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METHODOLOGY

METABOLIC: high-throughput profiling 
of microbial genomes for functional traits, 
metabolism, biogeochemistry, and community-
scale functional networks
Zhichao Zhou1, Patricia Q. Tran1,2, Adam M. Breister1, Yang Liu3, Kristopher Kieft1,4, Elise S. Cowley1,4, 
Ulas Karaoz5 and Karthik Anantharaman1*  

Abstract 

Background: Advances in microbiome science are being driven in large part due to our ability to study and infer 
microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-
cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their 
functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools 
for analyses of genomic data can annotate and depict metabolic functions to some extent; however, no standard-
ized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite 
exchanges, microbial interactions, and microbial contributions to biogeochemical cycling.

Results: We present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software 
to advance microbial ecology and biogeochemistry studies using genomes at the resolution of individual organ-
isms and/or microbial communities. The genome-scale workflow includes annotation of microbial genomes, motif 
validation of biochemically validated conserved protein residues, metabolic pathway analyses, and calculation of 
contributions to individual biogeochemical transformations and cycles. The community-scale workflow supple-
ments genome-scale analyses with determination of genome abundance in the microbiome, potential microbial 
metabolic handoffs and metabolite exchange, reconstruction of functional networks, and determination of microbial 
contributions to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled 
genomes, or single-cell genomes. Results are presented in the form of tables for metabolism and a variety of visualiza-
tions including biogeochemical cycling potential, representation of sequential metabolic transformations, commu-
nity-scale microbial functional networks using a newly defined metric “MW-score” (metabolic weight score), and meta-
bolic Sankey diagrams. METABOLIC takes ~ 3 h with 40 CPU threads to process ~ 100 genomes and corresponding 
metagenomic reads within which the most compute-demanding part of hmmsearch takes ~ 45 min, while it takes ~ 5 
h to complete hmmsearch for ~ 3600 genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC 
provides better performance compared to other software and online servers. To highlight the utility and versatility of 
METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets from the marine subsurface, terrestrial 
subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut.
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Introduction
Metagenomics and single-cell genomics have trans-
formed the field of microbial ecology by revealing a rich 
diversity of microorganisms from diverse settings, includ-
ing terrestrial [1–3] and marine environments [4, 5] and 
the human body [6]. These approaches can provide an 
unbiased and insightful view into microorganisms medi-
ating and contributing to biogeochemical activities at a 
number of scales ranging from individual organisms to 
communities [7–9]. Recent studies have also enabled the 
recovery of hundreds to thousands of genomes from a 
single sample or environment [8, 10, 11]. However, anal-
yses of ever-increasing datasets remain a challenge. For 
example, there is a lack of scalable and reproducible bio-
informatic approaches for characterizing metabolism and 
biogeochemistry, as well as standardizing their analyses 
and representation for large datasets.

Microbially mediated biogeochemical processes serve 
as important driving forces for the transformation and 
cycling of elements, energy, and matter among the litho-
sphere, atmosphere, hydrosphere, and biosphere [12]. 
Microbial communities in natural environmental settings 
exist in the form of complex and highly connected net-
works that share and compete for metabolites [13–15]. 
The interdependent and cross-linked metabolic and bio-
geochemical interactions within a community can pro-
vide a relatively high level of plasticity and flexibility [16]. 
For instance, multiple metabolic steps within a specific 
pathway are often separately distributed in a number of 
microorganisms and they are interdependent on utiliz-
ing the substrates from the previous step [2, 17, 18]. This 
scenario, referred to as “metabolic handoffs,” is based on 
sequential metabolic transformations, and provides the 
benefit of high resilience of metabolic activities which 
make both the community and function stable in the face 
of perturbations [17, 18]. It is therefore highly valuable to 
obtain the information of microbial metabolic function 
from the perspective of individual genomes as well as the 
entire microbial community.

Currently, there are many quantitative software and 
platforms for reconstructing species and community-
level metabolic networks [19–25]. They are largely based 
on building microbial metabolic models containing reac-
tions for substrate utilization and product generation 

[15, 19]. Based on individual microbial models, meta-
bolic phenotypes for the whole community can be fur-
ther predicted [15]. These approaches allow providing 
mechanistic bases for predicting and thus operating com-
munity metabolisms based on the given environmen-
tal conditions and predicted microbial phenotypes [26]. 
Thus, they are more focused on illustrating the operating 
principles of community metabolisms and the underly-
ing metabolic networks of connected reactions to achieve 
better outcomes for metabolite production [21, 22], 
industrial applications [19], drug discovery [19], etc.

Yet, seldom have approaches been developed to study 
the functional role of microorganisms in the context of 
biogeochemistry and community-level functional net-
works [27, 28]. Such tools are based on the principles of 
facilitating the understanding of microbially mediated 
biogeochemical activities. The tools ask for identifying 
and providing metabolic predictions on the functional 
details, transformations of nutrients and energy, and 
functional connections for microorganisms within the 
community [29]. The resulting genome-informed micro-
bial metabolisms are important for understanding the 
microbial roles within a whole community in mediating 
the biogeochemical processes. Currently, such quantita-
tive approaches to interpret functional details, recon-
struct metabolic relationships, and visualize microbial 
functional networks are still limited [27, 28].

Prediction of microbial metabolism relies on the anno-
tation of protein function for microorganisms using 
a number of established databases, e.g., KEGG [30], 
MetaCyc [31], Pfam [32], TIGRfam [33], SEED/RAST 
[34], and eggNOG [35]. However, these results are often 
highly detailed, and therefore can be overwhelming to 
users. Obtaining a functional profile and identifying 
metabolic pathways in a microbial genome can involve 
manual inspection of thousands of genes [36]. Organiz-
ing, interpreting, and visualizing such datasets remains 
a challenge and is often untenable especially with data-
sets larger than one microbial genome. There is a criti-
cal need for approaches and tools to identify and validate 
the presence of metabolic pathways, biogeochemical 
function, and connections in microbial communities in 
a user-friendly manner. Such tools addressing this gap 
would also allow standardization of methods and easier 

Conclusion: METABOLIC enables the consistent and reproducible study of microbial community ecology and 
biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the integration of 
uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely 
available under GPLv3 at https:// github. com/ Anant haram anLab/ METAB OLIC.

Keywords: Functional traits, Metagenome-assembled genomes, Microbiome, Biogeochemistry, Metabolic potential, 
Microbial functional networks

https://github.com/AnantharamanLab/METABOLIC
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integration of genome-informed metabolism into bio-
geochemical models, which currently rely primarily on 
physicochemical data and treat microorganisms as black 
boxes [37]. A recent statistical study indicates that incor-
porating microbial community structure in biogeochemi-
cal modeling could significantly increase model accuracy 
of processes that are mediated by narrow phylogenetic 
guilds via functional gene data, and processes that are 
mediated by facultative microorganisms via community 
diversity metrics [38]. This highlights the importance of 
integrating microbial community and genomic informa-
tion into the prediction and modeling of biogeochemical 
processes.

Here, we present the software METABOLIC (METa-
bolic And BiogeOchemistry anaLyses In miCrobes), a 
toolkit to profile metabolic and biogeochemical traits, 
and functional networks in microbial communities based 
on microbial genomes. METABOLIC integrates annota-
tion of proteins using KEGG [30], TIGRfam [33], Pfam 
[32], custom hidden Markov model (HMM) databases 
[2], dbCAN2 [39], and MEROPS [40]; incorporates a 
protein motif validation step to accurately identify pro-
teins based on prior biochemical validation; and deter-
mines the presence or absence of metabolic pathways 
based on KEGG modules. METABOLIC also produces 
user-friendly outputs in the form of tables and figures 
including a summary of microbial functional profiles, 
biogeochemically relevant pathways, functional net-
works at the scale of individual genomes and community 
levels, and microbial contributions to biogeochemical 
processes.

