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Persistence of Morning Anticipation Behavior and High
Amplitude Morning Startle Response Following
Functional Loss of Small Ventral Lateral Neurons in
Drosophila
Vasu Sheeba¤, Keri J. Fogle, Todd C. Holmes*

Department of Physiology and Biophysics, University of California Irvine, Irvine, California, United States of America

Abstract

Light-activated large ventral lateral clock neurons (large LNv) modulate behavioral arousal and sleep in Drosophila while
their counterparts, the small LNv (s-LNv) are important for circadian behavior. Recently, it has been proposed that the
pattern of day-night locomotor behavioral activity is mediated by two anatomically distinct oscillators composed of a
morning oscillator in the small LNv and an evening oscillator in the lateral dorsal neurons and an undefined number of
dorsal pacemaker neurons. This contrasts with a circuit described by network models which are not as anatomically
constrained. By selectively ablating the small LNv while sparing the large LNv, we tested the relative importance of the small
and large LNv for regulating morning behavior of animals living in standard light/dark cycles. Behavioral anticipation of the
onset of morning and the high amplitude morning startle response which coincides with light onset are preserved in small
LNv functionally-ablated animals. However, the amplitude of the morning behavioral peak is severely attenuated in these
animals during the transition from regular light/dark cycles to constant darkness, providing further support that small LNv
are necessary for circadian behavior. The large LNv, in combination with the network of other circadian neurons, in the
absence of functional small LNv are sufficient for the morning anticipation and the high amplitude light-activated morning
startle response.
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Introduction

Pittendrigh and Daan proposed that circadian clocks simulta-

neously ‘‘measure’’ daily and seasonal changes in day lengths using

mutually coupled binary oscillators: the ’’Morning’’ (‘‘M’’)

oscillator that tracks dawn and the ’’Evening’’ (‘‘E’’) oscillator

that tracks dusk [1]. While the binary oscillator model was

originally developed to explain the peculiar phenomenon of

‘‘splitting’’ and ‘‘re-fusion’’ of morning and evening activity bouts

in mammals in response to constant light, this model has recently

been adapted to account for the bimodal activity pattern in

Drosophila melanogaster. Using several genetic and behavioral

approaches, attempts have been made to identify the putative

‘‘M’’ and ‘‘E’’ oscillators in circadian neuronal circuit. The ‘‘M’’

and ‘‘E’’ oscillator model is particularly attractive for Drosophila as

this insect exhibits two distinct bouts of locomotor behavior under

12:12 h LD cycles - at dawn (morning peak) and dusk (evening

peak). Helfrich-Förster [2] suggested that the morning peak in

activity is governed by a per-independent clock and is entrained by

light signals via photoreceptors, while the evening peak is

regulated by the circadian clock involving per and entrained by

CRY (see also [3]). Subsequently, several papers indicate that the

‘‘M’’ and ‘‘E’’ oscillators in Drosophila may have distinct anatomical

locations as shown by the effects of eliminating different subgroups

of clock neurons or by restoring clock gene expression in specific

neurons in clock mutants [4–7]. These studies conclude that the

small LNv function as the ‘‘M’’ oscillator in the Drosophila circadian

pacemaker circuit, while the LNd and an unspecified number of

dorsal neurons function as the ‘‘E’’ oscillator.

PER-null flies lack both morning and evening anticipatory

behavior. In an attempt to localize oscillator function between

subsets of the LNvs, PER expression was directed in PER-null flies

comparing the Mai179 and c929 driver lines. The Mai179 driver

line putatively targets the small LNv, while the c929 driver line

directs expression to the large LNv along with a large number of

non-clock peptidergic neurons, but not the small LNv. Similar

claims of small LNv specificity have been made also for the R6

driver line [8]. However, other reports state that the Mai179 and

R6 lines drive expression in the both the small LNv and a subset of

large LNv [9]. In spite of lacking a specific GAL4 driver for

isolating the small LNv for PER expression rescue, the small LNv

have been designated as the ‘‘morning’’ neurons. This interpre-

tation of the small LNv as the locus of the morning oscillator

appears to have gained some acceptance [6,10].
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In spite of the claim that the M and E oscillators are distinct but

coupled [5–7] this appealingly simple model must be considered in

light of numerous previous studies that show a clear functional

contribution by the so-called morning cells (LNv) to the evening

bout of activity [11–13]. In flies lacking functional LNv or their

output signal PDF, morning anticipatory activity is absent, and the

phase of evening anticipation is advanced [11–13]. Ectopic PDF

alters oscillator phase [14,15]. In attempts to reconcile these

findings, it has been suggested that the ‘‘M’’ cells modulate the

activity of the ‘‘E’’ cells [6,10]. However, additional work under

different genetic and environmental conditions (constant light or

constant darkness or alternating low light/darkness) on the

Drosophila circadian circuit, along with comparison with mamma-

lian circadian circuits, suggests a more complex model of the

distribution and coordination of multiple oscillators in Drosophila

beyond the simple two oscillator model [3,16–22].

We proposed recently that the circadian neuronal circuitry

underlying the generation of morning and evening activity peaks is

plastic rather than being composed of anatomically fixed

oscillators to particular cell types. We posited that oscillator

localization varies according to environmental conditions and the

overall state of the circadian network (reviewed in [23]; see also

[24] and [25]. Furthermore, the relative contribution of the small

and large LNv as ‘‘morning’’ neurons is unclear. And while it has

been recently demonstrated that non-PDF lateral neurons are

modulated by the PDF+ large LNv [8], the question of whether

non-PDF circadian neurons in the circuit can interact with the

large LNv in a network fashion in the absence of the small LNv to

modulate morning behavior remains unanswered. Also, in contrast

to anatomically restricted dual oscillator models, large scale

imaging and physiological studies of the SCN show that individual

oscillators are organized in complex networks [26–28].

