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Abstract

Nuclear receptors (NRs) are important biological targets of endocrine-disrupting chemicals (EDCs). Identifying chemicals that can act
as EDCs and modulate the function of NRs is difficult because of the time and cost of in vitro and in vivo screening to determine the
potential hazards of the 100 000s of chemicals that humans are exposed to. Hence, there is a need for computational approaches to
prioritize chemicals for biological testing. Machine learning (ML) techniques are alternative methods that can quickly screen millions
of chemicals and identify those that may be an EDC. Computational models of chemical binding to multiple NRs have begun to emerge.
Recently, a Nuclear Receptor Activity (NuRA) dataset, describing experimentally derived small-molecule activity against various NRs
has been created. We have used the NuRA dataset to develop an ensemble of ML-based models to predict the agonism, antagonism,
binding and effector binding of small molecules to nine different human NRs. We defined the applicability domain of the ML models as
a measure of Tanimoto similarity to the molecules in the training set, which enhanced the performance of the developed classifiers.
We further developed a user-friendly web server named ‘NR-ToxPred’ to predict the binding of chemicals to the nine NRs using
the best-performing models for each receptor. This web server is freely accessible at http://nr-toxpred. cchem.berkeley.edu. Users
can upload individual chemicals using Simplified Molecular-Input Line-Entry System, CAS numbers or sketch the molecule in the
provided space to predict the compound’s activity against the different NRs and predict the binding mode for each.

Keywords: Nuclear Receptor, Toxicity, Super Learner, Machine learning

Introduction
Nuclear receptors (NRs) are a large family of transcrip-
tion factors that can be activated by lipophilic ligands
and bind directly to DNA to regulate the expression
of target genes [1–3]. In response to metabolic and
endocrine ligands such as gonadal and adrenal steroids,
NRs are fundamental regulators of cellular responses
that impact many aspects of development, reproduction
and metabolism [4, 5]. Therefore, they are important
targets for pharmaceuticals, and as such, ∼13% of US
Food and Drug Administration-approved drugs target
NRs [6]. They are also important targets for the toxic
effects of many xenobiotic chemicals, which can act as
agonists or antagonists to the receptor in question. For
example, one of the key characteristics of carcinogens

is their ability to modulate NR-mediated effects [7].
The two key characteristics of endocrine-disrupting
chemicals (EDCs) are the activation or antagonism of
nuclear hormone receptors [8].

As many as 350 000 chemicals and chemical mixtures
are registered for use in everyday commerce [9], many
of which have not been tested for toxic effects, including
carcinogenic and endocrine-disrupting activity. The con-
siderable number of existing chemicals coupled with the
diversity of potential NR targets means that experimen-
tal testing of NR binding has sparsely covered this mul-
tidimensional space. Although experimental protocols
exist to test if chemicals interact with various NRs, the
applications of these in vivo and in vitro techniques are
severely limited by the cost and time per chemical analy-
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sis. Further, the addition of novel chemicals to commerce
is ongoing, and predictive models could better ensure the
development of safer chemicals for a circular economy.
Given the importance of NRs as molecular targets, it
would be of great benefit if the binding of any given
chemical against a particular NR could be predicted.

Most prior research on the development of various
computational models for predicting and prioritizing
chemicals for their potential to interact with NRs has
focused on one NR at a time [10–13]. For example,
Maran et al. have utilized random forest-based models
to classify chemicals for their ability to bind to the
androgen receptor (AR) [14]. Singam et al. utilized both
molecular docking and machine learning (ML) to screen
over 5000 per- and poly-fluorinated alkyl substances and
chemicals associated with hydraulic fracturing for their
ability to bind human AR [15, 16]. Researchers have uti-
lized molecular docking simulation alone for predictive
classification of AR, estrogen receptor (ER) and pregnane
X receptor (PXR) binding [17–19]. Other investigators have
focused on developing a combination of computational
methods, such as docking and quantitative structure-
activity relationship (QSAR), and generated consensus
models for characterizing chemical binding properties
against various additional NRs such as ER, AR, perox-
isome proliferator activated receptor gamma (PPARG)
and progesterone receptor (PR) [10, 11, 20–22].

Computational models of chemical binding to multiple
NRs have begun to emerge. Recently, Ballabio and
coworkers have created a comprehensive dataset of
chemicals called the Nuclear Receptor Activity (NuRA)
dataset [23], describing experimentally derived small-
molecule activity against various NRs by curating
different databases, including the Toxicology in the 21st
Century (Tox21) [24] program database, ChEMBL [25],
BindingDB [26] and NR-DBIND [27]. Valsecchi et al. [28]
have also developed models using the NuRA dataset and
compared the classification performance of multitask
deep neural networks with single-task benchmark
classification approaches in a QSAR perspective. In this
study, instead of training a single ML algorithm to model
molecular features for different NRs, we utilized an
ensemble approach (Super learner) to fit a prediction
function for each of our outcomes. No previous study
has developed a similar prediction tool by combining
such rich high-dimensional features with cross-validated
optimization among many competing algorithms for
such a wide range of NRs.

EDCs can interfere with biological processes such as
hormone synthesis, metabolism, homeostasis, reproduc-
tion, development, etc. Identifying chemicals that can
act as EDCs is difficult owing to the time and cost of in
vitro and in vivo screening of the 100 000s of chemicals
that humans are exposed to. Computational prediction of
chemicals with activity against these NRs will help prior-
itize chemicals for further in vitro and in vivo evaluation,
subsequent regulation and safer chemical replacement
using green chemistry. As well-curated NuRA datasets for

nine receptors are available, herein a systematic attempt
has been made to develop ML-based models using chem-
ical fingerprints to predict the chemical binding of nine
different NRs: AR, ERA, ERB, farnesoid X receptor (FXR),
glucocorticoid receptor (GR), PR, peroxisome proliferator-
activated receptor delta (PPARD), PPARG and retinoid X
receptor (RXR), using the NuRA chemical dataset for
model training. We also developed a web-based applica-
tion using our computational models to enable de novo
prediction of the binding of small molecules to these
nine different NRs. Furthermore, we deployed a publicly
available, user-friendly web server that allows the exper-
imental and regulatory community to screen for NR-
binding chemicals, on demand, as new chemicals are
produced or become prominent in their application.

