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Nonequilibrium Fluctuations and Information Processing

in Mesoscopic Complex Systems

Abstract

Natural systems are regularly “far from equilibrium:” transient, dynamical, and in constant

interaction with their environments. These systems are often complex, comprising many mutually-

interacting parts and giving rise to emergent behavior at observable scales—the human body, forest

ecosystems, and the planet’s climate are but a few pertinent examples. In cases like these, traditional

techniques for analysis fall short: we cannot feasibly deduce the observed behavior either from

individual, microscopic degrees of freedom (writing a system Hamiltonian, for example) nor from

macroscopic statistical treatments as in equilibrium thermodynamics. How can we understand this

class of systems? How do they absorb and dissipate energy; how do they store, process, and produce

information; broadly, how do they function?

This dissertation provides a suite of mathematical and computational tools for probing these

and related questions. Specifically: it extends ideas from stochastic thermodynamics to develop a

so-called trajectory class fluctuation theorem for nonequilibrium complex systems, freed from many

previously restrictive assumptions; derives a stochastic dynamical “first law” linking nonequilibrium

behavior to information transduction; and applies these theoretical results to a collection of example

systems: the ion channels of mammalian neural membranes and autonomous Maxwellian ratchets.

The contributions are organized as follows: Ch. 2 introduces key ideas from the languages

of information theory, stochastic processes, and computational mechanics. Ch. 3 then continues

by introducing fluctuation theorems and the core language of stochastic thermodynamics, before

extending it with a nonequilibrium steady-state trajectory class fluctuation theorem and applying

the theory to uncover surprising implications for the ion channels of mammalian neural membranes.

Ch. 4 then combines thermodynamic and information-processing paradigms to derive generalized

information processing first and second laws, applying them to the limits on how autonomous

Maxwellian ratchets can leverage information to perform useful work. Finally, Ch. 5 closes and

suggests rich ongoing and future lines of inquiry.
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CHAPTER 1

Introduction

Pattern and structure abound in nature. In many cases they are immediately apparent to

human perception: a forest is recognizably a forest; a flock of birds recognizably a flock; a snowflake

a snowflake; the cycle of day and night so deeply familiar that our inner rhythms evolved to its

account. Yet not all of nature’s patterns are so obvious: it took humans millenia to discover the

quantitative pattern by which objects resist changes to their motion, centuries more for Poincaré to

to realize that even the predetermined is generically beyond prediction [1], and discovering pattern

in complex systems—broadly, those for which “more is different” [2]—remains an ongoing research

program across scales and domains [3,4,5,6,7].

Importantly, discovering hidden pattern is distinct from recognizing known ones—the latter

is the purview of supervised or partially supervised machine learning, a task at which its many

methods are wildly successful. The former requires a concrete, operable notion of what pattern

and structure are, independent of the choice of basis and without a priori knowledge to guide the

search. For broad classes of complex systems—namely, those described by stationary and ergodic

stochastic processes—a constructive solution is provided by computational mechanics [4]. The

central approach of computational mechanics is to view complex systems as communication channels

in the sense of Shannon information theory [8], which store, process, and produce information to

function. Measures emerge which unambiguously characterize (i) a systems’s intrinsic randomness,

identified as the rate at which it actively produces information; and (ii) its intrinsic memory, given

by the information stored in its hidden predictive states. Together, these quantities capture the

disctinct but interrelated dynamics between randomness and organization.

Yet a complex system exists on a physical substrate: as it stores, processes, and produces

information, it must also absorb, dissipate, and generate energy to function. As ubiquitous as

emergent pattern in complex systems is their operation “far from equilibrium:” even apparently

“steady” systems—the basal state of a human body, stable population structure in an ecological
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community, an electronic circuit—rely on energetic gradients maintained by their myriad microscopic

degrees of freedom to exhibit their stationary, apparently stable behavior.

Indeed, these two paradigms of viewing complex systems—as computers processing and commu-

nicting information, and as thermodynamic systems far from equilibrium absorbing and dissipating

energy—are related. Were they not, the “neat-fingered being” of Maxwell’s demon would provide a

way to leverage information to extract useful work “for free,” violating the second law of thermo-

dynamics [9]. Nearly a century after Maxwell’s thought experiment, Landauer [10] resolved the

apparent paradox by bounding the amount of energy required to erase the information stored in a

single bit (the binary unit of information theory). Succinctly, gaining knowledge about a system’s

internal configuration—even in the abstract—costs energy.

A central question emerges, inspired by the successes of Landauer and of the tools of computa-

toinal mechanics: What are the detailed fundamental trade-offs between energy and information

processing in complex systems? How does a system’s information processing determine its nonequi-

librium thermodynamic behavior, and vice-versa? Are there unifying themes, or laws, as there are

for mechanics and thermodynamics? If so, what character do they take?

This dissertation builds on and extends a growing body of work in this vein. Specifically, it does

so by leveraging the philosophical and operational approaches of information theory, computational

mechanics, and nonequilibrium thermodynamics towards describing complex systems which are

(1) not stationary, but actively driven by contact with an external environment;

(2) arbitrarily far from thermal equilibrium, even in steady conditions—exhibiting nonequilib-

rium steady states—and

(3) in explicit contact with thermodynamic and information-bearing degrees of freedom,

facilitating an exchange between mechanical, thermal, and information-bearing physical

resources.

It does so in several steps.

First, Ch. 2 gives the necessary technical background for concepts of information theory and

computational mechanics on stationary stochastic processes. In particular, it begins by defining a

stationary and ergodic stochastic process and several key measures of information theory, including

Shannon entropy and its rate, mutual information, and Kullback-Liebler divergence between two
2



distributions. Finally, it defines the key object of computational mechanics—the ε-machine, a

stationary and ergodic process’s minimally-sized, maximally-predictive representation (equivalently,

its minimal sufficient statistic)—and demonstrates how this representation enables principled

calculation of a system’s intrinsic randomness and intrinsic structure.

Ch. 3 then begins by shifting away from stationary processes and instead considering systems

which actively interact with a dynamic environment, towards the goal of characterizing the nonequi-

lbrium thermodynamics of mesoscopic complex systems—in particular, systems which exhibit

nonequilibrium steady states. Stochastic thermodynamics, concerned with binding nonequilibrium

statistical fluctuations to equilibrium or steady-state observables, here enters the stage as a natural

way to describe the fluctuating dynamics of non-stationary stochastic processes, even absent a

well-defined thermal environment.

Sec. 3.2 introduces the core stochastic dynamical functionals of such a driven, nonequilibrium

process, used extensively throughout this work. Then Sec. 3.3.1 first reviews the fluctuation theorems

of stochastic thermodynamics, before culminating in this work’s first primary theoretical result: a

trajectory class fluctuation theorem for generically nonequilibrium steady-state complex systems.

Secs. 3.4 and 3.5 then interpret and apply this new theoretical toolkit to two biological examples:

the voltage-gated sodium and potassium ion channels of mammalian neural membranes. These

channels, instrumental for generating and propagating neuronal action potentials, are shown to

exhibit novel biophysical functionality when driven by a realistic, biophysically-plausible action

potential signal, including an extra dimension of thermodynamic second law violation accessible only

to nonequilibrium steady-state systems which must be accounted for to avoid apparent violations in

preceding nonequilibrium theories.

Ch. 4 then considers the informational dynamics of such a driven, nonequilibrium steady-state

complex system, introducing as an example class the autonomous Maxwellian ratchet in Sec. 4.2.4:

Sec. 4.3 derives an “information processing first law” for transitions between nonequilibrium

dynamical states, which describes thermodynamic changes to a system’s information content in

exactly the same way the thermodynamic first law does for changes to its energy. Sec. 4.4 continues

the development by demonsrating how the combination of the information processing first law and

3



fluctuation theorems of stochastic thermodynamics tighten and generalize two recent “information

processing second laws” for autonomous Maxwellian ratchets.

By way of example, Sec. 4.5 demonstrates the new theory on a tunably nonequilibrium steady-

state Maxwellian ratchet, dubbed the “asymmetric stochastic 4-cycle,” where we find quantitatively

how this system must siphon part of its potential for work extraction towards the housekeeping

entropic costs of maintaining nonequlibrium steady states.

Taken together, this dissertation—through combining and extending stochastic thermodynamics

and information theory with techniques from computational mechanics—builds and demonstrates

concrete theoretical and computational results towards fully characterizing the information-bearing

thermodynamics of mesoscopic, highly nonequilibrium complex systems.
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CHAPTER 2

Background

While Chs. 3 and 4 develop all the necessary thermodynamic and model class background and

are therefore self-contained, they both make repeated use of and reference to measures of Shannon

information theory (at the level of Ref. [11]) and of the theory of computational mechanics, an

established but active and growing body of research literature [4,12,13,14,15,16,17,18,19,19,

20, 21, 22, 23]. To this end, we review the requisite notions of both here, to contextualize their

appearance in Chs. 3 and 4. As such, this chapter makes no attempts at either mathematical

rigor or comprehensiveness of review, instead focusing on those pieces of each body of theoretical

background which make appearances in subsequent chapters.

2.1. Probability and Information Theory Primer

Consider a system which can stochastically realize a state x from a set X of possible values,

with the probability distribution over states given by random variable X1. The probability that

upon observation we find the system in state x ∈ X is denoted

Pr (X = x) . (2.1)

Throughout this text, a countable space X is assumed unless otherwise specified.

Since probabilities take values between 0 and 1, without loss of generality define a new quantity

called the surprisal s:

s(X = x) .= − log Pr (X = x) , (2.2)

with the convention that 0 log 0 = 0. The surprisal is so called because the less likely the outcome

of an observation—colloquially, the more surprising its result—the larger s’s value. Its standard

1The notation used throughout denotes individual realizations with lowercase, random variables with uppercase, and
sample spaces with calligraphic styling.
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units vary by base of the logarithm: in information theory often it is taken to base 2, in which case

surprisal is measured in bits. With natural logarithms, surprisal takes units of nats.

Surprisal is also called self-information: more surprising outcomes communicate more infor-

mation, while a certain outcome communicates no information—this results in its lower bound at

0 where the probability of a realization is 1. Unlike probability, however, surprisal is not upper-

bounded: as the probability of an event approaches 0, the surprisal at observing it approaches

+∞.

This small change in perspective from probability to surprisal forms the basis for converting from

probability to information theories. In point of fact, the Shannon entropy or Shannon information—a

fundamental quantity of information theory—is itself simply the average surprisal over all possible

outcomes: for countable spaces X ,

H[X] .=
∑
x∈X

Pr (X = x) s(X = x). (2.3)

The Shannon entropy of a random variable X thus quantifies the average surprisal over observations

of X.

2.1.1. Bivariate Information Theory.

For two independent random variables X and Y , Shannon information is additive2:

H[X, Y ] = H[X] + H[Y ] iff X and Y are independent, (2.4)

where X, Y denotes the joint random variable formed by X and Y , and so

H[X, Y ] .=
∑

x∈X ,y∈Y
Pr (X = x ∩ Y = y) s(X = x ∩ Y = y)

= −
∑

x∈X ,y∈Y
Pr (X = x ∩ Y = y) log Pr (X = x ∩ Y = y) . (2.5)

When X and Y are not independent, the conditional Shannon entropy is defined:

H[Y |X] .= H[X, Y ]−H[X], (2.6)

2Indeed this was originally an axiom for its construction [8], though phrased differently.
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the average uncertainty remaining in Y after conditioning on X.

Information theory’s fundamental unit of pairwise correlation is the mutual information

I[X : Y ] .= H[X, Y ]−H[Y |X]−H[X |Y ], (2.7)

which is symmetric and (like Shannon entropy) strictly nonnegative. It is the average uncertainty

remaining in the joint distribution of two random variables after accounting for each’s conditioning

on the other.

Thus far we have measures of information for (i) an individual random variable, (ii) a random

variable conditoined on another, (iii) the joint distribution of two random variables, and finally (iv)

mutual information between two random variables. It remains to define a “distance” between two

distributions. There are many choices here [24,25,26], but we will introduce only the Kullback-Leibler

divergence between random variables X1 and X2 defined on the same sample space X :

DKL[X1 ‖X2] .=
∑
x∈X

Pr (X1 = x) log Pr (X1 = x)
Pr (X2 = x) . (2.8)

Unlike mutual information, this divergence is antisymmetric: DKL[X1 ‖X2] = −DKL[X2 ‖X1].

Neither does it satisfy the triangle inequality: DKL[X1 ‖X3] � DKL[X1 ‖X2] + DKL[X2 ‖X3]. For

these reasons it is not a metric in the sense of metric space geometry, and so is not a strict “distance”

on the space of probability distributions. Still, it sees extensive use measuring the difference between

one probability distribution and another with the same support, and appears particularly often in

stochastic thermodynamics as discussed in Chs. 3 and 4.

2.2. Discrete-Time Stochastic Process

By discrete-time stochastic process (shortened in this dissertation to simply “process”) is meant

a joint random variable

Xm:n
.= XmXm+1 . . . Xn−1Xn, (2.9)

composed of a sequence of individual random variables indexed by time (m, n we customarily take

to be integers). A specific realization of the process—the outcome of a time-series measurement
7



of the system—is also called a trajectory xm:n, and the state space X is called the alphabet of the

process.

The process itself is determined completely by the probability distribution over the entire joint

random variable—the distribution over all possible sequences of measurements. Thus we neither

assume nor require that the individual random variables are independent or identically-distributed—

indeed, we make no assumption about the individual random variables at all except that they are

drawn from the same alphabet.

2.2.1. Stationary and Ergodic Bi-Infinite Processes.

In stochastic thermodynamics finite-length processes as defined previously are extensively used.

However, it is also of interest (and convenience) to consider the limit of a bi-infinite stochastic

process X−∞:∞
.= X: (infinite indices are suppressed), which allows us to define two additional

restrictions which are crucial to computational mechanics.

The first of these is stationarity: a stochastic process is stationary if its statistics to all orders

are unchanged by a shift in time:

X: stationary iff ∀t ∈ Z, L ∈ Z+, x0:L ∈ XN+1,

Pr (X0:L = x0:L) = Pr (Xt:t+L = x0:L) . (2.10)

Stationarity allows us to identify a process with its word probabilities {Pr (X0:N = x0:N )} for all

word lengths.

The second of these is ergodicity: in this setting, we call a process ergodic if, given a particular

realization x0:M , the empirical estimate for any length-L word probability converges almost surely

to the true word probability in the M →∞ limit. Put simply, a single infinitely long observation is

sufficient to determine the “true” statistics of the underlying process.

2.2.2. Information in Stochastic Processes.

As a stochastic process is, at root, a joint random variable, the techniques and measures of

information theory are readily applied to it [12,27]. In particular, for a stationary process, we can

consider the trivariate splitting of the “past” X:−1, the “present” X0, and the “future” X1 :. This
8



allows us to define the Shannon entropy rate hµ for a stationary process,

hµ
.= H[X0 |X:−1] (2.11)

= lim
N→∞

H[X0:N−1]
N

, (2.12)

the asymptotic rate at which new measurements produce new information—not accounted for

by conditioning on the past. This is identified with the intrinsic randomness of a process: that

randomness still present even after conditioning on infinitely-long past obsevations, or equivalently

after considering temporal correlations of all lengths [4].

Of common interest is the special case when a process’s future depends only on finite-length

observations of the past—when considering only finite-order temporal correlation is sufficient. We

say a process has Markov order n, if n is the smallest positive integer such that for any semi-infinite

trajectory x:1

Pr (X1 = x1 | X:0 = x:0) = Pr (X1 = x1 | X−n:0 = x−n:0) . (2.13)

Typically a process is called simply a “Markov process” (or, equivantly referring to a representation

of such a process, a “Markov chain”) if the Markov order is 1.

2.3. Computational Mechanics

At the core of computational mechanics, whose aim it is to study the intrinsic structure of

systems described by stationary and ergodic stochastic processes, is the predictive equivalence

relation ∼ε, which groups together infinite pasts x:0 which make the same predictions over infinite

futures x1::

x:0 ∼ε x′
:0 ⇐⇒ ∀x1:, Pr (X1: = x1: | x:0) = Pr

(
X1: = x1: | x′

:0
)

. (2.14)

Equivalently, we may consider the ε function which maps individual pasts their equivalence class.

The equivalence classes generated by ∼ε are called causal states or predictive states. The set of

causal states together with the induced state-to-state dynamic between them form computational

mechanics’ ε-machine: the unique, minimally-sized, maximally-predictive representation of the

underlying stochastic process.
9



When it can be constructed, the ε-machine provides for direct calculation of a process’s entropy

rate—a process’ intrinsic randomness—and additionally provides for defining a process’s intrinsic

structure as the statistical complexity Cµ. Let S be the set of causal states of an ε-machine, and S

be the random variable supported by S and distributed according to the asymptotic dynamics of

the machine (that is: the stationary distribution over its internal states). Then

Cµ = H[S], (2.15)

quite literally the information stored in the causal states. While statistical complexity can be

defined for any effective state-space model of a process with an associated transition dynamic,

the guaranteed uniqueness and minimality of the ε-machine representation makes this a canonical

measure for intrinsic structure, independent of the process’ representation.

These notions of information and structure in hand, we now turn to the nonequilibrium

thermodynamics of complex systems.
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CHAPTER 3

Homeostatic and Adaptive Energetics:

Nonequilibrium Fluctuations Beyond Detailed Balance

in Voltage-Gated Ion Channels

Much of the content in this chapter appears in press as Ref. [28]: M. T. Semaan and J. P. Crutchfield,

Phys. Rev. E 106, 044410.