Methods
HMM databases used by METABOLIC
To generate a broad range of metabolic gene HMM 
profiles, we integrated three sets of HMM-based data-
bases, which are KOfam [41] (July 2019 release, con-
taining HMM profiles for KEGG/KO with predefined 
score thresholds), TIGRfam [33] (Release 15.0), Pfam 
[32] (Release 32.0), and custom metabolic HMM pro-
files [2]. In order to achieve a better HMM search 
result excluding non-specific hits, we have tested and 
manually curated cutoffs for those HMM databases 
listed above into the resulting HMMs: KOfam data-
base—KOfam suggested values; TIGRfam/Pfam/Cus-
tom databases—manually curated by adjusting noise 
cutoffs (NC); or trusted cutoffs (TC) to avoid potential 
false positive hits. For the KOfam suggested cutoffs, we 
considered both the score type (full length or domain) 
and the score value to assign whether an individual 
protein hit is significant or not. HMM databases were 
used as the reference for hmmsearch [42] to find pro-
tein hits of input genomes. Prodigal [43] was used to 

annotate genomic sequences (the method used to find 
ORFs by Prodigal can be set by METABOLIC as “meta” 
or “single”), or a user can provide self-annotated pro-
teins (with extensions of “.faa”) to facilitate incorpora-
tion into existing pipelines. Methods on the manual 
curation of these HMM databases are described in the 
next section.

Curation of cutoff scores for metabolic HMMs
Two curation methods for adjusting NC or TC of 
TIGRfam/Pfam/Custom databases were used for a spe-
cific HMM profile. First, we parsed and downloaded 
representative protein sequences according to either 
the corresponding KEGG identifier or UniProt identi-
fier [44]. We then randomly subsampled a small portion 
of the sequences (10% of the whole collection if this was 
more than 10 sequences, or at least 10 sequences) as 
the query to search against the representative protein 
collections [42]. Subsequently, we obtained a collec-
tion of hmmsearch scores by pairwise sequence com-
parisons. We plotted scores against hmmsearch hits 
and selected the mean value of the sharpest decreasing 
interval as the adjusted cutoff (approximately the F1 
score). Second, we downloaded a collection of proteins 
that belong to a specific HMM profile and pre-checked 
the quality and phylogeny of these proteins by recon-
structing and manually inspecting phylogenetic trees. 
We applied pre-checked protein sequences as the query 
search against a set of training metagenomes (data not 
shown). We then obtained a collection of hmmsearch 
scores of resulting hits from the training metagenomes. 
By using a similar method as described above, the 
cutoff was selected as the mean value of the sharpest 
decreasing interval.

The following example demonstrates how the method 
above was used to curate the cutoffs for hydrogenase 
enzymes. We then expanded this method to all genes 
using a similar method. We downloaded the individual 
protein collections for each hydrogenase functional group 
from the HydDB [45], which included [FeFe] Group A-C 
series, [Fe] Group, and [NiFe] Group 1–4 series. The 
individual hydrogenase functional groups were further 
categorized based on reaction directions, which included 
 H2-evolution,  H2-uptake,  H2-sensing, electron-bifurca-
tion, and bidirection. To define the NC cutoff (“--cut_nc” 
in hmmsearch) for individual hydrogenase groups, we 
used the protein sequences from each hydrogenase group 
as the query for hmmsearch against the overall hydroge-
nase collections. By plotting the resulting hmmsearch hit 
scores against individual hmmsearch hits, we selected the 
mean value of the sharpest decreasing interval as the cut-
off value.
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Motif validation
To automatically validate protein hits and avoid false 
positives, we introduced a motif validation step by com-
paring protein motifs against a manually curated set of 
highly conserved residues in important proteins. This 
manually curated set of highly conserved residues is 
derived from either reported works or protein align-
ments from this study. We chose 20 proteins associated 
with important metabolisms (with a focus on important 
biogeochemical cycling steps) that are prone to be mis-
annotated into proteins within the same protein family. 
Details of these proteins are provided in Additional file 8: 
Dataset S1. For example, DsrC (sulfite reductase subunit 
C) and TusE (tRNA 2-thiouridine synthesizing protein 
E) are similar proteins that are commonly misannotated. 
Both of them are assigned to the family KO:K11179 in 
the KEGG database. To avoid assigning TusE as a DsrC, 
we identified a specific motif for DsrC but not TusE 
(GPXKXXCXXXGXPXPXXCX”, where “X” stands for 
any amino acid) [46]. We used these specific motifs to 
filter out proteins that have high sequence similarity but 
functionally divergent homologs.

Annotation of carbohydrate‑active enzymes 
and peptidases
For carbohydrate-active enzymes (CAZymes), dbCAN2 
[39] was used to annotate proteins with default settings. 
The hmmscan parser and HMM database (2019-09-
05 release) were downloaded from the dbCAN2 online 
repository (http:// bcb. unl. edu/ dbCAN2/ downl oad/) 
[39]. The non-redundant library of protein sequences 
which contains all the peptidase/inhibitor units from the 
peptidase (inhibitor) database MEROPS [40] (known as 
the “MEROPS pepunit” database) was used as the refer-
ence database to search against putative peptidases and 
inhibitors using DIAMOND. The settings used for the 
DIAMOND BLASTP search were “-k 1 -e 1e-10 --query-
cover 80 --id 50” [47]. We used the “MEROPS pepunit” 
database due to the fact that it only includes the func-
tional unit of peptidases/inhibitors [40] which can effec-
tively avoid potential non-specific hits.

Implementation of METABOLIC‑G and METABOLIC‑C
To target specific applications in processing omics 
datasets, we have implemented two versions of MET-
ABOLIC: METABOLIC-G (genome version) and META-
BOLIC-C (community version). METABOLIC-G intakes 
only genome files and provides analyses for individual 
genome sequences (including three kinds of genomes, 
e.g., single-cell genomes, isolate genomes, and metagen-
ome-assembled genomes). All analyses and procedures of 
METABOLIC-G for all these three kinds of genomes are 
identical.

METABOLIC-C includes an option for users to include 
metagenomic reads for mapping to metagenome-
assembled genomes (MAGs). Using Bowtie 2 (version ≥ 
v2.3.4.1) [48], metagenomic BAM files were generated by 
mapping all input metagenomic reads to gene collections 
from input genomes. Subsequently, SAMtools (version ≥ 
v0.1.19) [49], BAMtools (version ≥ v2.4.0) [50], and Cov-
erM (https:// github. com/ wwood/ CoverM) were used to 
convert BAM files to sorted BAM files and to calculate 
the gene coverage. To calculate the relative abundance of 
a specific biogeochemical cycling step, all the coverage 
of genes that are responsible for this step were summed 
up and normalized by overall gene coverage. Reads from 
single-cell and isolate genomes can also be mapped in 
an identical manner to metagenomes. The gene cover-
age result generated by metagenomic read mapping was 
further used in downstream processing steps to conduct 
community-scale interaction and network analyses.

Classifying microbial genomes into taxonomic groups
To study community-scale interactions and networks of 
each microbial group within the whole community, we 
classified microbial genomes into individual taxonomic 
groups. GTDB-Tk v0.1.3 [51] was used to assign taxon-
omy of input genomes with default settings. GTDB-Tk 
can provide automated and objective taxonomic classifi-
cation based on the rank-normalized Genome Taxonomy 
Database (GTDB) taxonomy within which the taxonomy 
ranks were established by a sophisticated criterion count-
ing the relative evolutionary divergence (RED) and aver-
age nucleotide identity (ANI) [51, 52]. Subsequently, 
genomes were clustered into microbial groups at the phy-
lum level, except for Proteobacteria which were replaced 
by its subordinate classes due to its wide coverage. Tax-
onomic assignment information for each genome was 
used in the downstream community analyses.

