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ABSTRACT OF THE DISSERTATION

Interrupted Time Series Models for Assessing Complex Health Care Interventions

By

Maricela Francis Cruz

Doctor of Philosophy in Statistics

University of California, Irvine, 2019

Professor Daniel L. Gillen, Chair

Assessing the impact of complex interventions on measurable health outcomes is a growing

concern in health care and health policy. Interrupted time series (ITS) designs borrow

from traditional case-crossover designs and function as quasi-experimental methodology that

enables researchers to retrospectively analyze the impact of an intervention. Statistical

models used to analyze ITS data a priori restrict the interruption’s effect to a predetermined

time point or censor data for which the intervention effects may not be fully realized, and

neglect changes in the temporal dependence and variability. In addition, current methods

limit the analysis to one hospital unit or entity and are not well specified for discrete outcomes

(e.g., patient falls). This dissertation develops novel ITS methods based on segmented

regression that address the aforementioned limitations.

We propose the ‘Robust-ITS’ model, a single-unit model able to estimate (rather than merely

assume) the lagged effect of an intervention on a health outcome. Robust-ITS accounts for

plausible differences in the mean, temporal dependence and variability of an outcome pre-

and post-intervention. Next, we develop the ‘Robust Multiple ITS’ model as an extension of

Robust-ITS for multi-unit data. Alongside Robust Multiple ITS, we propose the ‘supremum

Wald test’, able to formally test for the existence of a change point across unit specific

mean functions. Lastly, we present the ‘Generalized Robust ITS’ model, appropriate for

x



outcomes whose underlying distribution belongs to the family of exponential distributions.

Generalized Robust ITS expands the available methodology to adequately model multi-

unit binary, count and rate ITS. The methods proposed allow researchers to test for the

existence of and estimate the change point, borrow information across units in multi-unit

settings, and test for differences in the mean function and correlation structure pre- and

post-intervention. Throughout, the methodology is illustrated by analyzing patient centered

data from a hospital that implemented and evaluated a new care delivery model in multiple

units.
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Chapter 1

Introduction

Evaluating the effectiveness of complex interventions on health outcomes is a growing concern

in health care and health policy. The Centers for Medicare & Medicaid Services (CMS)

in the United States financially incentivize health care quality reform via a value-based

purchasing program for health systems care services reimbursement (Kavanagh et al., 2012).

The purchasing program proliferates health care interventions aimed at bettering quality of

care measures, including mortality and complications, patient safety, and patient experience

(Centers for Medicare and Medicaid Services, 2018). Health care professional and policy

organizations recognize the need to transform health care to better provide patient centered

and team oriented care (Knebel et al., 2003; Fitzpatrick, 2003; Kohn et al., 2000). As such,

these organizations often spearhead health care interventions aimed at improving care quality

(American Hospital Association Commission on Workforce for Hospitals Health Systems and

others, 2002; Joynt and Kimball, 2008).

Assessing the impact of health care interventions on quality of care measures is difficult with

regards to research design and statistical analysis (Datta and Petticrew, 2013). Patients,

providers, resources and contexts of care interact in dynamic ways to produce various
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measurable health outcomes that often do not align with expectations (Hawe, 2015). This

complexity and interdependency makes it challenging to assess the true impact of interventions

designed to improve patient centered outcomes. Furthermore, randomized controlled trials,

the “gold standard” for evidence generation of health care interventions, are often difficult

to implement and not feasible in health systems with regard to health care reform (West

et al., 2008). According to the 2018 Annual Review of Public Health, interrupted time series

(ITS) designs may be the only feasible recourse for studying the impacts of large-scale public

health policies (Handley et al., 2018).

ITS designs borrow from traditional case-crossover designs and function as quasi-experimental

methodology able to retrospectively analyze the impact of an intervention and account for

data dependencies (Bernal et al., 2017). Health care intervention data often present as ITS:

sequences of measurements for an outcome (e.g., patient satisfaction scores) collected at

multiple time points before and after an intervention. Despite this, there continue to be

numerous limitations to the statistical methodology available to analyze ITS data. Namely,

current methods (a) restrict the interruptions effect to a predetermined time point or remove

data for which the intervention effects may not be fully realized; (b) neglect plausible

differences in temporal dependence and variability; (c) restrict the analysis to a single unit;

and (d) are not well specified for discrete outcomes. These are serious limitations because

the methods ignore interpretable changes in the higher order moments of the response, do

not take advantage of all available data that may provide information on the intervention’s

effect, and overlook an entire class of outcome types. In this dissertation, we propose novel

ITS methodology that address these limitations.

The ITS methods developed in the subsequent chapters are motivated by our interest in

estimating the lagged effect of a care delivery intervention on two patient-centered outcomes.

The outcomes, recorded monthly for a five year period, are average patient satisfaction,

discussed in Chapters 3-4, and patient falls, considered in Chapter 5. Time series plots of
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average patient satisfaction for the Stroke and Surgical units and the log of patient falls

for the Cardiac and Acute Care units are provided in Figure 1.1. These two measures are

currently being used to calculate health systems reimbursement for care services via CMS’s

value-based purchasing program (Kavanagh et al., 2012).

Figure 1.1: Plots average patient satisfaction for the Stroke and Surgical units, and the log
of patient falls for the Cardiac and Acute Care units. Note, for the purposes of depicting the
time series we add 0.5 to patient falls, making log of patient falls equal to −0.69 and giving
rise to the negative points in the plots when patient falls is equal to zero.

The intervention was the implementation of Clinical Nurse Leader (CNL) integrated care

delivery, a nursing model that embeds a master prepared nurse into the front lines of care

(Bender et al., 2017). The nurses, referred to as Clinical Nurse Leaders (CNLs), have

advanced competencies in clinical leadership, care environment management, and clinical

outcomes management (Bender et al., 2017). The CNLs, conducting their master’s level

microsystem change project, were introduced into their respective hospital units six months

prior to the formal intervention implementation time. This may or may not have influenced

the ‘change point’ of the intervention effect. Importantly, because of this early introduction,

3



the estimated change point may have occurred up to six months prior to the formal intervention.

We are therefore interested in estimating the time lag (or delay) between the onset of the

intervention and the effect on the patient centered outcomes.

Five overall scientific aims give rise to the methodology developed in the remainder of the

dissertation. The first is to determine if a change in the responses exists over a predetermined

set of possible change points. Next, we aim to estimate the time lag (or delay) between the

onset of the intervention and the intervention’s effect. The third scientific objective is to

account for changes in the mean function, temporal dependence and variability pre- and post-

intervention. Then, we aim to borrow information across units in multi-unit settings. Lastly,

we intend to use the knowledge gained in this setting and from our derived methodology to

plan for future intervention assessments.

In the ensuing chapter, we provide a review of the current statistical methodology used for

health care intervention evaluations, i.e., segmented regression. We go on to develop the

‘Robust-ITS’ model, a single unit model able to estimate the lagged effect of an intervention

on a continuous outcome and account for differences in the mean function and correlation

structure pre- and post-intervention. In Chapter 4, we propose the ‘Robust Multiple ITS’

model, an extension of Robust-ITS for multi-unit data, and the ‘supremum Wald test’,

a formal test used to determine the necessity of a change point. Next, we present the

‘Generalized Robust ITS’ model, a generalization of Robust Multiple ITS for multi-unit

binary, count and rate ITS. Alongside Robust Multiple ITS and Generalized Robust ITS,

we present empirical simulations to assess the type one error, power for detecting specified

change point alternatives, and accuracy of the change point estimation procedures. We

conclude the dissertation with a discussion of our developed methodology and include future

research directions.
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Chapter 2

Segmented Regression

Health care intervention study designs are often natural experiments encouraged by policy

mandates or health system innovation that are not scientifically controlled. The data that

arise from these intervention studies do not typically stem from a randomized controlled

trial (Craig et al., 2012). Simple comparisons of the mean pre- and post-intervention, say

via a t-test, do not provide the level of statistical rigor needed to account for contextual

factors and preexisting trends encountered in natural experiments (Ramsay et al., 2003).

The most utilized statistical methodology for analyzing ITS data is segmented regression,

a powerful methodology accounting for underlying trends, including outcome trajectories

and correlation (Linden, 2015; Penfold and Zhang, 2013; Wagner et al., 2002). Segmented

regression was first introduced in Quandt (1958), closely followed by Thistlethwaite and

Campbell (1960). Since then, segmented regression has been used in many forms and

disciplines, including health services research, economics and education.

Traditional segmented regression a priori sets the change point to a hypothesized value,

typically at or around the formal intervention, to fully differentiate the pre- and post-

intervention phases (Taljaard et al., 2014). The change point is defined as the time point at
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which a change occurs in the time series, i.e., the first time point in the post-intervention

phase (Wagner et al., 2002). We denote the a priori specified change point as τ. Next, the

‘impact model’ must be specified; see (Bernal et al., 2017) for a discussion on choosing the

correct impact model. To synchronize this chapter with the motivating data example and the

methodology proposed in this dissertation, we choose a flexible impact model that assumes

linearity, and so, allow for a level (intercept) and trend (slope) change at the change point.

2.1 Description of Segmented Regression

Let yt denote the outcome of interest at time point t ∈ {1, . . . , n}. Then, the general

segmented regression model is:

yt = µt + εt, (2.1)

where µt is the mean function and εt is the stochastic process (or error term) at time point

t. The mean function is

µt =

 β0 + β1 t, t < τ − k

(β0 + δ) + (β1 + ∆)t, t ≥ τ
, (2.2)

where k is equal to zero if data is not censored (i.e., removed from the analysis) and otherwise

set to an integer corresponding to the number of censored time points. For consistency with

the remainder of the dissertation, we set k = 0. There is another common parametrization

of the mean function for segmented regression used in health care studies, see Appendix

A.1.4 for its specification. There is a one-to-one mapping between the two parametrizations.

The parameters of the mean function provided in equation (2.2) are: (1) β0, the intercept

prior to the change point; (2) β1, the slope prior to the change point; (3) δ, the change

in baseline intercept post-change point; and (4) ∆, the change in slope post-change point.
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These parameters give rise to clinically important summary measures further discussed in

Section 2.1.1. In existing works, the change point, τ, is assumed known. We will extend this

assumption in Chapter 3.

The stochastic process, εt, accounts for the variability and correlation of the outcome at

time point t. If the ITS data are independent, we may assume εt
iid∼ N(0, 1) for all t. When

the ITS measurements are not independent, the stochastic process may be modeled with an

appropriate ARIMA process. Frequently, it is assumed that εt
iid∼ N(0, 1) for all t (Bernal

et al., 2017). Nevertheless, as we are interested in appropriately modelling correlation and

variability in our data setting, we assume the stochastic component is modeled as an AR(1)

process:

εt = φ εt−1 + et, (2.3)

where et
iid∼ N(0, σ2

w), φ ∈ (−1, 1) and t ∈ {2, . . . , n}. The correlation between any two

adjacent time points is denoted by φ. The variance of the response at any measurement is

then σ2 = σ2
w

1−φ2 .

2.1.1 Intervention Impact Measures

The health care community has adopted two measures to assess the impact of an intervention:

level change and trend change. It is necessary to report both level change and trend change

when interpreting the results of an ITS study (Effective Practice and Organisation of Care,

2015). Level change is interpreted as the discontinuity between the projected mean based

on the pre-change point phase and the estimated mean post-change point, i.e., the anchored

intercept at the change point, depicted graphically in Figure 2.1. Trend change quantifies

the impact of the intervention on the overall trajectory of the mean function, i.e., the change

in slopes post-intervention. In equation (2.2): ∆ is the trend change ; and −δ −∆τ is the

7



level change.

Figure 2.1: An example of an estimated mean function for segmented regression for the
Stroke unit. Depicts: (1) the estimated mean function for the pre- and post-change point
phases, (2) the projection of the mean function at the change point based on the pre-change
point regression, and (3) the change in level as defined in this dissertation. The plot contains
data from January 2010 to September 2010, instead of the entire observational period, to
clearly illustrate level change.

2.2 Limitations

Segmented regression, though powerful, has its limitations. First and foremost, segmented

regression assumes that there is a distinct separation between the pre- and post-intervention

phases, by either assuming the change point is known or removing the set of possible change

points. An instantaneous intervention effect is often assumed, i.e., the change point is often

set to the intervention time, because change point estimation involves optimization over

all possible configurations, which challenges computational feasibility. Specification of the

change point as the time of intervention does not, however, represent the reality that complex
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interventions may have varied effects and take time to manifest change, and can therefore

lead to incorrect measures of the intervention’s effect. Prevalent approaches to overcoming

this limitation are to remove a specific set of time points from the analysis (Penfold and

Zhang, 2013; Taljaard et al., 2014). This censoring (i.e., removal of time points) not only

omits data, but it also potentially biases parameter estimates, as the study team decides

which time points to remove.

In addition, segmented regression assumes that there are two phases in the mean function,

one pre- and another post-intervention, but one overall correlation structure. The assumption

of a constant correlation structure is not necessarily representative of complex interventions

where the health system seldom reacts in an isolated way to change and the intervention is

expected to reduce variability in the system. Theoretically, the correlation structure should

differ based on the introduction of an intervention (Cabrieto et al., 2017). In fact, with

complex health care interventions, the goal is often to enhance care processes so that elements

become more dependent and consistent over time. An increase in data dependency and

consistency implies a difference in correlation and variability. Thus, detection of differences in

correlations and variances pre- and post-intervention are critical in evaluating the effectiveness

of an intervention.

Segmented regression is a single unit model, and as such, does not borrow information

across units. This is a serious limitation because it does not take advantage of all available

data that may provide information on the lag associated with an intervention. The current

form of segmented regression is not well specified for discrete outcomes, thereby effectively

overlooking an entire class of outcomes. As health care ITS are often composed of discrete

measures (i.e., patient falls, unretrieved device fragment count, mortality etc.), methodology

able to assess the impact of an intervention on these outcomes is also needed. The subsequent

chapters of this dissertation develop methodology that address these limitations.
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Chapter 3

A Robust ITS Model

In this chapter, we develop the Robust-ITS model, a novel model for ITS, that estimates the

impact of an intervention on health outcomes. One advantage of the Robust-ITS model as

compared to segmented regression is its ability to estimate, rather than assume a priori, the

time when the effect of intervention initiates (the change point). In practice, the change point

may occur either before or after the official intervention time. For instance, an intervention

intended to improve care quality requiring a training over several months or weeks may

already produce a change in the outcome even before the formal intervention time (before

the official start of intervention) if the trainees execute their training as they learn. The main

contributions of Robust-ITS are the formal tests for differences in the correlation structure

and variability between the pre- and post-change point phases.

We propose a method which regards the change point as variable, appropriate for situations

where the data warrants such treatment. Nonetheless, if the aim is to attempt to isolate

causal effects of the intervention it may be better to pre-specify the change point or remove

the set of possible change points (or the set of points for which the intervention has not fully

been realized) from the analysis, as in traditional segmented regression for ITS designs.
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The data motivating our model development come from a study aimed to determine the

influence of redesigning a nursing care delivery system on nationally endorsed quality and

safety metrics (Bender et al., 2015). The outcomes of interest are patient satisfaction survey

scores. Patient satisfaction is an important health outcome, providing a valid measure

of quality of care received, and has previously been used for ITS analysis of nursing care

delivery interventions (Bender et al., 2012). It is also a metric that is currently being used

to calculate health systems reimbursement for care services, via the Center for Medicaid

and Medicare Services (CMS) value based purchasing program, making it a significant focus

for improvement (Kavanagh et al., 2012). A time series plot of patient satisfaction scores

from January 2008 to December 2012 at four units (Stroke, Cardiac, Medical Surgical, and

Mother Baby units) in a health care system is given in Figure 3.1.

Figure 3.1: Plots the time series of observed average patient satisfaction for each unit, the
nurses introduction into their respective hospital units and the formal intervention time.

The unit of analysis in the study is the care delivery microsystem, or hospital “unit.” Patient

satisfaction scores are reported as aggregate scores per month, per unit. Patient satisfaction
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indicators include ‘nurse communication’, ‘skill of the nurse’, and ‘pain management’. Patients

respond to items by selecting one of four responses: never, sometimes, usually, or always.

For modeling we chose one outcome: average patient satisfaction, averaged over seven patient

satisfaction indicators, for 4 hospital units of the study setting. We refer to average patient

satisfaction simply as patient satisfaction throughout the remainder of the dissertation. The

intervention program, titled Clinical Nurse Leader (CNL) integrated care delivery, was the

introduction of novel nursing care delivery policies and procedures into the hospital and its

units (Bender, 2014), discussed in Chapter 1.

The remainder of this chapter is organized as follows. First, we present a background of

studies on interrupted time series in health care. Current statistical methods and their

limitations will be briefly discussed. Then our proposed Robust-ITS model is described.

Details on the estimation and inference procedure are provided. Followed by an analysis

of the impact of Clinical Nurse Leader on patient satisfaction with nurse communication.

Parameter estimates are presented and compared to results obtained via traditional ITS

methodologies. Lastly, a summary of the Robust-ITS model and a brief description of future

work is provided.

3.1 Background

The traditional “gold standard” for evidence generation of health care interventions is the

randomized clinical trial (RCT). The theory behind this methodology is that potential biases

related to patient heterogeneity and confounding covariates are evenly dispersed across study

groups, and thus do not dissimilarly influence treatment effect (Rickles, 2009). RCTs,

however, have a narrow scope in the care delivery community since it is not feasible, and

sometimes not ethical, to randomly assign the intervention. By design, explanatory RCTs do
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not and cannot take into account the range of dimensions of patient demographics, variations

in health, and overall health care complexity (Petticrew et al., 2013).

Interrupted time series (ITS) offers a rigorous methodology to determine the effectiveness

of complex health care interventions on outcomes in real world settings, that account for

secular changes as part of the analytic process (Taljaard et al., 2014; Kontopantelis et al.,

2015). When RCTs are not feasible or not applicable, ITS is considered the strongest

research design in the health policy evaluation literature (Penfold and Zhang, 2013), and

are considered rigorous enough for inclusion into Cochrane meta analyses (Effective Practice

and Organisation of Care, 2015).

We believe, along with many authors in this field, that segmented regression is most effective

in analyzing ITS data. Segmented regression may be utilized via standard statistical packages

— such as ITSA in Stata, ETS in SAS, segmentedR in R, etc. — however, there are

limitations to these current statistical packages as there are limitations to segmented regression;

see Chapter 2 for a detailed description of segmented regression limitations. Table 3.1

highlights a few popular ITS packages, some articles that describe the use of the packages

for analysis of ITS data, and the limitations of each method, as already described.
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Package Papers Advantages/Description Limitations

SAS PROC
AUTOREG

Penfold and Zhang
(2013),

• Estimation and prediction
of linear regression models

• No intervention
analysis.

(SAS User
Guide, 2008)

Eliopoulos et al.
(2007),

Parienti et al. (2011)

with autoregressive errors.
• Estimation and testing of
general heteroscedasticity

(change in variance).

SAS PROC,
ARIMA
(SAS User

Guide, 2008)

Eliopoulos et al. (2007) • Analyzes and forecasts
time series, transfer

functions, and intervention
data using ARIMA and

ARMA models.

•Assumes
intervention time is

fixed with an
immediate effect.
• Assumes one overall

correlation process

SAS ETS
(SAS User

Guide, 2008)

Cable (2001),
Mahamat et al. (2007),

Aboagye-Sarfo et al.
(2015)

• Same as the above two
entries; SAS PROC ARIMA
and SAS PROC AUTOREG

are part of SAS ETS.