Electrophysiological analysis indicates that the large LNv

exhibit preferential spontaneous firing in both circadian and

actual morning [29,30] and that action potential firing rate of the

large LNv is acutely sensitive to light [30]. Recent work further

parses the LNv subsets, showing that the large LNv act as light-

activated arousal neurons that modulate the circadian circuit for

both the morning behavioral peak [30–32] (see also [33] and [34])

and the evening behavioral peak [8]. To clarify whether the small

LNv are required for the morning behavioral anticipation and

peak activity, and to distinguish between acute light versus

circadian effects on the light-activated high amplitude morning

startle response, we examined these questions using a method

developed recently in our laboratory which functionally ablates the

small LNv while the large LNv and the other circadian neurons

remain functionally intact [31].

Results

Peak spontaneous action potential firing rate of large
LNv tends to be highest in the morning

Spontaneous action potential firing of large LNv Drosophila

pacemaker neurons can be measured by whole cell patch in

current clamp mode [17,29–31,35], a recording method adapted

from techniques devised for recording from olfactory neurons in

adult Drosophila whole brain [36]. Flies expressing a membrane

delimited GFP marker in the LNv (pdfGAL4/dORK-NC1-GFP;

[13]) were maintained in standard 12 h:12 h light:dark cycles.

Expression of dORK-NC1 in the LNv has no effect either on

behavior [13] or membrane electrophysiological properties

[30,35]. Individual flies (1–7 days old) were collected at time

points throughout the 24 hr light: dark cycle and whole brains

were dissected for whole cell patch clamp recording as described

previously in detail [30,36]. Representative spontaneous action

potential firing records are depicted for large LNv recorded under

equal illumination conditions at all time points (7 klux, which

corresponds to daylight illumination) in the early morning (ZT1)

and late night (ZT22) (Figure 1, left and centre panel). Large

LNv spontaneous action potential firing rate recorded under 7

klux light in 67 brains prepared at different phases throughout the

entire 24 hour light:dark cycle show that large LNv spontaneous

firing can occur throughout the entire light:dark cycle, but that

higher firing tends to occur in the morning (Figure 1, right
panel). Whole cell current clamp recordings of large LNv verify

that spontaneous action potential firing peaks in the morning with

firing rate gradually decreasing between ZT 0–12 (slope = 20.19)

and increasing between ZT 13–24 (slope = 0.07, Figure 1, right
panel). Although with this sample size of 67, which is

approximately half of the sample size used in [29], they do not

reach statistical significance. These results are in qualitative

agreement with previous studies that show morning peak large

LNv circadian-regulated firing [30] and large LNv peak firing in

the morning under diurnal conditions [29], Again qualitatively

similar to the results reported in [29], we tend to see more

depolarized resting membrane potential values in the morning,

however this is not statistically significant by regression analysis

(data not shown), while this is reported as significant in [29]. This

is probably due to sample size and the variance in large LNv firing

rate and resting membrane potential as seen here and in [29].

Loss of rhythmic circadian behavior in flies expressing
neurotoxic Huntingtin-Q128 in the LNv pacemaker
neurons

Expression of fragments of human Huntingtin (Htt) protein with

poly-glutamine (poly-Q) sequences containing greater than 35

copies of Q results in functional neuronal loss and degeneration

[31,37–40]. We expressed pathogenic UAS-Q128-Htt (henceforth

Q128-Htt) or control non-pathogenic UAS-Q0-Htt (henceforth

Q0-Htt) in the LNv using the pdfGAL4 (pdf) driver line and

examined locomotor behavior of newly eclosed flies in standard

light:dark (LD) conditions for 6 days followed by constant darkness

(DD) starting at 7 days of age. For control comparison, the

offspring of Q128-Htt and Q0-Htt crossed with yw and pdfGAL4

driver crossed with yw were assayed in parallel to test for potential

genetic background effects of the UAS lines and the driver. In

standard 12 h:12 h LD conditions, both pdf/Q0-Htt and pdf/Q128-

Htt flies exhibit the typical profile of locomotor activity, with peak

activity in the morning and evening along with low levels during

mid-day and at night. Similar behavior is observed for both Q0-

Htt and Q128-Htt UAS genetic background controls, except that

pdf/Q128-Htt flies exhibit significantly greater locomotor activity at

night at all ages tested (Supplementary Figure S1, S2). In

contrast, while most control pdf/Q0-Htt and genetic background

control flies exhibit robust circadian locomotor behavior in

constant darkness, the locomotor behavior of most pdf/Q128-Htt

flies is arrhythmic (Figure 2A,B) (** indicates significant

differences at p,0.01.) The predominance of circadian arrhyth-

mic behavior of pdf/Q128-Htt flies relative to control pdf/Q0-Htt

flies is stable and seen for days 7–13, 14–20, and 21–27 in constant

darkness. Thus, pdf/Q128-Htt flies do not later recover from the

behavioral circadian arrhythmicity that occurs immediately when

exposed to constant darkness. As the small LNv are required for

circadian rhythmicity in constant darkness [41,42], the results

indicate that all small LNv neurons are functionally impaired by

Q128-Htt expression in young adult flies and that the small

LNv contribute to restful behavior at night (Supplementary
Figure S1).

