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4Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
5Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California,

San Francisco, San Francisco, CA 94143, USA
6Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
7Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94143, USA
8Multiple Sclerosis and Neuroregeneration Mixed Unit, IIS Hospital La Fe, 46026 Valencia, Spain

*Correspondence: j.manuel.garcia@uv.es

http://dx.doi.org/10.1016/j.stemcr.2017.05.024
SUMMARY
Neural stem cells (B1 astrocytes; NSCs) in the adult ventricular-subventricular-zone (V-SVZ) originate in the embryo. Surprisingly, recent

work has shown that B1 cells remain largely quiescent. They are reactivated postnatally to function as primary progenitors for neurons

destined for the olfactory bulb and some corpus callosum oligodendrocytes. The cellular and molecular properties of quiescent B1 cells

remain unknown. Here we found that a subpopulation of B1 cells has a unique nuclear envelope invagination specialization similar to

envelope-limited chromatin sheets (ELCS), reported in certain lymphocytes and some cancer cells. Using molecular markers, [3H]thymi-

dine birth-dating, and Ara-C, we found that B1 cells with ELCS correspond to quiescent NSCs. ELCS begin forming in embryonic

radial glia cells and represent a specific nuclear compartment containing particular epigenetic modifications and telomeres. These results

reveal a unique nuclear compartment in quiescent NSCs, which is useful for identifying these primary progenitors and study their gene

regulation.
INTRODUCTION

Neural stem cells (NSCs) persist in the ventricular-subven-

tricular zone (V-SVZ) in the walls of the lateral ventricles of

many adult mammals. This neurogenic niche is composed

of NSCs (B1 astrocytes) that divide slowly to give rise to

transit-amplifying cells (C cells), which in turn generate

neuroblasts (A cells) that migrate tangentially to the olfac-

tory bulb (Alvarez-Buylla et al., 2001; Lois and Alvarez-

Buylla, 1994). B1 cells are characterized by their highly

polarizedmorphology, which presents a thin apical process

that contacts the lateral ventricle (LV) and cerebrospinal

fluid (CSF). Moreover, they also exhibit a basal process

ending on blood vessels (Doetsch et al., 2002; Mirzadeh

et al., 2008; Tavazoie et al., 2008). The apical surface of

B1 cells is surrounded by large apical surfaces of ependymal

cells in a pinwheel configuration (Mirzadeh et al., 2008).

NSCs cells can exist as quiescent/slowly dividing (qNSCs)

or activated/dividing (aNSCs) primary progenitors. It has

been suggested that these two populations represent two

functionally distinct types of NSCs which differ in their

cell-cycle status and molecular properties (Codega et al.,

2014; Llorens-Bobadilla et al., 2015; Mich et al., 2014;

Morshead et al., 1994). aNSCs maintain the expression

of glial fibrillary acidic protein (GFAP), CD133, epidermal

growth factor receptor (EGFR), and Nestin, while qNSCs
Stem C
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preserve the expression of GFAP, CD133, but not EGFR

and Nestin. Furthermore, qNSCs do not express prolifera-

tion markers and survive infusion of cytosine-b-D-arabino-

furanoside (Ara-C), which eliminates the aNSC population

(Codega et al., 2014; Doetsch et al., 1999; Morshead et al.,

1994; Pastrana et al., 2009). Recently, it has been suggested

that qNSCs have an embryonic origin; pre-B1 cells are pro-

duced during mid-fetal development (embryonic day 13.5

[E13.5] to E15.5), remaining relatively quiescent until reac-

tivated postnatally (Fuentealba et al., 2015; Furutachi et al.,

2015).

The maintenance of quiescence is thought to be directly

co-related with the regulation of gene expression, which

can be observed as large heterochromatic regions likely cor-

responding to silenced genes (Capelson and Corces, 2012).

Previously, it has been suggested that a distinctive nuclear

morphology is linked to the maintenance of pluripotency

(Gorkin et al., 2014; Ito et al., 2014; Sexton and Cavalli,

2013), and possibly associated with quiescence. However,

despite NSC chromatin presenting peculiar topographical

configurations (Krijger et al., 2016; Peric-Hupkes et al.,

2010; Phillips-Cremins et al., 2013), the relationship be-

tween chromatin organization and nuclear morphology

remains poorly understood. Previous studies have shown

that murine and human fetal V-SVZ B cells have irreg-

ular nuclei that exhibit unusual nuclear envelope (NE)
ell Reports j Vol. 9 j 203–216 j July 11, 2017 j ª 2017 The Author(s). 203
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invaginations (Capilla-Gonzalez et al., 2014; Doetsch et al.,

1997; Guerrero-Cazares et al., 2011).

