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Effect of rhIL-6 infusion on GH3 IGF-I axis mediators in humans
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Nemet, Dan, Alon Eliakim, Frank Zaldivar, and Dan M.
Cooper. Effect of rhIL-6 infusion on GH3 IGF-I axis mediators in
humans. Am J Physiol Regul Integr Comp Physiol
291: R1663–R1668, 2006. First published July 13, 2006;
doi:10.1152/ajpregu.00053.2006.—Exercise leads to simultaneous
increases in mediators signaling apparently antagonistic functional
responses such as growth factors and inflammatory mediators. The
aim of the present study was to demonstrate the physiological
effect of IL-6 on circulating components of the growth hormone
(GH)-insulin-like growth factor-I (IGF-I) axis. Twelve men (ages
26 � 2 yr) were divided into two groups (n � 6 in each group),
receiving either albumin or recombinant human (rh) IL-6 infusion.
IL-6 was infused via an antecubital vein, and a contralateral
antecubital vein was used for blood sampling. The IL-6 dose was
chosen to reach plasma levels of IL-6 characteristic of intense
exercise (5 �g/h, for 3 h, resulting in plasma levels of 100 pg/ml).
Blood samples for GH, GH binding protein, IGF-I, and IGF
binding protein (IGFBP)-1 and -3 were collected at baseline, 30
min, and 1, 2, 3, 4, 5, and 8 h after the beginning of the rhIL-6
infusion. IL-6 levels increased only in the rhIL-6-infused group
(P � 0.0005) and returned to baseline after the infusion was
stopped. IL-6 infusion led to a significant increase in GH, peaking
1 h after the beginning of infusion (P � 0.001). A decrease in total
IGF-I levels was noted only in the rhIL-6-infused group (P �
0.027). An initial decrease in IGFBP-1 levels was noted in both
groups during infusion (P � 0.03). Following the initial decrease,
there was a significant increase in IGFBP-1 levels only in the
IL-6-infused participants, peaking at 2 after the infusion cessation
(P � 0.001). IL-6 infusion had no effect on GH binding protein,
IGFBP-3, and acid-labile subunit levels. rhIL-6 levels similar to
the levels found after strenuous exercise induced a typical exer-
cise-associated GH3 IGF-I axis response (increase GH, decreased
IGF-I, and elevated IGFBP-1). The results suggest that IL-6 plays
a role in the GH3 IGF-I response to intense exercise.

exercise; growth factors; inflammatory mediators; cytokines

THERE IS AMPLE EVIDENCE THAT exercise, even in healthy people,
leads to simultaneous increases in mediators signaling appar-
ently antagonistic functional responses, such as growth hor-
mone (GH), interleukin-6 (IL-6), and insulin-like growth fac-
tor-I (IGF-I). IL-6, produced by the contracting muscle, may
serve a unique role as a systemic exercise-associated signaling
factor that can, in turn, regulate hormonal and metabolic
function throughout the body (27). The goal of this study was
to elucidate the physiological effect of IL-6 on GH and IGF-I
and their key circulating binding proteins.

GH, the prototypical anabolic hormone, is released in large
quantities from the pituitary during intense exercise (15), but
so is IL-6, a GH antagonist (10). IGF-I is a GH-dependent

growth factor that also plays an important role in the skeletal
muscle adaptations to muscle loading and training (1). The
circulating IGF-I response to acute exercise is complex and has
a biphasic nature characterized by a brief, initial increase,
followed by a later decrease mainly after heavy and prolonged
exercise tasks (25, 33). These interactions are important, be-
cause many of the health effects of exercise seem to be
influenced, ultimately, by the fragile balance between inflam-
matory cytokines and growth factors that are altered by phys-
ical activity. Higher levels of circulating IL-6 are negatively
correlated with both levels of physical activity and fitness and
with IGF-I (4, 16, 41). Moreover, in the elderly, the combina-
tion of high IL-6 with low IGF-I and low levels of physical
activity is clearly associated with reduced muscle strength,
sarcopenia, and increased mortality (26, 30).

