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Abstract

A hybrid approach of physical laws and data-driven modeling for estimation: the example
of queuing networks

by
Aude Hofleitner
Doctor of Philosophy in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Alexandre Bayen, Chair

Mathematical models are a mathematical abstraction of the physical reality which is of
great importance to understand the behavior of a system, make estimations and predictions
and so on. They range from models based on physical laws to models learned empirically, as
measurements are collected, and referred to as data-driven models. A model is based on a
series of choices which influence its complexity and realism. These choices represent trade-
offs between different competing objectives including interpretability, scalability, accuracy,
adequation to the available data, robustness or computational complexity. The thesis investi-
gates the advantages and disadvantages of models based on physical laws versus data-driven
models through the example of signalized queuing networks such as urban transportation
networks.

The dynamics of conservation flow networks are accurately represented by a first order
partial differential equation. Using Hamilton-Jacobi theory, the thesis underlines the impor-
tance to leverage physical laws to reconstruct missing information (e.g. signal or bottleneck
characteristics) and estimate the state of the network at any time and location. Noise and
uncertainty in the measurements can be integrated in the model. When measurements are
sparse, the state of the network cannot be estimated at every time and location on the
network. Instead, the thesis shows how to leverage other characteristics, such as periodic-
ity. From deterministic dynamics, the thesis derives the probability distribution functions of
physical entities (e.g. waiting time, density) by marginalizing the periodic variable. Using
a Dynamic Bayesian Network formulation and exploiting the convexity structure of the sys-
tem, the thesis shows how this modeling leads to realistic estimations and predictions, even
when little measurements are available. Finally, the thesis investigates how sparse modeling
and dimensionality reduction can provide insights on the large scale behavior of the net-
work. Large scale dynamics and patterns are hard to model accurately based on physical
laws. They can be discovered through data mining algorithms and integrated into physical
models.
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Chapter 1

Introduction

Queueing theory is the mathematical study of waiting lines, or queues. The field of queuing
theory goes back to the early 1900s with the work of A. K. Erlang of the Copenhagen Tele-
phone Company to model waiting times for calls in telecommunication networks [68, 69].
Since the 1950s, the field has received a lot of attention from the scientific community. In
particular, the domains of application of queuing theory have expended from telecommuni-
cation networks to general communication networks, transportation engineering, air traffic
control, manufacturing or supply chain management.

Each field of application comes with its specificities in terms of the characteristics of
the queuing processes, the desired features of the outcome of the mathematical analysis,
the precision of the modeling and so on. For example, air traffic control has important
constraints in terms of safety and models must take into account the physical characteristics
of aircraft (maneuverability, minimum and maximum speed). In supply chain management,
one goal is to optimize the efficiency of the entire line of production while making sure that
the process is robust if a production site or engine fails. In transportation networks, the
field aims at reducing the external costs due to non-optimal operations [194]. An essential
step for operations and planning (routing, network optimization) is to develop the ability to
estimate and forecast traffic conditions with appropriate accuracy and reliability [37].

1.1 Related work

This section reviews prior work on queuing theory. Queuing theory often refers to the
analysis of a single queue. When several queues co-exist and interact, one usually refers to a
queuing network. The interaction between the queues requires the development of additional
modeling and statistical results on top of queuing theory results. The complexity of queuing
networks often leads to (domain-specific) approximations which aim at simplifying the model
and make it more tractable and computationally efficient.
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Background on queuing theory

In order to analyze and optimize queuing systems, one needs a mathematical model of
the physical system and its properties, known as queuing model. A queuing model is a
mathematical abstraction of the reality which is typically represented by: (i) the system’s
physical configuration which specifies the number and arrangement (e.g. queue capacities,
queue disciplines, and so on) of the servers, which provide service to the customers, and
(i) the statistical properties of the arrival process and of the service process. The queue
capacity refers to the maximum number of customers which can wait to be served in the
queue. The queue discipline refers to the manner in which customers are selected for service
when a queue has formed. There are several common queue disciplines:

o First In First Out (FIFO): the customers are served in the same order in which they
have arrived. For this reason, it is sometimes also referred to as First Come First Serve
(FCFES).

e Last In First Out (LIFO): the last customer to arrive will be the first one served,
yielding another common denomination as Last Come, First Served (LCFS).

e Service In Random Order (SIRO) or Random Selection for Service (RSS): the customer
to be served is chosen randomly, independently of the arrival times.

e Priority: customers with high priority are served first.

In the context of communication networks, each communication channel is a server and
the messages are the customers. The (random) times at which messages request the use of the
channel characterize the arrival process, and the (random) duration to use the channel and
transmit the message constitute the service process. The queue capacity may be considered
infinite and the queue discipline FIFO or Priority.

Urban transportation networks are another domain of interest, used as recurring example
in the remainder chapters of the dissertation. FEach driver (customer) seeks to use the
transportation network (server) to go from an origin to a destination (service). In the latter
queuing network, the queue capacity is defined by the number of vehicles which can fit on
each road segment. The queue discipline is typically FIFO, even though some models may
consider queues with priorities to model specific types of vehicles (ambulances, police vehicles
and so on).

The mathematical analysis of the models aims at investigating how the physical and
stochastic parameters of the system relate to certain performance measures, such as average
waiting time, server utilization, throughput, probability of buffer overflow, etc. Applied
queuing theory aims at developing models which are simple enough to yield to mathematical
analysis, yet contain sufficient detail to reflect the behavior of the real system. This approach
will remain a center component of the dissertation.

The characteristics of a queuing processes are typically defined using a notation defined
by Kendall [133]. The process is described by three factors written A/S/c. Additional factors
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may be used and the notation becomes A/S/c/K/D. The different factors have the following
interpretation:

e A: Characteristics of the arrival process. Common denomination include Markovian
(M) corresponding to Poisson arrival, Degenerate (D) corresponding to deterministic
of fixed-time arrivals, Erlang (E})) corresponding to arrivals with an Erlang distribu-
tion with shape parameter k or General (G) corresponding to arbitrary probability
distribution of arrivals.

e S: Characteristics of the service process.
e c: Number of servers.

e K (optional): Capacity of the system. Once the capacity is reached, no more customers
can enter the system. This factor is only mentioned when the capacity of the system
is finite.

e D (optional): Queue discipline (usually not mentioned if the queue is FIFO).

Previous work has studied the properties of different queuing models including the M/D/1
and M/D/k queues [68, 69], the M/M/1 queue or the M/G/1 queue [186, 134]. The main
results of queuing theory are out of the scope of this thesis. Please see [139, 48, 219, 93] for
additional references on queuing theory.

Queuing networks

In many areas, such as manufacturing, transportation networks or task management (e.g.
distributed computing), when a customer is serviced at a node, it can join another node
and queue for service. Such a system of interacting queues is called a queuing network.
The field of queuing networks is significantly more complex than the one of queuing theory
with a single queue (even with several servers) because of high-dimensional interactions and
dependencies.

One of the primary goals of queuing network theory is to estimate and predict the state
of the network, given specific demand patterns. Statistical results aim at characterizing the
robustness of the network, detecting potential bottlenecks which reduce the overall efficiency
of the system or analyzing network equilibria. For a large class of networks, the policy which
describes the sequence of nodes visited by a customer can be optimized. The optimization
of the policy is commonly called a routing strategy.

The complexity of queuing networks benefits from specific assumptions which facilitate
the analysis and understanding of the queuing processes. This thesis focuses on a class of
queuing network which represent urban road networks. In numerous parts of the world,
traffic congestion has a significant impact on economic activity. An essential step towards
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active congestion control is the creation of accurate, reliable traffic monitoring systems.
These transportation networks have the following specific characteristics.

e Signalized queuing networks: These queuing networks arise whenever two queues can-
not be served concurrently and signals indicate which queue is active at a given time
to manage the conflicting services. The urban (arterial) transportation network is one
of the most intuitive example of signalized queuing network. Other examples include
logistics and communication networks with interfering channels which cannot be used
concurrently.

e Horizontal queuing networks: Queuing networks for which the amount of space of each
customer is not negligible and travel speed in a queue is finite. This models the fact
that once a customer is served, there is a non-null time before the next customer can
be served, because it needs to “travel” to the head of the queue.

e Networks with limited and/or uncertain information: Queuing networks for which there
is little and uncertain amount of information and measurements available, both on the
characteristics of the queuing network (service rates, arrival rates, sequence of service
requested by a customer) and on the state of the different queues.

Historically, traffic monitoring systems have been mostly limited to highways and have
relied on public or private data feeds from dedicated sensing infrastructure:

e Loop detectors or inductive loops [124] are embedded into the roadway and detect ve-
hicles as they pass over the detector. A properly calibrated loop detector provides
high-accuracy flow and occupancy data as well as velocity when two detectors are
placed close together (double-loop detectors). The sensors suffer from important re-
liability issues requiring filtering to produce quality input data to traffic estimation
algorithms. Loop detectors are commonly found on most major highways throughout
the United States and Europe where they have communication capabilities to transmit
the data to a central server in real-time (that can subsequently be used in traffic infor-
mation systems). In the United States, most loop detectors installed on arterial roads
do not have internet connection, preventing their use for arterial estimation. Rather,
this data is generally used locally for signal timing control.

e Radars can be placed on poles along the side of the road enabling them to collect flow,
occupancy and velocity data. Their deployment remains limited.

e High-resolution video camera placed high above the roadway track all vehicles within
the view of the camera. As of the time when this thesis is written, they do not provide
data in real-time due to the large amount of post-processing work that needs to be
done on the images to turn them into actual vehicle trajectory data. The cost of
deployment and processing limit the scale of their use to small spatio-temporal domain
(in the order of one mile stretch for fifteen minutes) to validate modeling assumptions
and estimation capabilities.
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e License plate readers automatically extract the license plate identification from passing
vehicles. They are generally used in pairs along the road to extract high-accuracy travel
times for vehicles passing both locations. The deployment of these sensors require
the identification of appropriate locations to place them and often remains limited to
specific data collection studies.

e Radio-Frequency Identification (RFID) and Bluetooth readers can be used for traffic
data collection by placing readers at various points along the roadway. Travel times
can be collected between pairs of points and processed similarly as license plate readers
data. The accuracy of travel times varies depending on the strength of the signal:
stronger signals increase the chance of detection but increase the duration and area of
detection, leading to a loss in accuracy especially for short distance travel times. RFID
readers are generally placed far apart from each other in current deployments, making
them useful for collecting long distance travel time information, but not for providing
input data to detailed traffic estimation algorithms. They are placed almost exclusively
on highways, making it uncommon to find this technology on arterial roads. The
density of the arterial network and the high number of possible routes and itineraries
decreases the probability to detect a specific vehicle at two distant readers, unless the
entire network is equipped with such a technology.

o Wireless sensors are devices embedded into the roadway. They are similar to loop
detectors but record the magnetic signature of vehicles passing them which is used for
vehicle re-identification at downstream sensors with up to 80% accuracy [98]. Besides
flow and occupancy, wireless sensors provide travel times between pairs of sensors for
all the matched vehicles. The wireless sensors are cheaper to deploy and maintain
than loop detectors. They provide travel times for a larger portion of the flow and
with higher accuracy than Bluetooth readers and RFID readers. These characteristics
make them appealing for large-scale deployments on arterials even though they are
only available in a small number of locations at the current time and monitor specific
routes rather than portions of a network. Sensys Networks [3] is currently one of the
leading providers of these sensors.

Urban networks come with additional challenges:

e The underlying flow physics which governs them is more complex and highly variable
(traffic lights with unknown cycles, turn movements, pedestrian traffic)

e The traffic estimation relies mostly on probe vehicle data, which comes from various
sources, each with their own specific issues (sparsity, bias, noise, coverage):

— Fleet data (FedEx, UPS, taxis, etc.) provides information from one minute sam-
pled GPS data (the current standard in the United States) but with specific
spatio-temporal travel patterns (fleets avoid congestion).
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— Participatory sensing (GPS enabled smartphone or aftermarket device data or
2-way navigation device), for example Garmin, INRIX, Microsoft, Google, Apple,
Nokia or Waze. This data is unpredictable, sparse, and no single company has
ubiquitous coverage.

— Vehicle re-identification (e.g. RFID, magnetic signature [147], Bluetooth readers,
Automated Plate Recognition Cameras) is also used for traffic monitoring, with
deployment of readers along some small portion of the transportation network.
Wireless technology provides travel time measurements of a high proportion of
the flow of vehicles [147] through vehicle magnetic signature re-identification.
This information remains limited to the equipped road which represents, today,
a marginal fraction of the arterial network.

The next paragraphs describe different classes of models and algorithms which can be
used to turn traffic data into reliable traffic information.

Models for highway traffic

Even though the highway network is not signalized, models of traffic flow on highway net-
works have a lot of influence on current research in signalized networks. This motivates a
short overview of the state of the art of highway traffic models. For highway networks, it has
become common practice to perform both system identification of highway parameters (free
flow speed, traffic jam density and flow capacity) and estimation of traffic state (flow, density,
length of queues, bulk speed and shockwave location) at a fine spatio-temporal scale [220, 25].
These approaches heavily rely upon both the availability of data and highway traffic flow
models developed over the last half century [155, 189, 52]. They use sequential data assim-
ilation algorithms (Kalman filtering [202] or other analogous techniques) to transform the
available data into usable traffic information (see [220, 206, 117, 144] for a discussion spe-
cific to highways). Proof-of-concept studies have demonstrated the feasibility of designing
highway traffic monitoring systems relying on probe data only [102, 220, 206].

Microscopic models

Microscopic models of traffic characterize the dynamics of every vehicle in the network and
its interaction with the infrastructure and with the other vehicles. The state of the network
encompasses microscopic properties like the position and velocity of single vehicles. For a
network with N vehicles, the dimension of the state is thus O(N), regardless of the size of
the network. There are at least two main classes of microscopic models:

o Car following models: Ordinary differential equations describe the dynamics of the
positions of vehicles depending on the position of other vehicles and network attributes.
Historically, car following models have assumed that the dynamics of a vehicle only
depends on its own velocity, on the distance to the preceding vehicle and the speed
of that vehicle. More general models have been developed to account for additional
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aspects of vehicle dynamics. In particular, driving behavior may not only depend on
the leading vehicle but on a higher order of preceding vehicles. Some examples of car
following models are developed in [89, 125, 210].

e Cellular automaton: The time and space are discretized and the model describes how
the state of each section of the network (cell) is updated at each time interval. Each
road section can either be occupied by a vehicle or empty. The time scale is typically
given by the reaction time of a human driver. The length of the cell determines
the granularity of the model. Cellular automata are not able to model dynamics as
accurately as car following models, but they are simpler and more efficient numerically
and can thus be used to model larger networks.

Both car following models and cellular automata have limitations due to the dimensionality
of the problem, which makes these methods challenging for any reasonably sized networks.
Moreover, these models are very sensitive to calibration and require large amounts of site
specific data which is rarely available at a large scale. They are often used for simulation
softwares such as PARAMICS [35], CORSIM [95] or VISSIM [75].

Macroscopic models

Vehicular flow is represented as a continuum and characterized by macroscopic variables,
often chosen to be flow q(x,t) (veh/s), density p(x,t) (veh/m) and velocity v(z,t) (m/s). The
dynamics is characterized by partial differential equations, such as the Lighthill- Whitham-
Richards model [155, 189] or second order models [184, 182, 222, 149] which gained popularity
and generated some debate within the transportation community [55, 13]. Third order and
higher order models [100], as well as phase transition models [27, 45] were also developed to
capture some specificities of vehicular traffic. Estimation and control of partial differential
equation is an entire fields reviewed in Chapter 2.

Estimating the state of the queuing network at any location x and time ¢ requires large
amount of data on the arrival rates (arrival of vehicles in the network) and service rates
(capacity of each road segment, precise signal timing and so on). Some of these characteristics
are site specific and require calibration [86, 197]. Other approaches do not require as much
information about the network but are not practical given the current penetration rates of
probe vehicles [16]. Moreover, these methods do not characterize the probability distribution
function (pdf) of travel times.

Vertical queuing theory

In the context of transportation networks, queuing theory, as described at the beginning of
the chapter is often referred to as vertical queuing theory or point-delay models. It has been
applied specifically to arterial traffic since the pioneering work of Webster in the 1950s [218,
6, 212, 152]. These contributions have studied the effect of different arrival distributions on
the average delay at a signal. Some work recovered the probability distribution of delay or
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of number of vehicles in the queue using analytical derivations and simulations. Results of
vertical queuing theory have successfully been applied to planning applications (e.g. signal
plans) but have limited real-time applications, as shown by [211]. Initial approaches to
generalize the derivations for a network and model congestion propagation can be found
in [179]. Vertical queuing theory does not model how the queue grows in space and considers
that the delayed elements stack up upon one another, incurring no delay traveling to the
point of congestion. This theory is well suited to model packets of data, (computer) tasks
or communication of messages. However, when it comes to vehicles, the delay to travel to
the point of congestion is not negligible.

Beyond estimation, vertical queuing theory has also been applied for control strategies of
traffic signals [215]. There has also been significant interest to characterize Nash equilibria in
both static [22] and dynamic [160] settings. Nash equilibria of congestion games are inefficient
(price of anarchy [181, 40]) compared to the system optimum, in which a coordinator assigns
flow as to minimize a system-wide cost function. In order to address this inefficiency, some
tools have been proposed, including congestion pricing [180], capacity allocation [143] and
Stackelberg routing [191, 10]. However, vertical queues show the same limitations for defining
control strategies as they do for estimation; recent research takes into account the specificities
of horizontal queues in the design of control policies [146, 145].

Horizontal queuing theory

To overcome the limitation of vertical queues,the work of [198] and [165] developed a hor-
izontal queuing theory, which models how queues form and release in the physical space.
This theory serves at the basis for the derivations presented in this dissertation (Chapters 5
and 6). It has been used by [176] and [224, 223] to model the probability distribution of
delay on arterial links. Other work studies the influence of the stochasticity of overflow
queues [216] on the probability distribution of travel times. These approaches assume that
link travel times are available. However, the main source of data for urban traffic estima-
tion comes from sparsely sampled probe vehicles which typically report their position at a
given temporal rate (e.g. once per minute). The reported locations do not coincide with
the network discretization, requiring a more general approach. Another line of research [46]
estimates the pdf of queue length from probe vehicle data, assuming that vehicles report
their position when they join the queue. This very interesting sampling scheme is not yet
the standard among probe vehicles limiting the possibility to use such an approach for global
monitoring systems.

Data driven models

The variability of traffic has also led to the development of data driven models, which do not
directly model the physics but have the prospect to be more flexible, more scalable and to
have results which improve as the amount of available data increases. Neural networks and
state-space neural networks [214, 157], graphical networks (Bayesian networks and Markov



CHAPTER 1. INTRODUCTION 9

Random Fields) [183, 201, 82], regression techniques and time series analysis [87, 106] have
been introduced to produce short-term traffic predictions for both freeway and arterial traffic
with promising results. These articles model the spatio-temporal dependencies of the links
of the network which provides more robustness when little or no data is available on some
parts of the network. However, none of these articles present a comprehensive modeling
approach of arterial traffic flow, which ensures physically realistic estimates when little or
no data is available.

1.2 Problem statement

Section 1.1 emphasized the importance to study queuing networks for a wide variety of
applications. Different applications come with specific challenges such as modeling, available
information regarding both the characteristics of the network and the demand and service
rates, availability of measurements of the state of the queuing network, desired outcome of
the analysis of the network (estimation, control, failure detection, and so on).

Urban transportation networks have received a lot of attention in the recent past with
the emergence of location aware, communication capable mobile devices (e.g. GPS enabled
smart-phones, fleet management devices). By sharing their location, devices provide sparse
measurements of the state of the network. Gathering the information from a large number
of devices in a community sensing or participatory sensing paradigm [144, 70| offers new op-
portunities for traffic estimation, forecast and network optimization in urban environments.

Challenges of location data in urban networks

The location data sent by the mobile devices is referred to as probe vehicle data or floating car
data. For privacy reasons, communication costs or battery life management considerations,
the main source of data with the prospect of global coverage in the near future comes from
sparsely sampled probe vehicles. In this paradigm, each vehicle reports its location at a low
frequency; the industry standard is one location report per minute at the time this thesis
was written. This fact has several consequences on the process of turning the measurements
into valuable information:

o Map-matching and Path-inference: The GPS measurements may be noisy and must
be mapped onto the road network. Moreover, the vehicle may travel more than one
link between successive measurements, and the path effectively followed by the vehicle
between successive measurements needs to be reconstructed. These problems can be
addressed simultaneously using a map-matching and path-inference algorithm [120]
which combines models of GPS noise and driving behavior in a Markov Random Field
to reconstruct filtered trajectories between successive location reports. The algorithm
returns information on the path followed by the probe vehicle and the travel time
between the successive location reports. The information is represented as a tuple
with the following information:
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Figure 1.1: San Francisco taxi measurement locations, observed at a rate of once per minute.
Each small dot represents the measurement of the location of a taxi, received between mid-
night and 7:00am, on March 29th, 2010. The large dots represent the location of taxis visible
in the system at 7:00am on that day.

TODO: Add Tim’s Ieee t-its if published by May

— List of links: list of links traversed by the probe vehicle between the two
successive location reports.

— Start offset: (mapped) distance of the first GPS point to the upstream inter-
section.

— End offset: (mapped) distance of the second GPS point to the upstream inter-
section.

— Start time: Time at which the first GPS point is sent.

— Travel time: Difference between the time when the second and the first GPS
points are sent.

e Travel time on partial links: When vehicles report their location with a given fre-
quency, the location reports do not coincide with the discretization of the network.
The sampling frequency is too low to interpolate the travel time on the missing por-
tions of the link, in particular because of the spatial heterogeneity of travel times on a
link (vehicles are more likely to stop close to intersections because of the presence of
signals).

e Path travel time decomposition: Because of the low sampling frequency, vehicles typi-
cally traverse several (partial) links on their path between successive location reports.
Numerous algorithms rely on link travel time measurements [106, 166] to infer (and
predict) the traffic conditions on the road network. These algorithms require that travel
times of individual links be computed from the path travel times of the probe vehicles.
This computation is called travel time allocation or travel time decomposition [101]
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Challenges of queuing network modeling and estimation

The underlying processes of queuing networks is in general very complex. Models are required
as a mathematical abstraction of the reality. They are necessary to make estimates and
predictions. One important challenge of mathematical modeling is to find an appropriate
trade-off between simplicity and accuracy of the model. Added complexity usually improves
the features that a model can integrate, but it can decrease one’s capacity to understand
the behavior of the model, interpret and analyze results. It may also raise computational
problems, including intractability, numerical instability and over-fitting. The choice of model
and assumptions made depend on the setting in which the model is used. For example,
Newton’s classical mechanics is an approximate model of the real world. The model is
sufficient for a wide range of applications. However, specific applications require a more
precise model such as Quantum physics or Relativity theory whenever particle speeds are
no longer well below the speed of light, or the system of interest does not consist of macro-
particles only.

Similar challenges arise in queuing networks. As detailed in Section 1.1, previous work
has investigated a wide range of models to represent queuing networks. In particular for
urban traffic, models range from microscopic models to fully data driven models. On the
one side, microscopic models have the potential to fit reality accurately. They prohibitive
computational complexity and sensitivity to calibration of numerous parameters limit their
applicability for large scale traffic estimation. On the other side, fully data driven models
have the highest flexibility and the potential to perform very accurately with large amounts
of training data. They do not provide guarantees regarding the realism of the estimates,
which is problematic when only little and noisy data is available.

Problem statement

In light of the challenges and characteristics of the modeling and available data, this thesis
analyzes the following question: How can one leverage the realism and insights of accurate
physical models while offering the flexibility and learning capability of data-driven models in
queuing networks? The thesis investigates the trade-off between simplicity and accuracy of
the model for queuing networks with limited information on the specific parameters of the
queue dynamics, on the parameters of the demand and with sparse measurements of the
state of the network.

The thesis takes the recurring example of signalized flow networks which exhibit some
specificities which require interesting modeling considerations. However, derivations are in
general valid for other types of queuing networks, distributed parameter systems or dynam-
ical systems.
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1.3 Organization of the thesis and contributions

This thesis is organized as follows.

Chapter 1 reviewed existing work in queuing theory and queuing network analysis. The
chapter emphasizes the variety of applications for queuing networks and exhibits some re-
maining challenges which remain to be solved. In particular, the chapter demonstrates the
potential of probe vehicle data for large scale estimation in urban networks. The data and
the modeling come with specific challenges which are investigated in the dissertation, with a
focus on leveraging the potentials of both physical and data-driven models in an integrative
approach.

A common approach to modeling systems governed by conservation laws leverages the
theory of distributed parameter systems. Chapter 2 reviews existing work on distributed
parameter systems which is relevant to estimation in systems governed by conservation laws.
In particular, the chapter reviews some results of Hamilton-Jacobi equations which are ex-
tended in the following chapters.

Chapter 3 makes the assumption that queuing networks are accurately described as a
distributed parameter system based on conservation laws. More specifically, the chapter in-
vestigates signalized queues for which the parameters of the signals (times when servers offer
service or not) are unknown and only partial measurements are provided for the trajectory
of the customers in the queue.

Contribution: The chapter formalizes the problem of estimating the parameters of the sig-
nals as a boundary condition problem for a Hamilton-Jacobi partial differential equation.
The chapter derives an algorithm which exhibits a specific solution to the problem or shows
that no solution exists. If a solution exists, it may not be unique but the algorithm computes
the solution which has the physical characteristics required by the problem of interest.
Publication [109]: “Reconstruction of boundary conditions from internal conditions using
viability theory”, A. Hofleitner, C. Claudel, A. Bayen, 2012 American Control Conference,
pp.640-645, June 2012.

For many applications, both the differences between the modeling and the reality on one
side and the inaccuracies in the measurements of the system on the other side must be ac-
counted for. This is typically done by doing robust modeling or by using a statistical model.
Robust modeling usually provides bounds of values for parameters or state estimates given
the modeled discrepancy between the model and the reality on one side and between the
measurements and the state of the system on the other side. Statistical modeling considers
the state of the system and its parameters as random variables and computes probability
distributions over these variables. Chapter 4 uses statistical modeling to take into account
the inaccuracies in the demand for service in a queue amd compute the probability distribu-
tion of the state of the queue at any point in time and space.
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Contribution: The chapter extends existing work on Hamilton-Jacobi partial differential
equations and viability theory by introducing randomness in the boundary conditions and
characterizing the probability distribution of the solution at any point in time and space.
Publication [108]: “Probabilistic formulation of estimation problems for a class of Hamilton-
Jacobi equations”, A. Hofleitner, C. Claudel and A. Bayen, 51st IEEE Conference on Decision
and Control, pp. 3531-3537, December 2012.

Under limited measurements, it is not realistic to expect to reconstruct the state of the
network distribution at every location and time. In signalized networks, one can exploit the
periodicity imposed on the system by the presence of signals (granted the parameters of the
signals and the demands are stationary) to aggregate the dynamics over time and describe
the average dynamics per cycle in terms of probability distributions. Chapter 5 follows this
approach to characterize the probability distribution of delays and travel times between any
location in signalized queues and estimate the parameters of the distributions from sparsely
sampled probe data.

Contribution: The chapter leverages results from horizontal queuing theory to derive the
probability distribution of travel time between any location on the network, making it
adapted to measurements which include partial links, as mentioned in Section 1.2 . The
chapter proves that the distributions are mixture of log-concave distributions. The prop-
erty is used to formulate the travel time decomposition problem as a Mized Integer-Convex
problem and propose algorithms which exploit this property. The parameters of the travel
time distributions are estimated independently for each link of the network as the solutions
of small scale Maximum Likelithood problems.

Publications [114, 107]: “Probability distributions of travel times on arterial networks: a traf-
fic low and horizontal queuing theory approach”, A. Hofleitner, R. Herring and A. Bayen,
91st Transportation Research Board Annual Meeting, Number 12-0798, Washington D.C.,
January 2012.

“Optimal decomposition of travel times measured by probe vehicles using a statistical traffic
flow model”, A. Hofleitner, A. Bayen, 14th IEEE Intelligent Transportation System Confer-
ence (ITSC 2011), pp. 815-821, Washington D.C., October, 2011.

Chapter 6 extends the statistical model of Chapter 5 by modeling the dynamics of cus-
tomers as they switch queues. In Chapter 5, even though measurements span several links
and cover the entire network, each queue is modeled independently and the distributions are
estimated given the measurements allocated to the link. Chapter 6 extends the derivations
to model a queuing network which models the propagation of congestion.

Contribution: The chapter builds upon the derivations from Chapter 5 to model queuing in
urban networks as a parametric Dynamic Bayesian Network. The chapter investigates algo-
rithms to learn the parameters of the Bayesian network and perform real-time estimation.
Publication [113]: “Arterial travel time forecast with streaming data: a hybrid approach of
flow modeling and machine learning”, A. Hofleitner, R. Herring and A. Bayen, Transporta-
tion Research Part B Vol. 46 Number 9, pp 1097-1122, November 2012.
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Chapters 5 and 6 rely on assumptions on the dynamics of horizontal queues and dynam-
ics of customers as they switch queues to provide an analytical derivation of the probability
distribution of travel times. The underlying physical model ensures realistic estimates when
little data is available. However, the physical approach limits the flexibility of the model
when the underlying assumptions are not met. Moreover, simpler distributions such as
Normal distributions have several properties which make the computations more efficient.
Chapter 7 proposes a model which builds on some ideas from Chapter 6 regarding the prop-
agation of congestion in a network but simplifies the dynamics and the distribution of travel
times to improve the computational complexity and the generality of the model.
Contribution: The chapter presents a Dynamic Bayesian Network to model the dynamics
of congestion in a queuing network. By releasing some assumptions from Chapters 5 and 6,
the resulting model can be applied to a larger variety of applications.

Publication [112]: “Learning the dynamics of arterial traffic from probe data using a Dynamic
Bayesian Network”, A. Hofleitner, R. Herring, P. Abbeel and A. Bayen, IEEE Transactions
on Intelligent Transportation Systems, Vol. 13, pp. 1679 -1693, December 2012.

The statistical models of the network dynamics presented in Chapters 6 and 7 rely on

an arbitrary time discretization to update the state of the network. However, having a fixed
time discretization may be limiting when conditions change rapidly (causing delays and in-
accuracies in the estimation). Similarly, one may benefit from increasing the duration of the
time discretization for links with stationary conditions, in particular if they receive a limited
amount of measurements. Besides the time discretization, the models rely on assumptions on
the conditional independence between the congestion levels of different links of the network.
It is intuitive to assume that congestion first spreads locally. However, understanding more
accurately the dependency between neighboring links may improve the interpretability of
the results. The chapter aims at improving the real-time estimation capabilities of dynam-
ical models such as the ones presented in Chapters 6 and 7. It uses an online data-driven
approach to detect changes in the state of the network (either spatially or temporally).
Contribution: The chapter derives an algorithm to solve a generalization of the LASSO.
The solution is updated as new measurements become available. The generalization of the
LASSO allows to impose sparsity on a linear function of the solution (to detect spatial
changes for example) or on the difference between successive estimates (to detect temporal
changes).
Publication [111]: “Online least-squares estimation of time varying systems with sparse tem-
poral evolution and application to traffic estimation, A. Hofleitner, L. El Ghaoui, A. Bayen,
50th ITEEE Conference on Decision and Control and European Control Conference, pp. 2595-
2601, Atlanta Fl1., December 2011”.

Both the modeling and the interpretability of the results can be improved by looking at
the network at a large scale and identifying specific patterns of the dynamics. Chapter 9
proposes a data-driven approach to identify and analyze both spatial and temporal patterns



CHAPTER 1. INTRODUCTION 15

in the dynamics of urban networks. It identifies times of day and days of the week with
similar behavior as well as links of the network which tend to follow similar congestion pat-
terns. The outcome of such an analysis has the potential to improve dynamical models such
as the ones presented in Chapters 6 and 7: (i) The analysis identifies regions of the network
which have independent dynamics. These natural cuts can lead to considerable gains in the
computational complexity of these models by using approximate inference algorithms [30] or
by reducing the number of particles required to accurately represent probability distributions
over the sub-network (ii) The algorithm clusters times of day, days of week and/or links of
the network with similar dynamics. This outcome can be used to increase the robustness of
the estimation using hierarchical models.

Contribution: The chapter uses a Dimensionality Reduction algorithm known as Non-
negative Matriz Factorization (NMF) to perform large scale analysis of the congestion levels
of a network over several months. It analyzes the dynamics of the network in the lower
dimensional space to identify clusters of links with similar dynamics and to define periods of
the day during which conditions are expected to remain stationary. It also uses hierarchical
clustering based on a cosine distance to identify similarities between the days of the week.
Publication [115]: “Large scale estimation of arterial traffic and structural analysis of traffic
patterns using probe vehicles”, A. Hofleitner, R. Herring, A. Bayen, Y. Han, F. Moutarde and
A. de La Fortelle, 91st Transportation Research Board Annual Meeting, Number 12-0598,
Washington D.C., January 2012.
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Chapter 2

Background on distributed parameter
systems

As explained in Chapter 1, the thesis analyzes the trade-off between model simplicity and
capacity to integrate important features. It investigates how to leverage models derived from
the physical properties of the system and information provided by the measurements. This
chapter reviews existing results which constitute a basis for further analysis of numerous
physical systems: the class of distributed parameter systems.

A distributed parameter system is a system whose state space is infinite-dimensional
(also known as infinite-dimensional systems). Distributed parameter systems include systems
descibed by

e Partial differential equations (PDEs) [17]
o Infinite dimensional vector systems [59, 199]

is usually described by a function of continuous variables (space and time, multi-dimensional
spaces) in contrast to a finite dimensional vector. Typical examples are systems described by
partial differential equations (PDEs). PDEs provide an efficient way of representing physical
phenomena in a mathematically compact manner: they relate derivatives of a function with
respect to different variables [71]. Numerous examples can be found in fluid mechanics,
continuum mechanics or studies of diffusion phenomena.

TODO: Figure out what the actual definition of distributed parameter system is

To compute the solution of the physical problem of interest, two types of information are
traditionally needed:

e [nitial conditions They represent the value of the function at an initial time. For
example if the equation characterizes the evolution of the temperature of a beam, the
initial condition is the temperature distribution in the beam at the beginning of the
experiment. Sometimes, terminal conditions (instead of initial) are prescribed; for
example to impose the state of the system at the end of an experiment.
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e Boundary conditions. They represent known information at the spatial boundaries of
the system. For example, if the PDE represents the evolution of the velocity of vehicles
on a road segment, the boundary condition may be given by a radar at the entrance
and exit of the road segment.

Besides initial and boundary conditions, it is desirable to provide internal value condi-
tions. Internal value conditions represent known information on the solution in the interior
of the domain of definition. For example, measurements from Lagrangian sensors are internal
value conditions. The integration of internal value conditions requires a specific mathemat-
ical treatment of the solution as described in Section 2.3 and in Chapters 3 and 4.

Given a partial differential equation, initial and boundary conditions, two main theoret-
ical questions arise:

e [xistence of a solution: Prove that there exists (at least) one function satisfying the
PDE, the boundary and initial conditions. If no function satisfies both the PDE, the
boundary and initial conditions, the conditions are incompatible and the problem is
said to be ill posed.

e Uniqueness of the solution: There may be several functions satisfying both the PDE,
the boundary and initial conditions. However, even if the solution is not unique, there is
sometimes only one of the mathematical solutions which represents the actual evolution
of the physical phenomenon of interest. Discriminating between several solutions to
find the proper solution to the physical problem is sometimes very difficult, and for
specific problems an open question. This might require the use of a selection criterion,
which is often inspired by physical principles.

This chapter is organized as follows. Section 2.1 reviews existing methods of estimation
and control of partial differential equations. Section 2.2 presents an example of distributed
parameter system for networks governed by conservation laws (such as transportation net-
works or flow networks). Section 2.3 reviews results from viability theory, a powerful frame-
work for fast and exact semi-analytic estimation of scalar Hamilton-Jacobi partial differential
equations. The results from Section 2.3 are extended in Chapters 3 and 4.

2.1 Data assimilation in distributed parameter
systems

The problem of combining observation data (measurements) with the underlying dynam-
ical principles governing the system under observation is called data assimilation or state
estimation. It consists in incorporating data in the mathematical model of the physical
system (i.e. represented by a partial differential equation), in order to estimate the current
state of the system and forecast its future state [154, 23]. State estimation and control for
PDE-based systems is more complex than for their ordinary differential equation (ODE)
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based counterparts, because of the distributed nature of the state. Existing state estimation
methods are detailed in [196] and summarized below. They often come from estimation and
control theory as well as Bayesian statistics. State estimation is sometimes referred to as
optimal state estimation in reference with a chosen criterion. Most common criteria include
least-squares, maximum likelihood or minimax. The choice of criteria may depend on the
application of interest as well as characteristics of the system (e.g. multi-modal).

Estimation theory encompasses theories used to estimate the state of a system by com-
bining, sometimes with a statistical approach, all available reliable knowledge of the system
including measurements and theoretical models. The a priori hypotheses and choice of esti-
mation criterion are crucial in the estimation process since they determine the influence of
dynamics and data on the state estimate.

Estimation of distributed parameter systems

At the heart of estimation theory is the scheme derived by Kalman in 1960 known as the
Kalman Filter [129]. The Kalman Filter is a simplification of Bayesian estimation which
was originally developed for the case of linear ordinary differential equations. The Kalman
Filter provides a sequential, unbiased, minimum error variance estimate based upon a linear
combination of all past measurements and dynamics. The Kalman Smoother is another
unbiased, minimum error variance estimate for linear systems. It solves a variant of the
estimation problem known as a smoothing problem: the computation of each state estimate
uses all the data available, before and after the time of estimation. A common version of
this scheme first computes the Kalman Filter estimate. The smoothing is then carried out
by propagating the future data information backward in time, correcting the Kalman Filter
estimate using error covariance and adjoint dynamical transition matrices. This implies that
both the Kalman Filter state and error covariances need to be stored at all data-correction
times, which is usually demanding on memory resources.

The main limitation of the Kalman Filter are its restriction to linear models with additive
independent white noise in both the transition and the measurement systems. For nonlinear
systems and systems for which the uncertainty is not accurately modeled by additive indepen-
dent white noise, a series of approximate or suboptimal estimation schemes have been derived
and employed for numerous applications. Eztended Kalman Filtering (EKF) is a modifica-
tion of Kalman filtering for nonlinear systems which are differentiable. EKF techniques have
been applied, among others, to water channels [72] and traffic flow [7, 217]. However Ez-
tended Kalman Filtering performs poorly for specific nonlinear systems. In particular it is
not defined at points of discontinuities of non-smooth or non-differentiable systems [26].

Ensemble Kalman Filtering (EnKF) [74] is a Monte-Carlo based method which overcomes
the limitation of EKF': it does not require approximating the model by linearization around
the current estimate as done in EKF, which is crucial for non-smooth systems. EnKF has
been applied to traffic estimation [220], Shallow Water Equations [208] or meteorology [118].
The EnKF samples the possible current states of the system according to a probability distri-
bution, computes the evolution of these samples, and combine them with new measurements
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to obtain the best estimate of the state. The Mobile Millennium system [4] is an example
of operational implementation of the EnKF for traffic flow estimation.

More generally, the state of distributed parameter systems can be estimated using Monte
Carlo Simulation. A common implementation is Particle Filtering (PF), which can be used
for general nonlinear systems, albeit with a higher computational cost [9]. A more extended
review of particle filters is presented in Chapter 6.

Other estimation algorithms have been developed, relying on specific assumptions on the
model and/or the measurements to limit the computational cost of the estimation. Direct
Insertion consists of replacing the forecast values by the observed ones, at all data points
where data is available. The a priori statistical hypothesis is that data are exact. The
Blending estimate is a scalar linear combination of the forecast and data values at all data
points, with user-assigned weights. The Nudging or Newtonian Relaxation Scheme “relaxes”
the dynamical model towards the observations by adding a non-physical diffusive-type term
to the model equations which depends on the difference between the observations and the
model solution [103].

Optimal interpolation [164] is a simplification of the Kalman Filter. The data-forecast
melding or analysis step is still a linear combination of the dynamical forecast with the
data residuals, but in the Optimal interpolation [32] scheme, the matrix weighting these
residuals or gain matrix is empirically assigned instead of being computed and updated
internally. The method of Successive Corrections, instead of correcting the forecast only
once as in previous methods, performs multiple but simplified linear combination of the data
and forecast. Conditions for convergence to the Kalman Filter have been derived, but in
practice only two or three iterations are often performed.

Estimation based on control theory and optimization

Estimation based on control theory or variational approaches usually perform a global time-
space adjustment of the model solution to all observations and thus solve a smoothing prob-
lem. The goal is to minimize a cost function (e.g. least-squares) penalizing the distance
between the data and the estimates, with the constraints of the model equations and their
parameters.

A popular optimization framework is the Adjoint method, which provides an efficient way
to compute the gradient of a system under the constraints that the solution satisfies the
dynamical model. For example, consider the optimization problem where

e The cost function is the sum of two penalties: one penalty weights the uncertainties
in the initial conditions, boundary conditions and parameters with their respective a
priori error covariances, the other is the sum over time of all data-model misfits at
observation locations, weighted by measurement error covariances.

e The constraint is the dynamical model of the system
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Then the adjoint method provides an efficient way to compute the gradient of the cost
function under the dynamical constraints, which allows the use of descent methods to solve
the problem.

Generalized Inverse Problems [205] generalize adjoint methods by allowing the model
equation to not be satisfied everywhere. The best fit is often defined in a least-squares sense:
the penalty to be minimized is similar to the one used in adjoint methods, except that a third
term is added to account for model discrepancies weighted by a priori model error covariances.
The Representer Method [73] is an algorithm for solving generalized inverse problems. Data
reconciliation algorithms use information redundancy to handle measurement errors and
model inaccuracies [43, 221].

Spectral methods [31, 28] use modal decomposition techniques to transform partial dif-
ferential equations into ordinary differential equation in the frequency domain. The trans-
formation to the frequency domain leads to an inverse modeling problem which is easier to
solve than the original PDE. The transformation may require the linearization of the PDE,
with the common limitation involved for non-smooth equations.

When Kalman-based or adjoint-based estimation is not applicable, most estimation prob-
lems still take the form of the optimization of a cost function. They are solved using op-
timization algorithms which may be chosen depending on the specific problem of interest
including: (i) the dimension of the problem: Newton or quasi Newton (e.g. DFP, BFGS, SR~
1)-based methods converge faster than gradient or sub-gradient based methods but are too
computationally demanding to handle large scale problems and are hard to parallelize, (ii)
convexity properties: non-convex problems require specific algorithms (simulated annealing,
genetic algorithms, descent algorithms with random starts) to increase the chances to find
global optima.

Hamilton-Jacobi equations

In one dimensional systems, hyperbolic scalar conservation laws (such as the ones used to
describe flow networks) have a direct counterpart in Hamilton-Jacobi (HJ) theory [71]. A
Hamilton-Jacobi equation is a first-order, non-linear partial differential equation, which can
be formulated as follows. s

9 L g—o
o )

where H is the Hamiltonian function. The solutions S of Hamilton-Jacobi equations typically
satisfy the equation in a generalized sense (in the sense of distributions or set valued anal-
ysis) and are called weak solutions. Viscosity solutions [50, 49] were the first class of weak
solutions identified for HJ PDEs for which existence and uniqueness could be proved [50, 49].
They are considered as the “physical” solutions in many applications of PDEs. The solu-
tions are continuous, but not necessarily differentiable everywhere. The concept of viscosity
solutions has been extended to non-smooth solutions (sub- and super- solutions), see in
particular [20] and [122] for traffic. Barron- Jensen/Frankowska (BJ-F) solutions [21, 79
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generalize the concept of viscosity solutions by allowing the solution to be semi-continuous.
See in particular[11] in the context of traffic.

The solutions to HJ PDEs (and their conservation laws counterparts) can be computed
numerically using various methods:

e Finite difference schemes such as Godunov [90] or Lax-Friedrichs [131]. Finite difference
methods approximate the PDE as a finite difference equation on a computational grid.
To ensure convergence of numerical scheme, the grid is often constrained by stability
conditions, such as the Courant-Friedrichs-Levy (CFL) condition [153].

e Wave-front tracking methods [51, 33| rely on the structure of the mathematical solu-
tions to hyperbolic conservation laws, which feature shockwaves and expansion waves.
They first compute the location of these waves, and then derive the expression of the
solution everywhere.

e Level set methods [168] rely on finite difference schemes to numerically approximate
the solution with subgrid accuracy and avoid the high cost of grid refinement. They can
be extended in some cases by fast marching methods [195], which are computationally
efficient.

e Lax-Hopf formula, as detailed further in the chapter, requires the resolution of mini-
mization problem using dynamic programmic [71] or the Lax-Hopf algorithm [148].