Here we have studied the fine ultrastructure and three-

dimensional (3D) organization of these invaginations and

show that they correspond to envelope-limited chromatin

sheets (ELCS). These structures were originally described

by Davies and Small (1968) in neutrophils, and named en-

velope-limited sheets (ELS). ELS have an unusual type of

nuclear morphology characterized by the presence of a

sheet of chromatin (�30 nm thick) bound on two sides by

the innernuclearmembrane (INM), creating ahighly repro-

ducible and regular ‘‘sandwich’’ of 40 nm thickness (Davies

and Small, 1968). These structures, later called ELCS, are

associated with the NE proteins Lamin B, Lamin B receptor

(LBR), and Lap2 (Ghadially, 1997; Olins et al., 1998; Olins

and Olins, 2009). Interestingly, ELCS have only been re-

ported in certain lymphocytes and some cancer cells,

including the CNS neuroectodermal tumor medulloblas-

toma (Tani et al., 1971). Furthermore, we show here that

V-SVZ B1 cells with ELCS correspond to qNSCs in mice.
RESULTS

A Subset of B Cells Has Nuclear Envelope-Limited

Chromatin Sheets

Unlike other V-SVZ cell types, B cells in the V-SVZ present

an irregular nucleus and, occasionally, NE invaginations

(Capilla-Gonzalez et al., 2014; Doetsch et al., 1997; Guer-

rero-Cazares et al., 2011). These nuclear structures show a

single sheet of chromatin bound on two sides by the INM

and outer nuclear membrane (ONM), resembling the nu-

clear ELCS previously described in neutrophils (Olins and

Olins, 2009). However, whether these nuclear ELCS are pre-

sent in all B cells or in a distinct subpopulationhas not been

studied. To improve the characterization of B cells contain-

ing ELCS, we examined the V-SVZ of P60 mice by transmis-

sion electron microscopy (TEM). We found that in single

TEM ultrathin sections, ELCS were frequently present in B

cells (11.9% ± 0.4%; 1,052 B cells including B1 and B2 cells,

defined as cells with or without apical ending, respectively;

n = 4) (Figures 1A and 1B). To better estimate the proportion

of B cells with ELCS, we used serial section 3D reconstruc-

tion of the entire nuclei. Almost half of the analyzed B cells

(46% ± 3%; 160 B cells, n = 4) presented ELCS. These astro-

cytes were found forming groups of two to four cells in the

whole length of the lateral walls of the LVs, but not in the

adjacent striatum (0/102; n = 3).We did not find differences

in the percentage of B cells with ELCS among different ros-

trocaudal levels (anterior 12.67%, medial 11.00%, posterior

10.34%; p > 0.05, not significant; bregma 1.18–0.02). In

serial reconstructions, no ependymal, C cells, or A cells

exhibited this type of NE (83, 20, and 140 studied cells at
204 Stem Cell Reports j Vol. 9 j 203–216 j July 11, 2017
post-natal day 60 [P60]; n = 4) (Figures S1A–S1D). In addi-

tion, B cells with ELCS displayed one or two nuclear

ELCSwith a lengthof 0.4–2mm(studied in50 cells; n=3) en-

compassing �0.20% of the total nuclear volume (for image

sequence reconstruction, see Movie S1). The ELCS ONM

showedribosomesattached to it anddidnotcontainnuclear

pores. Heterochromatin clumps were usually associated to

nuclear ELCS endpoints (Figures 1C and 1D). Interestingly,

90.1% ± 0.1% of ELCS (80 B cells, n = 4) were internalized

within the irregular nucleus (Figures 1E and 1F).

To better characterize ELCS in B cells, we performed

pre-embedding immunogold stainings and independently

examined the expression of brain lipid-binding protein

(BLBP), GFAP, Nestin, EGFR, andGlast, which differentially

marked B cells. We found out that ELCS were present

in GFAP+, BLBP+, and Glast+ B cells (Figures 1G–1M). The

majority of cells with ELCS showed no expression of

EGFR (1/20) and nonewere positive for Nestin. This expres-

sion profile overlaps with that recently described for qNSCs

(Codega et al., 2014).

B1 cells (contacting the CSF in the pinwheel center) are

a relatively quiescent or slow-diving NSCs derived from

radial glia (Fuentealba et al., 2015; Kriegstein and Alvarez-

Buylla, 2009). TodeterminewhetherB1 cellswith identified

apical ending present nuclear ELCS, we performed serial

section reconstructions using confocal microscopy of

the ventricular wall whole-mount preparation (Mirzadeh

et al., 2010). In serial confocal microscopy sections of

V-SVZ whole mounts, the apical terminations of GFAP+ B1

cells were localized in the pinwheel center and tracked up

to cell nuclei delimited by Lamin B and DAPI. Themajority

(83% ± 1%; 104 pinwheels; n = 13) of B1 cells with apical

endings on pinwheels had irregular NE and bright Lamin

B labeling (Figures 2A–2H). Analyzing serial whole-mount

ultrathin sections by TEM (20 cells; n = 2), we confirmed

that the deep nuclear invaginations of B1 cells corre-

sponded to the ELCS zone (Figures 2J–2L). Hence, we

conclude that a subpopulation of B1 cells contains ELCS.

Interestingly, single TEM sections revealed that ELCS

were also present in a small subset of subgranular zone

astrocytes (1.5% ± 0.6%; P60; 268 cells; n = 3), identified

as the hippocampal dentate gyrus NSCs (Klempin and

Kempermann, 2007; Seri et al., 2004). To confirm that

this small fraction of astrocytes corresponded to radial

astrocytes, we performed post-embedding GFAP and BLBP

immunostainings in semithin sections (Figure S2). We

found that Glast or BLBP cells with radial morphology

exhibited ELCS in their nuclei. These results suggest that

a subpopulation of NSCs present a unique NE.