Stochastic thermodynamics has largely succeeded in characterizing both equilibrium and far-

from-equilibrium phenomena. Yet many opportunities remain for application to mesoscopic complex

systems—especially biological ones—whose effective dynamics often violate detailed balance and

whose microscopic degrees of freedom are often unknown or intractable. After reviewing excess and

housekeeping energetics—the adaptive and homeostatic components of a system’s dissipation—we

extend stochastic thermodynamics with a trajectory class fluctuation theorem for nonequilibrium

steady-state, nondetailed-balanced complex systems. We then take up the neurobiological examples

of voltage-gated sodium and potassium ion channels to apply and illustrate the theory, elucidating

their nonequilibrium behavior under a biophysically plausible action potential drive. These results

uncover challenges for future experiments and highlight the progress possible understanding the

thermodynamics of complex systems—without exhaustive knowledge of every underlying degree of

freedom.

3.1. Introduction

Nonequilibrium phenomena pervade nature: In their many forms, energy gradients send hur-

ricanes and wildfires to ravage, volcanoes to form and erupt, life to emerge. Mesoscopic complex

systems—a planetary climate, forest ecosystems, the human body—consist of microscopic degrees of

freedom that are inaccessible, intractable, or simply unknown. In point of fact, the human body’s

biochemistry relies essentially on out-of-equilibrium dynamics to function, adapt, and maintain
11



homeostasis; its myriad degrees of freedom are only ever partially accessible. Similarly, mesoscopic

and complex systems provide fertile grounds for honing and applying tools to analyze real-world

nonequilibrium processes.

Describing energetic fluxes in complex systems—developing a suitable mesoscopic nonequilibrium

thermodynamics—remains an ongoing challenge: mathematics and physics difficulties continue to

hinder deeper understanding of how these systems operate and function. The following leverages and

extends tools from stochastic thermodynamics and information theory to address these challenges.

To demonstrate the techniques, it takes up two suitably complex, mesoscopic neurobiological systems:

voltage-gated ion channels.

3.1.1. Nonequilibrium steady states.

A system is typically called nonequilibrium in two distinct senses. The first, and most common,

refers to nonequilibrium processes—say, induced by rapid environmental driving—wherein a system

evolves through a series of transient configurations. When the environmental drive remains fixed,

such a system remains out of equilibrium as it relaxes to some stationary distribution over its

states, determined by the environmental parameters. If that stationary distribution corresponds

to a thermodynamic equilibrium, we say the system possesses an equilibrium steady state (ESS),

irrespective of its (perhaps highly nonequilibrium) driven, transient dynamics.

The second sense refers not to the transient behavior but to the nature of the stationary

distributions: a nonequilbrium steady-state (NESS) system is one whose steady states are themselves

out of thermodynamic equilibrium. This is simply achieved by contact with two heat baths at different

temperatures. Rayleigh-Bénard convection [29] exemplifies this phenomenon: the temperature

gradient between the top and bottom boundaries ensures a constant flux of energy through the

fluid, from the hotter to the cooler, even when the gradient remains fixed indefinitely. In this case it

is not enough to identify the energetic fluxes due to the system’s transient dynamics; we must also

identify the energy required to maintain steady-state conditions in the first place.

NESSs appear even without multiple heat baths. For example, by optically dragging a bead

through viscous fluid [30]—an experimental realization of nonconservative force-driven Langevin
12



dynamics—by coarse-graining microstates [31]; or by contact with reservoirs of distinct electrochem-

ical potentials—the case in virtually all common electrical circuits via Joule heating [32]. They

emerge as well in the voltage-gated ion channels we consider.

A first attempt to give NESS systems a full thermodynamic framing defined the housekeeping

heat Qhk as the portion of the total heat Q that maintains NESS conditions [33]. (In this, the total

heat is that energy exchanged between a system and its thermal environment, often idealized as a

fixed-temperature bath.) What remains is the energy exchanged owing to the system’s relaxation to

steady state, termed the excess heat Qex:

Q = Qex + Qhk. (3.1)

Contrast this with an equilibrium system’s steady states, which by definition exchange no net

energy with the thermal environment. In this setting, Qhk = 0 and so all dissipated heat is excess:

Qex → Q. In other words, Qex in the NESS setting carries the same meaning as total heat Q in the

ESS setting, and vice versa.

3.1.2. Approach.

Equilibrium thermodynamics and equilibrium statistical mechanics prove insufficient to analyze

nonequilibrium processes 1. That said, recent advances in stochastic thermodynamics now successfully

describe fluctuations in a variety of far-from-equilibrium systems. This has been done both in the

first sense (relaxation to ESSs) [36,37,38,39] and in the second (NESSs) [40,41,42]. Ref. [43]

gives a recent review.

The following applies and extends these advances to analyze two complex neurobiological systems:

voltage-gated sodium and potassium ion channels [44]—biophysical systems that originally motivated

introducing master equations for NESSs [45]. This elucidates, for the first time, their nonequilibrium

behavior under the realistic, dynamic environmental drive of an action potential spike. In doing

so, a toolkit emerges whose validity extends to a host of other mesoscopic complex systems—even

those for which a purely energetic interpretation is impossible or problematic—provided a relatively

small set of constraints on their effective dynamics.

1With important exceptions, particularly in the first sense, under small perturbations from equilibrium [34,35].
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Our development unfolds as follows. First, Sec. 3.2 lays out the relevant notation for our model

classes and introduces appropriate excess thermodynamic functionals for describing them, ending

with Sec. 3.2.3 which elaborates on the relationship between housekeeping heat, (ir)reversibility, and

detailed balance. Sec. 3.3 reviews fluctuation theorems, which bind nonequilibrium thermodynamic

fluctuations to steady-state quantities. It closes in Sec. 3.3.3 with our primary theoretical result:

the first full trajectory class fluctuation theorem valid for NESS systems.

Moving to applications, Sec. 3.4 introduces our example neurobiological systems: voltage-gated

sodium and potassium ion channels embedded in neural membranes. Sec. 3.5 then applies the

techniques developed in the preceding theory to the channels, illustrating and comparing their

responses under realistic action potential spikes.

These results serve three roles. First, they show how the trajectory class fluctuation theorem

evades the divergences implied by real-world systems with one-way only transitions. Second, they

quantitatively demonstrate how failing to account for housekeeping dissipation violates related

fluctuation theorems, suggesting an important direction for experimental effort. Finally, despite

marked differences between the ion channels’ steady-states, the results show how to directly compare

the channels’ excess energetics. This both circumvents implied housekeeping divergences and allows

for meaningful comparisons between their adaptive responses to the same environmental stimulus.

3.2. Preliminaries

The central object here is the finite-length controlled stochastic process X0:N
.= X0X1X2 . . . XN ,

where Xi ∈ X is the random variable corresponding to the state of a system under study (SUS) at

times {ti ∈ R : i = 0, . . . , N}. We call a specific realization x0:N a trajectory. The process’ dynamics

are not stationary; rather, they are driven by a protocol λ0:N . Fig. 3.1 illustrates the scheme.

X0 X1 X2 . . .

α1 α2 α3 . . .

x0 x1 x2 . . .

PROTOCOL

PROCESS

TRAJECTORY

(realizes)

Figure 3.1. Interaction between the stochastic process X0:N , protocol λ0:N , and
realized (observed) trajectories x0:N .
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We place the following constraints on the SUS.

(1) Each system parameter λi leads to a stationary and ergodic stochastic process, realized by

holding the protocol fixed indefinitely at λi. This implies a unique would-be steady-state

distribution πλi
associated to each λi.

(2) The state and protocol spaces are of even parity, in the sense that we do not negate

their values under time reversal, defined precisely later. Sec. 3.2.3 discusses removing this

assumption.

We emphasize these are all that is required for the main theoretical result and for meaningful

definitions of the excess and housekeeping functionals. Importantly, we do not require dynamics of

any particular form or possessing any particular structure—Markovian, Langevin, detailed-balanced,

Hamiltonian, master equation, coupled to ideal baths, and so on—beyond that specified by the two

conditions above. We do not require states to be microscopic; they can correspond to arbitrary or

unknown coarse grainings. With this in mind, even the discrete succession of events is flexible. In

particular, from any continuous-time dynamic we may generate a corresponding discrete-time one

for appropriately small time steps.

While one cannot, in this most general setting, determine energetics, the fluctuation theorems

introduced hold independently and exactly—and at any level of system description. We state the

fluctuation theorems in this setting for two primary reasons: first, for clarity of derivation; second,

with an eye toward future applications beyond thermodynamic systems to generally nonstationary

stochastic processes.

3.2.1. The thermodynamic system.

That said, generality can hinder ease of application. To this end, when presenting the theoretical

tools we frequently return to the relevant example “thermal system” of Fig. 3.2. This is a SUS coupled

to an ideal heat bath at inverse temperature β = 1/kBT , an ideal work reservoir parameterized

by λ, and an auxiliary reservoir representing the otherwise unaccounted-for degrees of freedom.

Furthermore, we assign to each SUS state x an energy Eλ(x). Finally, while the example system

does not assume (order-1) Markov dynamics, it does assume no dynamical dependency on times

before t0. That is, the system’s initial preparation is sufficient to determine the stochastic dynamics

during the protocol.
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SUS

T λ

aux

Qhk

Qex

W

∆Eaux

Figure 3.2. A thermal system and its interactions with various baths. While heat
and work reservoirs (labeled with temperature T and parameter λ, respectively) are
ideal, by design we assume nothing about the auxiliary or “aux” reservoir, and so
label its energetic contribution by ∆Eaux to avoid confusion with well-defined terms
like heat and work. The labels and arrow directions indicate energetic fluxes to-from
the system. Notably, we allow for nonequilibrium steady states and functionally split
the total heat Q into the excess heat Qex—corresponding to adaptive dissipation—
and housekeeping heat Qhk—referring to homeostatic dissipation.

These additional restrictions allow identifying the energies associated to each dynamical func-

tional—introduced shortly. While these constraints are minimal, they still allow the SUS to be a

coarse-grained representation. In general, this implies that the energetic fluxes are bounds rather

than strict equalities [31].

Of paramount importance—and missing from most idealized thermal schemes—is the presence of

the auxiliary bath. The heat and work reservoirs are each proxies for distinct kinds of coarse-grained

degrees of freedom with distinct internal structures: the heat reservoir is an infinitely large source

of purely thermal energy; the work reservoir is an entropyless source of energy, whose role is to set

the SUS’s energetic landscape via parameters λ.

In contrast, there are no restrictions on the auxiliary reservoir’s structure. It is unnecessary

when describing the SUS’s effective state (or energy) at any particular time. Partly, the auxiliary

reservoir stands in for coarse-graining out unknown degrees of freedom by unknown schemes. In the

case of Rayleigh-Bénard convection, the auxiliary reservoir is a heat bath at a different temperature

T2. To take another example, in an information ratchet scheme, the auxiliary reservoir may represent

the information tape interacting with the ratchet system [46,47,48].
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Yet the relevance of the auxiliary bath goes beyond this: specifically, Sec. 3.2.3 shows that it is

a necessary source for maintaining NESS conditions in this idealized picture.

Altogether, Fig. 3.2 captures a large class of mesoscopic physical, chemical, biological, and

engineered systems that exhibit nonequilibrium steady states, but that have additional structure

and are in contact with at least one thermal environment. We note an important distinction: the

“heats” to which we refer in the thermal system context are always associated to the heat bath

defined in Fig. 3.2, and “works” associated to λ. We avoid calling any fluxes between the auxiliary

bath and the system heat or work, since we place no a priori restriction on its structure.

Subsequent sections develop tools for calculating the associated heats and works and for bounding

their nonequilibrium fluctuations. Practically, this suggests experimental calorimetry and introduces

a valuable way to calibrate effective models—such as, for example, those of the ion channels we take

up later.

3.2.2. Excess energetics.

For an ESS system in contact with a single heat bath, the familiar First Law defines work W

and heat Q as distinct contributions to its energy change over the course of a protocol [37]:

∆E =
∫

∂λEλ(x) dλ︸ ︷︷ ︸+
∫

∂xEλ(x) dx︸ ︷︷ ︸
.= W −Q. (3.2)

That is, W denotes a difference in system energy owing to a change in protocol—a change in

the overall energy landscape—and Q denotes the difference owing to a change in system state—a

dissipative signature of its adaptation to environmental conditions.

In contrast, the general setting may not provide a meaningful notion of energy. Worse, even in

the restricted case of Fig. 3.2, we can no longer define total heat for a NESS system by Eq. (3.2): it

leads to contradiction.

To see this, consider a fixed protocol at λ and a system poised already in the distribution πλ.

By definition then W = 0 and so 〈W 〉 = 0, where 〈·〉 denotes a weighted average over all possible
17



paths. We also have 〈∆E〉 = ∆ 〈πλ|Eλ〉 = 0, where:

〈πλ|Eλ〉
.=
∫

x∈X
πλ(x)Eλ(x). (3.3)

Yet we cannot have 〈Q〉 = 0, for by Eq. (3.1):

〈Q〉 = 〈Qhk〉

6= 0 , (3.4)

since this is a NESS system. In other words, the observed housekeeping flux, leaving no signature in

the state energies, must come from somewhere outside of the system coupled to single ideal heat

and work reservoirs. This is precisely what the auxiliary bath provides: in this case ∆Eaux = Qhk.

However, there is an alternative to energy. Since to every parameter λ is an associated steady-

state distribution πλ, we can define the steady-state surprisal:

φλ(x) .= − ln πλ(x) ; (3.5)

so called since it is the Shannon self-information [11] of observing state x under the distribution πλ.

Taking the surprisal’s state average under this distribution yields its Shannon entropy (or, for

continuous-state spaces, its differential entropy):

〈πλ|φλ〉
.=
∫

x∈X
πλ(x)φλ(x)

= H[πλ] . (3.6)

To see how the surprisal relates to energy, consider the canonical ensemble of statistical

mechanics—the ESS version of Fig. 3.2, with Qhk = 0 and so no auxiliary bath—where πλ is the

Boltzmann distribution [49]. Then:

− ln πλ(x) = β
(
Eλ(x)− F eq

λ

)
= φλ(x) , (3.7)

where F eq
λ is the equilibrium free energy (the familiar logarithm of the canonical partition function).
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Eq. (3.7) motivates yet another moniker for φλ(x): the nonequilibrium potential. In this

sense, steady-state surprisal is analogous to a generalized energy. However, it remains a meaningful

characterization of a system’s steady-state distribution—via its information-theoretic interpretation—

even when energy is not meaningful.

Leveraging this, an analogous First Law for φλ(x) defines the excess heat and work:

∆φ =
∫

∂λφλ(x) dλ︸ ︷︷ ︸+
∫

∂xφλ(x) dx︸ ︷︷ ︸
.= Wex −Qex. (3.8)

As with their nonexcess counterparts, these quantities characterize distinct dynamical contributions

to a change in steady-state surprisal: Wex capturing that due to a changing protocol, which sets the

steady-state probability landscape; Qex monitoring a system’s adaptation to its environment.

For Fig. 3.2’s thermal system, these conveniently convert to energies: Wex → βWex and

Qex → βQex. And, they agree with other standard formulations of excess thermodynamic functionals

[40,42]. Using Eq. (3.7) and taking the ESS limit of Boltzmann-distributed steady-states yields:

(i) Qex → βQ—with equilibrium steady states, all dissipated heat is excess—and (ii) Wex →

β(W −∆F ), leading to its classification as an excess environmental entropy production [42].

We stress, though, that the excess work and heat—and the steady-state surprisal—retain

dynamical meaning independent of Boltzmann or even energetic assumptions. In this way, Eq. (3.7)

is a guidepost for thermodynamic interpretation. It is not, however, a strict equivalence. In point of

fact, as we will see, sodium channels (as with other NESS systems) lack a well-defined steady-state

free energy [42]. Nevertheless, Eq. (3.8) describes—tractably—two functionally distinct aspects of

their response to dynamic environments.

3.2.3. Detailed balance and housekeeping.

The housekeeping heat remains. Recall that it corresponds to energy dissipated to maintain

NESSs, as in Eq. (3.1). Phenomenologically, Eq. (3.1) provided a satisfactory answer. However,

our excess heat definition only required would-be steady-state distributions exist. The definition of

total heat, in contrast, depended explicitly on well-defined state energies. This difference led to

problems with NESSs.
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The upshot is that a more general definition of housekeeping heat is called for. In particular,

it should depend only on the stochastic dynamics and, when added to excess heat, it should give

a reasonable generalization of total heat. Naturally, we also require interpretability and that it

reduces to the corresponding well-understood thermodynamic terms in the appropriate limits.

To these ends, but in a slightly more general form than previously reported, we define housekeeping

heat to explicitly allow non-Markovian dynamics:

Qhk
.= ln Pr (X1:N = x1:N | X0 = x0 ; λ0:N )

Pr (X1:N = xN−1:0 | X0 = xN ; λN :0) + ln
N−1∏
i=0

πλi+1( xi )
πλi+1(xi+1) . (3.9)

Observe that the first term is a log-ratio of conditioned path probabilities. The denominator is

the numerator’s time reversal: the probability of obtaining the reversed path xN :0 conditioned on

starting in the state xN and subject to the reversed protocol λN :0. The second term is exactly −Qex

by the discrete form of Eq. (3.8). And so, by identifying Q .= Qex +Qhk, housekeeping heat is a

component of the generalized total heat Q.

In the (single heat bath) thermal example, one recovers units of energy as Q → βQ and

Qhk → βQhk. And, the resulting total heat is consistent with formulations based on microscopic

reversibility [38]. Equivalently, we could have started with this microscopic reversibility condition

for even state spaces and arrived at the appropriate housekeeping heat.