Materials and Methods
Dataset
This study used the well-curated NuRA chemical dataset
to train ML models for nine NRs [23]. The dataset and
the Konstanz Information Miner (KNIME) workflow [29]
of data curation were downloaded from https://doi.
org/10.5281/zenodo.3991561. We carefully verified each
step of the curation process. The dataset contains 15 247
combined entries for nine different receptors, annotated
as three binding class types: (i) agonist, (ii) antagonist and
(iii) binders. Each type is further classified as activity type
(i) active, (ii) weakly active, (iii) inactive, (iv) inconclusive
and (v) data missing. Table 1 shows the compositions
of different classes for each receptor. Missing data and
inconclusive results were removed from the dataset.
Then, because the number of chemicals in the weakly
active category is low, we combined the active and weakly
active entries into a single category in each binding
class type, resulting in a binary (active versus inactive)
designation for each of the agonists, antagonists and
binders. Our study, therefore, developed ML models to
predict each of these binding class types using a binary
classification (binding class models).

As we are also interested in identifying active binding
versus inactive chemicals (effector models) regardless
of agonist, antagonist or undefined binding class, we
additionally developed ML models by first merging the
three binding classes and removing the inconclusive and
missing data for each receptor to increase the sample
size of effector types (actives and inactive). Table 2 shows
the active and inactive chemical compositions for each
receptor after merging the three binding types.

Training dataset
For each of the nine NRs, the NR-specific curated chem-
ical datasets were randomly divided into training (80%)
and validation sets (20%) using the ‘train_test_split’ func-
tion in the scikit-learn package (Tables 1 and 2). The
validation set was used to give an estimate of the per-
formance of each of the developed models. This 20%
validation set of chemicals was not used in the training
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Table 1. Number of chemicals by class for all receptors in the training and validation set

Receptor Class Total inactive Total active Total weakly
active

Training set
actives/inactives

Validation set
actives/inactives

Agonist 5670 349 27 290/4546 86/1124
PR Antagonist 4400 741 548 1027/3524 262/876

Binder 5040 1251 53 1057/4018 247/1022
Agonist 4549 130 133 – –

RXR Antagonist 3 115 1 – –
Binder 4569 861 145 – –
Agonist 5384 737 41 613/4316 165/1068

GR Antagonist 4577 657 190 666/3673 181/904
Binder 5228 1815 84 1537/4164 362/1064
Agonist 5578 513 121 517/4452 117/1126

AR Antagonist 4942 776 391 926/3961 241/981
Binder 5130 1419 104 1243/4079 280/1051
Agonist 5060 476 461 751/4046 186/1014

ERA Antagonist 5160 362 322 544/4131 140/1029
Binder 4861 1287 177 1184/3876 280/985
Agonist 5744 286 48 270/4592 64/1152

ERB Antagonist 5133 224 229 359/4109 94/1024
Binder 5554 1159 66 998/4425 227/1129
Agonist 5349 372 85 346/4298 111/1051

FXR Antagonist 4829 124 143 219/3857 48/972
Binder 5272 550 108 530/4214 128/5272
Agonist 5663 616 73 – –

PPARD Antagonist 5561 28 24 – –
Binder 5742 730 52 – –
Agonist 5223 1352 158 1200/4186 310/1037

PPARG Antagonist 5249 88 153 203/4189 38/1060
Binder 5458 1699 205 1529/4360 375/1098

Table 2. Number of active and inactive chemicals for all receptors

Total Training set Validation set

Receptor Actives Inactives Total Actives/inactives Total Actives/inactives

RXR 1008 4569 4461 807/3654 1116 201/915
PR 2078 5063 5712 1646/4066 1429 432/997
GR 2143 5232 5900 1720/4180 1475 423/1052
AR 2217 5179 5916 1782/4134 1480 435/1045
ERA 2327 4956 5826 1863/3963 1457 464/993
ERB 1552 5563 5692 1228/4464 1423 324/1099
FXR 837 5276 4890 662/4228 1223 175/1048
PPARD 848 5745 5274 678/4596 1319 170/1149
PPARG 2118 5469 6069 1693/4376 1518 425/1093

process while developing and optimizing any of our ML
models.

Molecular features
In this investigation, we utilized molecular fingerprints
for descriptor features. We employed two widely used
fingerprinting methods: (i) Morgan fingerprints, also
called extended-connectivity fingerprints (ECFP4), which
are circular substructure fingerprints where we chose
a radius of 3 and a length of hashed binary vectors of
1024-bits; and (ii) Molecular Access System (MACCS)
fingerprints, which have 166 public keys implemented
as SMILES arbitrary target specification (SMARTS). The
Python-based RDKit [30] library was used to generate the

molecular fingerprints from the Simplified Molecular-
Input Line-Entry System (SMILES) data.

ML model development
As noted previously [31], there is no single optimal ML
algorithm for all potential data problems. However, one
can define an approach that is guaranteed to generate
the best from a set of explicit, competing algorithms. In
our case, we used nine different ML techniques, including
(i) AdaBoost [32], which is a boosting algorithm that
combines multiple ‘weak classifiers’ into a single ‘strong
classifier’; (ii) logistic regression [33], which predicts the
value of a categorical variable based on its relation-
ship with predictor variables; (iii) random forest [34],
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which merges a collection of independent decision trees
to decrease both bias and variance; (iv) support vector
machine (SVM) [35], which is a classifier that finds an
optimal hyperplane to maximize the margin between
two classes; (v) k-nearest neighbors (k-NN) algorithm
[36], which assumes that similar data points exist near
each other and makes predictions by calculating the
difference between the new data point and all other
data points in the training set; (vi) Bagging classifier
[37], which is an ensemble-based model that fits base
classifiers on random subsets of the original dataset
and then aggregates their predictions to generate a final
prediction; (vii) Gaussian naive Bayes [38], which is a
variant of the naive Bayes algorithm based on Bayes the-
orem; (viii) decision tree classifier algorithm [39], which
uses a tree where each node represents a feature, each
branch represents the decision and each leaf represents
an outcome and (ix) Super learner [31], which combines
the predictive probabilities of NR binding across many
ML algorithms and finds the optimal combination of
the collection of algorithms by minimizing the cross-
validated risk. This approach is an improvement over
methods using only one ML algorithm because no one
algorithm is universally optimal. Super learner has been
shown in theory to be at least as good as the best per-
forming algorithm in the ensemble and often performs
considerably better than the component ML models. For
each of these methods, we used a grid-search cross-
validation (CV) method (GridSearchCV) as implemented
in scikit-learn [40] to tune the hyperparameters.

Repeated k-fold CV
We assessed the performance of the classification mod-
els using stratified k-fold CV. The stratified-folds function
was utilized to split the data while keeping the correct
ratio of different classes. We evaluated the classification
performance for each receptor by repeated stratified k-
fold CV with ten splits and 100 repeats, thus in total 1000-
fold.