Analyses and visualization of metabolic outputs, 
biogeochemical cycles, MW‑scores, functional networks, 
and metabolic Sankey diagrams
To visualize the outputted metabolic results, the R 
script “draw_biogeochemical_cycles.R” was used to draw 
the corresponding metabolic pathways for individual 
genomes. We integrated HMM profiles that are related 
to biogeochemical activities and assigned HMM profiles 
to 31 distinct biogeochemical cycling steps (See details 
in “METABOLIC_template_and_database” folder on the 
GitHub page). The script can generate figures showing 
biogeochemical cycles for individual genomes and the 
summarized biogeochemical cycle for the whole com-
munity. By using the results of metabolic profiling gen-
erated from hmmsearch and gene coverage from the 
mapping of metagenomic reads, we can depict metabolic 

http://bcb.unl.edu/dbCAN2/download/
https://github.com/wwood/CoverM
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capacities of both individual genomes and all genomes 
within a community as a whole. The community-level 
diagrams, including sequential transformation diagrams, 
functional network diagrams, and metabolic Sankey dia-
grams, were generated using both metabolic profiling 
and gene coverage results. The diagrams are made by the 
scripts “draw_sequential_reaction_diagram.R,” “draw_
metabolic_Sankey_diagram.R,” and “draw_functional_
network_diagram.R,” respectively (For details, refer to 
GitHub wiki pages).

MW-score (metabolic weight score) is a metric reflect-
ing the functional capacity and abundance of a microbial 
community in co-sharing functional networks. It was 
calculated at the community-scale level based on results 
of metabolic profiling and gene coverage from metagen-
omic read mapping as described above. We divided 
metabolic/biogeochemical cycling steps (31 in total) 
into a finer level—function (51 functions in total)—for 
better resolution in reflecting functional networks. By 
using similar methods for determining metabolic inter-
actions (as described above), we selected functions that 
are shared among genomes. MW-score for each function 
was calculated by summing up all the coverage values of 
each function (calculated by summing up all coverage 
values of genomes that contain this function) and subse-
quently normalizing it by the overall function coverage. 
For each function, the contribution percentage of each 
microbial phylum (the default taxonomic level setting) 
was also calculated accordingly. One can also change 
the taxonomic level setting to the resolution of “class,” 
“order,” “family,” or “genus” to calculate the corresponding 
contribution percentage of each microbial group. Two 
equations are provided as follows to calculate each func-
tion’s MW-score (1) and the percentage of contribution 
of each microbial group to the MW-score (2):

within which gk…gl ∈ pj
In Eq. (1), MW refers to MW-score. fi refers to the 

studied function (f) which ranks in the (i) position 
among all functions. g1 and gn indicate the first and 
the last genome among all genomes. f1 and fn indicate 
the first and the last function among all functions.  Cg 
means the coverage of a genome and  Sf means the pres-
ence (denoted as 1) or absence (denoted as 0) state of a 
function within that genome. In Eq. (2), Cprec refers to 
the contribution percentage of a microbial group to the 

(1)MWfi =

∑gn
g=g1

Cgn · Sfi
∑gn,fn

g=g1,f=f1
Cgn · Sfn

(2)Cpercfipj =

⎛
⎜⎜⎝

∑gl
g=gk

Cgn
· Sfi∑gn ,fn

g=g1 ,f =f1
Cgn

· Sfn

∕

∑gn
g=g1

Cgn
· Sfi∑gn ,fn

g=g1 ,f =f1
Cgn

· Sfn

⎞
⎟⎟⎠
× 100%

MW-score. pj means the studied group (p) which ranks 
in the (j) position among all groups. gk and gl indicate the 
genomes which rank in the (k) position and the (l) posi-
tion among all genomes; the additional note gk…gl ∈ pj 
indicates all the genomes between these two belong to 
the studied group pj.

Example of METABOLIC analysis
An example of community-scale analyses including 
elemental biogeochemical cycling and sequential reac-
tion analyses, functional network and metabolic Sankey 
visualization, and MW-score calculation were conducted 
using a metagenomic dataset of a microbial community 
inhabiting deep-sea hydrothermal vent environment 
of Guaymas Basin in the Pacific Ocean [53]. It contains 
98 MAGs and 1 set of metagenomic reads (genomes 
were available at NCBI BioProject PRJNA522654 and 
metagenomic reads in NCBI SRA with accession as 
SRR3577362).

A metagenomic-based study of the microbial commu-
nity from an aquifer adjacent to Colorado River, located 
near Rifle, has provided an accurate reconstruction of 
the metabolism and ecological roles of the microbial 
majority [2]. From underground water and sediments 
of the terrestrial subsurface at Rifle, 2545 reconstructed 
MAGs were obtained (genomes are under NCBI Bio-
Project PRJNA288027). They were used as the in silico 
dataset to test METABOLIC’s performance. First, all 
the microbial genomes were dereplicated by dRep v2.0.5 
[54] to pick the representative genomes for downstream 
analysis using the setting of “-comp 85.” Then, META-
BOLIC-G was applied to profile the functional traits 
of these representative genomes using default settings. 
Finally, the metabolic profile chart was depicted by 
assigning functional traits to GTDB taxonomy-clustered 
genome groups.

Test of software performance across different 
environments
To benchmark and test the performance of METABOLIC 
in different environments, eight datasets of metagen-
omes and metagenomic reads from marine, terrestrial, 
and human environments were used. These included 
marine subsurface sediments [55] (Deep biosphere 
beneath Hydrate Ridge offshore Oregon), freshwater lake 
[56] (Lake Tanganyika, eastern Africa), colorectal cancer 
(CRC) patient gut [57], healthy human gut [57], deep-sea 
hydrothermal vent [53] (Guaymas Basin, Gulf of Califor-
nia), terrestrial subsurface sediments and water [2] (Rifle, 
CO, USA), meadow soils [58] (Angelo Coastal Range 
Reserve, CA, USA), and advanced water treatment facil-
ity [59] (Groundwater Replenishment System, Orange 
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County, CA, USA). Default settings were used for run-
ning METABOLIC-C.

Comparison of community‑scale metabolism
To compare the metabolic profile of two environments at 
the community scale, MW-score was used as the bench-
mark. Two sets of environmental pairs were compared, 
including the pair of marine subsurface sediments [55] 
and terrestrial subsurface sediments [2] and the pair of 
freshwater lake [56] and deep-sea hydrothermal vent 
[53]. To demonstrate differences between these environ-
ments in specific biogeochemical processes, we focused 
on the biogeochemical cycling of sulfur. The sulfur bio-
geochemical cycling diagrams were depicted with the 
annotation of the number and the coverage of genomes 
that contain each biogeochemical cycling step.

Metabolism in human microbiomes
To inspect the metabolism of microorganisms in the 
human microbiome (associated with skin, oral mucosa, 
conjunctiva, gastrointestinal tracts, etc.), a subset of 
KOfam HMMs (139 HMM profiles) were used as mark-
ers to depict the human microbiome metabolism (parsed 
by HuMiChip targeted functional gene families [60]). 
They included 10 function categories as follows: amino 
acid metabolism, carbohydrate metabolism, energy 
metabolism, glycan biosynthesis and metabolism, lipid 
metabolism, metabolism of cofactors and vitamins, 
metabolism of other amino acids, metabolism of terpe-
noids and polyketides, nucleotide metabolism, and trans-
lation. The CRC and healthy human gut (healthy control) 
sample datasets were used as the input (Accession IDs: 
BioProject PRJEB7774, Sample 31874, and Sample 
532796). Heatmap of presence/absence of these func-
tions were depicted by R package “pheatmap” [61] with 
189 horizontal entries (there are duplications of HMM 
profiles among function categories; for detailed human 
microbiome metabolism markers, refer to Additional 
file 9: Dataset S2).

Representation of microbial cell metabolism
To provide a schematic representation of the metabolism 
of microbial cells, two microbial genomes were used as 
examples, Hadesarchaea archaeon 1244-C3-H4-B1 and 
Nitrospirae bacteria M_DeepCast_50m_m2_151. META-
BOLIC-G results of these two genomes, including func-
tional traits and KEGG modules, were used to draw the 
cell metabolism diagrams.

Metatranscriptome analysis by METABOLIC
METABOLIC-C can take metatranscriptomic reads 
as input into transcript coverage calculation and inte-
grate the result into downstream community analyses. 

