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INCIDENT RATIONAL CURVES

ZIV RAN

ABSTRACT. We study families of rational curves on an algebraic variety satisfying inci-
dence conditions. We prove an analogue of bend-and-break: that is, we show that under
suitable conditions, such a family must contain reducibles. In the case of curves in Pn

incident to certain complete intersections, we prove the family is irreducible.

Since the seminal work of Mori and Miyaoka [4] and [3], rational curves on algebraic
varieties, especially Fano manifolds, have been much studied. In particular Harris and
his school (see for instance [2], [8], [9] and references therein) have studied the case of
rational curves on general Fano hypersurfaces, with particular attention to the question
of dimension and irreducibility of the family of curves of given degree.

Our interest here is in families of rational curves on a given variety X that are incident
to a fixed subvariety Y, i.e. meet Y in a specified number of (unspecified) points. This on
the one hand generalizes bend-and-break, which is the case where Y consists of 2 points,
and on the other hand is related to rational curves on hypersurfaces, thanks to the fact
(see [7]) that a hypersurface Xd of degree d in Pn admits a ’nice’ degeneration (with
double points only and smooth total space) to the union of a hypersurface of degree
d− 1 with the blowup of Pn−1 in a complete intersection subvariety Y of type (d− 1, d),
and rational curves on Xd are thereby related to rational curves in Pn−1 meeting Y in a
specified number of points.

Here in §1 we present two kinds of results of bend-and-break type (arbitrary ambient
space). In the first, we make some disjointness conditions on the incident subvarieties,
for example (see Theorem 1) a pair of disjoint subvarieties Y1, Y2 meeting the curves in
question in 1 (resp. 2) points. In the second result (see Theorem 5) we assume given an
’overfilling’ family, i.e. one having at least ∞1 members through a point of the ambient
space, together with a subvariety, possibly reducible, meeting the curves in 2 points.

In §2 we specialize to the case of curves of given degree e in Pn, n ≥ 3, that are a
times incident to a fixed general complete intersection of type (c, d) with a ≤ e and
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c + d ≤ n. We prove in this case that the family is irreducible and its general member is
well behaved.

In this paper we will work over C (though the results probably hold over an arbitrary
algebraically closed field, at least if resolution of singularities is known through dimen-
sion k).

1. INCIDENTAL BEND-AND-BREAK

Notations and conventions. The following set-up will be in effect throughout this section.
(i) X is an irreducible projective variety of dimension n ≥ 3;

(ii) π : C → B is a proper flat family over an irreducible projecive base variety of
dimension k ≥ n − 1, with fibres Cb = π−1(b), so that for general b, Cb is a
nonsingular rational curve;

(iii) f : C → X is a surjective morphism that has degree 1 on a general fibre of π.

A family as in (iii), i.e. such that f is surjective, is said to be filling. If in
addition dim(B) ≥ n, so that through a point x ∈ X there are at least ∞1 curves
f (Cb), it is said to be overfilling.

Theorem 1. Under notations and conventions as above, assume moreover there are subvarieties
Y1, Y2 ⊂ X of respective codimension at least 1 (resp. at least 2) with Y1 ∩Y2 = ∅, such that for
general b ∈ B, f (Cb) meets Y1 (resp. Y2) in at least 1 (resp. at least 2) points.

Then the family C/B has a reducible fibre Cb.

Proof. Assume for contradiction all fibres Cb are irreducible. With no loss of general-
ity we may assume dim(B) = n − 1. After suitable base-change we may assume B
is smooth. Actually the argument below will use only a general curve-section of B,
so it’s enough to assume B normal. Let L be a very ample line bundle on B and set
H = f ∗(OX(1)) where OX(1) is a very ample line bundle on X. Then I claim that after
a further base-change we may assume that

C = P(E)

where E is a rank-2 vector bundle on B: indeed, if base-change enough so that π admits
a section D ⊂ C, we can take E = π∗(O(D)). Subsequently, after a further base-change,
we may assume that ∧2E is divisible by 2 in the Picard group, hence, after a suitable
twist, we may assume ∧2E = OB and in particular, as divisors,

c1(E) ≡num 0.(1)
2
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We will henceforth take c1 to have values in the Neron-Severi group, so c1(E) = 0.
By assumption, we have ’multisections’ S′i ⊂ C, i.e. possibly reducible subvarieties
S′i ⊂ C, i = 1, 2, generically finite of degree at least 1 (resp. at least 2) over B such that

f (S′i) ⊂ Yi, i = 1, 2.