LNv and Morning Anticipation
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Figure 1. Large LNv highest action potential firing rates occur in the morning. (left, center panels) Representative traces of whole-cell
current-clamp recordings of control large LNv (pdfGal4/dORK-NC1) taken during the day (left panel, ZT 1) and night (middle panel, ZT 22). Firing
frequency (Hz) of 67 individual large LNv neurons plotted according to the time the recording was made, to the nearest half hour from whole brain
preparations of flies aged 1–7 days (right panel). Recordings during the day displayed an overall higher firing frequency (3.260.4 Hz, n = 43, ZT 0–12)
than those taken at night (2.460.4 Hz, n = 25, ZT 13–24), the dashed vertical line indicates the time of light-dark transition. The highest large LNv
average firing frequencies are observed in the morning (4.561.5 Hz, n = 10, ZT 0–2) while the lowest large LNv average firing frequencies tend to
occur at night.
doi:10.1371/journal.pone.0011628.g001

Figure 2. Expression of Q128-Htt in LNv causes loss of circadian locomotor behavior. (A) Representative activity/rest records (actograms)
of individual male flies expressing either control Q0-Htt (upper panels) or Q128-Htt (lower panels) in the LNv circadian pacemaker neurons. Left
panels (yw) are genetic background controls where the UAS- PolyQ is not driven by GAL4, while right panels show flies where the expression of Q0-
Htt or Q128-Htt is driven by the pdf-GAL4 driver in the large and small LNv in the adult brain. Flies were entrained in 12:12 h light/dark (LD12:12)
regime from age day 2 to 6 following which they were subjected to constant darkness (DD) starting at day 7. The black and white horizontal bars
above the top panels indicate the times during which the lights were OFF or ON, respectively, during the initial five days in LD, while the lower black
bar indicates darkness during days 7–27. The x-axis indicates the time of day while y-axis indicates consecutive days. Genetic background controls of
both Q0-Htt and Q128-Htt lines are predominantly rhythmic throughout the assay in DD. While pdf GAL4 driven Q0-Htt expressing flies are not
significantly different from their genetic background controls, nearly all Q128-Htt flies are arrhythmic in DD. (B) Percentage of flies with arrhythmic
activity/rest pattern during DD day 7–13, day 14–20 and day 21–27 for pdfGAL4 driven PolyQ expressing flies (right bars) and their genetic controls
(left bars) There is no significant difference in fraction of arrhythmic flies from controls when Q0-Htt is expressed in LNv (upper panel), whereas nearly
all Q128-Htt expressing flies are behaviorally arrhythmic for all age groups tested (lower panel). * indicates significant differences at p,0.01; Fisher’s
exact p test.
doi:10.1371/journal.pone.0011628.g002

LNv and Morning Anticipation
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Q128-Htt expression in both LNv subsets causes the
selective loss of PDF immunoreactivity in the small LNv,
but not in the large LNv

Selective vulnerability of specific subsets of neurons is a common

feature of neurodegenerative diseases [43]. The small LNv, but not

the large LNv, are required for circadian behavioral rhythmicity

[41,42], (see also [23] and [24] for detailed reviews of additional

supporting evidence). Thus, the functional loss of circadian rhythmic

behavior in pdf/Q128-Htt flies suggests that all of the small LNv

neurons in the circadian arrhythmic flies are impaired by Q128-Htt

expression. To verify this, we measured the levels of the functionally

critical circadian neuropeptide pigment dispersing factor (PDF)

[12,13,17,44–48] levels in both the small and large LNv subsets in

flies expressing control Q0-Htt versus pathogenic Q128-Htt driven

by pdf-GAL4 to both LNv neuronal subsets. Anti-PDF immunocyto-

chemical analysis was performed on whole brains dissected from 1–

34 day old pdf/Q0-Htt and pdf/Q128-Htt flies that were maintained

under standard LD conditions. There are typically 4–5 large LNv per

brain hemisphere and 4–5 small LNv per brain hemisphere in wild

type Drosophila [49,50]. Consistent with earlier observations, PDF-

positive cell-counts per brain hemisphere in control pdf/Q0-Htt flies

for both large and small LNv sub-groups ranged between 3–5 cells up

to 34 days of age (Figure 3A). No consistent loss of PDF-positive

large LNv occurs in pdf/Q0-Htt or pdf/Q128-Htt flies up to 34 days of

age, so PDF expression appears to be unaffected by polyQ-Htt

expression. In contrast, the numbers of PDF-positive small LNv were

severely diminished relative to controls at all ages tested between ages

1–34 days in pdf/Q128-Htt flies (Figure 3A). No PDF-positive small

LNv were observed between the ages of 18–34 days in pdf/Q128-Htt

flies sampled and they were observed rarely in extremely low

numbers in 6–16 day old pdf/Q128-Htt flies. Closer examination of

the PDF-positive cell bodies shows robust healthy-appearing cells in

Q0-Htt expressing flies while only small fragments of PDF-positive

material is typically seen in the region of the small LNv in Q128-Htt

expressing flies at all ages (Figure 3B, scale bar is 20 mM for the large

LNv panels and 15 mM for the small LNv panels). Under the fixation

conditions used, it was not possible to discern whether the small

fragments of PDF-positive signal in the region of the small LNv of

Q128-Htt expressing flies is cellular or non-cellular. Similarly,

membrane delimited GFP expression is selectively lost in small

LNv expressing Q128-Htt (pdfGAL4/dORK-NC1-GFP/Q128-Htt), but

no loss of GFP signal is observed in large LNv expressing Q128-Htt

(data not shown).

While loss of PDF-immunoreactivity and GFP expression are

clear indications of neural dysfunction, these markers are not

equivalent to cell death. To test for polyQ-Htt induced cell death,

we performed TUNEL assays using whole mount brains of control

and polyQ-Htt expressing flies at various ages. We consistently

observed small numbers of TUNEL-positive cells throughout the

brain samples for all ages. However, we could detect no specific

TUNEL signal in the region of the LNv (data not shown). Thus,

there is no direct evidence for polyQ-Htt-induced cell death

distinguishable from neuronal dysfunction of small LNv. However,

these results indicate that Q128-Htt expression differentially

affects the large and small LNv function and suggests that the

function of the small LNv are selectively vulnerable to polyQ-Htt

protein expression while the large LNv are potentially spared.