The solutions used in the dissertation are obtained using a Lax-Hopf formula, which
expresses the solution at any given point as a minimization (or maximization) problem. The
derivations rely on previous work [41, 42], which is summarized in Section 2.3.

2.2 Traffic low theory

A special class of partial differential equation is typically used to model the dynamics of
traffic flows on transportation networks. They are usually called macroscopic models because
they describe the dynamics of traffic flow using macroscopic variables (flow, velocity and
density) rather than at the individual vehicle level. The thesis focuses on the Lighthill-
Whitham- Richards [155, 189] (LWR) model, which is a first order macroscopic flow model
commonly used in transportation engineering. As seen in Chapter 1, there exist higher order
macroscopic models [55, 13] which capture additional features of the traffic dynamics.

This section describes the Lighthill- Whitham-Richards model and its integral formulation
as a Hamilton-Jacobi equation, known as the Moskowitz equation.

The Lighthill-Whitham-Richards model

In macroscopic traffic modeling, vehicular flow is represented as a continuum and charac-
terized by macroscopic variables of flow q(z,t) (veh/s), density p(x,t) (veh/m) and velocity
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v(x,t) (m/s). The Lighthill-Whitham-Richards (LWR) model [155, 189] is a first order model
obtained from the conservation of vehicles and an empirical relation between flow and density.
The LWR model is formulated as a hyperbolic partial differential equation as follows:

Ip(t,x)  OY(p(t,z))
ot + or

The flow-density relation p — 1(p) is known as the flux function or the fundamental
diagram. For small densities of vehicles, the flow increases with the density (the more vehicles,
the more flow). Beyond a critical density, the flow ceases to increase and congestion appears.
If the density increases further, the flow decreases because of congestion, until it eventually
reaches zero, which corresponds to having a continuum of vehicles stopped on the road.
Several models have been proposed to describe the empirical relationship ¢ between flow and
density since the seminal work of Greenshield, see for example [85, 18] and the trapezoidal or
triangular models [53, 54]. As is the case for most of these models, the fundamental diagram
is assumed to be concave. In particular, numerical illustrations throughout the thesis use
two of the most common fundamental diagrams:

=0 (2.1)

e The triangular fundamental diagram is fully characterized by three parameters: vy,
the free flow speed (m/s); pmax, the jam (or maximum) density (veh/m); and ¢yax, the
capacity (veh/m). It is defined on Dy = [0, pmax| by

_ ) up if pel0,p]
lp) = { w(pe — p) +vspe i pE [Pe; Prmax] 22)

and is illustrated Figure 2.1 (left).

e The Greenshields fundamental diagram is parameterized by two parameters: pp.x, the
maximum density (veh/m) and ¢pax, the maximum flow (veh/h). Tt is defined on

Dzﬁ = [07 pmax] by

V() = 42 5P — p), (2.3)

max

and is illustrated Figure 2.1 (right).

The Moskowitz Hamilton-Jacobi partial differential equation

Because density is an aggregated quantity, which cannot be measured by probe vehicles
directly, the LWR PDE is difficult to use as such to incorporate trajectory data available from
probe vehicles. The section presents an alternate representation of the LWR model which
was introduced by Newell and Daganzo [172, 56, 57|, following the work of Moskowitz [169].

Imagine assigning consecutive integer labels to vehicles entering a road segment at a user
defined location x = £. The vehicles are counted from the reference point (t = 0,z = ). The
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Figure 2.1: Examples of concave flux functions (fundamental diagrams), v, used in the
numerical simulations. In the context of traffic flow, they represent the empirical relation
between flow and density. Left: Triangular Hamiltonian, parameterized by the free flow
speed (v” = 10 m/s), the capacity (gmax = 1300 veh/h) and the maximum density (pmax =
1/10 veh/m). Right: Greenshields Hamiltonian, parameterized by the capacity (¢max =
1300 veh/h) and the maximum density (pmax = 1/10 veh/m).

first vehicle is assigned an arbitrary label!, usually chosen to be 0. The Moskowitz function
M(t, x) (also known as cumulative number of vehicles function) is a continuous representation
of the label function. It encodes the distribution of the vehicles on the highway at all locations
and times. The space and time derivatives of the Moskowitz function are related to the flow
and density functions as follows [172, 56, 57

P ot ana BT ) (2.4)

Using equation (2.4), one can transform equation (2.1) into the following Moskowitz
Hamilton-Jacobi PDE [56, 57]:

—aMégi’x) _q (__alvg(;, x>> — 0. (2.5)

2.3 Estimation with Eulerian and Lagrangian sensing

As mentioned in Section 2.1, the computation of numerical solutions to the Hamilton-Jacobi
partial differential equation subject to boundary conditions, initial conditions or sometimes

!The choice of this arbitrary label at ¢t = 0 and = = ¢ does not influence the results
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terminal conditions is a topic which has generated significant interest in the control and
numerical analysis community [195, 178, 167].

The integration of initial or boundary conditions alone may not be sufficient to solve new
data reconstruction problems arising in the context of Lagrangian sensing [123]. Recall that
Lagrangian sensing refers to measurements performed along a sensor’s trajectory, such as
smartphones traveling onboard cars reporting their position (and sometimes velocity) with
a chosen sampling scheme. This is in contrast to Fulerian sensing, in which sensors are
fixed (for example, video cameras or loop detectors along highways) and monitor a specific
location or domain.

A model capable of mathematically handling initial, boundary and internal conditions is
developed in [41, 42]. The section summarizes the main results of this work which are used
in Chapters 3 and 4.

Mathematical background, notation and definitions

We consider a scalar Hamilton-Jacobi PDE, as given by (2.5).

The Hamiltonian (also referred to as fluz function or fundamental diagram), 1, is assumed
to be concave on its domain of definition Dy, = [0, pmax] and to satisty 1(0) = ¢ (pmax) = 0.
The maximum value of ¢ on D, is denoted gmax. The concavity of ¢ imposes that 1 has a
right derivative and a left derivative in the interior of Dy. The variables v’ and v* are defined
as 1’ = ¢'(0) and ¥ = —1)'(pmax). The concavity and the condition that 1(0) = ¥ (pmax) = 0
impose that v > 0 and v* > 0.

The mathematical properties of the solution of (2.5) require specific treatments to intro-
duce internal value conditions. In particular, the dissertation investigates a specific control
framework based on Lax-Hopf’s formula and viability theory [12, 41, 42]. The convex trans-
form ¢* of the Hamiltonian is defined as follows.

Definition 2.1 (Convex transform). Let ¢ be a concave function defined on Dy, its convexr
transform ¢* takes finite values on Dy = [—1°, V7]:

sup [pu+ ¥ (p)] if u € [, V4]
" (u) = ¢ peDy (2.6)
+00 otherwise

Let ¢ be a lower semi-continuous function defined on a subset of [0, tmax] X [€, x]. It
represents a value condition, i.e. a value that is imposed on the solution of (2.5). The
viability epi-solution [11, 41, 42] M, associated with c is given by a Lax-Hopf formula and is
the unique generalized solution of (2.5) in the Barron-Jensen/Frankowska (B-J/F) sense [11].
The formula implies an inf-morphism property [11, 41, 42], which is a key property used in
Chapters 3 and 4.
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Fact 2.1 (Inf-morphism). Let ¢ be the minimum of a finite number of functions c;, i € I.
The Laz-Hopf formula implies that:

YV (t,z) € [0, tmax) X [, X] Mc(t, z) = inf M, (¢, z)

el

The inf-morphism property is a practical tool to integrate new value conditions and separate
a complex problem involving multiple value conditions into a set of more tractable subprob-

lems [41, 42].

State estimation with affine value conditions

The solution associated with an affine initial, boundary or internal value condition has an
analytical expression derived in [42]. The following notation and definitions are used in the
analytical derivations of the solution. More details and proofs are available in [42].

Definition 2.2 (Upper and lower critical densities [42]). The upper (resp. lower) critical
density p, (resp. p ) is the mazimum (resp. minimum) p € [0, pmax] such that P (p) = Gmax-

Definition 2.3 (Densities associated with ¢ [83]). For q € [0, qmax), p(q) (resp. p(q)) is the
unique solution of P(p) = q for p € [P, pmax] (resp. for p € [0,p]).

Following [29], the sub- and super-derivative (0_ and 0J,) are defined as follows:

v E 8_f($0) SV e Df, f(l‘)
v € 04 f(xg) & Vo € Dy, f(x)

(zo) + v(x — x0)
(o) + v(z — x0)

Definition 2.4. For p € [0, pmax], ug (p) (resp. ug(p)) is an element of —0,(p) N RT
(resp. —0.(p) NR™). Note that ud (p) (resp. ug (p)) is not uniquely defined if 1 is not
differentiable in p. It was shown [42] that any choice of ug (p) (resp. ug (p)) in —01¢(p)
provides the expression of the solution of the HJ-PDE.

> f
</t

Definition 2.5 (Capture times [42]). The capture times Ty and T, are defined as follows:

_ 322 if it (p) £ 0 _
TU(pa ZL') = ug () ’ . V(p, x) € [pcapmaX] X [£?X]7
+00 otherwise

E—x o —
To(p,x) =3 "o 7 (p). #0
+00 otherwise

Y(p,x) € [0,p ] x [&, x],
Definition 2.6 (Affine value conditions). Affine initial, upstream, downstream and internal
value conditions are defined as follows:

o An affine initial value condition M, is defined on {0} X [, @;—1] by

Mo, (t,x) = b; + a;(@; — x) (2.7)
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o An affine upstream value condition ~; is defined on [3;,9;1] x {€} by
it ) = dj + (t = 3;)¢(p;),  pj €10,7.] (2.8)
o An affine downstream value condition By is defined on [Be, Besa] % {x} by
Bi(t, ) = fi + (t = Bi)v(px)s  pr € [, Pma] (2.9)
o An affine internal condition py is defined for x = x; + v(t — &) and t € [6;, 641] by
ult,x) = gi(t — o) + hy (2.10)

The variable 14, is defined as v = x; + v;(6141 — 6)

Fact 2.2 (Explicit component solutions). The analytical solutions of the viability episolution
associated with affine initial, upstream, downstream and internal value conditions are as

follows:

o The solution associated with an initial condition M,, defined by (2.7), takes finite
values for (t,2) € [0, tmax] X [€,X] such that x > @; — V¥ and x < @y + 1°t. On this

domain, the solution is defined as follows:

(1) i (5, — ) - 10() if o) € |22, B

M, (t,2) = (i1) b; + to* (%) if ug(a;) < %2 (2.11)

(i) bi + ai(@; — T@iy) + " <T> if ug(a;) > ===

o The solution associated with an upstream condition y;, defined by (2.8), takes finite
values for (t,x) € [0, tmax) X [£, x| such that t > 7; + xy;f On this domain, the solution

s defined as follows:

( (i) (t = 3)0(p) + (€ — @) +d; if Tolps,x) € [t —Fyp0st = 7]
(2) dj + (t —7; 90*( ) if Lo(pj ) =2t =7,
(444) (7j+1_ j)¢(ﬂ)+ + (t 7j+1)%0* (tf;j;)
if Ty (Pja )<t_7j+1

M, (t,z) =

(2.12)

e The solution associated with a downstream condition B, defined by (2.9), takes finite
values for (t,x) € [0, tmax] X [€, X] such that t > B+ *5%. On this domain, the solution
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15 defined as follows:

[ (i) (t = Bo)w(pr) — pi(x — ) + Ji if Tolpr, @) € [t — Bt — By
(id) fu+ (t = B)e™ (25) i Tolpw, @) = t = By
(59) (Bt = BIw(p) + it (¢ = Bes)e” (252

\ ifTo(Pk, r) <t— BkJrl
(2.13)

Mﬁk (t’ :L‘) =9

o The analytical expression of the solution M,,, associated with an internal condition ju,
defined by (2.10) requires some definitions and notation which are out of the scope of
this thesis. They are fully detailed in [42], Section II.E. For this reason, the analyt-
ical expression of M, is omitted. Some of the properties of the solution are used in

Chapter 3, with explicit reference to [42].

The inf-morphism property implies that the solution of (2.5) subject to piecewise affine
value conditions is the minimum of the viability episolutions computed for each of the affine

conditions.
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Chapter 3

Deterministic estimation with
Lagrangian measurements

The modeling and derivations of Chapter 2 provide a useful framework to design accurate
estimation frameworks in networks governed by conservation laws [44, 163]. Signalized flow
networks fit within this framework. The chapter leverages the results of Chapter 2 to study
these systems. In particular, the dynamics is governed by the presence of signals, with, in
general, unknown parameters, which lead to periodic drops of the capacity at intersections
and to the formation of queues. Today, GPS provide Lagrangian measurements of traffic
conditions, through measurements of the position of the vehicle at different times. For this
reason, it is natural to model traffic with the Moskowitz function introduced in Section 2.2
and to use the estimation results for Hamilton Jacobi PDEs presented in Secion 2.3. This
chapter shows how the GPS measurements can be used to reconstruct downstream boundary
conditions, 7.e. to estimate capacity drops at intersections of the road network. The state
of the road network (value of the Moskowitz function, density, velocity and flow) can then
be estimated at any location x and time t.

More generally, the chapter proposes an algorithm for reconstructing downstream bound-
ary conditions for a class of Hamilton-Jacobi partial differential equations, for which initial
and upstream boundary conditions are prescribed as piecewise affine functions and an in-
ternal condition is prescribed as an affine function. Based on viability theory, the chapter
derives an algorithm to reconstruct the downstream boundary condition such that the so-
lution of the Hamilton-Jacobi equation with the prescribed initial and upstream conditions
and reconstructed downstream boundary condition satisfies the internal value condition.

The chapter is organized as follows. Section 3.1 presents a motivating example and
gives insights on the derivations of the reconstruction algorithm in the case of urban traffic
estimation. Section 3.2 introduces the mathematical background and states the reconstruc-
tion problem of the downstream boundary condition. Section 3.3 proves the existence of
a solution to the reconstruction problem under some compatibility conditions between the
given initial, upstream and internal value conditions. The algorithm derived to solve the
reconstruction problem is detailed in Section 3.4 and illustrated numerically in Section 3.5.
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3.1 Motivating example

The section motivates the derivation of an algorithm for reconstructing downstream bound-
ary conditions through an example arising in signalized flow networks. As done in Chap-
ter 2, the section uses the Moskowitz function to represent the state of traffic at any location
x € [€, x] and time ¢t € [0, 7] on a signalized road segment. The Moskowitz function satisfies
the Hamilton-Jacobi partial differential equation (2.5). Measurements of traffic conditions
prescribe the value of the function on a subset of [£, x| x [0, T.

An initial condition M, prescribes the state of the road segment at the initial time
t =0 for x € [, x]. This initial condition can be obtained by using an aerial photo of the
road segment at ¢ = 0. An upstream condition ~ prescribes the flow of vehicles entering
the segment at its upstream boundary x = £ for ¢ € [0,7]. This upstream condition can
be obtained through flow measurements upstream of the road segment (e.g. using loop-
detectors, cameras and so on). Given the initial and upstream value conditions, the solution
is computed semi-analytically at any location x and time ¢. The solution illustrates the
trajectories of the vehicles present on the road segment at the initial time ¢t = 0 and arriving
at the upstream boundary x = £ (Figure 3.1).

—~250
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Figure 3.1: Colormap of the density of vehicles and isolines of the Moskowitz function, solu-
tion of the Hamilton-Jacobi equation (2.5) subject to initial and upstream value conditions.

The presence of a signal, or more generally of a bottleneck, at the downstream bound-
ary (r = x) limits the maximum flow at certain times. This limitation of the maximum
flow is imposed on the solution by prescribing a downstream boundary condition 5 at the
downstream boundary x = y. When imposing this limitation on the maximum flow, the
Moskowitz function, solution of the Hamilto-Jacobi partial differential equation (2.5) is illus-
trated Figure 3.2. In particular, the figure shows the formation of a queue upstream of the
limitation of the maximum flow. Once the limitation on the maximum flow is released, the
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queue dissipates, according to Equation (2.5). The speed of formation of the queue depends
on the density of vehicles upstream of the queue: the more vehicle, the faster the queue
formation. The speed of dissolution of the queue only depends on the density inside the
queue and is thus constant throughout the queue dissipation.

Downstream: ((t)
Max

z (m) Initial: Mo(z)

Critical

ﬁﬁﬁﬁﬁﬁﬁ 60 80 Y100 120 Density
time (s) Upstream: ~y(t)

Figure 3.2: Colormap of the density of vehicles and isolines of the Moskowitz function,
solution of the Hamilton-Jacobi equation (2.5) subject to initial, upstream and downstream
value conditions. The downstream value condition limits the maximum flow for the duration
of the signal red time (or bottleneck).

For most applications, the specific characteristics of signals or bottlenecks are unknown.
Digital maps usually provide the location of traffic signals; traffic information providers have
some information regarding the presence of incidents and road closures which cause bottle-
necks, but the characteristics of the flow limitation (beginning and end of the limitation and
maximum flow during the capacity limitation) are usually unknown. Instead, GPS devices
on-board vehicles provide information about individual trajectories, i.e about isolines of the
Moskowitz function. A trajectory measurement is integrated in the estimation framework as
an internal value condition p. The spatio-temporal domain representing the road segment
during the estimation time is illustrated in Figure 3.3 (left) with the initial, upstream and
internal value conditions.

The Barron-Jensen/Frankowska solution of the Moskowitz Hamilton-Jacobi partial dif-
ferential equation subject to initial, upstream and internal value conditions is illustrated
Figure 3.3 (right). It corresponds to the solution which maximizes the flow subject to the
constraints on the value of the solution. In particular, the figure shows the creation of the
queue upstream of the vehicle reporting its GPS trajectory. However, the solution does not
leverage the information regarding the presence of a signal at the downstream boundary of
the road segment, which caused the sensed vehicle to slow down.
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Figure 3.3: Left: Illustration of the spatio-temporal estimation domain with the value
conditions imposed on the solution. The initial, upstream and internal value conditions
represent the initial vehicles present on the road at ¢ = 0, the flow of vehicles arriving at the
upstream boundary and the trajectory measurement respectively. Right: Colormap of the
density of vehicles and isolines of the Moskowitz function, solution of the Hamilton-Jacobi
equation (2.5) subject to initial, upstream and internal value conditions. The internal value
condition represents the trajectory of a vehicle obtained by GPS tracking.

This chapter derives an algorithm which reconstructs downstream boundary conditions,
corresponding to a constant limitations of the maximum flow given initial, upstream and
internal value conditions. The approach recovers the downstream boundary condition that
corresponds to the minimal amount of red light time that explains the internal condition.
Under the assumption that the vehicle reported its trajectory during the entire duration of its
slow-down and that the reduction of capacity due to the bottleneck is constant, this results in
an estimate of the flow shown in Figure 3.2. The figure represents the solution of (2.5) subject
to the initial, upstream and reconstructed downstream value conditions (corresponding to
the minimal bottleneck time at the downstream boundary). The modeling of congestion
propagation through the Hamilton-Jacobi partial differential equation and the information
on the presence of the signal are leveraged to reconstruct the specific characteristics of the
bottleneck (beginning, end and extent of the capacity reduction) and compute the value of
the Moskowitz function (representing the state of traffic) at any time ¢ and location z.

3.2 Problem statement

Consider given continuous piecewise affine initial and upstream boundary conditions, de-
noted My and v respectively. Following Definition 2.6, My,, i € {1,...,Iy} define affine
initial value conditions (Equation 2.7) and v;, j € {1,...,I,} define affine upstream value
conditions (Equation 2.8). The conditions are such that V(¢,z) € [0, tnax] X [, X], Mo(t,z) =
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Io I
mi{l/\/loi (t,x) and y(t,x) = m;? 7v;(t,z). Consider also an affine internal value condition
i= j=

as defined by (2.7). The function ¢; is defined for ¢ € [&;, 6;41] by (i(t) = x; + vi(t — ;). The
constants g; and v; are assumed to satisfy 0 < g < ¥(p,.) — pv; and 0 < v; < 1.

A downstream boundary condition S is defined as a value condition that takes finite
values on a subset of [0, tymax] X {Xx}. At time ¢, the downstream boundary condition [3(¢, x)
characterizes the limitation of the capacity at x = y, which is important to detect and control
saturation and bottlenecks before they propagate throughout the network. This motivates
the following reconstruction problem:

Problem 3.1 (Initial Boundary Value Problem). Given an affine internal value condition
i, piecewise affine upstream boundary condition v and initial condition M,; reconstruct
the downstream boundary condition B such that the Barron-Jensen/Frankowska solution of
the Initial Boundary Value Problem of the HJ-PDE (2.5) with the prescribed initial and
boundary conditions My, v andB satisfies the internal condition:

Vt € [61,0111], Vo = (1), min(Mug,, My, Mj)(t, 7) = u(t, x). (3.1)

For an affine downstream boundary condition [, as defined in Equation (2.9), define
e, = ¥(pr). The expression of the solution Mg, (2.13) of the HJ-PDE subject to the
downstream boundary condition has specific analytical expressions in the domains (i), (i)
and (7i7), defined as follows:

( fr+ (t = By <%> if To(pr, ) >t =B, (i)

(t = Brex + (x — )i + fi B ()
My, (t, ) = if To(pr, ) € [t = Bryrst — By (3.2)
oot B =Bl + (=Bl (252) (i

if To(pr,z) <t — B

3.3 Existence of a solution

The section derives conditions on My, v and gy for the existence of a downstream boundary
condition B which solves Problem 3.1. It studies uniqueness properties among piecewise affine
solutions and exhibit a solution that corresponds to a constant limitation of the maximum
flow in an interval |7, 72].
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Interval with affine downstream boundary condition

Given that y; is affine, B is necessarily such that M is affine on the trajectory ¢ (since M i
and 4y coincide on the domain of ). The derivative of Mj in the direction (1,v;) should
thus exist in the domain {(¢,z) s.t. t € [8,&41], © = ((¢)} and should be equal to g;. First,
the following lemma characterizes intervals in which ¢* is affine:

Lemma 3.1 (Intervals in which ¢* is affine). The function ¢* is affine in [u1,us] if and only
if there exists p € Dy such that (uy,uz2) C —079Y(p).

Proof. The function ¢* is affine in the interval [uy, us| if and only if its subgradient is reduced
to a given p* in (uy,uy). The subderivative of ¢* satisfies the Legendre-Fenchel inversion
formula [11]:

u € —0.(p) & p €I (u).
Since 0_¢*(u) = {p*} for u € (u1,us), it follows that (uy,us) C —0tTY(p*). O

Definition 3.1 (Density associated with v; and g;). Let f,, be defined for p € [0, pmax] by
fu(p) = ¥(p) —up. The function is concave as the sum of concave functions, and attains
its mazimum value *(—v;) in a closed interval (Definition 2.1). Let p* be the upper bound
of this interval. Section 3.2 introduced the assumption that 0 < g < ¥(p.) — p.ui = fu,(P.),
and thus 0 < g, < p*(—v;). Since f,, is continuous and fy,(pmax) < 0, the intermediate value
theorem states that there exists a solution p(vy, g1) € [p*, Pmax| such that fo,(p(vi, 1)) = gi-
Given that f,, is concave and given the definition of p*, f,, is strictly decreasing on [p*, pmax]
which proves that p(vy, gi) is unique. Given that g, < f,,(p.), then p(vi, ;) > P,

Definition 3.2 (Compatibility conditions). A necessary condition for Problem (3.1) to be
well posed is to have compatible initial, upstream and internal conditions, as defined in [{1,
42]. The compatibility of the value conditions is necessary and sufficient for the existence of
a solution which satisfies (2.5) and all value conditions. It means that all these conditions
can be imposed simultaneously and is written as

min(MMO, )( ,Z’) > l( 33) vVt € [5l>5l+1] T = Cl(t)
min(Mug,, M) (¢, 2) > (8, 2) V(t, @) € [0, tmax] % {£} (3.3)
min(M,, M,)(t, z) > Mo(t, ) V(t, 2){0} x [§, x]

The variables poy and gou are defined as pows = (v, ¢1) and gouy = ¥(pout). The com-
patibility conditions between My, v and ; are assumed to be satisfied.

Proposition 3.1 (Affine boundary condition). If the internal condition py is such that 1 is
differentiable at poyu, there exists an interval [Ty, Ta] in which any piecewise affine solution of
Problem 3.1 is necessarily affine, with temporal derivative equal to qoy;.

Proof. Let B be a potential piecewise affine solution. If such a solution exists, there exists
a set of functions (By)rer, defined by (2.9) such that V(¢t,z) € [0, tmax] X {x}, B(t,x) =
mingere B (t, ).
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For each k € K, let t, and ¢ be such that, in the domain defined by t € [t,, ;] and
x = ((t), Mg(t,z) = Mg, (t,z). The proof shows that he points (t, Gi(t)) and (fx, Gi(tx))
necessarily belong to the domain (i¢) of the downstream boundary condition ;. It then
shows that the temporal derivative of (. is necessarily equal to ¢, and concludes.

Since M is a solution of Problem 3.1, it takes finite values at (%, (%)) and (L, G(L;))-
These points necessarily belong to one of the domains (), (i7) or (iii) of Mg,.

o If ({1, (i(t)) belongs to domain (ii7), let 0y > t, be the first time such that (dy, §(0x))
is in domain (i77). The function Mg, is necessarily affine along the trajectory ¢; with
derivative equal to g. For any t € [0, tx] such that Mg, is differentiable in (¢, (;(t)), its
total derivative along the trajectory (; is given by

M (1,6(1) = o (ult)) - (0 +ult)) () (ult), (3.4)
with u(t) = % It follows that
dzcll\gﬁ’“ (£,G(1) = 0 (") (u(t)) =0, Vt €[5, F].

Necessarily, ¢* is affine on [u(dx), u(fx)] and Lemma 3.1 proves that there exists p* € Dy,
such that [u(dg), u(tx)] € —0%Y(p*). It implies that, on the trajectory ¢, ¢*(u(t)) =
V(p*) + u(t)p* and (¢*) (u(t)) = p*. The total derivative of M, along the trajectory

is thus given by
dMg,

dt

(£, G(t) = ¢ (p*) — vp’,

Since dl\;[f’“ (t,G(t) = g, p* = p(v,g); since ¥ is differentiable at pow, = p(v,9g),
—0"(p*) is reduced to a singleton. This implies that u(d;) = u(tx) and thus 6, = .
The point (1, (;(f)) is at the boundary of the domains (i7) and (7).

Similarly, if (¢, (¢;)) is in the domain (i), it is also in the domain (i7) and thus at
the intersection of the two domains.

e In the domain (i7), Mg, is affine and its total derivative along the trajectory (; is given
by
dM
S (6G(0) = vor) — v

Necessarily, pr, = pous and fi, = 1(pr) = qous. For the points (¢, Gi(t;)) and (tx, G(tk))
to be included in the domain (i7), the following must hold:

X — Glty)
g (Pout> Gi(ty,))

X — G(te)
ug (pouts Gt (Tk))

Bk <t — and B]H-l >t —
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For all k such that M;(¢, Gi(t)) = Mg, (¢, G(t)) for t € [ty, tk], Bx has a temporal derivative
equal to gout. The continuity of M imposes that there exists a unique k& = k* such that
Mj(t, x) = Mg, (t, ) on the trajectory ;. Let 71 and 7y be defined as follows:

A D k.

E X — Ti+1
1 — 0 T
ug (Pout, 1)

. 3.5
ug_(pout7 xl-&-l) ( )

and 7 9 = 5l+1 -
The boundary condition S+ takes finite values in a domain including [71, 72] X {x} in which
its temporal derivative is equal to gou.

If 7 is not differentiable in pyy, the choice of B« also leads to the equality of the deriva-
tives of 1, and Mg, . on the trajectory (;, even though this choice may no longer be unique. [

Existence under compatibility conditions

Proposition 3.2 (Existence). If the internal value condition py is affine, if the initial and
upstream boundary conditions are piecewise affine and if the feasibility conditions of Defini-
tion 3.2 are satisfied, there exists a downstream boundary condition B solution of Problem 3.1.
The algorithm exhibits a solution which is affine on the smallest interval [T, T2] D [T1, To),
representing a constant limitation of the maximum flow.

Proof. The proof first searches for a potential solution 3 of Problem 3.1 which represents
a constant limitation of the maximum flow during a time interval |1y, 72]. To achieve this
goal, the algorithm searches for 7, < 71, 7 > 75, m and p such that 3(¢,x) = m + (t —
m)¢(p), Vt € [11, 7). Let §* represent the restriction of 3 in [, 7] x {x} and let M. be the
associated viability episolution. For ¢ < 71, there is no downstream constraint in the flow and

B(t, x) = min(Mq,, M, )(t, x) satisfies the requirements. For ¢t > 75, there is no limitation
of the maximum flow at z = x. The flow at x = x is given by min(Ma4,, M, M. )(¢, X), it
depends on the upstream, initial and upstream boundary condition B*

From the results of Proposition 3.1, it follows that the choice p = poy is a valid choice.
With this choice, the trajectory ¢ is included in the domain (ii) of My.. The function M.
is affine in domain (i7) and its derivative along the trajectory (; is equal to g;.

e Fquation satisfied by 71 and 1: In the domain (i7), the expression of M. is given by
M. (t,2) = (t — T1)qout + (X — @) pouws + m. The following condition on MB*(S“ x;) must be
satisfied:

MB*((SZ,[L]) = ,ul(él,xl) = h.

This condition imposes a relation between 7, m and h:

(Sl - Tl)Qout + (X - xl)pout +m = h. (36>

The function A is defined for t € [0, tmax] Dy h(t) = h — pout(X —xp) + (t - 61)qous. With
this notation, (3.6) is written m = h(7). The continuity of § at (7, x) imposes that
m = min(Ma,, M) (71, x) which leads to the following equation for 7, € [0, 71

h(11) — min(Mu,,, M, )(11, x) = 0. (3.7)
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The choice 75 = T satisfies the condition imposed to solve Problem 3.1. Note that larger
values of 7, are possible, leading to a longer limitation of the maximum flow at z = x but
the smallest solution for 75 leads to the shortest limitation of the maximum flow at x = .
The observation of y; only provides a lower bound for the value of 5. If Equation (3.7) has
a solution in the interval [0, 7], let 71 be the largest such solution. Section 3.4 presents an
algorithm to compute this solution. Otherwise, let 7, = 0. Specific feasibility conditions for
the existence of a solution to Problem 3.1 are detailed in Definition 3.2. O

Proposition 3.3 (Feasibility conditions). The search for a piecewise affine limitation of the
mazimum flow implies that 5*(t, x) < min(M,, M,)(¢, ), Vt € [71, T2] L.e.

Vi € [71, 7o), min(Mg,, M,)(E, x) > (). (3.8)

If there is no solution to (3.7) in [0,71], the feasibility conditions require the existence of
T € &, x] such that the spatial derivative of My is —peu for (t,x) € {0} x [z, x| and such
that Mo(0,2) = h — (& — 1) pout — 01qout-

If these conditions are satisfied, the construction of pout, T2, 71 and m leads to a solution
of Problem 3.1.

Proof. This is true by construction. Let B*(t,x) be defined for t € [ry,m] by B*(t,x) =
m ~+ (t — 7)Y (pous). The solution § takes finite values in [0, tmax] X {Xx}:

min(MMoa M’Y)(t7 X) if ¢ S T1

B(t,l’) - ﬁ*(t7X) ift e [7—177-2] :
min(MMO,MW,MB*)(t,X) ift >m

The function defined as the minimum of M,, M, and M in the domain [0, tmax] X [€, X]
is a solution of the HJ-PDE (2.5). The compatibility conditions ensure that the boundary
conditions are satisfied and the construction of B ensures that the function takes the same
values as the internal condition g, for all (¢,z) on the trajectory defined by (. ]

3.4 Solution computation algorithm

This section presents an algorithm which computes the largest solution of (3.7) in the interval
[0,71] or proves that there is no solution on this interval. The algorithm leverages the inf-

morphism property (Proposition 2.1) and the convexity of M., for any convex target function

Proposition 3.4 (Algorithm to compute 71). If (3.7) has a solution in [0,7y], its largest
solution can be computed by solving a finite number of scalar convex optimization programs
and scalar linear equations (Algorithm 1). If there is no solution in [0, 1], the same algorithm
provides a proof that no solution exists.
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Algorithm 1 Algorithm for computing 7
1

1: Define k;, k} and k2 for i € {1,..., 1o + L, },

2 K = Ui{k;, 51, K2}, Tmax = 01 — —uf(;ilt),

3t Tiin = Mmax{[0, Tmax) N K}, T =

4: while T'==0 do

5 I={ie{l,....Jo+1,} : K; < Tax}

6: forieldo

7 n; = Mci (Tmim X)7 Ez = %(Tntim X)? ﬁi = MCi(Tmam X)7 ]_91 = al\a/ItCi (Tr;axv X)

8: if 7; < h(Tmin) then

9: 0 is the unique solution of Mg, (£, x) = h(t) on [Tmin, Tmax)-

10: if M, (6, x) = Mo(6,x), T = T U {6}

11: else if n; + p (Tumax — Tmin) < M (Tmax) and 7; — B;(Tmax — Tmin) < 2(Tmin) then
12: t* is the largest minimizer of M, (t, x) — 2 (t) in [Timin, Tmax), 6 = Me, (%, X) — h(t*)
13: if 6 <0 then

14: 0 is the unique solution of My, (£, x) = h(t) in [t*, Tmax]

15: if M., (0, x) = Mo(6,x), T = T U {6}

16: end if

17: end if

18:  end for
19: Tmax = Tminy Tmin = max{[O, 7_Inax) N IC}
20: end while

Proof. According to the feasibility conditions (3.8), min(Myy,, M,)(71,x) > h(7). Let c;
denote the value condition ¢, i.e. ¢; = My, if ¢ < Iy and ¢; = 7,_, if © > I,. Let c be
defined as ¢ = min; ¢;. The algorithm searches for the largest t < 7; such that there exists
ie{l,...,Iy+ I,} satisfying M, (¢, x) = h(t) = Mc(t,x). If no such t exists, there is no
solution to (3.7) in [0, 71], otherwise, this value of ¢ is also the largest solution of (3.7) in
[07 7:1} :

Let T represent the current set of solutions of (3.7), initialized to the empty set. The
variable 7.y is initialized as 7. = 71. The algorithm iteratively updates 7., such that,
if T = 0, there is no solution of (3.7) in [Tyax, 71], otherwise the algorithm terminates and
the largest element of T is the largest solution of (3.7) in [0,7]. More precisely, V¢ €
[Tmax, 1], Vi € {1, ..., In + I, }, Mg, (t, x) > h(t).

This condition is true at initialization Ty, because of the compatibility condition (3.8).
Each component M, can be computed explicitly [42]. There exists three domains in which
the solution has a specific analytical expression. For i € {1,...,Io + L}, let r;, k; and k?
be such that k; < k} < k? and correspond to the boundaries of the three different domains
in x = x. Note that M, (¢, x) = +oo if and only if ¢ < k; and t — Mg, (¢, x) is affine on the

interval [k}, k2]. For a given Tyax, Tmin is defined by T = max{[0, Tymax) N K}

177
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The solution M., associated with the convex target function c¢; is convex [42] which
implies the convexity of t — M, (t, x). Let n, and 7; be defined as n; = M, (Tmin, X) and
i = M, (Tmax, X); p, is the right derivative of t — M, (¢, x) at Tmin (denoted 81:;;’1' (15.,%))
N OMe, ;__ ,

atl(T o X)). For i €

m.

and P, is the left derivative of ¢t — M, (¢, x) at Tmax (denoted
{1,..., Iy + L,}, the algorithm inspects following conditions:

1. Ifn, < E(Tmin): The function ¢ — Mc, (¢, x) — iL(t) is convex in [Tiin, Tmax] &S the sum
of two convex functions. It is negative at 7,;, and positive at 7,.¢. The function has
a unique zero in [Tyin, Tmax), Which is added to the set T" if M, (6, x) = Mc(0, x).

2. If n;+p (Tmax — Tmin) < P (Tmax) and T; —B; (Tmax — Tmin) < A(Tmin): The convex function
t— Mg, (t, x)— fz(t) is positive in [Tmin, Tmax| if and only if its minimum on this interval
is positive. Since the function is convex it has a unique minimum ¢ reached on a closed

interval. The upper bound of this interval is denoted t*. If § < 0, there exists a unique
zero in the interval [t*, Tyay] which is added to the set T'if M, (6, x) = Mc(6, x).

3. If none of the previous conditions is satisfied, the function t — Mg, (t,x) — h(t) is
POSitive in [Tmin, Tmax): Necessarily, the following inequality holds n; > iL(Tmin) and at
least one of the following conditions holds: (1) n; + Bi(Tmax — Tpin) > iL(TmaX) or (2)
7 — D;(Tmax — Tmin) > E(Tmin). If the first condition holds, the function t — M, (¢, x)
is convex in [Tiin, Tmax| 80 M, (£, x) > n; + (t — Tmin>}_7i. Given that n, > E(Tmm), and
n; + Bi(Tmax — Tmin) > B(Tmax), the linear function t — n; + Ei(t — Tmin) 1S greater than
h at t = Ty and ¢ = Tyax and thus, in the entire interval [Timin, Tmax)- 1t implies that
t = M, (t, x) — h(t) is positive in [Tmin, Tmax]. If the second condition holds, a similar
reasoning implies that ¢ — M, (¢, x) — ﬁ(t) is positive in [Tiin, Tmax] Which concludes
the proof.

Stopping condition: After checking conditions 1, 2 and 3 above for all i, there are two
possible cases:
o If ' = (), the function ¢t — M, (¢, x) — il(t) is positive in [Timin, Tmax) for all 7. Set Tax =
Tmin- The property that M, (¢, x) — I t) > 0, Vt € [Tmax, 1) still holds. Update 7y, =
max{ [0, Tmax) N K} and iterate.
o If T £ (), its largest element is the largest solution of (3.7) in the interval [Tin, Tmax] and

thus in the interval [0, 71]. The algorithm terminates. O

Remark 3.1 (Analytical solution of 7). In the intervals [Tmin, Tmax] Such that Tmin > ki
and Tmax < K2, the function t — M, (t, x) is affine. Its minimum or zeros are computed by
solving a scalar linear equation.
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3.5 Numerical implementation

Consider a concave Hamiltonian ¢, piecewise affine upstream and initial boundary conditions
v and M. The upstream and initial boundary conditions simulate value conditions of a
road segment. The section illustrates the importance of the resolution of Problem 3.1 to
reconstruct capacity reductions in flow networks. Algorithm 1 solves the reconstruction
problem and computes the corresponding solution of Problem 3.1.

Experimental setting

Consider given piecewise affine initial and upstream boundary conditions My,, i € {1,..., Iy}
and v;, j € {1,...,I,}. They are generated randomly for the numerical example of inter-
est. In the context of traffic flows, this corresponds to information on vehicle counts at the
upstream boundary of the road segment. Consider also an affine internal value condition p
that satisfies the compatibility conditions with the initial and upstream boundary conditions
and represents a vehicle reporting information on a portion of its trajectory, during which
its speed is considered constant. The computations are performed for two concave Hamilto-
nians (illustrated Figure 2.1), which are commonly used in transportation engineering. The
numerical solution is computed using a toolbox developed for Matlab [163], which evaluates
the exact solution numerically at any point (¢,2) with a low computational cost.

Solution with piecewise affine initial and upstream boundary
conditions and one affine internal condition

The solution of (2.5) is computed for the prescribed piecewise affine initial and upstream
boundary conditions and the affine internal condition as the minimum of M, M, and
M,, [42]. This solution does not take into account the fact that the internal value condition
results from both the initial, upstream and downstream boundary conditions (even though
not observed directly), resulting in a domain of null flow and density downstream of the
internal value condition between #; and 6, (Figure 3.4).

A strong motivation for solving Problem 3.1 is the following. Let 8 be the value of the
solution of (2.5) in [0, tmax] X {x} with the prescribed value conditions My, v and pu. The
solution of (2.5) with prescribed value conditions My, v and 3 leads to a different solution,
in particular one which does not coincide with p, as shown in Figure 3.5. The motivation
is also intuitive in the context of traffic flow engineering, where Figure 3.4 corresponds to
having a vehicle suddenly breakdown when there is no obstacle in front of it. Slow downs
are expected to be due to queues caused by downstream capacity reductions.

Resolving the domains of null flow and density

Solving Problem 3.1 is necessary to take into account the fact that the internal condition
is not only caused by the initial and upstream conditions but also by the downstream con-
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Figure 3.4: Solution of the Moskowitz Hamilton-Jacobi partial differential equation given
initial and upstream piecewise affine boundary conditions and one affine internal value con-
dition. The internal condition is imposed between (d;, ;) and (841, 2;41). Top: Solution
computed for a triangular Hamiltonian. Bottom: Solution computed for a Greenshields
Hamiltonian.
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Figure 3.5: Solution of the Moskowitz Hamilton-Jacobi partial differential equation subject
to initial, upstream and downstream value conditions before solving the boundary condition
reconstruction problem. The downstream boundary condition imposed to the solution is
B, i.e. the value of the solution when the prescribed initial, upstream and internal value
conditions are imposed to the solution.

dition. The problem is solved using Algorithm 1: it reconstructs a downstream boundary
condition that “caused” the internal value condition. The algorithm computes a solution
that represents a constant limitation of the maximum flow for a time interval [y, 73], as
illustrated in Figure 3.6 for the two concave Hamiltonians. Note that the solution is unique
(among the piecewise affine solutions) for an interval [, 72| included in |7, 75| and that other
downstream boundary conditions are possible out of this interval.

3.6 Conclusion and discussion

The chapter studied a reconstruction problem of downstream boundary conditions from
Lagrangian sensing and prescribed upstream and initial conditions, with important applica-
tions in flow networks estimation and control. Under compatibility conditions, a downstream
boundary condition representing a constant capacity drop can be reconstructed. The chap-
ters presents a computationally efficient algorithm that numerically computes the solution.

The chapter discusses the uniqueness of the solution on specific domains, among piecewise
affine boundary conditions. The choise of piecewise affine boundary conditions integrates
the physical characteristics of the signal (succession of service and no-service times). The
derivations assume that the noise and inaccuracies in the measurements are negligible. They
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Figure 3.6: Solution of the reconstruction problem for the Moskowitz Hamilton-Jacobi partial
differential equation given initial and upstream piecewise affine value conditions and one
affine internal value condition. The internal value condition is prescribed between (d;, ;)
and (5l+1, x141). Top: Solution computed for a triangular Hamiltonian. Bottom: Solution

computed for a Greenshields Hamiltonian.
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also do not account for the discrepancies between the physical reality and its mathematical
abstraction (mathematical model characterized by the partial differential equation). For this
reason, it is interesting to take into account the uncertainty in the measurements and/or in
the model. The following chapter analyzes a statistical estimation framework which extends
the estimation capabilities by taking into account the uncertainty in the measurements.
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Chapter 4

Characterization of the distribution of
the solution under noisy
measurements

Chapter 3 presented an algorithm to reconstruct boundary conditions based on internal
value conditions imposed on the solution of a Hamilton-Jacobi partial differential equation.
The results have valuable applications for estimation in flow networks, to detect capacity
reductions, such as the one appearing in signalized networks.

The algorithm assumes that the discrepancy between the reality and its mathematical
abstraction on one side, and between the measurements and the actual state of the system on
the other side, are negligible. In numerous applications, this assumption does not hold. The
example of Chapter 3 illustrates this limitation. As more noisy measurements are added,
they constrain the solution of the problem, until the problem becomes unfeasible (because
the compatibility conditions no longer hold). For these applications, initial, boundary and
internal value conditions shall be regarded as random processes, rather than determinis-
tic functions. Stochastic formulations of the HJ-PDE have been studied, in particular in
the financial mathematics community [185, 67]. This research uses diffusion theory and in
particular Ito’s formula to show existence and uniqueness of the solution under certain con-
ditions [67]. The research focuses on specific classes of stochastic HJ-PDE, such as backward
differential equations, which is a different problem than what the thesis is focusing on.

The chapter derives the probability distribution of the solution of a class of HJ-PDEs
subject to random value conditions. The derivations lead to analytical or semi-analytical
expressions of the probability distribution function at any point in the domain in which the
solution is defined. The characterization of the distribution of the solution at any point is a
first step towards the estimation of the parameters defining the random value conditions.