With this in mind, consider relaxing the even state space assumption. Doing so and keeping the

appropriate microscopic reversibility condition allows for an analogous splitting of housekeeping

heat—modified so that the denominator’s terms are negated where required—and excess heat,

consistent with previous considerations of odd-parity NESS systems [50,51]. While we note that an

analogue to our Eq. (3.24) holds, we do not treat this further here.

Now, consider a Markov dynamic of order 1. That is, conditioning on the previous time step fully

characterizes the probability distribution over futures. Then, the first term reduces to the logarithm

of a product of one-step conditional probabilities. And, Qhk tracks the degree of detailed-balance

violation over the trajectory. This is in agreement with existing definitions [40,42,52]. Concretely,

detailed-balanced dynamics imply Qhk = 0 for every trajectory. If any trajectory yields Qhk 6= 0,

the dynamic is necessarily nondetailed-balanced.
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Finally, recall that by definition Qhk = 0 for an ESS system. Taken together with assuming an

even state space—ensuring correct “reverse” probabilities—the Markov condition says, succinctly:

nondetailed-balanced dynamics ⇐⇒ nonequilibrium steady states.

Recall that the Markov condition is appropriate for many microscopically-modeled thermal systems

such as overdamped Langevin dynamics, as well as for a host of biological systems like the ion

channels we consider later.

Nonzero housekeeping heat actually necessitates including an auxiliary reservoir for a complete

picture. Recall Fig. 3.2. This follows since a NESS system, even fully relaxed to its stationary

distribution, constantly dissipates housekeeping heat to the thermal reservoir. (And does so at

an average rate of d 〈Qhk〉 /dt.) Yet, with the protocol parameter fixed, no work (or excess work)

is done: W = 0 by Eq. (3.2). The system’s average energy does not change, though, since the

parameter and individual state uniquely set its energies: d 〈E〉 /dt = 0.

The conclusion is that energy flux through the system, observed in the housekeeping dissipation

to the thermal reservoir, must come from somewhere not otherwise described by the ideal constructs.

In other words, in the thermodynamically-interpretable setting, nondetailed-balanced dynamics are

signatures of unaccounted-for degrees of freedom. In this way, the constructions in Eqs. (3.8) and

(3.9) provide the tools to isolate this homeostatic part of a system’s energetic fluxes, so called for its

role maintaining homeostatic (steady-state) conditions.

We close by calling out a feature on direct display in Eq. (3.9). While placing minimal restrictions

on the dynamics, problems arise when any path is strictly irreversible, in the sense that a nonzero-

probability forward trajectory is associated a zero-probability reverse. Then, Qhk diverges. And

this seemingly forbids dynamics in finite state spaces with one-way-only transitions.

In the thermodynamic interpretation, such a transition costs infinite dissipation. And, with

this realization, usually a model’s mesoscopic nature comes to bear. Indeed, Ref. [42] in its related

sodium channel analysis remarks that “more careful experimental effort should be done to bound the

actual housekeeping entropy production in these ion channels”. The following section demonstrates

that a new trajectory class fluctuation theorem provides a tool for analyzing such experiments and

circumvents the divergence while still placing strong bounds on fluctuations.
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3.3. Fluctuations and Free Energy

So far, we defined the generalized quantities Wex, Qex, and Qhk and elucidated their meanings

outside the ESS regime. As with their ESS counterparts, though, they depend on the specific path

a system takes through its state space under a particular protocol. A suite of statistical tools called

fluctuation theorems (FTs) tie such nonequilibrium behaviors to equilibrium (or steady-state, more

generally) quantities. They come in three primary flavors: (i) integral FTs (IFTs) concern weighted

averages over all possible trajectories, (ii) detailed FTs (DFTs) fix the relationship between a specific

path and its associated reversal, and (iii) trajectory class FTs (TCFTs) interpolate between the

two [53].

The remainder of this section compares and contrasts these, discusses their relation to free

energy, and concludes with a TCFT for NESS systems. This sets the stage for analyzing the

two ion channels’ thermodynamic responses—expressed in terms of excess work, excess heat, and

housekeeping heat—to complex environmental signals.

3.3.1. Fluctuation theorems.

Integral and detailed FTs each exhibit complementary tradeoffs—tradeoffs discussed below as

we introduce the theorems. TCFTs, meanwhile, combine the strengths of both and so are adaptable

to a variety of systems and experimental conditions. Here we present a general TCFT valid for

NESS systems. It simultaneously extends the previously known ESS FT and reveals experimental

difficulties unique to NESS systems, ultimately suggesting a need for new experimental tools.

Jarzynski’s equality [36,37], an IFT and the progenitor of the FTs we consider, links equilibrium

free energies to the averaged exponential work distribution. It applies specifically to ESS systems

that begin in their equilibrium distribution and are connected to a single heat bath. Under these

conditions:

〈
e−βW

〉
= e−β∆F eq

, (3.10)

where the angle brackets again refer to a weighted average over all possible trajectories. That is,

Jarzynski’s equality ties an arbitrarily nonequilibrium quantity—the averaged exponential work
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〈
e−βW

〉
—to the equilibrium free energy difference ∆F eq—a state function. Practically, this enables

free energy estimation from nonequilibrium work measurements [54].

It comes with disadvantages, however. In particular, extremely rare paths often dominate the

exponential work distribution [55], leading to poor statistical accuracy when estimating with finitely

many experimental realizations. Nonetheless, Jarzynski’s equality has been confirmed for a wide

variety of systems [56,57,58]. In addition, while Eq. (3.10) only applies to ESS systems, a variety

of generalizations have been derived and tested for NESS systems [30,40,41,59].

In contrast to Jarzynski’s IFT, the detailed FTs (DFTs), express a symmetry relation between a

particular trajectory-protocol pair and its appropriate time reversal. Perhaps the most well-known

of these is due to Crooks [38,39], which is complementary to Jarzynski’s IFT in several ways. For

one, it makes the same assumptions: an ESS system connected to a bath, beginning in equilibrium

and driven away from it. For another, Jarzynski’s IFT results directly from trajectory-averaging

both sides of Crooks’ DFT. Before presenting the DFT, though, we pause to precisely define and

set notation for what we mean by an “appropriate reversal”.

Consider a system that begins in state distribution µF, is driven by the protocol λ1:N , and

realizes a trajectory in the measurable subset C ⊆ XN+1. We call C a trajectory class. Then, we

define the forward process probability as:

PµF (C) .= Pr (C | X0 ∼ µF; λ1:N ) . (3.11)

(Here, ∼ means “is distributed as”.) Now, consider the same system beginning in the distribution

µR and driven by the reverse protocol λ̃N :1, where the tilde indicates negation of time-odd variables

(such as magnetic field). In turn, we define the reverse process probability:

RµR (C) .= Pr
(
C | X0 ∼ µR; λ̃N :1

)
. (3.12)

For finite state spaces, Eqs. (3.11) and (3.12) define distinct probability measures on the trajectory

space. In a continuous state space, we use the same notation to indicate probability densities.

Let πF
.= πλ0 and πR

.= π
λ̃N

. In these terms, Crooks’ DFT reads:

PπF (x0:N )
RπR (x̃N :0) = eβ(W −∆F eq). (3.13)
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As with Jarzynski’s IFT, the Crooks DFT has withstood experimental test [60] and seen use in

empirically estimating free energy differences [54]. Also, paralleling Jarzynski’s IFT, Crooks’ DFT

has been generalized to a variety of NESS systems [42,61,62].

We highlight Ref. [42]’s generalization of these. We recall, in particular, its Eq. (25), since it is

the DFT upon which we base our TCFT.

Here and in the remainder, we assume even state and protocol spaces (keeping in mind Sec. 3.2.3’s

notes on relaxing this assumption), so there is never negation under time reversal. However, in

further contrast to Crooks’ DFT, we do not assume equilibrium steady states (or detailed balance),

any particular starting distribution for the forward and reverse processes, nor a single heat bath

system (or any specific bath structure). Instead, we require only the functionals Wex and Qhk as

defined in Eqs. (3.8) and (3.9), along with an additional one—the (unitless) nonsteady-state free

energy:

Fnss
λ (µ, x) .= ln µ(x)

πλ(x) . (3.14)

Its name derives from its indicating how far a given distribution is from the associated steady-state

distribution. Indeed, on state averaging we have 〈µ|Fnss
λ 〉 = DKL[µ ‖πλ], where DKL[p ‖ q] is the

Kullback-Leibler divergence between distributions p and q [63]. As with the other functionals

generalized to the stochastic process picture, it carries meaning—departure from steady-state

conditions—outside of energetic or thermal assumptions.

Given this, Ref. [42]’s DFT is:

RµR (xN :0)
PµF (x0:N ) = e−(Wex+Qhk−∆Fnss) , (3.15)

where ∆Fnss = Fnss
λN

(µR, xN )−Fnss
λ0

(µF, x0) is a correction due to starting the forward and reverse

processes out of steady state. If we began the forward and reverse processes in their associated

steady-state distributions, by definition we would have ∆Fnss = 0.

As a mathematical statement involving a stochastic process’ trajectories, their probabilities, and

the functionals Wex, Qhk, and ∆Fnss we have so far defined, Eq. (3.15) holds independent of any

thermodynamic assumptions. Yet, as before, reducing it to thermodynamically meaningful cases is
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straightforward and illuminates several important considerations when moving from ESS into NESS

regimes.

3.3.2. Multiple NESS IFTs and second laws.

In the ESS case, Eq. (3.15) reduces neatly to Crooks’ DFT of Eq. (3.13), which under integration

directly yields Jarzynski’s equality. However, the NESS setting introduces more freedom under this

type of integration.

Consider rearranging Eq. (3.15) like so:

RµR (xN :0) = PµF (x0:N ) e−(Wex+Qhk−∆Fnss). (3.16)

Then integrate both sides over all trajectories x0:N . The righthand side directly yields the forward

trajectory average of the exponential, while the lefthand side yields 1 by probability conservation

(and since the sets of all measurable forward and reverse trajectories are the same set). This gives a

generalized IFT:

1 =
〈
e−(Wex+Qhk−∆Fnss)

〉
(3.17)

and—via Jensen’s inequality—a generalized second law:

〈Wex〉+ 〈Qhk〉 −∆DKL[µ ‖π] ≥ 0, (3.18)

where ∆DKL[µ ‖π] = DKL[µR ‖πR]−DKL[µF ‖πF]. This latter term is a classical analogue to the

“initial-state dependence” of Ref. [64]; it quantifies additional entropic dissipation when beginning

and ending out of the steady-state distribution.

Yet Eq. (3.17) is not unique. To take one example, by direct calculation as in Ref. [40], we find

for Markov dynamics:

1 =
〈
e−Fnss

λ0
(µF, x0)−Wex

〉
(3.19)

=⇒ 〈Wex〉+ DKL[µF ‖πF] ≥ 0, (3.20)

a slight generalization of their result with the inclusion of initial-state dependence (thereby relaxing

the requirement of steady-state initial conditions). In other words, a second law holds for 〈Wex〉
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itself, not just for its sum with 〈Qhk〉. This is not only a meaningfully different bound, but this IFT

also does not result naturally from the underlying DFT.

To take another example, directly substituting 〈Qhk〉 = 〈Q〉 − 〈Qex〉 into Eq. (3.17) generalizes

to a different IFT:

1 =
〈
e−(Q+∆φ−∆Fnss)

〉
, (3.21)

first proven in Ref. [41].

Finally, taken on their own, Eqs. (3.18) and (3.20) do not imply a third NESS IFT—and so

Second Law—for housekeeping heat alone; cf. again Ref. [41]. However, as we now show, it is

implied rather directly by the combination of Eqs. (3.15) and (3.19).

First rearrange Eq. (3.15) as:

RµR (xN :0) eWex−Fnss
λN

(µR,xN ) = PµF (x0:N ) e−Qhk−Fnss
λ0

(µF,x0)
.

Again, we wish to integrate both sides over all x0:N , but at first glance the lefthand side (first line)

poses an issue: Wex refers to the excess work over a trajectory driven by the forward protocol, while

R is the probability of a trajectory as driven by the reverse protocol.

Fortunately, Wex is odd under full time reversal: Wex = −WR
ex, where WR

ex is the excess work

generated by the time-reversed trajectory driven by the time-reversed protocol. This matches up

driving protocols and “initial” conditions on the lefthand side. Since Eq. (3.19) holds regardless

of the chosen protocol or starting distribution, under integration the lefthand side is unity. The

righthand side, meanwhile, becomes simply the forward trajectory average of its argument. And, we

obtain the generalized IFT for housekeeping heat:

1 =
〈
e−Fnss

λ0
(µF, x0)−Qhk

〉
(3.22)

=⇒ 〈Qhk〉+ DKL[µF ‖πF] ≥ 0, (3.23)

once again extended to include the effects of initial-state dependence.

To adopt Ref. [41]’s language, these IFTs—forWex +Qhk,Wex-only, Q+∆φ, and Qhk-only—are

“genuinely different” but no longer require especially “different derivation[s]” nor restrictive physical
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assumptions. To emphasize the former point, though: just as with the equilibrium second law

〈∆S〉 ≥ 0, these hold only under full trajectory averaging. That is, individual rare trajectories

(or sets thereof) may well produce negative excess works, negative housekeeping heats, or both.

Sec. 3.5.1 explores these consequences for our example ion channels.

Notably absent is the notion of steady-state free energy, analogous to the equilibrium free energy

from Jarzynski’s equality. Defining one for general NESS systems remains problematic, in part since

the steady-state distributions may no longer be Boltzmann. Instead, the excess work subsumes

what would have been a steady-state free energy difference, and we work directly with it. The

downside, however, is the inability to extract such a free energy as a “steady state” quantity separate

from the path-dependent nonequilibrium dynamical ones. Indeed, this was an extremely important

consequence of Eq. (3.10).

The suite of IFTs given by our Eqs. (3.18), (3.20), and (3.23), however, do include strong

connections between path-independent and path-dependent quantities in the form of initial-state

dependence and changes in steady-state surprisal. Unlike for ESS systems, however, even in

well-controlled NESS thermal examples applying the IFTs presents a rather serious experimental

challenge: direct measurement of heat (most notably housekeeping heat). Even when testing FTs

phrased in terms of heat, often work (excess or not) is experimentally tracked [30]. And so, we

expect direct measurement to be a key, requisite step in leveraging the resulting FTs to analyze

experimental NESS systems.

3.3.3. NESS trajectory class fluctuation theorem.

With appropriate DFTs and IFTs for NESS systems now in hand, we are confronted with yet

another challenging experimental tradeoff. Just as the IFTs suffer from extremely rare-but-large

contributions, the DFTs require precise control and measurement of individual realizations, as

well as accurate estimations of individual realization probabilities (or their ratios). This is often

intractable even in principle. For example, as experimental systems, the ion channels considered

shortly do not permit measurement of the conformational states themselves. Instead, ionic current is

the only observable. Moreover, the state space topology varies with each individual rate model [65].

This is all to say that thermodynamic analysis requires a more flexible intermediary between the

DFT’s trajectory-level information and the IFT’s ensemble-level information.
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Ref. [53] recently provided just such an intermediary for ESS systems—the trajectory class

FT (TCFT). At root, it relates the forward and reverse probabilities of an arbitrary subset of

trajectories—the trajectory class C as introduced earlier—to the average exponential work within

that trajectory class. In this way, the TCFT is maximally adaptable to experimental conditions: It

need neither suffer rare-event errors nor require individual-trajectory-level control. Instead, whatever

the unique experimental conditions at hand, it provides a framework for laying out an associated

FT. As a practical matter, the TCFT has already provided a diagnostic tool for monitoring the

thermodynamics of successful and failed microscopic information processing in superconducting flux

logic [53,66].

The following extends Ref. [53]’s ESS TCFT (Eq. (3) there) in two ways. First, we allow for

NESS systems. Second, we allow starting the forward and reverse processes in arbitrary distributions

µF and µR, respectively. This results in our exponential NESS TCFT, derived in App. A:

RµR (CR)
PµF (C) =

〈
e−(Wex+Qhk−∆Fnss)

〉
C

, (3.24)

where 〈·〉C denotes the conditionally-weighted average over only those trajectories in the class C

and the reverse trajectory class CR
.= {xN :0 |x0:N ∈ C}.

Eq. (3.24) imports to the NESS setting all the benefits of the TCFT. Most notably, it adapts

readily to a variety of experimental conditions while maintaining robust statistics. The associated

DFT and IFT emerge simply by setting the class C to be a single trajectory or the set of all

trajectories, respectively. Equation (3.24), as with its ESS counterpart, allows selecting trajectory

classes most accessible in a particular experimental configuration and then proposes the appropriate

theory against which to test.

Once again, in this form Eq. (3.24) makes only two assumptions about a stochastic process,

as outlined previously: a unique stationary distribution for each λ and an even state space. It

reproduces Ref. [53]’s TCFT given ESS assumptions. Similarly, it reproduces Ref. [42]’s Eq. (52)

when the class is chosen to start and end in a particular desired subset of states. However, our main

result holds independently of any energetic, Markovian, or particular class assumption.

Generalization to NESS systems is not without caveat, however. Qhk plays a central role

and we do not have our state- and path-independent equilibrium free energy to extract from the
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average and estimate. This suggests experimentally tracking the housekeeping heat itself is key to

understanding nondetailed balanced, NESS systems. (Alternatively, one could monitor the total

heat per Eq. (3.18).) This is not surprising, considering Qhk is the defining difference between an

ESS and NESS system.