• Fixed intervention
time point with

immediate effect.
• One overall

correlation structure

Stata ITSA Linden (2015) • Single and multiple group
comparisons.
• Estimates treatment

effects for multiple
treatment periods.
• Adjust for overall

autocorrelation.

• Fixed change point.
• One overarching

correlation structure.

segmentedR Muggeo (2012) • Estimates piecewise
regression models with a

fixed number of
discontinuities, or

interruptions.

• No modeling of
correlation structure.
• Assumes data are

independent.

Table 3.1: Denotes the limitations and advantages of ITS packages that focus on segmented
regression and provides papers that either propose or utilize the packages.
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3.2 The Robust Interrupted Time Series (Robust-ITS)

Model

3.2.1 Preliminary Analysis

Before any formal statistical modeling, we plot the outcome against time to illuminate the

type of longitudinal mean (linear, quadratic, etc.), seasonality, and the set of plausible change

points. As previously noted, the set of possible change points should not be limited to time

points solely after the intervention, for aforementioned reasons. If the longitudinal mean

is not linear, an adequate transformation may be applied to obtain a linear pattern, or a

different segmented regression model appropriate for the pattern present needs to be applied

within the ITS design. Seasonality should be accounted for, within the mean, via traditional

statistical methods concisely described in (Bhaskaran et al., 2013). If needed one should

apply variance stabilizing transformations to the outcome variable. For the purposes of

illustrating Robust-ITS, the relationship between the outcome and time is assumed linear

with no seasonality.

3.2.2 Description of the Robust-ITS Model

One prominent feature of our Robust-ITS model is the clear distinction between the time of

intervention and the change point. In Penfold and Zhang (2013); Garey et al. (2008); Ansari

et al. (2003) and many more, the impact of the intervention is assumed to be instantaneous

— that is, the change point is assumed to be the intervention time. Robust-ITS allows us

to estimate the time point at which the effect of an intervention initiates. The paramount

contribution of Robust-ITS is the modeling of the stochastic component separately between

the pre- and post-change point phases. The separate modeling allows for two completely
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different data dependency and variability structures to exist prior to the intervention and

post intervention.

Denote t∗ as the time point at which the intervention is introduced and τ as the time point

at which the effect of the intervention initiates (the change point). Sometimes it may indeed

be true that t∗ = τ, but not necessarily. Often it is entirely possible that the time of effect

of the intervention differs from the time of intervention introduction (i.e., either τ > t∗ or

τ < t∗). Here we develop a data adaptive procedure for estimating τ. There are many change

point detection methods in time series but they often deal only with changes in the mean

and variance (not the autocorrelation structure itself), and may not work well in shorter

time series (Davis et al., 2006; Kirch et al., 2015).

Define yt as the outcome of interest at time t; for example, yt may be patient satisfaction at

a particular hospital unit during time t. The general regression is defined as

yt = µt + εt,

where µt is the mean and εt is the stochastic process. The mean component, µt, characterizes

the mean of the outcome for the pre-intervention and post-intervention phases. The stochastic

process, εt, accounts for the outcome variability and correlation. In the following discussion

we define the mean and stochastic components for the Robust-ITS model. A note on the

length of the time series needed to carry out the Robust-ITS analysis is provided in the

appendices.
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The Pre- and Post-intervention Mean

At the first stage of modeling the emphasis is on the mean,

µt =

 βτ0 + βτ1 t, t < τ

(βτ0 + δτ ) + (βτ1 + ∆τ )t, t ≥ τ,
(3.1)

where the parameters are estimated using ordinary least squares. The parameters in µt are:

(1.) βτ0 , the intercept of the mean prior to the change point; (2.) βτ1 , the slope of the outcome

prior to the change point; (3.) βτ0 + δτ , the intercept of the post-intervention phase; and (4.)

βτ1 + ∆τ , the slope of the post-intervention phase.

Remark. The difference between the pre-change point and post-change point intercept is

δτ . The difference between the pre- and post-change point slopes, i.e., the trend change, is

∆τ and the level change is −δτ −∆ττ.

Recall, level change and trend change are the metrics used in the health policy evaluation

literature to measure the effect of an intervention. Formally, the level change is defined as

the difference at the change point time τ between the extrapolated pre-intervention mean

function and the observed intervention mean function, as is depicted in Figure 2.1.

Rather than impose or assume the onset of the change, the Robust-ITS model actually

estimates the change point, τ, in a data-driven manner using the likelihood. From a set of

candidate change points (set by the researcher), the procedure estimates the parameters via

ordinary least squares for each possible τ, and selects the τ , and its corresponding parameters,

that maximize the likelihood.

Denote the length of the time series as n and let θ = [βτ0 , β
τ
1 , δ

τ ,∆τ , σ2
1, σ

2
2]′, with σ2

1 and

σ2
2 defined as the variances prior to and post change point respectively. As described in

section 3.1, one goal of interventions is to decrease variability, which leads to creating a
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more consistent outcome. We therefore include separate variance parameters for the pre-

and post-change point phases, to allow for a change in data variability.

Let q be a candidate change point in the set of possible change points Q, where Q =

{t∗ −m, . . . , t∗, . . . t∗ + k} for positive integer values of m and k, set by the researcher. The

set of possible change points, Q, contains t∗, the time point at which the intervention is

formally introduced, and time points that allow for a lag in intervention effects (via choice

of k) and anticipatory effects (via choice of m). Intervention experts chose m and k based

on the intricacies of the study design and data.

For each candidate change point q ∈ Q we derive the likelihood function:

L(θ|q) =
( 1√

2πσ2
1

)q−1

exp
(
− 1

2σ2
1

q−1∑
t=1

[
yt − (βτ0 + βτ1 t)

]2)×
( 1√

2πσ2
2

)n−(q−1)

exp
(
− 1

2σ2
2

n∑
t=q

[
yt − ({βτ0 + δτ}+ {βτ1 + ∆τ}t)

]2)
.

Define Lmax(q) = maxθ L(θ, |q), then the estimated change point is τ̂ = arg maxq∈Q Lmax(q).

The estimates of the intercept and slope for each phase are obtained as in segmented

regression; equivalent to estimating the slope and intercept separately for the pre- and

post-change point phases as in simple linear regression. The ordinary least squares (OLS)

estimates for the parameters in θ are provided in the appendices. The estimates for σ2
1 and σ2

2

depend on the stochastic process, and are given for an AR(1) process also in the appendices.

The presence of τ does not restrict the model to a fixed interruption with an instantaneous

effect, and allows the design matrix and estimates to transform based on the information the

data provides. This flexibility of the model can be helpful in minimizing misleading results

from an assumed change point.
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Stochastic Properties Pre- and Post- Change Point

The stochastic component, εt, captures the correlation structure of the outcome variable

across time, and may change as a result of the intervention. Here, we develop a formal test

for the difference in the correlation structure for pre- and post-intervention phases.

We use the ARIMA process to model the stochastic component, εt = yt−µt. Since the mean

function µt is not known (we only have its estimate, µ̂t), the stochastic component is not

directly observed. In place of εt, we use the residuals, Rt = yt − µ̂t, where µ̂t is the estimate

of µt obtained as described in stage one. In order to use the ARIMA processes, residuals

must exhibit stationary behavior, that is, the mean and variance of the residuals must be

relatively constant. If the mean is not misspecified, then the residuals should be fluctuating

around zero without any patterns. Moreover, the residuals should be stationary within each

of the pre- and post-intervention phases (Shumway and Stoffer, 2017).

Autoregressive conditional heteroscedasticity models may be used when the data is non-

stationary; they can model the stochastic component in each phase and for the entire

observational period when the variance and/or data dependency is non-constant. For our

patient satisfaction data it is reasonable to assume stationarity within each phase, and hence

we proceed with the assumption of stationarity. See (Shumway and Stoffer, 2017), (Granger

and Newbold, 2014) and (Bollerslev, 1988) for more details on autoregressive conditional

heteroscedasticity models.

Due to the impact of the intervention, the stochastic process εt pre-intervention might differ

from the process post-intervention. That is, εt for t ∈ {1, . . . , τ̂ − 1} may be a different

stochastic process than εt for t ∈ {τ̂ , . . . , n}. Hence, the autocorrelation and variance might

differ pre- and post- change point. Now, the stationarity requirement is satisfied if the

variance, mean, and autocorrelation are constant within each stochastic process, not constant

across all time points as before.
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The ARIMA parameters are estimated by maximizing the conditional likelihood, and are

given for the subsequent example of an autoregressive model with a lag of one. It is of

most importance to understand that the lag used for the autocorrelation modeling is not an

indicator of when the intervention takes effect, but instead it models overall data dependency;

τ dictates when the intervention affects the outcome variable.

Example. A special case of a stochastic process is the first order auto-regressive [AR(1)]

model:

Rt =

 φ1(τ)Rt−1 + e1
t , 1 < t < τ̂

φ2(τ)Rt−1 + e2
t τ̂ < t ≤ n.

(3.2)

To ensure granger causality, both φ1(τ) and φ2(τ) lie in the interval (−1, 1). Note, φ1(τ), the

auto-regressive coefficient prior to the change point, is directly associated with the correlation

between two time points; φ1(τ) is the correlation between time point t and t+ 1 where t and

t+ 1 belong to the pre-change point phase (t, and t+ 1 ∈ {1, . . . , τ̂ − 1}), and φ
|h|
1 (τ) is the

correlation between two time points h time periods away (say t and t + h both in the pre-

change point phase, {1, . . . , τ̂ − 1}). The auto-regressive coefficient post change point, φ2(τ)

has a similar interpretation. The error terms of model (3.2) are white noise, ejt
iid∼ N(0, σ2

j )

for j ∈ {1, 2}.

The variance and auto-regressive coefficients in the AR(1) setting can be estimated by

maximizing the conditional likelihood. The estimates are functions of the residuals Rt and

the residuals of the residuals Wt, and are provided in the appendices.

To determine whether the stochastic process differs as a result of the change point, we test

the hypothesis that ν(τ) ≡ φ2(τ)−φ1(τ) equals zero. This can be tested by either estimating

ν directly or by conducting an F-test for nested models. The F-test for nested models for

this AR(1) scenario is described in the appendices.
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Remark. Once the εt are appropriately modeled, the OLS estimates in equations (A.1)

-(A.4) will need to be re-estimated to produce the generalized least squares estimates. If an

AR(1) is fit to the overall stochastic process (across the change point), the beta parameters

should be re-estimated without the first time point; that is, for t ∈ {2, . . . , n}. If different

AR(1) processes are fit pre- and post-intervention, then the mean prior to the intervention

should be re-estimated using t in{2, . . . , τ −1}, and the mean post intervention re-estimated

using t in{τ + 1, . . . , n}. The summation limits in equations (A.1) -(A.4) would therefore

change.

Pre- and Post-Intervention Variance Comparison

For stochastic processes in which both pre- and post-change point phases are adequately

modeled by the ARIMA processes (residuals not behaving as white noise in either phase),

the variances may not be easily, if at all, compared. The variances in each phase can be

estimated but not statistically compared, due to the dependency of the data.

If there is no autocorrelation (or dependence) then the OLS estimates are sufficient. Nevertheless,

the variance may not be the same pre- and post-change point. In situations where there is

no statistically significant autocorrelation, the variances may be compared via an F-test.

Using τ we can determine how many observations we have prior to and post change point,

subtracting three (one for each parameter we estimate) from those values gives the degrees of

freedom. For example, suppose there are 25 and 35 time points before and after the change

point respectively, and that the estimated variances are s1 and s2 respectively. Then the

F-statistic is s1
s2

, and under the null hypothesis (assuming the variances are equal) distributed

F22,32.
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3.3 Robust-ITS Analysis of the Intervention Effect on

Patient Satisfaction

Patient satisfaction is modeled in four hospital units: Stroke, Cardiac, Medical Surgical, and

Mother Baby units. It is crucial to note that the outcome is a percentage, and so, restricted

to lie between 0 and 100. The restriction on the outcome has imperative consequences: the

time series must reach a plateau regardless of intervention introduction. The nature of the

outcome must be kept in mind when interpreting the results from the analysis.

The means of the four time series were modeled as in equation (3.1); the resulting parameter

estimates are given in Table 3.2. The relationship between the formal intervention implementation

time and the change point for the four units is illuminated in Table 3.2 and Table 3.3, which

show the effect of the intervention is not necessarily instantaneous. In fact, Table 3.2 and

Table 3.3 suggest the intervention had an anticipatory effect in three of the four units of

interest. The preemptive effect is in concordance with the structure of the CNL integrated

care delivery intervention, because of the CNL student inclusion into their respective units 6

months prior to the formal introduction. In the Stroke, Cardiac and Medical Surgical units,

the estimated change points occur respectively in May 2010, January 2010, and February

2010, suggesting CNL students could have implemented the new care delivery prior to July

2010. This relationship indicates the time of change in patient satisfaction associated with

the intervention may be at the mercy of CNL student behavior.

Table 3.2 depicts the differences in estimated means prior to and post change point, with the

most informative rows of Table 3.2 corresponding to the two measures of interest: change in

level and change in slopes. The level change is positive and statistically significant (at the

α = 0.01 level) for the Stroke and Mother Baby units, indicating that the mean drops at

the change point and that the drop statistically differs from zero. Thus, the CNL integrated

care delivery initially is associated with a statistically significant drop of patient satisfaction
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Patient Satisfaction

Parameters Stroke Cardiac Medical Surgical Mother Baby

Intercept Pre 64.32** 64.67** 68.31** 77.21**
Change Point (61.76, 66.88) (60.07, 69.27) (64.14, 72.49) (74.99, 79.54)

Intercept Post 67.21** 71.79** 71.51** 77.42**
Change Point (61.86, 72.57) (66.10, 77.49) (64.01, 79.01) (70.24, 84.60)

Change in 2.89 7.12 3.20 0.15

Intercepts, δ̂τ̂ (-2.91, 8.70) (-0.03, 14.28) (-5.22, 11.61) (-7.20, 7.51)

Change in level, 7.00** -2.77 3.50 5.40**

−δ̂τ̂ − ∆̂τ̂ τ̂ (3.75, 10.25) (-7.92, 2.38) (-1.72, 8.72) (2.01, 8.78)

Slope Pre 0.56** 0.24 0.35* 0.28**
Change Point (0.41, 0.71) (-0.08, 0.56) (0.07, 0.63) (0.15, 0.40)

Slope Post 0.22** 0.07 0.09 0.10
Change Point (0.10, 0.34) (-0.06, 0.20) (-0.07, 0.26 ) (-0.06, 0.25)

Change in Slope, -0.34** -0.17 -0.26 -0.18

∆̂τ̂ (-0.53, -0.15) (-0.51, 0.16) (-0.58, 0.06) (-0.38, 0.02)

Delay in Effect of
Intervention, -3 -6 -5 0
τ̂ − t∗

Table 3.2: Provides 95% confidence intervals and estimates of the mean parameters for
average patient satisfaction of the Stroke, Cardiac, Medical Surgical and Mother Baby units.
Since τ is discrete, only an estimate is given, no confidence interval. The asterisk, *, denotes
statistical significance at the α = .05 level.

Patient Satisfaction

Stroke Cardiac Medical Surgical Mother Baby

Time of Intervention Month 31, Month 31, Month 31, Month 31,
Implementation July 2010 July 2010 July 2010 July 2010

Estimated Change Month 29, Month 25, Month 26, Month 31,
Point, τ̂ May 2010 January 2010 February 2010 July 2010

Table 3.3: Gives the formal time of intervention implementation and the estimated time at
which the effect of the intervention initiates, i.e., the estimated change point.

in the Stroke and Mother Baby units. The estimated trend change or change in slopes is

negative for each unit, although statistically significant (at the α = 0.01 level) for the Stroke

unit only.

The slope decreases after the estimated change point in the Stroke unit, implying a more

flattened out mean post-change point. Therefore, the CNL implementation may be associated

with a flatter mean across time in the Stroke unit; i.e., for every one month increase in time,
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there is a smaller estimated increase in patient satisfaction in the post-change point phase

as compared to the pre-change point phase. However, this artifact may be present because

the maximum value of the outcome variable is 100. We may be seeing some asymptote effect

instead of capturing the effect of the intervention on the trend (slope).

For the Cardiac, Medical Surgical and Mother Baby, the estimated slope does not statistically

change after the estimated change point; for the Cardiac and Medical Surgical units the

estimated level change is also not statistically significant; and, the estimated change in

intercepts is not statistically significant for any of the units. Hence for the Cardiac and

Medical Surgical units, the intervention does not seem to be associated with a change in the

estimated patient satisfaction. The CNL integrated care delivery is associated with some

outcome modification (either in the intercept, level change, slope change, or a combination)

in the Stroke and Mother Baby units.

The pre- and post-change point mean functions of the four units are plotted in Figure 3.2.

Figure 3.2 depicts that the change point occurs prior to the formal intervention time for the

Stroke, Cardiac and Medical Surgical units, but is equivalent to the formal intervention time

for the Mother Baby unit. The estimated mean post-change point seems to flatten out in

all units, and the change in level appears sizable for the Stroke and Cardiac units. Figure

3.2 illustrates results in concurrence with those of Table 3.2.

Figure A.1, in the appendix, provides the studentized residuals after modeling the mean.

The residuals seem well behaved and mostly contained between the rule of thumb ±2 and

completely contained between ±3. The residuals do not exhibit any severe patterns, and thus

suggest Robust-ITS models the mean patient satisfaction of all units adequately. Moreover,

Figure A.2 provides the autocorrelation function (ACF) of the residuals. The ACF plots

interpreted as in (Shumway and Stoffer, 2017) act as white noise, implying that the data do

not exhibit autocorrelation.
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Figure 3.2: Plots the time series of observed average patient satisfaction for each unit, the
estimated change point, estimated means, and formal intervention time. The estimated
means and change point are obtained from modeling the time series with Robust-ITS.

Modeling the mean by equation (3.1) in stage one is sufficient because the residuals act as

white noise. Nevertheless, we model the residuals pre- and post-change point with an AR(1)

process separately, to provide complete information. The estimates and 95% confidence

intervals of the autoregressive parameters and their difference is given in Table 3.4, along

with the estimated variance prior to and post change point and their comparison. Both φ̂1

and φ̂2 do not statistically differ from zero in any of the four units, supporting our claim

that the residuals act as white noise. There is no data dependency apparent in either the

pre- and post-change point phases. The difference of the two autoregressive parameters,

φ̂2(τ̂)− φ̂1(τ̂), also do not statistically differ from zero in the four units.

Because there is no correlation present and the stochastic component is adequately modeled

by white noise (indicating independent data), there is valuable information obtained from
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Patient Satisfaction

Parameters Stroke Cardiac Medical Surgical Mother Baby

AR(1) Coefficient Pre -0.056 -0.191 0.078 -0.271

Change Point, φ̂1(τ̂) (-0.460, 0.348) (-0.624, 0.241) (-0.377, 0.534) (-0.647, 0.105)

AR(1) Coefficient Post -0.354 0.055 0.088 -0.044

Change Point, φ̂2(τ̂) (-0.713, 0.004) (-0.266, 0.376) (-0.264, 0.440) (-0.401, 0.392)

Difference in AR(1) -0.299 0.246 0.010 0.267
Coefficients,
φ̂2(τ̂)− φ̂1(τ̂)

(-0.826, 0.229) (-0.278, 0.770) (-0.551, 0.570) (-0.267, 0.801)

Variance Pre Change

Point, σ̂2
1:(τ̂−1)

10.259 26.474 23.412 8.127

Variance Post Change

Point, σ̂2
τ̂ :T

7.976 13.511 23.965 12.649

Variance Comparison 1.286 1.959 0.977 0.643
F-statistic (p-value) (0.248) (0.035) (0.516) (0.88)

Table 3.4: Gives (a.) estimates and 95% confidence intervals of the AR(1) coefficients pre
and post change point, and of the estimated increase in the AR(1) coefficient post-change
point; (b.) the estimated variances and (c.) the F-statistic and p-value corresponding to the
comparison of the pre and post change point variances, for patient satisfaction with effective
nurse communication.