As mentioned in Chapter 3, an application of interest consists in the design of estimation
frameworks in flow networks, and in particular in signalized flow networks. In such networks,
the derivations can be used to design reliable real-time traffic monitoring systems [4, 206]. Ar-
terial traffic is inherently probabilistic. It is natural to consider probabilistic representations
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of the internal, boundary and value conditions and to estimate the probability distribution
of the macroscopic state variables (flow, density and velocity) at any location x and time
t. For example, the speed of formation of the queue upstream of a signal or a bottleneck
depends on the density of arrival vehicles. Uncertainties on the flow of arrival vehicles lead
to uncertainties on the speed of queue formation, maximum length of the queue, time of
the full queue dissipation and so on. The chapter allows us to integrate the uncertainty and
to compute the probability distribution of the Moskowitz function, and thus of the other
variables of interest (speed of formation of the queue, maximum queue length and so on).

The chapter is organized as follows. Section 4.1 extends the derivations of [41, 42] pre-
sented in Chapter 2. It derives the probability distribution of the solution to the HJ-PDE
when the boundary conditions are random. The section indicates how these derivations can
be used to estimate the parameters of value conditions statistically. The potential of the ap-
proach is illustrated through an example in traffic flow networks in Section 4.2. The section
analyzes the effects of random capacity reductions on the dynamics of congestion.

4.1 Probability distribution of the solution of the
Hamilton-Jacobi partial differential equation

The section generalizes the computation framework of Chapters 2 and 3 to take into account
the randomness of the value conditions. It details the derivations in the case of an upstream
or a downstream boundary condition. The derivations can easily be extended to initial and
internal value conditions. The probability distribution of the solution subject to piecewise
affine value conditions is computed from the derivations for each affine value conditions.

Random upstream boundary condition

Let 7; be an upstream boundary condition , as defined by (2.8), i.e. defined on [y}, ¥j11] x{{}
by v;(t,x) = d; + (t — ¥;)¢(p;). The main contribution of this chapter is to consider p; as
a random variable, with given distribution p,,(p;) and support included in [0, 5.]. For any
location (t,z), M, (t,x) is a random variable, the realization of which is fully determined
by the realization of p;. Let ?t,x be defined on [0, p,.] by Qm L p = My (L, ) (p;)-

Proposition 4.1 (Injectivity). There exists a unique p*(t,x) < p_and a unique POt ) <
p*(t, x) such that (i) the restriction ofgﬁm to [p*(t, ), p.] is constant and derived from Equa-
tion (2.12-ii), (ii) the restriction Of?m to [0, p*(t, x)] is injective and is derived from (2.12-i)
for p € [0, p®(t, x)] and from (2.12-iii) for p € [p®(t,x), p*(t,x)]. The following properties
hold (i) % € 04 (p*(t, x)) and (ii) tf’;jil € 01(pO(t,2)) ift > Y +55 and p(t,z) =0
otherwise.
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r—§
—ug (pj)’
which restricts p; algebraically. The concavity of ¢ implies that —ug is non-increasing' on
[0,p ], with —ug (0) = 1> and 0 € —ug (p,). There exists a unique p*(t,z) € [0,p | such
that * 5 € 0.Y(p*(t,x)). In particular, p > p*(t,x) = —uy (p) < % and p < p*(t,x) =
—Ugy (P) > % -

The concavity of ¢, [43] and the definition of p*(f,z) imply that ¢, is strictly increasing
on [0, p*(t, z)].
olft > %H—i—wu—]g, there exists a unique p¥ (¢, ) € [0, p*(t, z)] such that ;

Proof. In domain (ii), ¢, ~is constant. The expression (ii) is valid for ¢ —7; <

Gaw( “(t, 2)).
. Expres-

= and p < pO(t, ) = —ug (p) >

sion (77) is valid for p; € [0, p®(t, x)] and expression (i) is valid for p; € [p®(t, a:) /_) *(t, x)].

In particular, p > p®(t,2) = —ug (p) <

o Ift <41 +° » , expression (i) is valid for p; € [0, p*(¢,x)] and it follows that p®(t,z) =
0. [

Proposition 4.2 (Bijection). The restriction 0f¢ to [0, p*(t, )] defines a bijection from
0.5°(t,2)] t0[6,,(0),6, ("t ))). The eapressions of 6, (0), 6, (¢"(t,2)) and 6, (p°(t,))

are computed analytzcally as follows:

dj th S ’7]'-&-1 + i;bg
£.(0) = dj + (£ = j+1)9" <t£ - ) it >0+ 5
0, (0" (1) = d + (¢ = 7,)0 (£2)
6,,(p°(t.2)) = d; + (1 S D) + (- 56 (75=)

Proof. The proof is derived from Proposition 4.1 (injectivity of ¢, —on [0, p*(¢,x)]) and
Equation (2.12). O
Proposition 4.3 (Differentiability). If ¢ is differentiable on [0, p*(t, )], the restriction of
¢,  to [0, p*(t, x)] is differentiable.

Proof. The expression of ¢, imply that ¢, is continuously differentiable on the intervals
[0, p°(t, z)) and (p°(t, z), p*(t, z)]. Ift < 7;41+ %55, this terminates the proof as p®(t, z) = 0.

The reminder of the proof considers the case where ¢ > ’yjﬂ + &=
The differentiability of ¢ at p® (¢, z) and the definition of p®(t, x) imply that ¢/(p® (¢, z)) =

. The left derivative of ¢ at p<> (t,x) is computed using expression (2.12-7). The left

t— ’Y] _ _

derlvatlve is given by (& — ;)= 7 > + & — @, which can be written as (z — § )% From
J

expression (2.12-7i7), it follows that the right derivative is equal to the left derivative and

thus ¢, is continuously differentiable on [0, p*(¢, z)]. O

1Since ug may not be uniquely defined, non-increasing is understood in the following sense: V(p,p’) €
(0,77 s.t. p < ¢, Yug (p) € =04%(p), Yug (p') € —011(p"), then —ug (p) = —ug (o).
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Proposition 4.4 (Diffeomorphism). If i is differentiable on [0, p*(t,x)], the restriction of
¢, . to (0,p"(t,x)) defines a diffeomorphism from (0, p*(t,x)) to (@tz(O),?m(B*(t,a:)))

Proof. The proof relies on the global inversion theorem (see for example [8]). The above
Propositions indicate that ¢, . isinjective and continuously differentiable on the open interval

(0, p*(t,z)). They also prove that the differential function is invertible on this interval. Since
¢, _is concave and strictly increasing on (0, p*(¢, z)), the derivative is strictly positive on this

interval, thus invertible and ¢, defines a diffeomorphism on (0, p*(t, x)). O

The following definition, first introduced and proved in [42] is used to derive the expression

1.
Sémw’

Definition 4.1 (Densities associated with v; and g; [42]). Let v; in [0,1°] and g; be in
0, *(—v;)]. Let p € [0, pmax] be such that* ¥ (p) — pv; = ¢*(—v;). There exists two solutions
to the equation (p;)—v;p; = gj on [0, pmax|, denoted p1(v;, g;) and p2(v;, g;) with p1(vj, gj) <
p < p2(v5:95)-

Proposition 4.5 (Expression of gﬁ;i) The inverse of the diffeomorphism induced by the re-

striction of ¢, to (0, p*(t,x)) onto its image is denoted ?t_; and can be computed analytically

¢, 1(m) = p (x_£ m_dJ) (4.1)

e =7 t=7
Proof. For p; € [0, p®(t, x)], the expression of &, (pj) is given by (iii). Let m be in the
image of [0, p® (¢, 2)] under @, ., there exists a unique p; € [0, p®(t, )] such that:

m—d; — (t =7,11)¢" ( = >

=Y+
Yi+1 — Vj

P(p;) = (4.2)

This implies that the right hand side of (4.2) is in [0, gmax] and that the unique solution is
given by

m—dj — (t =741)¢" ( = >

=741
Yi+1 — V5

¢ (m)=p

Lt

where p is defined in Definition 2.3.
For p; € [p¥(t,z), p*(t, )], the expression of ¢, (p;) is given by (i). Let m be in

Qm([go(t, ), p*(t,x)]). There exists a unique p; € [p®(¢,z), p*(t, z)] such that
m — d; r—¢&
— =(p;) —pj——-
t—7; e

2The existence of such a p comes from the definition of *.
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The following uses the fact that % € [0,—uy (p;)] and in particular that % € [0,2).
The existence of p; and the definition of ¢* also imply that ?__;l?' < @*(—f_—}f). The variable

vj is defined by v; = w_;;f] and g; = m:%j. Let p be such that ¥ (p) — pv; = ¢©*(—v;),

? ?
then v; € 0,9(p) and —uq (p*(t,z)) > v;. The concavity of i implies that p > p*(t, ).
According to Definition 4.1, there exists two solutions p; (v;, g;) and p2(v;, g;) to the equation
Y(p;) — pjv; = gj, satisfying pi(vj,g;) < p < pa(vy,9;). Since p > p*(t,x), only the first
solution is possible which yields (4.1). O

The previous results are used to derive the probability distribution of M, (,z). It is
first necessary to define

Pe
wt,z) = [ py(p;)dp;
and p*(t,x)

M = d;+ (- 7)e ()

Proposition 4.6 (Probability distribution of M., (t,x)). If ¥ is continuously differentiable
on [0, p*(t,x)], the probability distribution of M., (t,x) is given by

PM,, (t) (m) = w(t,z)d(m — M’ﬁ”)
+(1 = w(t,@)) | (671m)) |y, (071 0m).

Proof. Using the law of total probability, it follows that

C

pMWj(t’l")(m) = w(t, z)pMWj(t:x)|Pj(m|pj € [p*(t,x),p )
+(1 = w(t,@))pm, (ka)lo; (mpj € [0, p7(2,2)))

Given the event “p; € [p*(t,x),p_|”, the value of M, (¢, x) is deterministic, and equal to Miﬁ_it.

The probability distribution of M, (¢, x) conditioned on the event “p; € [p*(t,z),p]" is a
Dirac Delta distribution (mass probability) at Mi;;_it, which can be written PM ()l (m|p; €

9°(t, ), p,]) = B(m — M),
Given the event “p; is in [0, p*(t, )" and given that the restriction of ¢, on this inter-
val induces a diffeomorphism, the probability distribution of M, (¢, z) is derived from the

probability distribution of p; using the change of variable p; = gﬁt_; (m). O

Random downstream boundary condition

As done for a random upstream boundary condition, the following derives the probability
distribution of a component associated with a random downstream boundary condition.
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The proofs are similar to the proofs for the derivations of the solution subject to a random
upstream boundary condition.

Consider a downstream boundary condition B, defined on [Bg, Bri1] X {x} by Be(t,z) =
fr 4 (t = Br)(pr), for which the parameter py, is a random variable, with given distribution
P (pr). For any location (t,z), ¢,, is defined on the interval [p . Pmax] by oyt pE

M/Bk (t’ l‘) (,Ok)

Proposition 4.7 (Injectivity). There exists a unique p*(t,x) > p_and a unique ot ) >
p*(t,x) such that (i) the restriction of ¢, to [p,, p*(t,x)] is constant and derived from
FEquation (2.13-i1), (ii) the restriction of Em to [p*(t, ), pmax| 1S injective and is derived
from (2.13-i) for p € [p*(t,x),p°(t, x)] and from (2.13-iii) for p € [p®(t, ), p—max]|. More-
over, the following properties hold: (1) 35" (p*(t,x)) and (ii) t*XﬁTkiI € —0.Y(p°(t, 7))
if t > Bra1 + = and P9 (t, ) = pmax otherwise.

Proof. The proof is similar to the proof of Proposition 4.1 and omitted for brevity. n

Proposition 4.8 (Bijection). The restriction of ¢,, to [p*(t,z), pmax] defines a bijection

f’I"O’fTL [IO (t JI) pmax] to [¢ta:<pmax) ¢ta:< (t JI))] The exPTESSiOHS Ofg_bt,ac<pmax>7 5t,x<ﬁ<>(t7x))
and ¢, ,(p*(t,2)) are computed analytically as follows:

B T ift < Bep + 55
Pralbmes) =0 ft (1 e 752 ) Y12 G+ 45

t—Bh1

Gl (6,0) = it (0= B (55)
6P (t,2)) = fr + (Bera — Bu) (O (¢,

) + (t — Brs1)g” <t—€5—:+1)

Proof. The proof is derived from Proposition 4.7 (injectivity of at ») and Equation (2.12). O

Proposition 4.9 (Differentiability). If ¢ is differentiable on (p*(t, ), pmax], the restriction
of b5 to (*(t, @), pmax] is differentiable.

Proof. The proof is readily adapted from the proof of Proposition 4.3. It relies on the
expression of ¢, , for pj, € [p*,p%(t,2)) and for pj, € (5°(t, %), pmax] given in (2.13) to show
the differentiability on each of the two intervals and the continuity of the differential at
p= ﬁo(ta l‘) O
Proposition 4.10 (Diffeomorphism). If ¢ is differentiable on (p*(t, ), pmax), the restriction
0 1 10 (7(1,2). puas) defines a diffeomorphism from (7*(1,2). puss) 10 (G4, (pss). Gy (7 (1,2)))

Proof. As for the proof of Proposition 4.4, the proof relies on the global inversion theorem
and uses the injectivity and differentiability of ¢, , on the open interval (p*(t, ), pmax), as
well as the invertibility of the differential on this interval. O]
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Proposition 4.11 (Expression of g_bt;l). The wnverse of the diffeomorphism induced by the

restriction of ¢,, to (p*(t, ), pmax) onto its image is denoted at:pl and can be computed
analytically as

-1 X—x m—fi
¢, (M) = ( = = > 4.3
t, ( ) P2 t— /Bk t— /Bk ( )
Proof. The proof is similar to the proof of Proposition 4.5 and omitted for brevity. O

Leveraging the previous results, the following derives the probability distribution of
Mg, (t,z). It is first useful to define

—

7 (t,2)
w(t,r) = Ppi (Pr) dpy

and ; )
M = fit (- Bet (52)

Al

Proposition 4.12 (Probability distribution of Mg, (¢,x)). If v is continuously differentiable
on [p*(t,x), Pmax), the probability distribution of Mg, (t,x) is given by

DM, (1) (M) = w(t, ) (m — Mj™)
+(1 = w(t,2)) |2 (@ ()| P (B ().

Proof. The proof is similar to the proof of Proposition 4.6 and uses the law of total probability
and the change of variable p;, = Et;l(m) for m € (@ o (Pmax), @r.o (P (t, x))). O

Probability distribution of the solution

The beginning of the section derives the probability distribution of a solution associated with
an affine upstream or downstream boundary condition. Similar derivations are performed to
compute the probability distribution of the solution associated with an affine initial or inter-
nal value condition, using the deterministic solution derived in [42] and defining appropriate
conditioning and change of variables to derive the probability distribution of the solution.
The inf-morphism property (Proposition 2.1) allows to compute the probability distribution
of the solution associated with piecewise affine initial, upstream, downstream and internal
value conditions. Consider I random value conditions ¢; and denote by PM., (t.2) the prob-
ability distribution of the corresponding component i at each location x and time ¢t. The
value conditions are assumed to be independent, and thus the random variables M, (¢, x)
are independent. Let ¢ be the minimum of the value conditions c;, i € I, the probability
distribution of the solution at time ¢ and location x associated with the random value con-
dition c is denoted M(t, z). For any realization of the random value condition, the solution



CHAPTER 4. CHARACTERIZATION OF THE DISTRIBUTION OF THE SOLUTION
UNDER NOISY MEASUREMENTS o1

satisfies the inf-morphism property. The random variable Mc(¢, x) is the minimum of the
random variables M, (¢, x):
M.(t,z) = min M, (¢, x)

el

Let P, (1,2) denote the cumulative probability distribution of the random variable M, (t, z)
associated with the random value condition c;. It is defined by: Py, (t,.2)(m =" DM, (t.0) () din.

Proposition 4.13 (Probability distribution of Mc(t,z)). The probability distribution of
the solution Mc(t,x), corresponding to the random value condition c is computed from the
probability distribution of the components M, (t, x) associated with the affine value conditions
c; as follows:

Pt (M) = Y o,y (m) [ [(1 = P, .0y (m)

il j#i

Remark 4.1 (Parameter estimation). The probability distribution of the solution of the HJ-
PDE at time t and location x is parametric. The parameters characterize the probability
distribution of the initial, upstream, downstream and internal value conditions. They can
be estimated from (noisy) measurements of the solution, using likelihood maximization for
example.

4.2 Numerical implementation

A simulation of probabilistic traffic flows using the Moskowitz function [169, 172, 56] illus-
trates the derivations of Section 4.1. Consider a concave Hamiltonian ¢, initial and upstream
boundary conditions, specified in the form of two piecewise affine functions taking finite val-
ues on the domains {0} x [£, x| and [0,T] x {£} respectively. A reduction of the output
capacity at x = x, leading to the potential formation of a queue is simulated during time
interval [By, 31]. The reduction of the output capacity is represented by a random variable p,
with support in [pc, Pmax), corresponding to the density at the intersection during the capac-
ity reduction. The randomness of the downstream boundary condition leads to randomness
in the queue formation, which is illustrated numerically.

The numerical analysis considers a Greenshields Hamiltonian, as illustrated Figure 2.1
(right). The Greenshields Hamiltonian is defined on [0, pmax] by ¥(p) = Adpe P(pmax—p). The
expression is parameterized by the maximum density ppa.x = 0.1 veh/m and the maximum
flow ¢max = 1300 veh/h. The solution of the HJ-PDE is computed on the domain [0, 7' x [, x]
with 7" =80 s, £ = 0 m and y = 100 m. The numerical analysis investigates a random
capacity reduction during the time interval [y, 3] at = £, with 3y = 20 s and 3; = 50 s.
During this time interval, the output density is a random variable, pg uniformly distributed
on [0.08,0.1].

Figure 4.1 shows the deterministic solution of the Moskowitz HJ-PDE for output den-
sities pg equal to 0.08, 0.09 and 0.1 veh/m, corresponding to maximum output flows (po)
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Figure 4.1: Deterministic solution of the Moskowitz Hamilton-Jacobi partial differential equa-
tion under given initial and upstream boundary conditions and with three different values
for the capacity reduction. From left to right, the outflow is limited to 832, 468 and 0 ve-
hicles per hour respectively. The color scale represents the spatial derivative of the solution
(density). Black lines represent the isolines of the solution (

emphi.e. vehicle trajectories). The different values of the maximum outflow influence the
formation of a queue upstream of the capacity reduction.

equal to 832, 468 and 0 veh/h respectively. The Figure displays isolines of the Moskowitz
function and a colormap of the spatial partial derivative, which is a common two dimensional
representation of the solution. The figure illustrates the differences in the solution of the
HJ-PDE, under different downstream boundary conditions and underlines the importance to
study the probability distribution of the solution when the conditions are noisy or cannot be
estimated accurately. Depending on the importance of the capacity reduction, the solution
may exhibit shock-waves, corresponding to discontinuities in the density p (and in the flow
¥(p)). In the context of transportation, it is common to refer to these shock-waves as queue
formations or queue dissipations. Note that a flow of 832 veh/h does not create any queue
formation because the capacity at time t and location x is greater than the flow imposed by
the initial and upstream boundary conditions at time ¢ and location . As the maximum flow
decreases, a queue forms. The speed of formation of the queue depends on the importance
of the capacity reduction. At the end of the capacity reduction, the queue dissipates.

The probability distribution of the solution is computed according to the derivations
of Section 4.1 and illustrated in Figures 4.2 and 4.3 using percentiles. For the random
variable M(¢, z), the n™-percentile, denoted M"(¢, z) for n € [0, 100], satisfies Py 4 (m <
M"(t,x)) = n/100. Percentiles are commonly used to represent probability distributions.
Figure 4.2 illustrates the probability distribution at a fixed location z = 98 m (upstream
of the end of the segment), as it evolves over time. The location is indicated in Figure 4.1,
with a dashed line labeled x = 98 m. The slope of each curve represents the flow at the
corresponding time and location. Points where the curve is not differentiable correspond
to the presence of a shock-wave at the corresponding time and location. At the beginning
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Figure 4.2: Distribution of the solution of the Moskow:itz Hamilton-Jacobi partial differential
equation at a fixed location, upstream of the capacity reduction. The figure represents the
solution at = 98 m (2 meters upstream of the capacity reduction). The value at t = 0
represents the label of the vehicle at = 98 at the initial time, which is determined up to a

constant chosen by the initialization of the Moskowitz function at (&, 0).

of the capacity reduction, the flow decreases when the capacity reduction is sufficient to
cause the formation of a queue. This creates a shock-wave, i.e. a non-differentiability of the
solution. At the end of the capacity reduction, the queue dissipates (second shock-wave),
corresponding to another non-differentiability of the solution. The duration of the congestion
varies depending on the importance of the capacity reduction. Figure 4.3 represents the
probability distribution of the solution at two time instances, ¢ = 48 s and t = 55 s. The
time instances are indicated in Figure 4.1, with dashed lines labeled t = 48 s and t = 55 s
respectively. The figure illustrates the distribution of the queue at the specified times. Recall
the relation between the temporal derivative of M and the flow: aMa—(tt’x) = q(t,z). Tt follows
that the slope of each curve corresponds to the density of the solution at the specified time

and location.

4.3 Conclusion and discussion

The chapter shows the importance to consider randomness of measurements and inaccuracies
of the mathematical modeling of physical phenomena. It derives the probability distribution
of the solution to a Hamilton-Jacobi partial differential equation for which the prescribed
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Figure 4.3: Distribution of the solution of the Moskow:itz Hamilton-Jacobi partial differential
equation at two distinct fixed times. Left: Solution at ¢ = 48 seconds, 28 seconds after the
beginning of the capacity reduction. Right: Solution at ¢ = 55 seconds, 5 seconds after the
end of the capacity reduction.

value conditions are probabilistic. The derivations allow for the analysis of the effects of the
randomness of the value conditions on the solution, as illustrated in Section 4.2. Another
application of this approach is the estimation of the parameters characterizing the probability
distribution of the value conditions, through maximum-likelihood estimation for example.
The chapter also introduces the necessary derivations to statistically estimate the parameters
characterizing the distribution of value conditions. The derivations lead to an instantaneous
computation of the distribution given the distribution of the value condition without the
need for sampling, simulation, or computation on a fixed grid.

This work has important applications for systems described by a Hamilton-Jacobi equa-
tions for which the value conditions are noisy or cannot be measured accurately. The chapter
illustrates the applicability in the context of traffic lows with random capacity reduction,
leading to probabilistic congestion and queue formations. It is of particular interest for
horizontal queuing networks with random capacity reductions. It provides a framework to
take into account the uncertainty in the estimation process while leveraging the physical
properties of the system.

A characteristic of many signalized networks is the alternation of service times and no-
service times, in a periodical fashion. This property is not exploited in the model and
as a result, the model requires measurements during each no-service time to detect the
characteristics of the signal. This level of data is not always available. The following chapters
analyze how the periodicity of numerous signalized networks can be leveraged to limit the
data requirements to develop estimation capabilities.
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Chapter 5

Statistical model of horizontal queue
dynamics

The estimation framework of Chapters 3 and 4 captures specific features of the physics of
queues. It integrates the measurements to refine the quality of the estimates at each location
x and time ¢. Chapter 4 introduces the capability to account for noise in the measurements.
However, to produce estimates, the model relies on strong assumptions regarding the data
availability.

We now revisit the numerical example of Chapter 3. The probe data is used to infer
the characteristics of the capacity reduction (start, end, maximum flow during the capacity
reduction) and estimate the state of the queue at each location and time. However, if no
probe measurement is available, the capacity reduction cannot be detected. Moreover, most
probe data available today, with the prospect of global coverage in the near future, does
not have the level of detail assumed in Chapters 3 and 4. In these chapters, it is assumed
that probe data is available as piecewise affine trajectories, which provide information on the
location and duration of stops. Most probe vehicles report their location at low sampling
frequencies (once every minute). The model of Chapters 3 and 4 does not leverage a critical
piece of information. In numerous applications, signals are periodic, with service times and
no-service times (e.g. green and red times in an arterial network) succeeding each other.

The present chapter describes how to leverage this insight to develop an aggregated
model of the dynamics: the model describes the dynamics over the duration of a cycle in
a probabilistic setting. The arrival time of a vehicle within the cycle is a random variable.
The temporal aggregation reduces the ability of the model to retrieve specific events: the
model cannot estimate the exact time at which service started or ended. Instead, it estimates
the typical duration of service times and no-service times. This aggregation limits the data
requirements to develop estimation platforms.

As mentioned earlier, urban traffic dynamics are driven by the presence of traffic signals,
which lead to important vehicle-to-vehicle travel time variability. The present chapter intro-
duces a horizontal queuing theory model to derive an analytic expression of the probability
distribution of travel time, parameterized by physical parameters (signals, free flow speed
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distribution, queue lengths). The main contribution of the chapter is the design of modeling
and estimation frameworks which address the specificities of sparsely sampled probe vehicle
data. First, the distributions are derived between any two locations on a link as the locations
reported by the vehicles are not necessarily at the beginning and at the end of the links. Sec-
ond, a travel time allocation algorithm allows us to incorporate measurements when vehicles
traverse several links between successive location reports and learn the parametric distribu-
tion of travel time. The allocation algorithm relies on the proof that the derived travel time
distributions are mixtures of log-concave distributions. Numerical experiments using probe
data show that the derived distribution more accurately represents the empirical distribu-
tion of travel time than other common distributions. These estimation capabilities can be
further improved by integrating prior information on the physical parameters characterizing
the distribution.

This chapter is organized as follows. Section 5.1 summarizes horizontal queuing theory
results, developed over the past fifty years. These results are used to derive delay (Sec-
tion 5.2) and travel time (Section 5.3) distributions between any two points on an arterial
link. The chapter proves that the derived travel time distributions are mixtures of log-
concave distributions and use this property in Section 5.4 to develop a machine learning
algorithm to estimate traffic parameters and levels of congestion on each link of the network.
The estimation capabilities of the algorithm in Section 5.5 using data collected using Sensys
hardware [98].

5.1 Horizontal queuing theory

Traffic modeling

This section makes assumptions on the dynamics of traffic flow. The assumptions represent
trade-offs between the model complexity and the information which can be extracted from
the data. As typical penetration and sampling rates of probe vehicles remain low (positions
reported on average once per minute), the model aims at estimating trends in traffic con-
ditions, while keeping a realistic physical description of the dynamics of traffic lows. For
a congestion state, the model represents the variability of delays and travel times due to
the presence of signals. The parameters can be learned from travel times between arbitrary
locations on the network. The assumptions are as follows.

1. Macroscopic LWR model: This is a common assumption introduced and used in Chap-
ters 2 -4. The Hamiltonian (or fundamental diagram) is assumed to be triangular, as
done previously in [58, 88, 172]. The diagram was previously introduced in Chapter 2.
Its analytic expression is given in Equation (2.2) and it is illustrated Figure 2.1. The
model implies that, as queue dissipates (e.g. as the signal turns green), vehicles are
released with the maximum flow—capacity gmax and critical density p. = gmax/vs-
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2. Discrete time dynamical system: during a time interval, the parameters of the model
(red time R, cycle time C', driving behavior) and the state of the system (queue length)
are constant. The variability of the queue length affects the link travel time distribu-
tion [216]. However, the chapter focuses on estimation when measurements are sparse
and may not be able to capture this phenomenon. The chapter does not detail the
effect of turn movements and dedicated lanes. A potential approach would be to model
each lane as a different queue with its specific parameters [200]. The parameters can
be estimated from the probe vehicles with the corresponding turn movement (known
from the path of the vehicle). As for other modeling choices, the decision to take into
account dedicated lanes is a trade-off between the model complexity and the level of
information contained in the data.

3. Uniform vehicle arrivals: over the time discretization, the arrival density has a constant
value p, < p.. It is common to consider a time invariant distribution of arrivals such as
a Poisson distribution, assuming that the effect of light synchronization on the arrival
rate is negligible. The main source of vehicle to vehicle travel time variability is the
presence of a signal rather than the randomness of the arrival rate, as can be observed
in the distributions derived by [224]. The assumption of constant arrivals enables
analytic derivations of the travel time pdf between arbitrary locations on the network,
which is necessary to leverage data sent by sparsely sampled probe vehicles. In [15],
the assumption of constant arrivals is relaxed to explicitly take into account signal
coordination. It is possible to include these results in the model derived in the present
chapter. However, the analytic expressions become cumbersome and are not presented
here. They also induce a larger number of parameters which potentially increases the
risk of over-fitting.

4. Model for differences in driving behavior: the free flow pace (inverse of the free flow
speed) is a random variable with pdf ¢?, parameterized by 6, (e.g. a Gamma distri-
bution with 6, = (py,0,)T where p; and o, are the mean and the standard deviation
of the random variable!). Features of driving behavior have been studied in the liter-
ature [141, 39, 204]. and are particularly important for highway traffic modeling and
estimation. For arterials, the main source of travel time variability is the presence
of traffic signals which leads to the formation and dissolution of queues and causes
variability in the delay experienced by different vehicles. However, existing driving

!Note that Gamma distributions are usually parameterized using a shape parameter and a scale param-
eter or a shape parameter o and inverse scale parameter 5. According to the later parametrization, the
probability distribution of a Gamma random variable reads:

flz;a,8) = Baﬁxa*“e*ﬁm forx >0, o, 5> 0.

According to this parameterization, the mean of the Gamma random variable is given by o/ and its variance

is a/ %
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behavior models can be incorporated by modifying the probability distribution of free
flow pace accordingly.

Horizontal queuing theory

Traffic is driven by the formation and the dissipation of queues upstream of locations where
demand exceeds capacity (bottlenecks). Two discrete traffic regimes: undersaturated and
congested represent different dynamics of the arterial link depending on the presence (re-
spectively the absence) of a remaining queue when the light switches from green to red. The
assumptions lead to an exact analytic solution of the LWR model. Figure 5.1 illustrates
the corresponding vehicle trajectories for both regimes. The speed of formation and disso-
lution of the queue are respectively called v, and w. Their expression is derived from the
Rankine-Hugoniot condition [71] by

ve=—PY and w= Y (5.1)

Pmax — pa pmax - pc'

Undersaturated regime. In this regime, the queue fully dissipates within the green time.
This queue is called the triangular queue (from its triangular shape on the space-time diagram
of trajectories). It is defined as the spatio-temporal region where vehicles are stopped on the
link. Its length is denoted [ and is computed as follows:

| = R _ g Y PP (5.2)
W — Vg Pmax Pc — Pa

Congested regime. In this regime, there exists a part of the queue downstream of the
triangular queue called remaining queue with length [, corresponding to vehicles which have
to stop multiple times before going through the intersection.

Periodicity of the two regimes. The assumptions made earlier imply the C-periodicity
of the queue dynamics. In particular, the congested regime is exactly at saturation: the
number of vehicles entering and exiting the link are equal. Saturation is an idealized notion
that is considered valid for each discretization interval. The difference between the number
of vehicles entering and exiting the link is accounted for in the variation of the queue length
between discretization intervals. This effect is studied in Chapter 6 using a model of traffic
dynamics and congestion propagation on the network. At saturation, the arrival density is
Py = %po The triangular queue length at saturation [ is computed by replacing p, = p;
in equation (5.2) or by noticing that the number of vehicles that stop in the queue (Ispmax)
is equal to the number of vehicles that exit the link in the duration of a cycle ((C' — R)vsp.):

ls = vfpc(c - R)/pmax- (53)

Note that [ is the distance traveled between successive stops on a congested link.
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Figure 5.1: Space time diagram of vehicle trajectories with uniform arrivals under an under-
saturated traffic regime (top) and a congested traffic regime (bottom).
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Notation

The list below summarizes the set of variables which is sufficient to characterize the model
of horizontal queues. The parameters are specific for each network link j. The index j is
omitted for notation simplicity. The model parameters are:

o the free flow pace, py (seconds/meter), with pdf ¢?, parameterized by 6,

the cycle time, C,

the red time, R,

the length of the link, L and

the queue length at saturation [;.

The traffic state is represented by the queue length (back of the queue), I, where [ is the
length of the triangular queue in the undersaturated regime and [ = [, + [, in the congested
regime. The remaining queue length, [,., is null in the undersaturated regime. Note that the
length of the link is not estimated as it is given by the network topology.

The aforementioned parameters can be estimated with probe vehicle measurements, as
detailed in the remainder of this chapter. In the following, the location x on a link corre-
sponds to the distance to the downstream intersection. This setting appears naturally in the
derivations because the formation of queues starts from the downstream intersection. The
following sections derive probability distributions for the delay ¢,, », and the travel time
Y.z DEtWeen two locations x; and x5 on a link of the network, noted respectively h(dz, 4, )
and g(Ya, «,). Additional indexing of these functions will appear as necessary for clarity. For
notational simplicity, the derivations do not make an explicit distinction between a random
variable X and its realization x.

5.2 Probability distribution of delay

Delays on arterial networks is mainly conditioned on two factors: (i) differences between
the demand (number of vehicles which travel on a link) and the service (number of vehicle
which go through an intersection during a cycle) dictate the level of congestion (indicated
by the queue length) experienced by all the vehicles entering the link; (ii) the entrance time
determines the duration of the delay in the queue due to the periodic dynamics imposed
by the traffic signal (vehicle-to-vehicle variability [175]). Travel time measurements come
from vehicles sampled uniformly in time. They send tuples of the form (xy, ¢y, s, t5) where
x1 is the location of the vehicle at t; and x5 is the position of the vehicle at t,. This is
representative of probe data available today. The travel time t5 — t; is typically in the order
of one minute.
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Figure 5.2: Proportion of delayed vehicles between two locations on a link: ny . is the ratio
between the number of vehicles joining the queue between z; and x5 over the total number of
vehicles entering the link in one cycle. The highlighted trajectories represent the trajectories
of vehicles delayed between z; and z».

X

Probability distribution of delay in the undersaturated regime

Let 7y, ., be the fraction of the vehicles entering the link in a cycle that experience a delay
between x; and x5. The remainder of the vehicles travels from x; to xo without delay. The
proportion 73 .. is the ratio of vehicles joining the queue between z; and 3 over the total
number of vehicles entering the link in one cycle (Figure 5.2, left). The number of vehicles
joining the queue between x; and x5 is the number of vehicles stopped between x; and xs:
(min(l, z1) — min(l,25)) pmax. The number of vehicles entering the link is v;Cp,. It follows
that 7y, ., = (min(z, 1) — min(zy, l))ving;a. The expression of iy, . in function of the model
parameters R, C' and [, and the state variable [ is obtained by multiplying the nominator
and denominator by [, using equation (5.2) to eliminate p, and equation (5.3). It follows

that
«  min(zy,l) —min(zy,l) [ R R\ 1
nxth - l C + 1 C ls . (54)

In (5.4), the first factor scales the proportion of stopping vehicles as a function of the locations
x1 and xo. The second factor represents the proportion of stopping vehicles if z; is upstream
of the queue and x, is at the intersection, i.e the fraction of vehicle stopping on the entire
link g ;. Notice that 75, tends to R/C as the queue length [ tends to zero and that it
increases linearly with the queue length until it reaches one at saturation (I = [y).

The stopping time experienced when stopping at x is denoted by §*(z) for the undersat-
urated regime. Because the arrival of vehicles is homogeneous and the FD is triangular, the
delay 0“(x) increases linearly with . At the intersection (x = 0), the delay is the duration
of the red light R. At the end of the queue (x = [) and upstream of the queue (z > 1), the
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Figure 5.3: Probability distribution of delay between arbitrary locations on an arterial linkin
the undersaturated regime.

delay is null:
5"(x) = R (1 - w> . (5.5)

Given that the arrival of vehicles is uniform in time, the distribution of the location where
the vehicles reach the queue between x; and x5 is uniform in space. For vehicles reaching
the queue between x; and x5, the probability to experience a delay between locations x; and
X9 is uniform with support [0“(z1),d"(x2)], corresponding to the minimum and maximum
delay between z; and xs.

The delay experienced between x; and x5 is a random variable with a mixture distribution
with two components: (i) a mass distribution in 0 corresponding to the vehicles that are not
delayed between x; and x5 and (ii) a uniform distribution on [0“(z1), §"(x2)] corresponding to
the vehicles reaching the queue between z; and 5. Let 14(+) denote the indicator function of
set A, and Dirg,(-) the Dirac distribution centered in @, used to represent a mass probability.
The pdf of delay between z; and x5 (Figure 5.3, left) reads:

u
Ny a0

150157 ()] (O )
(22) = u(wy) L0072l (Orsza)

ht((5361,962) = (1 - U;Ll,xQ)Dir{o}((Sm,xz) + Ju

The cumulative distribution function of delay H'(-) reads:

0 lf 53?17352 < 07
Ht((s ) _ (1 - 77;1,362) 5 st if 51175,;2 € [0,(5“(331)]7
T1,T2 (1 - 77;‘1,352) + 77517332% if 59[:17302 = (5u(1’1), 5“(m2)]7
1 i Gy 0y > 0%(22).

Because of the temporal aggregation of the dynamics, it is not possible to estimate all the
parameters which appear in the derivations. Propositions 5.1 and 5.2 analyze the estimation
capabilities depending on the available data.
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Proposition 5.1. Parameter estimation using link delay measurements: The pdf
of delay on a link is parameterized by two independent parameters. In particular, the red time
R and the fraction of stopping vehicles nj 4 can be chosen to characterize the distribution.
The fraction of stopping vehicles is a function of the parameters R, C, | and ly and is an
indicator of the level of congestion (n}, = 1 at saturation). The cycle length C, the queue
length | and the saturation queue length ls cannot be estimated independently using link
stopping times only.

Proof. The pdf of stopping time on a link is a mixture distribution with two components: a

mass probability in zero (weight 1 — 7} ;) and a uniform distribution on [0, R] (weight 1} ;),

which is characterized by R and ny ;. The parameters C, [ and [, are related to ny , and R
R\ 1

by the implicit relation 7y , = g + (1 — 5) ;- and cannot be uniquely estimated from link

delay measurements. O

Proposition 5.2. Parameter estimation using delay measurements between lo-
cations 1 and xy: The pdf of delay between locations x1 and xo which satisfy xo < x1 <
1s parameterized by three independent parameters. In particular, the red time R, the queue
length | and the fraction of stopping vehicles on a link nf 4 characterize the distribution. The
parameters C' and l are functions of these parameters.

Proof. The pdf of delay between z; and x5 is a mixture distribution with two components:
a mass probability in zero (weight 1 —n¥ ) and a uniform distribution on [6"(z1), 0" (22)]
(weight 3 ., = “572n} ). There exists a bijective change of variables in the appropriate

sub-spaces of R? written as

¢+ (0% (1), 0%(22), Mg 0) = (B L 1110)-

It follows that R, I and 7}, can be chosen as independent parameters to characterize the
pdf of delay. O]

Probability distribution of delay in the congested regime

This section derives the pdf of delay in the congested regime, when the queue does not fully
dissipate before the end of the red time, i.e when [, > 0.

As for the undersaturated regime, the delay distribution is computed by deriving the
delay experienced between x; and x5 for each arrival time in a cycle. Let ng be the maximum
number of stops experienced by the vehicles in the remaining queue between the locations
1 and x9. The delay experienced at location x when reaching the triangular queue at x is
readily derived from the expression of the delay in the undersaturated regime, after noticing
that for x € [0,[,], the stopping time at location x is the duration of the red time R. The
expression of the delay at location x is then

R ifz<l,

§(x) ={ REH=L ifx el I +1J],
0 if &> 1, +1,.
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The derivations are detailed and illustrated in Appendix A. They encompass the different
cases depending on the relative location of x; and x5 with respect to [, and [. As mentioned
earlier, the distance traveled by vehicles in the queue in the duration of a light cycle is [;.

Concavity properties

Proposition 5.3. Mixture of log-concave distributions The pdf of delay between ar-
bitrary locations x1 and xo on an arterial link is a finite mizture of log-concave distributions
with at most three components. FEach component corresponds to a different delay pattern
experienced by the vehicles.

Proof. In the undersaturated regime, the pdf of delay is a mixture of mass probabilities and
uniform distributions with at most two components. Each component represents a delay
pattern: (i) not stopping between x; and xo, mass distribution, or (ii) stopping between
and x4, uniform distribution.

In the congested regime, the pdf of delay is derived in Appendix A and can be represented
as a mixture distribution with at most three components. Each component represents a delay
pattern. The maximum number of component depends on the location of x; and x5 with
respect to the queue and is bounded by three. O

5.3 Probability distribution of travel time

On a path between z; and x9, the travel time y,, ,, is the sum of two independent random
variables: the delay 6, ,, and the free flow travel time yy, ,, , = ps(21 —2). Recall that the
free flow pace py has distribution ¢? with support D, ». For convenience, the prolongation
of P by zero out of Dp is still called ¢ (with a slight abuse of notation). Using a linear
change of variables, the pdf ¢% . of the free flow travel time yy, ., ., between z; and x is
given by:

Yf; 21,22 1
Dr (pp(pf) @w1,w2(yf7 1, 2) ¥ (xl — {,EQ) 1 — Ty

The pdf of travel time is derived from the following fact:

Fact 5.1. Sum of independent random variables If X and Y are two independent
random variables with respective pdf fx and fy, then the pdf f; of the random wvariable

Z =X+4Y is given by fz(2) = (fx * fy)(2).

This classical result in probability is derived by computing the conditional pdf of Z given
X and then integrating over the values of X according to the total probability law. For a
congestion state s € {u, ¢} (undersaturated or congested), the pdf of travel time reads:

gs(ym,mz) = (hs * @gl,am) (ym,mz)-
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From the property that the convolution product is linear and that the pdf of total or mea-
sured delay is a mixture distribution, it follows that the pdf of travel time as a mixture
distribution. Each component corresponds to the convolution between a component of the
delay distribution (delay pattern) and the pdf of free flow travel time. For a link i the pdf
of delay between any locations z; and z5 is a mixture with K; component (K; may depend
on x; and x5 and on the congestion state even though this dependency is not explicitly indi-
cated in the notation). The pdf of delay representing the &*® component (k € {1,..., K;}) is
denoted h;fz ,- It represents the pdf of the k™™ delay pattern such as stopping, non-stopping
and so on (see Section 5.2 and Appendix A). The pdf of travel time corresponding to delay
pattern k is denoted gi*  and given by gi¥ = hiF s@¥ . To derive analytic expressions
of the pdf of travel time, it suffices to derive analytic expressions of the pdf of travel times
associated with the different types of delays. The delay distributions are mixtures of mass
probabilities and uniform distributions. The following derives the general expression of the
travel time distribution when vehicles experience a delay with mass probability in A and

when vehicles experience a delay with uniform distribution on [dmin, dmax]-

Travel time distribution
The delay is equal to A (mass probability)

This delay pattern represents trajectories with ng, > 0 stops in the remaining queue. It also
includes non-stopping vehicles in the undersaturated regime. The corresponding travel time
distribution is derived as

9iwe) = (Dirgay * s, ) (Uira)
= gpgl,xz (y-"ﬂl,xQ - A) (56>

The delay is uniformly distributed on [0,in, dmax]-

This delay pattern represents trajectories with a stop in the triangular queue. The probability
of observing a travel time y,, 4, is given by

g(ym,m) = (1[5m1n,5max] * 9021,;52> (ymhxz)

1 too
= ﬁ / 1[5min75max] (y1717z2 - Z) gp?ﬂél,mg (Z) dZ (57)

o0

The integrand is not null if and only if Y, 2, — 2 € [dmin; Omax] and z € Dy, ie. if
2 € Yy 20 — Omax> Yor,22 — Omin nDe@'

As an illustration, the following derives the pdf of travel time on a partial link (between
x1 and x3) in the undersaturated regime, for a pace distribution with support on R*. The
delay distribution (Figure 5.4, left) is a mixture of a mass probability at 0 and a uniform
distribution on [6%(z1),6%(22)]. The pdf of travel time for each delay pattern is computed
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from Equations (5.6) and (5.7) and scaled with their respective weights (1—ng ., and ny ),
as illustrated Figure 5.4 (center). From the linearity of the convolution operator, it follows
that the pdf of travel times is computed by summing the weighted components (Figure 5.4,
right):

¢ :
0 if yg 00 <0

(1 - n;l,xz)gpgl,wg (y$17$2) lf yx17332 € [07 6“‘(1‘1)]7

(1 _ 77u )Qﬁy (yw N ) 1 7751,@ /yL,oéu(m) (py (Z) i
x1,T2 x1,T2 1,22 5”(.%2) . 5”(.1'1) 0 xT1,T2
if Yz ,20 € [5u(x1)7 5u(x2>]7

(1 _ 77u )Qﬁy (yw N ) 1 7751,@ /yL,oéu(m) (py (Z) "
T1,r2/ T X1,T2 1,72 (5“(:1}2) _ 5“(1‘1) YL 0—6%(33) T1,T2

if Yz1,20 > 5u($2)

9" Yy ,02) = (5.8)

\

The derivations are similar in the congested regime. For example, the pdf of link travel
time (see Case 1 in Appendix A for details of the derivations). For link travel times, z; = L,
length of the link and x5 = 0. The distribution is computed via Equation (5.7) and reads

(

0 5 if  yro < Omin,
o) = { s Jo T e o(2)dz i yno € [Omin, Omaxl,
75min .
—5max£6min nyLyg)O,(gmax 8021/:,0<Z) dz if  yro > dmaxs

;

Omin = 0¢(nsls) + (ns — R,
with Omax

Finite mixture of log-concave distributions

Proposition 5.4. Mixture of log-concave distributions If the pdf of free flow pace is
log-concave, the pdf of travel time between arbitrary locations x1 and xo on an arterial link is
a finite mixture of log-concave distributions with at most three components. Fach component
corresponds to a different delay pattern.