3.4. Na+ and K+ Ion Channels

Armed with this toolkit, we are now ready to probe the thermodynamic functionality of two

example biophysical systems: Ref. [44]’s delayed-rectifier potassium (K+) and fast sodium (Na+)

voltage-gated ion channels. (See its Figs. 5.12 and 5.13, reproduced in our Figs. 3.3 and 3.4,

respectively. The conformational states of these models from Ref. [44] are defined in our Figs. 3.3

and 3.4, while the forms for their transition rates we reproduce in Eqs. (3.27)–(3.31).) These

single-channel models are based on relatively more macroscopic descriptions of channel ensembles

due to Hodgkin and Huxley [67]. However, they better represent the interdependencies between

molecular-conformational transformations and more accurately reproduce experimentally-observed

currents, especially for the Na+ channel [44].

The models are both continuous-time Markov chains (CTMCs), whose dynamics are described

by the stochastic master equation:

d
dt
〈µ(t)| = 〈µ(t)|Gλ . (3.25)

The row vector 〈µ(t)| specifies the state distribution or mixed state at time t; its elements are

µ(x, t) .= Pr (X(t) = x). The transition rate matrix Gλ is controlled by the protocol and, thus,

varies with time. The would-be steady-state distributions for each λ are given by:

〈πλ|Gλ = 〈0| , (3.26)

with 〈0| the all-0 vector.
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The transition-rate matrices corresponding to the two channels are:

GK+
λ =



−4an 4an 0 0 0

bn −(3an + bn) 3an 0 0

0 2bn −(2an + 2bn) 2an 0

0 0 3bn −(3bn + an) an

0 0 0 4bn −4bn


(3.27)

and

GNa+
λ =



−3am 3am 0 0 0

bm −(2am + bm + k1) 2am 0 k1

0 2bm −(am + 2bm + k2) am k2

0 0 3bm −(3bm + k3) k3

0 0 ah 0 −ah


. (3.28)

Letting λ denote the transmembrane voltage, the associated transition rates are:

am(λ) = (λ + 40 mV)/10 mV
1− exp (−(λ + 40 mV)/10 mV) , bm(λ) = 4 exp (−(λ + 65 mV)/18 mV),

(3.29)

ah(λ) = 7
100 exp (−(λ + 65 mV)/20 mV), k1 = 6

25 ms−1, k2 = 2
5 ms−1, k3 = 3

2 ms−1,

(3.30)

an(λ) = (λ + 55 mV)/100 mV
1− exp (−(λ + 55 mV)/10 mV) , and bn(λ) = 1

8 exp (−(λ + 65 mV)/80 mV).

(3.31)

We map these CTMC systems to discrete-time stochastic processes by taking λ(t) fixed for

sufficiently small time intervals ∆t, generating the transition matrices:

T∆t
λ

.= e∆t Gλ (3.32)

for each such time interval. Having discretized time in this way, they are examples of the thermody-

namic scheme in Fig. 3.2, being surrounded by a single thermal environment at body temperature.
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A voltage-gated ion channel’s basic function is to selectively allow ions to permeate a cell

membrane. The selection is based on the transmembrane voltage—the voltage difference between

the membrane’s inside and outside. In our models, this difference is specified by the parameter λ, and

so a neuronal action potential spike is a specific protocol. Ref. [44]’s K+ and Na+ models correspond

to channels that play crucial roles in generating and propagating such spikes in mammalian neuronal

axons. Both Markov chain models are estimated from single-channel experiments.

A4 A3 A2 A1 O

4an 3an 2an an

4bn3bn2bnbn

Figure 3.3. Continuous-time Markov chain model of the K+ channel adapted from
Fig. 5.12 of Ref. [44]. Self-transitions are implied. In the states labeled An, a number
n ∈ {1, 2, 3, 4} activation gates close the channel. O labels the open channel state,
the only one in which K+ current can flow through the channel. The rate parameters
an and bn are voltage-dependent; their functional forms are given in Eqs. (3.31).
This channel model is fully detailed-balanced, in the sense that Eq. (3.33) vanishes
for every allowed transition pair.

A3 A2 A1 O I

3am 2am am
k3

k1

k2

ah

3bm2bmbm

Figure 3.4. Continuous-time Markov chain model of the Na+ channel adapted
from Fig. 5.13 of Ref. [44]. Self-transitions are implied. In the states labeled
An, a number n ∈ {1, 2, 3} activation gates close the channel. O labels the open
channel state, in which Na+ current flows through the channel. Finally, I labels the
channel’s inactivation by its inactivation gate—its so-called ball and chain. The rate
parameters am, bm, and ah are all voltage-dependent; their functional forms are given
in Eqs. (3.29)–(3.30). The rate constants k1, k2, and k3 are given by Eqs. (3.30).
Unlike the K+ channel, this model of the Na+ channel features one-way transitions
in the rate dynamic—states O to I and A2 to I. These transitions are maximally
irreversible. These imply divergent infinitesimal housekeeping heat in the sense of
Eq. (3.33). In addition to these, many of the other transition pairs do not satisfy
detailed balance—Eq. (3.33) evaluates finite but nonzero.
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We selected these two channel models for several reasons.

First, in terms of their biological function, they are comparable: They accomplish similar tasks,

are connected to the same environmental parameters, and are suitably mesoscopic. That is, despite

being more detailed than the Hodgkin-Huxley ensemble models, neither model accounts for the

many additional molecular degrees of freedom involved in the channel dynamics, be it steady-state

or transient functions. The small effective state spaces in the Markov chain models reflect this.

One consequence of this implied coarse graining is that any total entropy production is a lower

bound [31]. Still, we are able to make headway analyzing their nonequilibrium dynamics without

knowledge of the underlying coarse-graining methods—knowledge missing for the vast majority of

mesoscopic complex systems.

Second, the Na+ channel’s transition rates do not, in general, satisfy detailed balance, while the

K+ channel’s do. Indeed, the Na+ channel model includes both finitely nondetailed-balanced transi-

tion pairs and one-way-only transition rates, which imply divergent infinitesimal-time housekeeping

heat. These violations of ideality are typical and widely encountered in molecular biophysical

systems, as well as in real-world thermodynamic processes.

To appreciate these nonidealities, note that under our time discretization and the Markov

property, the infinitesimal(-time) housekeeping heat—a single “step” of Eq. (3.9)—for a transition

between states indexed by i to j:

[dQhk]ij = lim
∆t→0

ln
πλ(xi)

[
T∆t

λ

]
ij

πλ(xj)
[
T∆t

λ

]
ji

= lim
∆t→0

ln
πλ(xi)[Gλ +O(∆t)]ij
πλ(xj)[Gλ +O(∆t)]ji

. (3.33)

For systems with one-way-only transition rates, such as from the second to the fifth state of the Na+

channel (indexing the states left to right, Fig. 3.4), infinitesimal housekeeping heat diverges. This

contrast between the two channels—wherein one of them exhibits equilibrium steady states and

the other nonequilbrium steady states—allows showcasing several features of the NESS TCFT and

of the NESS framework more broadly. These, in turn, reveal the dynamical interplay of different

modes of thermodynamic transformation.
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As a test case, the K+ channel should satisfy the ESS TCFT (where Qhk = 0) while the Na+

channel should violate it. Both, however, should satisfy our NESS TCFT of Eq. (3.24).

One benefit of the TCFT’s averaging over arbitrary trajectory classes comes from avoiding

the divergences implied by one-way transition rates: We select only those trajectories that do not

include one-way transitions in the Na+ channel, but still satisfy the appropriate DFT (and therefore

TCFT) with those trajectories.

In this way, the NESS TCFT allows monitoring nonequilibrium fluctuations in systems with

drastically different steady-state characteristics: detailed balance on the one hand and spurious

divergences on the other.

Yet separating heat into excess and housekeeping components also enables direct comparison of

the channels’ adaptive energetics. Given the same environmental drive, which components of their

dissipations are due solely to their internal adaptation to that drive? The excess heat, Qex. This

remains true without regard for the divergence implied by one model’s steady states. In essence, we

cleave the housekeeping infinity to directly compare adaptive energetics.

Finally, both models are simple and illustrative. There are many more-detailed candidate

state-space models for the Na+ channel: take those found in Refs. [65] and [68], for instance,

whose variations have important implications for understanding responses to drug treatments [69].

While we do not analyze them directly, our techniques generalize to any such candidate models

straightforwardly and provide an alternative formulation to that of Ref. [68]. Indeed, our ability to

carry out these thermodynamic analyses provides new grounds for model selection, contingent on

measurement techniques to experimentally extract the appropriate quantities.

3.5. Methods and Results

Our goal, ultimately, is to describe the nonequilibrium thermodynamics of driven mesoscopic

NESS systems—how they respond thermodynamically to environmental stimuli and attempt to

maintain stability. We take up the challenges here in two ways.

First, Sec. 3.5.1 samples individual trajectories from both channels under the neurobiologically-

plausible action potential spike protocol. Trajectories in hand, it compares Qhk versus Wex for each,

showcasing the need for corrected NESS D/TCFTs, revealing various modes of second-law-type
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violations allowed of each channel, and discussing the surprising biophysical functionality these

violations imply.

We derived the spike protocol by solving the reduced ODEs (8.5) and (8.6) of Izhikevich [70]

(also presented earlier [71]), integrating via the explicit forward Euler method. We adopt the

“regular spiking” parameters of their Fig. 8.12, except that we set the membrane capacitance to 1

pF and input DC pulse to 80 pA to change the time scale of a single pulse to 2 ms, more accurately

reflecting measurements in Ref. [44]. For transmembrane voltage λ in units of [mV] and “recovery

variable” (as introduced in Ref. [70]) u in [pA], we thus directly evolve

dλ

dt
= 0.7(λ + 60)(λ + 40)− u + 80 (3.34)

du

dt
= −0.03(2(λ + 60) + u) (3.35)

if λ > 35 : λ← −50, u← u + 100. (3.36)

The protocol begins with the transmembrane voltage at its resting potential (of −60 mV in this

parameter set) and u at 0 pA. We took 200 001 equidistant time steps, resulting in 10 ns increments.

A visual of this protocol appears as the dashed line in Figs. 3.8 and 3.10.

Second, Sec. 3.5.2 calculates the full trajectory-averaged excess heat and work—〈Qex〉 and

〈Wex〉, respectively—of the two channel models under both our spike protocol and the 12 ms pulse

protocol matching Ref. [42]’s and providing for direct comparison with their results. We took

the same number of equidistant time steps, resulting in 60 ns increments. In the spike case, we

directly compare for the first time the detailed adaptive energetics of the two channel types under a

neurobiologically-plausible protocol. Our analysis both reveals functionality not visible under a pulse

drive and highlights the preceding theoretical framework’s ability to directly compare the channels’

adaptive energetic response to the same drive, despite their dramatically different steady-state

behaviors.

The ion channels are examples of Fig. 3.2’s scheme with a single heat bath, so we have that

Qhk → βQhk, Wex → βWex, and Qex → βQex. For convenience, then, we label all thermodynamic

axes in units of [kBT ]. In more general settings, however, these functionals are purely dynamical

quantities, to be understood and interpreted as indicated in Secs. 3.2.2 and 3.2.3.
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Admittedly, the selected ion channel models are not realistic in the sense that they do not

incorporate feedback between the transmembrane potential and the ion channel states themselves.

(Or, put another way, they ignore correlation between channels.) This feedback is crucial to in

vivo generation of the spike patterns. In one sense, this simplification is actually an advantage of

our approach, since we ask: Given a particular transmembrane protocol—regardless of how it got

there—how do these individual channels respond? How do they absorb and dissipate energy in

response to this environment?

3.5.1. NESS TCFT reveals thermal response.

This section compares the detailed-balanced dynamics of the K+ channel with the nondetailed-

balanced dynamics of the Na+ channel. It demonstrates agreement between ESS and NESS FTs in

the former, but violation in the latter. This exposes the channels’ different dynamical responses—how

thermodynamic fluxes of energy and entropy support their distinct biophysical functioning. The

TCFT’s flexibility allows us to select only trajectories-of-interest and take partial sums on either side

of the underlying DFT. This helps not only to gather experimental statistics—improving statistical

efficiency—but also to generate statistics from models, as the following does.

While Eq. (3.33)’s first-order approximation is valid in the infinitesimal time limit, any finite

time step—no matter how small—maps every zero in the transition-rate matrices to nonzero values

in the discrete-time transition matrices. As long as any state can transition to any other eventually

in the rate dynamic, we observe a direct transition from any state to any other state after any finite

time. Mathematically, this results from higher-order terms in the matrix exponentials.

Since we wish to explicitly highlight the differences between the channels—the ESS in the K+

case and the divergent transitions in the Na+—we take the first-order approximation of Eq. (3.33).

Formally, it defines a distinct discrete-time dynamic compared to taking the full matrix exponentials,

but the fluctuation theorems apply just as well to this approximated dynamic. In sampling

trajectories, we avoid the divergent Na+ transitions altogether by selecting only paths that do not

include them, yet another advantage the TCFT affords. This does not alter the TCFT’s validity as

long as we accurately collect the probabilities of the selected trajectories.

We can collect those probabilities, having the full transition dynamic in hand. However, simu-

lating 200 001-step trajectories, the resulting probabilities are extraordinarily small. To ameliorate
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numerical precision issues, we instead directly collect the natural logarithms of trajectory prob-

abilities. Finally, since we wish to isolate the differences between the channels due to NESSs

(or, equivalently in our case, to nondetailed-balanced dynamics), we make one last simplifying

assumption before numerical simulation: We begin all forward and reverse processes in their local

stationary distributions, setting ∆Fnss = 0.

This simplifies Eq. (3.24)’s DFT kernel to:

ln PπF (x0:N )
RπR (xN :0) =Wex[x0:N ] +Qhk[x0:N ] . (3.37)

Comparing this to Crooks’ DFT as in Eq. (3.13) reveals the presence of Qhk as the only difference.

For an ESS system, this should vanish for all inputs; otherwise, it represents a violation of Crooks’

DFT by a factor of eQhk . To probe the violation, Fig. 3.5 directly plots Qhk—via Eq. (3.9)—on the

vertical axis, where each point represents an individual trajectory. We plot these values against

Wex—with the discrete form of Eq. (3.8)—on the horizontal axis to aid interpretation: Via Eqs. (3.20)

and (3.23), there are individual second laws for both the generalized housekeeping heat and the

generalized excess work. As with the familiar equilibrium second law, however, these are strictly

true only on full trajectory averaging.

To arrive at Fig. 3.5, we sampled trajectories according to their distributions as given by each

channel’s first-order dynamics under spike driving. For the Na+ channel, as previously mentioned,

this excludes the one-way-only transitions. For the K+ channel, we obtained 9 626 individual

trajectories; for the Na+ channel, we obtained 23 834.

Plotting housekeeping heat against excess work in Fig. 3.5 directly visualizes the independent

kinds of negative entropy trajectories: where Wex < 0, we have single-shot violations of the familiar

second law. In the isothermal environment of the ion channel models, trajectories for which this is

the case imply channels that, under the spike protocol’s drive, funnel energy to the work reservoir.

Where Qhk < 0, however, we have a new kind of second law violation unique to the NESS setting:

in context, these are channels which have taken energy from the heat bath to maintain NESS

conditions, rather than dissipated to it. For this reason, in Fig. 3.5, we label these quadrants

“housekeeping (HK) engines.” Where total heat is also negative, the channel as a whole functions as

a “total heat engine,” but—notably—these possibilities are independent of one and other. To take
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Figure 3.5. The two channel models compared via their nonequilibrium excess work
and housekeeping heat distributions, respectively, in response to the spike protocol
drive. Nonzero values of Qhk indicate violations of the Crooks DFT Eq. (3.13),
where the corrected NESS DFT Eq. (3.15) is needed. In addition, the axes here are
of quantities with associated independent second laws; see Eqs. (3.20) and (3.23).
And so, the labeled quadrants carry thermodynamic (and, in this case, biophysical)
meaning as single-shot violations of each statistical second law.

but one example: the negative total heat trajectories of the first quadrant act as heat engines, yet

the housekeeping part of their total heat remains dissipative.

As Fig. 3.5 shows, the additional dimension of thermodynamic behavior afforded by nonzero

housekeeping heat and its associated second law gives rise to a number of otherwise inaccessible

combinations. Driving the channels according to the biologically-plausible spike protocol also reveals

a greater range of possible Crooks DFT violations than did the more artificial pulse-driven result

of Ref. [42], with only several violations. Taken together, Fig. 3.5 reveals a rich taxonomy of

thermodynamic behaviors for the Na+ channel—behaviors that are not reflected (indeed, flattened)

in the K+ channel or, indeed, in any ESS system, where Crooks’ DFT is satisfied and Qhk = 0.

In particular, there are four functionally-distinct thermodynamic quadrants, corresponding to

the positive and negative values of Qhk and Wex, and labeled by their excess and housekeeping

functionality on the K+ channel plot for clarity.

To be clear, each point on these plots corresponds to a single trajectory-reverse pair that itself

is a valid trajectory class. Yet, (i) the samples themselves may be taken from a special class—for
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the Na+ channel we explicitly exclude resource-divergent trajectories—and (ii) any subsample on

the plot corresponds to its own valid trajectory class as well.

The clustering of realized Qhk in Fig. 3.5 reveals additional structure in Crooks DFT violations

not previously observed. Apparently, there are distinct thermodynamic mechanisms that generate

the violations. These result directly from the relative frequencies of transitions as functions of the

driving protocol.