εt via the variance; the variances are compared using an F-test. The estimates of the

variances are smaller post-change point for the Stroke and Cardiac units, and larger for

the Medical Surgical and Mother Baby units. Nonetheless, we cannot conclude that the

variance differs between the two phases for the Stroke, Medical Surgical and Mother Baby

units. For the Cardiac unit the variance post-change point is statistically (at the α = 0.05

level) smaller than the variance pre-change point. Therefore, patient satisfaction in the

Cardiac unit is more predictable after the introduction of CNL integrated care delivery. A

more predictable outcome, less extremely unsatisfied and satisfied patients, signifies a more

controlled environment. This is a positive result of the intervention since there will be better

quality control on the fluctuations of the patient outcomes and more consistency as a result

of the intervention.

Comparing Robust-ITS to Segmented Regression We compare level change and trend

change for Robust-ITS and two segmented regression models (one with an assumed change

26



point and another with the set of possible change points removed) in Table 3.5. The aim of

Table 3.5 is to illustrate that the estimates of level change and trend change differ based on

the type of model selected. Indeed, the estimates of level change and trend change across

the 3 models differs for each of the fours units. Segmented regression — with an assumed

change point or the set of possible change points removed — may provide results that are

statistically significant, or not statistically significant, in cases where the opposite is true

when considering anticipatory or delayed intervention effects. Moreover, the two segmented

regression methods may also provide opposing results.

Patient Satisfaction
Unit Change in Level Change in Trend (slope)

-δ̂ − ∆̂τ̂ δ̂
Segmented
Regression+

Segmented
Regression++

Robust-ITS Segmented
Regression+

Segmented
Regression++

Robust-ITS

Stroke 6.04 5.7 7 -0.41 -0.25 -0.34
(1.14, 10.94) (2.32, 9.07) (3.75, 10.25) (-0.68, -0.15) (-0.45, -0.06) (-0.53,-0.15)
0.02* 0.00** 0.0** 0.00** 0.01* 0.00**

Cardiac -4.4 -1.8 -2.77 -0.24 -0.23 -0.17
(-11.01, 2.21) (-6.38, 2.79) (-7.92, 2.38) (-0.61, 0.14) (-0.50, 0.04) (-0.51, 0.16)
0.19 0.44 0.29 0.21 0.10 0.30

Medical 0.94 0.59 3.50 -0.21 -0.16 -0.26
Surgical (-6.64, 8.53) (-4.86, 6.03) (-1.72, 8.72) (-0.60, 0.18) (-0.46, 0.14) (-0.58, 0.06)

0.8 0.83 0.18 0.28 0.28 0.11
Mother 5.89 5.40 5.40 -0.28 -0.18 -0.18
Baby (0.64, 11.14) (1.99, 8.80) (2.01, 8.78) (-0.56, -0.01) (-0.38, 0.02) (-0.38, 0.02)

0.03 0.00 0.00 0.05 0.07 0.07

Table 3.5: Provides approximate 95% confidence intervals for level change and trend change
of (1.) segmented regression with the phase-in period removed, denoted by +, (2.) segmented
regression with an assumed change point, denoted by ++, and (3.) Robust-ITS, for patient
satisfaction. Each row respectively provides the parameter estimate, confidence interval, and
p-value. Note, one asterisk, *, denotes significance at the α = 0.05 level, and two asterisks,
**, denotes significance at the α = 0.01 level.

It is important to note that there are many model specifications used for segmented regression.

Two of the main models used for segmented regression in the ITS and health care literature

are discussed and shown to be equivalent in the appendices. The segmented regression

models are discussed under the assumption that the change point is assumed. Nonetheless,

the two main segmented regression models are also equivalent when the set of possible change

points are removed.
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The model comparisons are provided in Table 3.6, intended to compare the adequacy of

Robust-ITS and segmented regression. Mean squared error (MSE) — the estimate of sum of

squared errors, which measures the square of the deviations from the estimate mean, divided

by the degrees of freedom — is provided in Table 3.5 for Robust-ITS, segmented regression

with an assumed change point, and segmented regression with the set of possible change

points removed. Robust-ITS has the smallest MSE and so provides the best estimate for

the mean of patient satisfaction, suggesting that Robust-ITS models the data better than

either of the traditional segmented regressions (with an assumed change point, or the set of

possible change points removed).

Mean Squared Error

Unit Segmented Regression+ Segmented Regression++ Robust-ITS

Stroke 192.42 190.99 171.99

Cardiac 428.34 416.50 406.85

Medical Surgical 471.80 471.93 459.16

Mother Baby 181.44 161.11 161.11

Table 3.6: Provides the mean squared error (MSE), with order of magnitude 10−5, of (1.)
segmented regression with the phase-in period removed, denoted by +, (2.) segmented
regression with an assumed change point, denoted by ++, and (3.) Robust-ITS, for patient
satisfaction. Mean squared error is the estimate of sum of squared errors, which measures
the square of the errors or deviations, divided by the degrees of freedom. A lower value of
MSE for a model, suggests a more adequate fit.

Comparing Robust-ITS to a Quadratic Model with No Change Point We further

compare Robust-ITS to a non-change point model with quadratic time as a predictor for

completeness. The model for the mean of patient satisfaction of a given unit with quadratic

time as a predictor is

µt = β0 + β1 t+ β2 t
2 for t ∈ {1, . . . , 60}. (3.3)

The estimated patient satisfaction mean curves for both Robust-ITS and model (3.3) are

plotted in Figure 3.3 by unit. The parameter associated with quadratic time β2 is only

statistically significant, at the α = 0.05 level, for the Stroke unit. Including quadratic time
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as a predictor is not necessary for the Cardiac, Medical Surgical and Mother Baby units,

since we cannot conclude that β2 differs from zero. Adding quadratic time as a predictor is

useful in the Stroke unit because at the α = 0.05 level β2 differs from zero.

Nevertheless as shown in Table 3.7, the MSE (estimate of the sum of squared errors divided

by the degrees of freedom) for Robust-ITS is smaller than the MSE of model (3.3) in all units,

indicating Robust-ITS fits the data better in all units. Additionally, model (3.3) assumes

a continuous decline after obtaining the maximum. Suggesting model (3.3) will produce a

poor patient satisfaction estimate post maximum.

Figure 3.3: Plots of patient satisfaction within each of the four units, along with the estimated
means obtained by Robust-ITS and a model with quadratic time as a predictor.
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Mean Squared Error

Unit Model with Quadratic Time and No Change Point Robust-ITS

Stroke 224.91 171.99

Cardiac 417.77 406.85

Medical Surgical 460.36 459.16

Mother Baby 184.62 161.11

Table 3.7: Provides mean squared error (MSE), with order of magnitude 10−5, for Robust-
ITS and for the non-change point model with quadratic time as a predictor, for patient
satisfaction. MSE is the estimate of sum of squared errors, measuring the square of the errors
or deviations, divided by the degrees of freedom. Lower MSE suggests a more adequate fit.

3.4 Summary and Conclusions

There are two main stages that compose Robust-ITS. The first is modeling the mean function

and the second is modeling the stochastic component. In both stages, Robust-ITS allows

for a change in the outcome. To the best of our knowledge, comparing and testing for a

difference in the stochastic component — a change in autocorrelation and/or variance for

the AR(1) case — has not been considered in the ITS literature.

In the first stage, a set of plausible change points must be established based on the scientific

question of interest. Then based on the set of possible change points, Robust-ITS estimates

the mean parameters via ordinary least squares and chooses the change point whose parameter

estimates maximize the likelihood. In the second stage, the residuals obtained by modeling

the mean in the first stage are used to examine and determine the structure of the stochastic

process. If the residuals act as white noise, (1.) there is no correlation present, (2.) the

variances before and after the estimated change point are compared by an F-test, and (3.)

the outcome of interest is adequately modeled by the mean from stage one. Otherwise,

an ARIMA process is fit on the residuals pre- and post-change point, separately. From

the ARIMA process, estimates of the correlation and variance are obtained via conditional

likelihood methods. The correlation estimates are compared to determine if the stochastic

process differs as a result of the change point, but the variances are not compared.
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The patient satisfaction and CNL integrated care delivery analysis illustrated that the

hypothesized change point is not always assumed adequately. Following traditional segmented

regression we would have set the change point at the same value for all units, and assumed

it was equal to the formal intervention time. We estimated the change point corresponding

to CNL integrated care delivery prior to the formal intervention time for three units, and

the estimated change point value varied based on unit.

In two of the four units, the CNL integrated care delivery introduction was associated to a

change in the mean patient satisfaction. Even though the change in mean patient satisfaction

was not necessarily positive, it depicted a mean function that continued towards 100%. The

lack of affirmation for the CNL integrated care delivery may stem from the outcome definition

as a percentage and an average. The percentage quality of patient satisfaction limits the

values the outcome may take on, and thus creates an asymptote effect for units that were

already doing well. The averaging across seven patient satisfaction indicators may cancel

out improvements in some indicators with regressions in others.

The estimates of the autocorrelation coefficients pre- and post-change point, although not

statistically significant, differed by approximately 0.25 for Stroke, Cardiac and Mother Baby.

Since the autocorrelation was not statistically significant, the variances pre- and post-change

point were compared. For the Cardiac unit, the variance post-change point was significantly

smaller than the variance pre-change point. This is a positive result of the CNL integrated

care delivery, since there will may better quality control of patient satisfaction fluctuations

due to the CNL intervention.

Comparing Robust-ITS with traditional ITS modeling illustrates how allowing for a variable

change point results in a better fit with regards to MSE. The ability to easily assess the effect

of the intervention on the correlation structure, and to conduct variance comparisons when

correlation is not present, allows for clearer inference on the possible effect of an intervention.
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Our group has developed the Robust-ITS toolbox in R Shiny (see Figure 3.4) that executes

the methodology described here. The toolbox and its manual (in a PDF document) are

located respectively at Robust-ITS and Manual. It is crucial to note that the methodology

implemented in the toolbox is the methodology proposed in this chapter. The Robust-ITS

toolbox is interactive, and provides the user with graphical displays, estimates and inference

on testing for differences between the pre- and post-intervention means, correlation, and

variance.

The current status of the model is only for single unit analyses and continuous-valued

outcomes. In the following chapters, we generalize robust-ITS to a handle multi-unti ITS

and to discrete ITS (e.g., infection rates, counts of accidental falls, etc).
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Figure 3.4: The Robust-ITS toolbox in R Shiny (by Ngo, Hu, Cruz, Bender, and Ombao),
an interactive toolbox in which the user (1.) may upload their own data in a .csv file;
(2.) provides basic information of the data — the toolbox requires the user to input the
‘theoretical executive time point (TET)’ (formal time of intervention), ‘candidate before
TET’ (smallest value of the set of possible change points), ‘candidate after TET’ (largest
value of the set of possible change points), ‘starting month’ (the month at which data
collection began), and ‘starting year’ (year at which data collection began); (3.) views
the output plots (after pressing the button labeled ‘Analyze Data’) of the fitted data, the
log-likelihood at possible change points, residuals, and acf plots to determine the lag of the
stochastic process; (4.) views the estimates, along with their p-values and standard errors,
for both the mean and stochastic processes.
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Chapter 4

A Multi-Unit Extension of

Robust-ITS

The methods for analyzing ITS data discussed thus far do not borrow information across

units. This is a serious limitation because it does not take advantage of all available data that

may provide information on the lag associated with a given intervention. A main contribution

of the work presented in this chapter are the empirical power studies that illustrate the gain

in efficiency obtained by borrowing information across units.

The methodology presented in this chapter is motivated by our interest in estimating the

lagged effect of an intervention on average patient satisfaction survey scores, recorded monthly

at five clinical care units. A time series plot of patient satisfaction scores from January

2008 to December 2012 at two hospital units (the Stroke and Surgical units), is given in

Figure 4.1. There seems to be a change in the mean functions of the Stroke and Surgical

units around the middle of the time series, slightly before the formal implementation of the

intervention on July 2010. The time series data are from a study aimed to assess the impact

of a new nursing care delivery system on publicly recorded standardized quality and safety
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metrics (Bender et al., 2015). These metrics are a central area for improvement because the

Center for Medicaid and Medicare Services utilizes them for health systems’ care services

reimbursement (Kavanagh et al., 2012).

Figure 4.1: Plots the time series of observed average patient satisfaction for the Stroke and
Surgical units.

The intervention was the implementation of Clinical Nurse Leader (CNL) integrated care

delivery, discussed in Chapter 1. We are interested in estimating the time lag (or delay)

between the onset of the intervention and the effect on patient satisfaction. Our proposed

model assumes a global change point rather than unit-specific change points (1.) to pool

information across hospital units and increase efficiency, and (2.) to reduce the impact of unit

specific high-leverage points around the CNL and formal intervention implementation time

points. Importantly, we are interested in examining whether or not a change point actually

exists, thereby deducing whether or not the intervention impacts patient satisfaction. Our

interest is not solely on properly modeling the CNL intervention; we are also interested in

future study designs, and so, focus on power.

The most utilized statistical methodology for analyzing ITS data in the health care literature

is segmented regression (Taljaard et al., 2014; Penfold and Zhang, 2013; Wagner et al., 2002;

Linden, 2015). Segmented regression restricts the analysis to one health care outcome for one

unit (group or cluster). In the context of assessing the above intervention, perhaps a severe

drawback of segmented regression is that it restricts the interruption to a predetermined
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time point in the series or censors data by removing the set of time points for which the

intervention effects may not be realized. Additionally, segmented regression neglects the

plausible differences in autocorrelation and variability between the pre- and post-intervention

phases present in the data. The Robust-ITS model proposed in the previous chapter

treats the change point as variable, appropriate for situations where the data warrants such

treatment, and tests for differences in autocorrelation and variability pre- and post-change

point. Nevertheless, Robust-ITS and segmented regression both neglect shared information

across hospital units and inherently assume a change point exists.

Assessing the impact of an intervention with traditional segmented regression or Robust-

ITS on these data requires a separate analysis for each individual unit. We expect many

of the units to share several characteristics — i.e., abide by the same regulations, have

similar schedules, hire staff based on the same criteria, etc. — because the units are housed

within one hospital. Moreover, we expect the CNL ‘training’ or education for each of the

CNL students to include commonalities, such as course work and care delivery ideology.

Assessing the intervention impact on multiple units via current segmented regression methods

ignores shared characteristics across units, in particular the similarity between characteristics

influencing the change-point.

Inherently assuming that a change point exists, as in segmented regression and Robust-ITS,

may lead to erroneous results when there is no actual a change point. Change point models

will forcefully quantify a change in the outcome regardless of the presence of a true change

point. This is a problem whether the change point is determined a priori or estimated over

a set of possible change points. Assuming a change point exists when it truly does not, will

force a model to provide an estimate of an artificial difference in the outcome. To avoid

incorrectly specifying an unnecessary change point and regression to the mean phenomena,

we focus on formally testing for the existence of a change point.
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In this chapter, we develop the Robust Multiple ITS model (R-MITS), a novel extension of

Robust-ITS, appropriate for multiple independent interrupted time series. Furthermore, we

present the supremum Wald test, able to test for the existence of a change point across units.

Importantly, we provide empirical type one error, power, and accuracy studies assessing the

operating characteristics of our developed methodology. The proposed method (a.) borrows

information across hospital units to increase efficiency, (b.) estimates a global change point

of an instituted intervention, (c.) formally tests for the existence of a change point in

the unit specific mean functions, and (d.) allows for changes in the mean functions and

autocorrelation structures across units.

We go on to describe our proposed R-MITS model and provide details on the estimation

and inference procedures. In our model specification we outline the supremum Wald test

used to determine the necessity of a change point. Next, we present empirical simulations

to assess the type one error, power for detecting specified change point alternatives, and

accuracy of the change point estimation procedure. We then analyze the impact of Clinical

Nurse Leader integrated care delivery on patient satisfaction. Lastly, we present a summary

of our developed methodology and briefly describe future work.

4.1 The Robust Multiple ITS (R-MITS) Model

Our proposed model tests for the existence — rather than merely assume — of a change point

and adequately manages multiple units/time series. A noteworthy feature of our approach

is the clear distinction between the time of intervention and the change point, as in Robust-

ITS. Setting the change point to a predetermined time may lead to incorrect measures of the

intervention’s effect on the system; particularly when set to the intervention time, because

that does not necessarily represent the reality that complex interventions may have varied

effects and take time to manifest change. Prevalent approaches to overcoming this limitation
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are to remove, or censor, a specific set of time points from the analysis (Penfold and Zhang,

2013; Taljaard et al., 2014). R-MITS borrows information from all microsystems to estimate

a global change point; i.e., determines the time point at which the effect of the intervention

initiates for the entire health system. Moreover, detecting differences in autocorrelation

and variances pre- and post-intervention is critical in evaluating the effectiveness of an

intervention. The R-MITS model allows for two completely different data dependency and

variability structures to exist prior to the intervention and post-intervention within each

unit.

As in Chapter 3, to prelude model development we plot the outcome against time to (a.)

illuminate the functional form of the longitudinal mean over time; (b.) determine the

presence of seasonality, and (c.) further investigate the set of plausible change points and

the necessity of a change point. If the functional form of the longitudinal mean is not

linear, we transform the outcome to obtain a linear pattern, or apply a different segmented

regression model appropriate for the pattern present within the ITS design. When needed, we

account for seasonality via traditional statistical methods concisely described in (Bhaskaran

et al., 2013). Although not used in the analyses here, variance stabilizing transforms can

be applied on the outcomes of interest if necessary. In our interrupted time series data, the

longitudinal mean functions are relatively linear in time with no apparent seasonality. Thus,

no transformations are applied on the outcomes of interest.

4.1.1 Description of R-MITS

Denote t∗ as the time point at which the intervention is introduced and τ as the time

point at which the effect of the intervention initiates (the change point) for the outcome

of interest. Sometimes it may indeed be true that t∗ = τ, but this may not necessarily be

true for all outcomes. Often it is entirely possible that the time of effect of the intervention
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differs from the time of intervention introduction (i.e., either τ > t∗ or τ < t∗). If τ > t∗

then the effect of the intervention on the outcome is not realized until after the formal

intervention time point. As might be the case when a learning effect exists with regards to

the intervention, thereby leading to a delay in the realization of the full intervention impact.

When τ < t∗ there is an anticipatory intervention effect on the outcome. This may be the

case in our motivating study, where Clinical Nurse Leaders are introduced into units prior

to the formal intervention start time. We propose a data adaptive procedure for estimating

and determining the existence of τ, discussed in Section 4.1.1. Many change point detection

methods in time series exist, but often deal only with changes in the mean functions and

variance (not the autocorrelation structure itself), and may not work well in shorter time

series (Davis et al., 2006; Kirch et al., 2015). The method proposed in this chapter can

suitably manage changes in the autocorrelation structure, as well as in the mean functions

and volatility.