Base-changing via S′i → B, the pullback of S′i splits of a section. Then after a further
base-change, we may assume we have 3 distinct sections S1, S2, S3 such that

f (S1) ⊂ Y1, f (S2), f (S3) ⊂ Y2.
Each section Si corresponds to an exact sequence

0→ Pi → E→ Qi → 0,

where c1(Pi) = −c1(Qi) thanks to c1(E) = 0. Since Y1 ∩Y2 = ∅, it follows that

S1 ∩ S2 = S1 ∩ S3 = ∅(2)

and hence

c1(P1) = c1(Q2) = c1(Q3).(3)

For i = 2, 3 set Zi = f (Si), mi = dim(Zi) ≤ n − 2. Note that each of S2, S3 collapses
under f , i.e. while Si has codimension 1 in C, Zi has codimension 2 or more in f (C) = X.
Identifying Si with B, let

fi : B→ Zi

be the resulting map, and let Fi be a general fibre of fi which has codimension mi. Note
that

Hmi .Si ∼ deg(Zi)Fi.(4)

Now, we have

Hmi+1Siπ
∗(L)k−mi−2 = 0,(5)

while, by surjectivity of f ,

Hmi+2π∗(L)k−mi−2 > 0.(6)

Therefore the Hodge index theorem implies that

Hmi S2
i π∗(L)k−mi−2 < 0.(7)

Now as Si is a section, we have
OSi(Si) = 2Qi.

3

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



In view of (4), (7) means

deg(Yi)Fi.c1(Pi)Lk−mi−2 > 0,(8)

so we may assume

Fi.c1(Pi).Lk−mi−2 > 0, i = 2, 3.(9)

Now, since the sections Si are pairwise distinct, the natural map Pi → Qj must be
nontrivial, hence injective, for all i , j, hence c1(P2) has negative degree on a general
curve section of F3. Thus

c1(P2).F3.Lk−mi−2 < 0.(10)

But this obviously contradicts (3). �

Remark 2. The situation of Theorem 1 is not a priori amenable to the usual bend-and-
break because there is not necessarily a curve f (Cb), much less a 1-parameter family of
such, through given points y1 ∈ Y1, y2 ∈ Y2.

Remark 3. The last part of the proof above an be shortened somewhat by restricting to
a 1-parameter subfamily going through a fixed point of Y2, which allows us to assume
that f contracts S3 to a point while B is 1-dimensional. Then the disjointness condition
2 implies that S2 and S3 are numerically equivalent. This, together with the fact that S2
and S3 are distinct and S3 is contracted, easily yields a contradiction.

The hypotheses of Theorem 1 afford tweaking in various ways, for example the fol-
lowing.

Theorem 4. Under Notation and Conventions as in the Introduction, assume given subvarieties
Y1, Y2, Y3 ⊂ X meeting a general f (Cb) such that

(i) each Yi has has codimension 3 or more;
(ii) dim(Y2 ∩Y3) + dim(Y1) ≤ n− 3;
(iii) Y1 ∩Y2 ∩Y3 = ∅;
(iv) the subfamily of B consisting of curves f (Cb) that are contained in Y2 ∩Y3 is of codimen-

sion > 2.
Then there is a reducible fibre Cb.

Proof. We may assume each Yi corresponds to a section Si of C/B, which in turn corre-
sponds to an exact sequence

0→ Pi → E→ Qi → 0, i = 1, 2, 3.

If S2 ∩ S3 = ∅ then c1(Q2) = c1(P3) and we easily get a contradiction as above because
both P2 and P3 inject into Q1.

