion is not sufficient for producing multiplicative scaling in this 
system, indicating requirements for additional events for synap-
tic recruitment of AMPARs. We propose that Ser845 phospho-
rylation promotes post-synaptic AMPAR accumulation during  
homeostatic synaptic upscaling. How the underlying chronic 
decrease in synaptic input induced Ser845 phosphorylation is 
not known but could be due to a reduction in the activity of the  
phosphatase that dephosphorylates Ser845. As discussed in the 
next section, GluA1-containing AMPARs have been widely  
implicated in synaptic scaling27–29. These findings are consist-
ent with a role of Ser845 phosphorylation in synaptic scaling  
up. Furthermore, GluA1 can form homo-tetrameric CP-AMPARs, 
which have been implicated in scaling up. That those GluA1 
homomers possess four Ser845 phosphorylation sites makes  
them perhaps especially suitable for contributing to scaling up.

Role of Ca2+-permeable versus Ca2+-impermeable 
AMPARs in synaptic scaling
Despite the implication of GluA1-containing AMPARs in syn-
aptic scaling27–29, there is an ongoing debate regarding the 
requirement for GluA2-containing AMPARs, particularly in 
upscaling. A switch from Ca2+-impermeable GluA2-containing  
AMPARs (CI-AMPARs) to higher-conductance CP-AMPARs at 
the synapse can have significant consequences for intracellular  
signaling, which might contribute to homeostatic upscaling. Such 
subunit switch will serve the purpose of homeostatic excita-
tory synaptic gain in a rapid and efficient manner. Chronic TTX  
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treatment of an organotypic hippocampal slice preparation leads 
to selective upregulation of GluA2-lacking AMPARs in CA1 
pyramidal neurons30. Similarly, a 4-hour treatment with TTX  
with additional NMDA-type glutamate receptor (NMDAR) block-
ade with 2-amino-5-phosphonopentanoic acid (APV) during 
the last 1–3 hours induces temporary insertion of CP-AMPARs 
at post-synaptic sites31. Chronic blockade of either AMPARs or  
L-type Ca2+ channels also induces post-synaptic localiza-
tion and response of CP-AMPARs in dissociated hippocampal  
cultures27. These findings clearly implicate at least temporary  
post-synaptic functional appearance of CP-AMPARs in synaptic 
upscaling, which is reminiscent of a somewhat analogous tem-
porary post-synaptic appearance of CP-AMPARs during LTP in 
very young (2-week-old) as well as more-than-7-week-old mice  
but not in 3- to 4-week-old mice21,32–34. Furthermore, micro-
RNA-mediated selective repression of GluA1 and GluA2 
expression in dissociated hippocampal neurons prevents 
and facilitates upscaling, respectively, by chronic TTX/APV  
treatment35,36, further suggesting the replacement of CI-AMPARs 
by CP-AMPARs in upscaling. However, both GluA1 expres-
sion and GluA2 expression are affected upon treatment with 
TTX alone2,37,38, indicating divergent mechanisms operative in 
response to the suppression of action potential with or with-
out NMDAR signaling. Interestingly, TTX-induced upscaling 
is preserved in hippocampal cultures from constitutive GluA1 or  
GluA2 knockout (KO) mice39, indicating that upscaling can 
be achieved simply by increasing the number of AMPARs by 
recruitment and retention mechanisms that bypass subunit- 
specific interactions and rather modulate receptor trafficking 
and post-synaptic organization. However, developmental com-
pensation could account for these effects using this approach. 
In fact, knockdown of GluA2 and ectopic expression of the  
cytosolic GluA2 C-terminus, which interacts with glutamate 
receptor-interacting protein 1 (GRIP1), protein interacting  
with C-kinase 1 (PICK1), NSF, and AP2, impair upscaling 
in response to chronic TTX treatment in dissociated cortical 
neurons37. Accordingly, GluA2-containing AMPARs are also 
required for upscaling in wild-type animals. These findings are 
consistent with the requirement of GRIP1 and PICK1 in upscal-
ing (see next paragraph)38,40,41. A more recent study measuring  
asynchronous EPSCs (aEPSCs) in response to evoked inputs in  
hippocampal slice culture, where either GluA1 or GluA2 was 
knocked down in sparse CA1 pyramidal neurons, concluded 
that GluA2, not GluA1, is necessary for TTX-induced scaling42.  
Furthermore, GluA2 is found to be sufficient for scaling based 
on molecular replacement of endogenous GluA1–3 with the  
unedited rectifying GluA2 (Q) subunit, although all of these 
genetic manipulations reduced baseline aEPSC amplitude.  
Obviously, GluA1 and GluA2 are important for scaling up, and the  
relative contributions might vary depending on exact condi-
tions and systems. However, further studies are needed to clarify  
whether and how synaptic scaling uses GluA1- and GluA2- 
selective mechanisms and how they might interact.

