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Statistical Challenges When Analyzing SARS-CoV-2 RNA 
Measurements Below the Assay Limit of Quantification 
in COVID-19 Clinical Trials
Carlee B. Moser,1, Kara W. Chew,2 Mark J. Giganti,1, Jonathan Z. Li,3 Evgenia Aga,1 Justin Ritz,1 Alexander L. Greninger,4 Arzhang Cyrus Javan,5

Rachel Bender Ignacio,6 Eric S. Daar,7 David A. Wohl,8, Judith S. Currier,2 Joseph J. Eron,8 Davey M. Smith,9 and Michael D. Hughes;1,10 for the  
ACTIV-2/A5401 Study Team
1Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA; 2Department of Medicine, David Geffen School of Medicine, University of 
California, Los Angeles, Los Angeles, California, USA; 3Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, USA; 4Department of 
Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; 5National Institutes of Health, Rockville, Maryland, USA; 6Department of Medicine, University of 
Washington, Seattle, Washington, USA; 7Lundquist Institute at Harbor-University of California, Los Angeles Medical Center, Torrance, California, USA; 8Department of Medicine, Chapel Hill School 
of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; 9Department of Medicine, University of California, San Diego, La Jolla, California, USA; and 10Department of 
Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA

Most clinical trials evaluating coronavirus disease 2019 (COVID-19) therapeutics include assessments of antiviral activity. In 
recently completed outpatient trials, changes in nasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA 
levels from baseline were commonly assessed using analysis of covariance (ANCOVA) or mixed models for repeated measures 
(MMRM) with single imputation for results below assay lower limits of quantification (LLoQ). Analyzing changes in viral RNA 
levels with singly imputed values can lead to biased estimates of treatment effects. In this article, using an illustrative example 
from the ACTIV-2 trial, we highlight potential pitfalls of imputation when using ANCOVA or MMRM methods, and illustrate 
how these methods can be used when considering values <LLoQ as censored measurements. Best practices when analyzing 
quantitative viral RNA data should include details about the assay and its LLoQ, completeness summaries of viral RNA data, 
and outcomes among participants with baseline viral RNA ≥ LLoQ, as well as those with viral RNA < LLoQ.

Clinical Trials Registration. NCT04518410.
Keywords. COVID-19; SARS-CoV-2 RNA; linear regression for censored data; randomized trial.
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Clinical trials designed to evaluate coronavirus disease 2019 
(COVID-19) therapeutics should have clinically meaningful 
end points. Food and Drug Administration guidance states 
that clinical outcomes, such as the proportion of participants 
hospitalized or time to symptom recovery, are recommended 
as primary outcomes in phase 3 outpatient COVID-19 trials 
[1]. However, it also states that viral shedding should be mea-
sured to assess antiviral activity, primary virology outcomes are 
acceptable in phase 2, and quantitative and qualitative virolog-
ical assessments are encouraged.

In typical COVID-19 randomized trials, samples such as na-
sopharyngeal swabs, anterior or midturbinate nasal swabs, oro-
pharyngeal swabs, saliva, or plasma, are collected longitudinally 
for severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) RNA testing before and after intervention. 
Repeat sampling from early time points is common and in 

phase 3 trials typically includes 1 to 4 time points 
(Supplementary Table 1).

To evaluate virologic efficacy, SARS-CoV-2 RNA, hence-
forth called viral RNA (vRNA), is measured with quantitative 
reverse transcription polymerase chain reaction (RT-qPCR) as-
says. Like other nucleic acid assays, SARS-CoV-2 RNA assays 
have limits between which vRNA is accurately quantified, 
called the lower limit of quantification (LLoQ) and upper limit 
of quantification (ULoQ). For results > ULoQ, samples can be 
rerun with dilution to obtain quantifiable values. Assays may 
also indicate whether results <LLoQ are detectable or not.

Recent outpatient COVID-19 therapeutic trials considered 
various vRNA outcome measures and statistical methods. Most 
commonly, vRNA changes from baseline were analyzed using 
analysis of covariance (ANCOVA) at each time point or mixed 
models for repeated measures (MMRM). With these methods, 
single imputation was used to assign values for vRNA results 
<LLoQ (Supplementary Table 1) [2–18]. However, such imputa-
tion can introduce bias in estimating the magnitudes of treatment 
effects, as uncertainty for values <LLoQ is not captured [19].