4
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Now suppose S2 ∩ S3 , ∅. If π(S2 ∩ S3) has dimension < n− 2, it yields an (n− 3)-
dimensional family entirely contained in Y2 ∩Y3, against our hypotheses. Hence S2 ∩ S3
projects to an (n − 2)-dimensional subfamily B′ ⊂ B and the restricted family C ′/B′
has desjoint sections corresponding to S1 and S2 which get contracted to Y1 and Y2 ∩ Y3
respectively. By Assumption (ii) this family has ∞1 members through a pair of fixed
points on Y1 and Y2 ∩Y3, so standard bend-and-break applies.

�

Next we give a bend-and-break type result for overfilling families.

Theorem 5. Under Notations and Conventions as in the Introduction, assume further
(i) there is a subvariety Y ⊂ X of codimension 2 or more such that a general f (Cb) meets Y in

2 or more points;
(ii) dim(B) ≥ n.

Then there is a reducible fibre Cb.

Proof. We begin as in the proof of Theorem 1, arguing for contradiction and base-changing
so that C = P(E) with c1(E) = 0 numerically, and so that we have 2 sections S1, S2 col-
lapsing to Y. Let Pi ⊂ E be the line subbundle corresponding to Si as before and let F0
be a component of a general fibre of f over X. Note dim(F0) = dim(B) + 1− n ≥ 1;
replacing B by a suitable subfamily we may assume dim(F0) = 1.

We next aim to show that the subfamily family of curves going through a fixed point
of X is disjoint from that where the sections S1 and S2 meet (i.e., informally speaking,
where the curves are ’tangent’ to Y). To this end, I claim now that π∗(Pi).F0 = 0, i = 1, 2.
To see this let Fi be a component of a general fibre of f |Si . Thus dim(Fi) ≥ 2. Then using
Hodge index as above we see that for any ample line bundle A on B,

π∗(A)dim(Fi)π∗(Pi).Fi > 0.

Since Fi lies on Si which projects isomorphically to B, this implies that π∗(Pi)|Fi is Q-
effective. Since Fi is filled up by curves algebraically equivalent to F0, it follows that

π∗(Pi).F0 ≥ 0, i = 1, 2.

Now as S1 and S2 are distinct, the composite of the injection P1 → E and the projection
E → Q2 yields an injection P1 → Q2 and thus Q2 − P1 is effective. Hence, as F0 is a
general fibre, we have

0 ≤ π∗(P1).F0 ≤ π∗(Q2).F0 ≤ 0.

Thus Pi.F0 = 0, i = 1, 2, as claimed. Since Hn is a positive multiple of F0, we have

π∗(Pi).Hn = 0, i = 1, 2.(11)
5
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Now recall the injection of invertible sheaves

P1 → Q2.

Its zero locus, which is numerically Q1 + Q2 = −(P1 + P2), is just the locus of points in
the base B over which the sections S1 = P(Q1) and S2 = P(Q2) intersect, i.e.

Q1 + Q2 ≡num π∗(S1 ∩ S2).

Since we know
Hn.(π∗(Qi + Qj)) = 0,

we conclude that
f (π−1π(S1 ∩ S2) ( X.

This means exactly that the locus of curves going through a general point of X is disjoint
from that where S1 and S2 intersect.

Now we can easily conclude. Let x ∈ X be general, and let B1 → B be a component
of the the normalization of π( f−1(x)), which we may assume is a smooth curve. Let
C1/B1 be the pullback P1 bundle. Then C1 is endowed with 3 pairwise disjoint sections,
namely S′1, S′2 corresponding to S1, S2 (disjoint because x < f (π−1π(S1 + S2))), plus a
section T contracting to x. But this is evidently impossible: writing the corresponding
rank-2 bundle on B1 as A1 ⊕ A2 corresponding to S′1, S′2, the subbundle corresponding
to T is isomorphic on the one hand to A1, on the other hand to A2, hence A1 ' A2 and
C1 is a product bundle, which has no contractible sections. Contradiction.