ELCS in a Subset of Dormant B Cells

EGFR expression has been associated with the activation of

B1 cells. We found out that 13.3% ± 0.6% of B1 cells were



Figure 1. V-SVZ B Cells Show Nuclear Envelope-Limited Chromatin Sheets
(A and B) TEM images of B1 cell contacting the LV and B2 cell, showing nuclear ELCS (arrows).
(C and D) Nuclear ELCS TEM micrograph and its schematic diagram showing the typical configuration of 30-nm heterochromatin fibers
bound on two sides by the INM and ONM. See also Movie S1. C, cytoplasm; N, nucleus.
(E) TEM pseudo-colored image of B cell with ELCS showing the plasmatic membrane and nucleus in blue, and ELCS in green. (E0) 3D nuclear
reconstruction of B cell in (E). Note that nuclear ELCS are represented in green.
(F) V-SVZ B cell nucleus labeled with Lamin B (green) showing an irregular morphology with ELCS (arrow). The 3D nuclear projection shows
that ELCS (arrow) are internalized within the nucleus.
(G–J) Immunogold stainings for Glast (G, H) and BLBP (I, J) markers showing that B cells with ELCS (arrows) express Glast+ and BLBP+.
(K–N) Immunogold stainings for EGFR and Nestin markers showing that B cells with ELCS (pseudo-colored in blue, arrows) are negative for
these markers (note the internal positive control in adjacent cells).
Scale bar, 2 mm (A, B, E, F, H, J, L, N), 1 mm (G, I, K, M), and 200 nm (C).

Stem Cell Reports j Vol. 9 j 203–216 j July 11, 2017 205



Figure 2. B1 Cells within Pinwheels Show Nuclear ELCS
(A–H) Confocal images of a V-SVZ whole mount immunostained for g-tubulin (A–D, red), b-catenin (E–H, red), GFAP (white), and Lamin B
(green) to visualize the nucleus of uniciliated B1 cells. Insets (D and H) show sequential z slices of the very irregular nucleus and high
expression of Lamin B in B1 cells (white arrows).
(I) Schematic showing that two types of B1 cells (blue) can be distinguished depending on their nuclear morphology.
(J) Pseudo-colored TEM image of a whole mount showing the nuclei of ependymal cells in brown and B1 cell nucleus with ELCS in the center
of the pinwheel (blue, arrow).
(K and L) Higher-magnification micrographs of the type B1 cell with ELCS (arrows) in (J).
Scale bars, 15 mm (A, E), 10 mm (J), 5 mm (D, H), 2 mm (K), and 200 nm (L).
EGFR+ (30 pinwheels; n = 4) and did not display ELCS, while

Lamin B expression was weak (9/30) or absent (21/30) (Fig-

ures3Aand3B).Therefore,wehypothesized thatELCScould

be associatedwith quiescent B1 cells. To test this hypothesis,

we injected a group of P60 mice (n = 3) with [3H]thymidine

(3H-Thy) (four injections, every 2 hr) and euthanized them

2 hr after the last injection, to label the proliferating cells

(Figure 3C). 3H-Thy-labeled cells were mapped in serial

1.5-mm semithin sections sampled at different rostrocaudal

levels in theV-SVZ.Onehundred andeighty 3H-Thy-labeled
206 Stem Cell Reports j Vol. 9 j 203–216 j July 11, 2017
cells were then resectioned for serial TEM analysis. Thirty

corresponded to B cells, displaying irregular contours, light

cytoplasm, and intermediate filaments. None of these 30 B

cells had a nuclear ELCS (Figures 3D–3F), suggesting that

actively dividing B cells do not contain ELCS.

We next examined whether B cells that have undergone

cell division can develop nuclear ELCS 2months later.Mice

(n = 3) were injected with 3H-Thy (as mentioned above)

and label-retaining cells (LRCs) were studied 2months later

under TEM (Figure 3C0). 3H-Thy-LRCs at this timewere very



Figure 3. V-SVZ B Cells with Nuclear ELCS Are qNSCs
(A and B) Confocal images of a V-SVZ whole mount immunostained for b-catenin (red), EGFR (white), and Lamin B (green) showing an
EGFR+ (activated) NSC, which does not express Lamin B staining. (B) Insets show more superficial and deep z slices of the EGFR+ cell
nucleus. Note that this cell is negative for Lamin B (white arrows).
(C and C0) 3H-Thy injection protocols. P60 animals received four 3H-Thy injections and the V-SVZ was studied 2 hr and 2 months after the
last injection.
(D–F) Autoradiography of the V-SVZ of a P60 mouse. (D) Labeled cells were identified on toluidine blue-stained semithin sections (arrow).
(E and F) TEM micrographs of the 3H-Thy-labeled cell in (D), characterized as B cell with spherical nucleus and condensed chromatin.
(G–I) Autoradiography of the V-SVZ of a P120 mouse. (G) Labeled cells were identified (arrow). (H and I) TEM micrographs of the 3H-Thy-
labeled cell in (G), characterized as B cell with irregular nucleus and clumps of chromatin (black arrow). Note that the 3H-Thy-labeled cell
does not show nuclear ELCS compared with the non-labeled B cell (white arrow).
Scale bars, 10 mm (A, D, H, E, G) and 2 mm (I, F). A, A cell; B, B cell; E, ependymal cell; LV, lateral ventricle.
rare; of >8,000 cells studied, only 20 labeled cells were

observed. All LRCs had characteristics of B cells. Three-

dimensional nuclear reconstruction of these LRCs showed

no evidence of nuclear ELCS (Figures 3G–3I). This suggests

that ELCS do not form in B cells after having divided

2 months earlier.
Antimitotic treatment with Ara-C induces the death of

actively dividing V-SVZ progenitors, but qNSCs are spared

(Doetsch et al., 1999; Morshead et al., 1994; Pastrana

et al., 2009). We therefore tested whether cells that are re-

tained 12 hr after a 6-day Ara-C treatment had ELCS in their

nuclei. After Ara-C, fewer B cells were observed in theV-SVZ
Stem Cell Reports j Vol. 9 j 203–216 j July 11, 2017 207



