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Abstract

Activity-Based Urban Mobility Modeling from Cellular Data

by

Mogeng Yin

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Berkeley

Assistant Professor Alexei Pozdnoukhov, Chair

Transportation has been one of the defining challenges of our age. Transportation decision
makers are facing difficult questions in making informed decisions. Activity-based travel
demand models are becoming essential tools used in transportation planning and regional
development scenario evaluation. They describe travel itineraries of individual travelers,
namely what activities they are participating in, when they perform these activities, and
how they choose to travel to the activity locales. However, data collection for activity-
based models is performed through travel surveys that are infrequent, expensive, and reflect
changes in transportation with significant delays. Thanks to the ubiquitous cell phone data,
we see an opportunity to substantially complement these surveys with data extracted from
network carrier mobile phone usage logs, such as call detail records (CDRs). The large
scale cellular data also opens up the opportunities for researchers to study urban mobility,
population estimation, disaster response and social events, etc. However, most of the urban
mobility models from cellular data focus on only one aspect of urban mobility (such as
location, duration, or travel mode), or model several aspects separately. Moreover, most
urban mobility studies ignore the activity types (trip purposes) since the information are
not naturally available from the raw cellular traces. These trip purposes carry important
information in activity-based travel demand modeling since many travel decisions depend
on these activity types, such as travel mode and destination location.

In this dissertation, we explore a framework that develops the state-of-the-art generative
activity-based urban mobility models from raw cellular data, with the capability of inferring
activity types for complementing activity-based travel demand modeling.

To do so, we first present a method of extracting user stay locations from raw and noisy
cellular data while not over-filtering short-term travel. Significant locations such as home
and work places are inferred. Along this pre-processing pipeline, we also produce meaningful
aggregated statistics about how people construct their daily lives and participate in activities.
These statistics used to be available purely from traditional travel surveys, thus were updated
very infrequently.
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With the processed yet unlabeled activity sequences, we improve the state-of-the-art gen-
erative activity-based urban mobility models step by step. First, we designed a method of
collecting ground truth activities with the help from short range distributed antenna system
(DAS), which has high spatial resolution. As a vanilla model, we first developed Input-
Output Hidden Markov Models (IO-HMMs) to infer travelers’ activity patterns. The activity
patterns include primary and secondary activities’ spatial and temporal profiles and hetero-
geneous activity transitions depending on the context. To have a directed learning process,
we explored several semi-supervised approaches, including self-training and co-training. The
co-training model has both the generative power of IOHMM model and the discriminative
nature of decision tree model.

We apply the models to the data collected by a major network carrier serving millions
of users in the San Francisco Bay Area. Our activity-based urban mobility model is exper-
imentally validated with three independent data sources: aggregated statistics from travel
surveys, a set of collected ground truth activities, and the results of a traffic micro-simulation
informed with the travel plans synthesized from the developed generative model. As a classi-
fication task, we found that our full IOHMM outperforms partial IOHMM which outperforms
standard HMM since IOHMM can incorporate more contextual information. We also found
that co-training outperforms self-training, which outperforms the unsupervised IOHMM,
thanks to the guidance of ground truth samples. This work is our first effort in exploring an
end-to-end actionable solution to the practitioners in the form of modular and interpretable
activity-based urban mobility models.

One direct application of the urban mobility model is travel demand forecasting. Predic-
tive models of urban mobility can help alleviate traffic congestion problems in future cities.
State-of-the-art in travel demand forecasting is mainly concerned with long (months to years
ahead) and very short term (seconds to minutes ahead) models. Long term forecasts aim
at urban infrastructure planning, while short term predictions typically use high-resolution
freeway detector/camera data to project traffic conditions in the near future. In this dis-
sertation, we present a medium term (hours to days ahead) travel demand forecast system.
Our approach is designed to use cellular data that are collected passively, continuously and
in real time to predict the intended travel plans of anonymized and aggregated individual
travelers. The traffic conditions derived through traffic simulation can overcome the data
sparsity for short term prediction. The data resolution, prediction tolerance and accuracy
for medium term travel demand forecast are compromises between long term forecast and
short term prediction.

We further improved our urban mobility models in two directions. We first separated
home and work activity into smaller sub-activities, expecting to get better activity transition
probabilities. On the other hand, we made our IOHMM deeper and continuous in hidden
state space, with the help of long short term memory units (LSTM). Experimental results
show that IOHMMs used in a semi-supervised manner perform well for location prediction
while LSTMs are better at predicting temporal day structure patterns thanks to their con-
tinuous hidden state space and ability to learn long term dependencies. We validated our
predictions by comparing predicted versus observed (1) individual activity sequences; (2)
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aggregated activity and travel demand; and (3) resulting traffic flows on road networks via a
hyper-realistic microsimulation of the predicted travel itineraries. Results show that we can
improve the prediction accuracy by incorporating more of the observed data by the time of
prediction. We can reach a mean absolute percentage error (MAPE) of less than 5% one
hour ahead and 10% three hours ahead.
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Chapter 1

Introduction

1.1 Motivation

In the United States, transportation system is critical to meeting the mobility and eco-
nomic needs of local communities, regions, and the nation. Major challenges that roadway
transportation faces are increasing traffic congestion, accidents, transportation delays, and
vehicle emissions. According to the 2012 urban mobility report [107], in 2011, the average
delay per commuter due to the congestion was 38 hours, this number was 61 in Bay Area.
Urban Americans suffered from a congestion cost of $120 billion, that was $820 per com-
muter. This number was $1300 in Bay Area. The excess CO2 emission caused by congestion
was 10 billion lbs, that was 160 lbs per commuter, and 500 lbs in Bay Area. To address
the current problems and meet the growing travel demand, the solution is either expand-
ing roadway infrastructure or efficiently and effectively using existing infrastructure [46]. It
is widely recognized, however, that the opportunities for building new physical infrastruc-
ture are decreasing because of increasing cost, environmental impact, and space limitations.
Developments in research and technology such as advanced materials, communications tech-
nology, new data collection technologies, and human factors science offer a new opportunity
to improve the traffic management.