Role of GRIP1/PICK1 in synaptic scaling
The GRIP1 and the PICK1 are two PDZ (Post-synaptic density-
95/Drosophila disc large tumor suppressor/Zona occludens-1)  
domain-containing scaffolding proteins that bind the GluA2  
subunit at an overlapping site in a competitive manner and  

control GluA2–AMPAR synaptic accumulation43–45. While  
binding to GRIP1 facilitates synaptic accumulation of GluA246, 
PICK1 recruits activated PKC to the receptor complex, lead-
ing to phosphorylation of Ser880 on GluA2 that dissociates 
GRIP1, resulting in AMPAR endocytosis and removal from the  
synapse47–49. PICK1 is also known to directly interact with the 
endocytic machinery, AP2 and dynamin, to facilitate AMPAR 
endocytosis49. Other studies have suggested that PICK1 is  
necessary for the intracellular retention of endocytosed  
AMPARs rather than the initial step of internalization from the  
cell surface during LTD50,51. Interaction between GRIP1 and 
GluA2 is increased following prolonged inactivity in cultured  
neurons and is essential for surface AMPAR accumulation  
involved in synaptic upscaling40,41. Conversely, PICK1 protein 
level is reduced upon chronic activity blockade but not upon  
activity elevation38. Inactivity-induced increase in AMPAR  
mEPSCs is occluded in neurons from PICK1 KO mice because 
of increased basal levels of synaptic AMPARs, a consequence  
of enhanced recycling.

PSD-95
PSD-95, the most abundant post-synaptic scaffolding pro-
tein, is a member of the membrane-associated guanylate kinase 
(MAGUK) family52 and anchors AMPARs at post-synaptic sites by  
interacting with auxiliary subunits called transmembrane AMPAR 
regulatory proteins (TARPs)53. Synaptic accumulation of PSD-95 
is bidirectionally regulated by chronic activity manipulation 
and negatively correlates with the direction of perturbation54.  
Moreover, PSD-95 knockdown blocks both scaling up and down, 
and PSD-95 overexpression blocks scaling down in cultured  
neurons, indicating a dominant role for PSD-95 in determining 
AMPAR synaptic abundance as a function of activity. Such  
influence of PSD-95 on scaling could be due to its specific role 
in stabilizing AMPARs at the PSD of mature neurons or a more 
general role in providing “slots” for the receptors to reside within 
the PSD. Palmitoylation of PSD-95 at its N-terminal cysteine 
residues (Cys3 and Cys5) has emerged as a mechanism for  
activity-dependent regulation of its synaptic localization during 
scaling55,56, as would be expected given its absolute requirement 
for post-synaptic PSD-95 targeting57. Palmitoylation is a com-
mon reversible modification regulating membrane insertion of  
cytosolic proteins. Chronic silencing of activity enhances PSD-95 
palmitoylation55,58 whereas prolonged elevation of activity reduces 
it56. Such changes are associated with accumulation and loss of 
PSD-95 from the synapse, respectively. Dynamic recruitment of 
the PSD-95 palmitoylating enzyme (palmitoyl acyl transferase)  
DHHC2 to the PSD is induced by activity blockade, which in 
turn mediates synaptic clustering of PSD-95 and AMPARs55. 
On the other hand, capping of PSD-95 N-terminus (1–21) by  
Ca2+/calmodulin (CaM), which sequesters the palmitoylation 
sites and thereby antagonizes PSD-95 palmitoylation59, leads to 
PSD-95 dispersal from the PSD and, as a consequence, facilitates  
AMPAR downscaling56. In the latter study, molecular replace-
ment of endogenous PSD-95 with CaM binding-defective mutants,  
including the E17R mutation, in cultured hippocampal neurons 
blocks Bic-induced downscaling of surface GluA1 levels and 
AMPAR mEPSC amplitude, which is rescued by charge inver-
sion via the coexpression of CaM R126E. Palmitoylation is not  
sufficient to specifically localize PSD-95 to the post-synaptic site. 
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Recent work identified α-actinin as a critical post-synaptic dock-
ing protein for PSD-9560. Remarkably, α-actinin binds directly to  
the N-terminus immediately downstream of Cys3 and Cys5. 
CaM binding to PSD-95 N-terminus not only shifts PSD-
95 to a more depalmitoylated state but also displaces it from  
α-actinin. These findings reveal a precise mechanistic link between 
increased intracellular Ca2+ levels that trigger downscaling and the  
homeostatic decrease in synaptic AMPAR levels through  
CaM-mediated removal of PSD-95 from the synapse (Figure 1).

