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Abstract

Previous studies using fMRI have found that the Fusiform
Face Area (FFA) responds selectively to face stimuli.   More
recently however, studies have shown that FFA activation is
not face-specific, but can also occur for other objects if the
level of experience with the objects is controlled. Our
neurocomputational models of visual expertise suggest that
the FFA may perform fine-level discrimination by amplifying
small differences in visually homogeneous categories. This is
reflected in a large spread of the stimuli in the high-
dimensional representational space. This view of the FFA as a
general, fine-level discriminator has been disputed on a
number of counts. It has been argued that the objects used in
human and network expertise studies (e.g. cars, birds,
Greebles) are too “face-like” to conclude that the FFA is a
general-purpose processor.  Further, in our previous models,
novice networks had fewer output possibilities than expert
networks, leaving open the possibility that learning more
discriminations, rather than learning fine-level
discriminations, may be responsible for the results. To
challenge these criticisms, we trained networks to perform
fine-level discrimination on fonts, an obviously non-face
category, and showed that these font networks learn a new
task faster than networks trained to identify letters.  In
addition, all networks had the same number of output options,
illustrating that visual expertise does not rely on number of
discriminations, but rather on how the representational space
is partitioned.

Introduction
The Fusiform Face Area (FFA) in the ventral temporal lobe
has recently received much attention.  Initial work appeared
to show that this area was selective for processing faces.
Several fMRI studies showed high activation in the FFA
only to face stimuli and not other objects (Kanwisher et al.,
1997; Kanwisher, 2000).  Further, studies involving patients
with associative prosopagnosia, the inability to identify
individual faces (Farah et al., 1995), and visual object
agnosia , the inability to recognize non-face objects
(Moscovitch et al., 1997), seemed to indicate a clear double

dissociation between face and object processing.
Prosopagnosic patients had lesions that encompassed either
right hemisphere or bilateral FFA, while object agnosic
patients’ lesions did not (De Renzi et al., 1994).

Gauthier and colleagues have challenged the notion of the
face specificity of the FFA by pointing out that the earlier
studies failed to equate the level of experience subjects had
with non-face objects, to the level of experience they had
with faces (Gauthier et al., 1997; Gauthier et al., 1999a;
Gauthier et al., 1999b).  She showed that the FFA was
activated when bird and dog experts were shown pictures of
the animals in their area of expertise.  Further, she
illustrated that, if properly trained, individuals can develop
expertise on novel, non-face objects (e.g. Greebles), and
subsequently show increased FFA activation to them
(Gauthier et al., 1999a). Expertise in these studies was
operationally defined as the point in training when a
subject’s default response level (i.e. entry level) “shifts”
from basic to the individual level.  This is indexed by the
subject’s reaction time for verifying individual names
becoming as fast as the time to verify category membership.

Neurocomputational models done first by Sugimoto and
Cottrell (2001) and later extended by Joyce and Cottrell
(2004) began to address the question of how and why the
FFA gets recruited for these other tasks (Sugimoto &
Cottrell, 2001, Joyce & Cottrell, 2004).  Using four different
types of stimulus classes (books, cans, cups and faces),
Sugimoto and Cottrell found that the amount of expert-level
experience on a previous task correlates with faster
subordinate level learning relative to a system that processes
the same stimuli, but not to a subordinate level. Thus, an
area that is used for one expertise task will learn a second
expertise task faster than an area used only for basic level
discriminations.  Joyce and Cottrell (2004) further found
that an expert network’s ability to separate individuals is
reflected in highly variable responses at the representational
layer (the hidden layer). This response variability extended
to novel categories, permitting faster learning of these
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categories.  This suggests that the FFA is primed to win the
competition for a new expertise task because of its ability to
fine-tune its feature representations when given a novel
fine-level discrimination task (Joyce & Cottrell, 2004).

While the human and computational studies of expertise
are compelling, they are not undisputed. For example,
proponents of the view that the FFA is face-specific claim
that the objects used in human expertise studies, such as
cars, dogs, birds, or Greebles, are “face-like”, meaning they
possess properties similar to faces.  Thus any response of
FFA to these stimuli is due to their featural similarity with
faces, not because the FFA is a general-purpose, fine-level
discriminator. While the network simulations, which
illustrate expertise across a wide variety of non-face objects,
may seem to argue against this criticism, a methodological
issue makes these results less compelling.  In previous
simulations, non-expert networks were trained on a lesser
number of discriminations (4 category labels) than expert
networks (10 individual labels plus the 4 category labels).  It
has been argued (Mike Tarr, personal communication) that
if an object recognition network simply had to make as
many discriminations as the expert one, then it would also
be able to learn Greebles faster.