�

Example 6. See [7] for context and motivation. Let Y be a smooth codimension-c sub-
variety of Pn, c ≥ 2. Any component B of the family of rational curves meeting Y in a
points is at least (e + 1)(n + 1)− 4− a(c− 1)-dimensional. Assume 2 ≤ a ≤ e and that
a general curve in B is smooth. For a general curve C in the family, the normal bundle to
C in Pn is a quotient of a sum of copies ofO(e), hence it is a direct sum of line bundles of
degrees ≥ e. Therefore since a ≤ e, the secant bundle Ns

C is semipositive, hence the fam-
ily is filling. Hence it follows from Theorem 5 that B will parametrize some reducible
curves.

It is shown in [7] that when Y is a (d− 1, d) complete intersection, there is only one
component B as above, i.e. the family is irreducible, which also implies the existence of
reducibles in this case. Another irreducibility result is given in the next section.

2. IRREDUCIBILITY

For integers e, a, n and a smooth subvariety Y ⊂ Pn, we denote by Me(a, Y) the pro-
jective scheme parametrizing triples ( f , C, a) where ( f , C) is in the Kontsevich space of

6
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stable maps f : C → Pn with C of genus 0 and no marked points, and a is a length-a
subscheme a ⊂ f−1(Y) (see [1]). Our purpose is to prove

Theorem 7. Assume Y is a general complete intersection of type (c, d) with c + d ≤ n, n ≥ 3.
Then for all a ≤ e, Me(a, Y) is irreducible of dimension (e + 1)(n + 1) − 4 − a and for its
general point C is P1, f has degree 1. and f−1(Y) = a. Moreover if a ≤ e− 1 or c + d ≤ n− 3,
f is an embedding.

Proof. The idea is to degenerate Y to

Y0 = (H1 ∪ ...∪ Hc) ∩ (Hc+1 ∪ ...∪ Hc+d)

where H0, ..., Hn form a basis for the hyperplanes in Pn. We will prove first that the
assertions of the Theorem, except for the irreducibility, which is false, hold for Y0 in
place of Y.

Write
a = ∑

p
ap(12)

where p ∈ C are distinct and ap is supported at p and has length ap with ∑ ap = a. We
begin by analyzing the case where C is irreducible, i.e. C = P1. In that case f amounts
to an (n + 1) tuple of e-forms:

f = [φ0, ..., φn], φi ∈ H0(OC(e))

defined up to a constant factor and up to reparametrization. Here φi = f ∗(Hi). Because
any component of Me(a, Y0) has codimension at most a in the space of all maps, while it
is e + 1 > a conditions for any φi to vanish, so we may assume all φi , 0, i.e. f (C) is not
contained in any coordinate hyperplane Hi. Also, the conditions on f to appear below
will involve φi only for i > 0, so the general (n + 1)-tuple satisfying them will have no
common zero, making the corresponding rational map a morphism.

To each p appearing in (12) we associate index-sets

I(p) ⊂ [1, c], J(p) ⊂ [c + 1, c + d]

with
f (p) ∈ (

⋃
i∈I(p)

Hi) ∩ (
⋃

j∈J(p)

Hj).

Then

ap ≤ min(|I(p)|, |J(p)|).(13)

The condition (13) means that

∑
i∈I(p)

ordp(φi) ≥ ap, ∑
i∈J(p)

ordp(φi) ≥ ap,(14)

7
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which amounts to 2ap conditions on f : namely, if Lp denotes a linear form with zero set
p, that

Lap
p | ∏

i∈I(p)
φi, Lap

p | ∏
i∈J(p)

φi,

and for different points p these conditions are linearly independent. In fact these condi-
tions define a union of linear spaces each of which is of the form

{(φ.) : ordp(φi) ≥ bp,i, ∀i ∈ I(p) ∪ J(p)},
where the (bp,.) is sequence of nonnegative integers satisfying

∑
i∈I(p)

bp,i = ap, ∑
i∈J(p)

bp,i = ap.

Thus it is 2a conditions to map a given subscheme a to Y0 and 2a − r, r = |supp(a)|
conditions on f to map some unspecified subscheme of type (ap) (i.e. isomorphic to a as
above) to Y0. Since a ≥ r with equality iff a is reduced, it follows that f (C) is transverse
to Y. Also, an easy dimension count shows that f cannot have degree > 1 to its image.
Moreover, via multiplication by a, OC(e− a)→ OC(e), the linear system corresponding
to f contains n + 1 unrestricted sections of OC(e − a), which is very ample if a < e.
Finally if c + d ≤ n − 3 the system contains 4 or more unresticted sections of O(e),
namely φ0, φcd+1, ...φn, so again it is very ample. Thus, we have shown the Theorem
holds for the part of Me(a, Y0) corresponding to irreducible curves.

