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Introduction

A number of important pathogenic bacteria are able to 
infect and survive within eukaryotic host cells (Casadevall 
2008). For example, Salmonella, Mycobacterium, Yersinia, 
and Legionella, are called facultative intracellular bacte-
ria because they can live inside or outside a host cell. In 
contrast, Chlamydia, Coxiella, Rickettsia and Mycobac-
terium leprae are obligate intracellular bacteria because 
they require a host cell for replication. With the exception 
of Coxiella, these obligate intracellular bacteria cannot be 
grown in axenic culture, but can be studied in the labora-
tory with a cell culture infection model.

The effects of the intracellular environment on bacterial 
gene expression have not been fully explored. The major-
ity of gene regulation studies for facultative intracellular 
bacteria have been performed in the absence of a host cell 
because it is easier to grow these organisms in axenic cul-
ture. Gene regulation in obligate intracellular pathogens 
has been mostly studied with in vitro assays or heterolo-
gous in vivo systems. However our understanding of gene 
regulation during an intracellular infection is not complete 
unless it is analyzed within an infected host cell.

Chromatin immunoprecipitation (ChIP) is a method for 
studying transcriptional regulation in vivo. This approach 
involves cross-linking of DNA-binding proteins to their tar-
get DNA sequences within bacterial cells, fragmentation of 
the DNA into small segments, and then isolation of specific 
protein-DNA complexes with antibodies to the protein. The 
amount of bound DNA can then be quantified with target-
specific or genome-wide methods. For example, with ChIP-
qPCR, binding of a transcription factor to a particular target 
gene can be quantified by using specific antibodies against 
the transcription factor to isolate the in vivo complexes, 
and then measuring the amount of bound target DNA with 
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quantitative PCR. To study genome-wide targets, the DNA 
isolated with the ChIP procedure can be analyzed by mas-
sively parallel sequencing (ChIP-seq) or by hybridization 
to a microarray (ChIP-chip). These latter methods do not 
require prior knowledge of the target sequences and yet can 
identify target genes and quantify the level of binding.

ChIP has many advantages over other methods for stud-
ying transcriptional regulation because it directly measures 
the in vivo binding of a transcription factor to its target 
DNA. The activity of this transcription factor in modulat-
ing transcription can be assayed for individual target genes 
as well as over its entire regulon. In addition, binding of 
the transcription factor can be analyzed and compared 
under different in vivo conditions. In vivo reporter assays, 
in contrast, are best suited for the analysis of individual tar-
get genes. Transcriptional profiling methods, such as qRT-
PCR for individual genes, or DNA microarrays and deep 
sequencing for genome-wide analysis, provide information 
about transcript levels, but not about the underlying mech-
anisms of transcriptional regulation. These methods for 
measuring transcript levels can complement ChIP, however, 
by allowing the effect of transcription factor binding on 
gene expression to be assayed under the same conditions.

ChIP and intracellular pathogens

ChIP with infected cells has been used to investigate mod-
ification of host gene expression by bacterial factors. For 
example, intracellular bacteria regulate host gene expres-
sion by modifying histones and host chromatin structure to 
silence expression at specific gene loci. The RomA protein 
of Legionella pneumophila uniquely methylates histone H3 
with a tri-methyl group at lysine 14 (Rolando et al. 2013). 
ChIP-seq analysis of H3 in L. pneumophila-infected cells 
revealed that H3 methylation by RomA occurred at over 
4,800 promoter regions (Rolando et al. 2013). Further-
more, RomA methylation of H3 resulted in repression of 
transcription, indicating that L. pneumophila silences a 
large number of host genes during infection (Rolando et al. 
2013). In a related manner, ChIP with infected cells demon-
strated that the phosphatase OspF of Shigella flexneri pre-
vents phosphorylation of histone H3 at serine 10, impair-
ing recruitment of NF-κB to the IL8 promoter (Arbibe 
et al. 2007). ChIP was used to show that the secreted 
protein AnkA, from the obligate intracellular bacterium 
Anaplasma phagocytophilum, binds directly to host DNA 
(Garcia–Garcia et al. 2009; Rennoll-Bankert and Dumler 
2012; Sinclair et al. 2014). Similarly, ChIP with infected 
cells demonstrated that the proteins Ank200 and TRP120 
of the obligate intracellular pathogen Ehrilichia chaffeensis 
bind host DNA in infected cells (Zhu et al. 2009, 2011). 
It is currently unclear how AnkA, Ank200, and TRP120 

function to modulate host gene expression, but they may 
induce global transcriptional changes by recruiting chroma-
tin remodeling enzymes to specific chromosomal locations 
(Sinclair et al. 2014).