Stargazin
Stargazin (STG) is a TARP member that directly interacts with 
PSD-95 and dynamically regulates the synaptic stabilization of 
AMPARs via CaMKII-dependent phosphorylation53,61–63. Chronic 
inactivity increases STG expression and phosphorylation at the 
CaMKII sites Ser239/240 and Ser228. Overexpression of the 
phospho-dead mutant of STG prevents TTX-induced increase in  
synaptic GluA1 levels in cultured neurons. In contrast, overex-
pression of the phosphomimetic mutant results in higher basal  
levels of synaptic GluA1 and occludes scaling up64. Additionally, 
increased STG phosphorylation is observed in the mouse lat-
eral geniculate nucleus concomitant with a parallel reduction in  
AMPAR rectification index following visual deprivation for  
1 week starting at P20, indicating the insertion of CP-AMPARs at 
those synapses in vivo.

Collectively, the data implicating PSD-95 and STG in homeostatic 
synaptic scaling indicate that the very fundamental mechanism 
of post-synaptic AMPAR anchoring is affected by neuronal input 
activity in a manner that substantially contributes to scaling up or 
down of the post-synaptic AMPAR content.

Arc/Arg3.1
Activity-regulated cytoskeleton-associated protein (Arc), also 
known as Arg3.1, is an immediate early gene product that 

has been implicated in LTP and LTD and in the consolidation  
of memories65. Strong neuronal activity induces rapid accumula-
tion of Arc at the glutamatergic synapse, where it recruits the  
clathrin-dependent endocytosis machinery to AMPARs and facili-
tates their internalization, thus negatively regulating AMPAR- 
mediated synaptic transmission66,67. Basal AMPAR–mEPSC  
amplitudes are increased in Arc KO hippocampal neurons, which 
fail to show TTX-induced upscaling68. However, Bic-induced 
downscaling is preserved in these neurons. Moreover, visual  
experience-induced scaling of AMPAR–mEPSCs in L2/3  
principal neurons of primary visual cortex is absent in Arc 
KO mice, supporting its crucial role in homeostatic regulation  
in vivo69. Briefly, acute re-exposure to light for even 2 hours 
reversed an increase in mEPSC amplitude induced by 2 days of  
dark rearing of adult (>P21) wild-type mice, whereas  
Arc KO mice did not even show changes in mEPSC ampli-
tude upon dark rearing. Recent work has uncovered that the  
nuclear localization of Arc, apart from its well-established syn-
aptic actions, is required for AMPAR downscaling through  
repression of GluA1 transcription70. After a transient decrease in 
nuclear localization at 30 minutes of Bic treatment, Arc shows 
increased nuclear accumulation at 8 hours of treatment when it  
regulates GluA1 transcription through cAMP response element 
(CRE) sites on its promoter. Such a temporal profile fits its fast  
synaptic role in promoting AMPAR endocytosis to initiate  
downscaling followed by a long-term reduction in new receptor 
generation for maintenance of downscaling.