Using an illustrative example from the Accelerating 
COVID-19 Therapeutic Interventions and Vaccines-2 
(ACTIV-2) COVID-19 outpatient treatment trial, we describe 
bias that may arise when estimating treatment effects using 
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single imputation with ANCOVA and MMRM. This example 
was chosen to highlight statistical issues related to measure-
ments below the assay LLoQ, including those that can arise 
due to large chance imbalances in levels between randomized 
arms at baseline. Drawing on the human immunodeficiency vi-
rus (HIV) literature [19], we describe and discuss alternative 
approaches for analyzing vRNA changes, that may be more ap-
propriate by considering vRNA values <LLoQ as censored 
measurements. Finally, we provide recommendations for the 
analysis and presentation of results concerning vRNA changes 
in future trials.

METHODS

Description in this section is limited to aspects of trial design 
related to the ACTIV-2 illustrative example. As this manuscript 
aims to illustrate the impact of different statistical analysis ap-
proaches, further description of the analysis methods is inte-
grated throughout the “Results” section.

ACTIV-2 (NCT04518410) is an adaptive platform trial de-
signed to evaluate potential outpatient therapeutics for 
COVID-19 [20]. Our illustrative example includes 114 partici-
pants randomized to receive tixagevimab/cilgavimab intrave-
nously or placebo; the primary results were previously 
reported [21]. Nasopharyngeal swabs were collected before 
treatment at day 0 (baseline) and days 3, 7, and 14 for 
SARS-CoV-2 RNA quantitative testing using a RT-qPCR assay 
with LLoQ of 2 log10 copies/mL [22]. All results > ULoQ were 
rerun with dilution to obtain quantifiable results. ACTIV-2 was 
approved by a central institutional review board (IRB), Advarra 
(Pro00045266), with additional local IRB review and approval 
as required by participating sites. All participants provided 
written informed consent.

As this manuscript aims to illustrate and discuss different ap-
proaches to analyze vRNA changes, we provide an overview in 
Table 1, but integrate descriptions of each method in the 
“Results” section. For methods that use imputed values for re-
sults <LLoQ, 2 commonly used single-imputation strategies 
(Supplementary Table 1) were assessed: LLoQ-imputation with 
impute values <LLoQ as the LLoQ; and ½LLoQ-imputation 
with impute values <LLoQ as ½ the LLoQ.

See Supplementary Methods for additional details on model 
specifications and sample SAS software code.

RESULTS

Descriptive summaries of vRNA across time points for the 114 
participants are shown in Table 2 and Figure 1A and 1B. At base-
line, 15 participants (13%) had missing vRNA (Supplementary 
Figure 1). There was a chance imbalance in vRNA between the 
randomized arms, with median vRNA in the active arm 1.0 
log10 copies/mL higher than the placebo arm, and a higher pro-
portion of participants with vRNA ≥ LLoQ (72% vs 62%).

Following the recommendation of Marschner et al [19], we 
separately considered data for participants with vRNA  
< LLoQ from those ≥LLoQ at baseline. For those with vRNA  
< LLoQ at baseline (n = 33), vRNA remained <LLoQ at all 
follow-up time points in both arms, suggesting peak vRNA 
may have been achieved before enrollment. For the remaining 
analyses, we focus on the 66 participants with vRNA ≥ LLoQ at 
baseline. The proportion with vRNA < LLoQ increased over 
time: 27% (8 of 30) and 28% (7 of 25) at day 3, 62% (18 of 
29) and 54% (14 of 26) at day 7, and 93% (27 of 29) and 89% 
(24 of 27) at day 14 for the active and placebo arms, respectively 
(Table 2 and Figure 1C and 1D).

Analyzing vRNA at a Single Time point

Using Imputed Values Leads to Biased Estimates
Fifty-five (83%) of the 66 participants had vRNA results at day 3 
(Supplementary Figure 1). Among the 11 participants without 
results, 1 was due to hospitalization on day 3; however, 6 were 
due to laboratory/specimen issues and 4 were due to site error/ 
visit scheduling issues, likely unrelated to RNA level. For these 
55 participants, at baseline there was a modest difference (0.33 
log10 copies/mL) in mean vRNA: 5.61 and 5.28 log10 copies/mL 
for the active and placebo arms, respectively.