Long-term persistence of spontaneous action potential
firing and acute physiological light response in large LNv
expressing Q128-Htt

The results described above suggest that Q128-Htt expression

in the PDF-expressing LNv causes selective functional disruption

of the small LNv while sparing the large LNv. To test the

functionality of the large LNv expressing Q128-Htt, we patch

recorded spontaneous action potential firing and physiological

light responsiveness of GFP-labelled large LNv from whole brains

of 1–20 day old pdf/Q128-Htt flies in current clamp mode. Large

LNv that express Q128-Htt show normal action potential firing

rate and normal firing pattern as shown in recordings made up to

20 days of age. A representative tonic firing neuron is shown in

Figure 4A, compare this with recording traces of wild type large

LNv in Figure 1 above and in [30,35]. Large LNv acutely

increase their spontaneous action potential firing rate on average

by 50% when exposed to daytime levels of light (.2000 lux). This

light-induced increase in firing rate is rapid and occurs typically

between 1–2 seconds following light exposure and reverses

between 1–2 seconds following lights-off [30]. Normal acute large

LNv physiological light responses are seen in neurons expressing

Q128-Htt up to 20 days of age (n = 12, 11/12 recordings made

from flies 7 days old or less; one fly 20 days old), with a

significantly higher firing rate during lights-on versus lights-off

(Figure 4B, left panel). No differences in firing frequency or

electrophysiological light response are observed between control

pdfGAL4/NC1 flies and pdfGAL4/Q128/NC1 flies (Figure 4B).

There are no apparent age dependent differences in firing rate or

physiological light responsiveness in large LNv expressing Q128-

Htt (small LNv expressing Q128-Htt cannot be identified for

recording as they do not express GFP). From these results and the

anti-PDF immunostaining results, we conclude that large LNv are

selectively spared while small LNv are functionally impaired

following Q128-Htt expression.

Morning behavioral anticipation and high amplitude
morning startle response persist in LD in flies lacking
functional small LNv

Loss of PDF or functional ablation of all PDF-expressing LNv in

Drosophila leads to the loss of anticipatory behavior preceding the

onset of morning, and in some cases that appears to depend on

absolute light levels, attenuation of high amplitude light-induced

morning startle response [5,12,13]. Similar losses of morning (and

evening) anticipatory behavior are seen in per0 mutant flies [7].

Directed PER expression to both the small and large subset of LNv

in per0 mutant flies rescues the morning peak defect (but not the

evening peak defect), while expression directed to small LNv, some

of the large LNv, and the majority of the LNd in per0 mutant flies

rescues both the morning and evening peak defects. PER

expression directed to the large LNv, but not the small LNv, is

insufficient to rescue either the morning or evening peak defect

under the environmental conditions tested for that study [7]. More

recent studies using the Mai179 and R6 driver lines further suggest

a specific small LNv contribution to morning anticipation [8].

However, other recent work shows that the Mai179 and R6 driver

lines direct expression consistently to a subset of the large LNv as

well as the small LNv [9]. To determine the contribution of the

small LNv to the morning peak in flies that have functionally intact

large LNv and all other circadian neurons, we examined LD

behavior in control versus pdf/Q128-Htt flies that specifically lack

functional PDF-positive small LNv but by all measures retain

functional large LNv (Figures 2, 3 and 4). Visual inspection of

averaged locomotor activity of control pdf/Q0-Htt and experimen-

tal pdf/Q128-Htt flies shows similar gradual increases in activity in

anticipation of morning and evening; and high amplitude morning

and evening startle responses coinciding with lights-on and lights-

off in standard 12 h:12 h LD cycles when examined for 30 days or

between days 1–10, days 11–20, or days 21–30 (Figure 5A).

Similar morning and evening anticipation is seen by visual

LNv and Morning Anticipation
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inspection of averaged behavioral records of control yw/pdfGAL4-

driver line flies (data not shown).

Visual assessment of gradual increases in activity in anticipation

of morning and evening is highly qualitative and imprecise.

Several quantitative methods have been developed recently for

measuring anticipation index (AI; [5,51], see Materials and

Methods for details). Using the Stoleru method to measure

Relative AI (henceforth Group/Relative AI method), control pdf/

Q0-Htt and pdf/Q128-Htt small LNv functionally impaired flies

exhibit similar positive values for Relative AI for morning behavior

and positive values for evening anticipation over 30 days of

12 h:12 h LD locomotor behavior (Figure 5C). Further analysis

using the Relative AI method applied to 10-day successive

intervals shows defects in morning anticipation for both control

pdf/Q0-Htt and experimental pdf/Q128-Htt flies between days 1–

10, then increasing positive values for Relative AI for morning

Figure 3. Q128-Htt expression in both LNv subsets causes the selective loss of PDF immunoreactivity in the small LNv. (A) The
average number of PDF-immunoreactive (PDF+) LNv (6 SEM) that can be detected in flies expressing Q0-Htt (black filled square) and Q128-Htt (red
hollow circle) in the small and large LNv. The number of PDF+ large LNv remains constant for up to 34 days of age in Q0-Htt and Q128-Htt flies (left
panels). The average number of PDF+ small LNv (right panel) remains constant in Q0 lines throughout the assay, while in Q128-Htt flies, PDF+ small
LNv are almost never detected between 1–14 days of age, then not detected in any Q128-Htt flies thereafter. (B) Representative confocal maximum
projections of anti-PDF staining in large and small LNv in adult flies expressing Q0-Htt or Q128-Htt at ages 12, 16, 18, 22 and 26 days. The PDF+ large
LNv (denoted by .) are detectable in all the genotypes up to 26 days of age. The small LNv (thin arrow) are detectable in Q0-Htt flies up to 26 days of
age, but in Q128-Htt flies, PDF+ small LNv are rarely detected between 1–18 days of age and never detected after 18 days of age. Scale bars = 20 mm
in large LNv panels and 15 mm in small LNv panels.
doi:10.1371/journal.pone.0011628.g003

