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This work presents the first Bayesian inference study of the ð3þ 1ÞD dynamics of relativistic heavy-ion
collisions and quark-gluon plasma viscosities using an event-by-event ð3þ 1ÞD hydrodynamicsþ hadronic
transport theoretical framework and data from the Relativistic Heavy Ion Collider Beam energy scan
program. Robust constraints on initial state nuclear stopping and the baryon chemical potential-dependent
shear viscosity of the produced quantum chromodynamic (QCD) matter are obtained. The specific bulk
viscosity of the QCDmatter is found to exhibit a preferred maximum around

ffiffiffiffiffiffiffiffi
sNN

p ¼ 19.6 GeV. This result
allows for the alternative interpretation of a reduction (and/or increase) of the speed of sound relative to that
of the employed lattice-QCD based equation of state for net baryon chemical potential μB ∼ 0.2ð0.4Þ GeV.
DOI: 10.1103/PhysRevLett.132.072301

Introduction.—The characterization of quark-gluon
plasma (QGP) has long been a central pursuit in high-
energy nuclear physics [1,2]. The Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory has
played a pivotal role in this endeavor, providing opportu-
nities for studying strongly interacting matter at extreme
temperatures and densities. One of the most intriguing
aspects of RHIC experiments is the beam energy scan (BES)
program [3–6], which systematically varies the center-of-
mass energy of colliding ions to investigate the properties of
the QGP over a wide range of the temperature and baryon
chemical potential dependent phase diagram of quantum
chromodynamics (QCD). The BES program allows us to
investigate the transition between hadronic matter and the
QGP and to search for a possible critical point and first-
order phase boundaries, shedding light on the emergent
properties of the nuclear force (see reviews [7–10]).
The theoretical description of the QGP and its real-time

evolution in relativistic heavy-ion collisions is a complex
and multifaceted challenge [11–15]. While relativistic
viscous hydrodynamics is an efficient and effective frame-
work to describe the QGP collectivity, uncertainties in the
initial conditions and the transport properties of the
medium introduce significant ambiguities in the theoretical
predictions. Quantifying these uncertainties is essential for
extracting precise information about the QGP’s properties
[16–22].
While it is challenging to compute the QGP transport

coefficients from first principles (see [23] for recent lattice
extractions of viscosities for a purely gluonic system),
phenomenological studies showed that hadronic observ-
ables measured in heavy-ion collisions are sensitive to the

shear and bulk viscosity of QCD matter [13,16,24–28].
Early work constraining these transport coefficients with
hydrodynamic simulations of heavy-ion collisions generally
focused on the shear viscosity, approximated as an effective
constant ratio to the entropy density η=s [16,25,29,30].
Contemporary efforts adopted the Bayesian inference
method to constrain the QGP’s specific shear and bulk
viscosities, including the uncertainties from all the other
model parameters. Large-scale model-to-data comparisons
are necessary to achieve this goal, given the significant
computational challenge of constraining a high-dimensional
model parameter space [31–42].
Aiming to make extensive use of existing rapidity

and collision energy dependent data, we perform compre-
hensive modeling of the ð3þ 1ÞD QGP dynamics in a
26-dimensional model parameter space with state-of-the-
art relativistic viscous hydrodynamicsþ hadronic trans-
port simulations. This is a significant extension over an
earlier work [33], which studied a much smaller five-
dimensional model parameter space. By performing the
Bayesian inference analysis with multisystem measure-
ments from the RHIC BES program phase I, we will obtain
robust constraints on initial-state nuclear stopping and the
temperature and baryon chemical potential dependent
QGP shear and bulk viscosities for the first time.
Hybrid framework and model parametrizations.—To

model the dynamics of Auþ Au collisions from
ffiffiffiffiffiffiffiffi
sNN

p ¼
7.7 to 200 GeV in the RHIC BES program, we employ a
ð3þ 1ÞD dynamical initialization model (3D-Glauber)
coupled with the hybrid framework of relativistic viscous
hydrodynamics ðMUSICÞ þ hadronic transport (URQMD)
[43,44]. The 3D-Glauber model simulates the initial stage
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of heavy-ion collisions as the two nuclei pass through each
other. Individual nucleon-nucleon (NN) collisions are
determined based on their transverse positions and the
inelastic NN cross section at the given collision energy.
For each NN collision, we select valence quarks and soft
partons inside the colliding nucleons to lose energy [44]. To
constrain the initial-state nuclear stopping in this analysis,
we parametrize the average amount of rapidity loss for each
parton pair as a piecewise function,