Focusing first on changes within arm, using LLoQ imputa-
tion, the mean vRNA at day 3 was 3.43 and 3.97 log10 copies/ 
mL for the active and placebo arms, respectively, with estimat-
ed mean changes from baseline of −2.18 and −1.30 log10 cop-
ies/mL. Within each arm, the estimated mean changes are 
conservative (biased towards zero) because for participants 
with vRNA < LLoQ at day 3, the true changes are at least as 
large in magnitude as the imputed changes. Using ½LLoQ im-
putation gives mean changes that are larger (more negative) 
compared to LLoQ imputation: −2.45 and −1.58 log10 cop-
ies/mL for the active and placebo arms, respectively. This im-
putation still results in biased estimates within each arm, but 
with an unknown direction (estimated mean changes may be 
larger or smaller than the truth). For both approaches, the larg-
er mean change in the active arm could reflect higher average 
baseline values, and thus larger changes are observable. 
Because the estimated mean changes within each arm are bi-
ased, the estimated difference between arms will be biased, 
and further bias may be introduced with the baseline 
imbalances.

The estimated difference in mean change for the active ver-
sus placebo arms at day 3 was −0.87 log10 copies/mL using 
LLoQ imputation and −0.86 log10 copies/mL using ½LLoQ im-
putation (Table 3, A). Although these estimates are similar, this 
may not be the case in other datasets when using the 2 ap-
proaches. By day 14, when approximately 90% of participants 
had vRNA < LLoQ (and hence had imputed changes), the esti-
mated difference in mean change between arms was approxi-
mately equal to the baseline mean difference for both 
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Table 1. Summary of Analytic Methods Considered in Our Illustrative Example for the Analysis of Changes From Baseline in SARS-CoV-2 RNA

Methods

No. of 
Time 
Points

Handing 
Values <LLoQ Advantages Caveats/Issues

ANCOVA/linear 
regression

1 Single 
imputation

Easy to implement in standard software 
With small proportion <LLoQ, impact of 
imputation is likely modest

Using imputation results in biased estimates of 
differences between randomized arms in mean change 
Normality assumption in model may be violated 
Those with RNA <LLoQ at both time points will have 
change imputed as zero, which could be problematic 
with larger proportion <LLoQ at baseline

Linear regression for 
censored data (tobit 
regression)

1 Not required Easy to implement in standard software 
Analyses considering censored 
measurements avoids bias that may be 
created by using imputed values

Normality assumption in model cannot be confirmed 
when large proportion of data are censored 
Those with RNA <LLoQ at both time points will have 
change imputed as zero, which could be problematic 
with larger proportion <LLoQ at baseline

Median regression for 
censored data

1 Not required Easy to implement in standard software 
Distribution-free model removes 
assumptions about distribution of the 
errors

Model cannot be fitted when large proportion of data are 
censored 
Those with RNA <LLoQ at both time points will have 
change imputed as zero, which could be problematic 
with larger proportion < LLoQ at baseline

MMRM >1 Single 
imputation

Easy to implement in standard software 
Global test of no difference between 
randomized arms across time points can 
be easily generated

Using imputation results in biased estimates of the 
difference between randomized arms in mean change, 
with the bias at 1 time dependent on the proportion 
<LLoQ at other times (as information is shared among 
times through an assumed correlation structure) 
Multivariate normality assumption may be violated 
Those with RNA <LLoQ at both time points will have 
change imputed as zero, which could be problematic 
with larger proportion <LLoQ at baseline

MMRM for censored 
data (LMEC)

>1 Not required Analyses considering censored 
measurements avoids bias that may be 
created by using imputed values 
Global test of no difference between 
randomized arms across time points can 
be easily generated 
Possible improved precision by sharing 
information over time points through an 
assumed model

Increase complexity in implementing model in standard 
software as the number of time points increases 
Multivariate normality assumption difficult to verify, 
particularly when large proportion of data are censored 
at 1 or more times 
Those with RNA <LLoQ at both time points will have 
change imputed as zero, which could be problematic 
with larger proportion <LLoQ at baseline

Binary regression ≥1 Not required Easy to implement in standard software 
Includes all participants, regardless of 
baseline value 
Estimation of treatment effects not 
influenced by the proportion <LLoQ

Loss of statistical power when dichotomizing outcome 
from continuous variable to a binary variable

Abbreviations: ANCOVA, analysis of covariance; LLoQ, lower limit of quantification; LMEC, linear mixed effects models with censored response; MMRM, mixed model repeated measures.