Proof. Since Yz, 2o, = Oz 20 + Yfiz1 0, a0d since 0, 5, and yy.q, 5, are independent r.v., the pdf
of travel time is given by the convolution of the pdf of delay and the pdf of free flow travel
time. From the linearity of the convolution and Proposition 5.3, it follows that the travel
times have a finite mixture distribution with at most three components. Each component is
the convolution of the pdf of free flow travel time with a log-concave distribution. Using the
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Figure 5.4: Probability distribution of travel time between arbitrary locations on an arterial
link in the undersaturated regime. The figure represents the pdf of travel times between x4
and x5 in the case where both z; and x5 are in the triangular queue. The figure illustrates
the distribution for §*(x1) = 10 s, 0"(22) = 30 s and n}, ,, = 0.7. The free flow travel time
between z; and x5 has a Gamma distribution with mean 10 s and standard deviation 3 s.

fact that log-concavity is closed under multiplication (concavity is closed under addition),
and results on the integration of log-concave functions [187], it follows that the convolution
of two log-concave functions is log-concave (Section 3.5 of [29]). If the pdf of free flow pace
is log-concave, so is the pdf of free flow travel time and it follows that the pdf of travel time
is a mixture of log-concave distributions with at most three components. O

5.4 Learning queue dynamics from sparsely sampled
probe vehicles

From traffic flow theory, Section 5.3 derives the pdf of travel time between arbitrary locations
on an arterial link parameterized by the network parameters (average red and cycle time,
driving behavior, saturation queue length) and the level of congestion (queue length). As
probe vehicles report their location periodically in time, the duration between two successive
location reports x; and x5 is a measurement of the travel time of the vehicle on its path
from x; to x5. This section investigates how to use these travel time observations to learn
the parameters of the travel time distributions. Common sampling rates for probe vehicles
are around one measurement per minute. Vehicles typically traverse several links between
successive location reports. This section does not explicitly model the dependency between
link travel times and assumes that they are independent. A Hidden Markov Model, as
introduced in [188], can be used to represent the dependency between link travel times.
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Figure 5.5: Travel time allocation: decomposition of the path travel time into (partial)
link travel times. The vehicle sends location measurements in z, and z4 for a travel time
Yrozy- Lhe path extends only on a fraction of the first and last links (partial links). The
travel time y,, ., is decomposed into five (partial) link travel times Y, 2, = Y, _0 Yzm.zmiss
corresponding to the most likely times spent on each (partial) link given the parameters of
the network and the state of traffic.

In the present model, the transition probabilities of the Markov Model would represent the
probability to stop on a link given that the vehicle stopped (or did not stop) on the upstream
link. The pdf of travel time on the path of the probe vehicle can be computed from the pdf of
(partial) link travel time using convolution. However, unless the (partial) link travel times
are normally distributed, the computation of these convolutions is difficult. To overcome
this difficulty, the section proposes an iterative algorithm inspired from the Fxpectation
Mazimization (EM) algorithm [62]. The mathematical properties and derivations of the EM
algorithm are reviewed in Chapter 6. The algorithm is proven to converge to a local optimum
of the likelihood function and performs very well in practice. This section uses a variation of
this algorithm, referred to as hard EM because the E step corresponds to a hard assignment:

1. Hard F step: for each probe vehicle travel time measurement between successive loca-
tion reports, compute the most likely travel times of individual (partial) links traversed
by the probe vehicle (travel time allocation or decomposition [101, 107]).

2. M step: using the travel times allocated to each (partial) link of the network during
the Hard FE step, estimate the parameters of the pdf of travel time by maximizing
likelihood of the allocated travel times.
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Travel time decomposition

For a vehicle traveling from an origin z, to a destination x,; through M > 0 intersections,
the travel time vy, ., is the sum of the travel times on each of the (partial) links (Figure 5.5):

M
y$o>xd = Z y$m>17n+1 N (51())
m=0

For m € {1... M}, the point x,, represents the most downstream location on the m' link
on the path, xy = x, and 23,11 = x4. Let i,, be the m'" link of the path, let g'» be the pdf of
travel time on (partial) link 4,,, traveled between z,, and x,,,1. Note that the index z,,, T, 11
is dropped for notation simplicity. Let ¢"* denote the pdf of travel time corresponding to
delay pattern k. The delay patterns implicitly depend on the level of congestion (underatu-
rated or congested regime) even though this dependency is not denoted explicitly. The op-
timal decomposition of a path travel time y,, ., into (partial) travel times (Y, 2,11 )m=0..:
maximizes the probability to receive travel time observations (yxm,wanrl)m:O...M under the
constraint that they sum to y,, ,,. The optimization problem reads:

M
minimize : Z —10(g"™ (Y s ) (5.11)
(yzm,zm+1)m:0m1bf m=0
M
S.t. . y-'Eo,-'Ed - Z ymm,.’ﬂm+1 a‘nd vm ymm7$m+1 2 0
m=0

As formulated, (5.11) is not convex. Common optimization algorithms (e.g based on
gradient or Hessian) are only guaranteed to find local optima. Global optimization algo-
rithms [116, 225] can solve the problem of local optima but are out of the scope of this
thesis. The remainder of this section investigates different algorithms to solve the prob-
lem. They leverage the convexity property of the travel time distribution functions to find
convex formulations of (5.11). The performance of the different algorithms are analyzed in
Section 5.5.

1. Gradient algorithm: To limit the risk of getting stuck in local optima, the gradient de-
scent algorithm is run with several random starts. As the feasible set of Problem (5.11)
is bounded and low-dimensional, the algorithm is expected to perform decently. How-
ever it does not exploit the convexity property of the probability distribution functions
(Proposition 5.4). The following algorithms leverage this property.

2. Expectation-Mazximization (EM) algorithm: After an initial allocation (y9 , )
of the travel times to the links of the path (e.g. random allocation, allocation propor-
tional to the mean or the free flow travel times), the algorithm iterates between an
analytical computation (E step) and a small scale optimization problem (M step). It
is only guaranteed to converge to local optima but exploits the convexity properties of
the probability distribution functions:
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e E step: at iteration n, the travel time allocated to link iy, is y; Compute

s Tm41"

the probability Bﬁmk that the vehicle experienced delay pattern k on link i,,:

n
Bn nglmyk <y$m,xm+1>
im,k = K. .
2 . n
Zk’:wz) Uk/ gzmvkl <yﬂ?7n,xm+1>

e M step: solve the convex optimization program (5.13) and go to E Step until

(5.12)

convergence.
M Ki,
minimize >N B xln(gmF @t ), st (5.10). (5.13)
( gm,xm+1)n;:0 m:() ]{?:0 ’

3. Given stop algorithm: Given the model of Section 5.3, a vehicle has one delay pattern
on each link of its path. For k € K;,, let 5;,, x € {0,1} equal 1 if the vehicle has delay
pattern k on link ¢, and 0 otherwise. If the sampling strategy detects the stops of the
vehicle, the variables f3;,,  are known and the travel time allocation solves the following
convex optimization problem:

M Kiy, .
minimize : > Y —fi. & 1n<g27n,k(y$m,$m+1))
(Vomzms1),,  m=0k=0 (5.14)

M
St : ywt):xd - Z ywnzyxm+1 and Vm yfﬂm,,x’m«kl Z O
m=0
4. Enumeration algorithm: Sampling strategies rarely provide the value of the binary

variables 3;,, , which must be considered as decision variables in (5.14), with the con-
straints

sz
Vm Y Bk =1, ¥(m,k) B, €{0,1}. (5.15)
k=1

The constraints ensure that a vehicle has exactly one delay pattern on each link. When
the sampling strategy does not provide the type of delay experienced by the vehicle,
the decomposition problem is given by:

M K,

minimize : Z Z —Binm ln(gim’k(yxm,xm+1))

Y2m @mi1 )y, m=0 k=0

(6im,k)m,k
M
St Ypyay = Z Yzmomes a0d VM Yy 0 >0, (5.16)
m=0

K,
Bk €{0,1}, D Bin=1.
k=1
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Problem (5.16) can be solved by enumerating the Hnj‘io K;, convex optimization pro-
grams corresponding to the different sets of feasible (5;, k)i, k- The complexity is
exponential in the number of links traversed by the vehicle. The upper bounds on the
number of links in a path (probe vehicles typically send their location every minute and
their speed is bounded) and the number of mixture components (K;, < 5) maintain
the tractability of this algorithm.

5. Hard EM algorithm: Problem (5.16) can also be solved using a hard EM algorithm.
The Hard EM algorithm forces the vehicle to have exactly one delay pattern on each
link of the path, instead of using the probability of each delay pattern (5.12). Given
a travel time allocation at iteration n, the hard E step computes 57 , such that it is
equal to 1 if delay pattern £ is the most likely on link 7,, and to 0 otherwise:

- J— ~7L
1 if k=arg Jnax Bt wrs

Bk = (5.17)

0 otherwise

Recall that B{‘m’k, is computed according to (5.12). The M step solves (5.13) with

Bimk = Bi g Similar to the EM algorithm, the hard EM algorithm exploits the
underlying structure of the optimization problem but only guarantees convergence to
local optima and random starts are helpful to increase the chances of convergence
to the global optimum. Compared to the EM algorithm, both the enumeration and
the Hard EM algorithm leverage additional information regarding the physics of the
problem: each vehicle has exactly one delay pattern on each traversed link.

Estimation of traffic conditions

The travel time distribution between any location z; and x5 on a link ¢ is characterized by
the network parameters (C*, R*), 6 and [.) and by the state variable (queue length, I*). The
(partial) link travel times allocated to link 7 (denoted (yJ, . )j—1.;:) enable the estimation
of a subset of these parameters (Proposition 5.2) by maximizing the likelihood (or more
conveniently the log-likelihood) of the allocated (partial) travel times with respect to the
network and state parameters:

o o . ]i . i ]
gl;]mrln;z? > e — (g (V2 2,))

s.t. R < (C".

The locations x; and z, differ for each measurement, even though the dependency of
x1 and x5 on j is not denoted explicitly. Additional constraints and bounds may be added
to limit the feasible set to physically acceptable values of the parameters. Note that prob-
lem (5.18) is not convex. However, the search space is limited (low dimensional optimization
problem with bounds on each of the variables). A grid search with local descent algorithm
for the B best sets of parameters of the grid search performs well for this type of problem.

(5.18)
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Remark 5.1 (A priori information). Additional constraints on the optimization problem
may improve the results by adding a-priori information about the physics and the dynamics.
For example, it is possible to impose similar free flow parameters (parameters sharing) in
different parts of the city or on links with similar features. These constraints couple the
optimization problems, resulting on fewer but potentially larger optimization problems (de-
pending on the constraints and parameter sharing among the links). From historical data or
prior information, it is also possible to input a-priori information on the free flow pace or
on traffic signals by fixing the value of the corresponding parameters. These parameters no
longer appear in the list of variables of the optimization problem (5.18).

5.5 Numerical experiment and results

This section validates the derivation of the statistical distribution of travel times as well
as the learning algorithm from sparsely sampled probe vehicles. First, the section analyzes
numerically the capacity of the travel time distributions, derived from the physics of traffic
flows, to represent the empirical distribution of travel times more accurately than classical
distributions such as normal, log-normal or Gamma distributions. Second, the section studies
the performance and the accuracy of the different travel time decomposition algorithms
presented in Section 5.4 and presents trade-off between them in terms of computation time
and accuracy.

Validation of the travel time distributions

The model presented in this chapter relies on assumptions on the dynamics of traffic flows on
each link of the network to derive probability distributions of travel times. The capacity of
the derived distributions to fit experimental data is compared to those of “classic” classes of
distributions: the normal distribution, the log-normal distribution and the Gamma distri-
bution. For each class of distributions, the capacity to fit empirical data is computed using
a statistical test. The test hypothesis is that link travel times are distributed according
to the chosen distribution (the complementary hypothesis is that the travel times are not
distributed according to this distribution).

The experimental data was collected during a field experiment from the 29th of June
to the 1st of July 2010 as part of the Mobile Millennium project [4]. Twenty drivers, each
carrying a GPS device, drove for 3 hours (3:15pm to 6:15pm) around two distinct loops in
San Francisco illustrated Figure 5.6. The first loop was 1.89 miles long and the second one
2.31 miles long. The GPS devices recorded the location of the vehicles every second and
provided detailed information on the trajectories of the drivers. For the sake of validating
the modeling assumptions and the accuracy of the learning algorithm, the detailed data was
used to provide the link travel times experienced by the probe vehicles.
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Figure 5.6: Routes of the network used for field test validation. The drivers drove around
two distinct loops consisting in Van Ness Ave. South bound and Franklin St. north Bound

for the first routes and Van Ness Ave. North bound and Gough St. South bound for the
second route. Signalized intersections are indicated with a circle

Validation framework

The link travel times extracted from the GPS trajectories of the probe vehicles are separated
into two complementary data sets: a training set and a validation set. For each link of the
network and each class of distribution (traffic distribution, Normal, Log-Normal, Gamma),
the maximum likelihood estimates of the distribution parameters are computed using mea-
surements from the training set. In the numerical experiments, the amount of measurements
from the training set which is used to learn the distributions varies. This analyses how the
amount of data used for the training influences the accuracy of the learning. It aims at
recommending required amount of data to have confidence in the quality of the results and
at comparing the different models in their data requirements.

For each link and each class of distribution, the hypothesis Hy is as follows: the link travel
times are distributed according to the chosen distribution. The hypothesis is tested on the

73
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Table 5.1: Outcome of statistical tests.

True hypothesis
Hy is true Hy is false
Wrong decision,
Type II error, rate 8

Accepts Hy Right decision

Wrong decision,
Type I error, rate «

Decision

Rejects H Right decision

validation data set using the Kolmogorov-Smirnov test [162], also referred to as K-S test.
The K-S test is a standard non-parametric test to state whether samples are distributed
according to an hypothetical distribution (in opposition to other tests like the T-test that
tests uniquely the mean, or the chi-squared test that assumes that the data is normally
distributed). The test is based on the K-S statistics which is computed as the maximum
difference between the empirical and the hypothetical cumulative distributions. The test
provides a p-value which informs us on the goodness of the fit. Low p-values indicate that
the data does not follow the hypothetical distribution. For each hypothetical distribution,
Figure 5.7 (left) shows the average p-value of the links of the network as the percentage of
training data increases. The hypothesis Hj is rejected for p-values inferior to the significance
level . The significance level a corresponds to the percentage of Type-I error allowed by the
test (rejecting the null hypothesis when it is actually true). Table 5.1 illustrates the outcome
of statistical tests and the different types of error. Figure 5.7 (right) shows the evolution of
the percentage of links that passes the K-S test at significance level « = 0.1. Both figures
show that the traffic distribution represents a better fit of the travel time distributions than
any of the other distributions tested in this article. The relative superiority of the traffic
model is more significant when little data is available. This may be a sign of the robustness of
the model when little data is available (because of the intrinsic structure of the distributions
representing the physical model). This is precisely the goal of the algorithm (and model),
which was specifically created to handle low volumes of probe data. As for the “classic”
distribution, the Log-Normal model performs better than both the Normal and the Gamma
distribution.

As the Log-Normal distribution out-performs both the Normal and the Gamma distri-
bution, the remainder analysis focuses on comparing the traffic and the Log-Normal distri-
bution. In particular, comparing both distributions with the empirical distribution of travel
times provides important insight in terms of the specific characteristics of the distribution
which the traffic model is able to capture. Figure 5.8 shows the distributions learned by the
traffic model, the Log-Normal fit as well as the distribution of the empirical data collected in
the field test experiment. The figure represents both the pdf and the cdf of the traffic (solid
blue line) and log-normal (dashed red line) distributions. The histograms represent interval
counts of the probe travel times, normalized so that the area of the histogram sums to one.
The black line with circles represents the empirical cumulative distribution (Kaplan-Meier
estimate [132]) of the travel times collected by the probes.
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Figure 5.7: Goodness of fit of the model depending on the percentage of training data used
to learn the parameters. (Left) Average p-value of the links of the network for the different
hypothetical distributions (traffic, normal, log-normal and Gamma). (Right) Percentage of
links that pass the KS test with a significance level o = 0.1.

The traffic distribution captures the specific characteristics of traffic dynamics. There is
a distinctive peak in the distribution representing the vehicles that do not stop on the link
and travel at their free flow speed. For higher travel times, the distribution is approximately
uniform, representing the vehicles that are delayed on the link, between a minimum delay
(0, for the last vehicle stopping in the queue) and a maximum delay (the duration of the red
time, for the first vehicle stopping at the intersection). As for the Log-Normal distribution, it
cannot capture these specifics of the travel time distribution and the parameters are harder
to interpret.

On link 1, both distributions capture the long tail of the distribution but only the traffic
distribution is able to represent the peak in the pdf due to the non stopping vehicles and
to estimate accurately the maximum delay. On link 2, there are very few travel times
between 35 and 50 seconds, likely due to important synchronization with the upstream link.
None of the traffic or Log-Normal distribution is able to capture this. However, the traffic
distribution models accurately the peak due to the non stopping vehicles and estimate the
maximum delay.

Due to light synchronization, some links have arrivals with platoons, and thus do not
follow the hypothesis of constant arrivals. On these links, delays are not uniformly distributed
among the stopping vehicles and the derivations of the queuing model have to be adapted [5,
15]. Basically, the delay function §"(x) (r € {u,c} representing the undersaturated and
congested regimes) is piecewise linear and the derivations of the statistical distributions
must be updated accordingly, adding parameters to the model. Figure 5.8 (right) represents
the empirical and hypothetical distribution of travel times for a link with platoon arrivals.
There are very few vehicles with a travel time between 30 and 50 seconds, representing a time
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Figure 5.8: Comparison of the traffic and the log-normal distributions with the empirical
distribution of travel times on two links of the network.
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interval during which there is very few arrivals on the links, likely when the upstream signal
is red. The log-normal distribution does not capture this characteristics of the distribution
either. Moreover, the traffic model provides an estimation of the red time, the free flow
speed and the fraction of stopping vehicles (representing congestion) which is important
information for traffic management and operations.

Travel time decomposition algorithm

After validating the model and analyzing its limitation, this section assesses the computa-
tional complexity and the accuracy of the travel time decomposition algorithms presented
in Section 5.4. This validation is done using Nezt Generation Simulation (NGSIM [174])
traffic data on the Peachtree Street network (Atlanta, Georgia). The network consists in
twelve 3 lane-links with five intersections. This dataset offers very detailed trajectories of all
the vehicles traveling on the network and thus an adequate ground truth dataset to validate
against.

Experiment setup

Automatic processing of video camera data provides detailed trajectories (location every 0.1
seconds) of all the vehicles traveling on the network between 4:00 and 4:15pm on November
8, 2006 (more than 700 trajectories). The traffic conditions are undersaturated, close to sat-
uration. The numerical results simulate probe vehicles reporting their location with different
sampling frequencies and compute the time spent on each link and the locations of stops
between successive measurements to serve as ground truth for the travel time allocation. For
each probe measurement, the travel time is allocated to the corresponding links according
to the optimization algorithms described in Section 5.4. The performances of the different
travel time allocation algorithms are compared to an algorithm which allocates the travel
times proportionally to the free flow travel time on each link (Benchmark algorithm). De-
noting by v/ the free flow speed on link m and by |z,,41 — 7,,| the distance traveled on link
m, the travel time allocated to each link m of the path by the benchmark algorithm is given

by

1 |xm+1 - xm|
ywm,:pm+1 - ET, (519)
where the proportionality constant Z is chosen such that the allocated travel times sum
up to the path travel time as stated in (5.10). Recall the different algorithms presented in

Section 5.4

1. The Gradient algorithm finds local optima of (5.11) using a gradient descent algorithm

2. The EM algorithm is an iterative algorithm. At iteration n, it computes (anmk) for
each pair of link m and delay pattern k according to (5.12) and solves the convex
optimization problem (5.13).
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Figure 5.9: Performance analysis of the different travel time allocation algorithms as a func-
tion of the sampling frequency. (Left) Average log-likelihood of the travel time allocations.
(Center) Average computation time. (Right) Average percentage error .

3. The Given stop algorithm solves the convex optimization problem (5.13) where the
values of f3;, j are equal to f3;, , € {0,1} and are given by the sampling scheme which
detects the location of stops.

4. The Enumeration algorithm solves a serie of convex optimization problems (5.13) for
each set of (83;, 1)M_, satisfying (5.15).

5. The Hard EM algorithm is an iterative algorithm. At iteration n, it computes 3} , €
{0,1} according to (5.17) and solves the convex optimization problem (5.13), with
Bk = BL -

6. The Benchmark algorithm allocates travel times proportionally to the free flow speed
on each link (Equation (5.19)).

Convergence and performance analysis

When vehicles remain on the same link between two successive location measurements, the
travel time allocation is trivial and is not taken into account in these results. For each probe
measurement, the algorithm computes the log-likelihood (objective function of (5.11)) of the
allocations performed by the different algorithms and also reports the average computation
time (Figure 5.9, left and center). The algorithms Given stops, Enumeration and Hard EM
assume that each vehicle has a specific delay pattern on each link whereas FM allows for a
mixture of delay patterns and gradient does not make any assumption. All the algorithms
provide an allocation which is more likely than the benchmark. The algorithms which leverage
the convexity property of the travel time distributions lead to better convergence results
(gradient has the lowest likelihood of all optimizations). The algorithms enumeration and
hard EM provide similar convergence results but the computation time is much better for
hard EM. In particular, when the sampling time increases, the effect of the exponential
computation time is substantial for the enumeration algorithm. The algorithm given stop
provides allocations with an average log-likelihood slightly inferior to the enumeration and
hard EM algorithms. Indeed, vehicles may not always experience the most likely delay
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patterns. However, the small difference in log-likelihoods (in comparison to the benchmark
algorithm for example) may indicate that the assumption that vehicles experience the most
likely delay patterns is important to guarantee the quality of the results.

Validation of the algorithms

Let g}é be the ¢ travel time allocated on link [ and by yf] the actual travel time of the probe
vehicle (computed from the detailed trajectories). The number of travel times allocated on
link [ is denoted ();. The average percentage error on link [ is defined as the root mean
square error of the allocation divided by the average travel time T'1;:

1 \/2311(@; — )’

T Qi

To have a more compact validation metric on the entire network, the network average per-
centage error is the average of the percentage error on the different links (Figure 5.9, right).

Confirming the expectations, given stop provides the best results. The information on
stops is rarely available in current sampling strategies and the algorithms enumeration and
hard EM provide the highest accuracy, with slightly better results but higher computation
cost for enumeration. The gradient algorithm has the least accuracy of the optimization
algorithms which underlines the importance of the structure imposed by the other algorithms.
As a tradeoff between accuracy and computation time, the hard EM algorithm seems the
best suited to solve the optimization problem. It provides an improvement of 35% to 50%
compared to the benchmark method for common sampling rates (30 seconds or more between
measurements).

5.6 Conclusion and discussion

This chapter derived a parametric probability distribution of travel times between arbitrary
locations on an arterial link from horizontal queuing theory. The model captures the shape of
the distribution, which characterizes the periodic formation and dissolution of queues. The
distributions are parameterized by physical parameters (red time, cycle time, parameters of
the free flow pace, queue length and queue length at saturation) which can be estimated
using travel time measurements. The parameters may not all be estimated independently
(Propositions 5.1 and 5.2) but it is always possible to retrieve the duration of the red time,
the level of congestion and the parameters of the free flow pace distribution. The queue
length can also be estimated from probe vehicles reporting partial link travel times. The
modeling is designed to incorporate sparsely sampled probe data in the estimation.

e The pdf of travel time is derived between any two locations on a link to take into
account the fact that location measurements from probe vehicles do not coincide with
the beginning and end of the links. Travel speeds vary significantly within an arterial
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link (stops are more likely close to intersections) and scaling of partial travel times
may result in important errors. Moreover, a finer discretization of the road network
would imply the learning of a larger number of parameters which increases the risk of
over-fitting given the amount of data available today at a large scale. It also increases
the potential errors introduced by the travel time allocation as there would be more
segments traversed.

e The probability distributions are mixtures of log-concave distributions. The proof
of this property is used to formulate the travel time allocation problem as a convex
optimization problem and to incorporate travel time measurements when several links
are traversed between successive location measurements.

The numerical results show the superiority of the physical model, derived from horizontal
queuing theory. The model represents more accurately the distribution of travel times when
compared to commonly used distributions (normal, log-normal, Gamma, GMM). The traffic
distribution performs particularly well (in comparison with the other distributions) when
little data is available. It captures the delay of vehicles due to the presence of a queue that
forms and dissipates periodically because of the traffic signal. The learning and estimation
rely on small optimization problems which can be run in parallel in large urban networks.
In addition to the estimation capabilities, the model estimates key parameters such as the
queue length or the red time which are essential information for planning purposes.

The numerical analysis shows that the assumption of uniform arrivals is the most restric-
tive assumption on which this work is based. The assumption does not take into account
signal synchronization. It is possible to generalize the proposed approach to take into ac-
count platoon arrivals. Note that this generalization does not invalidate the methodology
presented in this article. In particular, the probability distribution of stopping times will
remain a mixture of discrete mass probabilities and uniform distributions.

The probability distribution of travel times are finite mixture distributions [107]. Each
component of the mixture corresponds to a type of delay: stopping or not stopping for the
undersaturated regime or depending on the location of the vehicle in the congested regime.
The estimation of transition probabilities representing the probability of a type of delay on
a link given the type of delay on the upstream link would allow to compute route travel time
distributions with a Markov chain approach.
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Chapter 6

Statistical dynamics of physical
queuing networks

Chapter 5 presents a statistical model of urban traffic based on well-established theory of
traffic flow through signalized intersections. It captures the variability of travel times among
vehicles traveling on the network (vehicle to vehicle variability) because of the presence of
traffic signals. The machine learning framework enables us to learn the parameters of the
traffic dynamics (such as free flow velocity or traffic signal parameters) and to account for
discrepancies between the model and the physical reality as well as noise in the data. Another
advantage of the machine learning component of the approach is to leverage significant
amounts of historical data collected to improve the estimation of the model parameters and
provide better real-time estimates.

It is possible to go further in the modeling presented in Chapter 5 by taking into account
the network dynamics, rather than considering each link of the network independently. In
particular, congestion spreads on a network and information on a link of the network can
be used to infer traffic conditions on links which receive little data. Such a hybrid model of
traffic flow theory and statistical modeling provides a distinct advantage over pure statistical
or pure traffic theory models in that it is robust to noisy data (due to the large volumes of
historical data) and it produces forecasts using traffic flow theory principles consistent with
the physics of traffic.

The chapter is organized as follows. Section 6.1 summarizes the notation used in the
chapter. Section 6.2 presents the traffic model and the underlying assumptions. Section 6.3
summarizes how probability distributions of travel time between any two locations are de-
rived from this model (results from Chapter 5 with minor notation changes). The section
also models the spatio-temporal statistical dependencies between the links of the network.
Section 6.4 describes the algorithm developed to learn the parameters of the network and
then infer and predict traffic conditions and distributions of travel time across the network
(EM Algorithm using particle filtering). Section 6.5 analyzes the estimation capabilities of
the model.
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6.1 Summary of the notations used in the chapter

1. Traffic model parameters
The traffic model parameters represent the characteristics of the network. They are
specific to a link i of the network. For notational simplicity, the subscript ¢ is omitted
when the derivations are valid for any link of the network.

Maximum density of link .
¢ .. | Capacity (maximum flow) on link 1.

p. | Critical density of link 1.

w' | Backward shockwave speed of link 7.
Maximum number of vehicles that can physically be on link 7. This is the number
of vehicles when the density is the maximum density. For a link of length L,
fnax = p’Iin&XLi'

v} | Free flow speed of link i.
p’]} Free flow pace (inverse of free flow speed) of link i. The free flow pace and free
flow speeds are related as p} = 1/v5.

%
Pmax

7
max

2. Traffic signal parameters
The traffic signal parameters characterize the properties of the traffic signal that condition
the traffic dynamics. This model only considers traffic signals in the form of traffic lights.
As for the traffic model parameters, these variables are specific to a link ¢ of the network.
However, the subscript may be omitted.

C" | Duration of a light cycle on link i.
R’ | Duration of the red time on link i.
| Maximum number of vehicles that can exit link ¢ during a light cycle. This variable
is related to the ratio of green time and the traffic model parameters.

3. Traffic state variables
The traffic state variables describe the conditions of traffic that characterize the traffic
dynamics on the network. The variables are specific to a link ¢ and a time interval ¢
and represent the dynamic evolution of the traffic state in the different time intervals
t € {0...T}. The reference to the link or to the time interval may be omitted when the
derivations are not link or time specific.

put | Arrival density on link ¢ during time interval ¢.
it

vt | Arrival shockwave speed on link ¢ during time interval ¢ (speed of growth of the
queue due to additional vehicles arrival).
75t | Duration of the clearing time on link i during time interval ¢.

[“t | Length of the triangular queue on link ¢ during time interval t.

max

&5t | Number of vehicles that stop during each light cycle.
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4. Network variables and parameters
The network variables and parameters characterize the architecture of the road network
and describe the flow of vehicles at intersections.

Z | Set of the links of the network.

IC | Set of the intersections of the network.

L' | Length of link 1.

i,7 | Indices of links of the network (i,j € Z). When referring to an intersection, i
refer to a link upstream of the intersection whereas j refers to a link downstream
of the intersection.

k Index of an intersection of the network.

LY | Set of incoming links of intersection k.

LE.. | Set of outgoing links of intersection k.

ki | Source (if existing) of intersection k.

kouw | Sink (if existing) of intersection k.

nfnt Number of vehicles that arrive in link ¢ during a light cycle for time interval ¢.

n’'. | Number of vehicles that leave link i during a light cycle for time interval ¢.

Nfl’f Cumulative number of vehicles that arrive in link ¢ during time interval .

Nt | Cumulative number of vehicles that leave link i during time interval ¢.
N7 | Cumulative number of vehicles that leave link 7 and are assigned to link j during
time interval ¢.

k' | Number of lanes of link 1.

5. Particle filter and E Step
The inference of traffic states on the network given the parameters of the network, of
the turn movements and given observed path travel time data is computed using an
approximation (for tractability reasons). This approximation relies on particle filtering.

V Number of particles.
v Index of the particle.
£t State of particle v on link ¢ during time interval ¢.
Wy Importance weight of particle v.
att(£nt) Expected probability that link 7 is in state £%! at time inter-

val t, computed from the approximation of the joint distri-
bution given by the particles and their importance weight.

Voit(eht NP s j e LE ) | Expected probability that link 4 is in state £ at time in-

terval ¢ and that Nfr’lj’t vehicles get assigned to the outgoing
links of the intersection. It is computed from the approxi-
mation of the joint distribution given by the particles and
their importance weight.

6. Probabilities
The model relies on a probabilistic description of the traffic network dynamics, whose
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notations are summarized in the following Table.

@ Probability distribution function of the free flow pace on link 7. This function
is defined on Rt and for p; € R*, ¢'(py) is the probability density that
vehicles drive with a free flow pace py.

0, Parameters of the probability distribution function ¢°.
v(-) | Probability distribution function of a random variable with Gamma distribu-
tion.

(o', B%) | In the case of a gamma distribution on the free flow pace, the parameters of
the distribution are the shape o and inverse scale parameter 3*. The Gamma

distribution reads v(z) = %xa_le_ﬁx, where I' is the Gamma function de-
fined on R* and with integral expression I'(z) = [,"*~e~*dt, when i is

omitted for simplicity.

Yzi .2, | Observation of the random variable representing the travel time between lo-

cations x; and zs.
yh! Set of travel time observations received on link ¢ during time interval ¢.

Ivt Number of travel time observations received on link ¢ during time interval t.

g“'(-) | Probability distribution function of travel times on link 7 during time interval
t. The function is parameterized by the traffic model and signalization pa-
rameters. It changes over time with the state of the link. The function also
takes into account the location of the measurements x; and x5 on link ¢ such
that ¢"!(y.,.s,) is the probability density of the travel time observation y;, 4,.

v Probability that a vehicle leaving link 7 is assigned to link j.

N Intensity of the Poisson process of vehicles arrival on an outgoing link j € L¥
of intersection k, coming from a source kgy.

7'(€) | Probability that link 4 is in state £ at the beginning of the experiment. These
probabilities represent probabilistic initial conditions for the state of link 7.

7. Other variables

t | Index of the time interval.

T | Index of the last time interval. By convention, the first interval is numbered 0 so
T + 1 is the number of time intervals.

A; | Duration of a time interval.

15 | Indicator function of set S.

8. Probability distributions
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P <E|yi’t, R, C" €L 0; 1eZ, te{0.. T}) Probability of observing a state evolu-
tion = given the travel time observa-

tions.
P(y) Likelihood of the state evolution of the
system, with observations y.
P (y"'[e™) Conditional probability of the travel

time observations y“!, given that link 4
is in state &' during time interval t.

P(N' 2§ e LE, Ukow) Probability that (Nl’]’t)jeL’gutukout vehi-

in out in
cles leave link 7 and are assigned to link
J during time interval ¢.

6.2 Statistical model formulation

Traffic model and assumptions

On each link of the network, the model follows the same standard assumptions as the ones
presented in Section 5.1. These assumptions are commonly made in the transportation
engineering literature on the dynamics of traffic low. The chapter builds on the model of
Chapter 5 to model the dynamics of the network. The model assumptions are stated as
follows.

1. Macroscopic LWR model, as introduced in Chapter 5.

2. Characterization of the state of traffic assumption: For each link of the network, traffic
conditions are characterized by a traffic state variable. This state variable represents
the number of vehicles that stop on the link per light cycle. It is denoted & (generically)
and will appear with indices later in the text when required. It is related to the queue
length [ by & = lpmax-

3. Discrete time dynamical system: Let ty and A; respectively denote the initial time
and the time discretization. Typically, A, is in the order of five to fifteen minutes.
During each interval, [to + tA;, to + (¢t + 1)As] for t € {0,..., T}, the state and flow
entering each link are considered constant. The parameters of traffic signals (red time,
R and cycle time, C') are specific to ech time of day (e.g. Mid-week evening rush
hour), during which they do not change. During each time interval of duration A, the
system exhibits a periodic behavior. The periodicity is dictated by the period of the
traffic light. The queue length changes over time, but the fundamental characteristics
of the queue (e.g. the maximum length reached during a cycle and thus the number
of vehicles stopping in the queue per cycle) remain constant within a time interval. In
particular, the number of vehicles stopping per cycle is constant for a link ¢ and a time
interval ¢ and is denoted &%,



CHAPTER 6. STATISTICAL DYNAMICS OF PHYSICAL QUEUING NETWORKS 86

4. Transition model: According to the time discretization assumption, the state variables
£4 are piecewise constant, with possible discontinuities at the end of each interval.
These transitions model the information propagation on the road network by taking
into account the spatio-temporal dependencies of the state of the links. Based on the
conservation of vehicles, these transitions are modeled using an approach derived from
the Cell Transmission Model [52]. The state of a link during a time interval depends
on the state of this link and the adjacent links during the previous time interval. This
dependency represents the effect of supply and demand of downstream and upstream
links respectively. The dynamic evolution of the traffic state of each link is probabilistic
and parameterized by turn movement probabilities from and to neighboring links and
arriwal rates of vehicles in the network. The parameters of the turn movements can be
learned historically.

5. Conditional independence assumptions: The dynamics are represented using a graph-
ical model, which characterizes the conditional independence assumptions between
the state variables (representing traffic conditions) and the observations. A graphical
model is a graph in which the nodes represent random variables. The edges denote
the conditional independence structure between the random variables. For more back-
ground on graphical models, please refer to [127]. The random variables represented
by the present graph are (i) the state variables £, number of vehicles stopping on a
link per light cycle, on each link i at each time interval ¢ and (ii) the set of travel times
y*' measured on each link i at each time interval ¢. The conditional independence
assumptions between the random variables can be formulated as follows:

a) Travel time measurements on link ¢ for time interval ¢ are independent and iden-
tically distributed given the state £ (number of vehicles stopping on a link per
light cycle) of this link at this time interval. This means that given the state
£4t a travel time on link ¢ during time interval ¢ does not depend on the realiza-
tion of the other travel time measurements on link ¢ during time interval ¢t. Note
that the conditional independence assumption is much less strong than assuming
independence between travel times.

b) Travel time measurements on link i for time interval ¢ are independent from all
the other random variables given the state £ of this link at this time interval.
This means that given the state £, a travel time on link 7 during time interval
t does not depend on the realization of the other random variables. It does not
depend on the states of the other links at any time intervals nor on the state of
link ¢ during time intervals previous or posterior to time interval ¢ nor on the
realization of other travel time measurements.

c¢) Conditioned on the state of the adjacent links (including itself) at the previous
time interval ¢, the state £%*! of link 4 at time interval ¢ + 1 is independent from
the travel time measurements from anterior time periods and all other anterior
state variables. This means that given the states &' of the adjacent links of link
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i (including link 7), the state of link 7 during time interval ¢ + 1 does not depend
on the realization of the anterior random variables. It does not depend on the
states of the non adjacent links at time interval ¢ nor on the state of any link at
time intervals anterior to ¢ — 1 nor on the realization of travel time measurements
during time intervals interior to ¢t. In the following, the set of adjacent links of
link ¢ (including link 7) is referred to as the neighbors of link i.

6. Data availability assumption: The data consists of point to point travel time measure-
ments from a small subset of vehicles traveling on the network. Measurements from
the past are stored and accessible in real time. The Mobile Millennium system [4]
provides such data.

Remark 6.1 (Effect of dedicated lanes). As for Chapter 5, the derivations do not detail the
effect of dedicated lanes. A potential approach would be to introduce parameters for each lane
of the arterial link which can be estimated from the probe vehicles with the corresponding turn
movement (known from the path of the vehicle). As for other modeling choices, the decision
to take into account dedicated lanes is a trade-off between the model complexity and the level
of information contained in the data. Note that, even though the different lanes of a link are
not modeled as distinct queues, the number of lanes is a key characteristic of the network as
it influences the capacity of each link. The number of lane of a link i is denoted K'.

Arterial traffic dynamics

Chapter 5 presents the horizontal queuing theory which is used to derive the probability
distributions of travel time (Section 5.3). The following recalls the results of these derivations
and presents how they are extended to represent traffic states with the number of vehicles
in the queue ¢ instead of the queue length [. For notational simplicity, the reference to the
link ¢ and the time interval ¢ are omitted in this section.

Let & denote the saturation number of vehicles. 1t corresponds to the maximum number
of vehicles that can exit the link in the duration of a cycle. It is related to ls as & = pmax/s-
Remark that at the transition between the undersaturated and the congested regimes, £ = &;.
As pointed out in [137], there is a smooth transition between these regimes. The distinct
regimes are introduced for the mathematical derivations of the travel time distributions, in
particular because of the presence of a remaining queue in the congested regime.

In the undersaturated regime, the duration between the time when the light turns green
and the time when the queue fully dissipates is called the clearing time denoted 7, sometimes
also referred to as saturation green time. Recalling that & denotes the number of vehicles
which stop in the queue per cycle, the relation with the clearing time is given by

§

T=(C-R)g (6.1)
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Notice that when £ = & the clearing time is equal to C'— R, i.e. at the transition between
the undersaturated and the congested regime, the queue finishes to dissipate as the signal
turns red.

In the congested regime, the number of vehicles which stop in the queue per cycle is
denoted £. It is the sum of the number of vehicles which stop in the triangular queue (&,
vehicles) and in the remaining queue (I,/pmax)-

All notations introduced up to here are illustrated for both regimes in Figure 5.1, except
¢ and & which represent number of vehicles (and are related to the corresponding queue
lengths through the maximum density pmax)-

Network model and associated notation

The following variables are learned historically by the model. They are sufficient to charac-
terize the travel time distribution on each link of the network, conditioned on the number
of vehicles in the queue (dynamic state variable):

e Static model parameters: These parameters are learned historically and valid for a
given time of day (representing several time intervals of duration A;. They consist of
the cycle time, C, red time, R, saturation number of vehicles, &, parameters of the
free flow pace distribution, 0,.

e Traffic state: It represents the number of vehicles in the queue, denoted &. It is
estimated dynamically (in real-time).

As mentioned in Propositions 5.1 and 5.2, the aggregation of the periodic dynamics limits
the number of parameters which can be estimated. In particular, the model only uses two
parameters derived from the fundamental diagram (p; and ;). These two parameters allow
for the computation of the critical density and the capacity but not the maximum density
Pmax- The maximum density (effective length of the vehicles) may be estimated off-line with
other means (e.g. The Highway Capacity Manual [209]). It may remain constant over time
and be the same for links with similar properties.

The time evolution of the state of traffic depends on the probabilistic assignment of ve-
hicles to the links of the network. Let LF (resp. LE.) denote the set of incoming (resp.
outgoing) links of intersection k. Each intersection may include dummy links representing
sinks, ko and sources, ki, which model vehicles arriving or leaving the network at inter-
section k (parking, residential roads, etc.). At time interval t, n.' (resp. n2’.) denotes the
number of vehicles arriving (resp. leaving) link i during a cycle. Similarly, N2* (resp N2%)
represents the total number of vehicles arriving (resp. leaving) the link during the duration
A, of time interval ¢. In the derivations at time interval ¢, for two adjacent links ¢ and j (with
i upstream of 7), ni?" (resp. N/7") is the number of vehicles arriving to link j from link i
during a cycle (resp. during time interval ¢). These notations are summarized in Figure 6.1.

The dynamics of the state of traffic are fully characterized by the turn movements on the

network. For an incoming link i € L¥ and an outgoing link j € L¥, U ke of intersection
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Figure 6.1: Schematic representation of an intersection k illustrating the definition of incom-
ing links, outgoing links, turn ratios and vehicle assignment. The incoming links are denoted
LE = {iy,i2,13,44} and the outgoing links are denoted LF , = {41, j2, j3, ja }-

k, the probability of going from link 7 to link j is called a turn probability and denoted v/,

) . : ij —
These variables are non negative and satisfy » JeLk Uk V0 = 1. The presence of a source

at the intersection is modeled for each outgoing link of the intersection j € L%, via a Poisson
process with intensity A;.

The following section summarizes the derivation of probability distributions ¢*(ya, .,|£)
for the travel time y,, 5, between two locations z; and z3 on a link ¢ of the network, condi-
tioned on its state %' at time interval t. The set of travel time measurements received for
link 7 during time interval ¢ is denoted y*f. The section also derives transition probabilities
for the number of stopped vehicles per cycle on a link ¢ at time ¢ + 1 given the number of
stopped vehicles of the neighboring links at time t. The full set of notation used in this
article is available in Section 6.1 for convenience.

6.3 Probabilistic model of traffic dynamics

Modeling the travel time distributions between any two points on
a link
The derivations of Section 5.3 provide the probability distribution of travel times between

arbitrary locations x; and x5 on a link of the network. The general method to derive these
distributions is as follows:
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e From horizontal queuing theory, derive the probability of delay d,, ,, experienced be-
tween the two locations x; and z5 on the link, parameterized by the network parameters
and the traffic state.

e Model the differences in driving behavior, as presented in Section 5.1. Considering a
free flow pace py with probability distribution ¢, the probability distribution of free
flow travel times yy.,, 2, between locations x; and x5y is computed by scaling ¢ since

Yfizrmo = Df(T1 — 22).

e Derive the probability distribution of travel times y,, ,, between locations z; and x5 as
the sum of two independent random variables: the delay d,, , and the free flow travel
time Yf;mi,m0-

In the following, quantities are indexed by i (and sometimes t) to indicate that they refer
to link 7 (and to time interval t). For a link ¢ and a time interval ¢, the resulting travel
time probability distribution between any two points on the link are parameterized by the
network parameters and the points on the link (z; and z5). The probability distribution
of travel time y,, », between z; and x5 is conditioned on the traffic state £ and denoted
9" (Y, 2,1€""). The dependency on the network parameters is implicit and only reminded by
the indexing of g by 1.