Define yit as the outcome of interest for hospital unit i at time t (where i = 1, . . . , N and

t = 1, . . . , n). For example, yit may be patient satisfaction for the Stroke unit at time t. The

general regression is defined as

yit = µit + εit, (4.1)

where µit is the mean function and εit is the stochastic process that models that fluctuations

around the mean function. The mean component, µit, characterizes the mean function of the

response for unit j during the pre-intervention and post-intervention phases. The stochastic

process, εit, accounts for the variability and correlation of the outcome in the ith unit. In

the following discussion we define the mean functions and stochastic components for the

R-MITS model, and the estimation procedures.
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The Pre- and Post-Intervention Mean Function

The mean function of the outcome for hospital unit i at time t is

µit =

 βτi0 + βτi1 t, t < τ

(βτi0 + δτi ) + (βτi1 + ∆τ
i )t, t ≥ τ

. (4.2)

The parameters in µit are: (1.) βτi0, the intercept of the mean function prior to the change

point; (2.) βτi1, the slope of the outcome prior to the change point; (3.) βτi0 +δτi , the intercept

of the post-intervention phase; (4.) βτi1 + ∆τ
i , the slope of the post-intervention phase; for

the outcome in unit i, and (5.) τ, the global over-all-unit change point of the response.

Thus, δτi = ∆τ
i = 0 implies there is no change in the mean structure before and after time

τ . Health care specialists are primarily interested in testing for the intervention lag (delay

in the effect of the intervention), and the differences in the outcome means between the pre-

and post-change point phases.

Remark (1.) The metrics adopted by the health policy evaluation literature to assess the

effect size of an intervention via ITS designs are the change in level and change in trend (or

slopes). While the level change identifies the size of an intervention’s effect, the change in

trend quantifies the impact of the intervention on the overall mean function. It is necessary

to report both level change and change in trend to interpret the results of an ITS study

accurately (Effective Practice and Organisation of Care, 2015).

Remark (2.) The level change is interpreted as the change in the anchored intercept

(anchored at the change point), and is therefore the jump between the projected mean

function based on the pre-change point phase and the estimated mean function post-change

point. In our model the unit specific change in level is defined mathematically as δτi + ∆τ
i τ,

and is graphically depicted in Figure 4.2. Trend change, or slope change, is denoted by ∆i

in the mean function, equation (4.2).
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Figure 4.2: An example of a segmented regression model fit for the Stroke unit. The plot
depicts (1) the segmented regression lines fit to the pre- and post-change point phases, (2)
the projection of the mean at the change point based on the pre-change point regression,
and (3) the change in level as defined here. The plot contains data from January 2010 to
September 2010, instead of the entire observational period, to clearly illustrate the level
change.

The mean function parameters are estimated simultaneously with the stochastic component

parameters and change point, via maximizing the conditional likelihood given in equation

(4.4) of Section 4.1.1, with the auto-regressive coefficients’ estimator accounting for the

volatility of the shifted series. with variance components shifted AR(1) An algorithm on

how to precisely estimate the parameters is provided in Section 4.1.1.

Stochastic Properties Pre- and Post-Intervention

The stochastic component in equation (4.1), εit, captures the autocorrelation structure of

the outcome variable across time for unit i, and may change as a result of the intervention;

the εit are zero-mean random fluctuations around the mean function of unit i. One goal
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of the CNL intervention is to increase the consistency of care delivery and hence patient

assessment outcomes, (i.e., decreasing variability of the outcomes). We therefore include

separate stochastic components for the pre- and post-change point phases, to allow for a

change in outcome variability.

Due to the impact of the intervention, the stochastic process pre-intervention might differ

from the stochastic process post-intervention. That is, εit for t ∈ {1, . . . , τ − 1} may be a

different stochastic process than εit for t ∈ {τ, . . . , n}. Note, the length of the time series

is denoted by n. Hence, the autocorrelation and variance might differ pre- and post-change

point. Here, the stationarity requirement is satisfied if the variance, mean function, and

autocorrelation are constant within each stochastic process, not constant across all time

points.

In order to fit stationary AR or ARMA processes to the stochastic components, one should

first confirm that there are no striking signs of non-stationarity. That is, the mean and

variance of the residuals (obtained from modeling and removing the mean function as in

the previous section) must be relatively constant. If the mean function is not misspecified,

then the residuals should be fluctuating around zero without trend. Moreover, the residuals

should be stationary within each of the pre- and post-intervention phases (Shumway and

Stoffer, 2017). Our analysis of patient satisfaction suggests that it is reasonable to assume

stationarity within each phase, and hence we proceed with the assumption of stationarity.

In this work we use the AR(1) process to model the stochastic component, ~εi = Yi − ~µi,

where Yi = [yi2, . . . , yin]
′

and ~µi = [µi2, . . . , µin]
′

for unit i. Note, yi1 is not included in Yi

and µi1 is not included in ~µi, because we condition on the first observation. The AR(1)

coefficient is estimated by maximizing the conditional likelihood with the denominator of

the estimator averaging the volatility of the shifted AR(1) series. We therefore condition

on the first observation yi1. Since the mean function ~µi is not known (we only have its

estimate, ~̂µi), the stochastic component is not directly observed. Hence, we use the residuals
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Ri = Yi − ~̂µi ≡ [ri2, . . . , rin]
′

in place of ~εi. The residuals are modeled as:

rit =

 φi1(τ) ri,t−1 + eit,1, 1 < t ≤ τ̂ − 1

φi2(τ) ri,t−1 + eit,2 τ̂ − 1 < t ≤ n.
(4.3)

To ensure causality in the time series sense, φi1(τ) and φi2(τ) must lie in the interval

(−1, 1) for all i. Note, the auto-regressive coefficient prior to the change point, φi1(τ), is

the correlation between time point t and t+ 1 (the adjacent correlation or autocorrelation)

where t and t + 1 belong to the pre-change point phase (t, and t + 1 ∈ {1, . . . , τ − 1}), and

φ
|h|
i1 (τ) is the correlation between two time points h units away (say t and t+ h, both in the

pre-change point phase) of the outcome. The auto-regressive coefficient post-change point,

φi2(τ) has a similar interpretation. The zero-mean random fluctuations of model (4.3) are

white noise, eit,j
iid∼ N

(
0, σ2

iw,j

)
for j ∈ {1, 2}. The variance of the distribution of the response

at any time point t is σ2
ij =

σ2
iw,j

1−φij(τ)2
for j ∈ {1, 2}.

The variance and auto-regressive coefficients in the AR(1) setting can be estimated by

maximizing the conditional likelihood provided in equation (4.4) of Section 4.1.1, with

the auto-regressive coefficients’ estimator accounting for the volatility of the shifted series.

The structure of the variance-covariance matrix, and the estimators of the auto-regressive

coefficients and white-noise standard deviations are given in the appendices.

To determine whether the stochastic process differs as a result of the change point for each

unit, one can test the hypothesis that νi(τ) ≡ φi2(τ)−φi1(τ) equals zero. This can be tested

by either estimating νi(τ) directly or by conducting an F-test for nested models. The F-test

for nested models for the AR(1) scenario is described in Chapter 3.
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Estimation of the Change-Point and Model Parameters

In this chapter we propose a conditional likelihood procedure for estimating the global change

point. The set of possible change points is established by the researcher. We estimate the

change point and therefore all of the parameters, both from the mean functions and stochastic

components, simultaneously by obtaining the generalized least squares estimates. Then we

test for the existence of a change in the mean functions — i.e., we test the null hypothesis

that there is no change in any of the mean functions versus the alternative that there is a

change in at least one of the mean functions — at each possible change point by applying

the supremum Wald test, described in section 4.1.1.

Define the length of the time series as n, the number of units as N, the vector of mean

function parameters as θi = [βτi0, β
τ
i1, δ

τ
i , ∆τ

i ]
′

and Σi as the variance-covariance matrix of

the response in unit i. The structure of the variance-covariance matrices is included in the

appendices.

Let q be a candidate change point in the set of possible change points Q, where Q =

{t∗−m, . . . , t∗, . . . t∗+k} for positive integer values of m and k set by the researcher. Recall

the response vector for unit j is Yi = [yi2, . . . , yin]
′
. Note, yi1 is not included in Yi because we

model the zero-mean random fluctuations around the mean functions as AR(1) processes. For

each candidate change point q ∈ Q we derive the conditional likelihood function, conditional

on the first observations,

L
(
θ1, Σ1 , . . . , θN , ΣN | q, Y1, . . . , YN

)
≡

N∏
i=1

(
1√
2π

)n−1

|Σi|−
1
2 exp

{
− 1

2

(
Yi −X(q)i θi

)′ (
Σi

)−1(
Yi −X(q)i θi

)}
,

(4.4)
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where

X(q)i
(n−1)×4

≡



1 2 0 0

...
...

...
...

1 q − 1 0 0

1 q 1 q

...
...

...
...

1 n 1 n


.

We iteratively estimate θi
4×1

and Σi
(n−1)×(n−1)

for all i, as in Algorithm 1.

Algorithm 1 Estimating θi and Σi iteratively

1: for i ∈ {1, . . . , N} do

2: set ζ = 1

3: set θ̂0
i to OLS estimates

4: from residuals R0
i calculate φ̂0

i1(q), φ̂0
i2(q), σ̂0

i1, and σ̂0
iw,2 and generate Σ̂0

i

5: while ζ > tol do

6: set k to the iteration

7: calculate θ̂ii based on Σ̂k−1
i

8: use residuals Rk
i to estimate φ̂ki1, φ̂ki2(q), σ̂kiw,1, and σ̂kiw,2

9: obtain Σ̂k
i ,

10: set ζ to the Euclidean distance between [φ̂k−1
i1 (q), φ̂k−1

i2 (q)] and [φ̂ki1(q), φ̂ki2(q)]

11: end while

12: end for

Define

L(q) = max
(θ1,Σ1 , ..., θN ,ΣN )

L
(
θ1, Σ1 , . . . , θN , ΣN | q, Y1, . . . , YN

)
.
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Then the estimated change point is

τ̂ = arg max
q∈Q

L(q).

The estimates of θ1, . . . , θN are the generalized least squares (GLS) estimates obtained, after

the desired tolerance level is reached, conditional on τ̂ . The GLS estimates of θi and Σi for

all i given τ̂ are

[ {θ̂1, Σ̂1}, . . . , {θ̂N , Σ̂N } ] = arg max
[{θ1, Σ1}, ... , {θN , ΣN}]

L
(
θ1, Σ1, . . . , θN , ΣN | τ̂ , Y1, . . . , YN

)
.

The presence of τ does not restrict the model to a fixed interruption with an instantaneous

effect. In fact, τ allows the design matrix and estimates to transform based on the information

the data provides. Importantly, the inclusion of an over-all-unit change point allows us to

utilize information from all available units to determine when the intervention begins to affect

the outcome globally. This flexibility of the model can be helpful in minimizing misleading

results from an assumed change point.

Multivariate Wald Test for the Existence of a Change Point

The change point is estimated by maximizing the conditional likelihood over the set Q, and

thus, concurrently estimates all other model parameters at each possible change point. Since

we test for the existence of a change point at each q ∈ Q, multiple testing bias exists if one

utilizes standard critical values. As such it is necessary to apply a correction to control the

family-wise type I error rate. To this end, we calculate the multivariate Wald test statistic

for every q ∈ Q. We apply the Benjamini-Hochberg method — a procedure that compares

ranked and ordered (smallest to largest) p-values to corresponding critical values individually

calculated based on the total number of tests, p-value rank, and desired false discovery rate

46



— to adjust for the total number of tests conducted. The total number of tests is equal

to the cardinality of Q. The Benjamini-Hochberg method controls the false discovery rate;

control of the false discovery rate weakly implies control of the family wise type 1 error rate

for an α = 0.05 level (Benjamini and Hochberg, 1995). In this case, a binary decision of

whether a change point exists or not corresponds to a rejection of the null hypothesis for

any one of the tests conducted.

We focus on determining the existence of a change point across the unit specific mean

functions, i.e., for each q ∈ Q we test

H0 : δqi = ∆q
i = 0 ∀ i, i = 1, . . . , N (no change point)

vs. Ha : δqi 6= 0 and/or ∆q
i 6= 0, for some i, i = 1, . . . , i, (a change point at q).

Even though our model assumes a global change point to pool information across units for

efficiency, a rejection of the null hypothesis for our Wald test implies a change point in at

least one of the hospital units. A rejection does not imply that a change point exists across

all units and is the same in all hospital units. Moreover, we do not restrict the impact of the

change point at each unit — i.e., we allow the change in level and change in slope to differ

across units as in R-MITS. We borrow information across units for the estimation of the

global change point, but we do not force the impact on the outcome to be the same in each

unit. Intervention implementation theoretically integrates care delivery policies laterally

across hospital units, yet the intervention may impact each unit’s underlying care processes

uniquely. Clearly, if one wanted to establish the existence of a change point for a particular

unit, enough data would have to be gathered within that single unit to detect and estimate

(with high enough precision) the unit specific change point.
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The hypotheses can be written in terms of full and reduced mean function models. Define

the full and reduced mean function models as

µ1
it = βqi,0 + βqi,1 t +

(
δqi + ∆q

i t
)
I(t ≥ q), (4.5)

µ0
it = β0

i,0 + β0
i,1 t, (4.6)

respectively. The full model, appropriate under the alternative hypothesis, is essentially

the model of equation (4.2) and models a change in the mean functions at q. The reduced

model, appropriate under the null hypothesis, assumes the same mean functions across the

entire observational period. Based on our model specification, testing the above hypotheses

is equivalent to testing

H0 :



δq1

∆q
1

...

δqN

∆q
N


=



0

0

...

0

0


vs. Ha :



δq1

∆q
1

...

δqN

∆q
N


6=



0

0

...

0

0


. Let C =



0 0 1 0

0 0 0 1
0

. . .

0
0 0 1 0

0 0 0 1


,

~β1 = [βq1,0 βq1,1 δ
q
1 ∆q

1 . . . β
q
N,0 βqN,1 δ

q
N ∆q

N ]
′

and ~β0 = [β0
1,0 β0

1,1 . . . β
0
N,0 β0

N,1]
′
. Then the

hypotheses can be written as

H0 : C ~β1 = ~0 vs. Ha : C ~β1 6= ~0,

The multivariate Wald test statistic is given by

W =
(
C~̂β

1 )′ [
C V̂(~̂β

0

) C
′]−1(

C~̂β
1 ) H0.∼ χ2

2N , (4.7)

where V̂(~̂β
0

) is the block diagonal estimator of the covariance matrix of ~̂β
0

. We specify V̂(~̂β
0

)

in the Appendix. Note, we allow δqi and ∆q
i to differ for all i, i.e., for all units.
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We calculate the multivariate Wald statistic for each q ∈ Q. Then we apply the Benjamini-

Hochberg procedure to obtain corrected critical values. The Bejamini-Hochberg procedure

is fully described by (Benjamini and Hochberg, 1995). If any of the multivariate Wald tests

provide significant results, when compared to the corrected critical values, we conclude that

a change point exists for at least one of the units. The resulting ‘supremum Wald test’

(SWT) is appropriate for detecting a change in any of the mean functions over a set of

possible change points. Our test accounts for the heterogeneity of the mean functions and

autocorrelation structures across units. In the following sections we illustrate that the SWT

has empirically high power under specified change point alternatives.

4.2 Empirical Type One Error and Power Simulations

Prior to analyzing the outcome of interest, we conduct simulations to (1.) examine the type

one error rate, and (2.) determine the power and accuracy of our proposed methodology

to detect a global change point in the mean functions of the response. These simulations

examine the operating characteristics of our proposed supremum Wald test under various

conditions. We continue to test

H0 : δτi = ∆τ
i = 0 ∀ i, i = 1, . . . , N (no change point)

vs. Ha : δτi 6= 0 and/or ∆τ
i 6= 0, for some i, i = 1, . . . , N, (a change point at q)

with q ∈ Q (the set of possible change points specified by the researcher). The full and

reduced models of these simulations are those of equations (4.5) and (4.6), respectively. We

have additionally examined the scenario with standardized quadratic time (and standardized

linear time) in the mean functions of the reduced and full models. We focused on standardized

time, as opposed to untransformed time, to avoid collinearity between the two time terms.

These simulations are omitted for brevity, though we note that we obtain similar results
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as those discussed in the following sections. In both sets of simulations we assume an

autocorrelation structure that remains constant over the entire duration of the observational

period, since the focus is on testing for the existence of a change point in the mean functions.

The outcome of interest is recorded for 60 time periods, in five units, with adjacent correlation

estimates smaller than φ = 0.1, and the set of possible change points equal to {25, . . . , 34}.

Thus, we chose parameters similar to these values for our simulations. We consider two values

of the time series length, n ∈ {60, 120}, two values of the adjacent correlation, φ ∈ {0.1, 0.6},

and three values for the total number of units, N ∈ {1, 3, 5}. When the length of the time

series is n = 60, we allow the set of possible change points to be Q60 = {25, . . . , 34}, as with

the patient satisfaction data. In this situation we conduct 10 total tests, since there are 10

elements in Q60. When the length of the time series is n = 120 we allow the set of possible

change points to be Q120 = {50, . . . , 69}; a total of 20 tests are conducted for Q120.

We choose to compare two values of the time series length to illustrate the possible gain

in efficiency longer time series provide with regards to power. We illustrate the gain that

may come from doubling the length of the time series. The length of the time series can be

increased in two ways: (1) increase the observational period, say from 5 years to 10 years;

and/or (2.) increase the resolution of recordings, i.e., record patient satisfaction bi-monthly,

as opposed to monthly. The two values of φ examined are larger adjacent correlation values

than what we estimate for the patient satisfaction data. The largest unit-specific adjacent

correlation estimates obtained for the patient satisfaction data (when information is not

borrowed across units) is 0.09, and so 0.1 is an upper bound for the adjacent correlation

in our setting. The value φ = 0.6 represents an upper bound for the correlation between

repeated measurements in the literature. The estimated adjacent correlations for patient

satisfaction are smaller than either 0.1 and 0.6. Our simulation results are conservative

because power decreases for ITS designs as the adjacent correlation increases (Zhang et al.,

2011).
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Importantly, we conduct type one error and power simulations for the supremum Wald test

with one, three and five units. We examine the case with a single unit, N = 1, to illustrate

the performance of our supremum Wald test in the traditional ITS analysis setting. We

explore the value N = 3 to depict the healthy gain in efficiency that borrowing information

across a small number of units yields. Lastly, we consider N = 5 because patient satisfaction

is recorded at five units. Our aim is to highlight the improvement in power that borrowing

information across units can provide.

4.2.1 Empirical Type One Error for SWT

We provide the empirical type one error rates when testing for the existence of a change

point via the supremum Wald test. Four different scenarios are considered for one unit, three

units, and five units. We generate 10, 000 time series for each scenario under the reduced

model — i.e., from one overall regime where there is no change point present in either the

mean functions or stochastic processes. For the case when there is only one unit we set the

mean function parameters to ~β = [65, 0.5]
′
. When there are three units or five units, the

mean function parameters vary slightly across individual units. The white noise standard

deviation, σw, is always set to 3.38, regardless of the number of units in the simulation. The

value σw = 3.38 is approximately the average of the single unit estimates of the white noise

standard deviation for patient satisfaction. The response standard deviation, σ, is 4.23 when

φ = 0.6 and 3.40 when φ = 0.1 for all individual units. The mean function parameter values

mimic results obtained from the patient satisfaction data.