In a few instances, ChIP has been used to study gene 
regulation within obligate intracellular pathogens, most 
notably in protozoa, such as Plasmodium falciparum and 
Toxoplasma gondii. For example, the P. falciparum pro-
tein PfBDP1 was enriched near promoters of its invasion 
genes and was associated with their activation in infected 
erythrocytes (Josling et al. 2015). Similarly, the T. gondii 
protein gAP2XI-5 was enriched at promoters of important 
virulence genes within infected cells (Walker et al. 2013). 
In contrast, very few studies have used ChIP to study how 
bacteria regulate their genes during an intracellular infec-
tion. The best example is a ChIP study showing that the 
Salmonella response regulator PhoP bound its target ssrB 
promoter in infected macrophages (Bijlsma and Groisman 
2005). This study demonstrated that a bacterial transcrip-
tion factor can regulate target genes that control type III 
secretion in the context of an intracellular infection. How-
ever, to our knowledge there have been few other studies 
that have taken advantage of ChIP to analyze bacterial tran-
scription factors within an infected cell.

Intra‑ChIP

We have developed a ChIP method to study the function of 
a transcription factor within a bacterium residing inside an 
infected host cell. While the intracellular context is impor-
tant for studying the bacterium in its native environment, 
it brings along host proteins and DNA that can affect the 
sensitivity and specificity of the ChIP assay. Our method, 
which we call intra-ChIP, utilizes the conventional ChIP 
approach to measure bacterial protein-DNA binding, but is 
modified to minimize background from host proteins and 
DNA. We did not have to change the cross-linking step for 
locking in in vivo protein-DNA interactions, because we 
used the cross-linking agent formaldehyde, which diffuses 
into both the infected cell and the intracellular bacteria. 
We also retained the basic immunoprecipitation step, using 
specific antibodies to isolate protein-DNA complexes for 
the transcription factor of interest. However, we found that 
it was important to optimize the conditions for DNA frag-
mentation and the amount of starting material for the intra-
ChIP assay. The presence of host DNA is also an impor-
tant consideration for the DNA analysis step to identify or 
quantify DNA binding targets.

The DNA fragmentation step has to be optimized because 
the material from the infected cell may contain much more 
host cell DNA than bacterial DNA. This imbalance is 
due to the size of the bacterial genome (1 to 5 × 106 bp),  
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which is a thousand-fold smaller than the host cell genome 
(3 × 109 bp). This disparity will be less of a factor if there 
are many bacteria per host cell. We fragmented the total 
chlamydial and host DNA by shearing the sample with a 
sonicator, which is able to produce a minimum DNA size 
of 100–500 bp (Elsner and Lindblad 1989; Sambrook and 
Russell 2006). We found that sonication conditions that 
sheared total DNA to a size range of 300–1200 bp pro-
duced templates that were suitable for ChIP-qPCR analy-
sis. In our intra-ChIP studies of the intracellular bacterium 
Chlamydia, it was not necessary to measure the size of the 
chlamydial DNA fragments by themselves. Optimal frag-
mentation conditions may need to be empirically deter-
mined for each intracellular pathogen.

The amount of starting material to use for the intra-ChIP 
assay is affected by the bacterial load in an infected cell. 
For example, an intracellular Chlamydia infection begins 
with a single bacterium that enters the host cell, but over 
the course of the 48–72 h intracellular infection, the bac-
terium replicates repeatedly by binary fission so that there 
can be a thousand bacteria inside the host cell. It may be 
necessary to optimize the amount of starting material 
because too much may lead to high background from non-
specific DNA recovery, while too little will compromise 
the ability to detect specific protein-DNA binding. In our 
Chlamydia intra-ChIP studies, we were able to detect tran-
scription binding with as few as 100,000 bacteria, even at 
an early stage in the infection where there was only one 
bacterium per host cell.