The current simulations were designed to address the
criticisms cited above. First, we train the networks to
perform fine-level discrimination on an obviously non-face
category: fonts.   In this case, the basic level networks learn
to identify letters presented in a variety of different fonts (a
task any human can do with ease) while the subordinate
level networks learn to distinguish the particular font in
which a letter is written (a task few humans can do).  To
address the second criticism, we present both basic and
subordinate level networks with the same stimulus set and
have them perform an equal number of discriminations (e.g.
6 letter vs. 6 font discriminations).  Thus, any advantage to
learning to distinguish Greebles by the font network over
the letter network cannot be due to the number of
discriminations learned.

Experiments
We ran two sets of experiments. In the first, we investigated
the ability of our basic visual object processing architecture
(Dailey & Cottrell, 1999; Dailey et al. 2002; Joyce &
Cottrell, 2004) to recognize letters and fonts. This allowed
us to discover which fonts were difficult and which letters
gave good generalization once their font had been learned
(by training on other letters).  We then used these results in
the second set of experiments to perform a very controlled
version of our previous “basic versus expertise network”
experiments, and investigate generalization to Greeble
expertise.

Experiment 1: Stimuli and Methods
The images used were 300x300 pixel images of letters.  For
this experiment, 15 different fonts were used, and for each
of those 15 fonts, we had images of all 26 letters.  The fonts
were chosen to be somewhat difficult.  Image preprocessing

of the different letters and fonts followed the procedures
outlined in Dailey and Cottrell (1999).  Each image was first
processed using 2-D Gabor wavelet filters (5 spatial
frequencies at 8 orientations each), a simple model of
complex cell responses in visual cortex.  The filters were
applied at 64 points in an 8x8 grid, resulting in a vector of
2560 elements (Buhmann, Lades & von der Malsburg,
1990; Dailey & Cottrell, 1999).  The vectors were then
normalized via z-scoring (scaled and shifted so that they had
zero mean and unit standard deviation) on a per-filter basis,
a local operation.  A principal components analysis (PCA)
was then applied to the normalized vectors.  The top 40
components were saved and renormalized.   Projections of
the stimuli onto these 40 dimensional vectors constituted the
input to the networks. Figure 1 shows the expertise model,
which includes the image preprocessing procedure.
   A standard backpropagation network architecture was
used for learning classifications.  The network had 40 input
units, each representing a principal component vector, a 30-
unit hidden layer using the logistic sigmoid function, and 15
linear output units for the font network, and 26 linear
outputs for the letter network. The learning rate and
momentum were 0.01 and 0.5, respectively.

Letter training  Letter networks were trained to identify
letters across a subset of the 15 different fonts.  Each
network was given the letters from 13 different fonts as the
training  set  and another font as the holdout set.  It was then

   Figure 1: The expertise model.

Figure 2: Training for Experiment 1.  26 letters and
15 fonts were used.
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tested on the letters from the remaining font.  Training was
stopped at either an RMSE of 0.02 or when overtraining
started to occur.  The result was 15 letter networks, all
trained and tested on different fonts.  Figure 2 illustrates the
training and test sets for Experiment 1.

Letter networks learned their task quickly.  Figure 3
illustrates the average activation of letters for each font
when that font was used as the test set.  The amount of
activation of an output unit can be thought of as the level of
confidence that the letter unit activated corresponds to the
correct letter. Although the letters in some fonts were harder
to generalize to than others, the average activations were
quite high across all fonts.  Accuracy of the networks was
also computed: if the activation of the unit corresponding to
the correct letter is the highest among all other units, then
the network was correct in naming the letter.  As expected,
all letter networks were able to name the correct letter with
100% accuracy.

Font training Training networks to be font experts (i.e.
identify the font a letter is written in) for 15 different fonts
proved to be quite difficult. Our networks never
satisfactorily learned the problem.  In order to determine
which fonts were easy enough to learn, we performed
multidimensional scaling on the distances between the fonts.
Distances  between  fonts  were  defined  as  one  minus  the

average correlations between their corresponding letters,
using their PCA representations. We then formed a 15 by 15
matrix of inter-font distances, and submitted this to a
standard non-metric multidimensional scaling routine.  The
results for a two dimensional solution are shown in Figure
4.   The plot shown had a stress of 1.9694.