LNv and Morning Anticipation
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Figure 4. Spontaneous action potential firing and acute physiological light response in large LNv persists in flies expressing Q128-
Htt in the LNv. (A) Representative whole cell current clamp recording trace of large LNv in brains of flies expressing Q128-Htt under control of
pdfGAL4 driver shows normal action potential firing in the functional absence of PDF+ small LNv. (B) Upon exposure to 7–10 klux light intensity (white
bar) firing frequency is significantly higher (3.260.4 Hz) than under darkness (2.260.3 Hz black bar; paired t test, p,0.001). Controls (pdfGAL4/NC1)
show similar increased firing frequency under 7–10 klux light intensity of 2.960.4 Hz versus 1.960.3 Hz under darkness (0 klux). Resting membrane
potential is also significantly more depolarized in the presence of light (data not shown). Normal spontaneous action potential firing and light
responsiveness persists in large LNv recorded from pdfGAL4/UAS-Q128-Htt flies up to 20 days of age.
doi:10.1371/journal.pone.0011628.g004

LNv and Morning Anticipation
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behavior for days 11–20 and 21–30 for both control pdf/Q0-Htt

and experimental pdf/Q128-Htt flies (Figure 5C). The highest

Relative AI value is seen for the morning behavior of experimental

pdf/Q128-Htt flies analyzed between 21–30 days, which is

consistent with visual inspection of the average locomotor

actograms (Figure 5A,B). Relative AI for morning anticipation

using this method was also calculated for other control lines, yw/

pdf-GAL4, and again using this method, defects in morning

anticipation can be seen (Supplementary Figure S1), AI values

not shown. Group/Relative AI values are positive for evening

anticipatory behavior for both control pdf/Q0-Htt and experimen-

tal pdf/Q128-Htt flies at all life stages measured with a noteworthy

high value for control pdf/Q0-Htt flies between days 1–10, again,

consistent with visual inspection of average locomotor activity

profile actograms (Figure 5A). Based on low Group/Relative AI

morning anticipation values for some of the time intervals

analyzed for two control lines and the lack of robustness of this

method for measuring AI, we also analyzed morning and evening

anticipation using an AI described in [51] which calculates the

amount of locomotor activity in the 3 hours preceding LD

transition divided by the locomotor activity during 6 hours

preceding LD transition. Unlike the Group/Relative AI, the

individual AI method provides a statistical comparison [51]; see

also [47]. Using the individual AI method, we calculate positive AI

values for both control pdf/Q0-Htt and pdf/Q128-Htt flies, and see

no significant difference in morning anticipation between these

two genotypes and their respective genetic background controls

(Figure 5B, Figure S1). The individual evening AI also do not

show significant differences between genotypes at any life stage

(Figure 5A,B; One way ANOVA comparing genetic background

controls pdf/QO and pdf/Q128). Thus, while AI values calculated

using either the Relative/Group or Individual methods show a few

differences, both analyses yield the same fundamental conclusion

that small LNv functionally ablated pdf/Q128-Htt flies exhibit

measurable morning anticipation similar to controls as well as a

high amplitude morning startle response coinciding with lights-on

in standard 12 h:12 h LD cycles when examined for 30 days or

between days 1–10, days 11–20, or days 21–30 (Figure 5A).

The small LNv functionally ablated pdf/Q128-Htt flies do show

one interesting consistent difference from pdf/Q0-Htt control lines:

significantly higher overall night time behavioral activity for all

time windows tested (Supplementary Figure S1B), indicating

that the small LNv may inhibit night time activity, and may act as

sleep promoting neurons. Significant increases in overall night

time behavioral activity in pdf/Q128-Htt flies is robust and has

been independently replicated in our laboratory where the

genotype of the fly was coded to enable unbiased estimation of

activity levels. The pdf/Q128-Htt flies with small LNv functionally

ablated also show a small but significant increase in total day time

behavioral activity (Supplementary Figure S1B) These results

are consistent with recently published findings from our group and

others [31,33]. Increased day time activity cannot be attributed to

phase advanced evening anticipation as UAS control yw/UAS-

Q128-Htt flies exhibit similar levels of evening anticipation as pdf/

Q128-Htt flies (Figure 5A,B).

Morning anticipation is retained in DD but the high
amplitude circadian morning peak is selectively lost in
flies lacking functional small LNv

Previous imaging and functional studies show that upon

introduction to constant darkness molecular oscillations are robust

in the small LNv while molecular oscillation quickly dampens in

the large LNv; and that the small LNv, but not the large LNv are

essential for circadian behavior [5,7,11–13,41,42]. This assertion

is also supported by the comparative anatomy of the large and

small LNvs [49]. However, circadian molecular oscillations in the

large LNv appear to recover after long term exposure to constant

darkness (9–14 days), indicating network plasticity [17,46]. We

examined the behavior of control versus small LNv functionally

ablated pdf/Q128-Htt flies during the transition between standard

12 h:12 h LD cycles to constant darkness. As seen in earlier

experiments under 12 h:12 h LD conditions, control pdf/Q0-Htt

and pdf/Q128-Htt exhibit both morning anticipatory increase in

behavior preceding lights-on and the CT 0 transition from LD to

DD (the first ‘‘cycle’’ of darkness). In contrast to control flies, the

high amplitude circadian morning peak behavior is entirely absent

in small LNv functionally ablated pdf/Q128-Htt flies and is thus

similar to negative control pdf01 flies (Figure 6A third panel;

pdfGAL/pdf01). One robust evening peak around CT 12 on day 1 in

DD followed by the next weak evening peak (also around CT12)