Table 2. Distribution of SARS-CoV-2 RNA by Study Visit in Each Treatment Arm in Overall Cohort and Among Those With vRNA ≥ LLoQ at Baseline/Day 0

Study Day

Active Placebo

Median (Quartiles) <LLoQ No. (%) No. Missing Median (Quartiles) <LLoQ No. (%) No. Missing

All participants in cohort (total n = 114, active n = 58, placebo n = 56)

Baseline 4.0 (<LLoQ, 6.6) 14 (29) 9 3.0 (<LLoQ, 5.9) 19 (38) 6

Day 3 <LLoQ (<LLoQ, 3.9) 26 (52) 8 <LLoQ (<LLoQ, 3.9) 24 (52) 10

Day 7 <LLoQ (<LLoQ, 2.2) 37 (74) 8 <LLoQ (<LLoQ, 2.2) 35 (71) 7

Day 14 <LLoQ (<LLoQ, <LLoQ) 45 (96) 11 <LLoQ (<LLoQ, <LLoQ) 45 (97) 7

All participants with vRNA ≥LLoQ at baseline (total n = 66, active n = 35, placebo n = 31)

Baseline 5.5 (3.7, 8.0) 0 (0) 0 5.0 (3.1, 6.7) 0 (0) 0

Day 3 3.0 (<LLoQ, 4.5) 8 (27) 5 3.4 (<LLoQ, 5.9) 7 (28) 6

Day 7 <LLoQ (<LLoQ, 2.5) 18 (62) 6 <LLoQ (<LLoQ, 3.3) 14 (54) 5

Day 14 <LLoQ (<LLoQ, <LLoQ) 27 (93) 6 <LLoQ (<LLoQ, <LLoQ) 24 (89) 4

Abbreviations: LLoQ, lower limit of quantification; vRNA, viral RNA.
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imputation approaches. If all participants had vRNA < LLoQ at 
day 14, the difference in mean change would equal the differ-
ence in mean vRNA at baseline, despite the choice of imputed 
value and underlying true difference. With larger proportions 
<LLoQ, differences between arms can reflect chance imbalanc-
es at baseline rather than true differences.

Adjusting for Baseline Can Help Address Baseline Imbalances
Although adjusting for baseline does not remove the bias in es-
timating differences between arms using singly imputed values, 
it may help reduce the impact of baseline imbalances in mean 
vRNA when assessing treatment effects.

The estimated differences in mean changes between arms us-
ing standard linear regression are shown in Table 3 (A and B). 
In adjusted analyses, differences between arms have some at-
tenuation at each time point compared with unadjusted analy-
ses, reflecting the adjustment for higher baseline vRNA levels in 
the active arm.

Analysis Methods Considering vRNA < LLoQ as Censored
Statisticians refer to vRNA values <LLoQ as being left- 
censored because if the true vRNA could be measured, it would 

take a value between zero copies/mL and LLoQ (ie, a value to 
the left of LLoQ). This contrasts with right-censoring like in 
survival analysis where, for example, participants alive at the 
end of follow-up have time of death greater than (to the right 
of) the time at the end of follow-up. Statistical methods used 
for survival analysis can be used to analyze vRNA data, with 
the small adaptation that values are left-censored rather than 
right-censored. Change in vRNA is defined as the difference 
in vRNA at the follow-up time minus the baseline. However, 
for follow-up vRNA values that are <LLoQ or left-censored, 
the change in vRNA is calculated as the LLoQ minus baseline 
vRNA, and is also left-censored.

Linear regression using software designed to handle cen-
sored data (known as tobit regression) is a possible method. 
Using this approach, adjusting for baseline vRNA, the estimat-
ed difference between arms in mean change from baseline to 
day 3 was −0.97 log10 copies/mL (95% confidence interval 
[CI], −1.81 to −.13) favoring the active arm (Table 3, C), and 
is somewhat larger than the differences in mean change by ei-
ther imputation approach (Table 3, B). At day 7, the difference 
in mean change from baseline was −1.36 log10 copies/mL, also 
favoring the active arm (95% CI, −2.31 to −.41), which is much 