METABOLIC-C uses a similar method to that of gene 
coverage calculation, including mapping transcriptomic 
reads to the gene collection from input genomes, con-
verting BAM files to sorted BAM files, and calculating 
the transcript coverage. The raw transcript coverage was 
further normalized by the gene length and metatran-
scriptomic read number in Reads Per Kilobase of tran-
script, per Million mapped reads (RPKM). Hydrothermal 
vent and background seawater transcriptomic reads from 
Guaymas Basin (NCBI SRA accessions: SRR452448 and 
SRR453184) were used to test the outcome of metatran-
scriptome analysis.

Results
Given the ever-increasing number of microbial genomes 
from microbiome studies, we developed METABOLIC 
to enable metabolic pathway analysis and visualization of 
biogeochemical cycles and community-scale functional 
networks. METABOLIC has an improved methodol-
ogy to get fast, accurate, and robust annotation results, 
and it integrates a variety of visualization functions for 
better interpreting community-level functional interac-
tions and microbial contributions. While METABOLIC 
relies on microbial genomes and metagenomic reads 
for underpinning its analyses for community-level func-
tional interactions, it can easily integrate transcriptomic 
datasets to provide an activity-based measure of com-
munity networks. The scalable capacity, wide utility, and 
compatibility for analyzing datasets from various envi-
ronments make it a well-tailored tool for metabolic pro-
filing of large sets of genomes. In the following sections, 
the microbial community consisting of 98 MAGs from a 
deep-sea hydrothermal vent was used as the input data-
set if not mentioned otherwise.

Workflow to determine the presence of metabolic 
pathways
METABOLIC is written in Perl and R and is expected 
to run on Unix, Linux, or macOS. The prerequisites 
are described on METABOLIC’s GitHub wiki pages 
(https :// github. com/ Anant haram anLab/ METAB 
OLIC/ wiki). The input folder requires microbial 
genome sequences in FASTA format and an optional 
set of genomic/metagenomic reads which were used 
to reconstruct those genomes (Fig.  1). The annotated 
proteins from input genomic sequences are queried 
against HMM databases (KEGG KOfam, Pfam, TIGR-
fam, and custom HMMs) using hmmsearch imple-
mented within HMMER [42] which applies methods to 
detect remote homologs as sensitively and efficiently 
as possible. After the hmmsearch step, METABOLIC 
subsequently validates the primary outputs by a motif-
checking step for a subset of protein families; only 

https://github.com/AnantharamanLab/METABOLIC/wiki
https://github.com/AnantharamanLab/METABOLIC/wiki
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those protein hits which successfully pass this step are 
regarded as positive hits.

METABOLIC relies on matches to the above data-
bases to infer the presence of specific metabolic 
pathways in microbial genomes. Individual KEGG 
annotations are inferred in the context of KEGG 
modules for a better interpretation of metabolic 
pathways. A KEGG module is comprised of mul-
tiple steps with each step representing a distinct 
metabolic function. We parsed the KEGG module 
database [62] to link the existing relationship of KO 
identifiers to KEGG module identifiers to project 

our KEGG annotation result into the interactive 
network which was constructed by individual build-
ing blocks—modules—for better representation 
of metabolic blueprints of input genomes. In most 
cases, we used KOfam HMM profiles for KEGG 
module assignments. For a specific set of important 
metabolic marker proteins and commonly misanno-
tated proteins, we also applied the TIGRfam/Pfam/
custom HMM profiles and motif-validation steps. 
The software has customizable settings for increas-
ing or decreasing the priority of specific databases, 
primarily meant to increase annotation confidence 

Fig. 1 An outline of the workflow of METABOLIC. Detailed instructions are available at https:// github. com/ Anant haram anLab/ METAB OLIC/ wiki. 
METABOLIC-G workflow is specifically shown in the blue box and METABOLC-C workflow is shown in the green square

https://github.com/AnantharamanLab/METABOLIC/wiki
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by preferentially using custom HMM databases over 
KEGG KOfam when both targeting the same set of 
proteins.

Since individual genomes from metagenomes and sin-
gle-cell genomes can often have incomplete metabolic 
pathways due to their low completeness compared to 
isolate genomes, we provide an option to determine the 
completeness of a metabolic pathway (or a module here). 
A user-defined cutoff is used to set the threshold of com-
pleteness for a given module to be assigned as present 
(the default cutoff is the presence of 75% of metabolic 
steps/genes within a given module), which is then used 
to produce a KEGG module presence/absence table. All 
modules exceeding the cutoff value are determined to be 
present. Meanwhile, the presence/absence information 
for each module step is also summarized in an overall 
output table to facilitate further detailed investigations.

Outputs consist of six different results that are reported 
in an Excel spreadsheet (Additional file 1: Fig. S1). These 
contain details of protein hits (Additional file  1: Fig. 
S1A) which include both presence/absence and protein 
names, presence/absence of functional traits (Additional 
file  1: Fig.S1B), presence/absence of KEGG modules 
(Additional file 1: Fig. S1C), presence/absence of KEGG 
module steps (Additional file 1: Fig. S1D), carbohydrate-
active enzyme (CAZyme) hits (Additional file 1: Fig. S1E), 
and peptidase/inhibitor hits (Additional file 1: Fig. S1F). 
For each HMM profile, the protein hits from all input 
genomes can be used to construct phylogenetic trees or 
further be combined with reference protein collections 
for detailed evolutionary analyses.

Quantitative visualization of biogeochemical cycles 
and sequential reactions
After METABOLIC generates protein and pathway anno-
tation results, the software further identifies and high-
lights specific pathways of importance in microbiomes 
associated with energy metabolism and biogeochemistry. 
To visualize pathways of biogeochemical importance, it 
generates schematic profiles for nitrogen, carbon, sulfur, 
and other elemental cycles for each genome. The set of 
genomes used as input is considered the “community,” 
and each genome within is considered an “organism.” 
A summary schematic diagram at the community level 
integrates results from all individual genomes within a 
given dataset (Fig. 2) and includes computed abundances 
for each step in a biogeochemical cycle if the genomic/
metagenomic read datasets are provided. The genome 
number labeled in the figure indicates the number/
quantity of genomes that contain the specific gene com-
ponents of a biogeochemical cycling step (Fig.  2) [2]. 
In other words, it represents the number of organisms 
within a given community inferred to be able to perform 

a given metabolic or biogeochemical transformation. The 
abundance percentage indicates the relative abundance of 
microbial genomes that contain the specific gene compo-
nents of a biogeochemical cycling step among all micro-
bial genomes in a given community (Fig. 2) [2].

Microorganisms in nature often do not encode path-
ways for the complete transformation of compounds. For 
example, microorganisms possess partial pathways for 
denitrification that can release intermediate compounds 
like nitrite, nitric oxide, and nitrous oxide in lieu of 
nitrogen gas which is produced by complete denitrifica-
tion [63]. A greater energy yield could be achieved if one 
microorganism conducts all steps associated with a path-
way (such as denitrification) [2] since it could fully use all 
available energy from the reaction. However, in reality, 
few organisms in microbial communities carry out mul-
tiple steps in complex pathways; organisms commonly 
rely on other members of microbial communities to con-
duct sequential reactions in pathways [2, 64, 65]. Thus, to 
study this metabolic scenario in microbial communities, 
METABOLIC summarizes and enables visualization of 
the genome number and coverage (relative abundance) 
of microorganisms that are putatively involved in the 
sequential transformation of both important inorganic 
and organic compounds (Fig. 3). This provides a quanti-
tative calculation of microbial interactions and connec-
tions using shared metabolites associated with inorganic 
and organic transformations. Additionally, it shows the 
intuitive pattern of quantity and abundance of microor-
ganisms that are able to conduct partial or all steps for 
a given pathway, which potentially reflects the degree of 
resilience of a microbial community.