can be discerned approximately 24 hours later on day 2 DD in

pdf/Q128-Htt flies, after which time, no discernable circadian

behavioral rhythms can be observed (Figure 6A second panel). In

contrast, control pdf/Q0-Htt flies exhibit a robust morning peak

around CT 0 for days 1 and 2 in DD, and robust evening peaks

around CT 12 for days 1–3 in DD (Figure 6A). In an attempt to

assign a quantitative value to this behavior we adopted two

methods both of which involved averaging of activity across flies

Figure 5. Morning behavioral anticipation and high amplitude morning startle response behavior persists in flies lacking
functional small LNv. (A) Mean locomotor activity counts of flies living in standard 12 h:12 h light:dark cycles with pdfGAL4 driven expression of
control Q0-Htt (black squares), or Q128-Htt (red dots) and yw controls (grey triangles) are shown. Yellow shaded areas denote mean locomotor
activity binned in 15 min intervals during the day while blue shaded areas denote mean locomotor activity at night. Average activity is plotted for
age day 1–10 (top panel), age day 11–20 (middle panel) and age day 21–30 (lowest panel) to distinguish age dependent effects. (B) Morning and
evening anticipation indices were estimated for individual flies at same 3 life-stages as panel A using the fraction of activity during the 3 hours before
the transition states of dawn or dusk compared to the activity level through the six hours before transition (Harrisingh et al 2007). One-way ANOVA
on the morning anticipation showed no significant differences between the genetic background controls or yw controls and the experimental lines
pdf/Q0-Htt and pdf/Q128-Htt flies through all three life stages. Similar ANOVA was performed on the individual evening anticipation indices at all three
lifestages. pdf/Q128-Htt flies exhibited significantly lower evening anticipation compared to pdf/Q0-Htt during the early life stages up to age day 10
(* indicates p,0.01), but during days 21–30 the levels are not different between the two genotypes. But we cannot rule out the non-specific effect of
Q128 since yw/q128-Htt flies (genetic background controls) did not show significantly higher anticipation than pdf/Q128-Htt. (C) Group anticipation
indices of morning (left panel) and evening activity (right panel), estimate the positive slope of activity for the 4 hours before dawn ZT0 or dusk ZT12
(Stoleru et al 2004; methods of this paper) for both control pdf/Q0-Htt and pdf/Q128-Htt. Relative anticipation indices are plotted for both control pdf/
Q0-Htt and pdf/Q128-Htt by normalizing over values of AI for their respective genetic background controls (yw/Q0-Htt and yw/Q128-Htt). Morning
anticipation in flies expressing HTT-Q128 in the LNv appears to be not different from controls up to the age of 20 days and during the advanced age
group of 21–30 days they show an enhanced level of morning anticipation suggesting that the network of neurons that regulate anticipatory
behavior is plastic and undergoes modifications that allow flies to compensate for the lack of functional sLNv. No statistical comparisons were made
as single values for anticipation index is obtained by this method from the average activity profile of each genotype. Similarly evening anticipation
also appears unaffected by the loss of functional sLNv (right panel).
doi:10.1371/journal.pone.0011628.g005
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assayed for each genotype. In the case of pdf/Q0-Htt only those

flies that were confirmed to be rhythmic in DD were used for the

analysis (n = 25; 78% of total flies). In the case of pdf/Q128-Htt

only those flies that were confirmed as arrhythmic in DD (n = 29;

81% of total flies) were used for further analysis. For both the

above genotypes and for negative control pdfGAL/pdf 01 flies we

obtained a measure of morning activity (henceforth morning index

Fig. 6B left panel) by estimating the ratio of activity immediately

preceding the transition from lights ON to OFF or vice versa

(similar to that of [51], except that this was done on activity

averaged across flies for each day, see methods). In order to

normalize for differences in baseline activity among the three

genotypes we also estimated another morning index (normalized

morning index) where the activity immediately preceding the lights

ON and OFF transitions is normalized by the level of activity at

midnight and midday respectively. Both methods clearly show that

sLNv ablated flies exhibit morning anticipatory activity which is

higher than that of pdf 01 flies.

These results indicate that the behavioral morning peak can be

readily dissected into two components: a low amplitude anticipa-

tory component that shows small but steady increase for the

several hours before lights-on, and a much larger high amplitude

morning startle response component that peaks at lights-on. In the

absence of functional small LNv, the high amplitude morning

startle response component persists in LD indicating that it can be

acutely light driven, but disappears immediately upon transition

into DD and is thus clock- and small LNv dependent in the

absence of light.

Discussion

Individual pacemaker neurons are capable of autonomously

generating circadian rhythms over a large range of phases [52,53].

This raises the question as to how multiple pacemaker neurons

coordinate their activity to generate a single coherent rhythm in

overt behavior. Answering this difficult question is potentially

more tractable for Drosophila than for mammals due to the

relatively small number of pacemaker neurons in the fly circadian

circuit and the available tools for fly genetics [50,54]. Several

models have been proposed to account for the general organiza-

tion of circadian circuits. A dual oscillator model posits that

individual oscillators are anatomically restricted to two function-

ally distinct groups of neurons that control ‘‘morning’’ versus

‘‘evening’’ behavior. The dual oscillator model can be contrasted

with a distributed network model which suggests that many cell-

autonomous oscillators are coordinated in a more complex, but

ultimately flexible fashion (recent reviews of the experimental

evidence supporting these respective models can be found in

[23–25]). While the results above along with several recently

published papers [8,16,17] supports the idea that there is

considerable circuit plasticity in terms of which cells contribute

to diurnal and circadian behavioral morning and evening bouts,

there is strong consensus that PDF coordinates the entire fly

circadian circuit [6,8,12,13,16,17,23,31,44,46,47,55,56]. The

small LNv have received considerable attention as being critical

for controlling multiple aspects of diurnal and circadian behavior

[41,42,57], including control of anticipatory behavior immediately

preceding the peak in morning behavior [6,7]. More recent work

indicates that the large LNv function as light-driven arousal

neurons that modulate sleep [30,31,33], see also [32].