Homer1a
The immediate early gene product Homer1a has been implicated 
in the driving of AMPAR downscaling. Under baseline condi-
tions, long-form Homer1 tetramers bind group I metabotropic 
glutamate receptors (mGluR1/5) and inositol 1,4,5-triphosphate 
receptors (IP3Rs) and enable glutamate-induced intracellular cal-
cium release. Expression of the short-form monomeric Homer1a 

Figure 1. Model for CaM-mediated removal of the synaptic scaffolding protein PSD-95 from excitatory synapses during synaptic 
downscaling. PSD-95 is targeted to the synaptic plasma membrane through constitutive and fast palmitate cycling at its N-terminus58,71 and 
is anchored by α-actinin60. Upon elevation of neuronal activity, calcium influx (Ca2+) through NMDARs leads to an increase in Ca2+/calmodulin 
(CaM) levels that caps the N-terminus of PSD-95. Such capping of PSD-95 prevents its re-palmitoylation as well as binding to α-actinin and 
leads to its dispersal from the PSD. With loss of PSD-95, AMPARs become free from being anchored and are subsequently removed from 
the synapse, resulting in synaptic downscaling56. AMPAR, AMPA-type glutamate receptor; NMDAR, NMDA-type glutamate receptor; TARP, 
transmembrane AMPAR regulatory protein.
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is activity-induced and competitively disrupts the scaffolding  
capabilities of Homer1 to reduce calcium release from intracel-
lular stores72. Homer1a is transiently upregulated by both chronic 
elevation and silencing of network activity in cultured cortical  
neurons. Homer1a evokes agonist-independent mGluR activa-
tion, which is selectively required for synaptic downscaling73.  
Genetic ablation of Homer1a results in enhanced surface levels of 
GluA1 and GluA2 as well as AMPAR-mEPSC amplitude under 
basal conditions. Both upscaling and downscaling of AMPAR 
currents are absent in Homer1a KO neurons, although the loss of  
homeostatic changes in GluA2 surface levels is much more pro-
nounced than that of GluA1. Still, the exact mechanism by  
which Homer1a mediates AMPAR scaling remains to be explored, 
although a decrease in GluA2 tyrosine phosphorylation has  
been suggested to be involved. In a recent study, Homer1a–mGluR 
signaling was shown to drive global downscaling during sleep 
in rodents, demonstrating the importance of this signaling in the  
intact brain74.

Semaphorin 3F – Neuropilin-2 – PlexinA3 signaling and 
association with GluA1
Semaphorin 3F was originally identified as an axonal guidance 
cue. Recent work now implies Semaphorin 3F signaling via its  
holoreceptor that is formed by the transmembrane proteins 
Neuropilin-2 and PlexinA3 in downscaling75. Chronic Bic 
treatment induces Semaphorin 3F secretion and Bic-induced  
downscaling is absent in dissociated cortical neurons from mice 
in which Semaphorin 3F, Neuropilin-2, or PlexinA3 is knocked 
out. Furthermore, Neuropilin-2 interacts with GluA1, and this  
association is likely mediated by its two extracellular CUB  
domains with the extracellular N-terminus of GluA1. This inter-
action is disrupted by Semaphorin 3F and chronic Bic treatment. 
The resulting downscaling requires the cytosolic C-terminus 
of PlexinA3 and specifically its Ras GTPase-activating pro-
tein (GAP) activity because PlexinA3 with point mutations that 
impair this activity fails to rescue downscaling in PlexinA3 KO  
neurons. Defining the role of this Ras GAP activity in down-
scaling awaits further work, but a hint of how this could work  
in neurons comes from HEK293 cells expressing this PlexinA3 
mutant. In these cells, Semaphorin 3F fails to dissociate GluA1 
from Neuropilin-2 in contrast to HEK293 cells expressing  
wild-type PlexinA3. What is somewhat puzzling is that pro-
longed (24–48 hours) Semaphorin 3F application induces down-
regulation of GluA1 surface expression in this work; however, in  
an earlier study, it leads to an increase in AMPAR–mEPSC  
amplitude within 2–3 hours in acute rat hippocampal slices76.  
Perhaps different systems or application conditions result in  
differential outcome.