Figure 1. Distribution of SARS-CoV-2 RNA from nasopharyngeal swabs in active and placebo arms by study visit in overall cohort (A and B) and among those with vRNA ≥  
LLoQ at baseline/day 0 (C and D). Levels of SARS-CoV-2 RNA (log10 copies/mL) with horizontal line = median, box = interquartile range, and whiskers = minimum/maximum 
(A and C ); results below the LLoQ are plotted using an imputed value of 1 log10 copies/mL. Proportion with quantifiable vs unquantifiable SARS-CoV-2 RNA (B and D). 
Abbreviations: LLOQ, lower limit of quantification; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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larger than differences observed by either imputation ap-
proach, illustrating the potential bias using those methods 
when the proportion with vRNA < LLoQ increases. We did 
not pursue an analysis of mean changes to day 14 using tobit 
regression because of the high level of censoring (approximate-
ly 90%) and hence the inability to check model assumptions.

As with standard linear regression, there is an assumption 
that the errors in the model are normally distributed. These er-
rors are estimated by the residuals calculated as the observed 
vRNA value minus the predicted model value. The distribu-
tional assumption can be evaluated with quantile-quantile 
(Q-Q) plots, comparing the quantiles of the observed distribu-
tion of the residuals (calculated using Kaplan-Meier methods to 
account for censored residuals) against the corresponding 
quantiles of a standard normal distribution. If the assumption 
was satisfied, the plots would show linear associations. Figure 2
shows Q-Q plots for the distribution of standardized residuals 
from models for change from baseline, adjusting for baseline. 
For the models of change from baseline to days 3 and 7, the 
Q-Q plots appear reasonably linear, supporting normality as-
sumptions. We note, however, the more restricted range of 
the Q-Q plot for changes to day 7, as shown by the lack of 

standardized residuals below −1. This reflects the higher pro-
portion of censored values at day 7; thus, the normality as-
sumption cannot be verified for the tail of the distribution, 
corresponding to large negative changes from baseline.

Quantile Regression as an Alternative Distribution-Free Method
An alternative to tobit regression is quantile regression applied 
to assay-censored data, for example to model median change in 
vRNA. With this approach, there are no assumptions concern-
ing the distribution of the errors in the model. However, there 
is an assumption that the median change has linear associations 
with continuous covariates in the model, including baseline 
vRNA.

At day 3, the adjusted difference between arms in median 
change from baseline was −1.17 log10 copies/mL (95% CI, 
−2.42 to .07) favoring the active arm. This is reasonably similar 
to the adjusted difference in mean change of −0.97 log10 copies/ 
mL obtained from tobit regression, although estimated without 
making the assumption of normally distributed errors. There is 
a somewhat narrower CI for the difference in means versus dif-
ference in medians, reflecting the gain in precision from assum-
ing a normal distribution for the errors. At day 7, the adjusted 

Table 3. Differences Between Treatment Arms in SARS-CoV-2 RNA (log10 Copies/mL) Change From Baseline