IL-6 stimulates GH secretion in a bell-shaped dose-response
manner (39). Conversely, in vitro and animal studies show that
IL-6 might alter elements of the GH axis, like IGF-I, through
a variety of mechanisms, including depression of GH receptor
gene expression, leading to GH insensitivity, direct inhibition
of IGF-I production, and stimulation of IGF binding proteins
(IGFBPs) that act to attenuate IGF-I function (9, 10, 14, 17, 19,
24, 31, 37, 42, 43). To date, no studies have examined the
effect of infused, recombinant IL-6 on 1) IGF-I in its free and
bound forms; 2) IGFBP-1 and -3; and on 3) GH binding protein
(GHBP). In humans, circulating GHBP is the extracellular
domain of the GH receptor and, therefore, has been used
uniquely as an indicator of GH sensitivity (29).

In the present study, recombinant human (rh) IL-6 or albu-
min was infused intravenously for 3 h to healthy humans to
achieve circulating IL-6 levels comparable to those observed
during strenuous, prolonged exercise (34, 40). We determined
the effects of the rhIL-6 infusion on key elements of the
GH3 IGF-I axis, namely GH, GHBP, IGF-I (total and free),
and IGFBP-1 and -3. We hypothesized that IL-6 infusion
would induce changes in the GH3 IGF-I axis, similar to the
changes observed following acute strenuous exercise. This will
provide evidence that IL-6 plays a major mechanistic role in
the GH3 IGF-I axis response to exercise. We analyzed serum
samples obtained from a recently published human study in
which rhIL-6 was infused in healthy, resting subjects (22).

METHODS

Subjects

Twelve young (ages 26 � 2 yr), healthy, active, but not specifically
trained men participated in the study. The subjects were divided into
two groups (n � 6 in each group), receiving either albumin or rhIL-6
infusion. The study was approved by the Ethical Committee of
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Copenhagen and Frederiksberg Communities, Denmark, and was
performed according to the Declaration of Helsinki. Subjects were
informed about the possible risks and discomfort involved before
giving their written consent to participate. The analysis of deidentified
data was performed at the Core Laboratory of the University of
California, Irvine, General Clinical Research Center

Protocol

Participants reported to the laboratory at 0700 after an overnight
fast. They voided, changed into appropriate hospital attire, and re-
mained supine during the entire experiment. Participants were per-
mitted to consume only water during the experiment. After a 10-min
rest, an antecubital vein of one arm was cannulated and used for
infusion of rhIL-6 or albumin. An antecubital vein in the contralateral
arm was used for blood sampling. The 3-h infusion of rhIL-6 or 20%
albumin began between 0800 and 0900.

IL-6 Infusates

The rhIL-6 (Sandoz, Basel, Switzerland) was infused in a dose
lower than that reported to be safe in other studies. The IL-6 doses
were chosen on the basis of pilot experiments. We aimed to reach
plasma levels of IL-6 characteristic of intense exercise or low-grade
inflammation (36). The rate of rhIL-6 infusion was 5 �g/h, with
albumin used as a vehicle. In the control group, only albumin was
infused during the trial.

Blood Analysis

Blood samples were collected at baseline, 30 min, and 1, 2, 3, 4, 5,
and 8 h after the beginning of the 3-h rhIL-6 infusion.

GH

GH serum concentrations were determined by ELISA with the use
of the DSL-10-1900 Active kit (Diagnostic System Laboratories,
Webster, TX). Intra-assay coefficient of variation (CV) was 3.3–
4.3%, interassay CV was 6.3–6.5%, and the sensitivity was 0.03
ng/ml.

IGF-I: Total and Free

IGF-I was extracted from IGFBPs using the acid-ethanol extraction
method (8). Serum IGF-I concentrations were determined by a two-
site immunoradiometric assay using the DSL-5600 Active kit (Diag-
nostic System Laboratories). IGF-I interassay CV was 3.7–8.2% and
intra-assay CV was 1.5–3.4%. Assay sensitivity was 0.8 ng/ml. Free
IGF-I was determined by ELISA with the use of the DSL-10-9400
Active kit (Diagnostic System Laboratories). Intra-assay CV was
3.74–4.8%, interassay CV was 6.2–11.1%, and the sensitivity was
0.015 ng/ml.