To lend additional insight into this structure, Fig. 3.6 plots the one-step rates of Qhk production

for each allowed transition in our modified Na+ channel. The A3 ↔ A2 transition pair is the

only one of this dynamic that is fully detailed-balanced for all inputs; the A2 ↔ A1 pair is nearly

detailed-balanced, with very small housekeeping heat production. By comparison, both of the

remaining transitions strongly violate detailed balance, and so contribute the bulk of the nonzero

Qhk.
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Figure 3.6. Na+ channel transition rates of housekeeping heat Qhk as functions
of transmembrane potential. The total housekeeping heat along any stochastic
trajectory, driven by any protocol, is the sum of these values with the associated
state transition-protocol parameter pairs here.

Physically, the latter two correspond to transitions directly to/from the open and inactivated

channel states. Interestingly, their violations run in opposite directions. On the one hand, the

A1 → O transition dissipates housekeeping heat to the thermal environment—indeed, more as

the membrane voltage rises. On the other hand, the A1 → I transition describes the “ball and

chain” that plugs the channel without opening, leaving no opportunity for Na+ current to flow.
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Thermodynamically, this transition actually absorbs housekeeping heat from the thermal environment.

Since the housekeeping heat production rate is odd under transition reversal, these roles are reversed

for the reverse transitions. Thus, the results shown in Fig. 3.5 arise directly from integrating those

in Fig. 3.6 according to each trajectory-protocol pair.

As a final consideration, we note that the ESS TCFT (and so the Crooks DFT) do not claim

to be valid for NESS systems. That said, our results visually verify the facts that the NESS

generalization both extends the range of validity of the TCFT and reduces in the correct way for

ESS systems.

That we have a trajectory class form for the NESS TCFT, captured in our Eq. (3.24), imports its

ESS progenitor’s flexibility. That is, we need capture neither individual trajectory-level information

to verify the DFT nor accurately sample the full trajectory space for an IFT.

That said, experimental verification remains a significant challenge. Generalizing to NESS

systems requires not only the excess work distribution but housekeeping heats as well. Indeed, these

results suggest that carefully considering how to measure housekeeping dissipation is crucial to

characterizing fluctuations in NESS systems. As Fig. 3.5 demonstrates, improper accounting leads

in general to TCFT violations and, if the ESS FTs are used to estimate free energy differences, to

potentially drastically mischaracterizing the system of interest.

3.5.2. Average excess energetics.

Despite the channels’ distinct thermodynamic functioning as revealed by the TCFT, we can

compare the channels’ adaptive energetics via the excess works and heats. We begin by directly

calculating the full trajectory averages, obtaining for discrete time:

−〈Qex〉 =
N−1∑
n=0
〈µ(tn+1)− µ(tn)|φλn〉 and (3.38)

〈Wex〉 =
N−1∑
n=0

〈
µ(tn)

∣∣φλn+1 − φλn

〉
, (3.39)

in agreement with Ref. [42]. As above, we set the initial distributions to the local stationary

distribution for convenience. Armed with the discrete protocols, time steps, and starting distributions,

we directly evaluate the mixed states (Eq. (3.25)) and steady-state distributions (Eq. (3.26)) for

each time step. These are all that is needed to calculate 〈Qex〉 and 〈Wex〉 via Eqs. (3.38) and (3.39).
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Figs. 3.7 and 3.8 give the simulation results for excess heat.

−100

10

Transm
em

brane
Voltage

[m
V

]

−2 0 2 4 6 8 10
0

5

10

15

20

25

t [ms]

〈Q
ex
〉

[k
B

T
]

Na+

K+

Figure 3.7. Excess heats (solid lines) for both channels under the pulse protocol
(dashed line). The K+ channel is less dissipative. Both expend energy as they relax
to environmentally-induced steady states.

First, driven by the pulse, the K+ channel dissipates less excess heat over the course of this

protocol. Its rate of relaxation to steady state—corresponding to constant epochs in the protocol—

appears slower than the Na+ channel’s on the jump from −100 to 10 mV, but faster on the subsequent

drop back down to −100 mV.

The spike protocol paints a very different picture. Here, while the Na+ channel still dissipates

(in this case, significantly) more over the course of the protocol, it also appears to respond much

more quickly to changes in the protocol than does the K+ channel. A tradeoff appears: the cost of

the Na+ channel adapting more quickly to its environment is that it dissipates more in the process.

This did not arise when driven by the pulse protocol. (Likely, this is due to that protocol operating

outside of the “normal” voltage range for these channels—by dropping as low as −100 mV.)

Besides showcasing a detailed energetic comparison between different channels, the discrepancy

between the pulse- and spike-driven behaviors demonstrate that in vivo thermodynamic response

can qualitatively differ from that elicited by voltage-clamp experiments.

The corresponding results for excess work are given in Figs. 3.9 and 3.10. Unlike excess heat, the

excess work is not sensitive to the timescales of each channel’s relaxation to steady state. Instead, it

tracks environmental entropy produced by the external drive. Yet it is still sensitive to the dynamics
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Figure 3.8. Excess heats (solid lines) for both channels driven by the spike protocol
(dashed line). Under this more biologically realistic protocol, the Na+ dissipates
significantly more than the K+ channel and does so responding much more rapidly
to changes in membrane voltage. This suggests a tradeoff between the speed of
the channel’s response and its dissipation, one not necessarily present in the more
artificial pulse protocol.

of the individual channel (per Eq. (3.8)), and this sensitivity is reflected in the thermodynamic

responses.
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Figure 3.9. Excess works (solid lines) for both channels under the pulse protocol
(dashed line). Unlike excess heat, excess work is only done upon change in the
driving parameter. Thus, we see changes only at the pulse’s rise and fall. Much more
excess work is done on the Na+ channel than on the K+ during the rise of the pulse,
but these roles are reversed on its fall. Over the entire protocol, the Na+ channel
produces (slightly) more excess environmental entropy.
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As in the excess heat calculations, there is a difference in behavior between the pulse and spike

protocols. In the former, the K+ channel and Na+ channels trade off under the rise and fall of the

pulse. Driven by the spike protocol, however, the Na+ channel induces more environmental entropy

production across the board, though they track extremely closely until the peak and reset phases

of the action potential spike. This reflects not only the larger potential for dissipation in the Na+

channel under the spike protocol, but highlights where during the protocol most of the difference

arises.
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Figure 3.10. Excess works (solid lines) for both channels under the spike protocol
(dashed line). We see that more excess work is done on the Na+ channel across the
board. This corresponds to larger environmental entropy production and indicates
a greater potential for dissipated work in the Na+ channel. However, we also see
that up until the peak and reset phases of the action potential spike, they track very
closely before diverging.

To reiterate, while excess heat is an energetic signature of relaxation to steady state, these

calculations do not assume the system ever reaches such a steady state. While the pulse protocol

allows each of the channels to do so, over the course of the spike we see a dynamic dissipation

in the two channels—this is energy expended while attempting to reach an ever-evolving steady-

state target. We close by highlighting that our theoretical developments enabled quantitatively

comparing the channels’ adaptive energetics under realistic environmental stimuli—captured in our

Fig. 3.8—despite the departures in their underlying steady-state dissipation.
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3.6. Conclusion

We reviewed and extended the techniques of stochastic thermodynamics, culminating in a TCFT

for NESSs, and even, for nonthermal stochastic processes. Using these, we analyzed the adaptive

and homeostatic energetic signatures of two neurobiological systems—systems key to propagating

action potentials in mammalian neurons. Along the way, we developed a toolkit for probing the

nonequilbrium thermodynamics in a broad range of mesoscopic complex systems that requires little

in the way of restrictive assumptions.

Our results exposed a new quantitative structure in how systems appear to violate equilibrium

steady-state assumptions, both warning against and elucidating the consequences of inappropriately

assuming detailed-balanced dynamics. In this, they suggest a need for both our corrected and

generalized TCFT and new experimental tools.

Specifically, for nonequilibrium steady-state systems, tracking housekeeping entropy production

is crucial to extracting functionally relevant thermodynamics and observing an additional kind

of second law dynamics. While experimental tests have verified Eq. (3.20), they do not allow for

observing the housekeeping thermodynamics, which play an important and independent part in

assessing a system’s functionality.

Our simulations of the averaged excess energetics, in contrast, show how to compare specific

aspects of a system’s functionality—the adaptive energetics—despite what are in this case infinite

differences in the steady state behavior. In essence, these tools allow us to “cleave off” the divergence

in the Na+ model’s housekeeping heat and still compare the channels’ adaptation to environmental

drive on equal footing. Finally, the spike protocol simulations also identified what would not be

observed in traditional patch-clamp experiments on ion channels, namely detailed differences in

response to each segment of an action potential.

Taken together, our development and associated numerical experiments revealed a rich—and,

indeed, necessary—set of tools with which to probe the nonequilibrium dynamics of mesoscopic

complex systems.
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CHAPTER 4

First and Second Laws of Information Processing

by Nonequilibrium Dynamical States

Preprint posted as Ref. [72]: M. T. Semaan and J. P. Crutchfield, arXiv:2211.05849.

The averaged steady-state surprisal links a driven stochastic system’s information process-

ing to its nonequilibrium thermodynamic response. By explicitly accounting for the effects of

nonequilibrium steady states, a decomposition of the surprisal results in an information processing

first law that extends and tightens—to strict equalities—various information processing second

laws. Applying stochastic thermodynamics’ integral fluctuation theorems then shows that the

decomposition reduces to the second laws under appropriate limits. In unifying them, the first

law paves the way to identifying the mechanisms by which nonequilibrium steady-state systems

extract work from information-bearing degrees of freedom. To illustrate, we analyze an autonomous

Maxwellian information ratchet that tunably violates detailed balance in its effective dynamics. This

demonstrates how the presence of nonequilibrium steady states qualitatively alters an information

engine’s allowed functionality.

4.1. Introduction

In 1861, Maxwell introduced a thought experiment in which a “very neat-fingered being”

leveraged observations to control a system that violated the second law of thermodynamics [9]. A

century later, attempting to resolve the paradox, Landauer quantitatively bounded the requisite

thermodynamic resources for erasing a single bit of information in a physical information-bearing

degree of freedom [10]. These results have since stimulated many explorations of the fundamental

physics tying a system’s thermodynamic behavior to its functioning as an information processor [73].

One particular line of inquiry focused on “autonomous Maxwellian ratchets”. In this, a ratchet

embedded in a thermal environment moves along an “information tape”, interacting with a single bit
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of information at a time. The information on the tape modifies the ratchet’s statistical properties

while the ratchet absorbs and dissipates energy [74]. Recent results introduced an “information

processing second law” (IPSL) for such systems that bounds the asymptotic rate ˙〈W 〉 of extracted

work [46]:

β ˙〈W 〉 ≤ ∆hµ, (4.1)

where ∆hµ = h′
µ − hµ, h′

µ is the Shannon entropy rate of the statistical process generating the

output tape, hµ is the same for the input tape, and β is the inverse temperature of the thermal

environment. Notably, this bound corrected previous “single-symbol” relations by accounting

explicitly for arbitrary-order temporal correlations in the input and output bit strings, and found

directly that removing such correlation increases the capacity of the system to produce work—even

though the ratchet interacts with only a single bit at once.

More recently, Ref. [75] developed a similar IPSL not for the asymptotic rate of extracted work

from an infinite tape, but for the finite-time ensemble-averaged work extracted when operating on a

finite tape:

β 〈W 〉 ≤ ∆H[Z], (4.2)

where Z is the random variable associated with the joint space of the ratchet and tape, and H[Z] is

its Shannon entropy.

The following first derives a simple information-thermodynamic equality by considering the

averaged steady-state surprisal of a general driven stochastic process:

∆H[Z] = 〈Wex〉 − 〈Qex〉 −∆DKL[Z ‖Λ]. (4.3)

Here Z is the random variable associated with a system’s state, Λ that associated with an

environmentally-induced steady state, and 〈Wex〉 and 〈Qex〉 are the (unitless) average excess work

and heat of nonequilibrium steady state thermodynamics, respectively [28,42]. The Kullback-Leibler

divergence [11] DKL[Z ‖Λ] monitors the difference in information between the system’s state and

the would-be steady state.
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We refer to Eq. (4.3) as the information processing First Law (IPFL) since, beyond the obvious

change in the joint system’s information content, the lefthand side acts as a kernel that describes a

ratchet’s “information processing” (discussed in detail in Sec. 4.4). Additionally, the righthand side

expresses a generalized first law used to define excess heat and work (discussed further in Secs. 4.2.1

and 4.2.3). In essence, Eq. (4.3) expresses a first law for the system’s information content in the

same way the original equilibrium first law does for a system’s energy (non)conservation.

Subsequently we show how the IPFL together with stochastic thermodynamics’ integral fluctua-

tion theorems—particularly those presented in Refs. [28,40]—both generalize and tighten the two

preceding asymptotic and finite-tape IPSLs. In particular, identifying the role of the average dissi-

pated housekeeping heat 〈Qhk〉 and the divergence from final steady-state conditions DKL[ZN ‖ΛN ],

it shows that for finite-tape systems:

β 〈W 〉 ≤ ∆H[Z] + DKL[ZN ‖ΛN ]− 〈Qhk〉 . (4.4)

Compared to Eq. (4.2), this explicit accounting for the effects of nonequilibrium steady states

(NESSs) and nonequilibrium dynamical (nonsteady) start and end configurations gives a strictly

tighter bound for finite- and even-state systems.

In short: for NESS systems an increase in randomness—as measured by ∆H[Z]—must addition-

ally compensate for persistent housekeeping costs—as measured by 〈Qhk〉—to produce work.

Finally, we demonstrate that for infinite-tape, finite-ratchet systems the asymptotic bound is

similarly tightened:

β ˙〈W 〉 ≤ h′
µ − hµ − ˙〈Qhk〉, (4.5)

where ˙〈Qhk〉 is the asymptotic rate of housekeeping dissipation.

To summarize, fluctuation theorems take the IPFL directly to a suite of simultaneously-true

second laws for information. This, once again, mirrors informational generalization of the familiar

equilibrium second law.

Besides clarifying and unifying derivations of these IPSLs, extending their domains to explicitly

include the effects of initial- and final-state dependence as well as nonequilibrium steady states

opens the door to considering detailed information-energy tradeoffs for systems that arbitrarily
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violate detailed balance in their effective dynamics. We demonstrate this via an example ratchet

designed to tunably violate detailed balance while remaining tractable for analysis. This uncovers

qualitative corrections to a ratchet’s ability to extract work.

The development proceeds as follows. First, Sec. 4.2 sets out the preliminary notation and

introduces the relevant stochastic dynamical functionals. Section 4.2.3 maps the general stochastic

dynamical picture to an explicitly thermodynamic one, immersed in a single-temperature environment.

This then points toward concrete example realizations of the general stochastic theory. Section 4.2.4

reviews autonomous Maxwellian information ratchets, which comprise our example system class.

With the preliminaries in hand, Sec. 4.3 derives Eq. (4.3)’s IPFL. It applies the IPFL to the

information ratchet picture, revealing strict equalities relating a ratchet’s thermodynamic dissipation

with its information processing in transforming an input tape to an output.

Section 4.4 then specializes the IPFL in two ways. First, Sec. 4.4.1 introduces and uses integral

fluctuation theorems to take the equality to an inequality. This arrives at the kernel of previous

IPSLs, explicitly generalizing and tightening that of Ref. [75]. Then, Section 4.4.2 considers the

asymptotic rate limit of an infinite tape, similarly generalizing the previous asymptotic IPSL to

include the effects of nonequilibrium dynamical state dependence and potentially infinite-state

ratchets. The restriction to finite ratchets in Sec. 4.4.3 rounds out our derivations, revealing a

simple correction tightening Ref. [46]’s asymptotic IPSL.

Finally, Sec. 4.5 applies the developed theory to a finite-state information ratchet that arbitrarily

violates detailed balance and so exhibits NESSs. We find that even for simple cases, NESSs have

dramatic effects on a ratchet’s ability to extract work, qualitatively changing its landscape of allowed

behaviors.

Taken together, our results (i) unify both previously-reported IPSLs for ratchets by deriving

them explicitly from the underlying IPFL and integral fluctuation theorems, (ii) place the specific

application of autonomous ratchet function in the broader context of the exchange between energy

and information in complex systems, including generally nondetailed-balanced ratchets, and (iii)

demonstrate severe restrictions NEDSs place on allowed ratchet functionality—restrictions critical

to understanding the thermodynamics of information processing in complex systems.
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4.2. Preliminaries

We consider a system under study (SUS) that stochastically realizes states z in a countable

space Z. It is driven in discrete time by a protocol written as a sequence of parameter values λ ∈ Λ,

denoted by λ0:N
.= λ0λ1 . . . λN for a positive integer N . The resulting driven stochastic process Z0:N

is not stationary. However, we assume it is conditionally stationary: for any protocol indefinitely

fixed at λ, there is a unique corresponding stationary state distribution πλ.

We place no further restrictions on our system. In particular, it need not have a particular

dynamical structure—Markov, master equation, Langevin, detailed balanced, and so on. And, we

make no particular claim about the scale of its state space. The protocol itself may be a realization of

a separate stochastic process, and the state space may be a joint one with meaningfully decomposable

parts. In point of fact, we treat both of these cases as examples later. First, though, we derive

our main result in greater generality, requiring only the conditional stationarity assumption and

involving only the functionals of trajectory-protocol pairs we now define.