The empirical type one error rates for each scenario are provided in table 4.1. As expected,

the empirical type one error rate is smaller for the longer time series, and for smaller values

of the adjacent correlation. Larger values of adjacent correlation imply a smaller number

of effective independent statistical information. The larger adjacent correlation quantity
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corresponds to higher type one error rates exclusively. In the scenario with the shorter

time series and high adjacent correlation value, it is more difficult to control the family-

wise type one error rate, even as we increase the number of units. The lack of type one

error rate control in short time series with high correlation values is exacerbated in the

simulations with quadratic time in the mean functions. In fact, for that particular setting

the type one error rate becomes worse as the number of units increases. This is primarily

attributable to the increased dependency in an already short time series that reduces the

information in the time series. Because of this we recommend our proposed procedure when

the length of the time series is at least 120 time points in cases with complex mean functions

and/or highg correlation values. For all other scenarios considered, the type one error rate is

well controlled, though slightly conservative because of the Benjamini-Hochberg multiplicity

correction.

Adjacent Time Series of Length 60 Time Series of Length 120
Correlation One Unit Three Units Five Units One Unit Three Units Five Units

φ = 0.1 0.0295 0.0291 0.0342 0.0274 0.0265 0.0263

φ = 0.6 0.0460 0.0704 0.1003 0.0299 0.0318 0.0436

Table 4.1: The empirical type one error rate: the proportion of iterations for which we
rejected the null hypothesis of no change point. The larger adjacent correlation quantity
corresponds to higher type one error rates exclusively. The type one error rates are reasonable
for almost all of the scenarios, and stay reasonable as the number of units increases. However,
it is slightly difficult to control the type one error rate at the desired α = 0.05 level with the
smaller time series and high adjacent correlation value.

4.2.2 Empirical Power for SWT

We conduct simulation-based power calculations when testing for the existence of a change

point via the supremum Wald test. Time series are generated under the alternative model

appropriate in our setting, i.e., generated with a global change point in the mean functions.

The change point is set at the middle of the time series; cases with the change point at the
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boundary or close to the boundary have been considered and yield similar, yet slightly less

powerful, results. We focus on providing power as a function of the slope change. Simulation-

based power calculations with power as a function of the auto-regressive coefficient for ITS

designs are provided in (Zhang et al., 2011).

Power is examined as a function of the slope change, with a change in baseline intercept

(δτi ) set to zero for all i. Note, estimates of δτi obtained from the patient satisfaction

data are not statistically different from zero. The range of values for the change in slope,

{0, 0.01, . . . , 0.24, 0.25, 0.30, . . . , 0.40, 0.45}, encompass the estimated quantities of the change

in slope for the patient satisfaction data. Similar to the type one error simulations, the white

noise standard deviation is set to 3.38 for all units, yielding a response standard deviation

of 4.23 when φ = 0.6 and 3.40 when φ = 0.1.

Simulated power curves are provided in Figure 4.3, with each subfigure corresponding to a

separate data generation regime. As expected, power increases as the slope change and length

of the time series increases, and power decreases for the larger adjacent correlation value.

Power is consistently higher for the larger number of units across the four scenarios, thereby

illustrating that the supremum Wald test gains power as the number of units increases

by borrowing information across units. Analyzing multiple time series data (or data from

multiple hospital units) jointly, results in higher power.

Accurate Estimation of the Change Point

The power simulation results, provided in Figure 4.3, suggest that the supremum Wald test

has reasonable power to detect an existing global change point, and that power increases as

the number of units increase. We are not simply interested in power by itself. We are also

interested in whether R-MITS will provide the correct global change point estimate when

our supremum Wald test concludes that a change point exists. Figure 4.4 illustrates the

53



Figure 4.3: Empirical power, over 10, 000 iterations, for various number of units and for 4
regimes. The empirical power increases as the number of units and the length of time series
increases, and the power increases as the adjacent correlation decreases.

proportion of simulations that correctly estimate the true change point as a function of the

slope change for one, three and five units. Similar to the empirical power, the proportion

of correctly estimated change points increases as the number of units and the length of the

time series increases. We also calculated the proportion of simulations that exactly estimate

the true change point for change points not in the middle of the time series — i.e., with a

change point on the boundary or near the boundary — and obtained comparable results.
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Figure 4.4: The proportion of estimated change points exactly equal to the true change
point, over 10, 000 iterations, for various number of units and for 4 regimes. Similar to the
empirical power, the proportion of correctly estimated change points increases as the number
of units and the length of time series increases.

4.3 Multi-Unit Analysis of the CNL Intervention

We assess the impact of the Clinical Nurse Leader (CNL) integrated care delivery intervention

on average patient satisfaction at five hospital units. Average patient satisfaction is the

mean of patient satisfaction survey scores for seven indicators, shown for the Stroke and

Surgical units in Figure 4.1. The seven patient satisfaction indicators are: effective nurse

communication, nurses treated me with courtesy/ respect, responsiveness of hospital staff,
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effective physician communication, staff did everything to help control your pain, effective

communication about medicines, and discharge information provided. We refer to the

average patient satisfaction scores simply as patient satisfaction.

We are interested in estimating the time lag (or delay) between the onset of the intervention

and the effect on patient satisfaction. In practice, the change point may occur either before

or after the official intervention time. An intervention intended to improve care quality

requiring a training over several months or weeks (such as the CNL intervention) may already

produce a change in the outcome, even before the official start of intervention, if the trainees

execute their training as they learn.

Inference on the global change point and time lag between the onset of the intervention and

the intervention’s effect is included in Table 4.2. Table 4.2 provides the (a.) global change

point estimate (b.) supremum Wald test p-value, (c.) time point of Clinical Nurse Leader

integration into their respective hospital units, (d.) formal intervention implementation time,

and (e.) lag between formal intervention implementation and estimated change point. The

supremum Wald test concludes that a change point exists over the set of possible change

points for patient satisfaction in at least one of the units at the α = 0.05 level. The p-

value associated with the test for the existence of a change point is 0.003, which is less than

the respective Benjamini-Hochberg corrected critical value of 0.005. R-MITS estimates a

preemptive effect of the CNL integrated care delivery intervention on patient satisfaction.

The global change point is estimated to occur on May 2010, while the formal intervention

implementation occurs on July 2010. Estimating an anticipatory effect (from the expected

and a priori specified change point) is not feasible with standard segmented time series

regression. Segmented Regression methodology requires clearly separated pre- and post-

intervention phases, often with an assumed change point greater than or equal to the formal

intervention implementation time point.
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CNL Estimated Formal Intervention Lag**
Introduction* Change Point τ̂ Implementation

January 2010 May 2010 July 2010 -2

Table 4.2: Provides the estimated global change point, its p-value, the month Clinical Nurse
Leaders were integrated into their respective units, the formal intervention time point, and
the intervention lag. We conclude that there is a change point in patient satisfaction at the
α = 0.05 level. + The p-value for the supremum Wald test, i.e., the p-value for the existence
of a change point. * All clinical nurse leaders were integrated into their respective hospital
units on January 2010. ** The intervention lag is the difference between the estimated
change point and the formal intervention introduction time point.

Although the CNL integrated care delivery is officially implemented on July 2010, it was

unofficially being practiced prior to July 2010. Nurses put into practice the new concepts they

learned from their ‘training’. It is completely realistic that many of the CNLs implemented

their training prior to July 2010, particularly, if they believed it would be beneficial. Thus,

the anticipatory effect of the CNL integrated care delivery intervention (of two 2 months,

provided in the ‘Lag’ column of Table 4.2) is consistent with the integration of the CNLs on

January 2010. In fact, the estimated global change point for patient satisfaction occurs four

months after the Clinical Nurse Leaders introduction into their respective units. The CNL

care delivery intervention requires a restructuring of patient care and care delivery, likely

to manifest itself to patients after a time lag from the CNLs introduction. This time lag

and the behavioral component of the intervention may explain why the global change point

occurs four months after the CNLs integration into the hospital units and two months prior

to the formal intervention time point.

Estimates of the R-MITS mean function parameters are provided in Tables 4.3 and 4.4, and

estimates of the stochastic process parameters are included in Table 4.5. Estimates and 95%

confidence intervals of the two standardized effect sizes used in the health care literature,

change in level and change in trend/slope, (Effective Practice and Organisation of Care,

2015) are provided in table 4.4. The level and trend change are not statistically significant
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for any unit. The estimated level change tends to be positive for the majority of hospital

units, indicating an initial drop of the outcome level, as in Figure 4.2. This may be due to the

adjustment period associated with the intervention. Moreover, it may occur as an artifact

of the regression itself, particularly for a bounded outcome such as patient satisfaction.

Hospital Unit Intercept Pre-Change Point β̂ τ̂i0 Slope Pre-Change Point β̂ τ̂i1
Estimate 95% CI p-val Estimate 95% CI p-val

Stroke 64.32 ( 46.34, 82.31 ) 0 0.56 ( -0.52, 1.64 ) 0.3
Surgical 72.8 ( 47.72, 97.88 ) 0 0.36 ( -1.05, 1.77 ) 0.61
Cardiac 64.17 ( 37.08, 91.27 ) 0 0.31 ( -1.3, 1.92 ) 0.7

Medical Surgical 70.19 ( 41.77, 98.61 ) 0 0.19 ( -1.53, 1.91 ) 0.83
Mother Baby 77.1 ( 63.1, 91.09 ) 0 0.28 ( -0.58, 1.15 ) 0.52

Table 4.3: The unit specific pre-change point intercepts and slopes.

Hospital Unit Change in Level −δ̂τ̂i −∆̂τ̂
i τ̂ Change in Slope ∆̂τ̂

i

Estimate 95% CI p-val Estimate 95% CI p-val

Stroke 6.91 ( -14.65, 28.46 ) 0.52 -0.35 ( -1.59, 0.89 ) 0.58
Surgical 6.17 ( -20.22, 32.56 ) 0.64 -0.21 ( -1.87, 1.45 ) 0.8
Cardiac -0.15 ( -34.36, 34.06 ) 0.99 -0.22 ( -2.25, 1.82 ) 0.83

Medical Surgical 0.3 ( -40.57, 41.18 ) 0.99 -0.14 ( -2.53, 2.24 ) 0.9
Mother Baby 3.73 ( -22.1, 29.56 ) 0.77 -0.25 ( -1.72, 1.23 ) 0.74

Table 4.4: The unit specific change in levels and change in slopes.

Trend (slope) change is negative for patient satisfaction, suggesting a decrease in the slope

of patient satisfaction post-change point. Due to the nature of patient satisfaction as a

percentage — and thus as a bounded outcome — the change in slope must be interpreted

with caution. Patient satisfaction cannot continue to grow at a rapid rate because the mean

patient satisfaction function at the estimated change point is already relatively close to 100,

the maximum patient satisfaction value. This is evident in Figure 4.5, in which the estimated

mean functions for all hospital units are plotted, particularly for the Stroke, Surgical, and

Mother Baby units.
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Figure 4.5: Plots the time series of observed average patient satisfaction for all hospital units,
along with the estimated change point, estimated mean functions, and formal intervention
time.

The estimated volatility of patient satisfaction, given by the ‘Standard Deviation’ column of

Table 4.5, is smaller post-change point for 3 out of the 5 units, and the adjacent correlation

is larger post-intervention in 4 out of the 5 units. The Medical Surgical and Mother Baby

units estimated standard deviations increase post-estimated change point, increasing from

4.84 and 2.97 to 5.06 and 3.72, respectively; while in the Stroke, Surgical, and Cardiac
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units the estimated standard deviation decreases from 3.15, 4.37, and 5.28 to 3.01, 2.35,

and 3.76, respectively. After the estimated change point, the patient satisfaction scores are

observed to be less volatile for the Stroke, Surgical, and Cardiac units, and hence may be

more predictable. The adjacent correlation estimates mainly move from negative to positive

post-estimated change point, indicating a more stationary patient satisfaction score post-

intervention. These are positive results of the CNL intervention. It is important for hospitals

to have patients that are generally satisfied over patients who range from extremely satisfied

to extremely dissatisfied. Patient satisfaction scores that are more dependent, closely related,

and less volatile result in a more predictable outcome.

Hospital Unit Pre-Change Point Post-Change Point
Adjacent Standard Adjacent Standard

Correlation Deviation Correlation Deviation

φ̂j1(τ̂) σ̂j1 φ̂j2(τ̂) σ̂j2

Stroke -0.06 3.15 -0.35 3.01
Surgical -0.02 4.37 0.19 2.35
Cardiac -0.16 5.28 0.10 3.76

Medical Surgical -0.03 4.84 0.09 5.06
Mother Baby -0.27 2.97 0.08 3.72

Table 4.5: Estimates of the stochastic component parameters: the adjacent correlations and
response standard deviations pre- and post-change points. All the adjacent correlations are
relatively small, and tend to switch from negative to positive post-intervention. The response
standard deviations tend to decrease post-intervention.

4.3.1 Doubly Robust ITS

R-MITS pools information across units to estimate a global change point, thereby increasing

efficiency and reducing the impact of misleading influential points. Reducing the effect of

influential points is desirable in our patient satisfaction data, for which the change point

search space consists of only a few time points. We illustrate the gravity of influential

points on the estimated change point for the single unit analyses of patient satisfaction at
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the Medical Surgery and Cardiac units. To model patient satisfaction for a single unit we

implement the Robust-ITS model. The estimated mean functions and change point estimates

are included in Figure 4.6 for two cases. The plots on the left of Figure 4.6 correspond to

single unit analyses including all observations, while the plots on the right pertain to the

single unit analyses without observation t = 25 (January 2010). When all the observations

are included, Robust-ITS estimates the change point to be February 2010 for both the

Medical Surgical and Cardiac units. However, for the analyses without January 2010, the

estimated change points are October 2010 and April 2010 for the Medical Surgical and

Cardiac units, respectively. One single time point has the ability to perturb the estimated

change point by six months in the Medical Surgical unit and by two months in the Cardiac

unit. Our proposed R-MITS model guards against these influential points by borrowing

information across hospital units. Pooling data across hospital units in the estimation of a

global change point automatically reduces the impact of spurious influential points, resulting

in robust mean function estimates.

4.4 Summary and Conclusions

Our proposed R-MITS model is appropriate for multiple time series, able to estimate a

global change point rather than assume it a priori, and can model differences in both the

mean functions and stochastic components. R-MITS borrows information across units to

estimate a global change point and to estimate the mean functions and stochastic processes

separately for each unit. The proposed model does not assume that the impact of the global

change point on the outcome is equivalent for all units. That is, although R-MITS borrows

information across units to estimate an over-all-unit change point, the level change and trend

change are allowed to vary for each unit. R-MITS further allows the autocorrelation and

variability during pre- and during post-intervention to differ across units.
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Figure 4.6: Plots the time series of observed average patient satisfaction, along with the
estimated change point, estimated mean functions, and formal intervention time for the
Medical Surgery and cardiac units with and without observation t = 25 (January 2010),
obtained by using Robust-ITS to conduct the unit specific analyses. Note, the analysis with
t = 25 is on the left and the analysis without t = 25 is on the right.

Importantly, our proposed supremum Wald test formally tests for the existence of a change

point in at least one of the mean functions, rather than merely assuming and requiring a

change. Now researchers will be able to formally test whether an intervention is associated

with a change in the mean functions of a health outcome. Erroneous inference regarding

the response’s mean functions may result from incorrectly assuming — both the existence

and placement — of the change point. Assuming a change point when no change point

truly exists forces the estimation of an artificial change. Our supremum Wald test will test

for the existence of a change in the response over a pre-determined set of possible change

points. As demonstrated by our simulation studies the operating characteristics of R-MITS

and the supremum Wald test are well behaved with regards to power and type one error.
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Moreover, the empirical power of the supremum Wald test and accuracy of the change point

estimates — and so the accuracy of the estimated time delay between an intervention and

the intervention’s effect on an outcome — increase as the number of units increases.

The R-MITS model and the supremum Wald test provide researchers with insight to re-

address hypothesis generation for future study design. The methodology better informs

researchers of the likely lag that may be realistic for a similar intervention. We note that

in our application example nurses finishing their masters thesis project (in a program that

trained them to implement the CNL intervention) were introduced into their respective

hospital units six months prior to the formal intervention. The nurses integration potentially

changed practice as soon as they were introduced. In fact, the estimated change point occurs

between the introduction of the nurses to the hospital unit and the formal intervention. A

primary utility of R-MITS is that through exploration of the change point we are able to

observe this and provide direction for future study planning.

Currently the supremum Wald test focuses on changes solely in the mean functions. In

the next chapter we implement a supremum Wald test that accurately detects changes in

both the mean functions and stochastic components, to better handle the nuances of the

autocorrelation structures across units. It is paramount to note that the current status of

the R-MITS model is for continuous-valued outcomes only. We expand this class of models

to discrete ITS (e.g., infection rates, counts of accidental falls, etc) in the ensuing chapter.
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Chapter 5

A Generalized ITS Model for Discrete

Outcomes

The Centers for Medicare & Medicaid Services (CMS) incentivize health care quality reform

via a value-based purchasing program for health systems care services reimbursement (Kavanagh

et al., 2012). The measures used for reimbursement include mortality and complications,

patient safety, and patient experience (Centers for Medicare and Medicaid Services, 2018).

Many of these quality of care measures are discrete. Recall, statistical models used to

analyze ITS data are primarily based on segmented regression. Though segmented regression

is presented as able to model counts, rates and proportions (Wagner et al., 2002), the

methodology is not well specified for discrete outcomes where responses are bounded and

there may exist dependencies between the response mean and variance. ITS methods for

discrete responses remain an area of open research. As health care ITS are often composed of

discrete outcome measurements (i.e., patient falls, unretrieved device fragment count, etc.)

methodology able to assess the impact of an intervention on these outcome types is needed.
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The methodology proposed in this chapter is motivated by our interest in estimating the

lagged effect of a care delivery intervention on patient falls, recorded monthly at six clinical

care units over a five year period. The intervention, as in previous chapters, was the

implementation of Clinical Nurse Leader (CNL) integrated care delivery, a nursing model

that embeds a master prepared nurse into the front lines of care six months prior to the

formal intervention (Bender et al., 2017). ITS of the log of patient falls are included in

Figure 5.1 for two clinical units (the Cardiac and Acute Care units). Our overall aim is

to determine if a change in patient falls exists over a predetermined set of possible change

points. Then, if a change exists, to estimate the time point at which patient falls exhibits the

change and quantify that change in terms of the mean function and temporal dependence.

Figure 5.1: Plots the log of the time series of observed patient falls for the Cardiac and
Acute Care units. Note, for the purposes of depicting the time series we add 0.5 to patient
falls when patient falls is equal to zero, making log of patient falls equal to −0.69 and giving
rise to the negative points in the plots.

In the subsequent sections, we develop the ‘Generalized Robust ITS’ (GRITS) model appropriate

for outcomes whose underlying distribution belongs to the family of exponential distributions,

thereby expanding the available methodology to adequately model binary and count responses.

We describe our proposed GRITS model in detail and provide estimation and inference

procedures. Then, we present empirical simulations that assess type one error and power

for detecting specified change point alternatives, along with accuracy of our change point

estimation procedure. Next, we determine the impact of the CNL integrated care delivery
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intervention on patient falls via our GRITS model. To conclude, we summarize our developed

model and its impact on the broader ITS literature and describe future work.

5.1 Methodology

We propose the Generalized Robust Interrupted Time Series (GRITS) model to analyze

multi-unit discrete ITS. The GRITS model generalizes the Robust Multiple Interrupted

Time Series model, proposed in Chapter 4, to handle discrete outcomes. As such, the

GRITS model estimates an overall change point across units when appropriate and allows

the mean function and correlation structure to differ pre- and post-change point. The change

point is defined as the time point at which the underlying pattern of an outcome exhibits

a change that may be associated with the intervention of interest. To properly account for

the mean-variance relationship of discrete outcomes, we embed the traditional segmented

regression approach within a broader generalized estimating equation framework.

