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Machine Learning and Design Optimization 
for Molecular Biology and Beyond

Interview with Dr. Jennifer Listgarten

BY BRYAN HSU, NATASHA RAUT, KAITLYN WANG, 
AND ELETTRA PREOSTI

Jennifer Listgarten is a professor in the Department of 
Electrical Engineering and Computer Science and a principal 
investigator in the Center for Computational Biology at the 
University of California, Berkeley. She is also a member of 
the steering committee for the Berkeley AI Research (BAIR) 
Lab, and a Chan Zuckerberg investigator. In this interview, 
we discuss her work in the intersection of machine learning, 
applied statistics, and molecular biology.

BSJ: You have a very diverse background ranging from machine 
learning to applied statistics to molecular biology. Can you 

tell us how you came to start working on design optimization?

JL: It was very unplanned, actually. I had been working in the 
fields of statistical genetics and CRISPR guide design for some 

time, so I wanted to look for something really crazy and different. 
That summer, a graduate student intern and I wondered if we could 
predict the codon usage in actual organisms with modern day 
machine learning. That was totally crazy and not necessarily useful, 
but I thought it might shed some interesting biological insights. Is 
codon usage predictable, and if so, what enables you to predict it? Is 
it just the organism or also the type of gene?

From there, we moved to codon optimization using more 
sophisticated modeling techniques and ideally ingesting more data 
to make use of those techniques. I approached my colleague, John 
Dunwich, and we started working on this very concrete problem. 
I came up with a ridiculous idea: what if I just think about finding 
sequences of amino acids or nucleotides that will do what I want 
them to do in a general way? Of course, I was aware that there were 
decades’ worth of research done to answer this question in terms of 
biophysics based modeling. David Baker’s lab at the University of 

Washington, for example, built energy based models. But, I thought 
that we should use machine learning. I talked to a lot of people, 
convinced some students to work on this, and now, I think this is my 
favorite research area that I have ever worked in.

 

BSJ: Can you provide a general overview of how machine 
learning methods such as neural networks are applied to 

successfully optimize small molecule drug discovery? 

JL: The general way to think about this is that machine learning 
methods can be used to build an in silico predictive model 

for measuring things. Measuring quantities in a lab can oftentimes 
be tricky and require creativity because you cannot always exactly 
measure what you want. Typically, a proxy is first used to scale things. 
Then, the correlation between the proxy and the quantity which we 
want to measure to scale must be understood. But, what if we can 
have a predictive model to reduce the number of measurements 
needed? Maybe instead of having to take a thousand measurements, 
we can get away with taking fifty or a hundred measurements at a 
particular location and time during the experimental process. This 
would be a tremendous saving in many senses of the word.
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BSJ: Do you think that there will come a point in time in 
which machines can fully take over the analysis and design 

processes?

JL: The general answer is no. I think our work is unlike natural 
language processing, computer vision, and speech, where 

the benchmarks of machine learning have been blown away by 
deep neural networks. What distinguishes these three areas from 
computational biology and chemistry is that it is easy to obtain data 
in these areas. For example, you can trivially take a gazillion images 
or snippets of speech from people. You can also have an ordinary 
human annotate this data since most of us are born with brains that 
can comprehend and make sense of it. Therefore, getting the labels 
required for machine learning is really easy. However, you cannot 
do this in chemistry and biology. You have to spend a lot of time and 
money in the lab and use your ingenuity to measure the quantities 
you care about. Even then, it is an indirect measurement. So, the data 

problem itself is inherently much trickier. For this reason, I think 
there is no way we are going to replace domain experts.

 The question becomes: how can we synergistically interact 
with each other? For example, as a machine-learning person, I must 
decide which data an experimenter should grab in order to help me 
build a good machine learning model. The machine learning model 
would in turn make more useful predictions. On the other hand, an 
experimenter might have considerations about how difficult it is to 
measure one quantity compared to another that is additional to what 
the machine learning model indicates.

Overall, I think that there are so many difficult, complex 
problems that it will take a very long time, if ever, before humans 
are out of the loop.

BSJ: Some of your past work focused on developing algorithms 
in order to predict off-target activities for the end-to-end 

design of CRISPR guide RNAs. Why is optimizing guide RNAs 
important for CRISPR-Cas9?