Imputation Day 3 Day 7 Day 14

A. Linear regression model with imputation, separate model by day—unadjusted

LLoQ imputation −0.87 (−1.70 to −.06) 
P = .037

−0.82 (−1.79 to .15) 
P = .09

−0.25 (−1.30 to .81) 
P = .64

½LLoQ imputation −0.86 (−1.69 to −.04) 
P = .041

−0.90 (−1.82 to .01) 
P = .053

−0.29 (−1.32 to .74) 
P = .58

B. Linear regression model with imputation, separate model by day—adjusted for baseline

LLoQ imputation −0.74 (−1.41 to −.06) 
P = .034

−0.56 (−1.01 to −.11) 
P = .015

−0.06 (−.18 to .07) 
P = .38

½LLoQ imputation −0.77 (−1.53 to .002) 
P = .050

−0.69 (−1.29 to −.09) 
P = .024

−0.11 (−.37 to .16) 
P = .42

C. Linear regression model for censored data (tobit regression), separate model by day—adjusting for baseline

NA −0.97 (−1.81 to −.13) 
P = .023

−1.36 (−2.31 to −.41) 
P = .005

Not obtaineda

D. Median regression model for censored data, separate model by day—adjusting for baseline

NA −1.17 (−2.42 to .07) 
P = .07

−0.96 (NE to NE) 
NE

NE

E. MMRM across all 3 days (day 3, 7, and 14) with imputation—adjusting for baseline

LLoQ imputation −0.39 (−1.23 to .45) 
P = .36

−0.49 (−.95 to −.04) 
P = .032

−0.07 (−.20 to .06) 
P = .27

½LLoQ imputation −0.52 (−1.44 to .40) 
P = .26

−0.60 (−1.21 to .01) 
P = .052

−0.13 (−.40 to .14) 
P = .33

F. MMRM across days 3 and 7 with imputation—adjusting for baseline

LLoQ imputation −0.65 (−1.36 to .07) 
P = .08

−0.58 (−1.01 to −.15) 
P = .009

…

½LLoQ imputation −0.72 (−1.50 to .06) 
P = .07

−0.71 (−1.29 to −.13) 
P = .018

…

G. MMRM for censored data across days 3 and 7—adjusting for baseline

NA −1.10 (−1.94 to −.26) 
P = .011

−1.33 (−2.23 to −.43) 
P = .004

…

Data are mean (A–C, E–G) and median (D), (95% confidence interval), and P value among those with quantifiable baseline vRNA.  

Abbreviations: LLoQ, lower limit of quantification; MMRM, mixed model for repeated measures; NA, not applicable; NE, not estimable.  
aResults are not shown at day 14 for the linear regression model for censored data because model assumptions cannot be reasonably verified due to the high level of censoring at day 14.
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difference in median change was −0.96 log10 copies/mL, also 
favoring the active arm. However, it was not possible to obtain 
a CI from the numerical methods used to fit the model, due to 
the high proportion of participants with vRNA < LLoQ at day 
7. At day 14, the higher proportion with vRNA < LLoQ meant 
the difference in median change between arms could not be 
estimated.

Analyzing Repeated vRNA Over Time

Imputed Values Can Affect Estimates From MMRM 
Due to Correlation Structure
Another strategy in several recent COVID-19 trials has been to 
use an MMRM with single imputation for vRNA values<LLoQ 
[2–14]. These models estimate the difference in mean vRNA 
change in each arm at each time point, in a similar manner 
to linear regression models fit separately by time point. 
However, MMRMs incorporate a stronger assumption about 
the distribution of errors across time points, specifically that 
they follow a multivariate normal distribution with a specified 
correlation structure. Using this assumption, a global test eval-
uating the null hypothesis of no difference between arms in 
vRNA change at any time point can be undertaken. The stron-
ger assumption may provide improved precision in estimating 
the differences in mean change at each time point by borrowing 
information between time points. However, this assumption 
may not be appropriate when using singly imputed values for 
measurements <LLoQ as the correlation structure is affected 
by imputation. As an example, participants with vRNA <  
LLoQ at days 7 and 14 will have identical imputed changes at 
both time points leading to higher correlations of errors in 

the model than if the actual values < LLoQ were observed. 
To illustrate the impact of this, Table 3 (E) shows results 
from MMRMs for changes from baseline to days 3, 7, and 14. 
Compared with the estimates from models fitted separately at 
each time point (Table 3, B), the borrowing of information 
through the correlation structure leads to smaller estimated dif-
ferences in mean change between arms, particularly at day 3 
and to a lesser extent at day 7 for both imputation approaches. 
This attenuation is driven by including day 14, where approx-
imately 90% of participants had vRNA < LLoQ; removal of this 
time point from the MMRM reduces the magnitude of the at-
tenuation (Table 3, F). The estimates remain biased, however, 
for the same reasons as those obtained from separate regression 
models at each time point.

Extensions to MMRM that account for censored data exist 
(also known as linear mixed effects models for censored re-
sponses [LMEC]), but still require the multivariate normality 
assumption [23, 24]. A caveat with these models is that they 
can be difficult to implement in standard statistical software, es-
pecially as the number of time points increases. Estimated dif-
ferences between arms in mean change from baseline to days 3 
and 7 from LMEC are shown in Table 3 (G). The estimates are 
similar to those from the tobit regression models fitted sepa-
rately at days 3 and 7 (Table 3, C). The stronger multivariate 
normal assumption leads to small gains in precision at day 7 
as seen by the narrower CI, although the gain at day 3, where 
there is less censoring, is negligible. As with the separate regres-
sion models, we did not pursue LMEC over the 3 days, as the 
high level of censoring at day 14 meant that a normality as-
sumption could not be reasonably verified.