Figure 4. V-SVZ B Cells with ELCS Derive from Quiescent Pre-B1 Cells
(A) Quantifications of V-SVZ cells showing the number of cells with ELCS per millimeter at different embryonic and post-natal stages, and
the percentage of B cells with ELCS/B cells at post-natal stages where B cells can be identified. Note that cells with ELCS first appear in RGCs
at E14.5 with 0.14 ± 0.14 cells/mm (n = 3 mice), but its number increased progressively to an average of 30.63 ± 9.33 B cells with ELCS/
mm at P15 (n = 3 mice) and then decreased at P60. Over the total population of post-natal B cells, the percentage of B cells dramatically
decreases from 11.98% ± 0.43% at P60 (1,052 cells; n = 3 mice) to 4.24% ± 0.45% (466 cells; n = 3 mice) (test for trend, p < 0.001). Error
bars represent the mean ± SEM.
(B) Diagram describing 3H-Thy injection protocols. E14.5 timed pregnant mice received two 3H-Thy injections and the V-SVZ of the
offspring was analyzed at P0 and P21.
(C–F) Autoradiography of the V-SVZ of a P0 mouse. (C) Labeled cells were identified on toluidine blue-stained semithin sections (arrow).
(D–F) TEM micrographs of the 3H-Thy-labeled cell in (C). Note that this cell shows RG cell characteristics, contacts the LV, and shows
nuclear ELCS (arrows).

(legend continued on next page)
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(from 80 ± 5 to 32 ± 10; t test p < 0.05; n = 3), but the per-

centage of B cells with ELCS increased (from 11.9% ± 0.4%

to 18% ± 1%; t test, p < 0.05; 703 cells, n = 3). This indi-

cates that B cells with ELCS are spared by Ara-C treatment.

Fourteen days after Ara-C treatment the percentage of

B cells with ELCS cells was reduced (15% ± 2%; 933 cells,

n = 3). These results indicate that B cells with ELCS survive

Ara-C treatment, consistent with the interpretation that

they correspond to qNSCs.

Nuclear ELCS Are Not Observed In Vitro

Previous studies have shown that V-SVZ progenitors can be

grown in vitro as neurospheres or in monolayer cultures

(Reynolds and Weiss, 1992; Scheffler et al., 2005). Some

of these in vitro NSCs maintain pluripotency and self-

renewal potential. We investigated whether cells grown as

neurospheres or in monolayer cultures, supplemented

with EGF and fibroblast growth factor, presented ELCS

in their nuclei. We studied neurosphere cells (1,550 cells,

ten neurospheres; n = 5) and monolayer cells (1,000 cells,

three wells, n = 5), but did not find any ELCS under either

culture condition. As retinoic acid stimulation has been

shown to promote ELCS formation in neutrophils (Olins

et al., 1998), we treated neurosphere cultures with 2, 5,

and 10 mM retinoic acid but could not find any evidence

of ELCS formation in this in vitro NSC condition (500 cells;

n = 6). We conclude that NSCs grown in vitro as neuro-

spheres or in monolayer cultures do not exhibit ELCS.

Nuclear ELCS Begin Forming in the Embryo

Subsequently, we investigated at which developmental

stage nuclear ELCS first appear. During embryonic develop-

ment, the walls of the LVs are lined by radial glial cells

(RGCs), some of which later give rise to adult V-SVZ B cells

(Kriegstein and Alvarez-Buylla, 2009; Merkle et al., 2004).

Using TEM, we serially sectioned and scanned RGC nuclei

to look for the presence of ELCS at four embryonic stages

(E10.5, E14.5, E16.5, and E18.5) and at four post-natal

ages (P0, P15, P30, and P60). Although ELCS were rarely

observed in RGC nuclei at E14.5 (0.1 ± 0.1 cells with

ELCS/mm; n = 3), their number increased progressively

through the embryonic stages to an average of 31 ± 9 B cells

with ELCS/mm at P15 (n = 3), but then decreased at P60

(Figure 4A). These observations indicate that nuclear

ELCS appear as early as E14.5, and are preserved in a sub-

population of adult V-SVZ.
(G–J) Autoradiography of the V-SVZ of a P21 mouse. (G) Labeled cells
(H–J) Electron micrographs of the 3H-Thy-labeled cell shown in (G). N
(arrows).
(K–N) Confocal images of a V-SVZ whole mount immunostained for GFA
ELCS nuclear expression of p57. Note that the insets (N) show the ch
Scale bars, 10 mm (C, D), 5 mm (K, M), 2 mm (E, H, I, N), and 500 nm
We also studied older mice (P120, P210, P365, and P630)

to determine the prevalence of ELCS in B cells with aging.

Cells with ELCS were dramatically reduced from 8.7 ±

0.9 cells/mm at P60 (n = 3) to 2.1 ± 0.1 cells/mm at P630

(n = 3) (test for trend, p < 0.02; Figure 4A) and from

11.9% ± 0.4% at P60 (1,052 cells; n = 3) to 4.2% ± 0.5%

(466 cells; n = 3) over the B cell population (test for trend,

p < 0.001; Figure 4A). As in younger adults, complete 3D

nuclear reconstructions at P630 showed a higher percent-

age of B cells containing ELCS (24% ± 4%; 40 cells, n = 3),

still confirming a sharp decrease with aging. Moreover,

ELCS length was slightly reduced from 0.4 to 2.0 mm at

P60 (50 cells; n = 3) to 0.2–1.6 mminagedB cells (P630; stud-

ied in 54 cells from three mice; not significant).