JL: In CRISPR-Cas9, the Cas9 enzyme resembles a Pac-Man. 
The “Pac-Man” comes in, pulls apart a double strand of DNA, 

and makes a cut. After which, a native machinery attempts to fix the 
cut. However, since the native machinery is not very good in fixing 
the cut, it actually disables the gene. But, if you can deliver the “Pac-

Figure 1: Integrating mind and machine in drug discovery. While machines and machine learning models are capable of making and testing 
designs, they do not yet have the capability to create these designs or derive meaningful conclusions from extensive data analysis. However, as 
the fields of computational biology and chemistry continue to progress, the collaboration between mind and machine may drastically change 
scientific research as we know it.²

“Machine learning methods 
can be used to build an in 
silico  predictive model for 

measuring things.”
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Figure 2. Schematic of Elevation off-target predictive modelling. a. A visual walkthrough of how Elevation would score a pair of gRNA target 
sequences with two potential off-target mismatches. The sequences are first separated into two cases. Then, they are scored by the first-layer 
model, which deals specifically with single mismatches. Elevation evaluates using the Spearman correlation, which weights each gRNA-target 
pair by a monotonic function of its measured activity in the cell. Next, the second-layer model combines the two scores. In neural networks, a 
layer is a container that transforms a weighted input with non-linear functions before passing the output to another layer for further evaluation. 
b. A closer look at the second-layer aggregation process. The model statistically computes an input distribution of all the single mismatch scores 
and derives the final score accordingly.³

Man” to the right part of the gene, it is more likely to get messed up 
without repairing itself. That is how you get a gene knockout. So, the 
question becomes: how do I deliver the “Pac-Man” to the right part 
of the gene?

This is where the guide RNA comes in. The guide RNA attaches 
itself to the “Pac-Man” and brings it to a specific part of the genome. It 
does so on the basis of complementarity between the guide RNA and 
the human genome since the guide RNA cannot latch onto anything 
other than the unique sequence to which it is complementary. But, 
if the target sequence is not unique or has certain thermodynamic 
properties, the guide RNA may end up attaching itself to other parts 
of the genome. Thus, if you are trying to conduct a gene knockout 
experiment, and you design the wrong guide RNA, you might draw 
the wrong biological conclusions since you have actually knocked 
out other genes as well.

BSJ: Can you briefly describe the Elevation model, and how it 
overcomes the limitations of current prediction models?

JL: There are two things that you care about when it comes to 
Elevation. The first is that if I am using a guide RNA (gRNA) 

to knock out a target gene, I want to know what other genes I have 
knocked out. In order to do this in silico, I need a model that, given 
a guide RNA and part of the genome, gives us the probability that 

we have accidentally knocked out a gene in that part of the genome. 
Then, I would need to run the model along the genome at every 
position that I am worried about. The second important thing is 
the aggregate of all the probability scores. With what I have told you 
so far, the model will return three billion numbers, each of which 
is the probability of an accidental knock out. No biologist, when 
considering one guide RNA, wants to look at three billion numbers. 
So, how can we summarize these numbers in some meaningful way? 

The way we solved this problem is by training the model on 
viability data so that we can measure a sort of aggregate effect. To do 
this, we target a non-essential gene such that if we were successful in 
knocking the gene out, the organism would still survive. This means 
that if we choose a bad guide RNA, and it knocks out other genes by 
accident, it is going to kill the organism. The organism’s survival rate 
gives us an aggregate indirect measurement of how much of a target 
there is. So, now there are some larger number of predictions from 
the first layer of the model, although not quite three billion. These 
predictions then get fed into the aggregate model, which has its own 
supervised label in a wet lab. This was our crazy compound approach.

However, a big challenge was the very limited data that was 
available at the time we developed this model. Because there was 
so little data, I could not just throw deep neural networks at the 
problem. We basically had to create new approaches to deal with this 
problem based on standard, simple models.
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BSJ: What are the universal benefits of creating a cloud-based 
service for end-to-end guide RNA design?

JL: To be a successful researcher in computational biology, you 
typically need to make tools that people can immediately use. 

Now, I do not know if our CRISPR tool is such a tool, or if it was and 
has been superseded. Modern-day molecular biology is so heavily 
dependent on elements of data science and machine learning, but 
sometimes people who have the skills to develop them do not have 
the time or the bandwidth. You cannot reinvent the wheel constantly, 
right? Science progresses more rapidly when researchers build on 
top of existing tools.

Thus, we released the GitHub source code for our tool, which 
makes it reproducible and robust. But the core code with the machine 
learning modeling should be pretty accessible.

BSJ: We also read your recent work about Estimation of 
Distribution Algorithms (EDAs). What are the core steps 

of an EDA, and what are EDAs used for?

JL: So, I am not from the mainstream community that works 
on EDAs, and I think some of them would quibble with my 

viewpoint. I would say that EDAs are an optimization method in 
which you do not need to have access to the gradient (rate of change) 
of the function you are optimizing. They seem to be very widely 
used in a number of science and engineering disciplines where 
optimization is an important factor.

First, I have to decide up front what distribution to use that 
would represent the function, where to start that distribution, and 
how to move from there. I am not going to follow the gradient. 
Instead, I am going to draw samples from the distribution and 
evaluate each sample under f(x). Then, another ingredient is 
reweighting the samples based on their performance under f(x). 
We want to throw away the bad points and train a new distribution 
just with the good points. Finally, the whole process is repeated. 
It is a lot like directed evolution, but in a computer. I must have a 
parametric form of the search pathway and a weighting function that 
will tell me how to modulate evaluations under f(x). Given those two 
things, everything else follows. Essentially, we are re-estimating the 
distribution with maximum likelihood estimation.