Concluding remarks
The different molecular mechanisms underlying synaptic  
scaling, as highlighted above, might seem to be independent, but 
all of them converge onto regulating either trafficking or synapse 
stabilization of AMPARs. The question is whether all of these  
molecular events operating at distinct stages of the AMPAR life 
cycle are essential to achieve scaling or are redundant. Given the 
multitude of molecular targets recruited in producing long-lasting  

changes in synaptic strength during Hebbian plasticity (LTP and 
LTD), we think an effective homeostatic counterbalance might 
require synergism among at least some of the various scaling 
mechanisms, each balancing individual perturbed components  
of the machinery. Considering the shared final molecular output, 
it is not surprising that both Hebbian plasticity and synaptic  
scaling involve many of the same molecular targets. This raises the  
inevitable question of whether and how these two opposing  
plasticity phenomena (LTP versus downscaling and LTD versus  
upscaling) that are triggered by similar changes in input activ-
ity interact with each other. While acute changes in synaptic 
activity are sufficient to trigger Hebbian plasticity, homeostatic  
plasticity is manifested usually upon prolonged perturbations  
of the same. The much slower operating timescale of homeo-
static scaling might be advantageous since compensatory mecha-
nisms that are too quick could disrupt information storage through  
input-specific associative plasticity. In fact, such temporal  
segregation of the two forms of plasticity has been suggested to 
exist in V1 neurons of freely behaving young rats subjected to 
visual deprivation77, although the mechanistic details remain 
to be explored. Nonetheless, owing to its control of overall neu-
ronal excitability, homeostatic scaling can impact subsequent  
induction of Hebbian plasticity in a manner reminiscent of  
metaplasticity. Recent studies using hippocampal slice cultures 
found that chronic inactivity affects the LTP induction ability 
of CA3–CA1 synapses78,79, although the findings reported are  
contradictory.

Ever since its discovery, homeostatic synaptic scaling has been 
studied mostly as a global, cell-wide proportional change in  
synaptic strength across the majority of synapses on a given  
neuron. However, it is becoming increasingly evident that a  
local, synapse-autonomous form of homeostatic regulation also 
exists to enable input-specific tuning of a restricted set of syn-
apses. In an elegant study by Béïque et al., two-photon gluta-
mate uncaging onto synapses apposed to sparse pre-synaptic 
terminals, which were functionally suppressed, revealed larger 
AMPAR-mediated currents in “silenced” synapses compared 
with neighboring synapses receiving unsuppressed pre-synaptic  
inputs, thus establishing the phenomenon of synapse-specific  
homeostasis29. In vivo evidence for this form of homeostasis was 
found in the neurons of the optic tectum of Xenopus tadpoles  
which receive segregated afferents from both visual and  
mechanosensory pathways80. It was demonstrated that prolonged 
manipulation of sensory stimulation of each pathway resulted in 
homeostatic modification exclusively at synapses of the same  
pathway. Mechanistically, expression of synapse-autonomous 
homeostasis involves the insertion of GluA2-lacking AMPARs 
and depends on Arc, indicating some extent of convergence  
between local and cell-wide forms of homeostasis. As further 
cellular and molecular details of both cell-wide and synapse- 
specific forms of homeostatic plasticity will be uncovered, we 
expect the emergence of new insights into the possible functions 
of each phenomenon and their interaction within the broader  
context of neuronal homeostasis. Overall, despite immense 
advances in the past decade, the field of synaptic homeostasis is 
relatively new and requires further exploration to fully appreciate  
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its fundamental role in stable information processing in the  
brain.
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