Next we analyze the case where C has nodes. Having a node is already 1 condition
on f so it suffices to proves that having a length-a subscheme map into Y0 is at least a
further conditions. The map f may be viewed as a projection of a rational normal tree in
Pe, (connected) union of rational normal curves in their respective spans. The foregoing
analysis goes through unchanged for points p that are smooth on C, so suppose p is a
node, with local branch coordinates x, y. The structure of ap is well understood (see [5])
and in any case ap contains a subscheme a′p = Z(xα, yβ) with α, β > 0 and α + β ≥ ap.
Analyzing as above, it is at least 2(α + β− 1) conditions on f to map a′p, hence ap, into
Y0, and this is > ap unless α = β = 1. In the latter case, if ap = a′p then ap = Z(x, y) has
length 1 while the number of conditions is 2. Finally, assume a′p , ap. This means ap is a
tangent vector, i.e. a length-2 locally principal subscheme of the form ap = Z(x + ty), t ,
0. Note we may assume I(p), J(p) are singletons, or else f must map a node of C to a
proper substratum of Y0 (of dimension n− 3 or less), which is at least 3 conditions. Then
the condition on f to map ap into Y0 is first that it must map p, a node of C, to the top
stratum of Y0 (2 conditions), and then the (2-dimensional) Zariski tangent space to f (C)
at f (p) must be non-transverse to Y0, which is 3 conditions in total. This completes the
proof of the Theorem, except for the irreducibility, for Y0 and hence for Y.
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Note that the components of Me(a, Y0) are of the form Me(a., i., j.) where for each k,
1 ≤ ik ≤ c < jk ≤ d and ∑ ak = a, and the general curve in Me(a., i., j.) has ak points
on the top stratum that is open dense in Hik ∩ Hjk for each k. Thus Me(a, Y0) is highly
reducible. Anyhow for such a curve C, the normal bundle N (strictly speaking, the
normal bundle to the map f ) is a quotient of a sum of line bundles of degree e hence is
itself a sum of line bundles of degree e or more. Consequently, thanks to the condition
a ≤ e, the ’secant bundle’ Ns, which parametrizes deformations preserving the incidence
to Y (cf. [6]), is semipositive.

Note that each Me(a., i., j.) contains curves of the form C′ ∪x L, where C′ is general in
Me−1(a′., i′., j′.) where (a′., i′., j′.) is obtained from (a., i., j.) by replacing a single ak by
ak − 1 (and omitting (ak, ik, jk) if ak = 1), and L is a line joining a general point x = f (p)
on f (C) with a general point of Hik ∩ Hjk . Indeed such a curve is clearly unobstructed
as secant thanks to the fact that Ns

L(−x) and Ns
C′(−p) are both sums of line bundles of

degree −1 or more, hence have vanishing H1.
With that said, the irreducibility of Me(a, Y) follows easily by induction on e, the case

e = 1 being trivial thanks to Y itself being irreducible (this is where we use n ≥ 3): let
B be an irreducible component of Me(a, Y), a ≤ e, and consider its limit B0 in Me(a, Y0),
which is a sum of components Me(a., i., j.). Because each of these contains an unob-
structed curve of type C′x ∪ L as above, B contains a similar curve of the form C”x ∪ L
with C” ∈ Me−1(a− 1, Y) and since the latter family may be assumed irreducible, B is
unique so Me(a, Y) is irreducible. �

Remark 8. The low-degree hypothesis on Y does not seem necessary for irreducibility;
on the other hand absent some upper bound on a like a ≤ e, Me(a, Y) may contain
components parametrizing curves having a component contained in Y so irreducibility
may fail. Another obvious question is as to the Kodaira dimension of Me(a, Y): probably
maximal for large e, a but it’s not clear.
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