To further investigate whether cells with nuclear ELCS

in post-natal stages were directly derived from pre-B1 cells

(Fuentealba et al., 2015; Furutachi et al., 2015), we injected

timed pregnantmice at E14.5 stage with 3H-Thy (two injec-

tions 12 hr apart) and euthanized the offspring at postnatal

stages P0 and P21 (Figure 4B). Serial 1.5-mm sections were

studied at different rostrocaudal levels of the V-SVZ and
3H-Thy-labeled cells close to the LV were serially recon-

structed. Interestingly, we found that more than half of

the radial glial (RG) LRCs at P0 (10 out of 15 studied cells;

n = 3) and all labeled B cells at P21 (13 out of 13 studied

cells; n = 3) presented ELCS in their nuclei (Figures 4C–4J,

respectively). These results suggest that ELCS are assembled

in pre-B1 cells in the embryo and remain in the quiescent

progenitors during the transition from RG to B cells.

Nextwestudied theexpressionofp57, a recentlydescribed

markerpresent individingembryonicNPCsandadultV-SVZ

qNSCs (Furutachi et al., 2015). This protein is a component

of the CIP/KIP family of cyclin-dependent kinase (CDK)

inhibitory proteins, related to the blockade of cell-cycle pro-

gression by binding and inhibiting cyclin/CDK complexes

of the G1 phase (Tury et al., 2012). We analyzed the expres-

sion of p57 in the V-SVZ of embryonic and P60 mice using

confocalmicroscopy. B cells showingNE folding, consistent

with the presence of ELCS, were positive for p57+ (25/30 of

P60 and 18/24 of E18) (Figures 4K–4N and S3). Taken

together, these results indicate that nuclear ELCS is a hall-

mark of V-SVZ qNSCs derived from pre-B1 cells.

Formation of ELCS during Development

Since nuclear ELCS start forming in some RGCs at E14.5,

we performed a serial ultrastructural analysis of RGC
were identified on toluidine blue-stained semithin sections (arrow).
ote that this cell is characterized as a B cell and shows nuclear ELCS

P (white), Lamin B (green), and p57 (red) to visualize B1 cells with
aracteristic ELCS zone (white arrows) and co-localization with p57.
(F, J).

Stem Cell Reports j Vol. 9 j 203–216 j July 11, 2017 209



Figure 5. Nuclear ELCS Formation and Components
(A) TEM micrograph of an RGC nucleus showing a punctual detachment of the INM and ONM, generating an increment of the PNS.
(B–D0) TEM serial sections and their schematics showing that the ONM aligned to the INM reducing the PNS, and likely generating ELCS (see
Figure S1 for complete series of sections).
(E) TEM quantification of the number of cells with ELCS (blue) or NE rings (green) per millimeter (n = 3 mice). Note that the number of cells
with NE rings is 0 at P15, which coincides with the maximum peak of cells containing ELCS at this age (30.21 cells with ELCS/mm; n = 3
mice). Error bars represent the mean ± SEM.
(F–I) Pre- and post-embedding immunogold staining for Lap2 (F), 5mC (G), Lamin B (H), and actin (I) in E18 VZ RG cells. Arrowheads
indicate gold particles associated to each staining.
Scale bars, 500 nm (A, B; applies also to C, D) and 200 nm (F–I). C, cytoplasm; N, nucleus; PNS, perinuclear space.
nuclear morphology by TEM at different stages of embry-

onic development. Punctual detachments of the INM and

ONM were observed in some RGCs (from E14.5 to P0).

This resulted in an increased perinuclear space in the

detachment zone (Figures 5A–5E). On tangential sections,

this NE detachment appeared as a perinuclear space sphere.

Hence, we refer to this structure as the ‘‘nuclear envelope

ring’’ (NE ring). The ONM was clearly distinguished by

its attached ribosomes and the INM by the presence of nu-

clear lamina. To characterize the 3D organization of NE

rings and to investigate their possible relation with nuclear
210 Stem Cell Reports j Vol. 9 j 203–216 j July 11, 2017
ELCS, we performed P0 V-SVZ 3D reconstructions by TEM.

As NE ring sections were stacked, we observed that the

ONM aligned to the INM, reducing the perinuclear space

and likely generating ELCS (six cells) (Figures 5B–5D and

S4). Importantly, as ELCS, the nuclear rings were partially

lined by �30-nm chromatin fibers. These results were sup-

ported by the fact that the NE ring perinuclear space was

delimited by INMmarker Lap2 and heterochromatin fibers

labeled by 5-methylcytosine (5mC) (Figures 5F and 5G).We

also confirmed the expression of Lamin B, a main compo-

nent of the type B cell NE, in the periphery of the NE rings



(Figure 5H). In addition, to support that ELCS formation is

a dynamic process that requires components of the nuclear

cytoskeleton, we studied actin expression in NE rings (Fig-

ure 5I). Remarkably, we observed that actin was highly ex-

pressed in the perinuclear space of NE rings compared with

the neighboring NE and nucleoplasm. These observations

suggest that NE rings are a transitory NE structure related

to the formation of nuclear ELCS during the stages E14.5

to P15.