Figure 2. Quantile-quantile (Q-Q) plot for linear regression model for censored data for change in viral RNA from baseline to day 3 (A) and to day 7 (B); both models included 
an indicator variable for treatment versus placebo and adjusted for baseline viral RNA. Standardized residuals (for the noncensored observations) calculated by dividing the 
residuals by their standard deviation (estimated from the fitted model). Quantiles for a standard normal distribution plotted on the x-axis take account of censored residuals. 
Q-Q plots that show a linear association (data points falling along the diagonal line in a linear fashion) reflect that the normality assumption is reasonable. If the points depart 
markedly from the line, this implies the data are not normally distributed and may have outliers, are skewed (left or right), or are under- or overdispersed.
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Analyzing Proportion of Participants With vRNA < LLoQ Over Time

Strategies That Do Not Rely on Quantitative Values May Be 
Preferred With Large Percent <LLoQ
When there is a high proportion of participants with vRNA <  
LLoQ at 1 or more time points, it may be more appropriate to 
focus on how this proportion changes with time. This could be 
analyzed over time using log-binomial models fit using gener-
alized estimating equations (GEE). However, due to problems 
with numerical algorithms, in ACTIV-2 we used Poisson re-
gression models modified for binary outcomes [25] fit using 
GEEs with independence working correlation structure and ro-
bust standard errors, adjusting for baseline vRNA. When im-
plementing this model across the 3 days, the proportion with 
vRNA < LLoQ did not differ between arms (Supplementary 
Table 2). When excluding the day 14 measurements, where ap-
proximately 90% of participants had vRNA < LLoQ, the results 
for days 3 and 7 were almost identical, confirming this method 
is not sensitive to including time points with high proportions 
<LLoQ. This strategy can lead to loss in statistical power com-
pared to analyses of quantitative vRNA, so is best reserved for 
when high proportions of participants are expected to have 
vRNA < LLoQ at 1 or more time points. However, there is 
also no need to restrict the analysis population to participants 
with vRNA ≥ LLoQ, potentially providing more comprehen-
sive analyses of qualitative vRNA in the overall study 
population.

DISCUSSION

In this article we summarize methods commonly used in out-
patient COVID-19 therapeutic trials for analyzing quantitative 
changes in SARS-CoV-2 RNA over time, and through an illus-
trative example from the ACTIV-2 study, highlight potential 
pitfalls. In ACTIV-2, our primary virology analyses focused 
on comparing the proportion of participants with vRNA <  
LLoQ over time, and examined vRNA levels rather than chang-
es. As the pandemic has evolved and we have learned more 
about viral trajectories and variability, so has our thinking 
about the best analytic strategy. Since designing ACTIV-2, we 
have implemented exploratory analyses examining treatment 
effects on changes in vRNA over time using tobit regression 
models with adjustment for baseline RNA, restricted to partic-
ipants with baseline vRNA ≥ LLoQ, a method we advocate for 
in this article [19, 26, 27].

In our illustrative example, the primary focus was on the 
population with quantifiable vRNA at baseline, which has 
been a focus in recent COVID-19 studies. This was reasonable 
in our analysis as none who were<LLoQ at baseline had quan-
tifiable vRNA at later time points. Including these individuals 
in analyses using imputed values would have led to imputed 
changes of zero and likely attenuation of the estimated mean 
changes. Regression analyses for censored data are more 

complex if such individuals are included, requiring strong, un-
verifiable assumptions about the distribution of vRNA changes 
over time among those with baseline vRNA < LLoQ. Looking 
more broadly across the study population in phase 2 placebo- 
controlled evaluations in ACTIV-2 (n = 1565 enrolled with a 
median of 6 days from symptom onset), we observed that 
only 14% (of 287) of those with vRNA < LLoQ at baseline later 
had quantifiable vRNA. As new studies are developed, poten-
tially with enrollment closer to onset of symptoms, the decision 
to exclude those <LLoQ at baseline should be carefully scruti-
nized, as doing so could remove individuals on an upward viral 
load trajectory and we lack understanding of these trajectories 
in the setting of vaccination, reinfection, and emergent vari-
ants. At a minimum, documenting viral shedding changes 
among participants with baseline vRNA < LLoQ is important, 
and analyses stratified by level (<LLoQ and ≥LLoQ at baseline) 
might be pursued. Our illustrative example also highlights 
some of the additional complexities that arise when there is a 
substantial chance imbalance between randomized arms in 
mean vRNA levels at baseline. Such imbalances are not uncom-
mon because of the variability in sampling when taking nasal 
swabs, which in smaller trials can make treatment effects 
more difficult to detect. Trials should be designed with suffi-
cient sample size to reduce the impact of such imbalances on 
power and precision in estimating treatment effects of the an-
ticipated proportion of vRNA values below the LLoQ [28]. 
Timing of measurements during follow-up is also important 
in considering power and precision, but should take account 
of population characteristics such as symptom duration at en-
rollment and anticipated speed of an antiviral affect based on 
pharmacokinetic properties of an agent and its mode of 
administration.