I have to say it was super cool because we had not heard about 
EDAs before this project. David and I were trying to tackle this 
protein engineering problem, and he reinvented this thing that was 
essentially an EDA, except more rigorously defined. Then, looking at 
it, we realized we are trying to do directed evolution in silico starting 
from first principles, which blew my mind.

BSJ: Could you describe the connection between EDAs and 
Expectation Maximization, and why this connection is 

important?

JL: It is a very technical connection rather than an intuitive one. 
The machine learning community usually uses EM to fit data 

to a model. To illustrate this: if we had some points, we would fit the 
mean and covariance of a mixture of Gaussian (normal) distributions 
to those points. In contrast, that is not the fundamental problem for 
EDAs. The EDA problem is how to find the x that maximizes f(x). I 
am not fitting the function to x; I am trying to find a maximum. So, 
they sound like very different problems, but for technical reasons, 
you can actually create an analogy that connects them. That is why 
it is so beautiful; it is not very obvious until you see it. I think those 
are often the nicest kinds of results.

BSJ: How can the connection be used in research on design 
optimization?

JL: To be honest, it is not clear to me how to leverage our insight. 
We thought the connection was so beautiful, and we wanted to 

write it up and share it with the community to see if they might find it 
interesting and be able to make use of it. However, we did not spend 
the time to demonstrate how that connection allows people to do 
things they could not have otherwise done. That remains to be seen.

BSJ: Since you also have extensive experience in industry, how 
do you think the field of therapeutics in relation to industry 

has been impacted by computational protein engineering?

JL: My time in industry was at Microsoft Research, which in my 
instance was basically like being in academia. Ironically, one 

of the reasons I moved to academia was so that I could work with 
companies that cared about drug design. Biotechnology companies 
doing diagnostics or therapeutics have been trying to use machine 
learning, but I am not sure that there have ever been any runaway 
success stories there. Maybe it has been helpful; computation 
comes in everywhere. A lot of technologies require sequencing to 

“That is why it is so beautiful; it is not very obvious until you see it. 
I think those are often the nicest kinds of results.”

Figure 3: The connection between EDAs and EM presented as a 
mathematical argument where f(z) is the black-box function to be 
optimized, p(z|θ) represents the search model, and LEDA(θ) can be 
thought of as an EDA equivalent to the log marginal likelihood in EM 
without any observed data x.⁴
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assess what is happening and sequencing results require a lot of 
computational biology. But, can you develop a new COVID vaccine 
using machine learning? I do not think we have seen that kind of 
thing. However, I actually do think that we are on the cusp of starting 
to see where machine learning might contribute in groundbreaking 
ways, which is of course why I am working in this area. 

There are companies whose whole goal and premise of existence 
is the combination of high throughput machine learning and high 
throughput biology to really move the dial. Then, there are a whole 
bunch of places that use some machine learning on the side. Maybe 
they save some money on experiments or maybe they get to a better 
point than they would have otherwise. However, I do think we are 
starting to see a lot more sophistication in communication between 
the machine learning and biology spheres, including in industry. 
The next 5 to 10 years are going to be really interesting in terms of 
what happens and where it happens. I hope that it happens in protein 
engineering and small molecule design.

BSJ: How do you hope your research in particular will impact 
the future of drug design?

JL: There are many hybrid groups out there that are 
computationally focused, but very application driven. These 

groups make things happen and get results, but they are typically 
more consumers of machine learning methods. That is really 
valuable. It is sort of the equivalent of translational research in 
biology, right? You need those people there, making sure it works.

I sit in the electrical engineering computer science department 
in the AI group, which has some of the best AI students in the whole 
country. I have had some students who are really cross-disciplinary 
with very rigorous technical expertise find me, so my group is one 
of the very few that is trying to think things through very cleanly 
from first principles or more abstract concepts. People like our two 
most recent papers, for example, because we carefully painted a 
really clear picture of the problem. I think that is what is missing 
from a lot of computational biology. Sometimes when I give talks, 
I say, “You know what? I am not even going to show you our results 
from our paper. If you want to see them, you can see them. What I 
want to convince you of is how to think about this problem.” That 
might sound silly, but I think that is actually really important because 
how you think about it dictates how you find specific solutions with 
particular collaborators.

When you are thinking in a coherent, fundamental way, you are 
more likely to arrive at an engineering solution that works. We are 
creating a more rigorous scaffolding on which other researchers can 
think about the specifics with respect to certain domains. We are also 
working very collaboratively with people on the translational side of 
things. Doing both foundation and application is beautiful because 
there can be a very nice interplay between them.
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