Evaluating ML models
The performance of the developed models was evalu-
ated using sensitivity, specificity, balanced accuracy and
Matthew’s correlation coefficient (MCC) [41]. The dataset
used in this study is imbalanced because the number
of active binders is less than the inactive chemicals. For
imbalanced data classification, the receiver operating
characteristic (ROC) area under the curve (AUC) can be
misleading because a small number of correct or incor-
rect predictions can result in a large change in the ROC
curve [42]. Hence, the standard alternative precision-
recall curve (PR AUC) is used to assess the performance of
the ML models. The balanced accuracy metric deals with
the imbalance in datasets, for example, where actives
are not equal in number to inactives. It weights each
sample’s raw accuracy according to the inverse of its
actual prevalence [43]. The following equations were

used to calculate sensitivity, specificity and MCC [41]:

Sensitivity = TP
(TP + FN)

(1)

Specificity = TN
(TN + FP)

(2)

MCC = (TP) (TN) − (FP) (FN)√
(TP + FN) (TN + FP) (TP + FP) (TN + FN)

, (3)

where TP, FP, FN and TN are true positive, false positive,
false negative and true negative, respectively.

Applicability domain
The applicability domain is defined as described by Chen
et al. [44] and was measured by the similarity to the
molecules in the training set. Tanimoto similarity was
calculated using ECFP4 and MACCS fingerprints for the
respective feature spaces. The test molecule is consid-
ered to be within the applicability domain if the number
of chemicals [Nmin (default = 1)] with similarity is greater
than the cutoff [Scutoff (default = 0.25)] in the training
dataset. The applicability domain was defined as a com-
bination of Scutoff and Nmin.

Web server implementation
The user interface of the NR-ToxPred web server was
developed using the Python Django framework. J(s)mol,
an open-source JavaScript library, was used in the
front-end web application. The RDKit package [30]
(http://www.rdkit.org/) is used for processing the input
SMILES string. NR-ToxPred is built on an Apache HTTP
server at the back end. Redis is employed to queue
and assess the application programming interface (API)
requests. Users can input a SMILES string or draw 2D
structures using a J(s)mol interface [45]. Users also have
an option to submit multiple SMILES entries in comma-
separated values (CSV) formatted files. They can analyze
up to ∼5000 chemicals at a time. A sample CSV file
is available on the webserver for formatting guidance.
Users can select the applicability domain Nmin and
Scutoff settings to check for the model’s reliability to the
given molecule. The NR-ToxPred prediction results are
tabulated for each receptor along with their scores. As it
is also essential to understand the atomic-level details
of the ligand binding to the NR, we also implemented
a molecular docking protocol using Autodock vina [46].
This docking is run on a given input chemical to the
target NR if the ML model predicts the input structure
as an active ligand. Suppose the docking score is
unfavorable at this step. In that case, the results suggest
that the ligand may not fit in the ligand-binding pocket.
This process can serve as a check on any false positives
in the ML output. Users can visualize or download the
ligand and receptor docking coordinates on the results
page or receive an email with the results.
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Results
Hyperparameter tuning
We evaluated the performance of nine different ML algo-
rithms, each with two different fingerprints as features.
Hyperparameters were tuned using grid search 10-fold
stratified CV. The optimized hyperparameters for each
algorithm with ECFP4 fingerprints and MACCS finger-
prints for all the receptors for effector models are given
in supporting information Table S1 (see Supplementary
Data available online at Briefings in Bioinformatics) and
binding class models in supporting information Table S2
(see Supplementary Data available online at Briefings in
Bioinformatics). After tuning the hyperparameters for each
algorithm, we trained each ML model and evaluated it by
CV methods and with the validation set.

Models for AR
Binding class models for AR

Agonist, antagonist and binder datasets were used to
build three ML models for AR. Prediction accuracy for
different types and algorithms on repeated stratified k-
fold CV with ECFP4 and MACCS fingerprints is given in
Tables 3 and 4, respectively. The different algorithms on
the agonist and binder dataset have achieved a stratified
k-fold CV prediction accuracy of >90%. The best accuracy
was obtained with both Super learner and SVM-based
models for the agonist dataset: 87% on the validation
set with ECFP4 fingerprints (Table 5). With the MACCS
fingerprints, the best accuracy for the agonist dataset
was obtained for Super learner (Table 6). Both SVM and
Super learner had similar performance measures with
97 and 96% accuracy on the validation set for ECFP4
and MACCS fingerprints for the binder dataset. For the
agonist dataset, the PR AUC values of the validation
dataset for Super learner and SVM were 0.81 and 0.80
(Table 5), respectively, for ECFP4 fingerprints and 0.81
and 0.79 for MACCS fingerprints (Table 6). The validation
dataset’s PR AUC value is 0.98 and 0.97 for ECFP4 and
MACCS fingerprints for the binder dataset.

For the antagonist model, AdaBoost classifier, Bag-
ging classifier, decision tree classifier, k-NN, random
forest, Super learner and SVM models have achieved
a prediction accuracy of >85% with both ECFP4 and
MACCS fingerprints as a feature. On the validation set
with ECFP4 fingerprints, Super learner and SVM-based
models achieved 83 and 84% accuracy, respectively
(Table 5). Similar balanced accuracy was obtained for
Super learner and SVM models with MACCS fingerprints
(Table 6). The PR AUC values on the validation dataset for
Super learner and SVM are 0.81 and 0.80 (Table 5), respec-
tively, for ECFP4 fingerprints and 0.81 and 0.79 for MACCS
fingerprints (Table 6). The developed model’s perfor-
mance is comparable to other developed models [11, 28].

Effector models for AR

For AR, four algorithms (k-NN, random forest, SVM and
Super learner) with ECFP4 fingerprints all exhibited
high predictive power. The balanced accuracy values
are 85, 86, 87 and 86%, respectively, with MCC scores

of 0.77, 0.73, 0.78 and 0.89, respectively, on the validation
dataset (Table 7). The accuracy scores on the repeated
stratified k-fold CV for these three models are 0.90 ± 0.01,
0.88 ± 0.01, 0.89 ± 0.01 and 0.90 ± 0.01 (Table 8). The
effector AR model has achieved a prediction accuracy
of 90% on the repeated stratified k-fold CV for SVM and
k-NN and 89% for Super learner. Although k-NN and SVM
achieved higher accuracy with MACCS fingerprints, SVM
with ECFP4 fingerprints performed best with a higher
MCC value, which produced a more informative and
truthful score in evaluating binary classifications [47].