Calculation and visualization of functional networks, 
metabolic weight scores (MW‑scores), and microbial 
contribution to metabolic reactions
Given the microbial pathway abundance information 
generated by METABOLIC, we identified co-existing 
metabolisms in microbial genomes as a measure of 
connections between different metabolic functions and 
biogeochemical steps. In the context of biogeochem-
istry, this approach allows the evaluation of related-
ness among biogeochemical steps and the connection 
contribution by microorganisms. This is enabled at 
the resolution of individual microbial groups based 
on the phylogenetic classification (Fig.  4) assigned by 
GTDB-Tk [51]. As an example, we have demonstrated 
this approach on a microbial community inhabiting 
deep-sea hydrothermal vents. We divided the micro-
bial community of deep-sea hydrothermal vents into 
18 phylum-level groups (except for Proteobacteria 
which were divided into their subordinate classes). 
The functional network diagrams were depicted at 
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the resolution of both individual phyla and the entire 
community level (Additional file  10: Dataset S3). Fig-
ure  4 demonstrates metabolic connections that were 
represented with individual metabolic/biogeochemical 
cycling steps depicted as nodes, and the connections 
between two given nodes depicted as edges. The size 
of a given node is proportional to the degree (number 
of connections to each node). The thickness of a given 
edge was depicted based on the average of gene cov-
erage values of two biogeochemical cycling steps (the 
connected nodes). More edges connecting two nodes 
represent more connections between these two steps. 
The color of the edge corresponds to the taxonomic 
group. At the whole community level, more abundant 
microbial groups were more represented in the diagram 
(Fig. 4). Overall, METABOLIC provides a comprehen-
sive approach to construct and visualize functional net-
works associated with important pathways of energy 

metabolism and biogeochemical cycles in microbial 
communities and ecosystems.

To address the lack of quantitative and reproducible 
measures to represent potential metabolic interactions 
in microbial communities, we developed a new metric 
that we termed MW-score (metabolic weight scores) 
(Eqs. 1 and 2). MW-scores quantitatively measure “func-
tion weights” within a microbial community as reflected 
by the metabolic profile and gene coverage. As metabolic 
potential for the whole community was profiled into 
individual functions that either mediated specific path-
ways or transformed certain substrates into products, 
a function weight that reflects the abundance fraction 
for each function can be used to represent the over-
all metabolic potential of the community. MW-scores 
resolved the functional capacity and abundance in the 
co-sharing functional networks as studied and visualized 
in the above section. More frequently shared functions 

Fig. 2 Summary scheme of biogeochemical cycling processes at the community scale. Each arrow represents a single transformation/step within 
a cycle. Labels above each arrow are (from top to bottom): step number and reaction, number of genomes that can conduct these reactions, 
metagenomic coverage of genomes (represented as a percentage within the community) that can conduct these reactions. The numbers in 
brackets next to the nitrogen or sulfur-containing compounds are chemical states of the nitrogen or sulfur atoms in these compounds
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and their higher abundances lead to higher MW-scores, 
which quantitatively reflects the function weights in 
functional networks (Fig. 5). MW-score reflects the same 
functional networking pattern as the above description 
on the edges (networking lines) connecting the nodes 
(metabolic steps) that—more edges connecting two 

nodes indicates two steps are more shared, thicker edges 
indicate higher gene abundance for the metabolic steps. 
MW-scores can integratively represent these two net-
working patterns and serve as metrics to measure these 
function weights. At the same time, we also calculated 
each microbial group’s (phylum in this case) contribution 

Fig. 3 Schematic figure of sequential metabolic transformations. A The sequential transformation of inorganic compounds. B The sequential 
transformation of organic compounds. X-axes describe individual sequential transformations indicated by letters. The two panels describe the 
number of genomes and genome coverage (represented as a percentage within the community) of organisms that are involved in certain 
sequential metabolic transformations. The deep-sea hydrothermal vent dataset was used for these analyses
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to the MW-score of a specific function within the com-
munity (Fig.  5). A higher microbial group contribution 
percentage value indicates that one function is more rep-
resented by the microbial group (for both gene presence 
and abundance) in the functional networks. MW-scores 
provide a quantitative measure of comparing function 
weights and microbial group contributions within func-
tional networks.

To understand the contributions of microbial groups 
associated with specific metabolic and biogeochemical 
transformations, we developed an approach to visual-
ize the connections among specific taxonomic groups, 
metabolic reactions, and entire biogeochemical cycles 
such as carbon, nitrogen, and sulfur cycles. Our approach 
involves the use of Sankey diagrams (also called “Alluvial” 
plots) to represent the fractions of metabolic functions 

that are contributed by various microbial groups in a 
given community (Fig. 6). It allows visualization of meta-
bolic reactions as the link between microbial contributors 
clustered as taxonomic groups and biogeochemical cycles 
at a community level (Fig. 6 and Additional file 10: Dataset 
S3). The function fraction was calculated by accumulating 
the genome coverage values of genomes from a specific 
microbial group that possesses a given functional trait. 
The width of curved lines from a specific microbial group 
to a given functional trait indicates their correspond-
ing proportional contribution to a specific metabolism 
(Fig. 6). Alternatively, the genomic/metagenomic datasets 
which are used in constructing the above two diagrams: 
functional network diagram (Fig.  4) and metabolic San-
key diagram (Fig. 6), can be replaced by transcriptomic/
metatranscriptomic datasets, and correspondingly, the 

Fig. 4 Functional network showing connections between different functions in the microbial community. Nodes represent individual steps in 
biogeochemical cycles; edges connecting two given nodes represent the functional connections between nodes, which are enabled by organisms 
that can conduct both biogeochemical processes/steps. The size of the node was depicted according to the degree (number of connections 
to each node). The thickness of the edge was depicted according to the average gene coverage values of the two connected biogeochemical 
cycling steps—for example, thiosulfate oxidation and organic carbon oxidation. The color of the edges was assigned based on the taxonomy of the 
represented genome. The deep-sea hydrothermal vent dataset was used for these analyses
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gene coverage values will be replaced by gene expression 
values, and therefore, diagrams will represent the tran-
scriptional activity patterns of functional network and 
microbial contribution to metabolic reactions (Additional 
file 2, 3, 4, and 5: Figure S2, S3, S4, and S5).

To demonstrate this part of the workflow, the micro-
bial community consisting of 98 MAGs from a deep-sea 
hydrothermal vent was used as a test dataset. After run-
ning the bioinformatic analyses described above, result-
ing tables and diagrams were compiled and visualized 
accordingly (Figs. 4, 5, 6, and Additional file 10: Dataset 
S3). Results for functional networks and MW-scores of 
the deep-sea hydrothermal vent environment indicate 
that the microbial community depends on mixotro-
phy and sulfur oxidation for energy conservation and 
involves arsenate reduction potentially responsible for 
detoxification/arsenate resistance [66]. MW-scores indi-
cate that amino acid utilization, complex carbon deg-
radation, acetate oxidation, and fermentation are the 
major heterotrophic metabolisms for this environment; 
 CO2-fixation and sulfur oxidation also occupy a consid-
erable functional fraction, which indicates heterotrophy 
and autotrophy both contribute to energy conservation 
(Fig.  5). As represented by both MW-scores and meta-
bolic Sankey diagram, Gammaproteobacteria are the 
most numerically abundant group in the community 
and they occupy significant functional fractions among 
both heterotrophic and autotrophic metabolisms (MW-
score contribution ranging from 59-100%) (Figs. 5 and 6), 

which is consistent with previous findings in the Guay-
mas Basin hydrothermal environment [53, 67]. Mean-
while, MW-scores also explicitly reflect the involvement 
of other minor electron donors in energy conservation 
which are mainly contributed by Gammaproteobacteria, 
such as hydrogen and methane (Fig. 5). This is also con-
sistent with previous findings [53, 67] and indicates the 
accuracy and sensitivity of MW-scores to reflect meta-
bolic potentials.

