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ON PIECEWISE LINEAR IMMERSIONS

MORRIS W. HIRSCH

The purpose of this note is to prove an existence theorem for im-

mersions of piecewise linear manifolds in Euclidean space. A more

comprehensive theory of piecewise linear immersions has been

worked out by Haefliger and Poenaru [l].

All maps, manifolds, microbundles, etc. are piecewise linear unless

the contrary is explicitly indicated.

Let M be a manifold without boundary, of dimension n. Denote

the tangent microbundle of M by tm, and the trivial microbundle

over M of (fibre) dimension k by e*. Let

be a microbundle of dimension k such that £ is a manifold. An im-

mersion of M in Rn+k is a locally one-one map /: M—>Pn+*.

I say / has a normal bundle of type v if there is an immersion

g: E—>Rn+k such that gi=f. (It is unknown whether / necessarily

has a normal bundle, or whether all normal bundles of / are of the

same type.)

The converse of the following theorem is trivial.

Theorem. Assume that if k = 0, then M has no compact component.

There exists an immersion of M in Rn+k having a normal bundle of type v

if there exists an isomorphism

4>:rm® v->e+k

Proof. We may assume that i(M) is a deformation retract of the

total space E of v. By Milnor [3], te \i(M) is isomorphic to tm®v;

it follows from the existence of <¡> that te is trivial. According to [3]
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there is a parallelizable differential structure a on E compatible with

the piecewise linear structure. Let h : Ea—*Rn+k be a differentiable

immersion, which exists by Hirsch [2] or Poenaru [4]. (If & = 0, the

assumption that M has no compact component is used here.) Ap-

proximate A by a piecewise linear immersion g: E—>Rn+k, using the

theory of C1 complexes of Whitehead [5]. Clearly gi: M—>Rn+k is an

immersion having a normal bundle of type v.

Remarks. (1) The assumption that M is unbounded is unneces-

sary, since a bounded manifold can be embedded in its interior. How-

ever, m must be redefined if M has a boundary.

(2) It is not hard to define the concepts of "immersion plus normal

bundle"—essentially an immersion of E—and of a "regular homo-

topy" of these; one can then prove a uniqueness theorem.
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