IGFBPs

IGFBP-1 was measured by coated-tube immunoradiometric assays
with the use of the DSL-10-7800 Active kit (Diagnostic System
Laboratories). For IGFBP-1, interassay CV was 1.7–6.7%, and intra-
assay CV was 2–4%. Assay sensitivity is 0.33 ng/ml. IGFBP-3 serum
concentrations were determined by ELISA with the use of the DSL-
10-6600 Active kit (Diagnostic System Laboratories). Intra-assay CV
was 7.3–9.6%, interassay CV was 8.2–11.4%, and the sensitivity was
0.04 ng/ml.

GHBP

GHBP was measured using the ligand-mediated immunofunctional
assay (7). Interassay CV was 9.7–12.9%, and intra-assay CV was
6.3–8.9%. Assay sensitivity was 7.8 pmol/l.

Insulin

Insulin serum levels were determined by ELISA with the use of the
DSL-10-1600 Active kit (Diagnostic System Laboratories). Intra-
assay CV was 1.3–2.6%, interassay CV was 5.2–6.2%, and the
sensitivity was 0.26 �IU/ml.

Acid-Labile Subunit

Acid-labile subunit (ALS) serum levels were determined by ELISA
with the use of the DSL Active Total ALS system (DSL-10-82000,
Diagnostic Systems Laboratories). Interassay CV was 2.8–8.9%,
intra-assay CV was 3.8–7.5%, and the sensitivity was 0.7 ng/ml.

IL-1�

IL-1� serum levels were determined by ELISA with the use of a
Quantikine High Sensitivity kit (model HSLB50; R&D Systems,
Minneapolis, MN). Interassay CV was 8.2–19.2%, intra-assay CV
was 6.4–10.2%, and the sensitivity was �0.1 pg/ml.

Physiological Variables

Heart rate and temperature were measured at the times of blood
sampling.

Statistical Analysis

A two-way repeated-measures ANOVA was used to analyze
changes over time and between groups. If such analysis revealed
significant differences, a Newman-Keuls post hoc test was used to
locate the specific differences. Statistical significance was set at P �
0.05. Data are presented as means � SE.

RESULTS

Subject Characteristics

At baseline, no differences in age, weight, height, or body
mass index were found between rhIL-6 infusion and control
subjects (Table 1). No significant differences in heart rate or
body temperature were noted between rhIL-6 and control
subjects during and after the rhIL-6 infusion.

Serum Measurements

IL-6. Plasma levels of IL-6 are shown in Fig. 1. The mean
level of IL-6 increased to 106.2 � 9.6 pg/ml at 1 h of infusion
in the rhIL-6-infused group (P � 0.0005). Albumin infusion
did not affect IL-6 levels. Once rhIL-6 infusion was stopped,
plasma IL-6 levels decreased rapidly and returned to baseline
levels 1 h after infusion cessation.

IL-1�. There were no significant changes and no significant
between-group differences in levels of IL-1�.

GH. The effect of rhIL-6 infusion on GH levels is shown in
Fig. 2. There was a significant increase in GH plasma level

Table 1. Participants’ characteristics

Control rhIL-6 Infused

Age, yr 27.33�1.5 25.67�2.0
Height, m 1.86�2.2 1.85�1.9
Weight, kg 80.4�3.8 80.0�6.0
BMI, kg/m2 24.4�1.0 23.3�1.5

rhIL-6, recombinant human interleukin-6; BMI, body mass index. No
significant differences were found between control and rhIL-6-infused indi-
viduals.
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only in the IL-6-infused subjects (from 0.039 � 0.008 ng/ml at
baseline to 4.32 � 0.96 ng/ml peak at 1 h, P � 0.001).

Total and free IGF-I. The effect of rhIL-6 infusion on
plasma levels of total and free IGF-I is shown in Fig. 3. A
decrease in total IGF-I levels was noted only in the rhIL-6-
infused group (from 291 � 20 ng/ml at baseline to 228 � 24
ng/ml at 3 h, P � 0.027). Free IGF-I decreased in both groups
(P � 0.005), and no significant difference was found between
the groups.

IGFBP-1. An initial decrease in IGFBP-1 levels was noted
in both groups during infusion (P � 0.03). Following the initial
decrease (10.4 � 1.9 ng/ml at 3 h, end of IL-6 infusion), there
was a significant increase in IGFBP-1 levels only in the
IL-6-infused subjects (35.4 � 4.54 ng/ml), peaking at 2 h after
the infusion cessation (P � 0.001, Fig. 4).