Models for Estrogen Receptor Alpha (ERA) and
Estrogen Receptor Beta (ERB)
Binding class models for ERA and ERB

ML models of agonist, antagonist and binder of both
ERA and ERB were evaluated using the validation dataset
and repeated stratified k-fold CV. The performance mea-
sures for different algorithms with the validation set
and repeated stratified k-fold CV are given in Tables 3
and 4 for ECFP4 and MACCS fingerprints as input fea-
tures, respectively. The Bagging classifier has an average
accuracy of 89, 91 and 94% for agonist, antagonist and
binder datasets with ECFP4 fingerprints and 88, 91 and
93% with MACCS fingerprints, respectively, for ERA. The
performance measure for ERA and ERB datasets using
the binding class classifier on the validation set are
given in supporting information Tables S3 and S4 (see
Supplementary Data available online at Briefings in Bioin-
formatics), respectively, for ECFP4 fingerprints as input
feature and Tables S5 and S6 (see Supplementary Data
available online at Briefings in Bioinformatics), respectively,
for MACCS fingerprints. Even though the Bagging classi-
fier has better accuracy on repeated stratified k-fold CV,
SVM and Super learner appear to give more consistent
prediction accuracies on both repeated stratified k-fold
CV and the validation dataset (Tables S3 and S5, see Sup-
plementary Data available online at Briefings in Bioinfor-
matics). Similarly, for ERB, more consistent performance
measures were obtained with SVM and Super learner
(see Tables S4 and S6, see Supplementary Data available
online at Briefings in Bioinformatics).

Effector models for ERA and ERB

The SVM model performed best (balanced accuracy, 80%;
MCC score of 0.66), followed by Random forest (accu-
racy, 79%; MCC score 0.61) for ECFP4 fingerprints as
descriptors on the validation dataset of ERA (Table S7, see
Supplementary Data available online at Briefings in Bioin-
formatics). For MACCS fingerprints, SVM had comparable
accuracy but a lower MCC (Table S7, see Supplementary
Data available online at Briefings in Bioinformatics). The
lower MCC was likely due to the promiscuous nature of
ERA, which binds to diverse chemicals, which in turn
made it somewhat harder for ML algorithms to discrimi-
nate between NR-binding and nonbinding chemicals. For
ERB, the accuracy score on the repeated stratified k-fold
CV is 85 and 86% for Super learner and SVM for ECFP4
fingerprints (Table S8, see Supplementary Data available
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Table 3. Average accuracy of different algorithms for three class approach for six receptors using ECFP4 fingerprints as input features
on the repeated k-fold CV

Agonist Antagonist Binder
Receptor Algorithm Accuracy Accuracy Accuracy

AR AdaBoost classifier 0.95 ± 0.01 0.88 ± 0.01 0.96 ± 0.01
Bagging classifier 0.96 ± 0.01 0.89 ± 0.01 0.94 ± 0.01
Decision tree classifier 0.95 ± 0.01 0.88 ± 0.01 0.95 ± 0.01
Gaussian naive Bayes 0.92 ± 0.01 0.83 ± 0.02 0.91 ± 0.01
k-NN 0.93 ± 0.01 0.88 ± 0.01 0.98 ± 0.01
Logistic regression 0.92 ± 0.01 0.84 ± 0.01 0.96 ± 0.01
Random forest 0.95 ± 0.01 0.86 ± 0.01 0.96 ± 0.01
Super learner 0.95 ± 0.01 0.87 ± 0.02 0.98 ± 0.01
SVM 0.96 ± 0.01 0.88 ± 0.01 0.98 ± 0.01

ERA
AdaBoost classifier 0.86 ± 0.01 0.90 ± 0.01 0.93 ± 0.01
Bagging classifier 0.89 ± 0.01 0.91 ± 0.01 0.94 ± 0.01
Decision tree classifier 0.87 ± 0.01 0.91 ± 0.01 0.93 ± 0.01
Gaussian naive Bayes 0.81 ± 0.02 0.81 ± 0.02 0.88 ± 0.01
k-NN 0.80 ± 0.02 0.90 ± 0.01 0.94 ± 0.01
Logistic regression 0.78 ± 0.02 0.86 ± 0.01 0.93 ± 0.01
Random forest 0.86 ± 0.01 0.85 ± 0.02 0.94 ± 0.01
Super learner 0.84 ± 0.02 0.86 ± 0.02 0.94 ± 0.01
SVM 0.84 ± 0.01 0.88 ± 0.01 0.94 ± 0.01

ERB
AdaBoost classifier 0.97 ± 0.01 0.93 ± 0.01 0.97 ± 0.01
Bagging classifier 0.98 ± 0.01 0.94 ± 0.01 0.97 ± 0.01
Decision tree classifier 0.97 ± 0.01 0.92 ± 0.01 0.96 ± 0.01
Gaussian naive Bayes 0.95 ± 0.01 0.84 ± 0.02 0.93 ± 0.01
k-NN 0.95 ± 0.01 0.92 ± 0.01 0.97 ± 0.01
Logistic regression 0.97 ± 0.01 0.89 ± 0.01 0.97 ± 0.01
Random forest 0.96 ± 0.01 0.89 ± 0.01 0.97 ± 0.01
Super learner 0.96 ± 0.01 0.86 ± 0.02 0.98 ± 0.01
SVM 0.96 ± 0.01 0.87 ± 0.01 0.98 ± 0.01

FXR
AdaBoost classifier 0.97 ± 0.01 0.95 ± 0.01 0.96 ± 0.01
Bagging classifier 0.98 ± 0.01 0.96 ± 0.00 0.96 ± 0.01
Decision tree classifier 0.97 ± 0.01 0.94 ± 0.01 0.96 ± 0.01
Gaussian naive Bayes 0.96 ± 0.01 0.88 ± 0.02 0.94 ± 0.01
k-NN 0.98 ± 0.01 0.94 ± 0.01 0.98 ± 0.01
Logistic regression 0.97 ± 0.01 0.93 ± 0.01 0.96 ± 0.01
Random forest 0.97 ± 0.01 0.90 ± 0.01 0.97 ± 0.01
Super learner 0.98 ± 0.01 0.88 ± 0.02 0.97 ± 0.01
SVM 0.97 ± 0.01 0.89 ± 0.02 0.97 ± 0.01

GR
AdaBoost classifier 0.98 ± 0.01 0.93 ± 0.01 0.96 ± 0.01
Bagging classifier 0.98 ± 0.01 0.94 ± 0.01 0.95 ± 0.01
Decision tree classifier 0.97 ± 0.01 0.93 ± 0.01 0.95 ± 0.01
Gaussian naive Bayes 0.95 ± 0.01 0.92 ± 0.01 0.93 ± 0.01
k-NN 0.98 ± 0.01 0.94 ± 0.01 0.97 ± 0.01
Logistic regression 0.98 ± 0.01 0.92 ± 0.01 0.96 ± 0.01
Random forest 0.97 ± 0.01 0.92 ± 0.01 0.97 ± 0.01
Super learner 0.98 ± 0.01 0.93 ± 0.01 0.98 ± 0.01
SVM 0.98 ± 0.01 0.93 ± 0.01 0.98 ± 0.01