The GRITS model makes a distinction between the change point and the formal intervention

implementation time point. Denote the change point as τ and the time point at which the

intervention is formally introduced as t∗. The change point τ is not necessarily equal to t∗.

In fact, often τ > t∗ or τ < t∗ due to a delayed or anticipated intervention effect. GRITS

formally tests for the existence of a change point, rather than simply assuming a change,

over a predetermined set of possible change points, by implementing the supremum Wald test

(Cruz et al., 2019). If the supremum Wald test concludes a change point exists, estimation

is carried out via GRITS using a model with a change point at the most likely location.

Otherwise, estimation of mean and correlation parameters are estimated without a change

point.
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5.1.1 The Generalized Robust ITS (GRITS) Model

Let yij denote the response of interest for unit i and measurement j, with i ∈ [1, . . . , N ],

j ∈ [1, . . . , ni], N the total number of units and ni the total number of measurements for

unit i. We transform the measurement number to the [0, 1] interval by dividing j by ni.

The transformation is done to appropriately model large valued time series. Denote the

transformed jth measurement number for unit i by tij. Define Yi = [yi1 . . . yini ]
′

as the

vector of all response measurements and Xi = [xi1 . . . xini ]
′

as the design matrix, where

xij = [1 tij 1I(j ≥ τ) tijI(j ≥ τ)]
′
, for all i. Let ~βi(τ) = [βτi0 β

τ
i1 δ

τ
i ∆τ

i ]
′
, the vector of

mean function parameters. Observe, ~βi(τ) and Xi depend on the unit. Then, denote the

conditional expectation of the response given xij as µij = E[yij|xij] for all i. We suppose

g(µij) = βτi0+βτi1tij+
(
δτi +∆τ

i tij
)
I(j ≥ τ) = X

′

i
~βi(τ), (5.1)

with g(·) a known link function.

Remark: The measures used to quantify the impact of an intervention on a health outcome

in the ITS literature are level change and trend change. If g(·) is the identity link, the level

change for unit i is defined as the change in anchored intercept (anchored at tiτ ) for that

unit, denoted by δτi +∆τ
i tiτ , and the trend (slope) change is denoted by ∆τ

i .

We model the conditional working variance of yij given Xi as V (µij) = Var[yij|Xi] for all

i via a quasi-partial likelihood framework. We assume a working correlation structure that

follows an auto-regressive process of order one pre- and post-change point conditional on the

covariates and τ , i.e.,

corr(yi,j−1, yij| Xi, τ) =

 ρ1(τ) j < τ,

ρ2(τ) j ≥ τ,
(5.2)

67



with ρ1(τ), ρ2(τ) ∈ (−1, 1), for all i ∈ {1, . . . , N} and j ∈ {2, . . . , ni}. Other working

correlation structures are feasible, but we chose an AR(1) structure based on our data

setting. Thus, the conditional working covariance matrix of Yi given Xi can be written

as

Vi ≡ Vi

(
~βi(τ), ρ1(τ), ρ2(τ)

)
= Si

(
~βi(τ)

) 1
2 R
(
ρ1(τ), ρ2(τ)

)
Si
(
~βi(τ)

) 1
2 ,

with Si
(
~βi(τ)

)
= diag

{
V
(
µij
(
~βi(τ)

))}
, and R

(
ρ1(τ), ρ2(τ)

)
an AR(1) block diagonal working

correlation matrix, provided in the appendix. Then, the quasi-score function for unit i is

given by

Ui
(
~βi(τ), ρ1(τ), ρ2(τ)

)
= D

′

i V−1
i

(
Yi−~µi

)
, (5.3)

where Di denotes the matrix of partial derivatives of the mean function vector, ~µi ≡

[µi1 . . . µini ]
′
, with respect to ~βi(τ). The change point and mean function parameters

are estimated simultaneously by iteratively solving the quasi-score equation (obtained by

setting (5.3) equal to zero). The adjacent correlation parameters are estimated via method

of moments.

5.1.2 Supremum Wald Test (SWT)

A primary goal of our method is to test for the existence of a change in the outcome of interest

over a predetermined set of possible change points. Let Q = {t∗−m, . . . , t∗, . . . t∗+k} denote

the set of possible change points, where m and k are non-negative integers predetermined by

the researchers. Then, we wish to determine whether a change point exists for any q ∈ Q.

To this end, we implement the supremum Wald test (SWT) proposed in Chapter 4, which

calculates the multivariate Wald test statistic for every q ∈ Q, implements the Benjamini-

Hochberg method to adjust for the multiple comparisons, and results in a binary decision of
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whether a change point exists or not (Cruz et al., 2019). Specifically, for each q ∈ Q we test:

H0 : δqi = ∆q
i = 0 ∀ i and ρ1(q) = ρ2(q) (no change point)

vs. Ha : δqi 6= 0 and/or ∆q
i 6= 0 for some i and ρ1(q) 6= ρ2(q) (a change point at q),

The alternative hypothesis, Ha, assumes a change point in the mean function for at least one

of the units and a change in the correlation structure at q. The multivariate Wald statistic

is therefore

W =
N∑
i=1

(
C~̂βi(q)

)′[
CV̂i

(
~̂βi(q)

)
C
′
]−1(

C~̂βi(q)
) H0.∼ χ2

(2N+1), (5.4)

where C =

0 0 1 0

0 0 0 1

 and V̂i

(
~̂βi(q)

)
=
[
D
′

iViDi

]−1
.

Note, C is a contrast matrix and V̂i

(
~̂βi(q)

)
is the estimated covariance matrix of ~̂βi(q)

under the alternative, assuming the working correlation structure is correctly modeled.

An empirical sandwich estimator may be used to estimate V̂i

(
~̂βi(q)

)
, but empirical results

indicate poor small sample performance.

The version of the SWT discussed detects whether a change point exists in both the mean

functions and correlation structure. It may be of interest to detect a change point solely in the

mean functions. In this case, the Multivariate Wald test statistic can be altered accordingly,

as in Chapter 4, by calculating V̂i

(
~̂βi(q)

)
assuming one overall correlation structure.

5.1.3 Parameter Estimation

Post-test parameter estimation depends on the conclusion of the SWT. If the SWT concludes

that no change point exist, then GRITS assumes the mean function parameters and the
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adjacent correlation are the same pre- and post-intervention. That is, GRITS assumes

g(µ0
ij) = βi0+βi1tij (5.5)

for all j, all i, some link function g(·), and a working correlation matrix that follows an AR(1)

structure, provided in the appendix. To estimate βi0, βi1 and ρ, we implement Algorithm

2, an interative Newton-Raphson algorithm that utilizes generalized estimating equations

(GEEs) to obtain estimates of the mean function parameters and the adjacent correlation.

Otherwise, if the SWT rejects the null hypothesis of no change point, GRITS is expressed as

described in section 5.1.1 and the mean function parameters and adjacent correlations are

estimated for each q ∈ Q. That is, for each q ∈ Q we implement Algorithm 2.

Algorithm 2 Estimating mean function and correlation parameters iteratively for all i

1: set ζ = 1

2: set ~̂β
0

i = [0.1 . . . 0.1]
′

3: while ζ > tol do
4: set k to the iteration

5: set ~̂µi = exp {(~̂β
k−1

i )T Xi}
6: obtain Pearson residuals
7: from the Pearson residuals calculate adjacent correlation(s)
8: obtain Di and Vi

9: calculate I−1
ni

=
[
D
′
iViDi

]−1

10: set ~̂β
k

i = ~̂β
k−1

i + I−1
ni
×Ui(~̂β

k−1

i )

11: set ζ to the sum of the Euclidean distances between ~̂β
k

i and ~̂β
k−1

i

12: end while

13: obtain estimated covariances of ~̂βi

The variance-covariance matrix of Yi conditional on Xi, Vi, is completely specified by

the mean function parameters and the adjacent correlations. The estimator of the mean

parameters is provided in Algorithm 2. Estimators of the adjacent correlations are provided

in the appendices in section C.2.
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Next, we obtain an estimate of the change point by minimizing the quasi-likelihood information

criterion under the independence model (QIC) (Pan, 2001). As an alternative, one could

maximize the partial likelihood (Cruz et al., 2017, 2019) or the independence quasi-likelihood.

We choose to maintain a ‘likelihood free’ estimation procedure, and thus, minimize the QIC.

For each q ∈ Q, define QIC as

QIC(R; q) = −2
N∑
i=1

Q(~̂βi(q); I,Di) + 2
N∑
i=1

trace
(
ΩI,iV̂i

(
~̂βi(q)

))
, (5.6)

with Q(~̂βi(q); I,Di) as the quasi-likelihood and ΩI,i as the observed fisher information under

the independence working correlation structure for unit i. Then, the estimated change point

is:

τ̂ = arg min
q∈Q

QIC(R; q). (5.7)

Estimates of the mean function parameters and the adjacent correlations are obtained based

on Algorithm 2 conditional on the estimated change point, τ̂ .

5.2 Empirical Studies

We go on to study the operating characteristics of our proposed methodology. Particularly,

we examine the type one error rate of the SWT, power to detect specified change point

alternatives for the SWT, and accuracy of our proposed change point estimation procedure.

As in Section 5.1.2, we test:

H0 : δqi = ∆q
i = 0 ∀ i and ρ1(q) = ρ2(q) (no change point)

vs. Ha : δqi 6= 0 and/or ∆q
i 6= 0 for some i and ρ1(q) 6= ρ2(q) (a change point at q),
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for each q ∈ Q. The appendix provides empirical studies for the case when the alternative

hypothesis assumes a change point solely in the mean functions.

We set simulated data particularities to values based on our patient falls data and generate

correlated count ITS via the GenOrd package in R (Barbiero and Ferrari, 2015). We assume

the canonical link function for a Poisson distribution, g(·) = log(·), and the same mean

function for all units in all simulated data settings. Importantly, we considered four different

values of the total number of units, N ∈ {1, 3, 5, 10}, in order to compare the gains in

efficiency obtained by borrowing information across various units.

5.2.1 Empirical Type One Error of the SWT

To examine the type one error rate of the SWT we generated 10, 000 correlated count ITS

of length n ∈ {60, 120} under the null hypothesis of no change point for three values of the

adjacent correlation, ρ ∈ {0.1, 0.2, 0.4}. We assumed βi0 = 2 and βi1 = −0.2 for all i. When

n = 60 the set of possible change points was set to {25, 26, . . . , 34} and when n = 120 the

set of possible changes points was {50, 51, . . . , 69}. We compared two values of n to illustrate

the impact of doubling the time series length on the type one error rate. With regard to

the adjacent correlation values, 0.1 is a hypothesized upper bound for ρ in our patient falls

data and 0.4 is a large value in the literature for count data. Type one error rates for the

six scenarios are included in Table 5.1. For the cases when N = 1 or ρ = 0.4 and n = 60,

the empirical type one error rates are large. This is likely due to a small effective sample

size. For all other scenarios the type one error rates are relatively well behaved, albeit better

behaved as the number of units and the length of the time series increase.
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Empirical Type One Error Rate
n = 60 n = 120

ρ 1 Unit 3 Units 5 Units 10 Units 1 Unit 3 Units 5 Units 10 Units

0.1 0.0730 0.0533 0.0507 0.0472 0.0450 0.0410 0.0358 0.0364
0.2 0.0788 0.0588 0.0535 0.0510 0.0473 0.0330 0.0399 0.0388
0.4 0.0859 0.0596 0.0576 0.0543 0.0567 0.0440 0.0391 0.0418

Table 5.1: Type one error rates for the SWT testing the existence of a change point in the
mean function and correlation structure.

5.2.2 Empirical Power of the SWT

We generated 10, 000 correlated count ITS of length n ∈ {60, 120} under the alternative

hypothesis of a change point in the mean function and correlation structure. The change

point was placed in the middle of the time series, at time point 31 if n = 60 and at 61 if

n = 120, and the set of possible change points was assumed to be Q60 = {25, 26, . . . , 34}

and Q120 = {50, 51, . . . , 69}. As in the previous section, we considered N ∈ {1, 3, 5, 10}

to illustrate the gains in power obtained by borrowing information across units. We set

the adjacent correlation to
(
ρ1(τ)), ρ2(τ)

)
∈ {(0.1, 0.2), (0.2, 0.3), (0.4, 0.5)}, and assumed

βτi0 = 2, βτi1 = −0.2 and δτi = 0 for all i. Considering dissertation time constraints

and hypothesizing consistent simulation results, we omitted the case when n = 60 and(
ρ1(τ)), ρ2(τ)

)
= (0.4, 0.5).

For brevity, we examine power as a function of the change in slope, provided in Figure 5.2,

though we expect similar results for power as a function of the change in intercept. We

note that empirical power decreases as the adjacent correlations increase and increases as

the length of the time series increases, as expected. Additionally, empirical power increases

as the number of units increase. Therefore, there is a significant gain in power obtained by

borrowing information across units and a lesser yet substantial gain in power as the length

of the time series increases.
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Figure 5.2: Plots empirical power of the SWT as a function of the change in slope for n = 60
in the first column and n = 120 in the second column. The values of the change in slope
ranged between -0.8 and 0.8.
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Accuracy of Change Point Estimation Procedure

In addition to power, we are interested in the ability of our change point estimation procedure

to correctly estimate the true change point when the SWT concludes a change point does

indeed exists. The proportion of simulations that correctly estimate the change point within

one unit of the truth when the SWT concludes a change point exists, are included in Figure

5.3 for all scenarios considered. We again omitted the case when n = 60 and
(
ρ1(τ)), ρ2(τ)

)
=

(0.4, 0.5) due to dissertation time constraints and expected congruous simulation results.

Similar to the empirical power results, accuracy of our change point estimation procedure

increases as the adjacent correlation decreases and as the number of units increases. Thus,

a gain in accuracy occurs when information is borrowed across units.

We note that as the length of the time series increases accuracy seems to decrease. This

anomaly may be explained by the size of the set of possible change points. In our simulation

studies, we double the cardinality of the set of possible change points along with the time

series length, thus increasing the change point search space as n increases. The large change

point search space may in turn decrease accuracy by increasing the number of plausible

change points.
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Figure 5.3: The first column plots accuracy of our change point estimation procedure as a
function of the change in slope for n = 60 and the second column for n = 120. The values of
the change in slope ranged between -0.8 and 0.8. Note, accuracy is defined as the proportion
of simulations that estimate the change point to be within one time point of the true change
point after rejecting the null hypothesis that a change point does not exist via SWT. For
∆τ = 0 (the model with no change point), we did not calculate change point accuracy.
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5.3 Analysis of the CNL Intervention

We assess the impact of the CNL integrated care delivery model on patient falls in six clinical

care units; boxplots provided in Figure C.3 of section C.4 in the appendix. Our primary

goal was to determine whether the CNL intervention was associated with a change in patient

falls. To that end, our proposed GRITS model tests for the existence of a change point in

patient falls between the nurses introduction into their respective hospital units (January

2010) and three months after the formal intervention (October 2010). GRITS concludes,

based on the SWT, that there is a change point in patient falls between January 2010 and

October 2010 for the clinical care units at the α = 0.05 level. Thus, we model patient falls

with a change point.

We are now interested in determining the time lag between the onset of the intervention

and the intervention’s effect. GRITS estimates a preemptive CNL intervention effect on

patient falls. The estimated change point occurs one month after the nurses introduction

into their respective hospital units, on February 2010. This indicates that the nurses were

implementing their CNL training prior to the formal intervention and is critical knowledge

with regards to future study planning.

As patient falls are count data, we assumed the canonical link for a Poisson distribution

g(·) = log(·) throughout our modelling procedure and supposed Si = diag(~µi)
1
2 for all i

in our working correlation matrix. We, thus, discuss mean function parameters in terms of

rates. Table 5.2 and Table 5.3 provide exponentiated estimates, 95% confidence intervals and

p-values for the intercept and slope pre-estimated change point and for the level change, trend

change and slope post-estimated change point, respectively. The 95% confidence intervals are

obtained via a normal approximation with variance estimated by the inverse of the observed

Fisher information. An empirical sandwich estimator may be used to estimate the variance,

but, as stated in Section 5.1.2, empirical results indicate poor small sample performance.
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Intercept Pre-Change Point Slope Pre-Change Point

exp( β̂ τ̂i0 ) 95% CI exp( β̂ τ̂i1
6
ni

) 95% CI

Stroke 1.42 (0.83, 2.42) 12.94 (1.9, 88.35)**
Surgical 2.53 (1.63, 3.94)*** 2.67 (0.49, 14.62)
Acute Care 4.44 (3.15, 6.27)*** 1.53 (0.39, 5.99)***
Pulmonary 6.65 (5.15, 8.59)*** 7.27 (2.83, 18.68)
Cardiac 3.11 (1.95, 4.97)*** 0.16 (0.02, 1.27)
Medical Surgical 2.49 (1.5, 4.13)*** 0.29 (0.03, 2.55)

Table 5.2: Provides estimates of the exponentiated intercept and slope pre-estimated change
point, as well as corresponding 95% confidence intervals and p-values. The pre-estimated
change point slope is given (scaled) in terms of six month comparisons, thus the inclusion of
the 6

n
term. ** p-value < .01 *** p-value < .001

Level Change Trend Change Slope Post-Change Point

exp( δ̂τ̂i +∆τ̂
i tiτ̂ ) exp( ∆̂τ̂

i ) 95% CI exp( [β̂ τ̂i1+∆̂τ̂
i ]

6
ni

)

95% CI 95% CI

Stroke 1.49 (0.87, 2.56) 0.19 (0.02, 1.68) 2.52 (0.94, 6.74)
Surgical 1.62 (0.92, 2.84) 0.5 (0.06, 3.97) 1.33 (0.41, 4.35)
Acute Care 2.14 (1.29, 3.54)** 1.26 (0.22, 7.28) 1.94 (0.64, 5.82)
Pulmonary 2.08 (1.5, 2.88)*** 0.04 (0.01, 0.13)*** 0.27 (0.12, 0.63)**
Cardiac 0.69 (0.34, 1.4) 9.39 (0.81, 108.52) 1.47 (0.41, 5.24)
Medical Surgical 1.48 (0.64, 3.4) 7.09 (0.43, 116.5) 2.02 (0.35, 11.6)

Table 5.3: Provides estimates of the exponentiated level change, trend change and slope
post-estimated change point, as well as corresponding 95% confidence intervals and p-values.
The pre- and post-estimated change point slopes are given (scaled) in terms of six month
comparisons, thus the inclusion of the 6

n
term. ** p-value < .01 *** p-value < .001

We estimate that the rate of patient falls at the beginning of the observational period

(January 2008) ranges between 1.42 to 6.65 per 1000 patient days per month for the six

clinical units. For the Stroke, Surgical and Pulmonary units, we estimate that the rate of

patient falls comparing time points six months apart is larger in the pre-estimated change

point phase than in the post-estimated change point phase. The Stroke and Pulmonary units’

estimated rates of patient falls comparing time points six months apart are respectively 12.98

and 7.27 in the pre-intervention phase and are statistically significant, suggesting a decrease

in the rate of patient falls post-intervention. For the Pulmonary unit, the estimated rate

of patient falls comparing time points six months apart changes from 7.27 pre-intervention
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to 0.27 post-intervention. In both phases, the estimated rate of patient falls is statistically

significant, suggesting that the rate of patient falls increases pre-estimated change point and

decreases post-estimated change point. Figure 5.4 plots the time series for the six clinical

care units along with the unit-specific estimated mean functions.