ELCS as a Nuclear Compartment

The NE and the nuclear lamina play important roles in cell-

cycle regulation as well as in genome and cytoskeletal orga-

nization (Malhas et al., 2011). They harbor tissue-specific

resident proteins, extensively interact with chromatin,

and contribute to spatial genome organization and regula-

tion of gene expression (Brachner and Foisner, 2011; Las

Heras de and Schirmer, 2014). Since nuclear ELCS were

mainly formed by the NE, we decided to study whether

components of the NE and nuclear lamina are expressed

in ELCS. We performed immunogold and immunofluo-

rescence detection of the INM proteins Lap2 and LBR,

and the nuclear lamina intermediate filament Lamin B.

Congruently, we found that all of these proteins were

widely distributed along the NE and were also found in

ELCS (Figures 6A–6C, S5A, S5B, S5D, and S5E). However,

Lamin B and Lap2were significantlymore highly expressed

within ELCS (t test, p < 0.01 for Lamin B; p < 0.05 for Lap2).

We next determined whether the ultrastructural 30-nm

condensed chromatin fibers within nuclear ELCS expressed

epigenetic markers related to heterochromatin. We per-

formed pre- and post-embedding immunogold staining

for 5mC, trimethyl-histone H3 (Lys27) (H3K27me3), tri-

methyl-histone H3 (Lys9) (H3K9me3), and heterochro-

matin protein 1 (HP1), and found that while 5mC and

H3K9me3were expressed in ELCS chromatin fibers (Figures

6D, 6E, S5C, S5F, and S5G), H3K27me3 and HP1 were

present in the nuclear lobes but not within ELCS (Figures

6F–6I). Given that ELCS of B cells in the V-SVZ contained

heterochromatin with specific epigenetic modifications,

we examined whether ELCS heterochromatin could corre-

spond to telomeric heterochromatic domains. It has been

indeed proposed that nuclear telomere positioning may

influence cell longevity in quiescence (Guidi et al., 2015).

TRF2, a telomere sheltering component thought to

mediate telomere binding to lamins (Gonzalo and Eissen-

berg, 2016), was preferentially located to the NE (Figure 6J).

Intriguingly, telomere-associated protein TFR2 expres-

sion was significantly higher within ELCS or in the ELCS-

endpoint heterochromatin than in the rest of the nucleus

(t test, p < 0.0002; Figures 6K–6N, S6A, and S6B). Moreover,

we investigated the nuclear telomere distribution in B cells

by assay using fluorescence in situ hybridization (FISH)
with peptide nucleic acid (PNA-FISH). We combined the

Telomere-C probe detection with the Lamin B and GFAP

expression, and found that telomeres were enriched in

the ELCS zone (t test, p < 0.05; Figures 6P–6R, S6C, and

S6D). Altogether, these results suggest that ELCS represent

a specific nuclear compartment housing particular hetero-

chromatin domains.
DISCUSSION

In this study, we show that a subset of adult V-SVZ B cells

have NE-limited chromatin sheets or ELCS. Using molecu-

lar markers, 3H-Thy, and the antimitotic drug Ara-C, we

found that B1 cells with ELCS correspond to qNSCs. TEM

analysis revealed that nuclear ELCS start to appear in

RGCs in the embryo around E14.5 and are present

throughout adult life in a subpopulation of V-SVZ B cells.
3H-Thy birth dating suggests that quiescent B cells with

ELCS have an embryonic origin. We also detected the

expression of epigeneticmarkers associatedwith repression

and telomeres within ELCS. This structure may represent

a specific nuclear compartment associated with quies-

cent pre-B and B cells. Our work suggests that this unique

compartment of the NE is associated with quiescence

and, in particular, with the subpopulation of progenitors

that are set apart during embryonic development to func-

tion in the juvenile and adult brain as NSCs.

We found out that a subset of V-SVZ B cells display a

nuclear structure, characterized by a thin chromatin layer

bound to the inner and outer membranes. These distinct

structures highly resemble the previously described ELCS

in other cell types (Davies and Small, 1968; Olins et al.,

2008). The ELCS we describe in post-natal qNSCs is similar

to subtype 1-1 ELCS (a single chromatin sheet bound on

two sides by cytoplasm) (Olins and Olins, 2009). In the

CNS, ELCS have been observed in the developing human

retina (Popoff and Ellsworth, 1969) and in the subcallosal

zone cells during post-natal development (Wittmann

et al., 2009). Outside the CNS the presence of ELCS has

been mainly reported in myeloid, lymphoid (Davies and

Small, 1968; Olins et al., 1998), and cancer cells (Mollo

et al., 1969; Tani et al., 1971). The functional significance

of ELCS remains elusive. It has been proposed that it could

facilitate neutrophil functions (Rowat et al., 2013) andmay

also be a part of a developmental program to shut off

gene activity during terminal differentiation (Sanchez

and Wangh, 1999). Remarkably, tumor cells with ELCS

survive to radiation and antimitotic treatments (Ahearn

et al., 1967; Erenpreisa et al., 2002; Stalzer et al., 1965),

suggesting that ELCS may be present in quiescent cancer

cells. Further research is needed to determine the function

of ELCS. Our observations are in line with the idea that
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Figure 6. ELCS as a Nuclear Compartment
(A–E) Pre- and post-embedding immunogold staining for Lap2 (A), LBR (B), Lamin B (C), 5mC (D), and H3K9me3 (E) within 2-month-old
V-SVZ B cell ELCS.
(F and G) Immunogold labeling for H3K27me3. H3K27me3 is present in the B cell nuclear lobes but not within ELCS in three serial ultrathin
sections.
(H and I) Immunostaining for HP1 showing labeling in the nuclear lobe but not within ELCS.
(J) TRF2 pre-embedding TEM pseudo-colored image of B cell with ELCS showing the nucleus in blue and the gold labeling preferentially
located in the NE periphery.
(K) High-magnification serial sections of boxed region in (J) showing that TRF2 is located within ELCS.
(L) Schematic representation of TRF2-labeled nucleus in (F) in three ultrathin sections. Note that TRF2 is highly expressed within ELCS or
its boundaries.
(M–O) Confocal microscopy reveals GFAP+ cells contacting the LV (arrows indicate the nuclei of the cells of interest). TRF2 fluorescence is
concentrated in ELCS zone, visualized as a Lamin B-labeled irregular NE (***p < 0.001, unpaired t test; mean ± SEM; 10 cells; n = 3 mice).
Error bars represent the mean ± SEM.