The presence of host DNA also affects the subsequent 
DNA analysis step that measures target DNA bound in the 
ChIP assay. If qPCR is used to quantify individual DNA 
targets, it is important to select specific PCR primers that 

do not recognize other bacterial or host DNA sequences. 
The issue with global analysis methods such as DNA-
seq or DNA microarrays is that they may detect adventi-
tious binding between the bacterial transcription factor and 
host DNA that is not relevant to the infection. However, 
the crosslinking step in the intra-ChIP procedure helps 
to restrict the analysis to bona fide interactions occurring 
within the infected host cell.

Chlamydia and intra‑ChIP

In a recent study, we used our intra-ChIP method to detect 
dynamic changes in binding of the chlamydial transcrip-
tion factor HrcA to its target DNA sequences within human 
cells infected with Chlamydia trachomatis (Hanson and 
Tan 2015). HrcA is a conserved transcription factor that 
regulates heat shock genes in many bacteria. HrcA has 
been shown to bind its cognate operator CIRCE in vitro, 
and HrcA-CIRCE binding is associated with transcriptional 
repression of heat shock genes (Minder et al. 2000; Narber-
haus 1999; Schulz and Schumann 1996; Zuber and Schu-
mann 1994), (Fig. 1). Stress conditions such as elevated 
temperature induce transcription of these heat shock genes 
(Engel et al. 1990) and, for Helicobacter, have been shown 
to cause loss of HrcA binding in vitro (Roncarati et al. 
2014) (Fig. 1). Using intra-ChIP paired with qPCR (Fig. 2), 
we obtained the first direct evidence that HrcA binding 
within a bacterium can be regulated by heat shock. We 
detected binding of HrcA to its target promoters in Chla-
mydia-infected cells under normal growth conditions. We 
then showed that exposure of infected cells to elevated tem-
perature caused loss of HrcA binding, and a concomitant 

Fig. 1  Model of HrcA regulation. Under non-stress conditions HrcA 
binds the CIRCE operator and represses transcription of heat shock 
genes. With stress conditions, such as heat shock, there is derepres-
sion with loss of HrcA binding which leads to increased transcription 

of the heat shock genes. Changes in HrcA binding and associated 
changes in transcription can be measured using ChIP-qPCR and qRT-
PCR respectively
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increase in transcription from these promoters, as meas-
ured by qRT-PCR. We also used this combined ChIP-qPCR 
and qRT-PCR approach to investigate the kinetics of HrcA 
binding during heat shock and recovery from heat shock, 
and the regulation of HrcA binding over the course of the 
intracellular chlamydial infection. Thus intra-ChIP pro-
vided a useful method for measuring the regulated bind-
ing and activity of a bacterial transcription factor during an 
intracellular infection.

Future considerations

Our approach for using intra-ChIP to study bacterial tran-
scription factor activity in an infected cell can be readily 
applied to other intracellular bacterial infections. For exam-
ple, an excellent ChIP-seq study identified binding targets 
for over three-quarters of the transcription factors of Myco-
bacterium tuberculosis when grown in culture medium 
(Minch et al. 2015). A natural extension of this study would 
be to perform the ChIP-seq analysis with M. tuberculosis-
infected macrophages, in which nearly 600 mycobacterial 
genes are differentially regulated (Fontán et al. 2008). For 
many other facultative and obligate intracellular bacteria, 
cell culture infection models exist and could be used to 
study transcription factors in the context of an intracellu-
lar infection. ChIP has even been successfully performed 
using paraffin embedded clinical tissue samples, and 
microdissected tissue samples (Fanelli et al. 2010; Murga-
troyd et al. 2012), and in the future it would be attractive 
to perform in vivo ChIP using infected animal or clinical 
tissue samples.

In summary, intra-ChIP provides the means to study 
gene regulation of intracellular bacteria within an infected 
host cell. This intracellular environment is critical because 
it may affect the transcriptional regulatory networks of the 
bacterium. Intra-ChIP studies also provide the means to 
study the in vivo function of transcription factors, espe-
cially for obligate intracellular bacteria. These regulatory 
factors play an important role in controlling bacterial gene 
expression and they are attractive targets for development 
of novel antibiotics.
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