hylossi ¼

8>><
>>:

yloss;2
yinit
2

0 < yinit ≤ 2

yloss;2 þ ðyloss;4 − yloss;2Þ yinit−22
2 < yinit < 4

yloss;4 þ ðyloss;6 − yloss;4Þ yinit−42
yinit ≥ 4

;

where the parameter yloss;n specifies the average amount of
rapidity loss for yinit ¼ n. The event-by-event fluctuations of
rapidity loss are introduced by the variance parameter σyloss
[44]. After individual NN collision, wounded partons are
decelerated with a string tension in the longitudinal direc-
tion during the time τhydro ¼ 0.5 fm=c in the collision rest
frame. The lost energy and momentum produce an energy-
momentum current Jμ, which is fed into the hydrodynamic
fields via a source term,

∂μTμν ¼ Jμ; ∂μJ
μ
B ¼ ρB: ð1Þ

In the second equation, baryon charge densities from
incoming nucleons are treated as scalar sources to the
hydrodynamic net baryon current [44].
We parametrize a blast-wave-like preequilibrium trans-

verse flow profile for each string, developed during its
hydrodynamization period τhydro with the transverse flow
rapidity [45], η⊥ðx⊥Þ ¼ αpreFlowjx̃⊥j, where the 2D vector
x̃⊥ ¼ ðx − xstring; y − ystringÞ, with xstring and ystring the
coordinates of the string in the transverse plane, and the
parameter αpreFlow controls the size of the preequilibrium
flow. Then, the energy-momentum current Jμ can be
written as

Jμðx⊥; ηsÞ ¼ estringðx⊥; ηsÞuμstring½η⊥ðx⊥Þ; yðηsÞ�; ð2Þ

where the string’s local flow velocity is uμstringðη⊥; yÞ ¼
ðcosh η⊥ cosh y; sinh η⊥êx̃⊥ ; cosh η⊥ sinh yÞ with êx̃⊥ ¼
x̃⊥=jx̃⊥j being the unit vector of x̃⊥ in the transverse
plane. The transverse shape of the source terms
estringðx⊥; ηsÞ is parametrized as Gaussian profiles with

width σstringx . Precise definitions of estringðx⊥; ηsÞ and yðηsÞ
can be found in Ref. [44]. The hydrodynamic equations
of motion are solved with a lattice-QCD-based equation
of state (EOS) at finite densities, NEOS-BQS, which
imposes strangeness neutrality and nQ ¼ 0.4nB for
Auþ Au collisions [46].

To account for shear and bulk viscous effects in the
hydrodynamic phase [47–49], we parametrize the baryon
chemical potential μB dependence of the QGP shear
viscosity as

η̃ðμBÞ¼

8>><
>>:

η0þðη2−η0Þ μB0.2 0< μB ≤ 0.2GeV

η2þðη4−η2Þ ðμB−0.2Þ0.2 0.2< μB < 0.4GeV

η4 μB ≥ 0.4GeV

; ð3Þ

where η̃≡ ηT=ðeþ PÞ and the parameters η0, η2,
η4 are the values of the QGP specific shear viscosity
at μB ¼ 0, 0.2, 0.4 GeV, respectively. The translation
from η̃ to η=s introduces a mild temperature dependence
at finite net baryon density, namely, η=sðT; μBÞ ¼
½1þ ðμBnB=TsÞ�η̃ðμBÞ. To limit the number of model
parameters, we do not include an explicit temperature
dependence for η̃ here, since the results from previous
Bayesian analyses were compatible with a temperature
independent η=s value in the phase described by hydro-
dynamics [37].
The specific bulk viscosity is parametrized as an asym-

metric Gaussian in temperature [13,28],

ζ̃ðT; μBÞ ¼

8><
>:

ζmax exp
h
− ðT−TζðμBÞÞ2

2σ2ζ;−

i
T < TζðμBÞ

ζmax exp
h
− ðT−TζðμBÞÞ2

2σ2ζ;þ

i
T ≥ TζðμBÞ

; ð4Þ

where ζ̃ ≡ ζT=ðeþ PÞ and the bulk peak temperature
TζðμBÞ ¼ Tζ;0 − ð0.15=1 GeVÞμ2B, so that it closely follows
the constant energy density curve with e ¼ eðTζ;0; μB ¼ 0Þ
for the NEOS-BQS EOS [46]. This ensures that the bulk
viscosity peak closely follows the phase crossover at finite
net baryon density [10,50,51].
Below the switching energy density esw, individual fluid

cells are converted into hadrons according to the Cooper-
Frye particlization procedure, including out-of-equilibrium
corrections to particle distributions with multiple conserved
charge currents (B, Q, S) using the Grad moment method
[45]. The produced hadrons are then fed to the URQMD

transport model for hadronic scatterings and decays [52,53].
The hadronic transport model controls the nontrivial ðT; μBÞ
dependence of viscosity in the dilute hadronic phase [54],
which we do not vary in this Bayesian analysis.
All model parameters are listed in Table I with their prior

ranges. The definitions of the parameters BG, αshadowing, λB,
σstringη , αstring tilt can be found in Ref. [44].
To obtain an estimate of the μB dependence of the bulk

viscosity, we allow the model parameters ζmax and σζ;� to be
independent parameters at different collision energies. This
approach yields an effective μB dependence of ζ=s, in line
with the general RHIC beam energy scan approach to probe
QCDmatter properties at finite net baryon density [55]. This
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treatment enlarges the model parameter space from 20 to 26
dimensions.
Table II summarizes the experimental observables (604

data points in total) in the current Bayesian inference
study. The midrapidity measurements in Auþ Au colli-
sions at 200, 19.6, and 7.7 GeV can cover up to μB ∼
0.4 GeV in the QCD phase diagram [55–57]. Because the
theoretical uncertainty is significant in peripheral colli-
sions, we use identified particle yields and their mean pT
from 0%–5% to 50%–60% centrality and charged hadron
vnf2g from central up to 40%–50% centrality. We do not
include the antiproton yields at 19.6 and 7.7 GeV because
the statistical errors in the training simulations are still too
big for reliable model emulation. In our following analysis,
we will quantify the impacts of including the pseudor-
apidity distribution of charged hadron yields and their
elliptic flow coefficient from the PHOBOS Collaboration
on constraining the QGP properties.
To efficiently explore the parameter space fθg listed in

Table I, we train Gaussian process (GP) emulators for our
model calculations with 1000 design points in the model
parameter space. These 1000 design points are sampled
using the maximum projection latin hypercube design
algorithm [63,64]. At every design parameter point, we
simulate 1000 minimum bias Auþ Au collisions at
200 GeV and 2000 minimum bias events at 19.6 and
7.7 GeV each. An interactive web page with the trained
GP emulators is available to help the interested reader
develop intuition about how the model parameters affect the
observables [65].
Using the trained GP emulators, we can obtain the

posterior distribution of model parameters, PðθjyexpÞ,
following Bayes’ theorem by sampling the uniform prior
PðθÞ with the Monte Carlo Markov chain (MCMC)
method, PðθjyexpÞ ∝ PðyexpjθÞPðθÞ. Here PðyexpjθÞ is
the likelihood for the model results with parameter θ to
agree with the experimental data yexp. It is defined as a
multivariate normal distribution [66]. We verify our
Bayesian inference analysis with a closure test in the
Supplemental Material [67].

Results and discussions.—After performing the Bayesian
inference analysis on the STAR and PHOBOS data listed in
Table II, we obtain the posterior distribution for our model
parameters. In this Letter, we will focus on the constraints
on initial-state nuclear stopping and QGP shear and bulk
viscosities, which are of primary physics interest. A
complete analysis will be reported in the follow-up work.
Figure 1 shows prior and posterior distributions of the

average rapidity loss as a function of initial-state rapidity
yinit in the 3D-Glauber model. The narrowing in the 90%
prior for yinit between the transition points of the linear
parametrization is an artifact of this choice of parametri-
zation. The average rapidity loss is strongly correlated with
the amount of particle production in the collisions. The
comparison of the 90% prior (the light gray band) with the
red band shows that the identified particle yields at the top
RHIC energy can constrain the hylossi for yinit ∈ ½4; 6�. This
result is consistent with the fact that the incoming

TABLE II. The experimental measurements in Auþ Au colli-
sions used in this Bayesian inference study.

ffiffiffiffiffiffiffiffi
sNN

p
(GeV) STAR PHOBOS

200 dN=dyðπþ; Kþ; p; p̄Þ [58] dNch=dη [61]
hpTiðπþ; Kþ; p; p̄Þ [58] vch2 ðηÞ [62]
vch2 f2g [59], vch3 f2g [60]