METABOLIC performance demonstration
To test METABOLIC’s performance on speed, we 
applied the software (METABOLIC-C mode) to ana-
lyze the metagenomic dataset which includes 98 MAGs 
from a deep-sea hydrothermal vent, and two sets of 
metagenomic reads (that are subsets of original reads 
with 10 million reads for each pair comprising ~ 10% of 
the total reads). The total running time was ~ 3 h using 
40 CPU threads in a Linux version 4.15.0-48-generic 
server (Ubuntu v5.4.0). The most compute-demand-
ing step is hmmsearch, which took ~ 45 min. When 
tested on another dataset comprising ~ 3600 microbial 
genomes (data not shown), METABOLIC could com-
plete hmmsearch in ~ 5 h by using 40 CPU threads, indi-
cating its scalable capability on analyzing thousands of 
genomes.

In order to test the accuracy of the results predicted 
by METABOLIC, we picked 15 bacterial and archaeal 
genomes from Chloroflexi, Thaumarchaeota, and 

Fig. 5 Description, calculation, and result table of MW-scores. A The calculation method for MW-score within a community based on a given 
metagenomic dataset. Each circle stands for a genome within the community, and the adjacent bar stands for its genome coverage within the 
community. The coverage values of encoded genes for all functions were summed up as the denominator, and the coverage value of encoded 
genes for each function was used as the numerator, and MW-score was calculated accordingly for each function. B The resulting table of 
MW-score for the deep-sea hydrothermal vent metagenomic dataset. MW-score for each function was given in a separated column, and the rest 
of the table indicates the contribution percentage to each MW-score of the genomes grouped in each phylum. The MW-score of “N-S-07:Nitrous 
oxide reduction” was not exactly 0 but rounded to 0 due to the original number being less than 0.05. Additionally, contribution percentages were 
also rounded to only retain one digit after the decimal points; consequently, the sum contribution percentages for some functions slightly deviate 
from 100%
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Crenarchaeota which are reported to have 3 hydroxy-
propionate cycle (3HP) and/or 3-hydroxypropionate/4-
hydroxybutyrate cycle (3HP/4HB) for carbon fixation. 
METABOLIC predicted results in line with annotations 
from the KEGG genome database which can be visual-
ized in KEGG Mapper (Table 1). Our predictions are also 
in accord with biochemical evidence of the existence of 
corresponding carbon fixation pathways in each micro-
bial group: (1) 3 out of 5 Chloroflexi genomes are pre-
dicted by both METABOLIC and KEGG to possess the 
3HP pathway and none of all these Chloroflexi genomes 
are predicted to possess the 3HP/4HB pathway. This is 
consistent with current reports based on biochemical 
and molecular experiments that only organisms from the 
phylum Chloroflexi are known to possess the 3HP path-
way [68] (Table  1). (2) All 5 Thaumarchaeota genomes 
and 2 out of 5 Crenarchaeota genomes are predicted by 
both METABOLIC and KEGG to possess the 3HP/4HB 

pathway and none of these Thaumarchaeota and Crenar-
chaeota genomes are predicted to possess the 3HP path-
way. This is consistent with current reports that only the 
3HP/4HB pathway could be detected in Crenarchaeota 
and Thaumarchaeota [69, 70] (Table 1). We also applied 
METABOLIC on a large well-studied dataset comprising 
2545 metagenome-assembled genomes from terrestrial 
subsurface sediments and groundwater [2]. The annota-
tion results of METABOLIC are consistent with previ-
ously described reports (Additional file  6, 10: Fig. S6, 
Dataset S3). These results suggest that METABOLIC can 
provide accurate annotations and perform well as a func-
tional predictor for microbial genomes and communities.

Currently, several software packages and online serv-
ers are available for genome annotation and metabolic 
profiling. Compared to other software/online servers 
including GhostKOALA [71], BlastKOALA [71], KAAS 
[72], RAST/SEED [34], and eggNOG-mapper [73], 

Fig. 6 Metabolic Sankey diagram representing the contributions of microbial genomes to individual metabolic and biogeochemical processes, 
and entire elemental cycles. Microbial genomes are represented at the phylum-level resolution. The three columns from left to right represent 
taxonomic groups scaled by the number of genomes, the contribution to each metabolic function by microbial groups calculated based on 
genome coverage, and the contribution to each functional category/biogeochemical cycle. The colors were assigned based on the taxonomy of 
the microbial groups. The deep-sea hydrothermal vent dataset was used for these analyses
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METABOLIC is unique in its ability to integrate multi-
omic information toward elucidating and visualizing 
community-level functional connections and the con-
tribution of microorganisms to biogeochemical cycles 
(Fig.  7A). Additionally, in order to compare the predic-
tion performance of METABOLIC to others, we con-
ducted parallel in silico experiments (Fig.  7B). We used 
two representative bacterial genomes as the test datasets. 
We randomly picked 100 protein sequences from individ-
ual genomes and submitted them to annotation by these 
six software/online servers. Predicted protein annota-
tions by individual software and online servers were 
compared to their original annotations that were pro-
vided by the NCBI database (Additional file 11, 12: Data-
set S4, S5). According to statistical methods of evaluating 
binary classification [74], the following parameters were 
used to make the comparison: (1) recall (also referred to 
as sensi tivity) as the true positive rate, (2) precision (also 
referred to as the positive predictive value) which indi-
cates the reproducibility and repeatability of a measure-
ment system, (3) accuracy which indicates the closeness 
of measurements to their true values, and (4) F1 value 
which is the harmonic mean of precision and recall, and 
reflects both these two parameters. Among the tested 
software/online servers, the performance parameters 
of METABOLIC consistently placed it amongst the top 
3 and top 2 software for recall and F1 and the top 1 and 
top 2 software for precision and accuracy. These results 

demonstrate that METABOLIC (Fig. 7B) provides robust 
performance and consistent metabolic prediction that 
facilitate accurate and reliable applicability for down-
stream data visualization and community-level analyses.

To demonstrate the application and performance of 
METABOLIC in different samples, we tested eight dis-
tinct environments (marine subsurface, terrestrial sub-
surface, deep-sea hydrothermal vent, freshwater lake, 
gut microbiome from patients with colorectal cancer, 
gut microbiome from healthy control, meadow soil, 
wastewater treatment facility). Overall, we found MET-
ABOLIC to perform well across all the environments 
to profile microbial genomes with functional traits and 
biogeochemical cycles (Additional file  10: Dataset S3). 
Among these tested environments, we also performed 
community-scale metabolic comparisons based on the 
MW-score (Fig.  8). MW-score at the community scale 
reflects the overall metabolic profile distribution pat-
terns. Specifically, we compared samples from terrestrial 
and marine subsurface and samples from hydrothermal 
vent and freshwater lake. We observed that terrestrial 
subsurface contains more abundant metabolic functions 
related to nitrogen cycling compared to the marine sub-
surface (Fig.  8A), consistent with the previous charac-
terization of these two environments [2, 75]. Deep-sea 
hydrothermal vent samples had a considerably high con-
centration of methane and hydrogen [53] as compared to 
Lake Tanganyika (freshwater lake). Consistent with this 

Table 1 The carbon fixation metabolic traits of 15 tested bacterial and archaeal genomes predicted by both METABOLIC and KEGG 
genome database

METABOLIC result KEGG genome pathway

Carbon fixation Carbon fixation

Accession ID Organism KEGG 
Organism 
Code

Group 3HP cycle 3HP/4HB cycle 3HP cycle 3HP/4HB cycle

GCA_000011905.1 Dehalococcoides mccartyi 195 det Chloroflexi Absent Absent Absent Absent

GCA_000017805.1 Roseiflexus castenholzii DSM 13941 rca Chloroflexi Present Absent Present Absent

GCA_000018865.1 Chloroflexus aurantiacus J-10-fl cau Chloroflexi Present Absent Present Absent

GCA_000021685.1 Thermomicrobium roseum DSM 5159 tro Chloroflexi Absent Absent Absent Absent

GCA_000021945.1 Chloroflexus aggregans DSM 9485 cag Chloroflexi Present Absent Present Absent

GCA_000299395.1 Nitrosopumilus sediminis AR2 nir Thaumarchaeota Absent Present Absent Present