PR
AdaBoost classifier 0.98 ± 0.01 0.87 ± 0.01 0.98 ± 0.01
Bagging classifier 0.99 ± 0.00 0.86 ± 0.01 0.95 ± 0.01
Decision tree classifier 0.98 ± 0.01 0.86 ± 0.02 0.96 ± 0.01
Gaussian naive Bayes 0.98 ± 0.01 0.80 ± 0.02 0.93 ± 0.01
k-NN 0.98 ± 0.01 0.87 ± 0.01 0.99 ± 0.00
Logistic regression 0.99 ± 0.00 0.85 ± 0.02 0.98 ± 0.01
Random forest 0.98 ± 0.01 0.85 ± 0.02 0.97 ± 0.01
Super learner 0.98 ± 0.01 0.86 ± 0.02 0.99 ± 0.00
SVM 0.98 ± 0.01 0.87 ± 0.02 0.99 ± 0.00

± = SD.
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Table 4. Average accuracy of different algorithms for three class approach for six receptors using MACCS fingerprints as input
features on the repeated k-fold CV

Agonist Antagonist Binders
Receptor Algorithm Accuracy Accuracy Accuracy

AR AdaBoost classifier 0.93 ± 0.01 0.88 ± 0.01 0.92 ± 0.01
Bagging classifier 0.94 ± 0.01 0.88 ± 0.01 0.93 ± 0.01
Decision tree classifier 0.91 ± 0.01 0.84 ± 0.02 0.92 ± 0.01
Gaussian naive Bayes 0.91 ± 0.01 0.78 ± 0.02 0.83 ± 0.02
k-NN 0.96 ± 0.01 0.87 ± 0.01 0.98 ± 0.01
Logistic regression 0.85 ± 0.02 0.82 ± 0.02 0.91 ± 0.01
Random forest 0.94 ± 0.01 0.88 ± 0.01 0.95 ± 0.01
Super learner 0.95 ± 0.01 0.87 ± 0.02 0.98 ± 0.01
SVM 0.96 ± 0.01 0.89 ± 0.01 0.97 ± 0.01

ERA
AdaBoost classifier 0.87 ± 0.01 0.90 ± 0.01 0.92 ± 0.01
Bagging classifier 0.88 ± 0.01 0.91 ± 0.01 0.93 ± 0.01
Decision tree classifier 0.81 ± 0.02 0.86 ± 0.01 0.91 ± 0.01
Gaussian naive Bayes 0.73 ± 0.02 0.76 ± 0.02 0.83 ± 0.02
k-NN 0.86 ± 0.01 0.89 ± 0.01 0.95 ± 0.01
Logistic regression 0.74 ± 0.02 0.79 ± 0.02 0.90 ± 0.01
Random forest 0.87 ± 0.01 0.89 ± 0.01 0.94 ± 0.01
Super learner 0.83 ± 0.02 0.83 ± 0.02 0.95 ± 0.01
SVM 0.85 ± 0.01 0.91 ± 0.01 0.95 ± 0.01

ERB
AdaBoost classifier 0.96 ± 0.01 0.93 ± 0.01 0.95 ± 0.01
Bagging classifier 0.96 ± 0.00 0.94 ± 0.01 0.96 ± 0.01
Decision tree classifier 0.95 ± 0.01 0.89 ± 0.01 0.94 ± 0.01
Gaussian naive Bayes 0.95 ± 0.01 0.79 ± 0.02 0.86 ± 0.01
k-NN 0.95 ± 0.01 0.91 ± 0.01 0.98 ± 0.01
Logistic regression 0.90 ± 0.01 0.78 ± 0.02 0.94 ± 0.01
Random forest 0.97 ± 0.01 0.93 ± 0.01 0.97 ± 0.01
Super learner 0.96 ± 0.01 0.85 ± 0.02 0.97 ± 0.01
SVM 0.98 ± 0.01 0.84 ± 0.02 0.98 ± 0.01

FXR
AdaBoost classifier 0.96 ± 0.01 0.94 ± 0.01 0.95 ± 0.01
Bagging classifier 0.97 ± 0.01 0.96 ± 0.00 0.96 ± 0.01
Decision tree classifier 0.95 ± 0.01 0.92 ± 0.01 0.93 ± 0.01
Gaussian naive Bayes 0.87 ± 0.02 0.79 ± 0.02 0.84 ± 0.02
k-NN 0.97 ± 0.01 0.94 ± 0.01 0.97 ± 0.01
Logistic regression 0.92 ± 0.01 0.81 ± 0.05 0.91 ± 0.01
Random forest 0.97 ± 0.01 0.93 ± 0.01 0.97 ± 0.01
Super learner 0.96 ± 0.01 0.81 ± 0.04 0.96 ± 0.01
SVM 0.98 ± 0.01 0.78 ± 0.02 0.97 ± 0.01

GR
AdaBoost classifier 0.96 ± 0.01 0.92 ± 0.01 0.93 ± 0.01
Bagging classifier 0.97 ± 0.01 0.93 ± 0.01 0.94 ± 0.01
Decision tree classifier 0.96 ± 0.01 0.89 ± 0.01 0.92 ± 0.01
Gaussian naive Bayes 0.85 ± 0.02 0.83 ± 0.02 0.86 ± 0.01
k-NN 0.98 ± 0.01 0.94 ± 0.01 0.98 ± 0.01
Logistic regression 0.92 ± 0.01 0.87 ± 0.02 0.92 ± 0.01
Random forest 0.97 ± 0.01 0.93 ± 0.01 0.95 ± 0.01
Super learner 0.85 ± 0.02 0.83 ± 0.02 0.86 ± 0.01
SVM 0.98 ± 0.01 0.94 ± 0.01 0.97 ± 0.01

PPARG
AdaBoost classifier 0.93 ± 0.01 0.94 ± 0.01 0.92 ± 0.01
Bagging classifier 0.94 ± 0.01 0.95 ± 0.00 0.94 ± 0.01
Decision tree classifier 0.92 ± 0.01 0.91 ± 0.01 0.91 ± 0.01
Gaussian naive Bayes 0.86 ± 0.01 0.92 ± 0.01 0.84 ± 0.01
k-NN 0.97 ± 0.01 0.92 ± 0.01 0.96 ± 0.01
Logistic regression 0.91 ± 0.01 0.75 ± 0.02 0.90 ± 0.01
Random forest 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
Super learner 0.86 ± 0.01 0.92 ± 0.01 0.84 ± 0.01
SVM 0.96 ± 0.01 0.82 ± 0.02 0.96 ± 0.01

PR
AdaBoost classifier 0.98 ± 0.01 0.86 ± 0.01 0.95 ± 0.01
Bagging classifier 0.98 ± 0.01 0.85 ± 0.01 0.94 ± 0.01
Decision tree classifier 0.97 ± 0.01 0.82 ± 0.02 0.93 ± 0.01

(Continued)
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Table 4. Continued

Agonist Antagonist Binders
Receptor Algorithm Accuracy Accuracy Accuracy

Gaussian naive Bayes 0.96 ± 0.01 0.77 ± 0.02 0.85 ± 0.02
k-NN 0.98 ± 0.01 0.86 ± 0.02 0.99 ± 0.00
Logistic regression 0.95 ± 0.01 0.81 ± 0.02 0.95 ± 0.01
Random forest 0.99 ± 0.00 0.86 ± 0.02 0.96 ± 0.01
Super learner 0.98 ± 0.01 0.86 ± 0.02 0.98 ± 0.01
SVM 0.98 ± 0.01 0.88 ± 0.01 0.98 ± 0.01

± = SD.