19.6
dN=dyðπþ; Kþ; pÞ [55]

dNch=dη [61]hpTiðπþ; Kþ; p; p̄Þ [55]
vch2 f2g [59], vch3 f2g [60]

7.7
dN=dyðπþ; Kþ; pÞ [55]
hpTiðπþ; Kþ; p; p̄Þ [55]
vch2 f2g [59], vch3 f2g [60]

FIG. 1. Posterior distributions of the average initial-state
rapidity loss at the nuclear impact. Color bands indicate
90% confidence intervals. The experimental estimate of ini-
tial-state nuclear stopping is taken from the net proton rapidity
measurements [69,70].

TABLE I. The 20 model parameters and their prior ranges.

Parameter Prior Parameter Prior

BG (GeV−2) [1, 25] αstring tilt [0, 1]
αshadowing [0, 1] αpreFlow [0, 2]
yloss;2 [0, 2] η0 [0.001, 0.3]
yloss;4 [1, 3] η2 [0.001, 0.3]
yloss;6 [1, 4] η4 [0.001, 0.3]
σyloss [0.1, 0.8] ζmax [0, 0.2]
αRem [0, 1] Tζ;0 (GeV) [0.15, 0.25]
λB [0, 1] σζ;þ (GeV) [0.01, 0.15]

σstringx (fm) [0.1, 0.8] σζ;− (GeV) [0.005, 0.1]

σstringη [0.1, 1] esw (GeV=fm3) [0.15, 0.5]
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nucleons’ beam rapidity ybeam ≡ arccosh½ ffiffiffiffiffiffiffiffi
sNN

p
=ð2mNÞ� ¼

5.36 at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV [68].
Our analysis suggests that the average rapidity loss atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV is hylossi ∼ 2, which is consistent with
estimations based on BRAHMS measurements [70]. The
mild difference between the red and blue bands in Fig. 1
indicates that the PHOBOS dNch=dη measurements do not
impose any significant additional constraints on the hylossi
parameter, because the data have relatively large error bars
compared to the STAR measurements at midrapidity.
Employing the RHIC BES data in the Bayesian analysis

results in the green band, which is significantly narrower
than the others. This result demonstrates that particle yield
measurements from 7.7 to 200 GeV can impose strong
constraints on the average rapidity loss for yinit ≤ 6. Our
constraints also agree well with independent experimental
estimates from baryon stopping measurements [69,70]. For
low energy collisions with yinit < 2, our current constraint is
slightly larger than the experimental estimates from the
E917 and E802/E866 experiments [69]. Future calibrations
including these measurements will further refine the rapidity
loss constraints at small yinit.
Figure 2 shows the posterior distribution for the effective

QGP specific shear viscosity as a function of the net baryon
chemical potential μB. Using only the STAR midrapidity
measurements at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV in the Bayesian analysis
constrains the effective QGP η̃ ¼ ηT=ðeþ PÞ around
μB ¼ 0. The obtained 90% posterior region is consistent
with previous Bayesian analyses assuming longitudinal
boost invariance [32,34,35,37–39,41,42]. Notably, including
PHOBOS pseudorapidity-dependent observables can sig-
nificantly improve the constraints on the QGP shear vis-
cosity up to μB ∼ 0.2 GeV. The sensitivity to ηT=ðeþ PÞ at
finite μB comes from the fact that the fireballs in the forward
and backward rapidity regions probe larger net baryon
densities. Therefore, we emphasize that rapidity-dependent
measurements at RHIC [61,62] are extremely valuable to

extract the μB dependence of the QGP properties. They have
further been used to constrain the T dependence of the shear
viscosity in the low-temperature regime [71], which in our
framework is covered by the URQMD simulations.
Finally, the Bayesian analysis including observables

from the full RHIC BES program provides a signifi-
cant constraint on the QGP ½ηT=ðeþ PÞ�ðμBÞ up to
μB ∼ 0.4 GeV. We find that the RHIC BES measurements
favor the QGP specific shear viscosity to increase with μB.
This conclusion is consistent with previous phenomeno-
logical studies [25,30,33] and calculations [72–74], but
different from theoretical work in [75,76]. Future studies
including a more general (T − μB) dependence of the shear
viscosity will result in more robust constraints.
Figure 3(a) shows the posterior constraints on the

QGP specific bulk viscosity ζ̃ðTÞ≡ ½ζT=ðeþ PÞ�ðTÞ.
The Bayesian analysis with only the measurements at
200 GeV favors a bulk viscosity peaking around
T ¼ 200–220 MeV. The constraints at high temperature
are relatively weak compared with the 90% prior. The

FIG. 2. Posterior distribution of the μB dependent QGP specific
shear viscosity. Bands indicate 90% confidence intervals.