Modeling the spatio-temporal dependencies: transition
probabilities

The spatio-temporal dependencies between the links of the network are modeled with a
transition probability on the state of each link ¢ at time £+ 1 given the state of the neighbors
at time t. For link ¢, this transition probability is parameterized by the turn probabilities
and intensities of the Poisson processes for the arrival vehicles.

In this chapter, all the lanes of a link are assumed to follow the same dynamics. In
particular, each lane of link ¢ is in state £%* during time interval . The red time R’, the cycle
time C, the saturation number of vehicles £ and the parameters of the free flow pace 9;') are
the same for each lane of the link. The derivations can readily be extended to account for
variable queue length and signal phases by considering different red times and queue lengths
for each lane of the link.

Number of vehicles leaving a link in a cycle

The derivations in this section are valid for any link ¢ of the network at any time interval ¢.
In a congested regime, there are more vehicles on the link than can exit during a cycle.

The number of vehicles that exit the link during a cycle within time interval ¢ is n’, = &€

In an undersaturated regime, the signal time is divided into three distinct phases: the
red phase during which the light is red and no vehicle goes through the intersection (duration
R"), the clearing phase (introduced in Section 6.2, with duration 7') and the free-flowing
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phase during which the vehicles go through the intersection without stopping. The duration
of the clearing time (and of the free flowing phase) depends on the time interval ¢ since it
depends on the state of the link &%,

The duration of the free flowing phase is the remaining duration of the cycle after the
red phase and the clearing phase, with duration C* — (R + 7). The number of vehicles
exiting the link during a cycle is the sum of the vehicles exiting the link after stopping in
the triangular queue (x°¢*") and the vehicles exiting during the free-flowing phase. For an
arrival density p%', it follows that

Mhwe = (€4 4+ pE(CT = (RE 4+ 7)) (6:2)

In each lane, £ vehicles stop in the triangular queue. They exit during the clearing time
(7%*) at the maximum flow (¢}, = v}pl):

£ = vjpir, (6.3)
From equation (5.2), it follows that the ratio between the arrival and the critical density
for each lane of the link is given by
it it
Pa T
p. T+ R (6.4)
Combining equations (6.3) and (6.4) in equation (6.2), the number of vehicles that leave
a link in a cycle C"* is

it

Now = K' (5” + piv}%(@i —(R"+ Ti’t))) using equation (6.4),

it i ¢t i
nout - /{57

(6.5)

PR using equation (6.3).

The number of vehicles leaving the link during time interval ¢ (of duration At) is derived

from (6.5) as N\, = éﬁt% Incorporating the equation of 7% from (6.1), N% is given by:
. A,
N = K min(gM €8)— NTIR (6.6)
ut Ri+ (Ci — RZ)M

&5

Dynamic evolution of the state

Each vehicle arriving from link ¢ at an intersection k is assigned to an outgoing link j €
LE U koy with probability % (possibly leaving the network through the sink ko). Each

out
vehicle is assigned independently from the other ones. According to this model, the random

vector (N, bty JELE. Ukay Of vehicles assigned to the different outgoing links of the intersection

mn

has a multinomial distribution with parameters N’ and (1) JELE Ukow, SUCh that,
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0 otherwise.
\

If the intersection has a source ki, vehicles arrive to the outgoing links j of the intersection
according to a Poisson process of intensity A\’. The probability that ij“’y ' vehicles arrive to
link 7 from the source during A; is

(AN B

Nkin7j7t'

in

P(Nm?t) =

The number of vehicles arriving to link j from the incoming links of intersection k
((Niilj’t>ieL{€nukin) and the state of link j at time ¢ (£7') provide the state &1 of link j
at time ¢ 4+ 1: (i) compute the balance of vehicles between the incoming and the outgoing
vehicles at time t and (ii) update the state of the link for time ¢ + 1 accordingly. The details

of this transition are as follows:

e Balance of vehicles on link j at time interval ¢: During a time interval A;, there are
NZ! vehicles exiting link j and N7 vehicles arriving in link j, which corresponds to
a balance of AN/ = Nﬂ;t — N7' additional vehicles. Note that a negative number
represents a decrease in the number of vehicles on the link. If link j has several (x7)
lanes, the increase or decrease in the number of vehicles is the same for all lanes. This

can be adapted for a model with lane-specific link and intersection parameters.

e Update of the state at time interval t 4+ 1:

1. Undersaturated regime with arrival flow inferior to the capacity: At time ¢, link
7 is undersaturated (&' < ¢7) and the number of vehicles arriving per cycle is
less than the maximum throughput per cycle (n/' < k7¢J). These two conditions
imply undersaturated conditions for link j during time intervals ¢t and ¢ 4+ 1. The
queue fully dissipates by the end of each light cycle and the outflow at time
t + 1 equals the inflow at time ¢t (N7 = N7*). The inversion of equation (6.6)
provides the expression of the state at t4 1. Note that in this case, Equation (6.6)
is simplified since the number of vehicles in the queue is less than the saturation
number of vehicles (min (&, &7) = ¢+,

it NS R NLRE
KIAEL — (O — RI)NZEY wiA&l — (03 — RI)NZ

out
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2. Other transitions: If the regime was congested or if the number of vehicles arriving
on the link per cycle is greater than the maximum throughput of the link, there
is a constant increase (or decrease) in the number of vehicles on the link through
the time period t. The number of vehicles stopping in the queue for time interval
t + 1 is given by the balance of vehicles:

AN

gj,t-i-l — gj}t + :
KJ

Statistical modeling framework

Arterial traffic conditions vary dynamically over space and time. The conditional indepen-
dence assumptions of Section 6.2 are represented using a probabilistic graphical model known
as a Dynamic Bayesian Network (DBN). The DBN models the stochastic dynamics of the
traffic states (number of vehicles stopping in a cycle) of each link in the arterial network.
The traffic states are not observed directly; these variables are considered hidden. On each
link, the travel time distribution is conditioned on the (hidden) state of the link. The travel
time of the probe vehicles traveling through the arterial network provide sparse observations
of the state variables. Figure 6.2 illustrates the model representation of link states and probe
vehicle observations. Each circular node in the graph represents the state of a link in the
road network. The forward arrows indicate the local spatial dependency of links from one
time period to the next. Each square node in the graph represent probe vehicle observations
on the link to which it is attached. The number of observations for a time interval ¢t and a
link 4 is denoted I** For more background on DBNS, please refer to [170].

The observations are successive GPS measurements of vehicle trajectories (approximately
one per minute). The issues of filtering the noise of the GPS to estimate the most likely
location of the vehicle when the measurement was generated and inferring the path taken
by the vehicle are not addressed in this article. There are multiple approaches to solving
this problem including using statistical filtering [120, 206]. The numerical results of this
dissertation which are based on sparsely sampled probe data are based on a Map-Matching
and Path-Inference filter which combines a model of driving behavior and GPS noise in a
Random Markov Field to accurately map the GPS measurements on the road network and
reconstruct the most likely route of the vehicle between successive locations reports [120]. In
this thesis, the data is assumed to available in the following format: most likely measurement
locations on the road network as well as the most likely path of the vehicle between successive
GPS mappings. The estimation of the following parameters fully specifies the DBN:

e The probability of the state £ at the start of the experiment. For each link, it is denoted
7'(€). Tt represents the probability that link 7 has & stopping vehicles at the initial
time,

e The transition probabilities, parameterized by the turn probabilities v/ and intensities
of the Poisson processes M,



CHAPTER 6. STATISTICAL DYNAMICS OF PHYSICAL QUEUING NETWORKS 94

i) Hidden state Observations of 1tltle
- i S . i, .
4 B Sneteralt L SEL e ) i
& Sl (size I'11)
~ PR -
~ - Py
9 ~ - P
Yt,t—l ) e \>’
i1 N PAan
- ~ ~
- ~ ~
;’ N\ ~
-
-
-
@ \s~
~ - -
T~ - P

Figure 6.2: Spatio-temporal model of arterial traffic evolution represented as a Dynamic
Bayesian Network. The circular nodes represent the (hidden) discrete states £ of traffic
for each link 7 at each time interval . The rectangular nodes represent the I travel time
observations (denoted Y*!) of each link 7 at each time interval . The doted arrows repre-
sent the stochastic spatio-temporal dependencies between the states. The plain line arrows
represent the dependency of the travel time distributions on the hidden traffic state.

e The distribution of travel time ¢° on each link i of the network, parameterized by the
link parameters and conditioned on the state of the link.

The traffic state is constant during each time intervals of duration A, typically chosen
between 5 and 15 minutes (time discretization assumption), and the link and intersection
parameters may be assumed constant for several of these time intervals representing specific
times of day (e.g. morning rush hour, mid-day, afternoon rush hour, evening, night). The
present chapter focuses on the estimation of the parameters for a given time of day and the
dynamic evolution of the state within this time of day. Chapters 8 and 9 study data-driven
algorithms which analyze the network at a global scale to automatically detect changes in
the traffic dynamics.

Given the state of a subset of links, the travel time distributions on these links are assumed
to be independent random variables. As mentioned in Chapter 5, travel time distributions
across links are not independent (due to light synchronization, platoons, and other factors),
although it is a reasonable approximation in many cases. See [188, 121] for investigations
on the effect of correlated distributions. These models have the potential to capture more
complex dependencies in the arterial road network. Note that it is possible to generalize
the model of this chapter to take into account ideas from this research. For example, by
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considering the probability of the number of stops on a link given the number of stops on
the previous link of the trajectory.

6.4 Historical learning and real-time inference

There is a complex pattern of dependencies among the travel times sent by the probe vehicles.
The goal of this section is to develop an algorithm to learn the stochastic dependency between
these observations in order to perform estimation and prediction on the arterial network.
This learning is done off-line, from historical data, and is used to perform estimation and
prediction in real-time. Modeling the dependency between the observations directly is a
difficult task because it does not exploit the underlying structure of the dynamical system,
represented by the conditional independence assumptions. The variables £ are introduced
to exploit the structure of the dynamical system. They represent the discrete state of each
link at each time interval.

Since these variables are not observed directly, they are called latent or hidden variables.
The probe vehicle travel times are noisy, sparse observations of these variables. The pa-
rameter estimation problem would be simplified if the state variables (£%!) were observed
directly. Without observing (£%), the likelihood function is a marginal probability, obtained
by summing (or integrating in the continuous case) over the latent variables. Marginalization
couples the parameters and obscures the underlying structure of the likelihood function.

The Ezpectation Mazimization algorithm (EM algorithm) is a widely used algorithm to
learn the dependencies among the observations while exploiting the structure of the stochastic
dynamic evolution [62]. This choice is supported by the following two realizations: (1) given
the parameters of the model and the path observations, it is possible to estimate the most
likely state of each link at each time interval and (2) given the state of each link at each
time interval, it is possible to compute the parameters of the model (turn probabilities,
intensities of the Poisson processes and parameters of the network) which maximize the
likelihood of the observations. The EM algorithm iteratively leverages these two realizations
and is guaranteed to converge to a local optima of the likelihood function. More detailed
information on the EM algorithm can be found in the literature [62] and a short introduction
is given below.

Another challenge of the graphical model approach is that the link travel times are not
observed directly. The path between two consecutive measurements can span several links of
the network. This difficulty is addressed by computing the most likely link travel times that
make up the path of the probe vehicle (travel time allocation), as introduced in Section 5.4.
This section first introduces the EM algorithm and details its two iterative steps: Ezpectation
step (E step) and Mazimization step (M step) in the case of traffic estimation.



CHAPTER 6. STATISTICAL DYNAMICS OF PHYSICAL QUEUING NETWORKS 96

Introduction on EM algorithm

The EM algorithm allows to exploit the underlying structure of the dynamical model, even
though the latent variables (') are not observed. It is an iterative algorithm consisting in
two steps:

e The Expectation step (E step) computes the joint probability distribution of the latent
variables €4 (number of vehicles in the queue for each link ¢ and each time interval ¢)
given the observed variables y*' (allocated travel times for each link i and each time
interval ¢) and the current values of the parameters (signal parameters, turn ratios,
driving behavior, saturation number of vehicles). In the Bayesian approach to dynamic
state estimation, this computation is known as a smoothing step: at each time t, the
algorithm computes the joint probability distribution of the state variables (£%');,
given all the historical data available. In practice, the smoothing step is replaced by
a filtering step for efficiency. The filtering step only uses observations received up to
(and including) time t (instead of all historical measurements) to compute the joint
probability distribution of the state variables (£%!);. Such a filtering step consists
of essentially two stages: prediction and update. The prediction uses the transition
probabilities to predict the state probability distribution from one time interval to the
next. The update operation uses the latest available measurements to modify the state
probability distribution using Bayes theorem.

e The Mazimization step (M step) optimizes the parameters (signal parameters, turn
ratios, driving behavior, saturation number of vehicles) based on the estimation of the
joint probability distribution of the latent variables. This step has the same complexity
as if the latent variables were observed.

As illustrated Figure 6.2, a dynamic Bayesian network is a directed graphical model, in
which each random variable is represented by a node of the graph. Each generic random
variable x; has a set of parents, denoted z,, such that the joint probability p(z,...,z,) of
x1,...,x, can be factored as

n

p(1,...,x,) = Hp(xi|xm),

=1

where p(z;|x,,) is the probability of x; given that its parents (in the directed graph) have
the realization z,,. For the application of interest, the random variables represent the traffic
states €5 and the travel time observations y“! on each link 7 of the network and at each time
interval . The conditional independence assumptions and the associated directed graphical
model representation provide a compact, factored, representation of the joint distribution of
these random variables:
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Probability of the assignment of the vehicles from

. T-1 i,Jt . - ki |¢it link 4 to the outgoing links of the intersection, for
P<€7 Y) - ( t=0 HiGIP(Nin VS Lout’£ >> each link and each time interval excepted the last

one which corresponds to the end of the experiment.

T it eit Probability of the travel time observations y! con-
X (Ht:O HiEI P(y ’ |§ ’ )) ditioned on the. state of the link &%*, for each link 4
and each time interval ¢.
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Note that given the state of the links at a time interval, the number of vehicles from link
1 assigned to the outgoing links j and the number of vehicles entering or exiting the network
through the sources and sinks determine the state evolution for all the links of the network.
For convenience, these probabilities are used in the expression of P(€,y) instead of referring
directly to the probability of the number of vehicles in the queue of link 7 at time interval
t + 1 given the number of vehicles in the queue of the neighboring links.

If the hidden variables £ were observed, the likelihood optimization would amount to
maximizing P(,y) with respect to the link and intersection parameters. It is more common
(in particular for numerical stability) to consider the logarithm of P(&,y), referred to as
the complete log-likelihood because it corresponds to the log-probability of the complete
set of random variables for a given value of the parameters. Given that the variables £
are in fact not observed, the complete log-likelihood is a random quantity, and cannot be
maximized directly. Given a distribution, denoted ¢(¢|y), the expected complete log-likelihood
is a deterministic function of the parameters, denoted <lc(y, £)>q and defined as follows. It
corresponds to the average of the complete log-likelihood, over the realizations of &, when
q(&ly) is chosen as the averaging distribution:

(L(&,y)), = D alély) In(P(£,y))

3

A proof leveraging Jensen’s inequality shows that the log-likelihood can be maximized by
iteratively (i) choosing the proposal distribution ¢(£|y) as the joint distribution of the state
variables computed by the E step and (ii) maximizing on the parameters of the observations
(R, C", &, 01,1 € 1) and of the dynamics (v*7, X*, for i € T and for j outgoing link of 7).

E step: Particle filtering

The E step performs filtering given the current values of the parameters and the travel time
observations collected from historical data. The Dynamic Bayesian Network used to model
traffic dynamics is a multiply connected belief network (at least one pair of variables has more
than one undirected path connecting them), in which probabilistic inference is NP-hard [47].
The dimension of the state space (number of possible configurations for the variables ')
grows exponentially with the number of links in the network, making an explicit represen-
tation of the probability distributions intractable. In such networks, algorithms performing
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probabilistic inference have a time complexity that, in the worst case, is exponential in the
number of hidden variables in the network. Approximation algorithms are required to per-
form probabilistic inference. Algorithms such as Monte Carlo simulation [171], variational
methods [128], and belief state simplification [30] are commonly used to approximate proba-
bilistic inference. To maintain a compact approximation of the state probability distribution,
this chapter investigates a Monte Carlo simulation approach called particle filtering and also
referred to as bootstrap filtering or the condensation algorithm [192, 9]. Particle filtering
is an approximation of a recursive Bayesian filter algorithm using Monte Carlo simulations
which has successfully been implemented for highway traffic estimation [38]. The idea is to
represent the distribution by a set of random samples with associated weights (importance
weights). As the number of samples increases, this Monte Carlo approximation tends to the
exact optimal Bayesian estimate.

The filter is implemented by simulating V' particles. Each particle v represents an in-
stantiation of the time evolution of the traffic state of the network, i.e. a possible succession
of traffic states for each link of the network and each time interval. A particle v at time ¢
is represented by a vector of the states of each link and each time interval up to t (denoted
(éli;’t/)ieI,t’e{O,,..,t})- At t, each particle has a weight w! proportional to the probability of
having this instantiation of the state evolution given the available data up to time ¢. The
particles explore the possible state space and represent the belief state of the DBN.

Sufficient statistics to compute the expected complete log-likelihood

At time ¢, the spatio-temporal instantiations =¢ = (ffjt/)z‘ez, ve{o,...,.y of the particles and their
associated importance weight w! form an approximation of the joint probability distribution
of the state of the links. Let y* denote the set of travel time observations received on link ¢

during time interval ¢. Given the travel time observations (yi’t/> oy the probability
i€Z, te{0...t

of observing a state =' = (fi’t/)iez, vefo....y on the network throughout its time evolution is
approximated as follows:

14

PENY" R, CLE 0 i eIt €{0.. 1))~ Y w,1=(E)).
v=1

where 1=z¢(Z!) is equal to 1 if the particle has the state instantiation Z' and to zero

otherwise. To derive the expected complete log-likelihood, the sufficient statistics att(ent)
and b (NO), (NIt and df(€70) are defined as follows.

t

e The probability that link 4 is in state &% at time ¢, conditioned on the observations
received up to time interval ¢ is approximated using the particles and denoted a®!(£%Y).
It is computed by summing the weights of all the particles that represent a state
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instantiation with link 4 in state &%

BHEM) = Zw Tae (€0,  Vte{o,...,T}, VieT. (6.7)

e For an incoming link ¢ and an outgoing link j of intersection k, (an] "), denotes the
number of vehicles going from link ¢ to link j during time interval ¢ for the particle
v. Using the particles, the approximation of the probability that N%! = (Nf;lJ Lje
Lout Ukout) vehicles from link ¢ are assigned to the outgoing links L'gut and the sink kgt
is denoted b™*(IN®'). It is computed by summing the weights of all the particles that
represent an instantiation of the dynamics in which the assignments of the vehicles

from link 7 to the outgoing links (and the sink) is N®:

bt (N#) = Zw 1N”(N“ﬂ)v,geLomukom), vie{0,...,T—1}, Viel

(6.8)

e For an intersection &k with a source, (Nllij“’] "), is the number of vehicles from the
source assigned to each outgoing link j of the intersection. The approximation of
the probability that Nil;i“’j’t vehicles from the source are assigned to link j is denoted
cj’t(N.ki“’j’t). It is computed by summing the weights of the particles for which Nilfli“’j’t

n
vehicles originating from the source were assigned to link j:

I (NFmdty = Zwt 1 b ( Ni'fj“’j’t)v> . owte{o,....T—1},YjeZ. (6.9)

o Let d'(£%°) be the probability of the state of link i at the initial time. Its approximation
with the particles is

\4
d'(€0) =) wy Lo (&), (6.10)
v=1

Filtering using a particle filter

The filtering step consists in successive prediction and update steps which lead to the com-
putation of £ and w! for all the particles v, all the links 7 and all the time intervals t. The
prediction and update steps are performed as follows:

e Update of the state posterior probability distribution at time interval t. The posterior
state distribution is computed using the measurements available at time interval .
The weight w! of each particle is multiplied by the probability of each travel time
measurement received at time interval ¢ given the state £ of the particle. The weights
of the particles are normalized so that they sum to one.
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e Prediction of the state at time interval t + 1. The state distribution is predicted using
the parameters of the turn movements and of the Poisson processes of the sources. For
each incoming link ¢ and each particle v, the state of the particles provides the number
of vehicles leaving link ¢ (Equation (6.6)). These vehicles are randomly assigned to
the outgoing links of the intersection (including the sink) according to a multinomial
distribution parameterized by the turn probabilities. Similarly, a random number of
vehicles (coming from the source of the intersection) is assigned to the outgoing links
according to the corresponding Poisson process. This allows for the computation of
(N7, and for the simulation of the state of the particle at time interval t41 according
to the dynamic evolution described in Section 6.3. This algorithm is known a Sequential
Importance Sampling (SIS) particle filter.

e Improvement to prevent degeneracy: the Sequential Importance Resampling (SIR) al-
gorithm. A common issue of the SIS particle filter is the degeneracy phenomenon,
where after a few iterations, all but one particle have negligible weights. It implies
that a large computational effort is devoted to updating particles whose contribution
to the posterior distribution is almost zero. To reduce the effects of degeneracy, the
particles are resampled after the update of the importance weights for time interval
t. The modified algorithm is known as Sequential Importance Resampling (SIR) or
Sampling Importance Resampling. The idea of resampling is to eliminate particles that
have small weights at time interval ¢. To resample the particles, V' particles are succes-
sively chosen randomly (with replacement) from the original set of particles. Particle
v is chosen with probability w!, (the weights sum to 1). Each resampled particle has a
weight equal to 1/V. This set of re-sampled particles is used to perform the prediction
step of the state probability distribution at time interval ¢ + 1. Figure 6.3 illustrates
the resampling algorithm.

M step: Update of the parameters

For each link i, the travel time distribution ¢’, conditioned on the state of the link, is pa-
rameterized by the red time R?, the cycle time C*, the number of vehicles in the queue at
saturation & and the parameters of the driving behavior 8;,. The full characterization of
the model requires to learn the parameters of the dynamics i.e. estimate the turn proba-
bilities #*/ and the intensities of the Poisson processes M. The M step uses the sufficient
statistics a’t(€91), b (NO), Pt (NF»7') and d'(£7°) to update the value of these parameters
by maximizing the expected complete log-likelihood, with respect to these parameters. The
factored expression of the complete log-likelihood implies a similar structure for the complete

log-likelihood:
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Figure 6.3: Schematic illustration of the resampling algorithm. Each particle is represented
by a circle with a diameter proportional to its weight. Each particle is chosen with a prob-
ability proportional to its weight, put in the new set of particles with weight 1/V and then
replaced. This process is repeated V' times. The intuition is that particles with a large
weight are likely to be chosen several times whereas particles with a small weight might not
be present after the resampling step.
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where P(IN®') represents the probability (multinomial distribution) of the assignment N®!
of the vehicles leaving link ¢ to the outgoing links of the intersection (1nclud1ng the sink) and
P(N, Finf ") is the probability (Poisson distribution) of the arrival of N/ Findt yehicles in link j
from the source of the intersection. The factored structure of the complete log-likelihood,
and thus of the expected complete log-likelihood allows the learning of the parameters to be
performed independently for the turn probabilities, the intensities of the Poisson processes,
the initial state probabilities and for each set of link parameters. The values of a®t, b, ¢/t
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Algorithm 2 Maximum likelihood estimation of the parameters of the model with an Ex-
pectation Maximization algorithm.

Initialize the parameters (R*, C*, & 6}, v/ and X’) and the initial state probabilities ().

while The algorithm has not converged do

E Step [Computation of abt(£5), bt (N, ¢t (NFmIty and dé(£40)]

Initialize the E Step: Simulate samples representing the state of the network at the

initial time given the initial state probabilities 7;(§). Each sample has initial weight

wy, = 1/V.

for Time interval t =0: 7T do
Allocate the travel times by solving (5.11) for each probe vehicle path.
Update the weight of the particles according to the observations y*': w, =
wy I _ 9" (Y2 1657)-

Yop,00 €Y

Normalize the weights of the particles: Compute the sum 2 of the weights of the
particles and normalize the weight of each particle, w, = w,/Q
Compute a®(£01), b4 (N#), @ (NF»*) and di(£40) using Equations (6.7)-(6.10).
Re-sample the particles [9]
For each link 7, randomly assign the vehicles leaving link ¢ to the outgoing links and
the vehicles coming from the sources of the network according to the turn probabilities
and intensities of the Poisson processes.
Update the state of the particles according to the number of vehicles that left and ar-
rived on the link during time interval t. Each particle now represents an instantiation
of the state of the network at ¢ + 1.

end for

M Step [Maximization of the expected complete log-likelihood.|

Update the initial state probabilities 7/(£) (6.13), the turn probabilities 7 (6.11), the

vehicle creation rates A’ (6.12) and the link parameters (C*, R', &L, 0%) (6.14).

end while

and d' computed by the E step (Equations (6.7)-(6.10)) are necessary to update the link
and intersection parameters as follows (Equations (6.11)—(6.14)).

e The update of the turn probabilities from the incoming link ¢ of intersection k is the
solution of the following optimization program:

T-1
maximize : E E bt (N E N n(v"7)
v -
t=0 N©¢ jeLgutUkout

Vi >0 VieLE Ukou,

s.t.: Z yi’j =1. .

jeLE  Ukout

out
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where the constant terms are ignored. The optimization problem is solved in closed
form by writing the Karush-Kuhn-Tucker (KKT) conditions. The values of %/ which
maximize the expected complete log-likelihood are given by

T-1
Z Z bz‘,t(Nz’,t)Nz‘,j,t

;g t=0 Nt
) —
= . (6.11)
§ E bi,t(Ni,t) § Ni,j’,t
t=0 Nt J' €L Ukout

e For each intersection k with a source kj,, the update of the intensities of the Poisson
processes for the outgoing links j € L* . is done independently for each link j by
solving the following optlmlzatlon program:

3 7 Kin,j,t Kin,j,t j j
maximize : E E F(N ) (Nin P n(AN) — At/\J>
X7>0
- t=0 Ninm 2t

This optimization problem is solved in closed form as follows:

E E Nk'md t Nkmvj t

t=0 2Jht
1 =0 N

)\] - Kt T—1 (612)
> ¥ o
t=0 Ninm 2Jht
e For each link 7, the initial state probability is updated as
1%
mi(6) = wilgio(9). (6.13)
v=1

To learn this initial state probability, it is important to run the EM algorithm on
several days of data (to reduce overfitting due to fitting the initial state probabilities
based on a single day of data). In general, it is advised to run the EM algorithm over
several days (weeks or months) of data to improve the learning of all the parameters
of the model.

e The link parameters maximize the log-likelihood of the travel time observations y*’
The travel time allocation enables the optimization problem to decouple into smaller
optimization problems, one for each link of the network. The optimization problem for
link 7 is

T Ehnax

maximize Z a' (€)X (g Yeal™) | (6.14)

Ci, R EL, 0] t=0 ¢i.t=0 Yop .09 €YDt
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where ¢'(ya, +,|€"") represents the probability of observing a travel time y,, ., between
21 and x5 on link i given that the state of the link is £,

Decoupling the optimization problem for each link of the network (instead of solving a
large optimization program over the parameters of the entire network) makes it highly
scalable as each of the optimization subproblems can be performed in parallel. If the
travel time allocation method is not used, then the resulting optimization problem is
coupled across the entire network, resulting in a large optimization problem that may
not scale well. As mentioned in Chapter 5, it is possible to share some parameters
across links of the network to limit the risk of over-fitting and improve the learning
and estimation capabilities by incorporating prior information. The parameter sharing
couples the optimization problems for the links which share parameters, leading to
fewer but larger optimization problems.

Real-time estimation and forecast

Estimating and forecasting traffic conditions in real-time can be achieved after the model
parameters and turn probabilities have been learned, i.e once the Expectation Maximization
algorithm has been run on large amounts of historical data. In real time, the parameters
learned by the EM algorithm (which characterize the stochastic dynamics of traffic) are used
to perform inference using data available up to the time when the estimate is produced.
This is done by running the particle filter to determine the distribution of traffic states given
the available data and the learned value of the parameters. Forecast is done by propagating
the particle filter forward from the current time interval. Since there is no available data,
the filter only performs prediction steps (no update). For both estimation and forecast, the
particle filter runs in real time on medium-size networks (the numerical implementation of
Section 6.5 considers a network with almost 800 links). However, the EM algorithm needs
to run both the particle filter (E step) and the optimization algorithms (M step) for several
iterations on large amounts of historical data. For this reason, the EM algorithm is run
offline and the model parameters and turn probabilities can be updated periodically (e.g.
every week or every month).

6.5 Experimental results

The model presented in this chapter relies on assumptions made on the dynamics of traffic
flows on each link of the network (Chapter 5) to derive an analytical expression of the prob-
ability distribution of travel times, parameterized by traffic variables. The model also relies
on assumptions made on the statistical dynamics of traffic flows at intersections (Section 6.2)
and derives a probabilistic model of the traffic dynamics on the network.

The experimental results assess the real-time estimation and short-time prediction ca-
pabilities of the dynamical model from sparsely sampled probe data. The section describes
the validation methodology of the traffic estimation algorithm and presents the results which
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Figure 6.4: Subnetwork of San Francisco, CA used for numerical analysis of the model
performance. The network consists of 769 links representing 126 kilometers of roadway.

validate the historical learning capabilities and the real-time estimation and prediction capa-
bilities. The results are compared to a model which only estimates the mean travel time for
each link. The model developed in this chapter shows a 16% improvement over this baseline
model to estimate mean link travel times. The model also possesses several advantages over
the baseline model. These advantages include the ability to predict traffic conditions into the
short-term future, the ability to estimate probability distributions of travel times between
arbitrary points on the network (instead of just mean link travel time values), as well as the
ability to estimate traffic parameters including signal timing and congestions states (queue
lengths).

Experiment setup

Beginning in March of 2009, data has been collected from probe vehicles in the San Francisco
Bay Area, as part of the Mobile Millennium project. One of the available data feeds available
through the Mobile Millennium system comes from a fleet of over 500 taxis which report
their location every minute, along with an identifier and a status (carrying a passenger or
not). The status flag allows for the filtering of the taxi stops to load or unload passengers.
When a change of status occurs, the measurements directly anterior and posterior to this
change of status are discarded. In its raw form, the data cannot be used by the algorithm.
This is due to several issues.

e Between successive measurements, the vehicle may travel more than one link and the
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path needs to be inferred.

e The measurements provide the location of the vehicles but no information regarding
the direction of travel.

e The GPS measurement may be noisy and must be mapped onto the road network.

To overcome these difficulties, a map-matching and path-inference algorithm [120] provides
accurate measurement locations and paths followed by the vehicles. The duration between
two successive measurements represents the travel time of the vehicle on its path.

The study focuses on a sub-network of San Francisco shown in Figure 6.4. This network
consists of 769 links representing 126 kilometers of roadway. The performance of the model
is assessed using error metrics computed on previously unseen data: the Root Mean Squared
Error (RMSE), the Mean Absolute Error (MAE) and the Mean Percentage Error (MPE) 1.

The Root Mean Squared Error is one of the most widely used metrics to quantify the
difference between an estimator and the true value of the quantity being estimated. It
measures the average of the squared error. As a result of the squaring of each term, Mean
Squared Error heavily weights outliers. For this reason, the analysis also computes the
Mean Absolute Error, a common measure of forecast error in time series analysis. Using the
convexity of the square function, it is easy to prove that the RMSE is always greater than
or equal to the MAE. The Mean Percentage Error computes the average of the percentage
error. When the actual values of the process to be estimated vary, this metric allows an
equal weighting between the terms, as it is normalized by the actual value of the process.

The model is compared to a baseline model that estimates mean link travel time. For
each measurement in the training data set, the pace of the path is allocated to the links
of the path with a weight equal to the proportion of the link that was traveled (1 if the
full link is traveled, 0 if the link is not traveled at all). The mean pace of a link in the
baseline model is computed as the weighted average of the paces on the paths of the training
data set. Note that the baseline model does not provide a statistical distribution of travel
times but rather a mean pace. This baseline model was chosen because standard time
series statistical techniques (weighted moving average, exponential decay, ARMA) are not
applicable to the data set because the measurement locations are not fixed and the time at
which the measurements are received at a particular location is unknown in advance. This
motivates the development of a specific comparison model adapted to the characteristics of
the data. In the remainder of this section, the traffic model refers to the model developed in
this chapter. The baseline model refers to the comparison model.

'For a vector of E estimations X = (Z.),_, g of the true value x = (z.),_, . the error metrics are
defined as follows:

~ ~ E
- 25:1(176 — T)? - ZeE:l |Te — Ze - 1 |re — Zc
RMSE = \/E’ MAE = S — and MPE = 5 E T

e=1
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RMSE | MAE | MPE
Traffic Model 25.41 | 20.23 | 37.67%
Baseline Model 31.56 | 25.69 | 46.20%

| Improvement (%) | 16.32 [ 17.34 | 16.29 |

Table 6.1: Error metrics representing the estimation capabilities of the Dynamic Bayesian
Network modeling the dynamics of traffic flow from horizontal queuing theory. The metrics
are reported on a validation dataset collected during the training days, and set aside for the
validation.

Both models run in a hybrid Matlab/Java environment and take advantage of the Mobile
Millennium system infrastructure which provides simple interfaces for accessing an mathe-
matical abstraction of the physical road network. The internal representation of the road
network is built using NAVTEQ maps [2]. The network provides detailed geometry and
attributes of the road network. The system also provides an interface for accessing the data
feeds stored in the databases (which are map-matched and filtered in separate processes),
and writing the outputs of the model to databases for future use (visualization, air quality
related to traffic conditions, routing and so on). The historical learning of the parameters
and the real time estimation and forecast run on a laptop for moderate size networks.

Validation of the learning capabilities

The model was trained using data collected on the three first Tuesdays of February 2010
from 3pm to 6pm. The discretization time A, is set to fifteen minutes. From all the data
collected on these days, the model is trained on a randomly chosen subset representing 70%
of the data. The training data set is used to estimate the network parameters (cycle time C,
red time R, saturation number of vehicle &, turn proportions and intensities of the Poisson
processes) of each link of the network. At each time interval ¢, the model also estimates the
a posteriori most likely state £t of each link 4 using training measurements available up to
(and including) time interval t.

The performance of the learning capabilities is assessed using the validation data set of
the training days. The validation data (30% of the full dataset) was previously set aside
and not used to train the model. For each path in the validation dataset, the mean travel
time is computed from the distribution of travel times using the estimated parameters and a
posteriori states. This travel time is compared to the true value experienced by the vehicle
to compute the error metrics. The results are reported in Table 6.1. The model shows an
improvement of 16% in terms of RMSE compared to the baseline model. Moreover, the
model learns parameters of the network (signal timing, saturation number of vehicles) for
which it provides realistic estimates. For example, the duration of signal timings (cycle
length) has a mean of 86 seconds over the network, with a standard deviation of 17 s, a
minimum value of 45 s and a maximum value of 120 s.
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Validation of the real time estimation and prediction capabilities

In real time, the model uses the network parameters and turn probabilities learned histor-
ically to estimate and predict the state £ of each link i at each time interval t. At time
interval ¢, the estimation process is the computation of the most likely state of the network
at time interval ¢ given data received up to and including time interval t. The prediction
at q time steps is the computation of the most likely state of the network at time interval
t 4+ q given data received up to and including time interval £. The prediction at 1 time step
is also known as a-priori state estimation. The prediction at 0 time step is identical to the
estimation process.

The most likely state of the network is computed by performing the E step of the algo-
rithm (particle filter) given the historical values of the network parameters (red time, cycle
time, saturation number of vehicles) for each link of the network. For the prediction at time
interval t 4 ¢, no data is available for time intervals posterior to time interval t. The filter
is run forward, without weighting the particles (since future data is not observed). The
prediction process is a particular case of missing data in which the data is missing for all the
links and all the time intervals after ¢.

The prediction of the most-likely state at time ¢ 4+ ¢ and the historic values of the link
parameters allow for the computation of the travel time distributions of each link of the
network at time interval ¢ 4+ ¢. The travel time distributions provide various information
including a mean travel time, a variance, confidence intervals and so on.

The assessment of estimation and prediction capabilities is performed on Tuesday, Febru-
ary 22nd 2010 (Tuesday following the training period) from 3pm to 6pm. Figure 6.5 reports
the error metrics for prediction steps ranging from 1 time step (a priori estimation) to 4 time
steps (1 hour). The results are compared with the estimates of the baseline model. For the
baseline model, the real-time prediction is computed as the historical average of the pace for
each link during the time interval of interest. This means that the prediction for Tuesday,
February 22 at 3pm is the average pace observed at 3pm from the training data set (the
three previous Tuesdays). Therefore, the estimates of the baseline model do not depend on
the horizon of prediction.

For the a priori estimation (prediction at one time step), the error metrics of both the
traffic model and the baseline model slightly increase compared to the results presented in
Section 6.5. This increase in the error metrics accounts for the differences in traffic conditions
on a new day and the loss of accuracy between the a posteriori and the a prior: estimates.
The improvement of the traffic model is higher and shows the capabilities of the model to
adapt to slightly different traffic conditions and perform short-term prediction.

As the number of prediction steps increases, the estimation error of the traffic model
increases. The modeling of the traffic dynamics ensures a certain regularity in the traffic
estimates, and the prediction capabilities of the model remain accurate and represent a
significant improvement to the baseline model. The Root Mean Squared Error shows the
greatest improvement, which indicates that the traffic model has fewer estimates that differ
in a significant way from the true values of the travel times than the baseline model does.
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Evolution of the error metrics with the horizon of prediction
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Figure 6.5: Error metrics assessing the prediction capabilities of the Dynamic Bayesian
Network modeling the dynamics of traffic flow from horizontal queuing theory. The results
show accurate prediction capabilities of the traffic model up to 45 minutes ahead. The
baseline estimates are computed using historical estimates of the mean travel time, computed
during the training. The baseline model does not provide prediction capabilities based on the
current state of traffic and thus produces the same estimates for all horizons of prediction.

Field test experiment

The data collected during the field test experiments in San Francisco (see Section 5.5 for
a description of the dataset) provides another validation of the capabilities of the model.
Route travel times are computed from the GPS traces on four different routes of the network
(Figure 5.6). The north and south end of the routes are respectively California St and Grove
St. The four routes consist of Van Ness Ave. north bound, Van Ness Ave. south bound,
Franklin St. and Gough St.

In order to assess the validity of the model, the GPS traces collected during the field
experiment are down-sampled to mimic the kind of data generally available in real-time.
The model runs over this sparsely sampled data. The validation compares the estimates of
the route travel times with the actual route travel times of the drivers. The comparison of
the model estimates and the ground truth route travel times are presented in Figure 6.6.
This data highlights the variability of travel times experienced by vehicles. The travel time
estimates closely follow the trend of traffic dynamics. The RMSE of the traffic model on the
route travel times of the drivers is 74.42 seconds, the MAE is 63.62 seconds and the MPE is
33.24%. The travel times on the routes are significantly higher than the travel times used for
validation in Section 6.5, hence higher values of the RMSE and MAE. In the computation of
the MPE, each estimation error is normalized with the travel time on the path. The MPE is
better on longer stretches, as the relative variability of travel times is comparatively smaller
than on shorter stretches.
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Figure 6.6: Comparison of the model estimates with the ground truth route travel times
collected during a field test experiment in San Francisco, CA. The two figures compare the
model estimates with the route travel times on Van Ness Avenue (North and South bound).
The red curve represent the average travel time estimate of the traffic model. The blue
crosses represent the driver data collected during the field test experiment.

6.6 Conclusion and discussion

This chapter presents a statistical model based on the dynamics of arterial traffic flow. The
results indicate that the model provides a substantial improvement over a “simple” baseline
approach. Besides the improvement of the mean travel time estimation, the model possesses
several advantages over the comparison model:

e [t improves the estimation of mean link travel times compared to a baseline model.

o It estimates the probability distribution of travel times (rather than only the mean)
between any two location on the network.

o It learns parameters from the physical model of traffic (such as fundamental diagram
and signal parameters) and also learns turn movement probabilities within the arterial
network.

e [t leverages historical data to estimate current traffic conditions from streaming data.
The model provides estimates throughout the network even where little or no real-time
data is recetved. This is due to the model’s ability to accurately track flows through the
network as well as the relative recurrence of arterial traffic dynamics. This is the main
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improvement compared to the model of Chapter 5. However, it comes with higher
computation costs which limits the size of the network to medium-sized networks.

The model can be adapted depending on the sparsity, the noise and the amount of
available data. For example, the model could take into account the fact that delays are
dependent upon the turn movement through the intersection by modeling each lane as a
different queue. The model could also take into account the correlation between travel
times on neighboring links to account for light synchronization, as done in [188, 121]. In
a statistical model, one needs to find a compromise in the level of detail and number of
parameters chosen for the model depending on the type and the amount of data available.
Indeed, a more precise model with numerous parameters is able to fit the training data
more accurately and explain more details in the dynamics of the model. However, such a
model is more likely to over-fit the data when the amount of training data is not sufficient
to learn all the parameters. Over-fitting the training data decreases the performance on
testing data and thus the capabilities of real time estimation and short-term prediction of
the model. The chapter considers sparsely sampled probe vehicles (vehicles report their
location every minute). The level of granularity of the data does not allow for a fine recovery
of the dynamics. Instead, the model focuses on estimating of trends of traffic (statistical
estimation every fifteen minutes) rather than fluctuations (variations of queue length and
travel time within a traffic cycle). It also motivated the decision not to estimate signal phases
and lane by lane queue length (even though it can be a natural extension of the model).

The mathematical abstraction is based on traffic modeling assumptions that can limit
the applicability of the model. In particular, the model assumes uniform arrivals on each
link of the network. On controlled arterials, where signal synchronization is important,
this hypothesis does not hold and the model does not capture travel time distributions as
accurately. However, the statistical formulation of the problem provides more flexibility and
robustness: it enables us to integrate small discrepancies between the mathematical model
and the physical world as well as noise in the measurements. It is possible to account for
platoon arrivals and generalize the traffic travel time distributions [15]. These derivations
capture more accurately the travel time distributions on controlled arterials but come with
the cost of more complicated analytical expressions and higher risk of over-fitting because
of the additional parameters introduced in the modeling.

This chapter presents the fundamental concepts needed for performing large-scale esti-
mation of arterial traffic conditions using only low penetration rate GPS probe data. For the
next decade, only a small number of municipalities will have the financial resources to equip
their entire arterial network with dedicated monitoring infrastructure. At the same time, the
market of probe data remains too fragmented to this day to be used in high penetration rate
models, forcing traffic engineers to design traffic information systems capable of handling
sparse data.
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Chapter 7

Data-driven model of congestion
dynamics

Chapter 6 develops a hybrid approach of traffic flow theory and statistical modeling to
estimate and predict traffic conditions in arterial networks using probe data. The analysis
of the results shows that some of the assumptions of the model are sometimes too strong
and have limitations when compared to the physical reality (in particular the assumption
of uniform arrivals). For this reason, it is worth investigating a model which keeps some
of the intuition of traffic modeling without making strong assumptions on the dynamics
through a more data-driven approach. In particular, the data-driven model does not require
to model the probability distributions of travel time using horizontal queuing theory. It uses
“classical” distributions (such as Gaussian distributions) instead of the distributions derived
in Chapter 5. Classical distribution tend to have mathematical properties which reduce
the computational complexity of the model. The use of classical distribution also provides
more flexibility to the model than the shape imposed by the traffic modeling. Moreover,
the algorithm of Chapter 6 requires a travel time decomposition (travel time allocation)
algorithm which has important limitations as will be underlined in the present chapter.
Chapters 5 and 6 underlined the importance to have distributions of travel times between
arbitrary locations, as sparsely sampled probe vehicles may report their location at any
point on the network, not only at the beginning and at the end of links. The travel time
distributions derived in Section 5.3 are parameterized by the location of the measurements as
they directly take into account the queue formations. For distributions which do not model
queue formation, it is important to take into account the spatial heterogeneity of speeds on
a link. Indeed, on a given link of the road network, speeds are on average lower close to the
downstream intersections because of stops and delays induced by the signal. One possibility
is to use a finer discretization of the road network and to learn parameters for each of the
discretized segments. This solution has a high risk of overfitting given the current penetration
rates of probe vehicles and the low level of details of the information that they send (probe
vehicles report their position on average once per minute). The chapter proposes a trade-off
between the risk of overfitting induced by fine spatial discretization and the necessity to take
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into account the spatial heterogeneity of travel times: a scaling function which scales partial
link travel times to link travel times. The scaling is based on the distribution of vehicles
along each arterial road segment, illustrating the fact that travel times are on average longer
close to downstream intersections because of the presence of traffic signs.