We used this graph to find the three most separated and
the three most correlated fonts. One group of networks was
trained on the easier fonts (3 least correlated) and another
group of networks was trained on the harder fonts (3 most
correlated).  Here, 24 letters from each font were used as the
training set, 1 letter as the holdout set, and 1 letter as the test
set.  This was repeated so that each letter had a chance to be
the test letter once.  Training was stopped when overtraining
started to occur.  The result is 52 different networks, 26
from the easy font training and 26 from the hard font
training.

With these reduced training sets, networks were
successfully able to learn to discriminate fonts.  Verifying
our analysis, the hard font networks had a slightly harder
time learning the task than the easy font networks (Table 1).
Although the RMSE for both networks were high, they were
still accurately able to name the correct font. In fact many of
the networks had an accuracy of 100%.

We again computed average activations of output units,
except this time for fonts across a test letter (Figure 5).  The
importance of this plot comes in the activation for particular
letters.  A high activation means that the network had an
easier time generalizing to the font in that letter.  This
assisted us in choosing the highly generalizable letters as
stimuli for Experiment 2.

Experiment 2: Stimuli and Methods
As discussed in the Introduction, Experiment 2 was carried
out in order to provide a novel control for our computational
model of  the  visual  expertise hypothesis.   We used the six

Avg. RMSE Avg.Accuracy(%)
Easy Font Network 0.3419 86.19
Hard Font Network 0.4382 76.62
Table 1. Average RMSE and accuracy for font networks

Figure 3: Average activation of letters for test fonts.

Figure 5: Average activation of fonts across a test letter.

Figure 4: MDS of fonts.
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most discriminable fonts, and the six letters that were the
easiest   to   generalize  to   between   fonts.   Two   sorts of
networks, both with exactly the same training set,
preprocessing, architecture, and number of outputs, were
then trained to be either letter classifiers or font experts.
While one might consider a letter network an “expert,” for
our purposes,  we consider it  a basic level classifier.   The
main characteristic of basic level categorization is that
similar things are classified into the same category.  The
font expert, on the other hand, must take similar things (the
same letter in different fonts) and differentiate between
them.  Our hypothesis is that such a network will learn the
Greeble task faster than a letter network.  Thus, training in
Experiment 2 was divided into two separate phases.  Phase 1
involved training the letter and font networks in a manner
similar to that of Experiment 1.  In Phase 2, the letter and
font networks trained in Phase 1 were then trained to
classify Greebles.  Examples of Greebles are shown in
Figure 6.

Using the results from Experiment 1, the 6 most
generalizable letters and the 6 most discriminable fonts were
chosen as the stimuli.  In addition to these 36 stimuli, 5
different images of 10 unique Greebles were introduced in
phase 2.  The five different images were produced by
jittering the image of a specific Greeble a few pixels on the
x, y or x and y axes.  Preprocessing of the images was as
described in Experiment 1.  Greeble images were also
preprocessed using Gabor filters and PCA, however they
were not included in the generation of the PCA
eigenvectors. Rather, the eigenvectors produced via the
PCA on the letter/font stimuli were applied to the Greebles.
Thus, the PCA representations given to the networks
contained no a priori information about how Greebles fit
into the representational space.

As in Experiment 1, the networks consisted of 40 input
units.  The hidden unit layer was increased to 40 units due
to the increased difficulty of having to solve two tasks.
Finally, there were 16 output units, where 6 represented the
category (fonts or letters), and 10 the Greebles.  Learning
rate and momentum remained the same.

Training procedures in Phase 1 were similar to that of
Experiment 1, except that only 6 letters and 6 fonts were
used.  Here, 10 letter networks were trained such that for
each network, the letters for a randomly selected font were
used as the test set, the letters from another font were the
holdout set, and the remaining 4 were used for training.  For
font networks, each of the 10 networks was tested on the
fonts for a randomly selected letter, another randomly
selected letter was used as holdout, and the rest were for
training.  All networks were trained to 2560 epochs. At each
log base 2 epoch of training in Phase 1, the weights of the

letter and font network were saved.  These weights were
used as the starting points for networks in Phase 2 in order
to show how varying levels of experience with a preliminary
task affected learning  of  a  secondary  subordinate  level
task.   For this phase, both font and letter networks ignored
the 10 Greeble output units.  This training procedure is
shown in Figure 7.

In Phase 2 training, the networks trained in Phase 1 were
trained to perform subordinate level classification on 10
Greebles.  Training for this phase stopped when an RMSE
of 0.05 was reached.

Experiment 2: Results
Phase 1 Training  Based on the results from Experiment 1,
we trained letter and font networks on stimuli that seemed
the easiest to generalize to.  Both networks were able to
learn the task with extremely low error.  As expected, the
letter networks initially had an easier time learning the
letters than the font networks did learning fonts.  More
importantly, accuracy on the fine-level discrimination task
(classifying fonts) became just as good as basic level
discrimination (classifying letters).