FIG. 3. Panel (a): Posterior distributions of the temperature
dependence of the QGP ζ̃ðTÞ ¼ ½ζT=ðeþ PÞ�ðTÞ at different
collision energies. Panel (b): Posterior distribution of the differ-
ence in ½ζT=ðeþ PÞ�ðTÞ at 19.6 GeV from the other two collision
energies. Solid lines are the median of the Δζ̃ðTÞ distributions.
Bands indicate 90% confidence levels.
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preferred values of ζ̃ðTÞ at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 19.6 GeV are larger
than those at 200 and 7.7 GeV for temperatures between
0.15 and 0.2 GeV. This nonmonotonic behavior is further
investigated in Fig. 3(b), where we compute the difference
Δζ̃ðTÞ between 19.6 GeV and the two other collision
energies sample-by-sample drawn from the posterior. This
treatment ensures that the 90% confidence bands include
the correlated variations of ζ̃ðTÞ in different posterior
samples.
We find a bias of Δζ̃ðTÞ towards positive values for

temperatures T ∈ ½0.15; 0.2� GeV. Although the 90% con-
fidence bands cover Δζ̃ðTÞ ¼ 0, our result suggests a
nonmonotonic dependence of the QGP bulk viscosity along
the net baryon chemical potential direction. Physically, this
result could also emerge if there is a softening (and/or
hardening) of the equation of state relative to the lattice-
QCD-based NEOS-BQS around μB ∼ 0.2ð0.4Þ GeV. Our
result is consistent with the theory expectation from the
STAR two-pion interferometry analyses (often referred to as
HBT radii) [77,78]. Therefore, it is essential to include the
HBT radii measurements in future Bayesian inference
analyses [31] to further improve the statistical significance
of this result.
Conclusions.—This work presented the first extraction of

temperature and baryon chemical potential dependent QGP
transport coefficients from a multisystem Bayesian infer-
ence study of particle production, mean transverse momen-
tum, and flow anisotropy in the RHIC BES program using
an event-by-event ð3þ 1ÞD dynamical framework. Such a
study requires large-scale computations, which only became
possible recently with significant improvements in the
numerical performance of the theoretical framework.
Using measurements from multiple collision energies,

we obtained statistically robust constraints on initial-state
nuclear stopping, μB-dependent QGP shear viscosity, and
the QGP bulk viscosity, including its effective μB depend-
ence via its variation at different collision energies.
Constraints on the average rapidity loss in the initial state
are essential to quantitatively understand the longitudinal
dynamics in these collisions, such as baryon and charge
stopping and longitudinal flow decorrelation. The RHIC
BES measurements favor a larger effective QGP specific
shear viscosity at finite μB than at μB ¼ 0. This finding
provides valuable insight when confronted with theoretical
studies, which differ even qualitatively in the μB depend-
ence of ηT=ðeþ PÞ [72,73,75,76].
We find a hint of nonmonotonic dependence of the QGP

specific bulk viscosity ζT=ðeþ PÞ as a function of the
collision energy. Because the bulk viscosity decelerates the
local expansion, our finding could also indicate a softening
of the equation of state for μB ∼ 0.2 GeV, and/or a hard-
ening at μB ∼ 0.4 GeV, relative to the employed EOS. For a
more conclusive result, a flexible equation of state with
variable μB dependence should be included in the analysis.

Further, the posterior constraint can be improved by
introducing more experimental observables in the future.
Overall, our work marks a significant advancement in

extracting QGP properties at finite net baryon density,
using systematic global analyses with RHIC BES mea-
surements. It paves the way to phenomenologically quan-
tify the QCD phase diagram and search for a possible
critical point and the associated first-order phase transition
at large net baryon densities. It will be exciting to confront
this theoretical framework with the upcoming RHIC BES
phase II measurements and those from the future Facility
for Antiproton and Ion Research (FAIR) in Europe.
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