A dynamic Bayesian network represents the spatio-temporal dependencies on the net-
work and provides a flexible framework to learn traffic dynamics from historical data and
perform real-time estimation with streaming data.

As for Chapter 6, the chapter specifically investigates the estimation and short term
forecast of the probability distribution function (pdf) of travel times in the case of noisy,
sparse probe data. In particular, the model and the algorithm for traffic estimation are
designed to use probe vehicle travel time measurements received at random locations and
random times. Each observation, defined as two consecutive GPS measurements including
the travel time between these measurements, has a probability density that depends on (i)
the pdf of travel times of the links traversed and (ii) the spatial distribution of vehicles on
each traversed link. The key insight is that, on average, vehicles are more likely to experience
delay close to intersections because of the presence of traffic signals. According to the model,
the pdf of travel times on each link of the network depends on the level of congestion (discrete
congestion state) of this link. A Dynamic Bayesian Network is used to model and learn the
dynamics of congestion on the network using a DBN.

The chapter is organized as follows. Section 7.1 presents a graphical model representing
the dependencies between the travel time observations and congestion state of each link
at each time interval and their spatio-temporal evolution, inspired from the hybrid model
of traffic flow theory and statistical modeling of Chapter 6. Section 7.2 formalizes the
intuition that vehicles are more likely to experience delays close to intersections. The section
discusses how this information can be used to compute the pdf of travel times on any path,
between arbitrary locations from the pdf of travel times of the links traversed. Leveraging the
modeling of Section 7.1 and the results from Section 7.2, the DBN represents the probabilistic
dynamics of traffic congestion and the probabilistic observation model of the congestion states
from probe data. An expectation mazimization (EM) algorithm (Section 7.3) is used to learn
the parameters of the DBN. The expectation step (E step) is performed with a particle filter
and the mazimization step (M step) involves solving a large convex optimization problem
and is solved with an interior point algorithm. After the historical learning of the parameters
of the dynamics of the system, the section describes how to estimate the current state of the
network and predict the probability of congestion and the pdf of link travel times from the
probe data available in real time. Finally, Section 7.4 presents a case study in San Francisco,
for which a fleet of 500 probe vehicles provides sparse location measurements [1]. This data
is one of the feeds available in the Mobile Millennium system [4]. The numerical experiments
analyze the learning and estimation capabilities on a subnetwork with more than 800 links.
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7.1 Modeling assumptions

Dynamical model

The model represents the main characteristics of traffic dynamics while making assumptions
necessary for the tractability of the estimation process. The validity and limitation of the
model are further discussed in Section 7.5, as well as possible refinements of the modeling
and generalizations. The modeling assumptions are detailed below and compared to the ones
of Chapter 6.

1. Time discretization: As done in Chapter 6, traffic is modeled as a discrete time
dynamical system, with time discretization A;, chosen depending on the data available and
the desired temporal scale of the estimation. This work is focused on estimating travel time
distributions when measurements are sparse. In the numerical experiments, A; = 5min.
It is chosen such that the model estimates trends rather than fluctuations. For ¢t € T =
{0,...,(T — 1)}, time interval ¢ is given by [to + tA, to + (t + 1)A].

2. Characterization of the state of traffic: In Chapter 6, the state of traffic on each link
was represented by the number of vehicles in the queue. Here, a discrete random wvariable
(r.v.) also represents the congestion state, but does not necessarily correspond to the number
of vehicles in the queue. The random variable representing the discrete congestion state of
link 7 € I during time interval ¢ is still denoted &“'. Let s** € {0,...,S — 1} denote the
realization of the r.v. &*. The chapter details the derivations for a binary representation
of traffic states (S = 2), characterizing an undersaturated and a congested state. The
derivations are easily generalized to a larger number of discrete states.

3. Dynamical model: Transitions between time intervals model information propagation
on the road network by taking into account the spatio-temporal dependencies of the state of
the links. In Chapter 6, the dynamics was driven by the flow of vehicles at intersections. In
the present data-driven model, there is no notion of flows at intersections. However, it is still
possible to model the propagation of congestion by considering that the state of a link at a
given time interval depends on the state of its neighboring links at the previous time interval.
Formally, ¢/ (with realization s'* € {0,...,S — 1}) is the state of the network at time
interval t. Let 7; represent the set of links adjacent to link 7, including link 7: ¢/ € m; & i’ =i
or i" and i have a common intersection. The equation of the dynamics is given by

g = file T + Vi e,

where €/, represents the state noise of the dynamical model for link i. The dynamic equation
can also be defined by a set of conditional independence assumptions!:

gt et emt for (1) € X (i, 1),

where X (i,t) = {t — 1} x I\m; U{0, ...t — 2} x I and A\B denotes the set A without
the elements of B. The mathematical formulation expresses that, given the state of the

For sets of random variables A, B and C, A 1l B|C represents the assertion “A is conditionally
independent of B given C”.
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neighbors 7; at ¢ — 1, the state of link ¢ at ¢ is independent of the state of non-neighboring
links at t — 1 and is independent of the state of all links of the network at time intervals
prior to t — 1.

4. Observation model: The system is observed through noisy path travel time measure-
ments. As for Chapter 6, the path travel times are provided by a map-matching and path
inference algorithm [120] which reconstructs the path of the vehicle between successive lo-
cation reports and filters out the GPS noise. The map-matching algorithm provides the
family of links j(k) traversed between the k™ pair of successive location reports as well as
the distances x5, and z. to the downstream intersection of the first and last link traversed.
Note that the path of the probe vehicle between consecutive location reports is fully speci-
fied by x5, zcx and j(k). The travel time between (x;, z. k) is a random variable Y, with
realization y, € R. The observation equation is given by

Vi = fo(&® a i aen) + el (W0 1 wen),

where €/ represents the observation noise, that may depend on the state of the links of
the path and the distance traveled on each of these links. The observation noise is modeled
as a sum of independent r.v. representing the observation noise on each link of the path.
The travel time on a path is then a sum of independent r.v. representing the travel time
on each link of the path. The measurements come from a small subset of vehicles traveling
on the network and sending their location periodically in real-time. Measurements from the
past are stored and accessible in real-time. The Mobile Millennium system, developed by
UC Berkeley [4] provides such data.

Dynamic Bayesian Network representation

As for Chapter 6, the conditional independencies introduced by the dynamic and observation
equations are represented with a DBN [61]. The structure of the model does not change over
time. The structure can be fully specified by a two-slice temporal Bayesian network (2TBN).
It is common to assume that the parameters of the 2TBN do not change, i.e., the model
is time-invariant. This amounts to considering time of days, during which the parameters
of the 2TBN are constant, as done in Chapter 6. The structure of the DBN induced by
the assumptions on the dynamic and observation equations is illustrated in Figure 7.1. The
model is fully specified by the following conditional distributions:

e The transition probabilities: For each link ¢, the transition probability represents the
conditional probability that ¢! has the realization s**, given the state of its neighbors
at the previous time interval t — 1. The state of a link at time ¢ may depend on the
state of its neighbors in any arbitrary way. Given that both the number of states
and the number of neighbors are finite, the conditional probability is represented by
a matrix A’. For each row m, A’(m,1) (resp. A’(m,2)) represents the probability of
being congested (resp. undersaturated) given the state m of the neighbors, so that
AY(m,2) = 1 — A%(m,1). One possible choice for A’ is to consider all the possible
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state combinations of the neighbors, as done in [105], but the dimension of A* grows
exponentially with the number of neighbors and the number of parameters to estimate
does not reflect the amount of data available. The chapter investigates a more scalable
model in which the state of link ¢ at time interval ¢t depends on the total number of
undersaturated links amongst neighbors. With this model, there are |m;|+1 parameters
to estimate for each link i, where || is the cardinality of 7;. A wide variety of functions
of the congestion indices of the neighbors can be used to predict the state of the link at
the next time interval. Choosing the appropriate function of the congestion indices is
called feature selection [94] and is not detailed in this article. The numerical analysis
investigates a few other choices for this function.

e The observation conditional probabilities: For each link i and each state s, the obser-
vation conditional probability is the pdf of travel times on link ¢ given the state s.
Conditioned on the state s, the travel times on each link ¢ are normally distributed,
parameterized by a mean p** and a standard deviation o*. The normality assumption
is not necessary for the derivations in the model but improves the computational effi-
ciency, as discussed in Section 7.3. The k" travel time measurement vy, is specified by
the set of traversed links j(k) as well as the distance to the downstream intersection on
the first and last links (x, ; and x. ; respectively). Given the state of the traversed links,
the travel time on this path is normally distributed and denoted f(y|s’®), 2, 1, 25F).
The mean and the variance are respectively the sum of the mean and of the variance of
travel times on the (partial) links of the path. Note that probe vehicles may not report
their location at the beginning or at the end of a link. To overcome this difficulty,
Section 7.2 develops a model to properly scale the travel time on the fraction of link
traversed (partial link).

e The initial state probabilities: For each link 7, ¢’(1) (resp ¢’(2)) is the probability that
link ¢ is congested (resp. undersaturated) during the first time interval and have
¢"(2) =1 — ¢(1). This notation can be generalized to any number of state S.

The specification of the conditional distributions leads to the following decomposition of
the joint probability of the model:

8 y,e H A it—1 i,t) H f(yk\sj(k)’t)Hci(si’o),

T €T
reT ot kEX (1) “
where 7'~ represents the congestion state of the neighbors of link 7 at time interval ¢ — 1.

Modeling partial link travel time through density estimation

Since probe vehicles send their positions at any location on the network, the path can start
and end at any location. The first and last links of the corresponding path are not fully
traversed by the vehicle (partial links). The pdf of travel times on partial links, i.e the pdf
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Figure 7.1: Two slice Temporal Bayesian Network (2TBN) representation of the model of
arterial traffic dynamics. The circular nodes represent the (hidden) traffic states for each
link at each time interval. The square nodes represent travel time observations. There is an
edge from the state of link 7 at time ¢ to the state of link i’ at time ¢ + 1 if ¢ is a neighbor of
i (1 € my). Observation Yy, received at time ¢, represents the travel time of a probe vehicle
on its path, defined by the set of traversed links j(k) and the distances x4 and 2. to the
downstream intersections on the first and last links of the path. There is an edge from the
state of each link in j(k) to Y.

of travel times on link i between any offsets x; and z5 (where z,,, m = 1,2 represents the
distance to the downstream intersection) is obtained from the pdf of link travel times with a
scaling function. Let Y} . be the r.v. representing the travel time on partial link i between
offsets x1 and x5 (z1 > x3), then YLii,o represents the travel time on link i (between offsets

L, length of link 4, and 0). The scaling function o’(-, -) is defined as Y}, ,, = o’ (x1,22)Y}, ;.
The following conditions are imposed to o' to represent a priori information on the spatial

dependency of travel times on a link:

e The travel time on a partial link is a fraction of the link travel time: V(x1,x9) €
0, L)%, o’(z1,22) € [0,1]. If the partial link spans the entire link, the partial travel
time has the same distribution as the link travel time: o'(L*,0) = 1.

e [f a partial link is included in another partial link, its travel time should be smaller:
Vi, x9 — a'(xy,z2) is a decreasing function of xy and Vzy, 11 — a'(xy, ) is an
increasing function of z;.

e The probability for a vehicle to experience delay increases as the location gets closer to
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the downstream intersection. For the same distance traveled, travel times are longer
close to the downstream intersection because of the presence of traffic signals. This
physical property is written mathematically as

Vi, xo+ a'(xy,m9) is a convex function
Vae, x> o'(r1,29) is a convex function

The function defined by (w1, z2) = (v — x2)/L" satisfies these conditions. However it
assumes that the travel time on a partial link is proportional to the distance traveled on
the link, but does not take into account the presence of traffic signals. Section 7.2 derives a
parametric model for o from a hydrodynamic model of traffic flow (Section 5.1) and learns
the parameters from the sparse measurements of probe vehicle locations. The function o' is
defined as the cumulative distribution function (cdf) of a specific r.v.. For a probe vehicle
sampled uniformly in time and reporting its position while traveling on link ¢, the r.v.
represents the position of the vehicle on the link as it reports its location. Its pdf is denoted
fx. Because of the presence of traffic signals, f is a decreasing function of the distance to the
downstream intersection (increasing function of the distance from the upstream intersection).

. Z1
The choice o (21, 22) = [ fx(x)dz, satisfies all the above assumptions.
2

7.2 Spatial heterogeneity of travel times in signalized
networks

Probe vehicles send periodic location measurements, which provide two sources of indirect
information about the arterial traffic link parameters. (i) As the location measurements
are taken uniformly over time, more densely populated areas of the link will have more
location measurements. (i) The time spent between two consecutive location measurements
provides information on the speed at which the vehicle drove through the corresponding
arterial link(s).

The first source of information provides information on the relation between the travel
time on a partial link and the travel time on the entire corresponding link. It is used to
derive the function (-, -) introduced in Section 7.1, using the traffic flow theory presented
in Section 5.1. The derivations consider a generic link ¢ during a generic time interval. For
notational simplicity, this dependency is omitted.

Arterial traffic low model

The assumptions on arterial traffic dynamics are the same as the ones presented in Sec-
tion 5.1:

e Lighthill-Whitham-Richards (LWR) model,
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e Triangular fundamental diagram, see Figure 2.1 and Equation (2.2),

e Constant characteristics of the traffic light (red time R and cycle time C') and arrival
rate q,, leading to a periodic formation and dissolution of the queues.

As defined in Section 5.1, the model considers two discrete traffic regimes: undersaturated
and congested, depending on the presence (resp. the absence) of a remaining queue when
the signal turns red (see Figure 5.1).

Probability distribution of vehicle locations

According to the assumptions, the density at location z is time periodic with period C.
The density d(z ) at location x is the temporal average of the density p(z,t) at location x
and time t: d(z) = & fo (x,t)dt. The density at location = and time t takes one of the
three followmg values numbered 1 to 3 for convenience: (1) p; = Pmax, When vehicles are
stopped, (2) ps = p. when vehicles are dissipating from a queue, (3) p3 = p, when vehicles
have not yet stopped in the queue. The average density at location z is d(z) = Z?:1 Bi(z)p;
where (3;(x) represents the fraction of the cycle time C' during which density is equal to p;
at location z.

When vehicles are sampled uniformly in time, the pdf f%(z) of observing a vehicle at
location x is proportional to the average density d(z) at location x, with the proportionality
constant given by Z = fo x)dz so that f5(z) = d(z)/Z. The index s € {u, s} indicates
the regime (undersaturated or Congested).

Undersaturated regime

Upstream of the maximum queue length, the density is equal to p, throughout the entire
cycle. Using the assumption that the F'D is triangular and that the arrival density is constant,
the average density increases linearly from p, at © = [,.c to the value it takes at the
intersection, where z = 0 (denoted dp). The function d is defined by three parameters, for
example pg, lnax and dy.

The pdf of vehicle location is proportional to the density f%, with the constraint that
fo fi¥(z)dx = 1. Tt follows that f% is fully specified by two parameters: its constant value
for x > lmaX and the queue length [ ax.

Congested regime

In the congested regime, the average density is constant upstream of the maximum queue
length—equal to p,—and increases linearly until the remaining queue. In the remaining
queue, it is constant and equal to % Pmax + (1 — g) pe. The density of vehicles is specified by
four parameters, for example, the constant value for x > [, + l[,.x, the constant value for
x < I, and the lengths of the queues [, and [,..
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Figure 7.2: Distribution of vehicle location derived from horizontal queuing theory as a
function of the distance from the upstream intersection. Left: Probability density function.
Right: Cumulative density function.

Remark 7.1. The undersaturated regime is a special case of the congested regime, in which
the remaining queue length I, is equal to zero. The congested regime is considered as the
general case for the spatial distribution of vehicle location. For this reason, the distribution
of wvehicle location is denoted fx, without index referring to the regime in the reminder of
the chapter.

The distribution of vehicle locations is fully determined by three independent parameters:
the remaining queue length [,., the triangular queue length [,,,, and the normalized arrival
density p,, which corresponds to the value of the function for z > l,.« + [,. The pdf is
illustrated Figure 7.2 (left: pdf, right: cdf), and reads:

fX(x):ﬁa iflemax+lr
fX(x) :ﬁa"i_%Aﬁ if v € [l'ra lmax—i_lr} )
Fx(@) = pu+ A ife<l,

with Ay = =

The expression of A; is obtained by enforcing that fOL fx(z)dr =1.

Density estimation

The parameters of the distribution fx are estimated by maximizing the likelihood of the set
of location observations (denoted (z,),c0) provided by large amounts of historical data on
each link of the network:

0<pa<7
maximize Zln(fx(:vo)) s.t. L + lpax < L
patr fmas 0€0 0< l’ra 0< lmax
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The constraints come from the physics of the problem. The first constraint ensures that
the arrival density is inferior to the average density on the link. The other constraints
illustrate that the total queue cannot extend beyond the length of the link and that the
triangular queue and the remaining queue are non-negative. The constraints on the queue
lengths do not limit the generality of the model. Under spill-over conditions (queue length
extending beyond the upstream intersection), the queue is assumed to extend up to the
upstream intersection. The rest of the queue is accounted for in the upstream links. Tighter
bounds on the parameters can be added to encode the physical insights.

The objective function is not concave in the optimization variables. However, the search
space is limited (three bounded variable). The optimization problem is solved using a grid
search followed by a local gradient ascent for the B best solutions of the grid-search. The
numerical implementation uses 15 points in each dimension for the grid search and B = 10.
A finer grid did not provide better results.

7.3 Historical learning and real-time inference

As done in Section 6.4, an Expectation-Maximization algorithm is used to learn the param-
eters of the dynamics. Please refer to Section 6.4 and corresponding references for more
background on the Expectation-Maximization algorithm.

Let ) denote the observable r.v., with realization y (travel time from the probe vehicles)
and ¢ the latent variables, with realization s (congestion state of the links of the network). Let
0 be the set of unknown parameters; i.e. § = {(u>*,0"%),i € I,s €{0,...,S—1}}U{A%ie

I}.

Expectation step

As done in Section 6.4, the Expectation step is performed using a particle filter. The al-
gorithm simulates V' particles (V' = 2,000 in the numerical experiments). Each particle v
represents an instantiation of the time evolution of the traffic state of the network, i.e. a
possible succession of traffic states for each link and each time interval. A particle v at time
t is represented by a vector of the states of each link and each time interval (s’;t/)ie 1,t/€{0...t}-
At t, each particle has a weight w! proportional to the probability of having this instantia-
tion of the state evolution given the available data up to time ¢. The particles explore the
possible state space and represent the belief state of the DBN.

At time ¢, the spatio-temporal instantiations s = (s%t')ig,t/e{gmt} of the particles and
their associated importance weight w! form an approximation py (s't|y'? 6) of the joint
probability distribution p(s™|y'*, ) of the state of the links up to time ¢. The following
sufficient statistics are computed from the particles and their corresponding weights:

e The path sufficient statistic is the joint distribution of the states of the links j(k), on
path k, conditioned on the observations received up to time interval ¢t. It is denoted
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py (s7Ftyt 9) and is computed by summing the weights of all the particles for which
the links j(k) are in state s/*)* € SUR)I at ¢:

\%4
pr( Oy 0) = 37w L (5)
v=1

e The link sufficient statistic is the probability of the state of link 7 at time ¢, conditioned
on the state of the neighbors 7; at time interval £ — 1 and the observations received up
to t. Tt is denoted py (s%¢|s™ 1 ¢ @) and is computed by summing the weights of
all the particles for which link i is in state s*' € S at t and for which the neighbors of
link 4 are in state s™*~' € STl at t — 1. To compute the conditional probability, this
sum is normalized by the sum of the weights of the particles for which the neighbors
of link 7 are in state s™~1,

For each link and each time interval, the number of sufficient statistics to compute is
exponential in the number of neighbors of the link. It is possible to overcome this compu-
tational cost by assuming that the state of a link at time ¢ depends on the total number of
undersaturated neighbors at ¢t — 1, defined by n**~' = 3 s"*~1. The number of sufficient

i e,

statistics to compute for link 4 is |m;| + 1 for each time interval, which significantly limits the
complexity. Other functions could be used to compactly represent the state of the neighbors.
A few other choices are analyzed in the numerical experiments. These functions do not need
to be linear nor one-dimensional. The sufficient statistics py (s"t|n"*~! y, 0) are computed
similarly as for py(s%!|s™'~! y,0): sum the weights of the particles for which link 4 is in
state s“ at time interval ¢ and for which the sum of the congestion of the neighbors is n®*~1
at time interval ¢ — 1 and normalize as follows:

VvV
t1 ., . it i1
wy Lgit pie—1(sy, mit 1)

1

_v:

pyv (™™ Yt 6) 2070 )
The constant Z(n™~1) = py(n"* |y, 0) is computed from the particles or, with less
computational cost, by summing the joint probabilities py (s, n°'1) over the possible states
of link ¢ at time ¢.
Using these sufficient statistics, the expected complete log-likelihood <lc(9;y, 3)>
given by

1S
pv

S pe(st gyt 0) In(A(n sH)
teT\{0} nirt—1
shte §

+ Z va(sj(k)»t

teT gilk),t
keK(t)

y™.0) In f(yels’ ™, 0).
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where 57"t € {0,...,8 — 1}HEI pit=1 ¢ L0 ... |m|}, K(t) is the set of path from probe
vehicles received during time interval ¢ and f(yx|s’(), 0) is the density of probability of the
travel time y; on the links of the path j(k) which are in state s’(*)*. The mean and variance
of travel times are computed by summing the mean and variance travel times of the (partial)
links of the path. Recall that the mean and variance of travel times on partial link i are
scaled according to the function a’. In the first sum, {0} is removed from the set 7 since
there is no transition prior to to. To compute the sufficient statistics, the filtering step is
performed with the particles as follows:

e Update at t: Compute the posterior distribution using the measurements of time inter-
val t. For each particle, w! is multiplied by the probability of each measurement given
the states £ of the particle. The weights are normalized so that they sum to one.

e Prediction at t + 1: Predict the state distribution for time interval ¢ + 1 using the
transition probabilities. For each link 7 and each particle v, sample the state &1
given the states ™' (or any function of the states such as the sum of the congestion
states) of its neighbors at time ¢ according to the transition probabilities, i.e. the state
5“1 is chosen with probability A(s®'F1[¢mit),

This algorithm is known as a Sequential Importance Sampling (SIS) particle filter [9]. As
mentioned in Section 6.4, a common problem with the SIS particle filter is the degeneracy
phenomenon [64, 92]. To reduce the effects of degeneracy, the particles are resampled after
the update step. The modified algorithm is known as Sequential Importance Resampling
(SIR) or Sampling Importance Resampling.

Maximization step: update of the model parameters

The M step maximizes the expected complete log-likelihood with respect to 6, representing
the parameters of both the dynamics (transition probability matrices A%, ¢ € I) and the
observations (parameters of the travel time distributions, conditioned on the state of the
link). Given the structure of the complete log-likelihood, this optimization can be performed
independently for each transition probability matrix A* and for the parameters of the joint
Gaussian distribution. Note that because travel time observations may span several links, the
estimation of the travel time distribution couples all the links of the network. This coupling
of the network arises because the algorithm no longer performs a travel time decomposition
step.

e The transition probability matrices are updated by maximizing with respect to the
entries of A” under the constraint that A° is a stochastic matrix (all the lines have non-
negative entries and sum to 1). For the line j representing the transition probability
when the neighbors are in state m € {0,...,S — 1}7! it follows that

Ai(m, S) x Z pv(sz‘,t _ 8’87Ti7t_1 _ m7y1:t79)’
teT\{0}
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where the proportionality constant is computed for all m such that Y~ A*(m,s) = 1. A
similar expression is obtained if the transitions depend on any functions of the states,
such as the number of undersaturated neighbors.

e Given the discrete state of link 4 at time interval ¢, the travel time on link 7, Y%, is
normally distributed. Remember that the pdf of a partial travel time is computed from
the pdf of a link travel time using the scaling function o'(-,-) presented in Section 7.2,
even though the dependency does not appear explicitly for notational simplicity. The
travel times are independent r.v.: given the state s of the network at time ¢, Yt ig
a multivariate Gaussian variable with mean p® = (i € I) and covariance X% =
diag((c>*")? : i € I), where s’ is the i*" coordinate of s and represents the state of link
i. The M-step updates the mean = (p**i € I, s € {0,...,5 —1}). Let X be defined
by ¥ = diag((c™*)? : i € I, s € {0,...,5 — 1}). Tt is the solution of the following
optimization problem:

.. ; RIOY: gt 71 RIOK:
minimize Z va(s](k)’t\y,0)~(yk—ujk ) <ZM ) (yk—,ujk )

RISIX ]
He 1T il
kEK ()

Given that $¥“" is positive definite for all k, the objective function is convex in L.
However the objective function is not jointly convex in y and ¥ and the optimization is
performed in the variable . The variances are estimated once at the beginning of the
algorithm using a Gaussian mixture with two components. The number of variables
grows linearly with the number of links. Constraints on the values of the parameter
may limit the feasible set to physically relevant values. The optimization is solved
using an interior point algorithm [29], which can be replaced by distributed first order
algorithms if required by the size of the problem.

7.4 Experiments

The model formalizes an intuitive representation of the propagation of congestion throughout
the network. The chapter proposes a learning algorithm of the dynamics of traffic on a
network and a real-time estimation framework in a similar fashion as done in Chapter 6.
The main difference is the use of Gaussian distributions for the probability distribution of
travel times (conditioned on the traffic state) and the use of binary (although higher number
of discrete states would be possible) states to describe the congestion level of each link of the
network. The framework also makes it possible to by-pass the travel time allocation step.
The validation of the density model (Section 7.2) is detailed extensively in [112, 105]
and summarized below. This section validates the learning and estimation capabilities of
the DBN presented in this chapter. Cross-validation is used to test the estimation and
prediction accuracy of the model for different time horizons. The results are compared to a
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Algorithm 3 Maximum likelihood estimation of the parameters of the dynamic and obser-
vation models.
Initialize the parameters: (u"*, 0>*); 5, (A");.
EM-algorithm for parameter estimation in DBN
while The algorithm has not converged do
E Step
Initialize the E Step: Simulate samples with weight w, = 1/V representing the state of
the network at the initial time given the initial state probabilities.
fort € T do
Update: For each travel time observation, multiply the weight of each particle with the
probability of the observation given the state of the particle: w, < w, [[ fv; (yklé'i(k)’t)
k

Normalize: divide the weight of each particle by the sum of the weights.
Re-sample the particles to avoid degeneracy (Figure 6.3 and details in [138, 9]).
Predict: For each link ¢ and each particle v sample the state at time interval ¢ + 1
using the transition probabilities A°.

end for

M Step

Update the transition probabilities A?, i € I.

Update the parameters of the observation model.

end while

baseline model. The section also investigates how the use of the density model improves the
results and how the imposed structure on the dynamics (i.e. the dependency between the
state of a link at a given time interval and the state of its neighbors at the previous time
interval) influences the estimation capabilities. Finally, the section analyzes the quality of
the pdf of travel times learned by the model. The estimation of the travel time distribution
(rather than mean values only) is crucial in arterial networks to accurately describe the
variability of travel times.

Validation of the density model

The data is collected by one of the feeds of the Mobile Millennium system: a fleet of 500
vehicles reporting their location every minute in San Francisco, CA. The study focuses on
a subnetwork of the San Francisco (Figure 6.4) as in Chapter 6). A historical interval is
a tuple consisting of a day of the week, a start time, and an end time. For each historical
interval and each link, the locations reported by the vehicles are aggregated and used to learn
the parameters of the density model. The numerical results analyze data collected on 15
minutes intervals on Tuesdays from 4 to 8 pm, i.e. (Tuesday, 4pm, 4:15pm), ..., (Tuesday,
7:45pm, 8pm).
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Table 7.1: Percentage of positive K-S tests for different values of threshold to accept the
hypothesis Hy and the two hypothesis (density model or uniform distribution).

Distribution of o Mean bvalue
vehicles 0.1 [ 005 [ 001 o e

Density model 0.75 0.80 0.89 0.35
Uniform 0.46 0.55 0.67 0.15

For each link and each historical interval, the Kolmogorov-Smirnov (K-S) statistics tests
if the locations of the probe vehicles are distributed according to the density model [162].
The K-S test is a standard non-parametric test to state whether samples are distributed
according to a hypothetical distribution. The test is used to accept (or reject) the null
hypothesis Hy: “The measurements of probe vehicles are distributed according to the density
model” .

The experiments aim at validating the capability of the density model to properly scale
travel time on portions of arterial links. In particular, the density model takes into account
the non-uniformity of measurements along the link as vehicles are more likely to experience
delay close to the downstream intersection. To illustrate this reasoning, the K-S test is
also performed with the following null hypothesis: “Measurements are uniformly distributed
along the link”. The results of the test on both hypotheses in Table 7.1.

The results indicate that for a majority of arterial links, the average location of vehicles
is a random variable that follows the density model. The spatial distribution of vehicle
location is better represented by the density model than by a uniform distribution. A
graphical representation of the data provides valuable qualitative information. In particular,
it is informative to represent the cumulative locations reported by the vehicles for different
links of the network?. The Figure also displays the empirical (Kaplan-Meier) cdf [132] and
the proposed cdf. Figure 7.3 represents the cumulative distributions obtained for two links
of the network during the first historical interval. The first link shows a good qualitative fit.
However, the p-value is only 0.091. The map discretization does not take into account the
width of intersections and may be the reason why no measurements are received on the last
15 meters of the link. The second link has an average p-value. In both cases, the data follows
the sharp increase in the density of measurements close to the downstream intersection, as
predicted by the model because of the presence of a traffic signal. The model also provides
an estimate of the historical queue length on each link of the network which can be used for
planning and network congestion analysis.

The analysis of the links with low p-values is also informative and valuable. Figure 7.4
presents the result for a link with p-value equal to 6.8 x 107%. The model predicts that
sharp increases in the density of measurements occur upstream of traffic signals. The map

2The cumulative locations are computed as follows: (1) order the locations reported by the probe vehicles,
(2) plot the points (z;,i/N) for ¢ = 1... N, where N is the number of locations collected for the link and
historic interval and z; is the i*! location on the link (in meters from the upstream intersection).
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Figure 7.3: Comparison of the empirical and the learned cumulative distribution of vehicle
locations. The empirical distribution is computed from points which were set aside during the
training. (Top): Link with p-value equal to 0.09. The model predicts a sharp increase in the
density of measurements towards the downstream extremity of the link but no measurements
are received on the last 15 meters of the link. The digital map does not model the width of
the road or the intersection, which might explain the absence of measurements on the last 15
meters. (Bottom): Link with p-value equal to 0.33. The model learns the characteristics
of the distribution of vehicle locations. The results also provide an estimate of the historical

queue length (around 30 meters) which provides information on the average congestion of
the link.

database, provided by NAVTEQ), contains attributes of the transportation network, such
as road characteristics, presence of traffic lights, and so on. On this link, the cumulative
distribution of vehicle location exhibits two important increases, whereas only one signal was
present in the map database.

The analysis of the location of the link in Google Street View confirms that there is a
signal which is not indicated in the original database. With the corrected information, the
p-value of the K-S test for the updated proposed distribution is 0.29. This approach can be
generalized and developed to automate the detection of traffic signals from probe data [110],
to develop and correct Geographic Information Systems (GIS). Other sources of poor fitting
are due to specific behaviors of the taxi, such as waiting in front of major hotels, which can
be filtered, when considering successive locations of a taxi.

Validation of the dynamic Bayesian modeling

As probe vehicles report their location periodically in time, the duration between two succes-
sive location reports x, and x. represents an observation of the travel time of the vehicle on
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Figure 7.4: Detection of signal locations using the spatial distribution of vehicles. The figure
illustrates an example of very low p-value for a link of the network. A careful analysis of
the results showed that a signal was missing in the database, explaining the poor fit of the
model.

its path from x, to x., i.e. the realizations y; of the random variables Y;. A map-matching
and path-inference algorithm [120] which combines models of GPS emissions and of drivers’
behavior into a conditional random field filters out GPS noise, maps the GPS measurements
to the road network and reconstructs the most likely set of links traversed by the vehicle.

This case study focuses on learning the model parameters on Tuesdays from 4pm to 8pm
in the subnetwork of San Francisco depicted in Figure 6.4. The time discretization A, is
chosen as A; = dmin. As mentioned in Section 7.1, the travel times on the links of the
network are considered as independent Gaussian variables, conditioned on the state of the
links of the network. The choice of a Gaussian distribution may restrict the flexibility of the
model to capture unique traffic characteristics, but it is more computationally efficient in
practice. In particular, the model relies on travel times from probe vehicles which typically
traverse several links between successive observations. The travel time on the path is a sum
of independent r.v. and its pdf is computed as the convolution of the pdf of the link travel
times on the path. If the link travel times are normally distributed, the computation of the
convolution is straightforward whereas it is requires numerical algorithms otherwise. The
density model is used to compute the pdf of partial link travel times from the pdf of link
travel times.

In traffic estimation (or prediction), access to ground truth data is rare as it requires
the monitoring of each vehicle on the entire network for the duration of the estimation.
Instead, cross-validation [142] is commonly used in the machine learning community to
assess how the results of a statistical model generalize to an independent data set, not used
to develop the model but assumed to follow the same model. For each time interval, the
available data (travel time measurements of the probe vehicles) is randomly partitioned into
complementary subsets. One of the subsets (training set) learns the parameter of the model.
The other subset (validation or testing set) validates the performance of the model. The
training set constitutes 70% of the available data, the remaining 30% is used for validation.
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Estimation and prediction errors

The travel times predicted by the model are compared to the travel times reported by the
probe vehicles using [; distance. Given a set of observations yi, k € K(t) received at time
interval ¢ and corresponding estimates (predictions) g, the average [, error e, is given by

K R 1/p
_ (Zk,:(tl) |y — yk|p)
ep = .

Vi

The error is typically normalized by the average travel time measurements 3 (time be-
tween successive measurements) and is then denoted percentage error é, = e,/y. Without
a reference, these values are hard to interpret: travel times on arterial networks have a
high variance due, in particular, to the presence of traffic signals (see Chapters 5 and 6
and [114, 113]). Under similar traffic conditions, the travel times of vehicles on an arterial
link vary significantly depending on the time at which the vehicle entered the link and the
corresponding waiting time at the signal. To improve interpretability, the results of the
model are compared to a baseline model: a time-series model adapted to probe vehicle data.

If probe vehicles sent their travel times between defined positions, time series could
be applied to estimate the travel time between these positions. However, no two distinct
vehicles report their travel time between the same locations. The baseline model adapts the
traditional time series approach to probe vehicle data. Travel times are decomposed onto
the links of the path and partial link travel times are scaled onto link travel times. The link
travel times are estimated with a moving average algorithm.

The following two aspects of the model are also analyzed:

o Use of the density model: the errors of the DBN model with the density model are
compared to the errors of the DBN without the density model (scaling of partial link
travel times using the fraction of the link traversed)

e Structure of the DBN: the results of the DBN are compared to the results of a model,
denoted self only, with no spatial dependency, In the 2TBN, the edges representing the
dynamics of the self-only model only connect the same links. To show the generality
of the spatial dependencies allowed by the framework, the results are also compared to
the results of a model denoted not self where edges linking link 7 from time intervals
t tot+ 1 in the 2TBN of Figure 7.1 are removed.

Figure 7.5 compares the results of the proposed model (estimation and 15 minute forecast
capabilities) with the baseline model. There is a significant improvement in the percentage
of error compared to the baseline model. The prediction accuracy decreases with the horizon
of prediction but remains better than the baseline. Note that the baseline model does not
have prediction capabilities.

Table 7.2 compares the results of the DBN with or without the density model and val-
idates the use of the density modeling to scale partial travel times and compute the pdf of
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Figure 7.5: Evolution of the estimation and prediction of the percentage [; error on the
validation dataset.

Table 7.2: Percentage of [, error of the model computed on a validation data set to test the
estimation and prediction capabilities of the model.

Percentage of [; error
with density without not self self only baseline
density
Estimation 0.068 0.072 0.086 0.076 0.385
Prediction 0.240 0.243 0.243 0.242 N/A
15 min.

travel times on partial links. The results also validate the short-term prediction capabilities
of the DBN (both with and without the density modeling) and underline the importance of
the rich DBN structure, as shown by the better results of the model compared to simpler
DBN structures (not self and self only).

Validation of the estimated travel time distributions

The algorithm produces more information than a single mean travel time: (i) it character-
izes the pdf of travel times on the network, (ii) it estimates the probability of congestion
p"! of each link i and time interval ¢ and (iii) it provides the parameters of the Gaussian
distributions (p**,0*%). The distribution of travel times on any path j(k) can be sampled
and numerically approximated, using Algorithm 4. In the following, the distributions are
approximated with 1000 samples. Let (, be defined as

11—« _1+a}

Caz{yeRrP(ykSy)= ) , Plyr > y) 5

The probability that yy is in interval ¢, is «. For a Gaussian distribution (g es (resp. (o.05)
is the interval centered around the median of length two (resp. four) standard deviations. If
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the estimation of the travel time distribution is exact, the percentage of points in (, is equal
to a. The comparison of the percentage of points in (, with « assesses the goodness of fit
of the travel time distributions with the testing data (Figure 7.6).

Algorithm 4 Travel time sampling

7* =0 // Initialize the path travel time sample
for [ =1:j(k) do
r = rand(); // Choose the congestion state
if r < p®! then
g = p% + 0% randn()

7 =9"+g // Add the sampled link travel time to the path travel time
else
g = pt! + ol randn()
g =9"+g // Add the sampled link travel time to the path travel time
end if
end for

The evolution of the percentage of points in (, for different values of a over the validation
period characterizes the quality of the estimation of the distribution of travel times. The
percentage of points in (, varies over time but remains close to its theoretical value («) as
shown in Figure 7.6 (left). The right of Figure 7.6, represents the percentage of points in
(. (averaged on the entire validation period) as a function of a. For all values of «, the
percentage of points in (, is slightly inferior to a. The difference between the theoretical
and results curves is mostly due to small inaccuracies in the estimation of the mean and/or
underestimation of the variance of the distribution. Note that if the curve produced by
the model (dashed line with circles) was over the theoretical line, it would indicate an
overestimation of the variance.

7.5 Conclusion and discussion

As underlined in the previous chapters, sparsely sampled probe vehicles come as a very
promising source of data to develop ubiquitous traffic management systems on arterial net-
works. Chapters 6 and 7 develop models and algorithms that face specific challenges of
probe vehicle data. In particular, the models and algorithms address the following issues,
that emphasize the novelty of the estimation technique: (i) the location of measurements
and quantity of measurements received in an area is unknown prior to receiving the mea-
surements, (ii) the travel time measurements may span multiple links, (iii) the paths may
include partial links for which pdf of travel times must be computed.

The algorithm leverages the large amount of data available historically to learn the dy-
namics of congestion on the network using an EM algorithm. Modeling assumptions on the
observation model (independent travel times normally distributed) and the state dynamics
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Figure 7.6: Validation of the travel time distributions computed by the model. (Left)
Evolution of the percentage of points in (, for « € {0.7, 0.9, 0.95}. (Right) Comparison of
the percentage of points contained in (, with the theoretical value.

(evolution depending on the state of the neighbors) maintain the tractability of the algo-
rithm. After learning the physical parameters, the algorithm updates the estimates of traffic
conditions from streaming data. The historical training provides robustness to the model
when little or no streaming data is available and provides short term prediction capabil-
ities. The algorithm improves significantly the estimation capabilities of a baseline time
series algorithm adapted to probe vehicle data. The use of the density modeling to estimate
partial link travel times from link travel times also provides an improvement compared to
an approach consisting in scaling partial link travel times proportionally to the length of
the partial links. Moreover, the algorithm estimates the pdf of travel times on the network
rather than mean travel times only, which is a valuable information given the variability of
travel times on arterial networks.

The DBN provides the flexibility to adapt to the specifics of the data received and/or
the requirements of the estimation by adapting some of the assumptions:

e The time discretization A, is chosen as a trade-off between the sparsity of the data
and the information that can be reconstructed (fixed to 5 minutes in the numerical
results). This time step can be adapted if more precise information is available (or
increased if little information is available and traffic conditions are known to have slow
dynamics in the region and time period of interest). Chapter 8 investigates a data-
driven algorithm to detect changes in the dynamics and potentially improve the choice
of temporal discretization.

e The state of traffic of each link is a discrete random variable, which conditions the
distribution of travel times. The number of traffic states is not theoretically limited,
and may not be the same for all the links of the network. Increasing the number of
states implies learning a significantly larger number of parameters to represent the
dynamics of traffic on the network: parameters of the travel time distribution for each
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state and each link of the network, and parameters of the transition matrix representing
the congestion dynamics of each link. As a tradeoff between the information provided
by the probe vehicle data and the complexity of the model, the chapter presents the
derivations for a binary representation of traffic states. The algorithm can be readily
applied with a higher number of states.

e Conditioned on the discrete congestion state, the link travel times are random vari-
ables, chosen to be normally distributed in the article. The use of Gaussian random
variables offers important model refinement possibilities (without increasing the com-
putational complexity). Chapters 5 and 6 indicate that distributions derived from hor-
izontal queuing theory are able to capture specific features of the underlying physics
of queuing networks. However, the modeling assumptions reduce the flexibility of the
models. Moreover, the resulting distributions lead to more computationally intensive
calculations. The use of Gaussian random variables has the following benefits. First,
the pdf of travel times on a path are computed analytically (conditioned on the state
of the links on the path), as the sum of independent Gaussian variables. Second, the
independence of link travel time, conditioned on the state of the corresponding links,
can be interpreted as modeling link travel times on the network as a multivariate Gaus-
sian random variable with diagonal covariance matrix. Allowing extra-diagonal entries
models correlation between the travel times on different links.

As mentioned in Chapter 6, it may be desirable to model light synchronization, as done
in [188, 121]. To account for light synchronization, the Gaussian distribution of travel times
could be replaced by Mixture distributions. Each component of the mixture would represent
a delay pattern such as “stopping” or “not-stopping”, as motivated by the horizontal queuing
theory (Chapter 5). AMarkov model could characterize the probability of a delay pattern on
a link given the delay pattern on the previously traversed link. Note however that the models
developed in [188, 121] rely on stronger assumption regarding the type of data available (high
sampling rate or at least individual link travel times).
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Chapter 8

Using sparse modeling to learn
spatio-temporal structure

Chapters 6 and 7 developed Dynamic Bayesian Networks to model the dynamics of queues
and the propagation of congestion in a network. The models make different modeling as-
sumptions corresponding to different level of abstraction from the physics of the queuing
system. However, both models have a very similar structure: a dynamic Bayesian network
for which the hidden state represents a level of congestion, the observed variables are point
to point travel times and the parameters characterizing the dynamics are constant for pre-
defined times of day. The dynamical models also rely on modeling choices to characterize
the spatio-temporal structure of the dynamics (time discretization and edges between hidden
variables in the graphical model). For example, both models only consider edges between
neighboring links. Similarly the definition of the time of day or the time discretization is
presented as a trade-off between the amount of data available and the desired level of tem-
poral accuracy. There is no algorithm to automatically detect variations in traffic conditions
and trigger an adapted response from the model (transition in the dynamical model, change
the parameters corresponding to the time of day, discard obsolete data and so on).

The chapter develops a novel general algorithm which has the potential to improve the
models of Chapters 6 and 7 by automatically detecting changes, either spatially or tem-
porally. In the context of urban transportation networks, the previous chapters have em-
phasized the importance of estimating waiting times or travel times. Let the estimate x™
represents the average travel time on each link of the network at time . A [;-norm penalty
on the variations of the estimate ||x,,1 — z,||1 encourages the travel time on each link to
remain constant unless a significant change in traffic conditions is detected. Similarly, with
an appropriate choice of a matrix K, the penalization ||Kz,||; encourages sparse spatial
variations of traffic conditions.