Recall, the measures used in the ITS literature are level change and trend change. The level

change in this setting is defined as exp (δτi +∆τ
i tiτ ) for unit i, which is a rate ratio. Quantifying

the slope change in an informative manner in this setting is difficult, i.e., exp (∆τ
i ) does not

translate to a tangible quantity. Nevertheless, we include an estimate of exp (∆τ
i ) in Table

5.3. With regards to level change: the estimated rate of patient falls is between 1.48 and 2.14

times higher at the estimated change point comparing the post-intervention mean function

to the projected pre-intervention mean function for five out of the six units, indicating an

immediate increase in the rate of patient falls. This increase in five units may be attributed

to the disruption of the underlying care processes in the clinical units. In the Cardiac unit,

we estimate that the rate of patient falls is approximately 31% that of the projected pre-

intervention mean function at the change point.

GRITS estimates that the adjacent correlation prior to the estimated change point is ρ̂1(τ̂) =

−0.090 [95% CI (−0.317, 0.146)] and ρ̂1(τ̂) = −0.035 [95% CI (−0.278, 0.212)] post-estimated

change point. The estimated adjacent correlations are small and relatively close to zero,

suggesting minimal temporal dependency in both phases. This is consistent with the manner

in which patient falls in collected; different patients are likely sampled every month.

5.4 Summary and Conclusions

Health care ITS are often composed of non-continuous outcome measurements; i.e., many

health care outcomes of interest are binary, counts, or rates (e.g., nurse turnover, number
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Figure 5.4: Provides estimated mean functions for the log of patient falls for the six clinical
care units. Note, for the purposes of depicting the time series we add 0.5 to patient falls
when patient falls is equal to zero, making log of patient falls equal to −0.69 and giving rise
to the negative points in the plots. We did not use the log of patient falls in the estimation
procedure, and so, this jittering does not affect model parameter estimates.
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of beds, and patient falls). While segmented regression is presented as being able to model

these outcomes, to the best of our knowledge, no formal statistical process is provided. The

GRITS model was developed to address this deficiency in the literature. In addition to

expanding the current class of ITS models to handle discrete outcomes, GRITS is able to

formally test for the existence of and estimate the change point, borrow information across

units in multi-unit settings, and test for differences in the mean function and correlation pre-

and post-intervention.

Since GRITS exists in the ITS framework, it cannot attribute an observed effect to the

intervention of interest, as is the case with most ITS designs (Bernal et al., 2018), but it can

inform future study development and measures. Through our GRITS analysis of the CNL

intervention we were able to discern that nurses in the six clinical care units may have a

priori implemented their CNL training; future CNL studies may be altered to reflect this

finding. As noted in the analysis section, interpreting the level change and trend change when

g(·) is not the identity link may be difficult depending on the choice of g(·). Measures able

to discern the intervention effects more clearly are needed for discrete ITS in the GRITS

(and other non-simple linear segmented regression methods) to properly capture existing

relationships.

The current state of GRITS and R-MITS (proposed in Chapter 4) assume the same change

point for all units. In the future, we plan on expanding the current form of these models to

account for heterogeneity of change points. This will allow researchers to fully quantify unit

specific deviations from the population of hospital units.
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Chapter 6

Discussion and Future Work

We developed methodology for modelling ITS data that overcome many of the limitations

of segmented regression, the statistical tool of choice for health care ITS data (Penfold and

Zhang, 2013; Zhang et al., 2011; Wagner et al., 2002). Specifically, the methods described in

this dissertation are able to (1.) test for the existence of and estimate the change point; (2.)

borrow information across units in multi-unit settings; (3.) test for differences in the mean

function, correlation, and variability pre- and post-intervention; and (4.) handle continuous

responses, counts, rates and binary outcomes. We have expanded the class of statistical

models in the ITS literature to settings, that to the best of our knowledge, were not formally

considered before.

In Chapter 3, we introduced the Robust-ITS model, a single unit model for continuous

outcomes. Robust-ITS estimates the change point, rather than assuming it a priori, and

allows for changes in the mean function and correlation structure pre- and post-intervention.

Researchers using Robust-ITS can estimate the lagged effect of a health care intervention on

an outcome. Moreover, researchers can determine whether outcomes are more predictable

— stronger temporal dependence and smaller variability suggests a more predictable, and

thus more desirable outcome — post-intervention.
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We proposed R-MITS (Robust Multiple ITS), a multi-unit generalization of Robust-ITS,

in Chapter 4. R-MITS borrows information across hospital units to increase efficiency,

estimates a global change point, and allows for unit specific changes in the mean function,

temporal dependence, and variability of an outcome. Alongside R-MITS we developed the

‘supremum Wald test’, able to formally test for the existence of a change point across unit

specific mean functions. The main contributions of the work proposed in Chapter 4 are

the empirical type one error, power, and accuracy studies illustrating the gain in efficiency

(while controlling the accuracy and type one error rate) obtained by borrowing information

across units. Researchers can use this methodology and the accompanying empirical studies

to plan for future intervention assessment.

Lastly, in Chapter 5, we introduced the GRITS (Generalized Robust ITS) model appropriate

for outcomes whose underlying distribution belongs to the family of exponential distributions,

thereby expanding the available methodology to adequately model binary outcomes, counts

and rates. GRITS may be used to model discrete single- and multi-unit ITS. In addition,

we implemented a generalized version of the SWT that is able to test for the existence

of a change point in the mean functions and correlation structure for discrete outcomes.

Researchers using GRITS can adequately model many of the discrete outcomes used by

the Centers for Medicare and Medicaid Services for reimbursement purposes, by taking into

account the proper mean-variance relationship of the outcome. As with R-MITS, in Chapter

5, we provided empirical type one error and power studies for the GRITS model that can be

used to plan for future intervention designs.

The three models described in this dissertation estimate a global over-all-units change

point via a grid search over a pre-determined set of possible change points. Researchers

must specify the set of possible change points with care since, as with traditional ITS

designs, we must be cautious of competing intervention effects. The set of possible change

points must adequately capture the time points during which the intervention of interest
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plausibly impacted the outcome, yet simultaneously exclude time periods affected by another

intervention. This is to avoid the risk of competing interventions. Parsing out the effect

of competing interventions is a concern in general with ITS designs. Ideally, the entire

observational period (both the pre- and post-intervention phases) of an ITS design should

be solely affected by the intervention of interest. Although theoretically simple, in practice

this requires careful consideration and expertise.

Identification of a change point via our proposed procedures relies upon detection of a

difference in the mean level, the slope and/or the adjacent correlation of the response,

comparing the pre- and post-intervention periods across units. As such, if no change point in

the time-series truly exists this would indicate that there is no difference in the mean function

and/or the correlation structure of the response over time. Most researchers would consider

this absence of a difference in the mean function to be the absence of an intervention effect.

One could argue that if the pre-intervention slope were positive (indicating improvement

in outcomes) and if the slope remained constant during the post intervention phase, then

this could have been solely attributable to the intervention. In this case the counterfactual

may have revealed a decline (or an increase) in the slope if the intervention had not been

instituted. Of course, such a counterfactual could never be observed in practice but certainly

should be considered in theory.

Robust-ITS, R-MITS and GRITS all assume a global change point, and as such, do not

provide inference on the change point of the overall population of hospital units and the

unit-specific deviations. The methodology proposed in this dissertation does not account

for heterogeneity of change points across units for situations where the data warrants such

treatment. In the future, we will develop ITS mixed effect models as alternatives to these

methods, able to detect unit specific change points and borrow information across units while

allowing for change point heterogeneity. With these models, researches will be able to make
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inference for the overall population of hospital units and quantify unit specific deviations

from the population trajectories.

Health systems are required by CMS to record various patient centered outcomes at every

hospital unit. The current ITS methodology, including the methods described in this

dissertation, require each outcome to be modelled separately. In truth, ITS data are often

multivariate time series. We therefore, plan to grow the class of ITS models to allow for

multiple (homogeneous and mixed) outcomes, and as such, will develop multivariate versions

of the models proposed in Chapters 3-5. Additionally, we will develop multivariate mixed

effects robust ITS models that allow for homogeneous and mixed outcome ITS. The models

we plan on developing, along with those proposed in this dissertation, expand the class of

ITS methods to truthfully accommodate the intricacies of health care ITS data under various

real-world circumstances.

85



Bibliography

Aboagye-Sarfo, P., Mai, Q., Sanfilippo, F. M., Preen, D. B., Stewart, L. M., and Fatovich,
D. M. (2015). A comparison of multivariate and univariate time series approaches to
modelling and forecasting emergency department demand in western australia. Journal of
biomedical informatics 57, 62–73.

American Hospital Association Commission on Workforce for Hospitals Health Systems and
others (2002). In our hands: How hospital leaders can build a thriving workforce. Chicago:
Author .

Ansari, F., Gray, K., Nathwani, D., Phillips, G., Ogston, S., Ramsay, C., and Davey, P.
(2003). Outcomes of an intervention to improve hospital antibiotic prescribing: interrupted
time series with segmented regression analysis. Journal of Antimicrobial Chemotherapy
52, 842–848.

Barbiero, A. and Ferrari, P. (2015). Genord: Simulation of discrete random variables with
given correlation matrix and marginal distributions. r package version 1.4. 0. 2015.

Bender, M. (2014). The current evidence base for the clinical nurse leader: a narrative review
of the literature. Journal of Professional Nursing 30, 110–123.

Bender, M., Connelly, C. D., Glaser, D., and Brown, C. (2012). Clinical nurse leader impact
on microsystem care quality. Nursing Research 61, 326–332.

Bender, M., Murphy, E., Thomas, T., Kaminski, J., and Smith, B. (2015). Clinical nurse
leader integration into care delivery microsystems: quality and safety outcomes at the unit
and organization level. In Academy Health Annual Research Meeting.

Bender, M., Williams, M., Su, W., and Hites, L. (2017). Refining and validating a conceptual
model of clinical nurse leader integrated care delivery. Journal of Advanced Nursing 73,
448–464.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal statistical society: series B
(Methodological) 57, 289–300.

Bernal, J. L., Cummins, S., and Gasparrini, A. (2017). Interrupted time series regression
for the evaluation of public health interventions: a tutorial. International journal of
epidemiology 46, 348–355.

86



Bernal, J. L., Soumerai, S., and Gasparrini, A. (2018). A methodological framework for
model selection in interrupted time series studies. Journal of clinical epidemiology 103,
82–91.

Bhaskaran, K., Gasparrini, A., Hajat, S., Smeeth, L., and Armstrong, B. (2013). Time series
regression studies in environmental epidemiology. International journal of epidemiology
42, 1187–1195.

Bollerslev, T. (1988). On the correlation structure for the generalized autoregressive
conditional heteroskedastic process. Journal of Time Series Analysis 9, 121–131.

Cable, G. (2001). Enhancing causal interpretations of quality improvement interventions.
BMJ Quality & Safety 10, 179–186.

Cabrieto, J., Tuerlinckx, F., Kuppens, P., Grassmann, M., and Ceulemans, E. (2017).
Detecting correlation changes in multivariate time series: A comparison of four non-
parametric change point detection methods. Behavior Research Methods 49, 988–1005.

Centers for Medicare and Medicaid Services (2018). The hospital value-
based purchasing (vbp) program. https://www.cms.gov/Medicare/

Quality-Initiatives-Patient-Assessment-Instruments/Value-Based-Programs/

HVBP/Hospital-Value-Based-Purchasing.html. Online; accessed 13 February 2019.

Craig, P., Cooper, C., Gunnell, D., Haw, S., Lawson, K., Macintyre, S., Ogilvie, D.,
Petticrew, M., Reeves, B., Sutton, M., et al. (2012). Using natural experiments to evaluate
population health interventions: new medical research council guidance. J Epidemiol
Community Health 66, 1182–1186.

Cruz, M., Bender, M., and Ombao, H. (2017). A robust interrupted time series model for
analyzing complex health care intervention data. Statistics in medicine 36, 4660–4676.

Cruz, M., Gillen, D. L., Bender, M., and Ombao, H. (2019). Assessing health care
interventions via an interrupted time series model: Study power and design considerations.
Statistics in medicine .

Datta, J. and Petticrew, M. (2013). Challenges to evaluating complex interventions: a
content analysis of published papers. BMC public health 13, 568.

Davis, R. A., Lee, T. C. M., and Rodriguez-Yam, G. A. (2006). Structural break estimation
for nonstationary time series models. Journal of the American Statistical Association 101,
223–239.

Effective Practice and Organisation of Care (2015). Interrupted time series (its) analyses.
EPOC Resources for review authors. Oslo: Norwegian Knowledge Centre for the Health
Services .

Eliopoulos, G. M., Shardell, M., Harris, A. D., El-Kamary, S. S., Furuno, J. P., Miller, R. R.,
and Perencevich, E. N. (2007). Statistical analysis and application of quasi experiments
to antimicrobial resistance intervention studies. Clinical Infectious Diseases 45, 901–907.

87

https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/Value-Based-Programs/HVBP/Hospital-Value-Based-Purchasing.html
https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/Value-Based-Programs/HVBP/Hospital-Value-Based-Purchasing.html
https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/Value-Based-Programs/HVBP/Hospital-Value-Based-Purchasing.html


Fitzpatrick, J. J. (2003). Joint commission on accreditation of health care organizations
white paper: health care at the crossroads: strategies for addressing the evolving nursing
crisis. Policy, Politics, & Nursing Practice 4, 71–74.

Garey, K., Lai, D., Dao-Tran, T., Gentry, L., Hwang, L., and Davis, B. (2008). Interrupted
time series analysis of vancomycin compared to cefuroxime for surgical prophylaxis in
patients undergoing cardiac surgery. Antimicrobial agents and chemotherapy 52, 446–451.

Granger, C. W. J. and Newbold, P. (2014). Forecasting economic time series. Academic
Press.

Handley, M. A., Lyles, C. R., McCulloch, C., and Cattamanchi, A. (2018). Selecting
and improving quasi-experimental designs in effectiveness and implementation research.
Annual Review of Public Health 39, 5–25.

Hawe, P. (2015). Lessons from complex interventions to improve health. Annual review of
public health 36, 307–323.

Joynt, J. and Kimball, B. (2008). Innovative care delivery models: identifying new models
that effectively leverage nurses. Prinston: The Robert Wood Johnson Foundation .

Kavanagh, K. T., Cimiotti, J. P., Abusalem, S., and Coty, M.-B. (2012). Moving
healthcare quality forward with nursing-sensitive value-based purchasing. Journal of
Nursing Scholarship 44, 385–395.

Kirch, C., Muhsal, B., and Ombao, H. (2015). Detection of changes in multivariate time
series with application to eeg data. Journal of the American Statistical Association 110,
1197–1216.

Knebel, E., Greiner, A. C., et al. (2003). Health professions education: A bridge to quality.
National Academies Press.

Kohn, L. T., Corrigan, J., Donaldson, M. S., et al. (2000). To err is human: building a safer
health system, volume 6. National academy press Washington, DC.

Kontopantelis, E., Doran, T., Springate, D. A., Buchan, I., and Reeves, D. (2015). Regression
based quasi-experimental approach when randomisation is not an option: interrupted time
series analysis. bmj 350, h2750.

Linden, A. (2015). Conducting interrupted time-series analysis for single-and multiple-group
comparisons. Stata J 15, 480–500.

Mahamat, A., MacKenzie, F., Brooker, K., Monnet, D., Daures, J., and Gould, I. (2007).
Impact of infection control interventions and antibiotic use on hospital mrsa: a multivariate
interrupted time-series analysis. International journal of antimicrobial agents 30, 169–176.

Muggeo, V. (2012). Segmented relationships in regression models with
breakpoints/changepoints estimation. CRAN-R 0.2 9,.

88



Pan, W. (2001). Akaike’s information criterion in generalized estimating equations.
Biometrics 57, 120–125.

Parienti, J.-J., Cattoir, V., Thibon, P., Lebouvier, G., Verdon, R., Daubin, C.,
Du Cheyron, D., Leclercq, R., and Charbonneau, P. (2011). Hospital-wide modification
of fluoroquinolone policy and meticillin-resistant staphylococcus aureus rates: a 10-year
interrupted time-series analysis. Journal of Hospital Infection 78, 118–122.

Penfold, R. B. and Zhang, F. (2013). Use of interrupted time series analysis in evaluating
health care quality improvements. Academic pediatrics 13, S38–S44.

Petticrew, M., Rehfuess, E., Noyes, J., Higgins, J. P., Mayhew, A., Pantoja, T., Shemilt,
I., and Sowden, A. (2013). Synthesizing evidence on complex interventions: how meta-
analytical, qualitative, and mixed-method approaches can contribute. Journal of clinical
epidemiology 66, 1230–1243.

Quandt, R. E. (1958). The estimation of the parameters of a linear regression system obeying
two separate regimes. Journal of the american statistical association 53, 873–880.

Ramsay, C. R., Matowe, L., Grilli, R., Grimshaw, J. M., and Thomas, R. E. (2003).
Interrupted time series designs in health technology assessment: lessons from two
systematic reviews of behavior change strategies. International journal of technology
assessment in health care 19, 613–623.

Rickles, D. (2009). Causality in complex interventions. Medicine, Health Care and Philosophy
12, 77–90.

SAS User Guide (2008). Sas/ets 9.2 users guide.

Shumway, R. H. and Stoffer, D. S. (2017). Time series analysis and its applications: with R
examples. Springer.

Taljaard, M., McKenzie, J. E., Ramsay, C. R., and Grimshaw, J. M. (2014). The use of
segmented regression in analysing interrupted time series studies: an example in pre-
hospital ambulance care. Implementation Science 9, 77.

Thistlethwaite, D. L. and Campbell, D. T. (1960). Regression-discontinuity analysis: An
alternative to the ex post facto experiment. Journal of Educational psychology 51, 309.

Wagner, A. K., Soumerai, S. B., Zhang, F., and Ross-Degnan, D. (2002). Segmented
regression analysis of interrupted time series studies in medication use research. Journal
of clinical pharmacy and therapeutics 27, 299–309.

West, S. G., Duan, N., Pequegnat, W., Gaist, P., Des Jarlais, D. C., Holtgrave, D.,
Szapocznik, J., Fishbein, M., Rapkin, B., Clatts, M., et al. (2008). Alternatives to the
randomized controlled trial. American journal of public health 98, 1359–1366.

Zhang, F., Wagner, A. K., and Ross-Degnan, D. (2011). Simulation-based power calculation
for designing interrupted time series analyses of health policy interventions. Journal of
clinical epidemiology 64, 1252–1261.

89



Appendix A

Robust-ITS

A.1 A Note on the Time Series Length for Robust-ITS

The number of time points required pre- and post-change point (or pre- and post-intervention)

depend on many factors. Previously in the ITS literature, it has been suggested that a

minimum of three time points is needed in both phases to adequately estimate the outcome

means (Ramsay et al., 2003; Effective Practice and Organisation of Care, 2015).

Estimating the intercept and slope of a straight line via regression requires at least three

data points, to have sufficient degrees of freedom to estimate the variance. The constraint of

three data points therefore makes the assumption that only an intercept and slope need to

be estimated; not true here, since we also wish to model the correlation structure. Another

data point is needed for each additional parameter estimated. Ignoring the change point,

since we are estimating the intercept, slope, autocorrelation, and variance of each segment,

a minimum of five time points in each phase is needed to be able to merely estimate the

parameters.
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Because we estimate the change point it is necessary to obtain five time points in each phase

separate from the set of possible change points to adequately estimate the regression lines.

That is a total of 10 (5 for the pre- and 5 for the post-change point phases) measurements

plus the length of the set of possible change points are required.

The total number of model parameters plus one, is a severe lower bound for the number of

time points needed to make inference and should not be used as a rule of thumb.