(legend continued on next page)
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ELCS are linked to genomic rearrangements associated

with quiescence in NSCs.

Adult V-SVZ NSCs are a heterogeneous population of

primary progenitors that can exist in either quiescent or

activated state (Codega et al., 2014; Llorens-Bobadilla

et al., 2015; Morshead et al., 1994). We found that B cells

with ELCS are GFAP+, BLBP+, Glast+, Nestin�, and EGFR�,
do not incorporate 3H-Thy, and survive following Ara-C

treatment. These data suggest that ELCS are present in

qNSCs. In addition, 83% of B1 cells have nuclear ELCS in

contrast to the rest present amore spherical nucleus devoid

of ELCS. This is consistent with previous observations re-

porting that 11.4% ± 1.3% of B1 cells are EGFR+ and corre-

spond to aNSCs (Codega et al., 2014) while about 8.6%

are actively dividing (Ponti et al., 2013). Transcriptomic an-

alyses have suggested that qNSCs or dormant cells enter a

primed-quiescent state before activation (Llorens-Bobadilla

et al., 2015; Shin et al., 2015). However, due to the dynamic

nature of this process, this intermediate state has not yet

been well characterized by molecular or morphological

characteristics. At present we cannot conclude whether B

cells with ELCS include dormant qNSCs or only primed-

quiescent cells, or a subpopulation of these. Future studies

might help to unravel this question.

We also observed that 2 months after 3H-Thy incor-

poration, none of the V-SVZ LRCs exhibited ELCS in

their nuclei. The number of cells exhibiting ELCS greatly

decreasedwith age. Consistently, other reports have shown

a decrease in the neurogenic potential with age (Bouab

et al., 2011; Capilla-Gonzalez et al., 2014; Encinas et al.,

2011). Furthermore, a recent study using barcode lineage

tracing indicates that new neurons arise from distinct B1

cohorts formed in the embryo (Fuentealba et al., 2015),

suggesting that B1 cells become depleted with age. The

observed decrease in the number of V-SVZ cells with

ELCS could be associated to a depletion of NSCs in this

neurogenic niche.

We could not find any cells with ELCS under TEM

when V-SVZ progenitors were expanded in vitro as neuro-

spheres or in monolayer cultures. Previous studies have

shown that cultured NSCs cells are mainly derived from

actively dividing cells in vivo (Codega et al., 2014; Doetsch

et al., 2002; Mich et al., 2014) which, as we showed,

lack ELCS. Nevertheless, it is also possible that the qNSC

induction of proliferation in culture could result in the

disassembly of ELCS.

Recently, it has been suggested that yeast quiescent

cells that sustain long-term viability form a discrete
(P–S) Co-localization of GFAP and Lamin B immunofluorescence with t
preferential location of telomeres in the ELCS zone (*p < 0.05, unpaire
the B cell. (R) Three serial single slices of the cell depicted in (P) are
Scale bars, 2 mm (F, H, M, P, R), 650 nm (K), 500 nm (B, G, I), 1 mm
subcompartment of telomere silent chromatin (Guidi

et al., 2015). This encouraged us to investigate whether

ELCS are enriched in telomeric components. Using stain-

ings for TRF2 and telomere FISH, we found that some

telomeres are preferentially located within ELCS and

their immediate proximity. Further evidence supports

the idea that telomere-associated proteins are likely to

contribute to the regulation of cellular proliferative ca-

pacity (Blasco, 2002; Grammatikakis et al., 2016). Previ-

ous studies have also shown that telomeres are associated

to lamins and lamin-associated proteins such as Lap2,

and are rich in epigenetic modifications, as we confirm

here for H3K9me3 (Gonzalo and Eissenberg, 2016).

Based on these data and the presence of telomeres in

the ELCS and its proximity, we propose ELCS as a nu-

clear compartment for specific heterochromatic domains

related to the quiescent state of NSCs in the V-SVZ. As

molecular components of ELCS are identified, this may

permit new studies about the stability of these nuclear

structures. Furthermore, components of the ELCS may

be employed for lineage tracing of cells within the NSC

lineage.
EXPERIMENTAL PROCEDURES

Animal Samples
Mice maintenance and experimental procedures were approved

by the Committee for AnimalWelfare of the University of Valencia

(2015/VSC/PEA/00,068), following the guidelines of the EC Direc-

tive 2010/63/UE.Wild-type CD1mice were obtained fromCharles

River Laboratories.