The algorithm is a general data-driven online estimation algorithm which extends exist-
ing work in sparse modeling and estimation. The algorithm performs online least-squares
estimation of a system. A [;-norm penalty on the variations of the estimate, or on an affine
transformation of the estimate exhibits the spatio-temporal structure of the system. The al-
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gorithm analytically computes a homotopy path to update the estimate as new observations
become available. It leverages the sparsity structure of the solution to perform computa-
tionally efficient and numerically robust estimation. The chapter extends the results of [84]
with the following contributions: (i) the algorithm updates the solution as a new batch of
p observations is received (previous work only considered updates with one measurement at
a time), (ii) the online algorithm solves the LASSO when an linear transformation of the
estimate is sparse and (iii) the online algorithm solves the LASSO when the [; penalization
is between the estimate and a reference value, which can be updated at each estimation step
(to study sparse variations for example).

The chapter is organized as follows. Section 8.1 reviews existing work in sparse modeling
and introduces the LASSO problem (least-square estimation with /;-norm penalization on
the estimate). Section 8.2 reviews the optimality conditions of the LASSO algorithm and
introduces an existing homotopy algorithm [84] to solve the LASSO problem recursively.
Section 8.3 presents a homotopy algorithm to update the solution of the LASSO to add
(or remove) p observations. In Section 8.4, the algorithm is adapted to produce estimation
with the [; penalty imposed between the estimate and a reference point which can vary after
each estimation. Section 8.5 illustrates the potential of the algorithm to detect spatial or
temporal changes in traffic conditions on an arterial network in San Francisco, CA.

8.1 Introduction and related work

Least-squares regression with /;-norm regularization is known as the LASSO algorithm [207].
It has generated significant interest in the statistics [207, 63|, signal processing [19, 36, 81]
and machine learning [94, 173] communities, in particular for estimation problems. Adding
a [;-penalty usually leads to sparse solutions, which is a desirable property used to achieve
model selection, data compression, or to obtain interpretable results.

The LASSO can be solved using interior-point methods [136], iterative thresholding al-
gorithms [60, 80|, feature-sign search [151], bound optimization methods [77], incremen-
tal methods [24] or gradient projection algorithms [78]. Homotopy algorithms compute
the regularization path [177, 66]. They are particularly efficient when the solution is very
sparse [65, 158]. Homotopy algorithms are also powerful to compute online updates [193, 84]
when the training examples are obtained sequentially (one at a time). This method is partic-
ularly efficient when the support of the LASSO solutions at the particular penalty parameter
is similar.

The chapter extends the results of [84] with the following contributions: (i) the algo-
rithm updates the solution as a new batch of p observations is received (previous work only
considered updates with one measurement at a time), (ii) the online algorithm solves the
LASSO when a linear transformation of the estimate is sparse and (iii) the algorithm solves
the LASSO with a [; penalty on the difference between the estimate and a reference point,
which may change over time. This last property allows to perform estimation in dynamical
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system with estimates which exhibit few “jumps” over time. In this case, the penalty is
between successive estimate and the reference is updated at each estimation.

At estimation step n, a set I,, of training examples or observations (y;, a;) € RxR™, i € I,
is available. The chapter presents how to fit a linear model to estimate the response y;
as a function of # € R™. A linear function of the solution, K;z, with K; € RF™_ is
expected to be sparse. The matrix K represents inherent structure of the problem or trend
filtering [14, 135]. To achieve this property, an [; penalty on Kz is added to the least-square
estimation problem. The resulting optimization problem is given by:

minimizezeRm% S (a7 — 9 + pal | Kl (8.1)
icly,

Other applications may be interested in sparse changes between the state vector and a
reference vector T". To achieve this property, an [; penalty on the difference between the
state vector x and the reference T is added to the least-square estimation problem. The
estimation problem of x™ is defined as:

minimizexeRm% Z(a;fpx — ¥+ pal|lz — 7)1 (8.2)
i€l
The reference ™ may change after each estimation. In particular, the model can encourage
sparse temporal variations to regularize the estimates when measurements are noisy and the
dynamics of the system is slow compared to the sampling rate. This property is achieved by
choosing 7" = z" L.

In applications, it is useful to add additional regularization to the optimization prob-
lems (8.1) and (8.2). In particular, for the solution of the least-squares estimation problem
to be unique, the matrix A” A should be non singular, which is not always the case for some
applications. Moreover, the regularization term || K|y or p,|lz — Z™|]; is on the sparse
structure of the estimate but there is no regularization to maintain the state estimates close
to an a priori value. As done in the Elastic Net [226], the chapter investigates the addition of
an [y regularization term with weighting parameter A to Equations (8.1) and (8.2) to improve
estimation capabilities. This additional term leverages prior information # on the value of
the state x (from historical data for example) to improve the estimation capabilities.

The regularization parameter yu, may depend on the number of measurements |I,,|. Ex-
ample choices are u, = |I,|uo as in [84] or w, = /||t as in [140]. The parameter pyg is
chosen via cross-validation, as a trade-off between the structure imposed by the regulariza-
tion, and the fit to the data.

8.2 The LASSO problem

The LASSO problem [207] is defined as follows:

n

e 1
minimize,cgn 5 Z(a?m —i)* 4 2|1 (8.3)

=1
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This section summarizes previous work [66, 84] which uses the optimality conditions to solve
this problem. The objective function of (8.3) is convex and non-smooth since the /;-norm
is not differentiable when there exists an index i such that the i*" element of z (denoted ;)
equals zero. There is a global minimum at x if and only if the subdifferential of the objective
function at x contains the 0-vector. The subdifferential of the [;-norm at x is the following
set

U

m |l

~1,1] if ;=0

Uy

olels = R{ sola) i lwil>o}

h T

where sgn(-) is the sign function. Let A € R/#*™ be the matrix whose i™® row is equal to a,
and let y = (y;)/z;, be the vector of response variables. The optimality conditions for (8.3)
are given by

AT(Az —y) + pav =0, v € 9||2||1.

Definition 8.1 (Active set). The active set a is the set of indices representing non-zero ele-
ments of x. The matrix A, is a selection of the columns of A in a. The non-zero coordinates
of x are in x,. The index a; references the i coordinate of the active set. Since v € 9||z||y,

Vo, = SgN(q, ).

Definition 8.2 (Non active set). The non active set na is the set of indices representing
zero elements of x. The matriz A,, is a selection of the columns of A in na. It follows that
Tna is the O-vector. The index na; references the i coordinate of the non active set. Since
v € d||x||1, vng € [—1,1].

If the solution is unique, AT A, is non-singular’. The optimality conditions read

La = (A7 A) Y ATy — ptnva)
“HnUna = Ag;a<Aama - y) .
Given the active set and the signs of the coefficients of the solution (and thus the vector

vq), the solution z is computed in closed form. When observations come sequentially, a
homotopy algorithm [84] solves the LASSO problem recursively by considering the following

problem:
2
o1 A Y
z(f, ) = argmin — T — + |zl -
( /“L) xgeRm 2 (tag_}-l) (tyn-i-l) /“LH ||1

2

Adding (resp. removing) a point is equivalent to computing the homotopy path from

t =0tot =1 (resp. fromt = 1 tot = 0). Varying the regularization parameter is
equivalent to computing the path from p = p, to p = pfini1.

IThe Elastic Net [226] ensures the uniqueness of the solution without requiring A7 A to be non-singular.
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8.3 Recursive lasso with p new observations, [, and
linear [; regularizations

The section studies a least square estimation problem, for which a linear transform of the
solution, K x for K; € R¥*™ is sparse. The estimate is updated as p new observations
(yev, AV) € RP x RP*™ become available?. The algorithm updates the solution online
without having to fully recompute it at each estimation step. Let & represent a priori
information on the solution, which is used as additional regularization when the matrix A is
not full column rank or is ill conditioned (see the FElastic Net [226] for details). The matrix
K is assumed to be full row rank, which is the case for numerous applications including
total variation regularization. Each row of K; corresponds to an information on the sparsity
structure of the solution. Let Ky € R™™**™ he such that K = (K{ KI)T is non singular.
For example, K, is such that the columns of K7 form a basis for the null-space of K. The
non-singular matrix K defines a change of variable z = Kx. It is also convenient to define
new data matrices B = AK ™!, Brew = AnewK ! and 2 = KZ. The section develops an
algorithm which updates the solution z of

2

.. 1 B y A .
minimize (tBnew)z—<tynew> I Qo) <l + 211 = 2B (34)

z€R™
2

(i) as t varies to add (or remove) observations and (ii) as y varies to change the weight of
the [; regularization. The [; penalization is on the first k& coordinates of z, denoted reqularized
indices. The last m — k indices are in the active set and are referred to as the non-regularized
indices.

Add p observations

At t = 0, the solution z(0, u,,) is known, and so are the active set and the signs of the
regularized indices of z. Let v,, be the sign of z,,(0) for the regularized indices and define
Vg, = 0 for the non-reqularized indices. The data matrices with the new observations are
indicated with a tilde: B = (BTB*"1")T and § = (y7y**")T. The optimality conditions
of (8.4) read

By (Baza(t) = §) + (1 = DB (By™ 2a(t) = ") + ptava + Azalt) = 22) =0, (8.5)
BT (B za(t) — §) + (£ = 1)BRY (B2 2, () — y™) + pnWna(t) — Mo = 0. (8.6)

where w,,(t) is a vector with coordinates in [—1, 1]. Notice that, at ¢t = 0, z,(-) and wp,(+)
are continuous in ¢. Let t* to be the largest t € [0, 1] such that: (i) for all ¢ € [0,t*), for all

2The solution can also be updated when some of the observations become obsolete.
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i in the regularized indices, sgn(z,(t)) = sgn(z,(0)) and (ii) for all ¢ € [0,t*), for all ¢ in the
non-active set, |wyq, (t)| < 1. On this interval, v,, is the sign of z,, () and Equations (8.5-8.6)
are valid.

The matrix Q = (BI B, + M|,)~" is computed from its previous value without the p
new observations using the Woodbury matrix identity (p rank update). Let Z, and a be
defined as z, = Q(BTj + A2, — yw,) and o = t> — 1. The singular value decorrggosition of

BYQB""" is written BYQB™"" = TI'TYT. The rotated data is defined by B™" = I B"v

——new _

and 7"V = I'y"™™. Similarly, the rotated error is E = B, 2, — 7" and U is defined as
—T1 WT
U=QB)" .
Proposition 8.1 (Solution path to add p observations). Fort € [0,t*), z,(-) is continuous
i t and given by
1

) =Z, - -1)U I+ -1)%) E. (8.7)

Let t° be the smallest® t € [0,1] such that a coordinate of z,(t) equals zero, t+ (resp. t~)
the smallest® t € [0,1] which sets a coordinate of wna(t) to 1 (resp. to -1). The transition
point t* is defined as t* = min(t°,t7,¢7) and can be computed by solving p-degree polynomial
equations on a bounded interval.

Proof. For t € [0,t%), it follows from (8.5) and from the Woodbury matrix identity that
(Q '+ aBr¥" B¥)~! can be written as Q —al (I +aX) 'TB™¥(Q. The expression of z,(t)
reads

Za(t> — 2@ . OZU(] + az)—lgzewga +a (Q i OéU(] + az)—ercrLleWQ) Bcr;ewTynew

2(t) = Zo —aU(I +aX)'B, %, + a (UP™™ — aU(I + aX) ' Sg")
2, —aU(I 4 aX) "B, 2, + aU(I + aX) 'ge”

N
IS]
—~
~
~—
I

which proves (8.7). The computation of t°, t© and ¢~ is given by Lemma 8.1 and 8.2. O

Let U; ; denote the element gf U on line ¢ and column j_ and by U; the i*" line of U, o; is
the i'" singular value of ¥ and FE; is the i*® coordinate of E.

Lemma 8.1 (Computation of ¢°). Let ¢ be the smallest value of t € [0,1] which sets the i™
coordinate of z, (in the reqularized indices) to zero. It is given by t2 = /ol +1 where o,

is the smallest real valued solution in the interval [-1,0] of the following p degree polynomial
equation in o:

p p
0="%, [[A+ac) —ad U,E [](1+aom).
=1 j=1 I#£j

If the polynomial equation does not have real valued solutions in [-1,0], set tgi = 1. It follows
that t° is the smallest value of t) in the interval [0, 1].

3 If no such t exists, set t (resp. T and t7) to 1.
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Proof. Setting the i coordinate of z, to zero in (8.7), it follows that

0 = Z, —alU(I+ aE) 'E

0 = —a)iin 1%%

0 = ’ZC’«'L Hz=1(1 +ao;) — 0‘2?:1 Ui Ej Hl;ﬁj(l + aoy).
O

Let ¢; denote the ™" column of Bm, d; denote the i row of EZZW andei,j denote the
element of B, on the i*" row and j" column. Let f; be the i*" element of B],é — \,, and
let € be defined as ¢ = Bz, — 9.

Lemma 8.2 (Computation of t7 and ¢~). The smallest value of t that sets the i™ coordinate
of Wna to 1 (resp. to -1) is denoted t}, (resp. t,, ). It is given by t}, = \/ﬁ (resp.

\/T) where of - (resp. ot ) is the smallest real valued solutzon in the interval
[1 0] of the p degree polynomzal equatzon inat (resp. ina”):

(—u—f) [ +ata) =a® Yy Ejdi; — f BU;) [J(1 + aF o),

=1 j=1 1#]
P P .
,U, fz 1+OéiO'l) :OéizEj(di’j —ClTBan) H(l—i‘OéiUl).
=1 j=1 I#]
If the polynomial equation does not have real valued solutions in [-1,0], set t7 =1 (resp.

ta, = 1). It follows that t* (resp. t~) is the smallest value of t, (resp. t,, ) in the interval
[0,1].
Proof. 1t follows from (8.7) that
BrVz(t) — "V = BVZ, —alT(I +aX)'E —
I'"E — ol "S(1 +aX)'E
= ITI+aX)'E

The following equality also hold: B,z,(t) — § = é — aB,U(I + aX)~'E Equation (8.6) is
rewritten as
0 = BT (6—aB,U(I+aX) 'E)+ ptng — Mong + B T7(I + aX)'E
= —newT = = -
—pwna(t) = BlLé— Mo +a(B,, — BLBU)I+aX)'E

The values of ¢, (resp. t,, ) are obtained by solving the p degree polynomial equation
in at (resp. a~) on the interval [-1,0]:

p p
(= —fi) H (1+ato) = 04+ZE'(dij - CTB U;) H(1 +atay),
=1

1%

N
Il
—

J
(14+ao0)=a" ZEJ i — G BU)H(l—i—a’al).

J=1 I#j

’:]s

(,u fZ)

T
I
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]

Lemma 8.3 (Update of the active set). When t reaches a transition point, the active set and
signs of the reqularized indices are updated as follows: (i) if t* = t°, remove the corresponding
coordinate from the active set, (i) if t* = t* (resp. t* =t~ ), add the coordinate to the active
set and set its sign to positive (resp. to negative).

Proof. If t* = % let a; be such that z,,(t*) = 0. The subgradient of ||(I; Ogxm_x)z||1 With
respect to the coordinate a; is in the interval [-1,1], The coordinate is removed from the
active set.

If t* = ¢*, let na; be such that w,,, (t*) = 1. For ¢ > ¢*, the optimality condition for the
coordinate na; cannot be satisfied with the current active set because w,,, is bounded by 1.
If one lets the coordinate na; of the solution take non-zero values, the optimality condition
can be rewritten as f(z,(t)) + Bznq,(t) = 0, where f(z,(t)) < 0 and S is a positive term
which depends on A and on the norm of the column na; of B and B""Y. This proves that
Zna, 18 positive. Adding the index na; to the active set provides a solution, thus the solution
(strict concavity). O

Algorithm 5 updates the solution when t varies from ¢t = 0 to t = 1. The same algorithm
is relevant to remove p observations by finding the transition points as ¢ decreases from 1 to
0.

Update the regularization parameter

The computation of the regularization path is detailed in [66] and in [226] for the Elastic
Net. As done in the previous step of the algorithm (add p observations), it is necessary to
define the non-regularized indices and set v,, = 0 for these indices to solve (8.4). The end of
the section details how the algorithms developed in [66] and [226] are adapted to solve (8.4).
At p = p,, the solution z(0, ) is known, and so are the active set, non active set and
signs of the coordinates of z which are in the active set. The optimality conditions read

By (Baza(1t) = y) + pva(p) + Mza(p) = 24) = 0,
Bga<Ba Za(ﬂ) - y) + #wna(ﬂ> — Apa = 0.

where v, () is the partial derivative of the {; norm for the indices in the set a with entries
Vg, (1) = sgn(z,, (1)) for the regularized indices, v,, = 0 for the non regularized indices and
Wya(pt) is a vector with coordinates in [—1,1]. Let @ be defined by Q = (BI B, 4+ M 4) "

Proposition 8.2 (Linear dependence in p). There exists a transition point p* € [fn, fni1]
such that the active set, non active set and signs of the reqularized indices of the solution
remain constant for p € [y, u*). Let u° be the smallest p € [1in, pny1] such that a coordinate

4 If no such p exists, set u® (resp. ut and p~) to pini1.
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Algorithm 5 Update of the solution to add p observations
Initialize the active set a, non active set na and signs of the regularized indices v,,.
t=0
while ¢ < 1 do
Compute t°, t* and ¢~ as the smallest value of t{) ;, ¢} ; and ¢, ; in (¢, 1] (Lemma 8.1-8.2).

a,t’ “na,l

t = min(t%,tT,¢7)
if ¢ > 1 then
break;
else if ¢t = t° then
Add the corresponding index to na and remove it from a and v,.
else if t = ¢* then
Add the corresponding index to a and remove it from na, set its sign to positive and
add it to v,.
else
Add the corresponding index to a and remove it from na, set its sign to negative and
add it to v,
end if
Update the matrix @ to account for the updated active set (rank 1 update).
end while
Compute the solution at ¢t = 1.

of za(1t) equals zero, u™ (resp. p~) the smallest' p € [pin, finy1] which sets a coordinate of
Wna(p) to 1 (resp. to -1). The transition point u* is defined as p* = min(u®, u*,u=). On
the interval [pu,, 1), va, denotes the (constant) sign of z,,(1) for the reqularized indices. The
estimate z,(p) is affine in p and given by

za(p) = Q(BLy + A\24) — 1Qu,. (8.10)
Proof. From (8.8), write z,(u) as
(i) = Q(By + M) — pQua(p). (8.11)

At u = p,, the solution and thus the value of v,(u,) are known. Equation (8.11) shows
an affine dependency of z,(un) with p as long as the active set and v,(p) remain constant,
i.e. as long as the regularized indices of z, have constant sign. Let u® denote the smallest
value of u € [ty pns1] such that a regularized index of z, reaches zero in Equation (8.11).
If no such p exists, set u® = p,,1. The signs of the regularized indices and thus the value of
v,(pt) are constant on [u,, 1°]. Let v, denote the (constant) value of v,(x) on this interval.
Equation (8.10) follows directly.

Using (8.10), rewrite (8.9) as

— fwna(11) = By, ((BQQB;F — Inn)y + BaQ(A2, — /wa)) — Ao (8.12)
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The expression shows that w,,() is a continuous function of u. A coordinate of the non-
active set joins the active set as the corresponding coordinate of w,,, reaches one in absolute
value. Let u* (resp. p~) denote the smallest value of p € [y, tnr1] such that a coordinate
of wy,, reaches 1 (resp. -1). The non-active set is constant on [z, min(u™*, ©™)].

The active set, signs of the regularized indices and non-active sets are constant on the
interval [p,, p*) where p* = min(u®, u*, u™). O

As long as the active set and signs of the regularized indices remain constant, the expres-
sion of z,(u) is given by (8.10).

Lemma 8.4 (Expression of u°). Let /Lgi denote the value of ju that sets the i coordinate
of zq (in the regularized indices) to zero and have pd = [Q(BLy + A2,))i/[Qua)i, where [V];
denotes the i™ coordinate of generic vector V. The first possible transition point pu° is the
smallest value of ,ugi in the interval [fi,, fns1], OT fnyr if, for all the regularized indices,

1o & [, fins1].

Proof. The expression is readily derived from (8.10) by setting the i'" coordinate of z, to
Z€ro. [

Lemma 8.5 (Expression of u™ and p~). The values of u that set the i™ coordinate of wyq
to 1 and -1 are denoted by u:[ai and p,,. respectively. They are given by

o[ BE(B.QBE - L)y) + A(BLB.Q2 - 5u)]|
Hna; = -1+ [BgaBana]i ’
[BE, ((BaQBY = L)y) + MBLBuQ2 — 2ua)]

1 + [BEQBQQUQ]Z'

i

Fna; =

The first possible transition points ™ (resp. p~ ) is the smallest value of pf, (resp. pin,.)
in the interval [fi,, pini1], 07 pny1 i, for all i, pf, & [, pins1] and pi,. & [pn, fng)]-

Proof. The expressions are readily derived from (8.12) by setting the i*® coordinate of w,,,
to 1 (resp. to -1). O

Leveraging Proposition 8.2 and Lemma 8.4 and 8.5, Algorithm 6 updates the solution
z when p varies from y = p, to p = p,y1. Note that the derivations assume that p, <
tn+1- The same algorithm is relevant if p,, > p,11 by finding the transition point as the
regularization parameter decreases (instead of increases).

Remark 8.1 (Leveraging the sparsity structure). The matriz Q) is efficiently updated when
the active or non active set change or when observations are added/removed using low rank
updates. The numerical implementation updates the Cholesky factorization of () which pro-
vides better numerical stability to the algorithm than updating Q directly [91].
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Algorithm 6 Update of the solution as p increases from i, to fi,41
Initialize the active set a, non active set na and sign of the regularized indices v,.
W= pn
while y < p, 41 do
Compute p°, p* and p~ as the smallest values of pf,;, pr,; and g, in (1, fingi]
(Lemma 8.4 and 8.5).
po = min(p’, @, 1)
if © > piy41 then
break;
else if ;1 = ;° then
Add the corresponding index to na and remove it from a and v,.
else if ;= p* then
Add the corresponding index to a and remove it from na, set its sign to positive and
add it to v,.
else
Add the corresponding index to a and remove it from na, set its sign to negative and
add it to v,
end if
Update the matrix @) to account for the added (or removed) index in the active set
(rank 1 update).
end while
Compute the solution at p = 41

Remark 8.2 (Complexity). The complexity of the algorithm depends on the number of
transitions and the size of the active set. The theoretical bound on the number of transitions
is 3%, where k is the number of rows of K. In practice, it is much smaller because successive
estimates are expected to have a similar support. FEzperience with data suggests that the
number of transition is linear in the problem size [190]. A theoretical analysis of the number
of transitions is performed in [161].

8.4 Recursive lasso with varying reference parameter

This section considers the linear regression problem introduced in (8.2). The problem en-
courages the vector x — " to be sparse. The reference " may change at each iteration.
For example, the choice 2" = 2"~ ! leads to sparse variations of the estimate. The estimate
is updated when observations are added (or removed), when the [; regularization parame-
ter changes or when the reference parameter ™ changes. In order to update the solution
from previous estimates, the algorithm computes a homotopy regularization path, as done
in Section 8.3. After computing the solution z" to Equation (8.2), p new observations
(yrev, AnV) € RP x RP*™ a new penalty coefficient p,; and a new reference parameter
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"t (e.g. Tt = x™)are received®. As for Section 8.3, an additional I penalization is added
to the objective function of the LASSO to improve the estimation capabilities [226]. The
homotopy algorithm is derived by introducing the following optimization problem:

2
) 1 A Y

z(t, u, —argmin — new | T — ew

(i) =uggh 3 (”‘ ) (“/ ) (8.13)

2
A .
+1 Hx — (1 = w)z" 4 uz"*") Hl + §||x — 2|3

The definition of Equation (8.13) leads to z(0,0, p,) = 2" and z(1, 1, ppy1) = 2", The
section develops an algorithm that computes a path from z" to "™ in three steps: (i) vary
p from g, to 41 to change the weight of the [; regularization, (ii) vary ¢ from 0 to 1 to
add observations and (iii) vary u from 0 to 1 to update the reference parameter. Note that
the different steps of the algorithm (variation of u, ¢t and u) do not need to be performed in
a pre-specified order.

The change of the weight of the [; regularization and the variation of ¢ from 0 to 1 are
readily adapted from the computations of Section 8.3. The section succinctly presents the
required changes for these steps and details the algorithm to update the reference parameter
from z" to z"™! (increase u from 0 to 1).

Update the regularization parameter and add observations

During the update of the regularization parameter and the addition of observations, the
parameter u remains constant. Assume without loss of generality that the variation of w is
chosen to be performed last and thus © = 0 as the regularization parameter is updated and
the observations added. If the variation of u has started before these steps occur, replace "
by (1 —u)z" + uz"™! in the following derivations.

To leverage the algorithm developed in Section 8.3, it is convenient to introduce the
following change of variables: z = x — 2", y, =y — Az2", Yy =y — A"V2" and 2 =2 — 2".
For notation consistency, the matrices A and A" are denoted B and B"™V respectively
(same as for Section 8.3 with K being the identity matrix). With this notation, updating
the regularization parameter (vary p) and adding new observations (vary ¢) correspond to

updating the solution of

2
e . . 1 B Yy 2112
minimize 5 ( £ grew ) z— ( e ) + pl| Lnz||1 + Al|z = 25, (8.14)

zeR™
2

as u varies from p, to p,41 and ¢ from 0 to 1.

5Note that not all parameters are required to change at each iteration.
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Update the reference parameter

The last step of the algorithm updates the reference parameter from " to z"'. Let x,(u)
be defined by z,(u) =  — [(1 — u)Z" + uz"]. It represents the vector which is expected
to be sparse because of the [;-norm penalization. As done in the previous section, assume
without loss of generality that the variation of u is chosen to be performed last. At this step
of the algorithm, the regularization parameter has been updated and the new observations
have been added. In particular, since the observations have been added, the matrix A and
the vector y contain the recently added data.

Define y, =y — Az", Az = 2" — """ and Q = (AL A, + A\I)~'. Let ¢; denote the vector
defined by ¢; = ATy, + A& — 7"];, where j represents the set of indices a or na. With this
notation, z,(u) is the minimizer of the optimization problem

T A -
minimize Z|[Az, —y, — ulAz|l; + g ||en [ + Sllee = (& = 27) — wAe]]3.

The optimality conditions read
(AT Ay + Mo (1) — o + g + 1 (AZ(AA:C) + /\(Ax)a> — 0, (8.15)
AT Ao (W) — Cna + ftna(u) +u (Aga(AAx) n )\(Ax)m> — 0. (8.16)

Proposition 8.3 (Linear dependence in w). There exists a transition point u* € [0, 1] such
that the active set, non active set and signs of the reqularized indices of the solution re-
main constant for w € [0,u*). On this interval, v,, is the (constant) sign of x,.,(u). The
estimate x,q(u) is affine in u and given by x,,(u) = £ + uy, with & = Q(c, — pv,) and
X = Q (A7 (AAz) + MAz),).

Proof. From the optimality conditions, it follows that the function u +— x,,(u) is affine as
long as u — v,(u) is constant i.e. as long as the coordinates of u — z,,(u) have constant
signs and as long as the active set remains constant. Denote by u° the smallest value of
u € [0,1] such that a coordinate of z,,(u) equals zero in Equation (8.15). The signs of the
entries of z"(u), and thus the value of v,(u), are constant on [0,u°]. The (constant) value
of v,(u) on this interval is denoted v,. The optimality condition given in Equation (8.16)
also shows that u — wy,(u) is continuous. A coordinate of the non-active set joins the
active set when the corresponding coordinate of u — w,,(u) reaches one in absolute value.
Let u™ (resp. w~) be the smallest value of u € [0,1] such that a coordinate of w,,(u)
equals 1 (resp. -1). The non-active set is constant on [0,min(u",u")]. The active set
and signs of the coordinates in the active set remain constant on the interval [0, u*] where
u* = min(u, ut,u"). O

Lemma 8.6 (Expression of u°). Let ul be the value of u that sets the i coordinate of ., (u)
to zero. It is given by ugi = —&/xi- The first possible transition point u° is the smallest
value of u. in the interval [0,1], or 1 if, for all i, u) > [0,1].
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Proof. The proof is derived from the expression of z,,(u) given by Equation (8.15) for
u € [0, u*]. O

Lemma 8.7 (Expression of v and u™). Let u,f,. (resp. w}t, ) be the value of u that sets the

i coordinate of wp,(u) to 1 (resp. -1), i.e. the value of u for which the i™" coordinate of

Trna enters the active set and becomes positive (resp. negative). They are given by:

A Aa€ = Cna; + 11
AT (Agx + ADr — A (D)) + MNAT) g,
AT Al — Cpay — 1
e AT (A + ANz — A(Ax).) + ANAT) e,

The first possible transition point u* (resp. u~) is the smallest value of w}, (resp. u,, ) in
the interval [0,1], or 1 if, for all i, u;, > [0,1] (resp. u,, >[0,1]).

Proof. The proof is derived from the optimality condition given in Equation (8.16) and the
expression of x, ,(u) for u € [0, u*]. O

A transition occurs for the smallest u* € [0, 1] such that one component of z, ,, enters the
active set or one component of z,, enters the non-active set. At v = u*, update the active
and non active sets and search for the next transition point until v = 1 and the update of
the reference parameter is completed.

8.5 Numerical results

The potential of the algorithm is illustrated through an application for traffic estimation
in a subnetwork of San Francisco, CA (Figure 6.4). For this application, the estimate z"
represents the average travel time on each link of the network at time ¢". As done in
Chapters 6 and 7, the numerical results use data provided by a fleet of 500 probe vehicles
which report their location every minute, representative of the data available in the Mobile
Millennium system [4].

The duration between two successive location reports® &, and &, is an observation of the
travel time y; on the path from & to &. After using the map-matching and path-inference
algorithm to reconstruct the path of each vehicle [120], each trajectory (path) is converted
in a vector a; € [0, 1]™, where m is the number of links in the network. The j™ coordinate
of a;, denoted a; ;, is the fraction of the link traveled by the probe vehicle. It is computed
as the distance traveled on the link divided by the length of the link”. In particular, a; ; = 0
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Figure 8.1: Example paths of three probe vehicles on a network. The network has eleven
links. The path of a probe is represented as a vector a; € [0, 1]'! where the j*®® coordinate of
a; represent the fraction of link j traveled by the probe. The path represented with a solid
line is represented with a sparse vector with non zero coordinates 1, 6 and 9, respectively
equal to 0.4, 0.7 and 1 considering that the probe traveled 40% of link 1 and 70% of link 6.
The vector representing the dashed path has non zero coordinates 2, 3, 8 and 11, respectively
equal to 0.3, 1, 0.8 and 1 considering that the probe traveled 30% of link 2 and 80% of link
8.

if the vehicle did not travel on link j and a; ; = 1 if the vehicle fully traversed link j (see
Figure 8.1).

Spatial regularization

The numerical results first investigate the addition of an [; regularization on the spatial
variations of the travel times on the graph. The application of this regularization to arte-
rial traffic estimation is interesting for several reasons. First, it exploits an intuitive idea
that traffic conditions should be similar in neighboring links of the network and improves
the estimation capabilities when little and/or noisy data is available. Traffic signals cause
important variation on the travel time experienced on a link of the network and regulariza-
tion is important to prevent overfitting. Second, it exhibits the inherent spatial structure of
traffic by noticing the area where traffic conditions actually change. Finally, by exploiting
the sparse structure of the solution, the algorithm can update efficiently the traffic estimates
as soon as new measurements become available.

6Compared to the previous chapters, the locations on the network are denoted &; and & (instead of xq
and ).

"The coefficients a; ; can account for the fact that travel time on a fraction of the link does not vary
proportionally with the distance traveled as vehicles are more likely to experience delays close to signalized
intersections as demonstrated in Chapter 7.
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The average travel time " = K 'z at time " is computed by solving (8.4). The

additional [ regularization leverages the historical mean travel times Z. At each estimation
time t", the regularization parameter is updated (from |I,|uo to |I,11|po) and the new
observation added. The parameters of the [; and Iy regularizations (respectively po and
A) are chosen via cross-validation as described in the following paragraphs. Observations
may remain relevant only for a limited period of time®, denoted T. When observations
become obsolete, the algorithm updates the regularization parameter and removes the old
observations.

The choice of the matrix K; represents the prior information on the spatial dependencies
between the estimates. The numerical analysis investigates different choices for the matrix
K, and studies their respective performance. The first choice of K; encourages all the in-
coming links of an intersection to have the same pace (inverse of velocity). Let J be the
set of junctions j with n; incoming links (n; > 1) and let Z; = {i},...,7,"} be the set of
incoming links of junction j. To each junction j corresponds n; — 1 rows in K;. The k'
row has non zero entries for the incoming links k& and k 4 1 of junction j (denoted 2;“ and

i%*1). These entries are respectively 1/L(i%) and —1/L(i¥*") where L(i) is the length of link
7. Another choice of K; encourages the outgoing links of each junction to have the same

pace. The results for both choices are compared in Figure 8.2 (bottom).

At time t,, the estimate z,, is computed using the observations in [,,. The prediction
error e, is defined using the current estimate to predict the future travel time as e, =
|ans1Zn — Yna1|. Figure 8.2 analyzes the effect of the choice of the parameters A and pg
as well as the choice of matrix K;. The numerical results indicate that both the [; and
ly regularizations improve the results for a wide range of A and pg. As the error is not
very sensitive to the choice of these parameters, they can be calibrated off-line using cross-
validation. Figure 8.2 (bottom) also indicates that the choice of the regularization matrix K
influences the accuracy of the estimation. The regularization on the outgoing links always
provides better results than the choice of regularization on the incoming links.

The results can also be represented as a traffic map with colors representing the pace
of the vehicles: green for smallest pace i.e fastest speed, red for largest pace. White pins
indicate the intersections for which the algorithm detects spatial variation of the pace. The
pins tend to cluster in a few regions of the network, indicating regions with important spatial
variations in the traffic conditions.

Imposing and exploiting a sparsity structure on the solution limits the computational cost
of traffic estimation on large networks as the algorithm leverages the sparsity of the solution
in the algorithm. The number of transition points and active indices remain small throughout
the algorithm with an average of 0.5 transition points per estimate update (addition of new
data points and variation of the regularization parameter) and 20 active regularized indices
for a network with 815 links.

8 Typically, T is in the order of five to fifteen minutes
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Figure 8.2: Variation of the [; error in function of the regularization parameters for the /; and
l> penalization when encouraging sparsity on the spatial variations of traffic conditions. The
figures represent the variation of the error for different values of A (top) and p (bottom). The
figures indicate the importance of the additional /5 regularization to improve the accuracy
of the estimation.
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Figure 8.3: Geographical representation of the traffic estimation results with detection of
the spatial variation of the pace in the network. The color of each link varies with the pace
(green for small paces, red for large paces). The pins indicate the intersections for which not
all outgoing links have the same estimated pace (inverse of the speed).

Temporal regularization

Besides spatial variation, arterial traffic is subject to important temporal variations. Some
of these variations are due to changes in traffic conditions (level of congestion) whereas other
follow the periodic dynamic of the signalized network. As underlined before, traffic data on
arterial networks is mainly provided from probe vehicles sending their location at a given
sampling frequency (common sampling frequencies are around 1 minute). The proportion
of sampled vehicles (penetration rate) remains limited and rarely exceeds a few percent of
the vehicles traveling on the network. Moreover, traffic signals cause important variation
on the travel time experienced on a link of the network within very short periods of time
(depending on whether the vehicle stopped at the signal or not), while the actual changes
in traffic conditions have slower dynamics. Given the penetration rate of probe vehicles,
the algorithm seeks to estimate trends in traffic conditions rather than fluctuations around
a mean value. For these reasons, arterial traffic estimation is a good application for the
algorithm. The parameter x™ represents the average travel time on each link at ¢". The
algorithm updates the solution online as new measurements are available (or old one are
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obsolete) while encouraging sparsity on its temporal evolution.

The parameter z™ is computed at time t" by solving equation (8.13). Recall that 2"
represents the mean travel time on each link of the network at time ¢". The algorithm is
initialized using a previous estimate of the mean travel times given by least-squares regres-
sion. As for the spatial regularization the historical mean travel times z is used to add a
ly regularization term ||z — z||. At each estimation time, the regularization parameter is
updated (from |I,|uo to |I,11|p0), the new data is added and the reference parameter is
updated (from z" = 2" ! to 2" = z").

The performance of the model is assessed using cross-validation, randomly splitting the
observations sent by the probe vehicles between a training set and a validation set. After
learning the travel time estimates on the training set, the validation set is used to compare
the estimates to the travel time observations. The performance of the model is compared
with a baseline model, which uses the historical value of the link travel times  as the estimate
of the state. Three metrics quantify the quality of the estimation: the root mean squared
error (RMSE), the mean absolute error (MAE) and the mean percentage error (MPE)?.
Note that the variability of arterial travel times (due to traffic signals, pedestians, etc.)
leads to important fluctuations of travel times. This inherent variability in the state of the
system makes the estimation model robust with sparse variations, but is also responsible for
relatively high values of the error metrics.

The numerical analysis assesses the performance of the model and quantifies the effect of
the regularization parameters A and po. The first parameter penalizes solutions which are far
(in the ly-norm sense) from the historical estimate of travel times Z. The second parameter
imposes sparsity on the variation of the estimate. The choice of these parameters leads
to a compromise between (i) fitting the data, with risks of overfitting and lack of physical
interpretation and (ii) putting too much weight on the regularization and not estimating
accurately the current state of the system.

The results indicate that both the /; and the [ regularization (Figure 8.4) are important
to improve the estimation capabilities. For a wide range of parameters, the results are
significantly better than the baseline model. The results also underline the importance
of the additional [y regularization to improve the robustness of the algorithm. Figure 8.5
illustrates that in addition to improving the estimation capabilities, the algorithm produces
results that are easier to interpret. Arterial traffic is highly variable and the variability often
prevents the interpretation of the results. This model estimates the trends in travel times
on the links of the network, while filtering the variability due to the signal dynamics.

TRMSE = \/ et MAR = Reagesiel MPE = & 7], el
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Figure 8.4: Variation of the error metrics in function of the regularization parameters for
the [ and [y penalization when encouraging sparsity on the temporal variations of traffic
conditions. Both the [; and [, regularizations improve the estimation accuracy and the
regularization parameters can be chosen optimally. The three top figures represent the effect
of the [y regularization for the estimation accuracy. The three bottom figures show the
importance of the additional /5 regularization introduced in Section 8.3 for the robustness of
the estimation.
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Figure 8.5: Qualitative evolution of the travel time estimates on different links of the network.
The [; regularization provides more stable estimates that represent the dynamics of traffic
more accurately and increase the physical interpretation. The left figure shows that the
estimation with [ regularization leads to estimates that are not physically possible (negative
travel times), while the estimate with {; regularization remains within feasible bounds. On
all figures, the [l estimate is noisy while the additional /; regularization remains constant
between each temporal transitions in traffic conditions.



CHAPTER 8. USING SPARSE MODELING TO LEARN SPATIO-TEMPORAL
STRUCTURE 154

8.6 Conclusion and discussion

The chapter derives an online-algorithm to update the solution of linear regression problems
with a large class of [; and [, regularizations as new observations become available. The
[;-norm regularization improves the estimation capabilities and the interpretability of the
results by exhibiting and exploiting the underlying sparsity structure of the problem. The
additional ls-norm regularization increases the robustness of the estimator and limits numer-
ical issues. Compared to previous work on the LASSO, the algorithm provides the ability
to (i) impose sparsity on a linear function of the estimate, (ii) update the solution online
by computing a homotopy as new measurements become available (or as old measurements
become obsolete) and (iii) impose sparsity on the variations of the state with respect to a
reference parameter which can be updated at any time, for example to impose sparsity on
successive estimates.

The homotopy algorithm leverages the sparsity of the solution to reduce the computa-
tional complexity and is thus particularly efficient when the solution is sparse. The computa-
tional costs at each transition point is limited by updating the matrix inverses with low-rank
updates. The number of transition points and active indices varies with the parameter u.
As p increases, the number of transition points and active indices decreases, improving the
computational efficiency of the algorithm.

This generalized LASSO algorithm has the potential to improve real-time traffic esti-
mation capabilities from streaming probe vehicle data in large urban networks. Besides
providing significant improvement of the estimation accuracy, the algorithm improves the
understanding and potentially the modeling of the spatial and temporal variations of traffic
across the network. For example, the detection of temporal changes can be used to trigger
an update in the data used for the estimation as old data may be outdated.
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Chapter 9

Large scale pattern analysis

Estimating and analyzing dependencies and trends between variables at a large scale is an
inherently difficult task. Chapter 8 develops an online algorithm to detect spatio-temporal
changes in the state of a network. The algorithm is valuable to improve estimation capabili-
ties of existing models and algorithms, such as the ones presented in Chapters 6 and 7. This
chapter suggests a different data-driven approach to provide a global network-level analysis
of patterns using dimensionality reduction (matrix factorization) and clustering methods.
These techniques allow us to characterize spatial traffic patterns in the network and to
analyze traffic dynamics at a network scale. The chapter identifies patterns that indicate
intrinsic spatio-temporal characteristics over the entire network and give insight into the
dynamics at a large scale.

Most of previous research in traffic data analysis focus on temporal dynamics of individual
links (either on arterial or highways). Very little progress has been made in analyzing the
temporal dynamics of global traffic states of an entire large-scale road network. As underlined
in previous chapters, traffic states of neighboring individual roads are often highly correlated
(both spatially and temporally) and the identification of specific traffic patterns or traffic
configurations is very informative. They can be used to better understand global network-
level traffic dynamics and serve as prior knowledge or constraints for the design of traffic
estimation and prediction platforms. The analysis of traffic patterns is also useful for traffic
management centers and public entities to plan infrastructure developments and to improve
the performances of the available network using large-scale control strategies.

This chapter proposes an algorithm to identify spatial configurations of traffic states over
the entire network and analyze large-scale traffic dynamics from traffic state estimates pro-
duced and collected over long periods of time. A network-level traffic state is defined as the
aggregation of the congestion states of all the links of the network at a given time. It is repre-
sented in the form of multi-variate data, where its dimension is proportional to the number
of links in the transportation network. As the size of the network increases, it becomes
difficult to have an overview of the network and to notice patterns in the dynamics. In ma-
chine learning, this issue is commonly addressed using dimensionality reduction techniques
to simplify the representation of the data, remove redundancies and improve the efficiency
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of analysis techniques such as classification [126, 99]. Important applications of these al-
gorithms include image processing and natural language processing [94, 76]. This chapter
investigates the use of a dimensionality reduction matrix factorization technique known as
Non-negative Matriz Factorization (NMF) [34, 119] to obtain a low dimensional represen-
tation of network-level traffic states. Principal Component Analysis (PCA) and Locality
Preserving Projection (LPP) are other examples of matrix factorization methods [126, 99].

However, in contrast to PCA and LPP, the NMF algorithm imposes strict non-negativity
constraints on the decomposition result. This allows NMF to approximate the n-dimensional
data vector by an additive combination of a set of learned bases. This property also leads
to a part-based representation of the original data. The learned bases correspond to latent
components of the original data so that the original data is approximated by a linear positive
superposition of the latent components. The properties of the NMF have already been
exploited for various applications. In text analysis, the learned bases are used to label
different latent topics contained in text documents. In face image representation, the NMF
bases indicate important localized components of the face, such as the eyes, the mouth or the
cheeks. The positive superposition of components gives NMF' a lot of potential to model the
dynamics of a physical system. The low-dimensional representation of network-level traffic
states should exhibit global configurations of local traffic states and reflect intrinsic traffic
patterns of network-level traffic states.

The chapter is organized as follows. Section 9.1 introduces the NMF algorithm. The
algorithm is used to perform large scale analysis of the dynamics of traffic. Sections 9.2
and 9.3 provide a detailed analysis of typical spatial configuration patterns of network-level
traffic states found by NMF projections. Section 9.4 further analyzes temporal dynamic
patterns of the network-level traffic state, which describe evolutions of traffic states in the
whole network.

9.1 Learning patterns with Non-negative matrix
factorization (NMF)

This section presents the Non-negative Matriz Factorization (NMF) dimensionality reduction
algorithm. It is used to approximate network-level traffic states as positive sums of a limited
number of global traffic configurations. NMF [150, 34, 156, 119, 76] is a particular type of
matrix factorization, in the same domain as the well-known Principal Component Analysis
(PCA) method and Locality Preserving Projection (LPP).