To further clarify the relative contributions of the small and

large LNv to regulating behavior in light/dark cycles, we made use

of the selective functional ablation of the small LNv subset by

expression of the neurotoxic protein Q128-Htt [31]. PolyQ

protein expression has been shown previously to cause neurode-

generation and functional loss in photoreceptors and other

Drosophila neurons [37,39,58]. In contrast to the Q128-Htt-

induced loss of function of the small LNv, large LNv appear to be

spared following expression of Q128-Htt, as shown both by

physiological and morphological assays. Such selective vulnerabil-

ity of certain neuronal populations, while not well understood, is a

hallmark feature of neurodegenerative diseases [59]. While

pdfGAL4 drives expression in both the small and large LNv

neurons, the PDF-positive small LNv precursor neurons appear

much earlier in development relative to the PDF-positive large

LNv [50].This developmental difference may account in part for

the selective functional vulnerability of small LNv to Q128-Htt.

PolyQ protein expression in circadian neurons has also been

shown to cause abnormalities in courtship behavior [60].

In contrast to the loss of morning anticipation behavior in

pdf 01 flies, pdf/Q128-Htt flies lacking functional small LNv retain

morning anticipation along with the high amplitude morning

startle response that occurs at the onset of morning at ZT0.

Previous work shows that directed expression of PER to the small

LNv in a per0 genetic background is sufficient to drive morning

anticipation activity [7]. But this interpretation is complicated by

the fact that the Mai179 driver line used for driving expression in

the small LNv also drives expression in the three out of six LNd

pairs and a smaller subset of the large LNv [7,20,61].

Furthermore, the interpretation that PER cycling in the small

LNv is sufficient to rescue morning anticipation in a per0 genetic

background relies on a rather complicated subtractive analysis:

the comparison of PER expression rescue in both PDF-positive

LNv subsets for which only morning anticipation (but not

evening) is rescued versus lack of rescue of morning or evening

anticipation behavior in flies with PER expression directed to the

large LNv (and a large number of non-clock peptidergic neurons).

The present results indicated that in the absence of small LNv,

the morning anticipation behavior persists. This shows clearly

that the large LNv operating within the circadian network along

with the LNd and dorsal pacemaker neurons are capable of

mediating morning anticipation behavior. This is consistent with

earlier findings which show that flies retain both morning and

evening anticipatory behavior when all their neurons express

Figure 6. Functional loss of small LNv causes retention of morning anticipation in light-dark cycles, but rapid loss of the circadian-
dependent morning peak behavioral activity in constant darkness. (A) Mean activity of flies during the transition from LD12 h:12 h (day 4
and 5; yellow shaded area represents light phase and blue shaded area represents dark phase) to DD (beginning on day 6; grey shaded area) is shown
for control flies (pdf/Q0-Htt top panel; averaged across all flies that were rhythmic in DD and smoothed by a moving average of 45 mins - i.e., three
consecutive 15 min bins) flies lacking sLNv (pdf/Q128-Htt second panel; averaged across all flies that were arrhythmic in DD and smoothed) and
pdfGAL/pdf01controls (bottom panel). Under LD12 h:12 h both genotypes show robust anticipation of morning (yellow arrow) and evening (black
arrow). In control flies the morning peak is clear for at least the first two days in DD along with a persistent robust evening peak. (B) Quantification of
morning anticipation activity in LD and first 3 days of DD on data averaged across flies and smoothed across 45 mins. Left panel shows morning
anticipation activity index measured as the ratio between activity levels 3 hrs compared to 6 hours preceding lights ON (Harrisingh et al 2007) while
right panel shows normalized or baseline-corrected index of morning activity estimated as ratio between the activity levels in the 1 hour preceding
lights ON normalized by activity levels at midnight preceding that transition.
doi:10.1371/journal.pone.0011628.g006
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PER except per-null PDF+ LNv (please refer to Figure 4C of [5]).

Taken altogether with all published results, the present results

indicate that anticipation behaviors may not be strictly anatom-

ically localized, but rather occur likely as a result of network

properties of the entire circadian circuit. Specifically, different

combinations of lateral and dorsal circadian neurons are capable

of organizing behavior in LD cycles. This conclusion is consistent

with [62], who show robust morning and evening anticipatory

behavior under different environmental conditions in per01 flies

that have PER rescue only in small numbers of DN1 dorsal

neurons. Further work shows the DN1 neurons as sensitive

output neurons for the circadian circuit [63]. Detailed reviews on

localized versus network models of circadian circuit organization

can be found in [23,24].

Close examination of the slope and amplitude of morning

anticipation behavior in pdf/Q128-Htt flies suggests that this

behavior is not as robust as seen in genetically matched controls.

This indicates that both the large and small LNv likely

contribute to morning anticipation behavior. We employed

several published AI methods to quantify morning and evening

anticipatory locomotor behavior [5,51,55]. While the compar-

ative results showed some differences in the details, we found

that using both methods that we could measure morning

anticipatory behavior of small LNv functionally ablated flies in

standard LD conditions. Using the Relative AI method, we

found several examples of control genotype flies that exhibited

unexpected apparent defects in morning anticipatory behavior

that was inconsistent with visual inspection of averaged

locomotor actogram records that suggested intact morning

anticipatory behavior. Further examination of the Relative AI

reveals that the method is highly sensitive to single transient

decreases in averaged locomotor behavior in successive bins

prior to lights-on. Due to the formula used by the Relative AI

algorithm, this circumstance observed commonly even in

control flies leads to negative AI values. Furthermore, the

Relative AI method does not provide a statistical comparison

between control and experimental groups [5]. These difficulties

are overcome by the Individual AI method described in [51].