[3H]Thymidine Administration
To identify proliferating cells by TEM, we administered four intra-

peritoneal injections of 3H-Thy at 2-hr intervals to adult mice

(1.67 mL/g body weight, specific activity 5 Ci/mmol; PerkinElmer)

with subsequent perfusion 2 hr after the last injection (n = 3). To

detect LRCs, we injected 3H-Thy as above, but perfused the animals

after a 2-month survival period (n = 3). For qNSC labeling during

the embryonic stages, E14.5 timed pregnant mice received two

intraperitoneal injections of 3H-Thy (3.34 mL/g body weight, spe-

cific activity 5 Ci/mmol; PerkinElmer) and the offspring were

perfused at P0 (n = 4) and P21 (n = 4).

Ara-C Infusion
Mice brains were infused for 6 days with Ara-C (Sigma) using os-

motic pumps (Alzet). The V-SVZwere dissected 0 hr after treatment

for whole-mount analysis, and 12 hr and 14 days after for TEM

analysis and quantifications (n = 3).
he expression of the Telomere PNA-FISH probe (arrows) showing the
d t test; mean ± SEM; 10 cells; n = 3 mice). (P and Q) 3-mm z stack of
shown. (S) Error bars represent the mean ± SEM.
(J), 400 nm (A), and 200 nm (C–E). C, cytoplasm; N, nucleus.
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Transmission Electron Microscopy
For TEM, mice were fixed as described in Supplemental Experi-

mental Procedures. Brains were rinsed in 0.1 M phosphate buffer

(PB) and cut into 200-mm sections. Sections were post-fixed in

2% osmium tetroxide, dehydrated, and embedded in Durcupan

resin (Fluka; Sigma-Aldrich). Semithin sections (1.5 mm) were cut

with a diamond knife and stained with 1% toluidine blue for light

microscopy. Ultrathin sections (70–80 nm) were cut, stained with

lead citrate, and examined under an FEI Tecnai G2 Spirit transmis-

sion electronmicroscope (FEI Europe) using a digital camera (Mor-

ada Soft Imaging System; Olympus). For pre- and post-embedding

immunogold stainings,micewere perfusedwith 4%paraformalde-

hyde (PFA)/0.5% glutaraldehyde. Pre-embedding immunogold

stainings were carried out as previously described (Sirerol-Piquer

et al., 2012). Post-embedding immunogold stainings are described

in Supplemental Experimental Procedures.

Autoradiography
Brains injected with 3H-Thy were processed for TEM as described

above. Subsequently, V-SVZ semithin sectionswere dipped in auto-

radiography emulsion (Carestream Autoradiography Emulsion,

Type NTB), dried in the dark, and stored at 4�C for 4 weeks

(Doetsch et al., 1997). Autoradiography was developed using stan-

dardmethods and counterstainedwith 1% toluidine blue. Close to

the LV 3H-Thy-labeled nuclei were identified in semithin sections.

Six ormore silver grains needed to be present over the nucleus, and

the nucleus had to be labeled in at least three consecutive serial sec-

tions, for a cell to be considered labeled. All consecutive sections

showing labeled cells were selected under a light microscope

(Eclipse; Nikon), re-embedded, and ultrathin-sectioned for TEM se-

rial reconstruction. The number of 3H-Thy-labeled studied cells is

detailed in Supplemental Experimental Procedures.

Immunohistochemistry
Primary and secondary antibodies were incubated in PB with 0.2%

Triton X-100, 5% normal goat serum, and 10% casein. Confocal

images were taken on an FV1000 microscope and images were

analyzed with the Olympus FV1000 software and processed with

Adobe Photoshop. Fluorescence quantifications were carried out

as mean gray values of the studied areas using FIJI software (Schin-

delin et al., 2012). An antibody list is provided in Supplemental

Experimental Procedures.

Immuno-FISH
Mice (n = 3) were perfused with 4% PFA. Antigen retrieval was per-

formed in 3-mm paraffin sections (1:200 Immunosaver; 64142,

EMS). Samples were incubated with 0.005% Proteinase K (S3020,

Dako) for 4 min, washed in PBS, dehydrated in cold ethanol series,

and dried in air. The probe TelC-Cy3 (800 ng/mL; F1002, Discovery

Peptides) was incubated 1.5 hr and washed with stringent 603

wash solution (K5201, Dako) for 15 min at 57�C. For immuno-

FISH, samples were washed with PB, 0.5% BSA, and 0.1% Triton

X-100, and incubated with the primary and secondary antibodies.

In Vitro Assays
Mouse V-SVZ neurosphere cultures and monolayer cultures were

carried out as described in Supplemental Experimental Procedures.
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Cells obtained from these cultures were fixed with 3% glutaralde-

hyde and processed for TEM.
Quantification and Nuclear Three-

Dimensionalization
Identification and quantification of V-SVZ cells under TEM

was performed according the ultrastructural characterization

described in Doetsch et al. (1997). For quantifications of RG

with ELCS and/or with NE rings in embryonic stages (Figures

4A and 5E), cells within the VZ (first 40 mm adjacent to the

ventricle lumen) were studied. For 3D nuclear reconstructions

of V-SVZ cells we photographed every ultrathin section (Fig-

ure 1E; see also Movie S1). Digital electron micrographs from

each level were aligned with FIJI TrakEM2 software (Saalfeld

et al., 2012) and rendered with the Reconstruct software (Fiala,

2005).
Statistics
All results shown in the graphs are expressed as mean ±

SEM. The means of experimental groups and fluorescence

intensity were compared by unpaired two-tailed Student’s

t test. The decrease of B cells with ELCS with aging was evalu-

ated by the trend test. All tests were performed using Prism 7

software (GraphPad). Differences were considered significant at

p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, six figures, and one movie and can be found with
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