In all cases, given a set of multivariate n-dimensional data vectors placed in m columns
of a n X m matrix X, matrix factorization decomposes the matrix into a product of a n x s
loading matrix M and a s x m score matrix V', where s represents the dimensionality of
the subspace on which the original data is projected. Through this matrix decomposition,
each n-dimensional data vector is approximated by a linear combination of the s columns
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of M, weighted by the components in the corresponding column of V. The s column vec-
tors of M represent a group of projection bases that are learned to optimally represent the
original data. The variable s is typically chosen to be significantly smaller than both n and
m so that the obtained score matrix V forms a low-dimensional subspace projection of the
network-level traffic states, on which further data analysis is performed. The specificity of
NMF is the enforced positivity of both the weights in V', and of the columns of M forming
the NMF decomposition basis. This non-negativity therefore provides an approximation of
the n-dimensional data vector by an additive combination of a set of learned bases. Fur-
thermore, the NMF components forming the basis tend to be sparse, which leads leads to a
part-based representation of the original data.

As introduced at the beginning of the chapter, a network-level traffic state is a vector
of size equal to the number of links in the network, where the i*" entry corresponds to the
traffic state on the i*® link of the network. Arterial networks are typically dense (numerous
links and intersections) and the number of links in any decent size network is often over a
thousand links. Assuming that k samples of n-dimensional network-level traffic states are
stored as an n x k matrix X, NMF factorizes X as the product of a non-negative n x s matrix
M and a non-negative s X k matrix V. The matrices M and V' are chosen to minimize the
Frobenius norm of the reconstruction error between X and its factorized approximation MV .
The Frobenius norm of a matrix A € R™"™ with entry on column ¢ and line j denoted A; ;

is defined as
D> aigl

j=1 i=1

|AllF =

It is equal to the sum of the singular values of A. The matrix factorization problem reads:

argmi(r]l\}r‘l})izeHX —MV|p s.t. M>0, V>0, (9.1)

)

where the inequalities M > 0, V' > 0 represent the non-negativity constraints (each element
of the matrices are non-negative). The optimization problem (9.1) is not convex in (M, V).
However, the objective function is convex in M (when fixing V) and in V' (when fixing M).
Equation (9.1) is solved using multiplicative updates [150]. The algorithm alternatively fixes
the matrices M and V and updates the non-fixed matrix. Multiplicative updates and other
gradient based optimization procedure do not guarantee the global optimum of the NMF
solution. Nevertheless, a local minimum provides a possible factorization of the original data
which is useful for further data analysis. The NMF projects the high-dimensional network-
level traffic states on a s-dimensional subspace, which is spanned by the columns of M.
According to equation (9.1), the column space of V' corresponds to coordinates of network-
level traffic states with respect to the learned set of bases in M. The column space of V/
forms a low-dimensional representation of the network-level traffic states. As mentioned in
the introduction, each network-level traffic state X; € R" is approximated by an additive
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linear superposition of the column space of M due to the non-negative constraint. The
approximation of X is written as

k
Xj ~ Zi:l Mi‘/;,ja (92)

where M; denotes the i column of M and V;; is the element at the i column and j*™
row of V. It is valuable to interpret what the matrices M and V represent to conduct fur-
ther data analysis in the low dimensional space. The column space of M represents typical
elements of the spatial configuration patterns with respect to the network-level traffic states.
The columns of M represent complex spatial arrangements of local traffic states over the
entire network. As for V, equation (9.1) indicates that each element V; ; represents to which
degree the j*™ network-level traffic state observation is associated with the i expanding basis
in matrix M (i*" spatial configuration). For example, if the spatial configuration formed by
the i column of M is the best representation of the ;™ network-level traffic state, then V;
will take the largest value in the j*® row of V [34]. As a result, the derived low-dimensional
representation formed by the columns space of V' are intuitively consistent with information
about spatial distribution patterns of local traffic states. By contrast, the PCA and LPP
based projections aim at best reconstruction of the original data by either maximizing data
variances or preserving neighboring structures. The projection results of PCA and LPP are
thus less likely to be associated with interpretable latent traffic configuration patterns than
the NMF. Therefore, NMF appears as an appropriate choice to analyze the network-level
traffic states.

In the analysis, the traffic states used for the clustering analysis are fluidity indices. A
fluidity index is a value in [0, 1] computed as the ratio between the free flow travel time
and the estimated travel time. They are provided by an estimation algorithm described
in [104, 115]. The model estimates travel times and fluidity indices from the streaming
data and leverages the historical data using a Bayesian update. The estimates are updated
on each link of the network every five minutes. The numerical study focuses on a network
consisting of 2626 links for a duration of 184 days, from 00:00 May 1st 2010 to 23:55 October
31st 2010, totaling 52292 estimates per link (12 x 24 x 184). The fluidity index of each link
at each time sampling step is stored in a matrix X containing 2626 rows and 52292 columns.
The clustering results include two parts. First, a clustering of network-level traffic states
discovers typical spatial configurations of network-level traffic states (Section 9.2). Second,
a clustering of temporal trajectories of network-level traffic states provides an analysis of
traffic dynamics (Section 9.4).
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9.2 Congestion patterns: spatial configurations of
global traffic states

An important outcome of the dimensionality reduction is to identify typical spatial conges-
tion patterns (i.e. spatial configurations of congestion). NMF has one essential parameter:
the number s of components over which decomposition is done. The parameter s also corre-
sponds to the dimension of the target subspace in which clustering is performed. The choice
of s is empirical (s is called a meta parameter) and is done by analyzing results obtained
for increasing values of s. In this chapter, the choice of s is made based on a trade-off
between the reconstruction error (value of the objective function (9.1) at optimum) and the
quality of the clustering results. The reconstruction error continually decreases as the di-
mension s increases. This result is expected as the optimization problem (9.1) is performed
on a larger set and thus the factorization models with higher complexity always leads to
better fitting to the original data. However, the rate of improvement of the objective func-
tion (with respect to the dimension s) is a good indicator to choose the meta-parameter s.
The clustering of global traffic states consists of clustering the traffic data projected in the
s-dimension subspace using a k-means algorithm [159, 130]. The k-means algorithm is a
widely used unsupervised clustering algorithm. It partitions observations into & clusters in
which each observation belongs to the cluster with the nearest mean. The clusters obtained
in the s-dimensional space are displayed in three dimensions. This means that the number
of NMF components displayed is three but that the clustering results were obtained in the
s-dimensional space. The parameter s defines the importance of the dimensionality reduc-
tion as a trade-off. Higher values of s conserve more information contained in the original
data. However, lower values of s filter more redundancy and noise in the data and lead to
much more computationally efficient algorithms. A preliminary analysis showed that values
of s inferior to eleven lead to clustering results which seem visually inadequate: the 3D
representation of the clusters shows important overlap between the clusters. The clusters
become separated for values of s greater than fifteen. Increasing s over 15 does not seem
to bring any improvement in the clustering results, while it significantly increases the NMF
computation and memory usage costs. Therefore, the number of NMF components is set to
s = 15 for all subsequent analysis. This value achieves a balance between the descriptive
power of NMF projection and the computational efficiency.

The number of clusters k£ arises as another meta-parameter. The choice of k does not
influence the computational costs significantly but changes the interpretability of the results.
The number of clusters represents the number of global congestion patterns that may arise.
Too low values of £ may not represent the different congestion patterns whereas too high
values of k may decrease the possibilities of interpretation by separating similar congestion
states into different clusters. After analyzing the results obtained for increasing values of k,
it seems that the most insightful clustering is obtained with & = 5 clusters. The average
fluidity index value (obtained by averaging index values on all links) are shown for each of
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the five clusters in the table at the top of Figure 9.1. It appears that two clusters (cyan
squares and green stars) correspond to different types of “mostly fluid” states, whereas the
remaining three clusters (blue circles, yellow diamonds and red stars) represent “congested
states”. The physical meaning of each cluster is analyzed by constructing histograms of
the fluidity index values. Fluidity index values in the night and early morning Free-Flow
(NFF) and FEvening Free-Flow (EFF) cluster are higher as a whole than those in the clus-
ters corresponding to occurrences of congestion (Morning Increasing Congestion, Mid-Day
Congestion, and Afternoon Decreasing Congestion clusters).

As done in the primary analysis for the choice of s and for visualization purposes, the spa-
tial layouts of the global traffic state distribution is illustrated in 3D-NMF space (obtained
by requesting 3 components only instead of 15), while the k-means clustering algorithm is
run in the larger 15-D NMF space. The physical interpretation of the five clusters is clear
in Figure 9.1. The figure shows all global traffic states projected in 3D-NMF, together with
a typical temporal evolution trajectory of a single day. The global traffic state trajectory
is indicated by the blue line in Figure 9.1. The green star and red circle are the starting
point and ending point of the trajectory, corresponding to global traffic states at 00:00 and
23:55 respectively. The temporal arrangements of the network-level traffic states along the
trajectory underline the temporal interpretation of the five clusters: the green-star cluster
corresponds to night and early morning free-flowing, from which typical day evolution goes
into morning intermediate states (before 10:00) corresponding to the blue-circle cluster; mid-
day congestion (red-star cluster) generally occurs between 10:05 and 15:00, and represents
a clearly different congestion state in 3D-NMF space, with a sudden jump of traffic states
from the blue-circle cluster to the red-star one, and sudden jump back into the afternoon
intermediate state (yellow-diamond cluster) around 15:00. The traffic settles to a specific
evening near-free-flow state from 18:00 to 23:55 (cyan-square cluster). Interestingly, both
the projection of the global congestion states in 3D-NMF space and the clustering results in
15D-NMF show a clear distinction between morning and afternoon intermediate congestion
states, and also between late evening and night/early-morning near-free-flow states.

Figure 9.2 shows traffic patterns corresponding to spatial configurations of congestion for
the centers of each cluster. Each cluster center is computed by averaging all elements of the
corresponding cluster, so as to indicate a representative spatial configuration of traffic states
of each cluster. The figure displays the links with fluidity index values less than 0.7 (congested
links) on the Google Map screen-shots. For the five clusters, most of the congestion occurs
within the regions highlighted by the dashed circle in Figure 9.2. This region corresponds to
the downtown region of San Francisco. Compared with the downtown region, the western
and southern region of San Francisco are less likely to suffer from congestion (left and bottom
part in the San Francisco road network). This analysis is very useful for traffic management
centers and public entities to understand the most important bottlenecks that cause heavy
traffic conditions. Moreover, the results show that some of the major bottlenecks remain
constant throughout the day whereas others evolve with the different traffic patterns of
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Marker symbol | Average fluidity Cluster name
Green stars 0.7757 Night + early morning Free-Flow (NFF)
Blue circles 0.7185 Morning Increasing Congestion (MIC)
Red stars 0.6393 Mid-Day Congestion (MDC)
Yellow diamonds 0.6730 Afternoon Decreasing Congestion (ADC)
Cyan squares 0.7420 Evening Free-Flow (EFF)
1~ Night+early:morning Free-flow (NFF) Aftermoon Decreasing Congestion (ADC)
O Morning Increasing Congestion (MIC) Evening Free-\FIow (EFF)
0.8~ ‘ Mid-Day Congestion (MDC)
08— ¥ * *y
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Figure 9.1: Results of the k-means algorithms on the low-dimensional projection of network-
level congestion states. The clustering exhibits different times of the day corresponding
to different configurations of network-level congestion states. The table shows the average
fluidity values of each of the global state clusters. The figure shows the temporal evolution of
global congestion states, projected in the 3D-NMF space using different colors and symbols
to represent the five different clusters. The first and the last network estimates of the day
are represented with a large star and a large circle respectively.
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Figure 9.2: Typical spatial configurations of traffic states for the five cluster centers of
network-level traffic states. The figures display the links with fluid index values less than
0.7 (congested links). Most of the congestion occurs within the dashed circle, which is the
downtown region of San Francisco. The NFF and EFF clusters have a smaller number of links
highlighted than the MIC, ADC and MDC clusters indicating the difference in congestion
levels.
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the day. This dynamical analysis can lead to specific management strategies to address
this recurring congestion. For example, a regression model in the lower dimensional space
has a lot of potential to predict the global traffic dynamics [96]. This work indicates the
promising potentials of spatial congestion patterns in forecasting congestion and improving
traffic management.

9.3 Spatial decomposition of the road network

Another motivation for using NMF is its property to approximate original data by an additive
linear combination of a limited set of “components” (often denoted NMF basis). Due to
the non-negativity constraints, spatial arrangements of the components are usually sparse,
which means that values in most regions of each basis are (close to) zero except several
localized regions. These localized regions with large values correspond to typical patterns
or representative components of the original signals (the global congestion states). They
typically correspond to independent “parts” of the data. This property has lead to successful
applications of NMF to extract part-based representation or latent semantic topics from the
data in image processing or text classification. For example, when NMF is applied to image
datasets, it automatically extracts some part-based representation of the type of objects
present in the images [150, 119, 76]. The section studies this “part-based” representation of
global congestion states to analyze the physical significance of NMF components obtained
on traffic data and improve the understanding of congestion patterns.

For arterial traffic, the regions with distinctively large values in each NMF basis corre-
spond to a group of links with highly correlated traffic states. This section constructs the
components by selecting the links which represent the top 20% largest values in each basis.
The components are represented by displaying the selected links (red line) of the road net-
work. Figure 9.3 shows several typical spatial arrangements of localized components, out of
the fifteen components learned during the NMF training. Out of the different components,
some are very informative regarding typical congestion patterns. One of the components cor-
responds to streets in a localized West region (“West Part” NMF component in Figure 9.3),
and another to streets in the central region (“Central” NMF component in Figure 9.3), which
could indicate that the traffic on the links within each of these regions is highly correlated
whereas the traffic between distinct regions exhibits relatively independent behaviors. Such
a characterization of independent regions of traffic dynamics is important to significantly
reduce the computational costs of a large variety of estimation models, in particular esti-
mation models based on graphical models, such as the ones presented in Chapters 6 and 9
or in [82, 105]. The characterization of different regions with limited dependency has a lot
of potential to design approximate inference algorithms to reduce the computational costs
while maintaining an accurate representation of traffic dynamics and limiting the estimation
error [30].

Other NMF components highlight correlations of traffic in parallel directions. On Fig-
ure 9.3, a majority of the links of the “East-West transit” NMF component are horizontally-
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Figure 9.3: Examples of NMF basis, either highlighting localized correlations (top figures),
or flow-direction correlations (bottom figures).
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oriented, wheras a majority of the links of the “North-South transit” NMF component are
vertically-oriented. As highlighted in the figure, the links of these components which are
close to the downtown tend to be more consistent with the orientation pattern. These links
with similar orientations are likely to have correlated dynamics, whereas links with orthog-
onal orientations have less influence on each other. These correlations properties can be
used to learn the structure of the graphical model representing conditional independences
between traffic states on the network (both spatially and temporarily).

According to the physical representation of the NMF components, it seems that different
NMF bases focus on different localized connected regions of the network. This could imply
that NMF detects both strong correlation of traffic dynamics within each localized region
and relative independence between these regions. However, this connectivity and localization
of the components could be improved. Standard NMF does not guarantee connected nor
localized components and the above promising results motivate further investigation. A
possible approach is to modify the NMF algorithm in order to favor localized sparsity, which
should help to unveil more distinct part-based network decomposition.

9.4 Temporal analysis of global traffic states

This section analyzes the daily dynamics of network-level congestion states projected in the
NMF space. This analysis is important to understand how congestion forms and dissipates
throughout the day. For each day in the studied period, the trajectory of the network-level
traffic states in the NMF space is represented using the projection on the lower dimensional
space. The projections are connected to form a solid curve representing the trajectory. Notice
that trajectories are nearly closed in the NMF space. Note that for visualization purposes,
the projection is done on the 3D-NMF space. Figure 9.4 (top) shows a typical day trajectory
with successive temporal intervals along the trajectory plotted using different colors, to give
an idea of the dynamics along the curve.

It is noteworthy that over the 184 days of reconstructed traffic data, there are only, in 3D-
NMF projection, exactly seven different typical trajectories, as shown in Figure 9.4 (center).
Furthermore, each one of these seven typical trajectories corresponds to a particular day of
the week and are thus called day trajectory patterns. Note that individual day trajectories
for same day-of-week, although superposed in 3D-NMF, are slightly different from another
in 15D-NMF space, in which clustering is performed.

Differences between the different day trajectory patterns concentrate within the time
interval corresponding to transitions between congestion states, in particular between the
morning increasing congestion and the mid-day congestion and between the mid-day conges-
tion and the evening decreasing congestion. Characterizing these specific time intervals that
represent the differences in daily dynamics allows us to identify and/or predict different evo-
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Figure 9.4: Daily trajectories of network fluidity indices projected in 3D-NMF space exhibit
seven different typical trajectories, representing the days of the week. Top: Example of
a daily trajectory with coloring representing the five different times of the day. Center:
The seven different trajectories, representing a typical daily dynamic for each day of the
week. Bottom: Dendrogram representing the hierarchical clustering analysis of the daily
trajectories.



CHAPTER 9. LARGE SCALE PATTERN ANALYSIS 167

lution patterns of traffic states and to develop mid-term or long-term traffic forecast [97, 96].

In this data set, one complete evolution trajectory contains 288 sampling steps (estima-
tions are performed every five minutes), which is represented by a 2626 x 288 matrix (the
network has 2626 links). As for the previous sections, the analysis is performed in 15-D NMF
space (3-D space is only used for visualization purposes). Each trajectory is represented by
a sequence of 288 network-level traffic state projected on the 15-D NMF space and denoted
{hi,ho, -+ , hags}, where h; € R'. The similarity between trajectories {h{, h, ..., hig} and
{hb RS, ... hbes}, representing days a and b respectively, is computed as the sum over the
different estimation times k = 1...288 of cosine distances between the NMF projections at
the corresponding estimation times:

288

D= Z cosdis(h{, hY), (9.3)

where cosdis(hg, h}) =1 — M (9.4)
’ (RUA N RuAl

The function cosdis is the cosine distance between two vectors and is defined in (9.4). It
evaluates the cosine value of the angle between the two data vectors h{ and h{ in the 15-D
NMF projection space. Larger cosine distance values indicate more important differences
between the two vectors. Due to the mathematical definition of the cosine function, the
derived cosine distance is normalized into the range [0,1]. The defined measure between se-
quences of global traffic states is used to perform hierarchical clustering of daily global traffic
states sequences in 15D-NMF space [130, 203]. The successive similarity-based groupings are
shown on the dendrogram in Figure 9.4 (bottom) following the same color legends as in the
middle figure. In the dendrogram, daily sequences of network-level traffic states are grouped
gradually into clusters in the form of U-shaped trees. The height of each U-shaped tree
(vertical axis) represents the distance between the sets of daily sequences being connected.
Leaf nodes along the horizontal axis correspond to all daily sequences of network-level traffic
states. At the bottom level of the hierarchical tree, daily sequences are first aggregated with
respect to each day of the week. It underlines the intuition that each day of the week has a
particular temporal dynamic pattern in terms of network-level traffic states. By increasing
the distance thresholds, clusters merge until only one cluster remains. The seven days of the
week are clustered into four different groups indicating the days that tend to follow similar
patterns. Weekend days (Saturday and Sunday) are clustered together. As for the week
days, Monday and Tuesday, representing the beginning of a week, appear to have a different
temporal dynamic pattern from Wednesday and Thursday (middle of the week). Traffic
dynamics on Fridays also tend to deviate slightly from that of the other days and is assigned
to a separate group. As the distance threshold increases, Friday is added to the Wednesday
and Thursday cluster. The results indicate the there are generally three kinds of temporal
dynamic patterns of network-level traffic states in the data, corresponding to the beginning
of the week (Monday and Tuesday), the end of the week (Wednesday, Thursday and Friday)
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and the weekends (Saturday and Sunday). As the threshold increases even more, the two
clusters of week days merge leading to two clusters representing the weekend days on one
side and the week days on the other side. The distance thresholds need to be increased
significantly more for these two clusters to merge, which indicates the importance in the dif-
ferences in daily dynamics between week days and weekends. It is expected for Monday and
Friday to have different dynamics (coming back or leaving for the week-end). However, it is
slightly surprising that Monday and Tuesday are clustered together while Wednesday and
Thursday (and then Friday) form another cluster. The data seems to indicate a beginning
of the week vs. end of the week clustering, with Friday being the most different of the other
days.

9.5 Conclusion and discussion

The chapter investigates how dimensionality reduction and more specifically Non-negative
Matrix Factorization can be used to provide valuable insight regarding the large scale proper-
ties of a queuing network, both temporally and spatially. The data mining algorithm unveils
spatial and temporal patterns which can be incorporated in existing estimation algorithms
such as the Dynamic Bayesian Networks presented in Chapters 6 and 7. The integration of
this information has the potential to both improve the accuracy and the scalability of the
estimation algorithms. The principle is to perform dimensionality reduction, which allows
for clustering of spatial congestion patterns, and easy analysis/categorization of temporal
daily dynamics. Furthermore, the part-based decomposition feature of Non-negative Matrix
Factorization automatically unveils areas of the road network with strong correlations.
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Chapter 10

Conclusion

This dissertation presents modeling frameworks and estimation algorithms with a focus on
systems for which a constitutive equation is available as a mathematical abstraction of the
physical world. The dissertation investigates how a careful modeling of the physical world
and insights provided by large amounts of data can improve the estimation capabilities
of constitutive equations or data-driven estimation alone. It also discusses the choice of
model complexity depending on the application of interest or the data available. The thesis
takes the example of signalized queuing networks for which these considerations are essential
and have not been studied extensively. The integration of physical and data insights has
been acknowledged in numerous fields such as natural language processing, computer vision,
weather forecasts but remains an emerging notion for which few contributions exist when
considering signalized queuing networks.

Advantages and disadvantages of constitutive models

A constitutive model has the potential to accurately represent specific characteristics of a
given system. For example, the fields of distributed parameter systems, estimation and
control theory provide powerful frameworks to develop accurate estimation algorithms. In
particular, Chapter 3 shows how the precise characteristics of time varying service rates in a
queuing network can be estimated given a model of queue dynamics which is formulated as
a Hamilton Jacobi partial differential equation. The potential of physical models to produce
estimates of the state of a given system is also illustrated Chapter 5. The estimation capa-
bilities of travel time distributions are significantly improved when first principles are used
to model the dynamics of horizontal queues, instead of relying on classic distributions.
Besides a better representation of some of the characteristics of the system, models based
on first principles also guarantee that the estimates are compatible with the physics of
the problem. This property is all the more essential that little data is available. The
constraints imposed by the physical model improve the robustness and the quality of the
results. Chapter 5 underlines the importance of using a constitutive model of horizontal
queues to represent delay distributions when little data is available. Chapter 6 illustrates how
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the addition of a conservation law in the queuing network is able to capture the propagation
of congestion in the network and provide estimation capabilities in regions of the network
where little data is available as well as short term prediction capabilities.

However, the physical reality cannot be fully abstracted with a mathematical representa-
tion and assumptions on the physics are necessary to derive constitutive models. This may
lead to limitations and inaccuracies when some of the assumptions of the modeling are not
met. For example, Chapter 5 illustrates the limitation of some of the assumptions of the hor-
izontal queuing model. Even though the distribution derived from this model outperforms
classic distribution, the results show that one of the assumption is not always met in practice
(uniform arrivals). The physical model may not be able to adapt automatically and detect
that one of the assumptions is not valid. A more data-driven approach may help to assess
the validity of different assumptions and automatically adapt to refine assumptions based on
the available data. Similarly, a data-driven approach can help detect when a physical model
tries to account for characteristics of the system which cannot be retrieved because of the
granularity of the data.

The accurate representation of the physics may not be compatible with the desire to
have computationally efficient models. For example, the distributions of delay and travel
times derived in Chapter 5 are able to characterize accurately some specific characteristics of
signalized queuing networks (in particular the difference between delayed and non-delayed
customers). However, this comes to the detriment of the mathematical properties of the
distributions. The thesis proves that the distributions have interesting mathematical proper-
ties (mixture of log-concave distributions) which are used to improve estimation capabilities.
However, some essential properties of most classic distributions are not met by the distri-
butions derived from queuing theory. In particular, the distributions are not convex in the
parameters. This limitation is overcome by considering estimation problems which decouple
for each link of the network (through travel time decomposition) and lead to a series of small
scale optimization problems for which convexity properties are not as essential. However,
additional assumptions or constraints are required to allow for this decoupling (independence
of travel times and travel time allocation), whereas a model based on classic distributions
(Chapter 7) do not require this additional step in the estimation algorithm.

Advantages and disadvantages of data-driven models

Data-driven models have the capability to model systems for which constitutive equations
are not available. For example, the effect of individual behavior (e.g. driving behavior
in transportation networks) or other exogenous features (e.g. pedestrians, bad parking or
weather condition in transportation networks) are hard to model with constitutive equa-
tions. Instead, modeling their effect as a random variable has the potential to improve the
robustness of the estimation and to accurately differentiate the signal and the noise, as done
in Chapter 5. Similarly, a statistical approach can account for a lack of information on the
system of interest. For example, Chapter 5 models the arrival time of customers in the
queue (with respect to the service cycle) as a random variable. The signal timing is not
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available and the arrival time of vehicles in the queue cannot be estimated directly (because
the vehicles only report their position every minute rather than at the beginning and end
of links). These two arguments motivate the modeling of the arrival time in the queue as
a random variable, which can be integrated in a marginal distribution, instead of trying to
estimate it.

Data-driven models also have the potential to study systems at a larger scale and to
discover patterns which do not appear at a lower level. The dynamics of queuing networks is
accurately modeled using partial differential equations but their large scale dynamics is not
well understood today and no accurate constitutive model exists. The data-driven approach
allows us to underline specific patterns and aspects of the dynamics which are difficult to
model by a human. These aspects of the dynamics can be integrated in estimation algorithms
(based on constitutive equations for example) to improve the estimation capabilities and/or
simplify the model to make it more computationally efficient. For example, Chapter 8 detects
the intersections with important variations in the traffic conditions. Such information can
be integrated in the structure of the graphical models of Chapters 6 and 7 to model the
propagation of congestion on the network.

The results of a data-driven approach may also be more reliable as they are based on
the data rather than on arbitrary assumptions which are hard to validate. For example,
Chapter 9 detects different times of the day in the congestion dynamics. The notion of time
of day was first introduced, somewhat arbitrarily, in Chapters 6 and 7 for the necessity of
the estimation. In these chapters, the times of day are chosen somewhat arbitrarily as a
trade-off between the number of parameters to estimate and the amount of data available.
Besides validating the intuition that congestion has specific characteristics depending on the
time of the day, the clustering algorithm defines the beginning and the end of each time of
the day based on the data. The definition of time of day by a human-being is more likely
to be subjective, based on individual perception and experience. The data-driven approach
is also more general as it does not require context specific knowledge and automatically
detects the characteristics of each region. For example, the definition of the times of the day
could be significantly different if run in a different city with different commute patterns).
The data-driven approach also allows us to define regions of the graph with high level of
correlations and regions of the graphs which have independent dynamics. A human being
could model these dependencies using existing division of a city (ZIP codes, neighborhoods
and so on) but the data-driven approach underlines a much more complex pattern. Again,
the algorithm is not context specific and does not require a-priori knowledge of the area of
interest. Similarly, the dendogram clustering similar trajectories and exhibiting similar days
of the week can be leveraged in a hierarchical model without requiring someone to make
arbitrary assumptions. Some people may cluster the days of the week as Saturday-Sunday
for the weekend, Tuesday-Wednesday-Thursday for the mid-week and Monday-Friday for the
“close to weekend” days. This clustering may be appropriate in some areas whereas others
see different similarities between the days of the week.

Data-driven models tend to have better computational performance. They rely on ex-
isting distributions and algorithms which have been developed over the years and have nu-
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merous mathematical properties which can be leveraged to optimize the computation. For
example, Gaussian random variables have a long list of properties which make them very
powerful in terms of computation (closed under convolution, closed under translation and
linear transformation, convexity with respect to the parameters, and so on). These distri-
butions may appear as a trade-off between the capacity to represent the reality accurately
through a physical model and the capacity to run fast and robust estimation using data-
driven models.

However, as pointed out earlier, data-driven models may be limited in their representation
of the reality. Chapter 5 underlines this point. This limited ability to capture specific
phenomena is all the more important that little data is available. Indeed, if large amounts
of data are available, appropriately increasing the complexity of data-driven models with a
large number of parameters or non-parametric models will be able to approximate the system
accurately. For example, any continuous probability distribution can be approximated with
a Gaussian Mixture Model with a sufficiently large number of components. The accurate
representation of the physical system with data-driven models may be to the detriment of
interpretability. For the distribution of travel times in Chapter 5 for example, the different
components of the Gaussian Mixture Model may no longer represent identifiable patterns
(e.g. delay patterns as in Chapter 5).

Data-driven models rely on a limited set of assumptions regarding the properties of the
system. They have the potential to accurately represent any process as long as enough data
is available.The trends of data collection today strongly encourage to have flexible models
which improve as more data is collected.

Summary of contributions

As underlined in the previous paragraphs, the thesis points out the potentials and limitations
of both physical and data-driven models. The thesis goes beyond stating the strengths
and weaknesses of both approaches by presenting how a hybrid approach of physical and
data-driven models can outperform either approach when considering the goal of building a
scalable, robust, reliable and understandable estimation platform.

e Chapter 4 builds on the deterministic model and algorithm of Chapter 3. It shows how
to integrate noisy measurements in the physical representation of a dynamical system.
Instead of computing the deterministic solution of the Hamilton-Jacobi partial differ-
ential equation, the algorithm provides results in terms of a probability distribution
function. This expands the estimation capabilities and make them more robust to
inaccuracies of both the data and the modeling.

e Chapter 5 takes into account another form of variability which has a very different
origin from the variability taken into account in Chapter 4. In this case some of the
randomness accounts for information which cannot be reconstructed from the data.
The level of details provided by sparsely sampled probe vehicles does not enable the
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reconstruction of precise signal timing nor arrival time at the beginning of the link.
For this reason, the arrival time with respect to the beginning of the cycle (sometimes
referred to as offset) is considered as a random variable. The distribution of delay
is then computed as a marginal distribution, by integrating the delay distribution for
each arrival time within a cycle. This model represents a higher level of abstraction
and aggregation compared to the derivations of Chapters 3 and 4. This abstraction
is possible by leveraging physical properties of the system (periodicity of signalized
networks) even though the original constitutive equation does not appear as directly
in the estimation algorithm of Chapter 5 as it does in Chapters 3 and 4.

e Chapter 5 also leverages a hybrid approach of physical and data-driven models to take
into account the variability of travel times due to driver behavior as well as other factors
such as pedestrians, bad parking, lane changes and so on. These different factors are
hard to model accurately using physical models. However, the physics provides the
intuition that they should be taken into account. The effect of these factors on the
distribution of travel times can thus be learned from the data.

e Chapter 6 goes one step further in the integration of physical and data-driven models.
The chapter builds on Chapter 5 to represent the probability distribution of travel
times. It adds a physical property of the system (conservation of flows at intersections)
while improving the learning capabilities of the model through a data-driven approach
(Dynamic Bayesian Network). The model is then able to account for the propagation
of congestion in the network and perform short term prediction, in coherence with both
the physics and the data.

e Chapter 7 is comparable to Chapter 6 in many aspects. They both represent the
dynamics of signalized queuing networks using a Dynamic Bayesian Network. They
differ in the level of abstraction from the physics that each of them adopts. In Chap-
ter 6, both the observation and the dynamical model are derived from first principles of
horizontal queues and flow conservation. Chapter 7 has the same structure for the Dy-
namic Bayesian Network but the observation and dynamical model are more general,
requiring limited assumption on the physics. In the model of Chapter 7, the number of
states for each link can be as large as desired. Similarly, the structure of the transition
model is general. The thesis presents the model with assumptions on the transition
model: there is only edges in the Dynamic Bayesian Network between the state of a
link at a given time interval and the state of its physical neighbors at the following
time interval. This could be generalized to allow for any structure of the transition
probability, i.e. allowing edges between the state of any link at a given time interval
with the state of any other link at any time interval. Any transition model is theo-
retically possible and not limited by the framework of Dynamic Bayesian Networks.
The choice of the number of states for each link and the choice of the structure for the
transition model defines the model complexity. The choice depends on two factors: (i)
a more complex model has the potential to represent the system more accurately but
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is more likely to over-fit the training data and (ii) a more complex model is likely to
be more computationally intensive and the chosen level of complexity may depend on
requirements regarding scalability, real-time capabilities and so on. Chapter 7 shows
the importance to leverage ideas from the physics while letting the model have as much
flexibility as possible so that the data can improve the model.

e Chapters 8 and 9 present data-mining algorithms which provide insights to improve
models derived from the physics, such as the Dynamic Bayesian Networks of Chapters 6
and 7. The algorithms operate at a higher scale and are not able to retrieve (nor do
they aim at retrieving) as precise information as the estimation algorithms presented
in the previous chapters. However, the data-driven approaches have the potential to
improve some of the modeling and algorithm design decisions by providing a large-
scale understanding of the dynamics which is hard to model directly. The data-driven
models also have the advantage to be general. They can be applied to a large variety of
systems without requiring site-specific or application-specific knowledge. For example,
the algorithms have a lot of potential to improve the algorithms in the following ways.

— The LASSO algorithm is able to detect change in each queue. This information
can be integrated in the estimation algorithm to decide when old data should be
discarded because conditions have changed significantly.

— The LASSO algorithm analyzes local differences in traffic conditions. The out-
come of the algorithms could improve and make less arbitrary the design of tran-
sition probabilities in the Dynamic Bayesian Networks of Chapters 6 and 7.

— The Non-negative Matriz Factorization algorithm clusters the graph in different
area with high intraclass correlation and low interclass correlation. This type of
analysis is essential to scale estimation algorithms such as the Dynamic Bayesian
Networks of Chapters 6 and 7. Indeed, inference in these graphs is computa-
tionally demanding. Approximations using particle filters require the number of
particles to grow. A partition of the graph in areas with high intraclass correla-
tion and low interclass correlation may face this limitation by using approximate
inference algorithms (such as the Boyen-Koller algorithm).

— The estimation algorithms usually define times of the day during which the pa-
rameters of the dynamics are assumed to be constant. This is important to limit
the number of parameters to estimate and avoid over-fitting. However, the use of
times of the day requires the choice of the beginning and end of each of these time
periods. The Non-negative Matriz Factorization algorithm provides this informa-
tion. The definition of the times of the day is based solely on the data and does
not require specific knowledge or subjective modeling assumptions which makes
it more general and less prone to human judgment.

— Estimation algorithms can usually be improved by considering hierarchical mod-
els. The ides of hierarchical model is to improve the robustness of the model
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when little data is available using Bayesian statistics. For example, in the graph-
ical model of Chapters 6 and 7, the parameters are defined by time of the day
and then by day of the week. Considering that some parameters are drawn from
the same distribution may improve the robustness of the estimation. The Non-
negative Matrix Factorization algorithm provides a dendogram representing the
similarities between the days of the week. This information could be incorporated
in the design of the graphical models of Chapters 6 and 7 without site-specific or
application-specific knowledge. The hierarchy exhibited in Chapter 9 in the Bay
Area of San Francisco, CA could be very different in other areas of the world.
For example, some regions of the world have weekends on Thursday and Friday.
Others may have very different mobility patterns (commuting times shifted early,
commute through home at lunch time and so on).
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Appendix A

Supplement: Probability distribution
of delay in the congested regime

TODO: Add table summary of the results

This appendix derives the probability distribution of travel times for vehicles traveling
from a location 7 to a location x5 on the link. As defined in the article, x is the distance to
the intersection and ng is the maximum number of stops in the remaining queue, between
x1 and x5 (the indices x; and z, are omitted for notational simplicity). In the duration of a
light cycle, the distance traveled by vehicles stopped in the queue is l5. Thus, the maximum
number of stops in the remaining queue, between x; and s,

_— min(xy,(,) —min(xQ,lT)-‘

s

The delay experienced when reaching the triangular queue is readily derived from the
expression of the delay in the undersaturated regime. The delay experienced when reaching
the remaining queue is the duration of the red time R. The expression of the delay at
location x is then

R if £ <1,
8(x) ={ REH=2 ifxe|l,I +1]
0 if 2> 1, + 1,

Case 1: z; is upstream of the total queue and z; is in the
remaining queue (Figure A.1)
Since x; is upstream of the total queue and x, is in the remaining queue, all the vehicles

stop once in the triangular queue between x; and z5. The critical location z. is defined as
the location in the triangular queue such that
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e Vehicles reaching the triangular queue upstream of x. stop n, times in the remaining
queue. They represent a fraction “Jrll%xc of the vehicles entering the link in a cycle.

e Vehicles reaching the triangular queue downstream of x. stop ng — 1 times in the
remaining queue. They represent a fraction ‘Tcl—’lr = 1- ““l—’“ of the vehicles entering
the link in a cycle.

The location x. is given by z. = x5 + nsl,. The values of the minimum and maximum delays
are given by min = (ns — 1)R + 0%(x.) and dpax = nsR + 6°(x.). The delay experienced by
the vehicles is uniformly distributed on [0min, Omax)-

Note that ng > 1 since x4 < [,.

space

€Zq -

- Vehicles stopping in the triangular queue
and n, times in the remaining queue

% Vehicles stopping in the triangular queue

and n, -1 times in the remaining queue

Figure A.1: Case 1: All the vehicles stop in the triangular queue. A fraction stops ng times
in the remaining queue, the other ones stop ny, — 1 times.

Case 2: z; and x, are upstream of the remaining queue
(Figure A.2)

Given that x5 is upstream of the remaining queue, this case is similar to the undersaturated
regime. A fraction of the vehicles is not delayed between z; and x5. The vehicles reaching the
queue between z; and x5 experience a delay in the triangular queue. This delay is a random

variable, uniformly distributed on [0°(x;), d¢(x2)]. The fraction of vehicles experiencing delay

S _ min(ls+Hr,x1)—min(ls+1r,22)
IS 77:1:1,:1:2 - ls .
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spacet time

Lo
1

lma.x
Ll =g

- Vehicles stopping in the triangular queue only

Figure A.2: Case 2: Some vehicles stop in the triangular queue. The others do not experience
delay.

Case 3: z; is in the remaining queue, and thus so is x5
(Figure A.3), i.e.

The path starts downstream of the triangular queue. Some vehicles stop ng times and
experience a delay ngR and the other vehicles stop n, — 1 times and experience a delay
(ns — 1)R. The critical location z. is defined as the location in the remaining queue such
that

e Vehicles joining the queue between x; and x. stop n, times between x; and x5. Their
stopping time is ngyR and they represent a fraction (x; — x.)/l; of the vehicles entering
the link in a cycle.

e Vehicles joining the queue between z,. and x. — [ stop ns — 1 times between x; and x,.
Their stopping time is (ns — 1)R and they represent a fraction 1 — (x; — x.)/ls of the
vehicles entering the link in a cycle.

The critical location z. is given by z. = x5 + (ns — 1)ls.
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spacef
€Tr9o =

% Vehicles stopping n, times in the remaining queue

Vehicles stopping n, -1 times in the remaining queue

Figure A.3: Case 3: A fraction of the vehicles stop n, times in the remaining queue. The
rest stop ns — 1 times in the remaining queue.

Case 4: x; is in the triangular queue, 5 is in the remaining queue

The critical location x. is defined as x. = x5 + n4ls and derive probability distributions of
travel times for two subcases 4a (z. < zy, Figure A4 (top)) and 4b (z. > x;1, Figure A.4
(bottom)).

Case 4a. x. < x1. The delay patterns are the following:

— One stop in the triangular queue and n, stops in the remaining queue. The queue
is first reached between x; and x.. The delay is a random variable with uniform
distribution with support [6¢(z1) +nsR, 0°(x.) +nsR]. The vehicles following this

pattern represent a fraction #,-=*¢ of the vehicles entering the link in a cycle.

— One stop in the triangular queue and ny — 1 stops in the remaining queue. The
queue is first reached between z. and [,. The delay is a random variable with
uniform distribution with support [6¢(z.)+ (ns—1)R, 0°(1,) + (ns— 1) R]. Noticing
that d°(1,) = R, it follows that the support of the delay distribution is [§°(x.) +
(ns — 1)R, nsR]. The vehicles following this pattern represent a fraction “’Cl—:“ of
the vehicles entering the link in a cycle.

— No stop in the triangular queue and n, stops in the remaining queue. The queue
is first reached between [, and x; — [;. The delay is n,R. The vehicles following

this pattern represent a fraction lr_(f;l) of the vehicles entering the link in a
cycle.

A sanity check validates that the weights of the different components sum to 1:

T —Te  Te—lp  l— (21— 1)

L L L b
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Remark that xo < [ implies that ny, > 1. Then using the definition of x., x. = xs+ngls
and the fact that x; > z., it follows that x; — [, > x5 and all vehicles reach the queue
between z; and z; — I,.

Case 4b. x. > x1. The delay patterns are the following:

— One stop in the triangular queue and ng; — 1 stops in the remaining queue. The
queue is first reached between x; and [.. The delay is a random variable with
uniform distribution on [0°(x1) + (ns — 1)R, 6°(l.) + (ns — 1)R], i.e. uniform
distribution on [6°(z1) + (ns — 1)R, ngR]. The vehicles following this pattern

represent a fraction xll;lr of the vehicles entering the link in a cycle.

— No stop in the triangular queue and n, stops in the remaining queue. The queue
is first joined between [, and x.—l,. The delay is nyR. The vehicles following this
pattern represent a fraction “_(f—c_” of the vehicles entering the link in a cycle.

— No stop in the triangular queue and ns — 1 stops in the remaining queue. The
queue is first joined between x. — [l and x; — l;. The delay is (ns — 1)R. The
vehicles following this pattern represent a fraction #<-* of the vehicles entering
the link in a cycle.

A sanity check validates that the weights of the different components sum to 1:

lr - (xc - ls) Ty — lr Te — 1
ls ls ls

=1
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space
ro =

€ro + [n]ax

T

€T -

- Vehicles stopping in the triangular queue
and ng times in the remaining queue

- Vehicles stopping in the triangular queue
and n, -1 times in the remaining queue

E Vehicles stopping ns times in the remaining queue

space

- Vehicles stopping in the triangular queue
and n, -1 times in the remaining queue

% Vehicles stopping n, times in the remaining queue
- Vehicles stopping ns-1 times in the remaining queue

Figure A.4: Case 4: (Top) Case 4a: a fraction of the vehicles stop in the triangular queue and
ns times in the remaining queue, a fraction of the vehicles stop in the triangular queue and
ns times in the remaining queue, the rest stop ng times in the remaining queue. (Bottom)
Case 4b: a fraction of the vehicles stop in the triangular queue and ng — 1 times in the
remaining queue, a fraction of the vehicles stop ng times in the remaining queue, the rest
stop ns — 1 times in the remaining queue.



	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Related work
	Problem statement
	Organization of the thesis and contributions

	Background on distributed parameter systems
	Data assimilation in distributed parameter systems
	Traffic flow theory
	Estimation with Eulerian and Lagrangian sensing

	Deterministic estimation with Lagrangian measurements
	Motivating example
	Problem statement
	Existence of a solution
	Solution computation algorithm
	Numerical implementation
	Conclusion and discussion

	Characterization of the distribution of the solution under noisy measurements
	Probability distribution of the solution of the Hamilton-Jacobi partial differential equation
	Numerical implementation
	Conclusion and discussion

	Statistical model of horizontal queue dynamics
	Horizontal queuing theory
	Probability distribution of delay
	Probability distribution of travel time
	Learning queue dynamics from sparsely sampled probe vehicles
	Numerical experiment and results
	Conclusion and discussion

	Statistical dynamics of physical queuing networks
	Summary of the notations used in the chapter
	Statistical model formulation
	Probabilistic model of traffic dynamics
	Historical learning and real-time inference
	Experimental results
	Conclusion and discussion

	Data-driven model of congestion dynamics
	Modeling assumptions
	Spatial heterogeneity of travel times in signalized networks
	Historical learning and real-time inference
	Experiments
	Conclusion and discussion

	Using sparse modeling to learn spatio-temporal structure
	Introduction and related work
	The LASSO problem
	Recursive lasso with p new observations, l2 and linear l1 regularizations
	Recursive lasso with varying reference parameter
	Numerical results
	Conclusion and discussion

	Large scale pattern analysis
	Learning patterns with Non-negative matrix factorization (NMF)
	Congestion patterns: spatial configurations of global traffic states
	Spatial decomposition of the road network
	Temporal analysis of global traffic states
	Conclusion and discussion

	Conclusion
	Bibliography
	Supplement: Probability distribution of delay in the congested regime