Table 5. Comparison of the performance of different classifiers on the validation set for three class approach for AR using ECFP4
fingerprints as input features

Binding
class

Methods BA Sn Sp MCC PR AUC TP TN FP FN

Agonist AdaBoost classifier 0.85 0.74 0.96 0.68 0.73 87 1084 30 42
Bagging classifier 0.85 0.71 1.00 0.81 0.79 83 1123 34 3
Decision tree classifier 0.86 0.74 0.98 0.73 0.73 87 1100 30 26
Gaussian naive Bayes 0.85 0.75 0.94 0.61 0.69 88 1059 29 67
k-NN 0.86 0.77 0.95 0.65 0.81 90 1069 27 57
Logistic regression 0.85 0.78 0.93 0.59 0.73 91 1044 26 82
Random forest 0.86 0.75 0.98 0.74 0.80 88 1101 29 25
Super learner 0.87 0.77 0.98 0.75 0.81 90 1099 27 27
SVM 0.87 0.77 0.97 0.74 0.80 90 1097 27 29

Antagonist
AdaBoost classifier 0.79 0.63 0.95 0.62 0.78 153 928 88 53
Bagging classifier 0.72 0.44 1.00 0.61 0.78 105 978 136 3
Decision tree classifier 0.75 0.55 0.95 0.56 0.65 133 930 108 51
Gaussian naive Bayes 0.80 0.74 0.86 0.55 0.69 178 846 63 135
k-NN 0.80 0.68 0.92 0.61 0.80 165 906 76 75
Logistic regression 0.81 0.73 0.89 0.59 0.76 176 874 65 107
Random forest 0.83 0.76 0.90 0.62 0.82 183 881 58 100
Super learner 0.83 0.72 0.94 0.67 0.83 173 922 68 59
SVM 0.84 0.76 0.92 0.66 0.84 183 901 58 80

Binder
AdaBoost classifier 0.94 0.91 0.98 0.88 0.96 254 1026 26 25
Bagging classifier 0.90 0.81 0.99 0.86 0.94 226 1044 54 7
Decision tree classifier 0.93 0.90 0.97 0.86 0.89 251 1018 29 33
Gaussian naive Bayes 0.92 0.94 0.90 0.77 0.85 263 949 17 102
k-NN 0.96 0.94 0.99 0.94 0.97 262 1041 18 10
Logistic regression 0.96 0.94 0.97 0.89 0.97 264 1018 16 33
Random forest 0.94 0.90 0.97 0.87 0.97 253 1020 27 31
Super learner 0.97 0.95 0.99 0.95 0.98 265 1043 15 8
SVM 0.97 0.94 0.99 0.94 0.98 264 1042 16 9

aBA, balanced accuracy; Sn, sensitivity; Sp, specificity; MCC, Mathew correlation coefficient; PR AUC, precision-recall curve; TP, true positive; TN, true negative;
FN, false negative; FP, false positive.

online at Briefings in Bioinformatics) and 84 and 85% for
MACCS fingerprints (Table S8, see Supplementary Data
available online at Briefings in Bioinformatics). The model
developed using SVM combined with ECFP4 fingerprints
had a maximum MCC value of 0.82 with the specificity,
sensitivity and balanced accuracy of 94, 94 and 89%,
respectively. Similar performance has been observed for
other classifiers with ECFP4 and MACCS fingerprints.

Models for FXR and PPARG
Binding class models for FXR and PPARG

Average accuracy for repeated stratified k-fold CV
for the classifiers based on the ECFP4 and MACCS
fingerprints for different classes of FXR and PPARG are

given in Tables 3 and 4, respectively, demonstrating
that all classifiers have achieved accuracies of >90%
at identifying FXR agonist and binders. Specifically,
Bagging classifier, k-NN, Random forest, Super learner
and SVM classifiers attained an accuracy of >95%
at identifying FXR agonist and binders with MACCS
fingerprints. For the FXR antagonist dataset, AdaBoost
classifier, Bagging classifier, decision tree and random
forest have accuracies of >90% with repeated stratified
k-fold CV with ECFP4 and MACCS. The performance
of different classifiers for different classes of FXR and
PPARG on the validation dataset are given in Table S9
(see Supplementary Data available online at Briefings
in Bioinformatics) (ECFP4), S10 (MACCS), Table S11 (see
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Table 6. Comparison of the performance of different classifiers on the validation set for three class approach for AR using MACCS
fingerprints as input features

Binding
class

Method BA Sn Sp MCC PR AUC TP TN FN FP

Agonist AdaBoost classifier 0.86 0.73 0.98 0.76 0.77 85 1109 32 17
Bagging classifier 0.82 0.64 1.00 0.76 0.78 75 1121 42 5
Decision tree classifier 0.84 0.72 0.97 0.69 0.68 84 1093 33 33
Gaussian naive Bayes 0.80 0.78 0.83 0.42 0.53 91 930 26 196
k-NN 0.86 0.74 0.98 0.73 0.78 87 1100 30 26
Logistic regression 0.82 0.77 0.87 0.47 0.75 90 975 27 151
Random forest 0.86 0.75 0.96 0.69 0.79 88 1085 29 41
Super learner 0.87 0.79 0.96 0.71 0.81 92 1084 25 42
SVM 0.86 0.79 0.94 0.64 0.79 92 1060 25 66

Antagonist
AdaBoost classifier 0.77 0.58 0.96 0.62 0.78 139 946 102 35
Bagging classifier 0.73 0.46 0.99 0.61 0.80 112 974 129 7
Decision tree classifier 0.79 0.63 0.94 0.60 0.71 152 922 89 59
Gaussian naive Bayes 0.76 0.78 0.74 0.43 0.62 188 727 53 254
k-NN 0.82 0.76 0.88 0.60 0.79 184 866 57 115
Logistic regression 0.82 0.79 0.85 0.56 0.78 190 829 51 152
Random forest 0.84 0.77 0.91 0.65 0.84 185 894 56 87
Super learner 0.84 0.75 0.93 0.66 0.82 180 910 61 71
SVM 0.84 0.80 0.89 0.64 0.83 192 874 49 107