IGFBP-3, GHBP, ALS, and insulin. There were no signifi-
cant changes and no significant between-group differences in
levels of IGFBP-3, GHBP, ALS, or insulin during the
intervention.

DISCUSSION

Increasing evidence supports the recent hypothesis that IL-6
produced by contracting skeletal muscle during exercise may
act as a systemic signaling protein. We mimicked an intense,
exercise-induced IL-6 response by infusing rhIL-6 in resting
subjects. Levels of circulating IL-6 achieved were similar to
those observed with strenuous, prolonged exercise. In fact,
with the exception of pathological conditions like systemic
infections, trauma, and burns, exercise may be the only non-
pathological state that can cause such high levels of IL-6. Our
study confirmed earlier observations that IL-6 infusion leads to
increased circulating GH (39). Despite the increase in GH
levels, we demonstrated an IL-6 infusion-associated reduction
in IGF-I. Interestingly, changes in both GH and IGF-I occurred
without changes in GH sensitivity (as reflected by measure-
ments of GHBP). Finally, we found a remarkable increase in
IGFBP-1, a functional IGF-I antagonist, but only after the IL-6
infusion had stopped.

GH typically increases substantially with exercise (15); the
mechanisms leading to increased GH following exercise are

Fig. 1. Plasma interleukin-6 (IL-6) levels before, during, and after infusion of
albumin (control) or recombinant human (rh) IL-6. There was a significant
increase in IL-6 levels only in the rhIL-6-infused subjects (*P � 0.0005).

Fig. 2. The effect of rhIL-6 compared with albumin infusion on plasma growth
hormone (GH) levels. A significant increase in GH was noted in the rhIL-6-
infused subjects (*P � 0.001).

Fig. 3. The effect of rhIL-6 and albumin infusion on plasma total (top) and
free insulin-like growth factor-I (IGF-I) (bottom). A significant decrease in
total IGF-I levels was noted in the rhIL-6 infusion group (*P � 0.027). Free
IGF-I decreased in both groups (P � 0.005). No significant between-group
difference was found for free IGF-I.
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not completely understood. Exercise is thought to stimulate
GH secretion via its effects on the hypothalamus, and both
stimulation of GH-releasing hormone secretion and inhibition
of somatostatin release (an inhibitor of GH secretion) have
been postulated. Our observation that GH was elevated early
during rhIL-6 infusion suggests that inflammatory cytokines
may also be involved in the GH secretion following exercise.
The GH response observed following IL-6 infusion is abrupt
and short and does not continue throughout the period of IL-6
infusion. This is very similar to the GH response observed with
exercise in which, following the initial release of GH from the
pituitary, even when exercise proceeds, GH levels decline,
suggesting exhaustion of the available pituitary GH stores.
However, while peak GH levels occurred 1 h following the
rhIL-6 infusion, exercise-associated GH peak usually occurs
�30 min from the beginning of exercise (11).

While GH stimulates IGF-I production at the tissue level, it
appears that acute changes in IGF-I are not influenced by the
typical exercise-associated increase in GH (6). Previous stud-
ies, although not entirely consistent, tend to indicate that
circulating IGF-I has a biphasic response to acute exercise (3,
6, 13). First, serum levels increase to a small but significant
degree in the first 10–20 min, but, as exercise progresses,
IGF-I levels fall.

The rhIL-6 infusion can only partially explain the IGF-I
response to exercise; rhIL-6 infusion did lead to a late decrease

in IGF-I levels. However, no initial increase in IGF-I was
noted, suggesting that other mechanisms (e.g., catecholamines,
release from marginal pools, etc.) may be responsible for the
initial increase in IGF-I. The late reduction in circulating IGF-I
levels occurred despite the earlier increase in GH levels,
suggesting that the IL-6-associated decrease in IGF-I is GH
independent. Similarly, it is now well known that the acute
exercise-associated changes in circulating IGF-I levels are also
GH independent (3, 33).