4.2.1. Dynamical Functionals.

With a would-be stationary distribution πλ associated to each driving parameter λ, denote its

elements by πλ(z). Without loss of generality we define the steady-state surprisal [28,40,42,42,76]:

φλ(z) .= − ln πλ(z), (4.6)

so called as it is the Shannon self-information [11] of seeing state z under the distribution πλ.

For notational uniformity, we cast the sequence of stationary distributions during a protocol as

a stochastic process over random variables Λt ∼ πλt . Upon averaging we have:

〈πλ|φλ〉
.=
∑
z∈Z

πλ(z) φλ(z)

= H[Λ], (4.7)

the Shannon entropy of the distribution πλ.

In suitable settings φλ carries a thermodynamic meaning as well—the nonequilibrium potential

[28,42]. For example, consider a canonical statistical mechanical system in contact with a single

heat reservoir at inverse temperature β
.= 1/kBT , with kB Boltzmann’s constant. Then πλ—an
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equilibrium steady state, in this case—is Boltzmann distributed in the energies [49]:

φλ(z) = −β
(
Eλ(z)− F eq

λ

)
, (4.8)

with F eq
λ the equilibrium free energy—the familiar logarithm of the canonical partition function.

While under these circumstances φλ acts as a kind of generalized energy, we stress that it retains dy-

namical and information-theoretic meaning—via Eqs. (4.6) and (4.7)—even when a thermodynamic

interpretation is inappropriate.

We carry this theme to our following three “special” functionals—stochastic dynamical gener-

alizations of the excess heat, excess work, and housekeeping heat of nonequilibrium steady state

thermodynamics [28,33,40,42,52]. That is, while their definitions are drawn from thermodynamic

counterparts and while we ultimately focus on a thermodynamic setting, we stress that these

functionals retain tractable, interpretable meaning well outside of those domains.

Excess work Wex and excess heat Qex are distinct contributions to a system’s change in steady-

state surprisal:

∆φ = ∆λφ︸ ︷︷ ︸ + ∆zφ︸︷︷︸
.= Wex − Qex, (4.9)

where, for N time steps:

∆λφ
.=

N−1∑
n=0

φλn+1(zn)− φλn(zn) and (4.10)

∆zφ
.=

N−1∑
n=0

φλn+1(zn+1)− φλn+1(zn). (4.11)

That is, by excess work Wex we refer to the change in steady-state surprisal owing to a changing

environmental drive. And, by excess heat Qex we identify the change in steady-state surprisal

owing to the system’s state change—its response or adaptation to environmental conditions. This

formulation agrees with standard ones in steady-state thermodynamics [28,40,42].
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We generalize total heat Q in a manner consistent with microscopic reversibility [38]:

Q .= ln Pr (Z1:N = z1:N | Z0 = z0 ; λ0:N )
Pr
(
Z1:N = z̃N−1:0 | Z0 = z̃N ; λ̃N :0

) , (4.12)

where the tilde indicates negation of odd-parity variables, such as momentum and magnetic field.

Finally, we define the generalized housekeeping heat—heat dissipated to maintain nonequilibrium

steady states—in terms of Eqs. (4.9), (4.12), and Ref. [33]’s phenomenological breakdown:

Qhk
.= Q−Qex. (4.13)

Stated as-is, this definition differs slightly from others in Refs. [40,42,50,51,52,77] in that it is not

restricted to Markovian dynamics. It differs from that of Ref. [28] in that it allows for odd-parity

state or protocol variables.

Since we allow odd-parity variables, it further decomposes in the manner of Refs. [50,51,77].

While we leave detailed discussion along these lines to a sequel, we reiterate here the delicacy in

interpreting Qhk directly as a measure of detailed balance violation—both in the presence of odd-

parity variables as discussed by Refs. [50,51,77] and under non-Markovian dynamics as discussed

by Ref. [28].

Let us be explicit. With Markov dynamics part of Qhk corresponds directly to detailed-balance

violation. With both Markov dynamics and strictly even-parity variables, Qhk in its entirety

measures detailed-balance violation. In the general case, the sources of housekeeping heat are more

complex than these. However, its interpretation remains simple. It is that (generalized, unitless)

heat dissipated atop the excess, as defined by Eq. (4.13).

4.2.2. Nonequilibrium Dynamical States.

In the special case where the system is Markovian (order 1) and subject to an indefinitely

fixed drive—yielding a stationary Markov process—the rate of housekeeping heat is the asymptotic

entropy production rate familiar to stochastic thermodynamics [78], sometimes taken on average to

be a measure of the system’s fundamental time-reversal asymmetry [79,80].

We wish to consider the more general case of systems that have not yet reached their (equi-

librium or nonequilibrium) steady state distributions—processes that are not stationary. While
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Eqs. (4.9)–(4.13) leverage a suite of “would-be” stationary distributions, they are defined for ar-

bitrary paths, including when the system is nowhere near such a steady state at any stage of the

observed interval. We call such transient state distributions µt � πλt “nonequilibrium dynamical

states” (NEDSs). In treating system trajectories that begin and/or end in NEDSs, a final term

appearing in our derivations and related results remains: the nonsteady state free energy:

Fnss
µ‖λ(z) .= ln µ(z)

πλ(z) . (4.14)

Its name derives from two places. First, “nonsteady state” since it indicates how “far” a

given distribution is from the associated steady-state distribution: on state averaging, we have〈
µ
∣∣∣Fnss

µ‖λ

〉
= DKL[µ ‖πλ]. Second, “free energy” since with an equilibrium steady state system in

contact with a single ideal heat reservoir, it is the nonequilibrium part of the nonequilibrium free

energy: Fneq = βF eq
λ + Fnss.

Various naming schemes have appeared over nonequilibrium thermodynamics’ history. For

example, Q̇hk and its average are often referred to as “adiabatic” entropy production while Ẇex is

the “nonadiabatic” component [78]. Excess work is alternatively (and equivalently) called “excess

environmental entropy production” [42]. We restrict our vocabulary to that we explicitly introduced

for clarity: housekeeping heat and excess work, respectively. We make a final note that on its own,

excess heat is not an entropy production in the sense of stochastic thermodynamics. Yet it plays a

central (and interpretable) role as a measure of “adaptive” dissipation both in that domain and in

the general dynamical case.

4.2.3. Excess and Thermodynamic First Laws.

We call Eq. (4.9) our “excess first law” due to its structural similarity to the first law of thermo-

dynamics. For an equilibrium steady-state system affixed to an ideal work reservoir parameterized

by λ and an ideal heat bath at inverse temperature β, we assign to each state z an energy Eλ(z)

and obtain [37]:

∆E = ∆λE︸ ︷︷ ︸+ ∆zE︸ ︷︷ ︸
.= W − Q. (4.15)
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Equation (4.15) defines work and heat in this restricted case as distinct contributions to the system’s

change in energy. Superficially, Eq. (4.9) is then a first law for steady-state surprisal in exactly the

same way that Eq. (4.15) is a first law for energy.

The change of viewpoint from E to φ as the central object represents a subtle but useful

generalization. It is one without additional risk. The same restrictions that give Eq. (4.15) also

imply (i) Boltzmann-distributed steady states as in Eq. (4.8), (ii) Wex → β(W −∆F eq), and (iii)

Qex → βQ. Thus, in this case:

kBT∆φ = ∆E −∆F eq

= (W −∆F eq)−Q. (4.16)

And, the mapping from energetic to surprisal-based first laws involves only the switch in viewpoint

from total work to excess work as the more direct quantity. Here, it is that work done atop the

change in equilibrium free energy. Since fluctuation theorems are phrased quite naturally in terms

of functionals of φ and realized path probabilities [28,40,42], generalizing the first law of Eq. (4.9)

is particularly amenable to interaction with them.

Treating φ as more fundamental than E carries utility beyond this convenience, however.

There are many more general settings than the canonical ensemble. These include, for example,

biological, active matter, and other NESS systems not Boltzmann-distributed in the energies at

stationarity [30,81,82]. In these cases, in definingWex stochastic-dynamically, Eq. (4.9) circumvents

issues with appropriately defining nonequilibrium steady-state free energies [28,42]. Finally, in any

situation where a relationship between E and φ can be derived, one can map Eq. (4.9) to Eq. (4.15)

directly. Moreover, the former retains its meaning—and, as we shall show, utility—even when the

latter is ill-defined.

Such is often the case in highly coarse-grained, effective state-space models of mesoscopic complex

phenomena where, at best, one estimates bounds on “true” entropy production [31,83,84,85,86].

The coarse-grained dynamics themselves, however, may be directly observed. And in these cases,

Eq. (4.9) holds exactly and remains interpretable at the level of the observed phenomena. This is

reminiscent of several similarly-phrased fluctuation theorems; e.g., Ref. [28]’s NESS trajectory class

fluctuation theorem.
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4.2.4. Information Ratchets.

Ratchet

A BT λ

aux

XtYt−1Yt−2Yt−3. . . Xt+1 Xt+2 Xt+3 . . .

Output Input

Time

Q W

∆Eaux

Figure 4.1. The information ratchet system. At each time step, the ratchet moves
along the tape, interacting with one bit at a time, and exchanging energy with the
coupled reservoirs in the process. New here is the auxiliary reservoir, which allows
for nonequilibrium steady states and another mode of energy exchange with the
ratchet-tape subsystem.

We are especially interested in a particular decomposition of Z into distinct subspaces—a

ratchet and a semi-infinite information tape—embedded in an isothermal environment at inverse

temperature β = 1/kBT , with kB Boltzmann’s constant, and in contact with a work reservoir

parameterized by λ and an auxiliary reservoir. The latter is introduced to capture unaccounted-for

degrees of freedom and allows the ratchet to exhibit NESSs [28]. Figure 4.1 illustrates the setting 1.

The ratchet interacts directly with only a single cell at a time from the information tape.

(Hereafter, we refer to a bit since we consider a tape with a binary alphabet. Generalizing to other

alphabet sizes is straightforward.) We assume that the joint dynamics of the ratchet, interacting

bit, and reservoirs is Markovian and independent of λ 2. At each time step, the ratchet:
1Figure 4.1 was created in part by modifying Ref. [87]’s Fig. 1, with permission from the authors.
2This is not to say that λ has no effect on the system, but to say that the system’s dynamics do not depend on it.
That is, the Markov transition matrix is independent of λ.
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(1) Moves one cell along the tape, putting it in contact with the next interaction bit; and

(2) Thermally interacts with the coupled reservoirs for a time τ .

Note that previous information ratchet schemes allowed the joint ratchet-tape system to fully

thermalize in each interaction step [46,48,74,75,88]. This meant that the joint dynamics reached

their stationary distribution before the next step. The following relaxes this timescale separation

requirement, unless specified.

We do not assign an energy to each state in the joint dynamics, since detailed balance is not

required. (In the previously-cited results detailed balance was used to calculate state energy differ-

ences.) Rather, we leverage the fact that in this isothermal setting Q,Qex,Qhk → βQ, βQex, βQhk.

And, we require the joint ratchet-bit-work system possesses fixed average energy over the sum of

both steps above. This is analogous to the canonical ensemble, but allows for the auxiliary reservoir.

Thus, any exchange of heat is rectified by an exchange of work with the work reservoir (on average).

In effect, rather than directly calculating works via state-to-state relative energies—as determined

by the detailed balance requirement—we can directly calculate heats via Eqs. (4.9)–(4.13) and the

isothermal setting.

To describe and decompose the information-bearing degrees of freedom, we split the random

variable Zn in to three parts: the random variable Rn (with alphabet Rn) corresponds to the

ratchet subsystem’s state at time n; the joint random variable Xn:∞ to the input tape at time

n—that portion of the information tape to which the ratchet has not yet written—and the joint

random variable Y0:n−1, for the output tape, to which the ratchet has written. Thus, at each n,

Zn = Rn, Xn:∞, Y0:n−1. This mirrors the decomposition of Refs. [46,48].

4.3. Information Processing First Law

Let µn be the NEDS at time step n, such that Zn ∼ µn. Suppose we have a system that begins

in µ0 and ends in µN , as driven by the protocol λ0:N . We begin by equating the trajectory (over all

possible state-space trajectories z0:N ) and state averages (justified in App. B) of the steady-state
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surprisal:

〈∆φλ〉 = ∆ 〈µ|φλ〉

.= 〈µN |φλN
〉 − 〈µ0|φλ0〉 . (4.17)

The lefthand side is, by definition, 〈Wex〉− 〈Qex〉. This is the averaged first law for φ as in Eq. (4.9).

For the righthand side, notice that:

〈µ|φλ〉 =
∑
z∈Z

µ(z)φλ(z)

= −
∑
z∈Z

µ(z) ln πλ(z)

= H[Z] + DKL[Z ‖Λ]. (4.18)

Hence, we have the information processing first law (IPFL):

∆H[Z] + ∆DKL[Z ‖Λ] = 〈Wex〉 − 〈Qex〉 . (4.19)

The lefthand side accounts for the “information processing”: the Shannon entropy change of the

system plus the change in its divergence from the local stationary distribution. (Alternatively,

the change in cross entropy between the system’s state distribution and the local steady-state

distribution.)

Moving ∆DKL[Z ‖Λ]—the averaged nonsteady-state free energy from Eq. (4.14)—to the right-

hand side recovers Eq. (4.3). This is, quite directly, a first law for information that expresses its

changes in terms of thermodynamic variables. This IPFL holds for transitions between NEDSs,

implying validity for NESS and even nonthermal systems, since the generalized excess quantities are

still well-defined by Eq. (4.9).

Stated in the form of Eq. (4.19), the IPFL makes no reference to the “conjugate” or “reversed”

dynamics involved in the definitions of Q and by extension Qhk. Rather, it is concerned strictly

with averages weighted by forward trajectories. However, substituting Eq. (4.13) does involve these
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conjugated dynamics. This leads us to express the IPFL equivalently as:

∆H[Z] + 〈Q〉 = 〈Wex〉+ 〈Qhk〉 −∆DKL[Z ‖Λ]. (4.20)

Here, the lefthand side is stochastic thermodynamics’ familiar total entropy production. Now,

though, it is broken into system (∆H[Z]) and environment (Q) pieces [42,43,89]. The righthand side

thus represents an alternative breakdown of the total entropy production into excess environmental

(Wex) and housekeeping (Qhk) pieces, as well as one due to initial (and final) state dependence

(∆DKL[Z ‖Λ]) [28,42,64,90]. Explicitly, the IPFL expresses a particular breakdown of the average

total entropy production. This decomposition clearly links information content with thermodynamic

processes that do not invoke conjugated dynamics.

4.3.1. Application to Information Ratchets.

Arriving at Eq. (4.19) required very minimal assumptions about the underlying SUS. Now,

we wish to specialize it to the information ratchet system implied by Sec. 4.2.4 and Fig. 4.1. In

particular, the isothermal environment takes our stochastic dynamical functionals to thermodynamic

energies. And, the distinct ratchet and tape subspaces allow for meaningful decomposition of the

information-bearing degrees of freedom.

First, we expand ∆H[Z] from Eq. (4.19). Splitting the joint Shannon entropies in terms of

mutual informations:

∆H[Z] = ∆H[R] + ∆H[X, Y ]−∆I[R : X, Y ]

= ∆H[R] + ∆H[X] + ∆H[Y ]−∆I[R : X, Y ]−∆I[X : Y ]. (4.21)

This further decomposes the IPFL of Eq. (4.19):

〈Wex〉 − 〈Qex〉 =

∆H[R] + ∆H[X] + H[Y0:n−1]−∆I[R : X, Y ]− I[Xn:∞ : Y0:n−1] + ∆DKL[Z ‖Λ].

(4.22)
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Equivalently, the breakdown of average total entropy production in Eq. (4.20) becomes:

〈Wex〉+ 〈Qhk〉 −∆DKL[Z ‖Λ] =

Q+ ∆H[R] + ∆H[X] + H[Y0:n−1]−∆I[R : X, Y ]− I[Xn:∞ : Y0:n−1]. (4.23)

Equation (4.21)’s decomposition took Eqs. (4.19) and (4.20) to Eqs. (4.22) and (4.23), respec-

tively. The decomposition is identical to that in Ref. [46]. However, there the goal was to take

asymptotic rates. That, together with the finite-state ratchet requirement, removed several terms.

Here, we pause to interpret each term in its finite-time context and comment on its contribution to

the averaged total entropy production.

The first term ∆H[R] monitors the change in information content of the ratchet’s states—a

change in the ratchet’s internal memory. If, as the ratchet interacts with the tape, it “gains memory”

in this sense, the joint system as a whole must become “more randomized”. And, equivalently, the

total averaged entropy production increases.

The second term ∆H[X] = H[XN :∞]−H[X0:∞] quantifies a change in the information content

of the input tape. Or, more specifically for finite alphabets, this is strictly nonpositive—the opposite

of the information “added” by the random variables X0:N−1. And so, the more random the input

tape, the more negative this term can be. We expect memoryless inputs to reduce the potential to

extract work compared to memoryful ones. There is, colloquially, less pattern to scramble [48]. We

shall see later that this is indeed the case for IPSLs. For the IPFL, in the meantime, negativity of

this term acts to reduce averaged total entropy production. Intuitively, removing randomness in the

input tape reduces overall entropy production.

The third term ∆H[Y ] is simply the information content of the output tape. Its impact with

countable spaces—that we assumed—is straightforward. Due to Shannon information’s nonnegativity,

the more random the ratchet has made the output tape, the greater the positive contribution to

average total entropy production.

The fourth term ∆I[R : X, Y ] tracks the change in shared information between the ratchet and

tape. As the ratchet interacts with bits from the input tape and writes to the output tape, it induces

correlation between it and the tape. While at first glance this recalls Ref. [48]’s (de)randomizer

axes, it is an altogether different term: they tracked induced correlations internal to the information
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tape; this term tracks induced correlation between the ratchet and the (entire input-output) tape.