Binder
AdaBoost classifier 0.92 0.88 0.97 0.85 0.95 247 1016 33 35
Bagging classifier 0.91 0.84 0.98 0.85 0.95 234 1032 46 19
Decision tree classifier 0.95 0.93 0.97 0.89 0.93 259 1023 21 28
Gaussian naive Bayes 0.85 0.93 0.78 0.59 0.79 259 816 21 235
k-NN 0.95 0.93 0.97 0.88 0.96 259 1018 21 33
Logistic regression 0.94 0.94 0.94 0.83 0.94 263 988 17 63
Random forest 0.95 0.94 0.96 0.87 0.97 262 1010 18 41
Super learner 0.96 0.94 0.98 0.92 0.97 264 1033 16 18
SVM 0.96 0.94 0.98 0.92 0.97 262 1034 18 17

aBA, balanced accuracy; Sn, sensitivity; Sp, specificity; MCC, Mathew correlation coefficient; PR AUC, precision-recall curve; TP, true positive; TN, true negative;
FN, false negative; FP, false positive.

Table 7. Comparison of the performance of different classifiers on the validation set for AR effector dataset

Finger-
print

Method BA Sn Sp MCC PR AUC TP TN FN FP

ECFP4 AdaBoost classifier 0.83 0.76 0.91 0.67 0.86 331 949 104 96
Bagging classifier 0.81 0.65 0.98 0.71 0.86 281 1024 154 21
Decision tree classifier 0.80 0.64 0.96 0.67 0.77 280 1005 155 40
Gaussian naive Bayes 0.83 0.72 0.94 0.69 0.82 312 981 123 64
k-NN 0.85 0.73 0.98 0.77 0.89 316 1026 119 19
Logistic regression 0.83 0.79 0.86 0.64 0.83 344 903 91 142
Random forest 0.86 0.78 0.93 0.73 0.89 341 975 94 70
Super learner 0.86 0.76 0.96 0.75 0.89 332 1000 103 45
SVM 0.87 0.76 0.98 0.78 0.90 329 1019 106 26

MACSS
AdaBoost classifier 0.82 0.72 0.93 0.67 0.86 315 967 120 78
Bagging classifier 0.82 0.68 0.96 0.70 0.87 297 1007 138 38
Decision tree classifier 0.83 0.73 0.93 0.68 0.77 318 971 117 74
Gaussian naive Bayes 0.78 0.78 0.78 0.53 0.69 341 816 94 229
k-NN 0.86 0.78 0.94 0.74 0.89 338 986 97 59
Logistic regression 0.84 0.83 0.85 0.65 0.86 359 888 76 157
Random forest 0.85 0.79 0.91 0.70 0.90 344 954 91 91
Super learner 0.86 0.79 0.93 0.73 0.89 345 969 90 76
SVM 0.87 0.79 0.94 0.75 0.90 345 982 90 63

aBA, balanced accuracy; Sn, sensitivity; Sp, specificity; MCC, Mathew correlation coefficient; PR AUC, Precision-recall curve; TP, true positive; TN, true negative;
FN, false negative; FP, false positive.
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Table 8. Average accuracy of different algorithms for effector dataset of different receptors using ECFP4 fingerprints and MACCS
fingerprints as input features on the repeated k-fold CV

Accuracy

Finger-
print

Methods AR ERA ERB FXR GR PPARD PPARG PR RXR

ECFP4 AdaBoost classifier 0.87 ± 0.01 0.83 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.97 ± 0.01 0.92 ± 0.01 0.87 ± 0.01 0.95 ± 0.01
Bagging classifier 0.87 ± 0.01 0.85 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.93 ± 0.01 0.98 ± 0.01 0.92 ± 0.01 0.87 ± 0.01 0.96 ± 0.01
Decision tree classifier 0.87 ± 0.01 0.84 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.97 ± 0.01 0.91 ± 0.01 0.87 ± 0.01 0.95 ± 0.01
Gaussian naive Bayes 0.86 ± 0.01 0.82 ± 0.01 0.90 ± 0.01 0.94 ± 0.01 0.91 ± 0.01 0.98 ± 0.01 0.91 ± 0.01 0.85 ± 0.01 0.96 ± 0.01
k-NN 0.90 ± 0.01 0.85 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.98 ± 0.01 0.94 ± 0.01 0.90 ± 0.01 0.96 ± 0.01
Logistic regression 0.84 ± 0.01 0.79 ± 0.02 0.90 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.97 ± 0.01 0.91 ± 0.01 0.85 ± 0.01 0.93 ± 0.01
Random forest 0.88 ± 0.01 0.84 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.97 ± 0.01 0.93 ± 0.01 0.87 ± 0.01 0.96 ± 0.01
Super learner 0.89 ± 0.01 0.85 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.98 ± 0.01 0.94 ± 0.01 0.89 ± 0.01 0.96 ± 0.01
SVM 0.90 ± 0.01 0.86 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.98 ± 0.01 0.94 ± 0.01 0.90 ± 0.01 0.96 ± 0.01

MACCS
AdaBoost classifier 0.87 ± 0.01 0.83 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.97 ± 0.01 0.91 ± 0.01 0.88 ± 0.01 0.95 ± 0.01
Bagging classifier 0.88 ± 0.01 0.85 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.93 ± 0.01 0.97 ± 0.01 0.92 ± 0.01 0.88 ± 0.01 0.96 ± 0.01
Decision tree classifier 0.87 ± 0.01 0.84 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.97 ± 0.01 0.92 ± 0.01 0.87 ± 0.01 0.96 ± 0.01
Gaussian naive Bayes 0.88 ± 0.01 0.84 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.94 ± 0.01 0.97 ± 0.01 0.93 ± 0.01 0.89 ± 0.01 0.96 ± 0.01
k-NN 0.89 ± 0.01 0.84 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.97 ± 0.01 0.93 ± 0.01 0.89 ± 0.01 0.96 ± 0.01
Logistic regression 0.84 ± 0.01 0.80 ± 0.02 0.88 ± 0.01 0.87 ± 0.01 0.91 ± 0.01 0.94 ± 0.01 0.90 ± 0.01 0.86 ± 0.01 0.93 ± 0.01
Random forest 0.87 ± 0.01 0.84 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.97 ± 0.01 0.92 ± 0.01 0.87 ± 0.01 0.96 ± 0.01
Super learner 0.88 ± 0.01 0.84 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.94 ± 0.01 0.97 ± 0.01 0.93 ± 0.01 0.89 ± 0.01 0.96 ± 0.01
SVM 0.89 ± 0.01 0.85 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.98 ± 0.01 0.94 ± 0.01 0.90 ± 0.01 0.96 ± 0.01

± = SD.