The discussion of setting a practical lower bound for the time points needed in each phase

stems from the desire to have enough power to make proper inference. Power, however,

not only depends on the length of the time series in each phase, but additionally on the

distribution of the data points pre- and post-change point, variability, effect strength, and

confounding (Bernal et al., 2017). Considering solely the length of the pre- and post-change

point phases is not sufficient when calculating power, many other factors must be taken into

account. Little development of power calculations in the ITS setting exist (Bhaskaran et al.,

2013).
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A.2 Mean Parameter Estimates

The ordinary least squares (OLS) estimates for the mean parameters in θ of Section 3.2.2

are:

β̂0

τ̂
= ȳ1:(τ̂−1)−β̂1

τ̂ τ̂

2
, (A.1)

β̂1

τ̂
=

τ̂−1∑
t=1

(t− τ̂
2
) yt

τ̂−1∑
t=1

(t− τ̂
2
) t

, (A.2)

δ̂τ̂ = ȳτ̂ :n−(β̂1

τ̂
+∆̂τ̂ ) t̄τ̂ :n−Ȳ1:(τ̂−1)−β̂1

τ̂ τ̂

2
, (A.3)

∆̂τ̂ =

n∑
t=τ̂

(t− t̄τ̂ :n) yt

n∑
t=τ̂

(t− t̄τ̂ :n) t
−

τ̂−1∑
t=1

(t− τ̂
2
) yt

τ̂−1∑
t=1

(t− τ̂
2
) t

, (A.4)

where ȳa:b =

b∑
t=a

yt

b−(a−1)
and t̄τ̂ :n =

n∑
t=τ̂

t

n−(τ̂−1)
. The estimates of β τ̂0 and β τ̂1 are the same as the

OLS estimates obtained by fitting a linear model to the pre-change point phase alone. The

estimates of δτ̂ and ∆τ̂ may be obtained from fitting a linear model to the post-change

point phase and subtracting the OLS estimates of the first phase from the OLS estimates

(of the intercept and slope) of the second phase. The estimates for σ2
1 and σ2

2 depend on the

stochastic process, and are given in the following section for an AR(1) process.

A.3 AR(1) Parameter Estimates

In the AR(1) setting with a change point at τ̂ the autocorrelation and variance can be

estimated by maximizing the conditional likelihood. The estimates are functions of the
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residuals Rt and the residuals of the residuals Wt

φ̂(τ̂) =



φ̂1(τ̂) =

τ̂−1∑
t=2

(Rt−R̄2:(τ̂−1))(Rt−1−R̄1:(τ̂−2))

τ̂−1∑
t=2

(Rt−R̄2:(τ̂−1))
2

φ̂2(τ̂) =

n∑
t=τ̂+1

(Rt−R̄(τ̂+1):n)(Rt−1−R̄τ̂ :(n−1))

n∑
t=τ̂+1

(Rt−R̄(τ̂+1):n)2

(A.5)

σ̂2 =


σ̂2

1 = 1
τ̂−1

τ̂∑
t=2

[
(Wt−W 2:(τ̂−1))−φ̂1(τ̂)(Wt−1−W 1:(τ̂−2))

]2

σ̂2
2 = 1

n−τ̂−1

n∑
t=τ̂+2

[
(Wt−W (τ̂+1):n)−φ̂2(τ̂)(Wt−1−W (τ̂+1):n)

]2
,

(A.6)

where R̄a:b and W a:b are the means of the residuals and of the residuals of the residuals,

respectively, for time points a through b, and

Wt =

Rt−φ̂1(τ̂)Rt−1, 1 < t < τ̂

Rt−φ̂2(τ̂)Rt−1, τ̂ < t ≤ n.

A.4 Nested F-test for the Equality of Autocorrelation

for an AR(1)

To determine whether the stochastic process differs as a result of the change point, we test

the hypothesis that ν(τ) ≡ φ2(τ)−φ1(τ) equals zero. If ν(τ) = 0, there is one overarching

AR(1) process for all time points, and equation 3.2 reduces to

Rt = φRt−1+et, 1 < t ≤ n, (A.7)
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otherwise equation 3.2 holds. We are comparing nested models where equation 3.2 is the full

model and equation A.7 is the reduced model, so an F-test is appropriate. The degrees of

freedom corresponding to the reduced model is (n−1)−1, to account for the lag of the AR

process and the parameter in the model, φ. Similarly, since the full model corresponds to

two separately fit AR(1) processes and two parameters, the degrees of freedom is (n−2)−2.

Denote the residual sum of squares for the reduced and full models, respectively, as

RSSR =
n∑
t=2

(Rt−φ̂Rt−1)2

RSSF =
τ̂−1∑
t=2

(Rt−φ̂1(τ̂)Rt−1)2+
n∑

t=(τ̂+1)

(Rt−φ̂2(τ̂)Rt−1)2.

Then the F-statistics is

F =

RSSR−RSSF
([n−1]−1)−([n−2]−2)

RSSF
(n−1)−1

=
(RSSR−RSSF )/2

(RSSF )/(n−2)
,

and under the null hypothesis (ν(τ) = 0) is distributed F2,(n−2).

A.5 Segmented Regression Models

In the health care intervention literature there are two main types of segmented regression

models utilized to model the trends. The first is parametrized in the same manner as 3.1,

with τ set to the time of intervention — an assumed instantaneous effect — that is, the

mean is parametrized as:

µ1
t =

 β0+β1 t, t < t∗

(β0+δ) +(β1+∆)t, t ≥ t∗
(A.8)
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where t∗ denotes the intervention time. For the data described in the Introduction, t∗ = 31.

The second segmented regression model is

µ2
t =

 β0+β1 t, t < t∗

(β0+ψ) +β1t+Ψ(t−t∗+1), t ≥ t∗,
(A.9)

in which the time after intervention implementation is multyplying Ψ; as opposed to simply

time, as in equation A.8.

Note, the trends prior to the intervention introduction are the exact same for both equations

A.8 and A.9. Post the intervention time, the intercept increase is denoted by δ in equation

A.8 and by ψ−(t∗−1)Ψ in equation A.9, implying δ = ψ−(t∗−1)Ψ. The change in slopes

is denoted by ∆ and Ψ in equation A.8 and A.9 respectively, and so ∆ = Ψ. Although the

parametrization is different, the estimates of the intercepts, slopes, and any function of the

slopes and intercepts (as is the level change) are the same. Thus the models are equivalent.
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A.6 Supporting Figures

Figure A.1: Plots the studentized residuals of the Robust-ITS estimated patient satisfaction
means for each unit. The studentized residuals do not exhibit any clear patterns, and seem
to be closely centered around zero, indicating appropriate fits. The rule of thumb, 2, is
provided in each plot.
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Figure A.2: Provides ACF, autocorrelation function, plots of the Robust-ITS estimated
patient satisfaction means for each unit. The ACF plots suggest that the residuals behave
as white noise, since the autocorrelation at lags greater than zero are small and seem to get
closer to zero as the lag increases.
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Appendix B

Robust Multiple ITS

B.1 Estimators of the Mean Function Parameters

The generalized least squares (GLS) estimators for the mean function parameters of θ1, . . . , θN

given q ∈ Q, obtained in step (6.) of Algorithm 1 of Section 4.1.1, are

θ̂i =



β̂qi0

β̂qi1

δ̂qi

∆̂q
i


=
[
Xi(q)

′
Σ̂−1
i Xi(q)

]−1[
Xi(q)

′
Σ̂−1
i Yi

]
,
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where Xi(q) ≡



1 2 0 0

...
...

...
...

1 q−1 0 0

1 q 1 q

...
...

...
...

1 n 1 n


,

and Σ̂i given in the subsequent section. Hence, conditional on the estimated change point, τ̂

for unit i the estimator of (a.) the intercept pre-change point is β̂ τ̂i0; (b.) the slope pre-change

point is β̂ τ̂i1; (c.) the change in level (post-estimated change point intercept anchored at τ̂)

is δ̂τ̂i +∆̂τ̂
i τ̂ ; and the change in slope is ∆̂τ̂

i .

B.2 Estimators of the AR(1) Processes Parameters

In steps (4.) and (7.) of the iterative estimation process, provided in Section 4.1.1, the

residuals, rit = yit−µ̂it, are modeled as AR(1) processes:

rit =

 φi1(τ) ri,t−1+eit,1, 1 < t < q,

φi2(τ) ri,t−1+eit,2, q ≤ t ≤ n,

with eit,j
iid∼ N

(
0, σ2

iw,j

)
for j ∈ {1, 2}. Recall, to ensure causality in the time series sense,

φi1(τ) and φi2(τ) must lie in the interval (−1, 1) for all i. The variance-covariance matrix,
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Σi, is therefore equal to



σ2
iw,1

1−φi1(τ)2



1 φi1(τ) . . . φi1(τ)q−2

φi1(τ) 1 . . . φi1(τ)q−3

...
...

. . .
...

φi1(τ)q−2 φi1(τ)q−2 . . . 1

 0

0
σ2
iw,2

1−φi2(τ)2



1 φi2(τ) . . . φi2(τ)n−q

φi2(τ) 1 . . . φn−q−1
i2

...
...

. . .
...

φn−qi2 φn−q−1
i2 . . . 1




and completely determined by φi1(τ), φi2(τ), σiw,1 and σiw,2. We therefore only provide the

estimators of φi1(τ), φi2, σiw,1 and σiw,2, conditional on q ∈ Q.

Define

r(1a) =
1

q−2

q−2∑
t=1

rt, r(1b) =
2

q−1

q−1∑
t=2

rt,

r(2a) =
1

n−q−1

n−1∑
t=q−1

rt, r(2b) =
1

n−q−1

n∑
t=q

rt,

σ2
r1

=

q−1∑
t=2

(rt−r(1b))
2 +

q−1∑
t=2

(rt−1−r(1a))
2

2
,

and σ2
r2

=

n∑
t=q

(rt−r(2b))
2 +

n∑
t=q

(rt−1−r(2a))
2

2
.
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Then the estimators of φi1(τ), φi2(τ), σiw,1, σiw,2, σi,1, and σi,2, conditional on q, are

• φ̂i1(τ̂) =

q−1∑
t=2

(rt−r(1b)) (rt−1−r(1a))

σ2
r1

• φ̂i2(τ̂) =

n∑
t=q

(rt−r(2b)) (rt−1−r(2a))

σ2
r2

• σ̂2
iw,1 = 1

q−2

q−1∑
t=2

[
(rt−r(1b))−φ̂i1(τ̂)(rt−1−r(1a))

]2

• σ̂2
iw,2 = 1

n−q+1

n∑
t=q

[
(rt−r(2b))−φ̂i2(τ̂)(rt−1−r(2a))

]2

• σ̂i,1 =
σ̂iw,1√

1−
(
φ̂i1(τ̂)

)2

• σ̂i,2 =
σ̂iw,2√

1−
(
φ̂i2(τ̂)

)2
.

B.3 Covariance Matrix of the Full Model Mean Function

Parameters for the SWT

The supremum Wald statistic of section 4.1.1 depends on V̂0(~̂β
0

), the block diagonal estimator

of the variance covariance matrix of ~̂β
0

. Each block of V̂0(~̂β
0

) corresponds to V̂(~̂β
0

i ), the

estimated variance-covariance matrix of the mean function parameters for unit i. Note,

V̂(~̂β
0

i ) =
(
X1 ′ (Σ̂i)

−1 X1
)−1

,

with X1
i as the design matrix of the full model (model of equation (4.6)) and the variance-

covariance matrix under the reduced model (model of equation (4.5)) as Σ̂i. Since the

aim of the supremum Wald test is to test the existence of a change point in the mean, we
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assume an autocorelation structure that remains constant over the entire duration of the

observational period. Thus, for unit i

Σ̂i =
(σ̂iw)2

1−(φ̂i)2



1 φ̂i . . .
(
φ̂i
)n−2

φ̂i 1 . . .
(
φ̂i
)n−3

...
...

. . .
...(

φ̂i
)n−2 (

φ̂i
)n−3

. . . 1


,

where φ̂i and (σ̂iw)2 are estimated under the reduced model.
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Appendix C

Generalized Robust ITS

C.1 Working Correlation Matrices for GRITS

The working correlation matrix, R, of section 5.1.1 that assumes a change point in the

correlation structure at τ is:

R =





1 ρ1(τ) . . .
(
ρ1(τ)

)τ−2

ρ1(τ) 1 . . .
(
ρ1(τ)

)τ−3

...
...

. . .
...(

ρ1(τ)
)τ−2 (

ρ1(τ)
)τ−2

. . . 1

 0

0



1 ρ2(τ) . . .
(
ρ2(τ)

)n−τ
ρ2(τ) 1 . . .

(
ρ2(τ)

)n−τ−1

...
...

. . .
...(

ρ2(τ)
)n−τ (

ρ2(τ)
)n−τ−1

. . . 1





,

with ρ1(τ) and ρ2(τ) denoting the adjacent correlations in the pre- and post-change point

phases, respectively.
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When the SWT concludes that no change point exists, the working correlation matrix GRITS

assumes is of the form: 

1 ρ · · · ρn−1

ρ 1 · · · ρn−2

...
... · · · ...

ρn−1 ρn−2 · · · 1


,

where ρ is the adjacent correlation.

C.2 Estimators of the Adjacent Correlations for GRITS

Let the Pearson residuals be rij =
yi1−µ̂ij√
V (µ̂ij)

. Under the scenario when the supremum Wald

test concludes a change point does not exists, the estimator of the adjacent correlation, ρ is:

ρ̂i =

n∑
j=2

[
(ri,j−r̄2:n)(ri,j−1−r̄1:n−1)

]
n∑
j=1

[
(ri,j−r̄1:n)2

] , ρ̂ =
1

N

N∑
i=1

ρ̂i.

Otherwise, when the SWT concludes a change point does exist, the estimators of ρ1(τ) and

ρ2(τ) are:

ρ̂1,i(τ) =

τ−1∑
j=2

[
(ri,j−r̄2:τ−1)(ri,j−1−r̄1:τ−2)

]
τ−1∑
j=1

[
(ri,j−r̄1:τ−1)2

] , ρ̂1(τ) =
1

N

N∑
i=1

ρ̂1,i(τ),

ρ̂2,i(τ) =

n∑
j=τ

[
(ri,j−r̄τ :n)(ri,j−1−r̄τ−1:n−1)

]
n∑
j=τ

[
(ri,j−r̄τ :n)2

] , ρ̂2(τ) =
1

N

N∑
i=1

ρ̂2,i(τ)
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C.3 Empirical Studies II

In section 5.2, we provide empirical studies examining the operating characteristics of our

proposed methodology when testing whether a change point exists in both the mean functions

and correlation structure. It may be of interest to test whether a change point exists only

in the mean functions. We, therefore, go on to provide empirical studies for the case when

the alternative hypothesis assumes a change point solely in the mean functions. That is, for

each q ∈ Q, we test:

H0 : δqi = ∆q
i = 0 ∀ i (no change point)

vs. Ha : δqi 6= 0 and/or ∆q
i 6= 0 for some i (a change point at q).

Since the focus is on detecting a change point in the mean functions, we assume one overall

AR(1) correlation structure for the entire observational period. We again set simulated data

particularities to values based on our patient falls data, generate correlated count ITS via

the GenOrd package in R (Barbiero and Ferrari, 2015), assume the canonical link function

for a Poisson distribution, g(·) = log(·), and the same mean function for all units. As in

section 5.2, we consider four different values of the total number of units, N ∈ {1, 3, 5, 10},

to compare the gains in efficiency obtained by borrowing information across various number

of units.

C.3.1 Empirical Type One Error of the SWT

To examine the type one error rate of the SWT, we once again generated 10, 000 correlated

count ITS of length n ∈ {60, 120} under the null hypothesis of no change point. We

considered three values of the adjacent correlation, ρ ∈ {0.1, 0.2, 0.4}, and assumed βi0 = 2

and βi1 = −0.2 for all i. When n = 60 the set of possible change points was set to
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{25, 26, . . . , 34} and when n = 120 the set of possible changes points was {50, 51, . . . , 69}.

Type one error rates for the six scenarios are included in Table C.1. Results are consistent

with those obtained in Section 5.2.1: empirical type one error rates are large when N = 1

or ρ = 0.4 and n = 60, and relatively well behaved otherwise.

Empirical Type One Error Rate
n = 60 n = 120

ρ 1 Unit 3 Units 5 Units 10 Units 1 Unit 3 Units 5 Units 10 Units

0.1 0.0674 0.0481 0.0440 0.0420 0.0426 0.0386 0.0341 0.0341
0.2 0.0705 0.0511 0.0478 0.0450 0.0449 0.0313 0.0363 0.0362
0.4 0.0750 0.0514 0.0504 0.0465 0.0532 0.0431 0.0391 0.0385

Table C.1: Type one error rates for the SWT testing the existence of a change point in the
mean functions.

C.3.2 Empirical Power of the SWT

We generated 10, 000 correlated count ITS of length n ∈ {60, 120} under the alternative

hypothesis of a change point in the mean function. The change point was again placed

in the middle of the time series, at time point 31 if n = 60 and at 61 if n = 120, and

the set of possible change points were assumed to be Q60 = {25, 26, . . . , 34} and Q120 =

{50, 51, . . . , 69}. We considered N ∈ {1, 3, 5, 10} to illustrate the gains in power obtained

by borrowing information across units. We also considered three scenarios for the adjacent

correlation,
(
ρ1(τ)), ρ2(τ)

)
∈ {(0.1, 0.2), (0.2, 0.3), (0.4, 0.5)}, and assumed βτi0 = 2, βτi1 =

−0.2 and δτi = 0 for all i. Due to dissertation time constraints and simulation results

hypothesized to be consistent with those provided in this section, we omitted the case when

n = 60 and
(
ρ1(τ)), ρ2(τ)

)
= (0.4, 0.5).

As in Section 5.2.2, we examine power as a function of the change in slope, provided in Figure

C.1. Results are consistent with those from Section 5.2.2: empirical power decreases as the

adjacent correlations increase and increases as the length of the time series and the number
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of units increase. Once again, there is a significant gain in power obtained by borrowing

information across units and a lesser yet substantial gain in power as the length of the time

series increases.

Accuracy of Change Point Estimation Procedure

We are additionally interested in the ability of our change point estimation procedure to

correctly estimate the true change point when the SWT concludes a change point exists.

Figure C.2 plots the proportion of simulations that correctly estimate the change point

within one unit of the true change point when the SWT concludes a change point does

indeed exist, for all scenarios considered. As in Section 5.2.2, accuracy of our change point

estimation procedure increases as the adjacent correlation decreases and as the number of

units increases, and accuracy decreases as the number of response measurements increases.

The latter finding may be explained by the doubling of the cardinality of the set of possible

change points when we double the length of the time series. The large search space may in

turn decrease accuracy. Nonetheless, a gain in accuracy occurs when information is borrowed

across units.
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Figure C.1: Plots empirical power of the SWT as a function of the change in slope for n = 60
in the first column and n = 120 in the second column. The values of the change in slope
ranged between -0.8 and 0.8.
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Figure C.2: The first column plots accuracy of our change point estimation procedure as a
function of the change in slope for n = 60 and the second column for n = 120. The values of
the change in slope ranged between -0.8 and 0.8. Note, accuracy is defined as the proportion
of simulations that estimate the change point to be within one time point of the true change
point after rejecting the null hypothesis that a change point does not exist via SWT. For
∆τ = 0 (the model with no change point), we did not calculate change point accuracy.
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C.4 Patient Falls

Figure C.3: Provides boxplots for patient falls for all of the clinical care units analyzed in
Chapter 5.
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