Phase 2 Training  In the second phase of Experiment 2, the
letter and font networks were trained to perform fine-level
discrimination on Greebles.  Again the results were as

   Figure 6: Examples of Greeble images.

   Figure 7: Phase 1 training for Experiment 2.  6 letters
and 6 fonts were used.

Figure 8: Number of epochs to learn the new task.
Error bars denote standard error.
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expected.   Figure 8 shows the time in epochs needed for
both the letter and font networks to learn the Greeble task as
training on the initial task (either classifying letters or fonts)
increased. All font networks, regardless of amount of
training, learned the Greeble task faster than the letter
networks.  In addition, more experience with the font task
resulted in improvement on learning the Greeble task while
more experience with the letter task yielded little
improvement (although there is some indication that the
letter networks may catch up eventually). Further work will
be necessary to evaluate this trend. However, the point
remains that expertise in fonts is better than expertise in
letters for Greeble training.

To further understand the behavior of the networks, PCA
was done on the hidden unit representations prior to Greeble
training.  Figures 9 and 10 illustrate the spread of the stimuli
in representational space based on the 2nd and 3rd principal
components (the first PC just codes the overall magnitude
change in the weights). In Figure 9 the six points in each
symbol represent a given letter in 6 different fonts for a
letter network, with one additional symbol representing how
Greebles are represented prior to any training on Greebles.
In Figure 10, each symbol represents a given font for a font
network, and each individual point in that symbol a different
letter.

Notice that for the letter network (Figure 9), the letters are
grouped together by letter identity regardless of font.
Similar inputs (the letters) are made more similar by this

mapping.  In the font network (Figure 10), over training, the
fonts  spread  farther  apart  over  time.   Hence,  in order  to
classify the font of each letter, the network must amplify
small differences between similar items -- all the stimuli
representing the same letter must be classified differently.
This  generalizes  to  the  Greebles;  in the font network,  the
Greebles are more spread out, making it easier for the font
network to learn the distinctions between them. Figure 10
also shows that the fonts appear less spread out than the
Greebles. This is because the network has learned to see all
of the letters in the same font as “the same,” whereas it has
not learned anything about Greebles yet. It should be noted
that each Greeble point is a different Greeble, so the
network is already individuating them to some extent. These
results are similar to those gathered in our previous network
simulations using faces, cups, cans, books, and Greebles
(Sugimoto & Cottrell, 2001; Joyce & Cottrell, 2004)
illustrating that expertise in the font networks is due to the
same mechanism as expertise in face and non-face object
networks.

Conclusion
The current studies illustrate that: 1) expertise can be
obtained with decidedly non-face-like stimuli and that font
expertise exhibits similar properties to that of face and non-
face objects seen in previous simulations, and 2) the
expertise in previous simulations cannot be explained by a

         Figure 9: PCA of hidden units of letter network.  Grouped by letter.

         Figure 10: PCA of hidden units on font network.  Points grouped by font.
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greater number of subordinate level discriminations than
basic level discriminations: in the current work these were
equated and the results were qualitatively similar to those
we have obtained previously.

Our  first  experiment  gave  us useful preliminary data for
training font experts; it showed that the task of classifying
fonts was possible, and revealed which letters and fonts
were the easiest to generalize to and train on.  The behavior
of the networks in the second experiment was similar to
previous studies, although our stimuli were different fonts,
not “face-like” objects. When training the networks on a
new task, the font expert networks learned Greeble
classification faster than the letter networks, suggesting that
previous visual expertise, whether it be on object or non-
object, leads to relatively faster learning in a novel
discrimination task.  In addition, an equal number of
discriminations were required of both letter and font
networks. Thus, the expertise advantage could not be due to
the sheer number of partitions the representational space
was divided into, but instead is due to how the space was
divided.  We conclude that visual expertise does not depend
on the type of stimuli, nor on the number of stimuli used for
training, but on how you slice the space.

Future Work
We plan to train face networks to become font experts, thus
generalizing the Greeble expertise work. We expect face
expert networks will learn font expertise faster than basic
level categorizers. We then plan to train human subjects to
become font experts, using fMRI to image both prior to and
after training to ascertain if font expertise training engages
the FFA. We expect that the letter areas found in the left
hemisphere will not become more highly activated by font
training. Although it should be obvious from the way that
letters are grouped together by the letter network, a future
simulation should show that letter networks are difficult to
train in font expertise.
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