Mutual information’s positivity makes the contribution to Eq. (4.21) strictly nonpositive, lowering

the average total entropy production. In other words, inducing correlation between the ratchet and

tape reduces the joint system’s entropy production and vice-versa.

Finally, the fifth term I[X : Y ] = I[XN :∞ : Y0:N−1] is the mutual information between the input

and output tapes. And so, again due to mutual information’s nonnegativity, it has the effect of

increasing the averaged total entropy production.

Taken altogether, Eqs. (4.22) and (4.23) delineate exact links between finite-time ratchet-tape

information processing and the joint system’s thermodynamic behavior. It is a specialization of

the IPFL to the case of a system constructed as in Fig. 4.1. Shortly, we use it as a starting point

to derive and generalize the previously-reported IPSLs for ratchet-tape systems [46,75]. However,

the inequalities in IPSLs are replaced by equalities of the IPFL in the same way that fluctuation

theorems of stochastic thermodynamics replace inequalities of thermodynamic second laws with

strict equalities. In point of fact, as we now show, fluctuation theorems directly take the IPFL to

IPSLs.

4.4. Ratchet First to Second Laws

The following derives several specializations to the information ratchet system class of Sec. 4.2.4

and Fig. 4.1, starting from Eqs. (4.19) and (4.20). To do this, it first leverages an integral fluctuation

relation to take the equality to an inequality. It then splits the effective state space as in Sec. 4.2.4,

along the way generalizing a recently-reported finite-time IPSL [75]. Finally, it takes asymptotic

limits to similarly modify the previous asymptotic IPSL [46,48,88] for these regimes. Since we

adopt the same assumptions as Sec. 4.2.4, hereafter the underlying dynamics of the joint ratchet-tape

space are Markovian. However, the statistical process that produces input and output tape symbol

sequences need not be Markovian. In the infinite tape case, they may even possess infinite-order

temporal correlations.

4.4.1. Fluctuations and Second Laws.

A crowning achievement of stochastic thermodynamics over the last several decades was to tame

arbitrarily far-from-equilibrium fluctuations. The results were collected as “fluctuation relations” or
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“fluctuation theorems”. (See Ref. [43] for a recent review.) They come in three main flavors: (i)

integral, relating to exponential averages over all possible trajectories [36,37,40,41]; (ii) detailed,

exposing a time reversal (a)symmetry between forward and reverse paths [38,39,42,61,62]; and

trajectory class, intermediating between the two [28,89,91].

We will not attempt a comprehensive review here. Besides noting those just listed, see also

Refs. [52,92]. Nonetheless, we will use, in particular, two integral fluctuation theorems:

1 =
〈

e
−
(

Wex+Qhk−∆Fnss
µ‖λ

)〉
and (4.24)

1 =
〈

e
−
(

Wex+Fnss
µ0‖λ0

)〉
. (4.25)

Asserting the convexity of the exponential, we apply Jensen’s inequality to derive the generalized

second laws:

∆H[Z] + 〈Q〉 ≥ 0 and (4.26)

〈Wex〉+ DKL[Z0 ‖Λ0] ≥ 0. (4.27)

Equation (4.26) is thus a consequence of the “total entropy production” integral fluctuation theorem.

Equation (4.25), first introduced in Ref. [28], generalizes the integral fluctuation theorem of Hatano

and Sasa [40] to include initial-state dependence. The resulting inequality in Eq. (4.27) shows that

initially-nonsteady states lower the bound on Wex.

As we now demonstrate, various IPSLs result directly from applying these integral fluctuation

theorems and Jensen’s inequality to the IPFL.

First, substitute Eq. (4.26) into Eq. (4.20). This gives, directly:

〈Q〉 ≥ −∆H[Z]. (4.28)

In an appropriate thermal environment, such as that of Fig. 4.1, this lower bounds the finite-time

dissipated heat and it is Ref. [46]’s Eq. (A7). In the ratchet setting, we may also rephrase this
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bound in terms of the averaged work β 〈W 〉 done by the system 3:

β 〈W 〉 ≤ ∆H[Z]. (4.29)

This is exactly Ref. [75]’s finite-tape IPSL, where Z denotes the joint random variable of their

ratchet and tape subspaces.

However, we can also substitute Eq. (4.25) into Eq. (4.19), yielding:

〈Qex〉 ≥ −∆H[Z]−DKL[ZN ‖ΛN ] (4.30)

or, equivalently via Eq. (4.13):

〈Q〉 ≥ 〈Qhk〉 −∆H[Z]−DKL[ZN ‖ΛN ]. (4.31)

This adjusts the finite-time dissipated heat to account for NEDSs. First, for finite spaces, nonsteady

final states lower the bound on dissipated heat. That is, we need not dissipate to full relaxation.

The presence of NESSs instead raises the bound by the amount of the total housekeeping heat.

As long as Qhk ≥ DKL[ZN ‖ΛN ], the result of an established IFT in even state spaces [28], this is

always a tighter bound than Eq. (4.28).

Rephrasing in terms of work:

β 〈W 〉 ≤ ∆H[Z] + DKL[ZN ‖ΛN ]− 〈Qhk〉 . (4.32)

This explicates the role of NEDSs on Ref. [75]’s Eq. (19) and establishes it under very general

conditions. We see two additional effects. The ensemble-averaged housekeeping heat Qhk lowers

the bound as an additional source of dissipation, while the final-state dependence DKL[ZN ‖ΛN ]

raises it. That is, we need not account for what would be dissipation if the system fully relaxed to

its steady states [90]. As before, this bound is always tighter than Eq. (4.29) in the case of even

state spaces.

Finally, applying the preceding decomposition of ∆H[Z] to Eq. (4.32) gives the analogue to

Ref. [75]’s finite-tape IPSL further decomposed to both account for NEDSs and delineate ratchet-tape

3That is, β 〈∆E〉 = 0 = −β 〈W 〉 − 〈Q〉. The signs here indicate that heat flowing from the bath into the ratchet is
done by the ratchet on its nonthermal surroundings.
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information dynamics:

β 〈W 〉 ≤ DKL[ZN ‖ΛN ]− 〈Qhk〉

+ ∆H[R] + ∆H[X] + H[Y0:n−1]−∆I[R : X, Y ]− I[XN :∞ : Y0:N−1]. (4.33)

With this, we can translate what each term of ∆H[Z] did to the averaged total entropy production

to its effect on the maximum extracted work. In short, information processing that reduces the

averaged total entropy production identically reduces the upper bound on ensemble-averaged work

production: we must produce entropy to generate work.

4.4.2. General Asymptotics.

The preceding results apply for all finite times or, equivalently, for finite tapes. Now, we

address asymptotics. Our procedure is to take N →∞ and divide the quantities of interest by N ,

giving an asymptotic rate per time step. For notational simplicity, we use the dot notation for the

thermodynamic quantities:

˙〈Q〉 .= lim
N→∞

1
N
〈Q〉 . (4.34)

And so on, for ˙〈Wex〉, ˙〈Qex〉, ˙〈Qhk〉, and ˙〈W 〉. We now take the asymptotic limit of Eq. (4.22). In

particular, as in Ref. [46] we have (i) limN→∞ ∆H[X]/N = −hµ, (minus) the Shannon entropy rate

of the process generating the input tape; (ii) limN→∞ H[Y0:N−1]/N = h′
µ, the Shannon entropy rate

of the process generating the output tape; and (iii) limN→∞ I[XN :∞ : Y0:N−1]/N = 0.

The remaining two pieces of ∆H[Z], however, vanish only under restricting to finite-state

ratchets. Without that assumption we are left with an asymptotic IPFL:

˙〈Wex〉 − ˙〈Qex〉 = ∆hµ

+ lim
N→∞

1
N

(∆H[R]−∆I[R : X, Y ])

+ lim
N→∞

1
N

∆DKL[ZN ‖ΛN ], (4.35)
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and similarly write the asymptotic IPSL:

β ˙〈W 〉 ≤ ∆hµ − ˙〈Qhk〉

+ lim
N→∞

1
N

(∆H[R]−∆I[R : X, Y ])

+ lim
N→∞

1
N

DKL[ZN ‖ΛN ]. (4.36)

This generalizes the previous bound by accounting explicitly for final-state dependence, nonequilib-

rium steady states, and potentially infinite-state ratchets.

We leave detailed analytical consideration of the limits for infinite-state ratchets and their

con/divergence to a sequel. However, we will interpret the contextual meaning of the remaining

limits for countably infinite ratchets.

First, limN→∞ ∆H[R]/N is the rate of change of the ratchet’s statistical complexity Cµ[R]

per time step, lower bounded by the statistical complexity of its ε-machine representation from

computational mechanics [4, 19]. In essence, this limit measures the rate of increase in ratchet

memory as it reads an infinite stream of incoming bits. It is only nonzero for a ratchet with an

infinite memory capacity. The resulting device is able to violate the finite-state asymptotic IPSL

by leveraging its infinite internal memory to produce work in excess of that bound [88]. For any

finite-state ratchet, since in that case H[RN ] is bounded from above, limN→∞ ∆H[R]/N vanishes.

It vanishes also for any infinite-state ratchet that does not asymptotically gain memory from an

infinite stream of inputs. More precisely, this holds for a ratchet whose internal state distribution

approaches a fixed value unaffected by the incoming bit stream.

Second, limN→∞ ∆I[R : X, Y ]/N is the rate of change of correlation between the ratchet and

the total information tape. This limit evaluates nonzero only if (i) the ratchet continually gains

memory as above and (ii) the ratchet continually induces correlation between itself and the total

input-output tape.

Finally, limN→∞ ∆DKL[Z ‖Λ]/N is a kind of asymptotic movement away from steady-state

conditions. Specifically, it can be nonzero only when (i) DKL[ZN ‖ΛN ] is infinite for any N—e.g.,

the system is “infinitely far” from stationarity—and (ii) after each time step the joint ratchet-

tape system’s distribution gets progressively farther from the underlying stationary distribution.
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Colloquially, the interaction timescale is so short that one can asymptotically take the ratchet-tape

system further away from thermalization by constantly changing the interaction bit. The presence of

this term at all implies the existence of a stationary distribution for the ratchet-tape system. This is

a fact not guaranteed for infinite ratchets [88,93], but assumed by our stochastic (thermo)dynamical

formalism.

4.4.3. Finite Ratchet Asymptotics.

The assumption of a finite-state ratchet—in line with potential physical implementation—

simplifies the asymptotic analysis. (As it did in Refs. [46,88].) This results in an asymptotic IPFL

for fnite-state systems:

˙〈Wex〉 − ˙〈Qex〉 = ∆hµ. (4.37)

And, finally, we have our correction to the previously-reported IPSL for finite ratchets interacting

with an infinite tape:

β ˙〈W 〉 ≤ ∆hµ − ˙〈Qhk〉. (4.38)

The correction is simply ˙〈Qhk〉. For for even state spaces this is nonnegative and so tightens the

previous bound. Said simply, housekeeping dissipation takes away from the maximum extracted

work: One cannot harness what must go towards maintaining NESSs.

4.5. Asymmetric Stochastic 4-Cycle

The presence of housekeeping dissipation in Eq. (4.38) suggests meaningful change in ratchet

functional thermodynamics [94], depending on the degree to which the joint ratchet-bit system

violates detailed balance. To demonstrate this dependence we introduce a two-state ratchet coupled

to the information tape called the “asymmetric stochastic 4-cycle” (AS4C). The states are labeled

A and B. With joint ratchet-bit Markov chain states ordered by (A⊗ 0, A⊗ 1, B⊗ 1, B⊗ 0), the
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dynamics obey the row-stochastic transition matrix:

T(p, q) .=



0 p 0 1− p

1− p 0 p 0

0 1− qp 0 qp

p 0 1− p 0


. (4.39)

This two-parameter ratchet family, pictured in Fig. 4.2, generically violates detailed balance

and allows 0→ 1 and 1→ 0 transitions to be unequally favored in terms of transition probabilities.

The latter fact manifests as a “rotational” asymmetry in the cycle—given by the scaling parameter

q ∈ (0, 1]. When q = 1, the cycle is symmetric: 0→ 1 and 1→ 0 transitions are equally favored,

but the system exhibits stationary directionality in its joint state space. In the symmetric case,

detailed balance is achieved only when p = 1
2 .

A⊗ 1

A⊗ 0 B⊗ 0

B⊗ 1

p

p

qp

p

1− p

1− qp

1− p

1− p

Figure 4.2. Markov chain describing the joint ratchet-bit dynamics of the asym-
metric stochastic 4-cycle (AS4C) ratchet family. The behavior is parameterized by
p ∈ (0, 1) and q ∈ (0, 1]. The ratchet generically violates detailed balance. When
q 6= 1 it controls rotational asymmetry and can probabilistically favor either 0→ 1
or 1 → 0 transitions. The symmetric value q = 1 equally favors these transitions,
but the dynamics of the joint space still exhibits directionality. Detailed balance is
satisfied in this case only for p = 1/2.
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Figure 4.3. Averaged rate of housekeeping entropy production ˙〈Qhk〉 for the asym-
metric stochastic 4-cycle, as a function of parameters p and q. This is the exact
amount by which Eq. (4.38) tightens Eq. (4.1).

The extent to which a discrete- and even-state Markov chain system violates detailed balance on

average is given by ˙〈Qhk〉. Via a single-step average of Eq. (4.13) we thus obtain for discrete time:

˙〈Qhk〉 =
∑
i 6=j

π(i)[T]ij log
π(i)[T]ij
π(j)[T]ji

, (4.40)

where i and j index the states.

This is also the exact amount by which the previous asymptotic ESS IPSL Eq. (4.1) was tightened

by our NESS IPSL in Eq. (4.38). To visualize this difference—the degree of tightening—Fig. 4.3

plots ˙〈Qhk〉 while sweeping parameters p and q.

4.5.1. Input-Output Transducer.

As one sees, ˙〈Qhk〉 is far from zero over a wide range of the parameter space. These are energies

that must be dissipated to maintain the system’s NESS character. And so, one expects, they have

significant impacts on the system’s ability to extract work from an information reservoir. This is

to say, with our correction to the ESS IPSL in hand, we can analyze bounds on the functional

thermodynamics of this ratchet family.
65



To do so, we must calculate the remaining terms in Eq. (4.38), namely the Shannon entropy rates

hµ and h′
µ of the processes generating the input and output state sequences. Following Refs. [46,48],

we achieve this by first translating our 4-state joint ratchet-bit Markov chain into a 2-state ratchet

transducer that accepts as input the process generating the input symbol statistics—in the form of

a hidden Markov chain (HMC)—and produces as output the HMC generating the output symbol

statistics.

A transducer is specified by its input-output-labeled matrices M(out|in):

M(out|in) .= PT
in TPout. (4.41)

The AS4C ratchet has two projection matrices P0 and P1 given by:

P0 =



1 0

0 0

0 0

0 1


and P1 =



0 0

1 0

0 1

0 0


. (4.42)

A B
1|0 : p

0|1 : 1− p

1|0 : 1− p

0|1 : qp

0|0 : 1− p

1|1 : p

0|0 : p

1|1 : 1− qp

Figure 4.4. The transducer corresponding to the 4-state joint ratchet-bit Markov
chain of the asymmetric stochastic 4-cycle (AS4C). The transducer has two internal
states, A and B, and accepts 0 or 1 as an input bit symbol. The edges are labeled
output bit|input bit : probability.

This defines the AS4C’s transducer, whose state-transition diagram is visualized in Fig. 4.4.

Now, we compose it with any input HMC—specified by its symbol-labeled transition matrices

U(x)—to give the output HMC producing the symbol statistics on the output tape, specified by

V(y) [13,48]. The output HMC state space is the Cartesian product of the state spaces of the input

HMC and the transducer. Let i, j index the states of the input HMC and i′, j′ index those of the
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transducer. Then:

V
(y)

i×i′→j×j′ =
∑

x

M
(y|x)
i′j′ U

(x)
ij . (4.43)

4.5.2. All-1s Driving.

To simplify determining h′
µ, we drive the AS4C transducer with the all-ones process: an input

tape of all 1s, exhibiting no randomness whatsoever. Note that generically the output HMC of a

memoryless ratchet driven by a memoryless input process results in a highly nonunifilar output

HMC, for which determining the entropy rate is very challenging [48]. However, for all-1s driving,

the AS4C produces the unifilar output HMC shown in Fig. 4.5.

A B0 : 1− p 0 : qp

1 : p

1 : 1− qp

Figure 4.5. Output HMC given by the AS4C transducer acting on the all-1s input
tape. The ratchet in this case scrambles an informationless input, thereby introducing
the capacity to do work.

Since this HMC is unifilar—an internal state and an output symbol completely determine the

next internal state—and since its two states make probabilistically distinct future predictions, it

is a finite-state ε-machine of computational mechanics [4]. That the output tape’s process can be

described this way enables direct calculation of the output entropy rate [12]. Letting i and j index

the output HMC’s internal states, π be its stationary distribution, and y an output symbol, one has:

h′
µ = −

∑
y,i,j

π(i)V (y)
ij log V

(y)
ij . (4.44)

Figure 4.6 plots this over the parameter space.