Reductions in circulating IGF-I accompany many catabolic
states, such as sepsis and burns (21), but the mechanisms for these
acute reductions, either during exercise or in other catabolic states,
have yet to be elucidated. Low IGF-I level may be indicative of
GH resistance. GH resistance is often characterized by reduced
levels of the GH receptor. In the present study, we measured
circulating GHBP, the extracellular domain of the GH receptor,
which is used frequently as an indicator for GH sensitivity
reflecting tissue, primarily hepatic, GH receptor levels (5). How-
ever, IL-6 infusion had no effect on GHBP levels. With inflam-
mation, multiple postreceptor mechanisms of GH resistance may
be induced by cytokines, including IL-6, which reduce GH sen-
sitivity without changing GHBP levels.

Circulating IGF-I is bound to a family of IGFBPs. Some of
these binding proteins stimulate (e.g., IGFBP-3, the predomi-
nant circulating IGFBP), while others [e.g., IGFBP-1, known
to be elevated in systemic inflammatory states (18, 23)] inhibit
its anabolic action (28). Interestingly, both IGFBP-3 and
IGFBP-1 levels are robustly increased following exercise (25),
suggesting that the exercise-associated effects on circulating
IGF-I are mediated not only by alteration of the amount of
IGF-I, but rather by the effect on its binding proteins and
binding protein proteolytic activity (12, 25).

In the present study, IL-6 infusion had no effect on IGFBP-3
(the predominant circulating IGFBP); ALS (part of the IGF-I
ternary complex) and IL-6 associated changes in IGFBP-1
occurred only after the IL-6 infusion was stopped and several
hours after the changes in IGF-I. These results suggest that the
IL-6-associated changes in IGF-I were not mediated by
changes in these binding proteins.

IGFBP-1 is found predominantly in tissues, not in circulat-
ing blood, and acts primarily to inhibit anabolic effects of
IGF-I (28). Circulating IGFBP-1 is elevated in pathological,
catabolic states like sepsis and burns, resulting, most likely,
from a rapid secretion of IGFBP-1 into the central circulation
from the liver (18, 23). The robust IGFBP-1 response to
exercise was noted in adults (35) and recently also in prepu-
bertal children (32, 38). Thus the IGFBP-1 response to acute
exercise appears to be substantial and reproducible.

IGFBP-1 is known to be highly regulated by insulin, and
increased insulin levels are usually associated with reduced
circulating IGFBP-1 (28). This inverse relationship was not
noted in the present study. Accordingly, both human (20) and
animal (2) models have reached the conclusion that IGFBP-1 is
elevated with exercise, even when insulin concentrations re-
main constant. Finally, our data support the evidence that
IGFBP-1 may actually be stimulated by inflammatory cyto-
kines (IL-1�, IL-6, and TNF-�) (31). The fact that IGFBP-1
production might be mediated directly by IL-6 suggests that
this mechanism may be important for the upregulation of
IGFBP-1 seen in catabolic conditions as well as with exercise,
both associated with increased circulating concentrations of

Fig. 4. Plasma IGF binding protein-1 (IGFBP-1) (top) and insulin (bottom)
before, during, and after rhIL-6 or albumin infusion. A significant increase in
IGFBP-1 was noted following cessation of the rhIL-6 infusion (*P � 0.001).
No significant changes were noted for insulin.
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this cytokine. In addition, circulating IGFBP-1 levels peaked
2 h after the IL-6 infusion was stopped, and circulating IL-6
levels returned to baseline levels. This suggests that IL-6 might
not have only immediate, but also some late effects on key
elements of the GH3 IGF-I axis. These results may also
provide insight into the mechanisms of reduced circulating
IGF-I, which is observed in chronic inflammatory states with
comparable increases in IL-6, including systemic rheumatoid
arthritis and inflammatory bowel disease.

In summary, this study demonstrates that physiological lev-
els of rhIL-6 induce a GH3 IGF-I axis response similar to that
observed with strenuous exercise. We propose that the effects
of intense exercise bouts are to initially create a metabolic
state, primarily induced by IL-6, similar in some respects to a
GH-resistant, catabolic state often found in sepsis (increased
GH, reduced IGF-I, and elevated IGFBP-1). We speculate that,
if the individual continues to perform bouts of high-intensity
exercise, then the inflammatory nature of the response to single
exercise bouts becomes attenuated, permitting an anabolic or
training adaptation.
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