The methods considered in this article are not exhaustive of 
imputation or modeling strategies, but were chosen to align 
with methods from recent publications of COVID-19 trials. 
We focus on single imputation, and do not evaluate the perfor-
mance of multiple-imputation strategies, which are more com-
plicated and rely on distributional assumptions to support the 
imputation, but may reduce potential biases with imputation 
highlighted in this article [29, 30]. We also have not evaluated 
the statistical performance of these methods through formal 
simulation studies, which may add further insights to benefits 
or downsides of the analytic strategies, particularly when high 
proportions of participants have vRNA < LLoQ during follow- 
up, where verification of model assumptions becomes more 
difficult. We also have not considered potential biases due to 
missing data, for example, missingness arising due to hospital-
ization (which only affected 1 participant at each of days 3 and 7 
in our example), if hospitalized participants have higher vRNA 
levels. Finally, analysis of vRNA changes among participants 
with baseline levels above a threshold (eg, the LLoQ) leads to 
estimated mean changes within each arm that are affected by 
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regression to the mean, although inference on the differences 
between randomized arms are not anticipated to be affected 
provided that the analysis adjusts for baseline level. Despite 
these limitations, our article highlights key issues and consider-
ations when analyzing SARS-CoV-2 RNA data from outpatient 
treatment trials. These methods are not only applicable in the 
COVID-19 setting, but should be considered when analyzing 
any biomarker that is measured with an assay with an LLoQ.

Recommendations

The best practices in analyzing SARS-CoV-2 RNA from 
outpatient trials depend on the number of time points and 
proportion of results <LLoQ. Regardless of the planned 
analysis, some key details should be reported to facilitate 
interpretation. 

1. Provide sufficient details of the RT-qPCR assay, including 
the LLoQ.

2. Explain who is included in the analysis, such as via a 
CONSORT-type diagram (see Supplementary Figure 1), in-
cluding an accounting of missing data and the reasons for 
missing (eg, death, hospitalization, loss to follow-up, sample 
not obtained, sample processing/shipping issue).

3. If restricting the analysis population to those with quantifi-
able baseline vRNA, describe outcomes among those with 
vRNA < LLoQ.

4. Although we do not recommend the use of single imputa-
tion, if used, the choice of imputed values should be provid-
ed, and implications for interpretation of results discussed.

5. Include descriptive summaries of vRNA by treatment arm 
and time point. We suggest including 2 figures (see 
Figure 1): distributions of quantitative levels (eg, box and 
whisker plots) and distribution of vRNA categories (eg, 
<LLoQ vs ≥LLoQ).

Analytic strategies to estimate differences between arms we 
recommend are: 

1. Methods that address censoring without imputation, such as 
tobit or median regression, or LMEC [23, 24] should be pri-
oritized. But with increased censoring: 
(a) Normality assumptions underlying regression analysis 

for censored data cannot be evaluated over the full 
range of the distribution, and dropping time points 
with high levels of censoring from analysis may be 
appropriate.

(b) Differences in medians (and their CIs) between arms 
might not be estimable from quantile regression.

2. Alternatively, consider nonparametric tests to analyze quan-
titative vRNA, such as the censored version of the Wilcoxon 
test (Gehan-Wilcoxon), which is implementable in standard 
software as a stratified test to account for baseline vRNA.

3. Comparing the proportion of participants with vRNA <  
LLoQ between arms over time may be preferred if there 
are high amounts of censoring.

4. With early, frequent measurements (eg, daily), more com-
plex extensions of LMEC that evaluate viral dynamics (eg, 
estimating initial increases and subsequent vRNA decay) 
[20, 31–34], or time-to-viral clearance via methods for 
time-to-event data [4–7, 10, 35, 36] might be used.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by the au-
thors to benefit the reader, the posted materials are not copyed-
ited and are the sole responsibility of the authors, so questions or 
comments should be addressed to the corresponding author.
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