The large and small LNv appear to functionally interact to

produce the high amplitude morning startle response that occurs

at the onset of light. Recently the large LNv have been shown by

direct patch clamp recording to be acutely light-responsive

[30,31]. Subsequent behavioral and physiological analysis reveals

that the large LNv are light activated arousal neurons that

promote wakeful behavior [31]. Several other recently published

studies suggest that both LNv sub-groups promote wakeful

behavior and that the large LNv act upstream of the small LNv

[33]; see also [32]. However, we have demonstrated that the large

LNv promote wakeful behavior in the absence of functional small

LNv and that the small LNv play a minor role in promoting

wakeful behavior [31]. Collectively, the results herein and

published observations on the large LNv suggest that these cells

contribute to the light-driven high amplitude morning startle

response that occurs at the onset of light in addition to

contributing to morning anticipation behavior. In the absence of

functional small LNv and light onset, the high amplitude morning

startle response, but not morning anticipatory behavior, is

immediately lost in constant darkness. The loss of the small

LNv-dependent morning peak is in agreement with previous

studies [41]. We conclude that the small and large LNv have both

similar and dissociable functions regulating circadian and arousal

behavior and that the Drosophila circadian circuit operating as a

network in the absence of the small LNv is capable of mediating

morning anticipation behavior.

Materials and Methods

Transgenic Flies and Genetic Crosses
Transgenic Drosophila carrying the 548 amino acids of the

human Htt gene downstream of UAS (Upstream Activation

Sequence) sites with either a pathogenic polyQ tract of 128 repeats

(Htt-Q128) or non-pathogenic form with 0 repeats (Htt-Q0) were

obtained from Troy Littleton (MIT, Cambridge, MA). These lines

were crossed with LNv specific GAL4- driver line (pdfGAL4,[12]).

Behavioral Assays
Locomotor activity-rest rhythms were assayed by placing

individual male flies in glass tubes supplied with food at one end

and a sponge stopper at the other end. The movement of the flies

across the tube caused breaks in an infra-red beam when these

tubes were placed in an automatic Drosophila Activity Monitor

(DAM 2, Trikinetics, Waltham, MA). Activity was recorded in

15 min binning intervals. Flies were subjected to light:dark cycles

of 12:12 h for their entire life, or in some cases transferred to

constant darkness (DD) Light intensity was between 1000 to 2500

lux during the light phase and below 0 lux during the dark phase

and in DD. All assays and rearing of flies were done at 25uC. Raw

time series data were obtained from DAM System 3 Data

collection software and analyzed using Clocklab software from

Actimetrics (Wilmette, IL). Anticipation indices were estimated

using two methods – referred to in the text as Stoleru/Relative

Index [5] and Harrisingh/Individual Index [51]. To estimate the

Stoleru Index, time series data for each life stage (or for all 30 days)

of each genotype was averaged across individual flies. Activity

counts were binned into 1-hour intervals, then the Relative index

was calculated using the formula B21{(B21 – B22) * (B22 – B23)}/

B+1, where Bi corresponds to the activity counts in the ith bin

before (2) or after (+) the dark-to-light phase transition for

morning anticipation and light-to-dark phase transition for

evening anticipation. The Individual Index was calculated for

individual flies under LD12:12 by averaging across either 1–30

days and also for each life stage and then determining the

proportion of activity counts during the 3 hours preceding the

phase transition over the activity during 6 hours preceding phase

transition. Statistical analysis was done using Mann-Whitney U

test. For the LD to DD transition assay described in Fig. 6, the

Morning and evening indices were estimated using the average

across all flies of each genotype per day since day-wise individual

fly data had too much variation.

Electrophysiology
Whole-cell patch clamp recordings were performed during

various time points on lLNv of flies maintained under standard

LD12:12 cycles as mentioned in the text as described previously

[17]. Briefly, whole brains were dissected and GFP positive large

LNv were identified based on their fluorescence using a BX51 WI

microscope (Olympus, Lehigh Valley, PA). 2–3 G V seals were

made in cell-attached configuration following which negative

pressure was applied to break into whole cell configuration.

Recordings reflect a single recording per brain. Current clamp

recordings were made using an Axopatch 200B amplifier

(Molecular Devices, Palo Alto, CA), digitized using Digidata

1322A acquisition system (Molecular Devices). Pulse protocols

were controlled by pClamp 8.2 Clampex software (Molecular

Devices). Data analysis was performed by pClamp 8.2 Clampex

software (Molecular Devices). Traces were low-pass filtered by the

3-point Boxcar method and electrical interference filtered at

60 Hz. P/N method was used for leak subtraction.
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Immunohistochemistry and Confocal Imaging
Method for immunohistochemical procedures were as described

previously [30]. Briefly, flies of each genotype were sampled within

a 3 hour window at age day 1 (under LD 12:12) and every

alternate day starting from day 6 to day 34 (under DD). Around 8–

10 males were dissected in ice-cold PBS, treated with collagenase,

fixed with 4% paraformaldehyde at room temperature, rinsed and

washed with PBS containing 1% Triton-X-100. Next, blocking

solution of 10% horse serum in 1% PBS-Triton-X-100 was

applied for 30 min at room temperature. The following primary

antibodies were applied and incubated overnight at 4uC –anti-

PDF (1:20,000, rabbit, gift from Michael Nitabach, Yale

University); anti-Htt (MAb2166, Chemicon,1:500); anti-elav

(1:100, rat, Developmental Studies Hybridoma Bank). Secondary

antibodies used are Alexa 488 (anti-rat), Alexa 555 (anti-mouse),

Alexa 647 (anti-rabbit), Alexa 633 (anti-rabbit) from Molecular

Probes (Invitrogen, Carlsbad, CA). Brains were mounted on slides

using 50% glycerol or FluoroGaurdTM anti-fade reagent (Bio-Rad

Laboratories, Hercules, CA) with the ventral side facing upward.

Images were obtained using Leica TCS SP2 and Olympus

Fluoview1000 confocal microscopes.

Statistical Analysis
All statistical analyses were performed using StatisticaTM.

Supporting Information

Figure S1

Found at: doi:10.1371/journal.pone.0011628.s001 (1.91 MB EPS)

Figure S2

Found at: doi:10.1371/journal.pone.0011628.s002 (2.52 MB EPS)
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