Setting the input process to have zero randomness also sets hµ = 0 for it: ∆hµ = h′
µ, all

intrinsic randomness in the output tape is induced by the ratchet and, therefore, is available as a

thermodynamic resource for work extraction. For the case of totally ordered input, Eq. (4.38) reads:

β ˙〈W 〉 ≤ h′
µ − ˙〈Qhk〉. (4.45)
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Figure 4.6. Change in Shannon entropy rate ∆hµ of the information tape, as
generated by the AS4C ratchet driven by the all-1s process. Since the input process
is entirely ordered with hµ = 0, this represents the ESS IPSL’s maximum upper
bound β ˙〈W 〉max. And this, in turn, precludes eraser functionality. That is, one
cannot erase information that was never there.

Summarizing the requirements for work extraction: the ratchet must, at minimum, induce random-

ness in the output tape faster than it dissipates entropy to maintain its NESS.

Since with this particular driving ∆hµ > 0 for all parameter combinations, the information

eraser functionality of Refs. [46,48] is precluded. Instead, we have either an engine (W > 0) or a

dud (W ≤ 0). Most importantly, the presence of ˙〈Qhk〉 here restricts the regions of parameter space

where the ratchet can function as an engine. Or, alternatively, for some p and q the housekeeping

costs are higher than the ratchet’s ability to compensate by scrambling the information tape. This

forces the previous “potential engine” regions into dud ones.

This is indeed the case, as Fig. 4.7 shows. In fact, only a small part of the “engine” functionality

remains within bounds. Figure 4.8 shows this directly, where only “potential engine” regions of

parameter space are colored. Since an entirely ordered input drives the ratchet, without accounting

for the NESS correction one would expect all parameter space to allow potential work extraction.

In this way, explicitly accounting for a system’s NESS nature enables qualitative (and quantitative)

correction to its allowed behaviors.

4.6. Conclusion

We began by deriving, under very general circumstances, an IPFL that connects ensemble-

averaged thermodynamic behavior to a system’s information processing via a strict equality. We
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Figure 4.7. NESS-tightened upper bound on work extraction β ˙〈W 〉max = ∆hµ −
˙〈Qhk〉 for the AS4C driven by the all-1s process. To the extent that this differs from

Fig. 4.6, superimposed here in grey, it represents a change of maximum possible
work extraction.
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Figure 4.8. Parameter space regions that permit the all-1s-driven AS4C ratchet
to function as an information engine. Notably, this includes only a band centered
around detailed-balanced dynamics. The remainder of the uncolored parameter space
forces β ˙〈W 〉max < 0, where the ratchet must function as a dud.

showed that this equality is, equivalently, a decomposition of stochastic thermodynamics’ average

total entropy production. To get there, we placed very few restrictions on the underlying system’s

dynamics, considering transitions between nonequilibrium dynamical states.

From this first law, we then applied integral fluctuation theorems to take the equalities to

inequalities, reproducing and then tightening established bounds on average work production. By

splitting the system into ratchet and tape subspaces and considering both finite and infinite-time
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cases, we similarly reproduced and then tightened previous IPSLs of autonomous Maxwellian

ratchets [46, 48, 75, 88] to explicate the effects of nonequilibrium dynamical states. Finally, we

illustrated these results with an example ratchet-tape system—the AS4C, driven by the ordered

all-1s process. This demonstrated that, even under extreme simplification, the presence of NESSs

introduced qualitative corrections to a ratchet’s allowed behavior. In short, the presence of

housekeeping entropy costs, induced by NESSs, directly counteracts a ratchet’s ability to glean

useful work from the creation of information.

Much room for further development remains, particularly in light of the role of fluctuation

theorems in deriving these IPSLs. While our derivation concerned full ensemble averages, recent

development of various trajectory-class fluctuation theorems [28,89] highlight opportunity to derive

“trajectory class” IPSLs that would be more amenable to experimental verification via their freedom

from rare-event statistical errors [55].

In addition, that odd-parity variables allow for meaningful decomposition of the housekeeping

heat suggests further explication of their effects on the derived IPFLs and IPSLs, including bounds

on asymptotic work extraction. Indeed, recent results in stochastic thermodynamics show that

where a known, constrained splitting of the joint state space is available, it may be used to tighten

the corresponding second laws [95]. Finally, considering infinite-state ratchets revealed new terms in

the underlying IPSL whose convergence or divergence in general cases warrants detailed analytical

investigation.

Taken altogether, the results demonstrate how a straightforward combination of tools—average

change in steady-state surprisal and a single integral fluctuation theorem—simplify and generalize

the derivation of various IPSLs. In turn, these place bounds on the extent to which systems can

leverage information-bearing degrees of freedom to perform useful work. Furthermore, we showed

explicitly how such inequalities arise from underlying equalities. This is in much the same fashion

as stochastic thermodynamics’ fluctuation theorems simplify to the original statement of the second

law [36,37].
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CHAPTER 5

Conclusion

After reviewing some of the basic notions of information theory and computational mechanics,

this dissertation began with a detailed look at the foundations of fluctuation theorems in stochastic

thermodynamics, a body of theory binding fluctuations to steady-state quantities in arbitrarily

nonequilibrium systems. We found that, suggestively, many of the core functionals of stochastic

thermodynamics generalize to dynamical functionals of individual path probabilities and surprisals,

suggesting use binding fluctuating to steady-state quantities in generally nonstationary stochastic

processes—in particular, ones which violate detailed balance in their effective dynamics, and so

exhibit nonequilibrium steady states.

With an eye toward just such an application—models of voltage-gated ion channels in mammalian

neural membranes—we generalized and extended the theoretical reach of fluctuation theorems,

deriving a trajectory class theorem for nonequilibrium steady-state, mesoscopic complex systems.

This, in turn, provided a theoretical bedrock for probing highly nonequilibrium systems at whichever

scales are most appropriate for experiment. In simulating such a potential experiment in silico, we

found that the existence of nonequilibrium steady states in one of the two considered channels—

channels which otherwise perform similar biological functionality—led to drastically different

observed thermodynamic behavior. Indeed, the presence of nonequilibrium steady states brings with

it—via an additional integral fluctuation theorem—an additional “dimension” of thermodynamic

second law and additional opportunities for its single-shot violation. We observed both of these

phenomena in simulations of the channels as driven by a biologically-plausible action potential

signal.

Having extended stochastic thermodynamics in this vein, we then turned to explicit models of

thermodynamic information processing: autonomous Maxwellian ratchets, which probe Maxwell’s

demon-like functionality and its requisite thermodynamic cost. We found that the viewpoint of

generalized stochastic thermodynamics in the preceding study, one in which a fundamental shift is
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made from viewing energy to viewing surprisal as the main “state function” of interest, lent itself

naturally to deriving a first law for information processing. This described a system’s change in

Shannon information in exactly the same way that the familiar first law of thermodynamics does for

a system’s change in energy. Then, a splitting of the effective state space as appropriate to analyze

a Maxwellian ratchet led directly to an equality in place of the “second law-type” inequalities of

previous studies.

That equality, when decomposed to explicate the effects of nonequilibrium steady states, was

then shown to couple explicitly with stochastic thermodynamics’ fluctuation theorems to induce

generalized and tightened forms of two information processing second laws for Maxwellian ratchets—

one for finite information reservoirs and one for the infinite, asymptotic case, made explicitly tractable

by the techniques of computational mechanics. Indeed, the information processing first law itself

turned out to be a particular breakdown of the entropy production in stochastic thermodynamics—in

a sense, it turned out that fluctuation theorems themselves lay at the heart of producing the links

between information processing and thermodynamic second laws in information-thermodynamic

systems.

Application of this revised second law to explicitly nonequilibrium steady-state information

ratchets revealed the dramatic potential changes in allowed thermodynamic functionality: while

a system may still, in principle, leverage the creation of information to do work, it must now

compensate additionally for the entropic housekeeping costs associated with nonequilibrium steady

states. Since an enormous majority of mesoscopic systems appear to violate detailed balance at

observed scales—take, for example, the sodium ion channel model of Ch. 3—this suggests detailed

consideration of such housekeeping costs and their corrections to related information processing.

In summary, this dissertation extened, leveraged, and combined various techniques of stochastic

thermodynamics, information theory, and computational mechanics towards a principled under-

standing of the relationships between thermodynamics and information processing in mesoscopic

complex systems.
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5.1. Future Outlook

The results of the foregoing leave exciting space for future exploration.

First, the ion channel models considered as part of the example class in Ch. 3 were Markov chains,

explicit effective-state models derived from single-channel measurements of current distributions.

We did not question their genesis in using them to demonstrate the thermodynamic techniques we

developed, but noted that they are not unique: indeed, many different effective models of those

ion channels exist and are under development in the literature. At root, they share a common

feature: output current—primarily, is it flowing or not?—is the observed quantity; the internal

states themselves are not observed.

This suggests considering hidden Markov models for these systems, and leveraging the techniques

of computational mechanics to describe their information-bearing structure and function. However,

such a model is inherently nonunifilar: only one state (or transition) is associated with current

production, while multiple may be associated with its absence. This calls forth use of recently-

developed computational mechanical tools for probing nonunifilar hidden Markov models [18,19,96],

and additionally prompts reevaluation of a common way to determine the energetics of a complex

system, namely by treating an explicit Markov model over its state space.

Ch. 4 bumps into this same conundrum under a different context: for all but an entirely-ordered

drive, even the simply-constructed hidden Markov model for its information ratchet system becomes

highly nonunifilar. A continuing analysis of the effects of nonequilibrium steady states on an

information-processing complex system might leverage recently-developed tools in the theory of

computational mechanics.

The central theoretical result of Ch. 4, meanwhile, rests upon a full trajectory average of the

steady-state surprisal. The result, an information processing first law, proceeded to unify and

generalize several previously independent results in information and second law thermodynamics.

What of the trajectory class theorem of Ch. 3 and those of Refs. [89,91]? Application to the theory

in Ch. 4 suggests the develoment of a trajectory class information processing first law, capable of

tuning the averages of the theory to adapt to appropriate experimental conditions.

Additionally, recent breakdowns of the housekeeping entropy production to include the effects of

odd-parity state and control variables suggest yet another layer of decomposition to both the first
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law of Ch. 4 and to the trajectory class theorem of Ch. 3: can we isolate entropic and information-

processing costs associated directly with odd-parity spaces? Indeed, the recently-developed momen-

tum computing paradigm [97] promises a rich testbed for such theoretical development, particularly

in light of computing with nonequilibrium steady-state systems.

Finally, broad classes of complex systems—to the author’s particular interest, landscape-

ecological ones, for example—are probed via (nearly) continuous-state, continuous-time, noisy

measurements. In addition, the continuous measurement alphabet—say, the interval [0, 1] indicating

a particular chemical’s concentration in soil—often carries genuine scientific meaning in the ordering

and metric over its alphabet space. While the theoretical bedrock of computational mechanics—its

predictive equivalence relation—still applies, computational cost as well as interpretive power suffer

using its traditional techniques, and the equivalence relation as-stated is agnostic to ordering or

metric structure of the alphabet space. Research considering the construction of predictive states in

more general settings—including continuous spaces—is ongoing [20,21,22,23]. Yet ecosystems,

like ion channels, operate on physical substrates; they and their constituents consume, transorm,

and produce energy as they do the same for information; they as well often operate far from

equilibrium and far from steady state—for example, as they move through successional stages. The

results of Chs. 3 and 4, along with developments of continuous-state extensions of computational

mechanics, lead to an exciting program for future application-based inquiry: to what extent does

the emergent complexity of ecological systems reflect their nonequilibrium thermodynamics? Are

there computation-theoretic and thermodynamic signatures of biotic life throughout successional

stages—if so, what form do they take?

Altogether, this dissertation has shown the remarkable reach of generalizing the paradigm

and purview of stochastic thermodynamics. However, the generalizations in many cases bring

added subtleties and considerations—most notably, subtleties induced by infinite predictive states,

odd-parity variables, an appropriate thermodynamics of hidden Markov models, and the delicate

questions of computational mechanics for continuous-alphabet, continuous-time systems. It is

the author’s greatest hope that these ideas, already deeply intertwined, someday coalesce into a

theory combining the computational and stochastic-thermal mechanics of the complex systems so

ubiquitous in the natural world.
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APPENDIX A

NESS TCFT Derivation

In addition to requiring a unique stationary distribution for each protocol value, we assume that

for any x0:N ∈ XN+1:

(1) xN :0 ∈ XN+1,

(2) PµF(x0:N ) 6= 0 =⇒ PµF(xN :0) 6= 0, and

(3) RµR(xN :0) 6= 0 =⇒ RµR(x0:N ) 6= 0.

The second and third requirements, in particular, forbid one-way-only transitions in the discrete-

time dynamic. Once we derive the TCFT, we will discuss the edge cases of completely irreversible

trajectories.

Given the preceding constraints, a slightly rearranged form of Ref. [42]’s NESS DFT reads:

RµR(xN :0) = PµF(x0:N ) e−(Wex+Qhk−∆Fnss) .

We wish to integrate both sides over a trajectory class—the measurable subset C ⊆ XN+1 of

trajectories. We also define the reverse trajectory class CR
.= {xN :0 |x0:N ∈ C}. The following

derivation mimics that of Ref. [53] after their Eq. (F3).

Integrating the lefthand side gives:

∫
[x0:N ∈ C]RµR(xN :0) dx0:N

=
∫

[x0:N ∈ C]RµR(xN :0) dxN :0

=
∫

[xN :0 ∈ CR]RµR(xN :0) dxN :0

= RµR(CR) ,

where [·] is the Iverson bracket.
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Integrating the righthand side gives:

∫
[x0:N ∈ C]PµF(x0:N ) e−(Wex+Qhk−∆Fnss) dx0:N

=
∫
PµF(x0:N ∩ C) e−(Wex+Qhk−∆Fnss) dx0:N

= PµF(C)
∫
PµF (x0:N |C) e−(Wex+Qhk−∆Fnss) dx0:N

= PµF(C)
〈
e−(Wex+Qhk−∆Fnss)

〉
C

,

where 〈 · 〉C is the average over the trajectory class C. Thus, we have Eq. (3.24)—a TCFT for NESS

systems, whose forward and reverse processes may start in arbitrary distributions:

RµR(CR)
PµF(C) =

〈
e−(Wex+Qhk−∆Fnss)

〉
C

. (A.1)

Now, it remains to investigate the edge cases. Suppose that either (i) PµF(C) = 0 or (ii)

RµR(CR) = 0, but not both. (The latter would amount to analyzing fluctuations for a pair of

trajectories that never occur.) Since our probabilities are strictly nonnegative, the possible behaviors

of the lefthand side are either +∞ or 0, respectively, by considering the limit of a vanishing

probability. In case (i), by definition either e−Qhk → +∞ or e∆Fnss → +∞ (or both) for each

forward trajectory, yielding agreement with the lefthand side. In case (ii), similarly either e−Qhk → 0

or e∆Fnss → 0 (or both) for each forward trajectory. Since the preceding derivation established the

TCFT for all nondiverging cases, this establishes its validity even in the divergent limiting cases.
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APPENDIX B

Trajectory versus State Averaging

The main result of Ch. 4 relies on the equivalence between 〈∆φλ〉 and ∆ 〈µ|φλ〉 = 〈µN |φλN
〉 −

〈µ0|φλ0〉. The former refers to ∆φλ’s average over an ensemble {x0:N+1} of repeated trajectories

and, thus, means 〈φλ〉 = 〈Wex〉 − 〈Qex〉. The latter refers to two specific state averages of φλ.

Namely, those at the trajectory’s endpoints. And, it is equal to ∆H[µ] + ∆DKL[µ ‖π]. We establish

the equivalence here.

Definition B.0.1. The trajectory average of a path-dependent quantity g(x0:N+1), denoted 〈g〉,

is:

〈g〉 .=
∫

g(x0:N+1) Pr (x0:N+1)
(

N∏
i=0

dxi

)
.

Definition B.0.2. The state average of a quantity f(xi), denoted 〈µi|h〉, is:

〈µi|f〉
.=
∫

f(xi) Pr (xi) dxi .

Lemma B.0.1. For any f(xn) that depends only on one point 0 ≤ xn ≤ N in the path, 〈f〉 = 〈µn|f〉.

Proof. We explicitly evaluate the trajectory average. Consider two cases: (i) n = N , and (ii)

0 ≤ n < N .

(i) First, split the path probability into two pieces: Pr (x0:N+1) = Pr (x0:N ) Pr (xN | x0:N ). Now,

evaluate the integrals for dx0 through dxN−1:

∫
Pr (x0:N ) Pr (xN | x0:N )

(
N−1∏
i=0

dxi

)
= Pr (xN ) ,

by the law of total probability. The remainder is the dxN integral:

∫
Pr (xN ) f(xN ) dxN = 〈µN |f〉 ,
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by definition.

(ii) Again split the probability, but now as Pr (x0:N+1) = Pr (x0:n+1) Pr (xn+1:N+1 | x0:n+1). Evalu-

ate the integrals for dxn+1 through dxN :

∫
Pr (xn+1:N+1 | x0:n+1)

 N∏
i=n+1

dxi

 = 1

by probability conservation. What remains is exactly case (i).

�

This assumes a truly finite stochastic process, such that no conditioning before x0 or after xN is

possible or relevant. However, the result is robust in the limit of a bi-infinite stochastic process:

evaluating the future integral in (ii) still yields 1 in the N →∞ limit. And, then, the past integral

in (i) still gives Pr (xn), even as the lower bound extends to −∞.

Furthermore, we did not require Markovity, ergodicity, or even stationarity for the underlying

stochastic process. The result, then, appears quite general. This is not too surprising. A point

function’s average over paths should not depend on the path. And, indeed, this result would be

quite useless if not for the link between a path-independent (∆φλ) and path-dependent (Wex and

Qex) quantities provided by the nonaveraged First Law.
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