GCA_000698785.1 Nitrososphaera viennensis EN76 nvn Thaumarchaeota Absent Present Absent Present

GCA_000875775.1 Nitrosopumilus piranensis D3C nid Thaumarchaeota Absent Present Absent Present

GCA_000812185.1 Nitrosopelagicus brevis CN25 nbv Thaumarchaeota Absent Present Absent Present

GCA_900696045.1 Nitrosocosmicus franklandus NFRAN1 nfn Thaumarchaeota Absent Present Absent Present

GCA_000015145.1 Hyperthermus butylicus DSM 5456 hbu Crenarchaeota Absent Absent Absent Absent

GCA_000017945.1 Caldisphaera lagunensis DSM 15908 clg Crenarchaeota Absent Present Absent Present

GCA_000148385.1 Vulcanisaeta distributa DSM 14429 vdi Crenarchaeota Absent Absent Absent Absent

GCA_000193375.1 Thermoproteus uzoniensis 768-20 tuz Crenarchaeota Absent Present Absent Present

GCA_003431325.1 Acidilobus sp. 7A acia Crenarchaeota Absent Absent Absent Absent

https://en.wikipedia.org/wiki/Sensitivity_and_specificity
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phenomenon, the deep-sea hydrothermal vent micro-
bial community has more abundant metabolic functions 
associated with methanotrophy and hydrogen oxidation 
(Fig.  8B). In order to focus on a specific biogeochemi-
cal cycle, we applied METABOLIC to compare sulfur-
related metabolisms at the community scale for these 
two environment pairs (Additional file  7: Fig. S7). Ter-
restrial subsurface contains genomes covering more sul-
fur cycling steps compared to marine subsurface (7 steps 
vs. 3 steps) (Additional file 7: Fig. S7A). Freshwater lake 
contains genomes involving almost all the sulfur cycling 
steps except for sulfur reduction, while deep-sea hydro-
thermal vent contains less sulfur cycling steps (8 steps vs. 
6 steps) (Additional file 7: Fig. S7B). Nevertheless, deep-
sea hydrothermal vent has a higher fraction of genomes 
(59/98) and a higher relative abundance (73%) of these 
genomes involving sulfur oxidation compared to the 
freshwater lake (Additional file 7: Fig. S7B). This indicates 
that the deep-sea hydrothermal vent microbial commu-
nity contains sulfur metabolism biased  toward sulfur 
oxidation, which is consistent with previous metabolic 
characterization on the dependency of elemental sulfur 
in this environment [53, 76–78]. Collectively, by charac-
terizing community-scale metabolism, METABOLIC can 

facilitate the comparison of overall functional profiles as 
well as for a particular elemental cycle.

METABOLIC enables accurate reconstruction of cell 
metabolism
To demonstrate applications of reconstructing and 
depicting cell metabolism based on METABOLIC 
results, two microbial genomes were used as an example 
(Fig. 9). As illustrated in Fig. 9A, Hadesarchaea archaeon 
1244-C3-H4-B1 has no TCA cycling gene components, 
which is consistent with previous findings in archaea 
within this class [79]. Gluconeogenesis/glycolysis path-
ways are also lacking in the genome; since gluconeo-
genesis is the central carbon metabolism responsible for 
generating sugar monomers which will be further biosyn-
thesized to polysaccharides as important cell structural 
components [80], the lack of this pathway could be due to 
genome incompleteness. As an enigmatic archaeal class 
newly discovered in the recent decade, Hadesarchaea 
have distinctive metabolisms that separate them from 
conventional euryarchaeotal groups. They almost lost all 
TCA cycle gene components for the production of acetyl-
CoA; while they could metabolize amino acids in a heter-
otrophic lifestyle [79]. It is posited that the Hadesarchaea 

Fig. 7 Comparison of METABOLIC with other software packages and online servers. A Comparison of workflows and services. B Comparison of 
performance of protein prediction for two representative genomes, Pseudomonas aeruginosa PAO1, and Escherichia coli O157H7 str. sakai
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genome has been subjected to a streamlining process 
possibly due to nutrient limitations in their surrounding 
environments [79]. Due to their metabolic novelty and 
limited available genomes at the current time, there are 
still uncertainties on unknown/hypothetical genes and 
pathways and unclassified metabolic potential across the 
whole class. The previous metabolic characterization on 
four Hadesarchaea genomes indicates that Hadesarchaea 
members could anaerobically oxidize CO, and  H2 was 
produced as the side product [79]. In the Hadesarchaea 
archaeon 1244-C3-H4-B1 genome, METABOLIC results 
indicate the loss of all anaerobic carbon-monoxide 

dehydrogenase gene components, which suggests the dis-
tinctive metabolism of this Hadesarchaea archaeon from 
others and highlights the accuracy of METABOLIC in 
reflecting functional details.

We also reconstructed the metabolism for Nitrospirae 
bacteria M_DeepCast_50m_m2_151, a member of the 
Nitrospirae phylum reconstructed from Lake Tanganyika 
[56] (Fig.  9B). It contains the full pathway for the TCA 
cycle and gluconeogenesis/glycolysis. Furthermore, it 
also has the full set of oxidative phosphorylation com-
plexes for energy conservation and functional genes 
for nitrite oxidation to nitrate. Other nitrogen cycling 

Fig. 8 Community metabolism comparison based on MW-scores. A Comparison between terrestrial subsurface (left red bars) and marine 
subsurface (right blue bars). B Comparison between deep-sea hydrothermal vent (left red bars) and freshwater lake (right blue bars). MW-scores 
were calculated as gene coverage fractions for individual metabolic functions. Functions with MW-scores in both environments as zero were 
removed from each panel, e.g., N-S-02:Ammonia oxidation, N-S-09:Anammox, S-S-02:Sulfur reduction, and S-S-06:Sulfite reduction in panel (A), 
and C-S-07:Methanogenesis, N-S-01:N2 fixation, N-S-09:Anammox, S-S-02:Sulfur reduction, and S-S-06:Sulfite reduction in panel (B). For details for 
MW-score and each microbial group contribution, refer to Supplementary Dataset S3
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metabolisms identified in this genome include ammo-
nium oxidation, urea utilization, and nitrite reduction to 
nitric oxide. The reverse TCA cycle pathway was identi-
fied for carbon fixation. The metabolic profiling result is 
in accord with the fact that Nitrospirae is a well-known 
nitrifying bacterial class capable of nitrite oxidation and 
living an autotrophic lifestyle [80]. Additionally, their 
more abundant distribution in nature compared to other 
nitrite-oxidizing bacteria such as Nitrobacter indicates 
their significant contribution to nitrogen cycling in the 
environment [80]. This highlights the ability of META-
BOLIC in reflecting functional details of more common 
and prevalent microorganisms compared to the Hade-
sarchaea archaeon. Notably as discovered from META-
BOLIC analyses, this bacterial genome also contains a 
wide range of transporter enzymes on the cell membrane, 
including mineral and organic ion transporters, sugar 
and lipid transporters, phosphate and amino acid trans-
porters, heme and urea transporters, lipopolysaccharide 
and lipoprotein releasing system, bacterial secretion sys-
tem, etc., which indicates its metabolic versatility and 
potential interactive activities with other organisms and 
the ambient environment. Collectively, METABOLIC 
result of functional profiling provides an intuitively-rep-
resented summary of a single microbial genome which 
enables depicting cell metabolism for better visualizing 
the functional capacity.