Supplementary Data available online at Briefings in
Bioinformatics) (ECFP4) and S12 (MACCS), respectively.
The results demonstrate that Super learner has attained
better performance for agonists and binders of FXR
with different fingerprints. Similar performance has
been achieved for PPARG agonists and binders. Poor
performance of antagonist models was obtained on the
validation set for all the classifiers for both FXR and
PPARG due to the sample size of the training dataset.

Models for GR and PR
Binding class models for GR and PR

Average repeated stratified k-fold CV accuracy for the
classifiers based on the ECFP4 and MACCS fingerprints
and for different classes of GR and PR is given in Tables 3
and 4, respectively. Results show that SVM and Super
learner algorithms have higher accuracy in identifying
agonists and binders for GR and PR based on repeated
stratified k-fold CV. The performance of different clas-
sifiers for different classes of GR and PR on the valida-
tion dataset are given in Tables S13 (see Supplementary
Data available online at Briefings in Bioinformatics) (ECFP4),
S14 (MACCS), Table S15 (see Supplementary Data avail-
able online at Briefings in Bioinformatics) (ECFP4) and S16
(MACCS), respectively. Results show that random forest,
Super learner and SVM have good performance scores for
the three classes of GR and PR with different features.

Effector models for FXR, GR and PR, PPARG, PPARD and
RXR

Data availability for antagonists of PPARD and RXR is
limited; hence we have not modeled the different classes.

We merged the dataset as described in the materials and
methods to create an effector dataset for these receptors.
Performance measures on the repeated stratified k-fold
CV for FXR, GR, PR, PPARG, PPARD and RXR are given
in Tables 3 and 4 for ECFP4 and MACCS fingerprints,
respectively. Results show high accuracy across these
NRs for all classifiers with both fingerprint types. The
different performance measures on the datasets for FXR,
GR, PR, PPARD, PPARG and RXR are given in Tables S17–
S22 (see Supplementary Data available online at Brief-
ings in Bioinformatics), respectively. Tables 3 and 4 show
that Super learner and SVM have both attained accura-
cies of >90% for the effector dataset of these receptors.
Tables S17 and S19 (see Supplementary Data available
online at Briefings in Bioinformatics) for FXR and PR show
that most of the classifiers attained high accuracy for
both fingerprint types. The random forest, k-NN and
SVM classifiers with ECFP4 fingerprints showed similar
sensitivity/specificity of 94 and 95%/94 and 95%, respec-
tively, with an MCC value of 0.75–0.76 on the validation
dataset. The results for the ligand-binding predictions for
GR, PPARD, PPARG and RXR (Tables S18, S20, S21 and S22,
see Supplementary Data available online at Briefings in
Bioinformatics) show that the SVM-based models achieved
slightly higher accuracy and MCC score than other eval-
uated algorithms.

Applicability domain on the validation set
We applied the applicability domain to the validation set
and removed the unreliable data points that were thus
identified. Then we evaluated the performance of the
SVM and Super learner models on the remaining reliable
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Figure 1. Schematic of the development and use of NR-Toxpred webserver.

data points from the validation dataset. The results on
the validation dataset after filtering the dataset through
the applicability domain for the reliability of the predic-
tion are given in supporting information as a Microsoft
Excel workbook (S23–S81). The results show that includ-
ing the applicability domain with SVM and Super learner
models with ECFP4 fingerprints improves the model’s
performance.

Implementation of NR-ToxPred web server
Based on our trained and validated best-performing
models, we have developed a web-based application
named NR-ToxPred with a user-friendly interface to
assist the scientific community (Figure 1). We imple-
mented the best SVM and Super learner-based model
for all nine NRs on the webserver. The user interface of
the NR-ToxPred server allows for different formats to
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submit small molecules. Users can sketch the structure
using a simple drawing interface, give SMILES codes
as text input in the drawing interface or input CAS ID
data as the search criteria. Users can upload a two-
column file with SMILES codes and corresponding names
in a comma-separated CSV format for multiple ligand
predictions. For the single structure input, in addition to
the tabulated results for each receptor, if the chemical
is a predicted ligand, it is subsequently docked to the
matching receptor(s). Users can select the applicability
domain criteria (Scutoff and Nmin). The NR-ToxPred web
service can be accessed at http://nr-toxpred.cchem.
berkeley.edu/.

Limitations of the models
In this study, we developed different ML models for
predicting agonist, antagonist, binders binding class
(each binding class as binary: active versus inactive)
and also effectors (binding versus nonbinding). Then, as
needed, we constrained these to the applicability domain
within each receptor according to the available number
of chemicals in each class in the dataset. We initially
found poor predictive power for the antagonist models
of FXR, but this was overcome by setting stricter criteria
for the applicability domain. For PPARG, PPARD and RXR
models, we collapsed the agonist and antagonist from
the dataset into one category, also known as effector, due
to the limitations in the available number of chemicals
in each antagonist category in the dataset. The models
herein are thus limited to predicting only the binding of
the small molecules to these NRs. They are not capable
of distinguishing agonists versus antagonists. However,
this distinction is easily determined in an experimental
setting once the binding candidates are identified.
This experimental testing is much more tractable with
the computationally shortlisted dataset than testing
the whole set of chemicals. For the other NRs, our
predictions are well-validated and robust with more
robust data.

Conclusions
ML-based classification models for nine different human
NRs have been developed and validated with the NuRA
dataset. These models were trained using fingerprints
as features to predict the binding class (agonist, antag-
onist, binders) for active and inactive chemicals binding
to these selected receptors as well as effectors class
(binding versus nonbinding). Furthermore, we show that
the applicability domain and chemical space variation of
actives and inactives are essential for accurate binding
predictions. We developed a publicly available web-based
application named NR-ToxPred with a user-friendly inter-
face to assist the scientific community using these tools
and approaches.

Key Points

• NRs are important targets for the toxic effects of many
xenobiotic chemicals that can act as agonists or antago-
nists to the receptor in question.

• Models have been trained on the NuRA dataset with
different ML algorithms for developing reliable models.

• NR-ToxPred is a publicly available web server for pre-
dicting the binding of chemical molecules to multiple
different NRs.

• The web server can be accessed at http://nr-toxpred.
cchem.berkeley.edu/

Supplementary data
Supplementary data are available at Briefings in
Bioinformatics online.
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