METABOLIC accurately represents metabolism 
in the human microbiome
In addition to resolving microbial metabolism and bio-
geochemistry in environmental microbiomes, MET-
ABOLIC also accurately identifies metabolic traits 
associated with human microbiomes. The implica-
tions of microbial metabolism on human health largely 
remain a black box, much like microbial contributions 
to biogeochemical cycling. We demonstrate the util-
ity of METABOLIC in human microbiomes using pub-
licly available data from stool samples collected from 
patients with colorectal cancer and healthy individu-
als. From this study, we selected stool metagenomes 
from one colorectal cancer (CRC) and an age and sex-
matched healthy control to conduct the comparison. 
The heatmap indicates the human microbiome func-
tional profiles of both samples based on the marker 
gene presence/absence patterns (Fig.  10). As an exam-
ple of METABOLIC’s application, we demonstrate that 
there were 28 markers with variations > 10% in terms of 
the marker-containing genome fractions between these 
two samples (Fig.  10, Additional file  13: Dataset S6). 
These 28 markers involved all the ten metabolic catego-
ries except for lipid metabolism and translation, sug-
gesting the broad functional differences between these 
two samples. In addition to analyzing human microbi-
ome-specific functional markers, METABOLIC can be 

Fig. 9 Cell metabolism diagrams of two microbial genomes. A Cell metabolism diagram of Hadesarchaea archaeon 1244-C3-H4-B1. B Cell 
metabolism diagram of Nitrospirae bacteria M_DeepCast_50m_m2_151. The absent functional pathways/complexes were labeled with dash lines

(See figure on next page.)
Fig. 10 Presence/absence map of human microbiome metabolisms of a colorectal cancer (CRC) patient and a healthy control gut sample. The 
heatmap has summarized 189 horizontal entries (189 lines) based on 139 key functional gene families that covered 10 function categories. Purple 
cells indicate presence and gray cells indicate absence. Detailed KEGG KO identifier IDs and protein information for each function category were 
described in Supplementary Dataset S2
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Fig. 10 (See legend on previous page.)
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used to visualize elemental nutrient cycling and analyze 
metabolic interactions in human microbiomes. Overall, 
it enables systematic characterization of the composi-
tion, structure, function, and interaction of microbial 
metabolisms in the human microbiome and facilitates 
omics-based studies of microbial community on human 
health [60].

Discussion
The rapid increase in the availability of sequenced micro-
bial genomes, metagenome-assembled genomes, and sin-
gle-cell genomes has significantly benefited ecogenomic 
research on unraveling microbial functional roles and 
their metabolic contribution to biogeochemical cycles. 
Tools that enable to conduct accurate and reproducible 
functional profiling on genomic blueprints at the scale of 
both individual microorganisms and the whole microbial 
community offered significant applications and advances. 
They are fundamental to facilitate understanding of com-
munity-level functions, activities, interactions, and func-
tional contributions in the era of multi-omics. An ideal 
tool for microbial biogeochemical profiling needs con-
sideration on better organizing, interpreting, and visual-
izing the functional profile information; this is especially 
important for dealing with thousands of genomes recon-
structed from metagenomes and studying community-
scale interactive metabolisms. Meanwhile, fast, accurate, 
robust performance, and wide usage of the tool will allow 
for providing reliability and efficiency.

Here, we developed METABOLIC for profiling metab-
olisms, biogeochemical pathways, and community-scale 
functional networks. Instead of solely depending on 
widely adopted protein annotation databases, in MET-
ABOLIC two additional steps were added in order to 
accurately predict protein functions and reconstruct 
metabolic pathways. First, for TIGRfam/Pfam/Custom 
HMM profile databases, default NC/TC thresholds are 
often set too low to avoid noisy signals especially for 
annotating proteins from large sets of metagenomes 
wherein similar protein families often co-exist. This fre-
quently leads to misannotations. To avoid this, we col-
lected hmmsearch scores of previous annotation results 
and plotted these scores as a function of all annotations, 
and manually curated NC/TC by specifically picking the 
sharpest decreasing interval as the adjusted cutoff. Sec-
ond, the motif validation step involves comparing poten-
tial hits to a set of manually curated highly conserved 
amino acid residues. This helps to distinguish two protein 
families with high sequence identity but different func-
tions which are often difficult to separate by HMM pro-
file-based annotations. These two steps help to filter out 
non-specific and cross-talking hits of important func-
tional proteins for downstream bioinformatic analyses. 

After obtaining predicted metabolic pathways, many 
other software/online servers mostly provide raw anno-
tation results with overwhelming yet unorganized details 
on characterizing protein functions. For microbial ecolo-
gists, it is fundamental to provide organized and intuitive 
results to facilitate understanding on the whole landscape 
of biogeochemical cycling capacities. In METABOLIC, 
such a function was developed to enable visualizing the 
presence/absence state of each step of biogeochemical 
cycles for individual genomes and the whole microbial 
community. Combined with gene abundance information 
calculated by metagenomic read mapping, we can iden-
tify the relative abundance for each step of biogeochemi-
cal cycles. Furthermore, METABOLIC can also visualize 
sequential reaction patterns for important organic and 
inorganic compound transformations. This visualization 
function of METABOLIC is practical for representing the 
“metabolic handoff” scenario of within-community inter-
actions [2]. METABOLIC can be implemented in human 
microbiome with the same performance. Recently, MET-
ABOLIC was applied to stool metagenomic samples from 
667 individuals who either were healthy or had adenomas 
or carcinomas of the colon, to profile organic/inorganic 
sulfate reduction and sulfide production [81]. This has 
considerably enlarged the utility of METABOLIC in com-
munity-scale investigation on human microbiomes for 
purposes of systematic microbiota-disease studies.

Previously, the community networks reflected by 
microbial genomes mostly focused on modeling reactions 
that are linked by metabolizing substrates and generating 
products [15, 19, 26]. On the contrary, METABOLIC was 
developed for a different purpose to study microbially 
mediated biogeochemical processes. In METABOLIC, 
the community-scale functional network provides an 
intuitive perspective on the metabolic connectivity 
among biogeochemical/metabolic steps and microbial 
contributions to these functions. MW-score, a metric 
that was built based on the same notion and methodol-
ogy, offers quantitative measurement for these connected 
functions. Combined together, they represent which 
functions are more centralized (connected with others) 
and important (weighted with higher relative abundance) 
in the co-sharing functional networks and which groups 
of microbial players contribute to these functions. Addi-
tionally, metabolic Sankey diagrams can be drawn to fur-
ther visualize microbial group contributions to different 
functions and biogeochemical cycles. As gene coverages 
generated by metagenomic read mapping can be replaced 
by transcript coverages generated by transcriptomic read 
mapping, we broaden the usage in reflecting active func-
tion connections and weights. In practical applications, 
functional networks and MW-scores can be made in a 
standardized, reproducible, and normalized manner, so 
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parallel comparisons between communities (or sam-
ples) are applicable. The visualized network and Sankey 
diagram can also offer intuitive representations of func-
tional connections and microbial contribution at both 
individual function and community-scale levels by using 
customized color schemes. There are other read-based 
metagenomic profiling tools, e.g., MetaPhlAn [28] and 
MEGAN [82], that can study the taxonomical and func-
tional composition of microbiome at the community-
scale level. Compared to read-based approaches which 
largely depend on the comprehensiveness of reference 
databases to capture microbial organisms, METABOLIC 
depends on the annotation of MAGs that is free from the 
limitation of reference databases on novel and rare organ-
ism characterization. METABOLIC specifically provides 
additional functionalities on annotation validation, result 
organization, and visualization which are meaningful 
to give reliable and easily accessible functional profiling 
results for microbial ecologists and biogeochemists to 
have a comprehensive understanding on the whole land-
scape of biogeochemical cycling capacities.

Conclusions
Metabolic functional profile of microbial genomes at the 
scale of individual organisms and communities is essen-
tial to have a comprehensive understanding of ecosystem 
processes, and as a conduit for enabling functional trait-
based modeling of biogeochemistry. We have developed 
METABOLIC as a metabolic functional profiler that goes 
above and beyond current frameworks of genome/pro-
tein annotation platforms in providing protein annota-
tions and metabolic pathway analyses that are used for 
inferring the contribution of microorganisms, metabo-
lism, interactions, activity, and biogeochemistry at the 
community-scale. METABOLIC facilitates standardiza-
tion and integration of genome-informed metabolism 
into metabolic and biogeochemical models. We antici-
pate that METABOLIC will enable easier interpreta-
tion of microbial metabolism and biogeochemistry from 
metagenomes and genomes and enable microbiome 
research in diverse fields.
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