However, transportation decision makers confront difficult questions to make informed
choices [25]. How will the national, regional, or even local transportation system perform
30 years into the future? What policies or investments could result in a desired mode shift
and an alleviation of congestion? How will economic, demographic, or land use changes
affect transportation system performance? Will travel demand management strategies or
intelligent transportation systems alleviate congestion? Will a new transit investment attract
riders? Given a set of desired outcomes, decision makers must identify capital investments
and policies that will achieve these objectives.

Travel models are created to support the aforementioned decision makers by providing
information about the impacts of different transportation and land use investments and
policies, as well as demographic and economic trends. Travel models produce quantitative
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information about travel demand and transportation system performance that can be used
to evaluate alternatives and make informed decisions. A variety of travel models has been
used in transportation planning, from simple sketch planning models that produce rough
“order of magnitude” information to trip-based travel models that use trips as the unit
of analysis. Trip-based travel models, often referred to as 4-step models, have been used
for decades to support regional, sub-regional, and project-level transportation analysis and
decision making.

For decades, with the revolution of computation techniques, activity-based travel demand
models (ABM) have become more widely used in practice. Activity-based models share some
similarities to traditional 4-step models: activities are generated, destinations and travel
modes are determined, and the specific network facilities or routes used for each trip are
assigned. However, activity-based models incorporate some significant advances over 4-step
trip-based models, such as the explicit representation of realistic constraints of time and
space and the linkages among activities and travel.

However, one of the critical issues of activity-based travel demand model is its expensive
data collection process. Activity-based demand modeling requires privacy sensitive disag-
gregated data related to individual activities and choices. In order to get such data, agencies
carry out expensive manual targeted surveys that can only be completed and analyzed with
significant delays. For instance, National Household Travel Survey (NHTS) happens only
every 5 to 10 years. The cost of the 2001 NHTS was estimated to be approximately 10
million dollar. In the state of California alone, there is a potential $4 million savings for
40000 households at a cost of $100 per 1-2 day sample[59]. The latencies and deficiencies in
urban data flow mechanisms create systematic risks for the cities of the future, endangering
the very foundations of their functioning. It is critical for public agencies to receive timely
and accurate information supporting their everyday decision making practices.

Thanks to the ubiquitous sensor networks and location-based services, people generate
data while traveling (and even standing still). Therefore, a widely popular way to approach
this data collection problem is through crowd-sourcing [64], which is a pervasive technology-
driven way to substitute manual surveying. Navigation services, such as Google Map, use
historical data and “crowd-sourcing” to estimate the traffic condition and to deliver real-time
routing options. It analyzes the GPS-determined locations and calculates the speed of users
along the road [129]. Location-based services and social networks (LBSN), such as Yelp,
Twitter, and Facebook, rely on check-ins to keep track of the local businesses and points of
interest (POI) you visit and keep your friends updated with your latest comings and goings.
Every minute, Facebook users share nearly 2.5 million pieces of content. Twitter users tweet
nearly 300K times, and Instagram users post nearly 220K new photos. The aforementioned
collective sensing requires the access to GPS or Internet, which becomes unavailable if a
user turns off locational services or internet. On the other hand, the pervasive sensing from
telecommunications companies such as Verizon, AT&T rely solely on the cellular network.
Timestamped locations (at the resolution of cell tower) are recorded whenever calls and short
messages are made or data is used.

However, current usage of cellular data for transportation analysis had focused on ag-
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gregate level information, for instance, dynamic population estimation, traffic flow and OD
estimation, etc. An integrated framework to activity-based travel demand models using large
scale mobile phone data to characterize individual movements has not been seen.

1.2 Objective and Challenges

The objective of the dissertation is to improve or build low cost modular components that
allow the development of timely activity-based urban mobility models with cellular data,
stored in private repositories, such as AT&T.

Activity-based urban mobility models need information about the schedule of each indi-
vidual and some knowledge about people’s decision making process [8]. To be more specific,
at the top level, we would like to identify the activity pattern of individuals, e.g. day struc-
tures, activity transitions, etc. Under that, a series of decisions about activity, location,
travel mode, start time and duration is to be determined.

The challenges include:

• Privacy and security issues: Location traces might reveal the time and location of
individuals’ significant activities[109]. These traces are easy to mine and may cause
re-identification of the individual even when the data is anonymized. While building
the components, we ensure that no individual and disaggregated data come out of the
private repository.

• Information uncertainty: Activities (trip purposes) and their contexts are usually
reported in manual surveys thus are naturally available for modelers. However, due
to the low temporal and spatial resolution of the cellular data, there are many ways
uncertainties can be introduced to the data, such as the uncertainties in activity loca-
tions due to data triangulation. Extra steps are required to address the uncertainties
and extract the information.

• Population disaggregation: An activity-based travel demand model is usually mod-
eled and applied for population subgroups. A smaller group size might result in the
data insufficiency and the model might overfit to the data. One extreme would be
an individual model that is trained on an individual’s data. This will not only cause
the overfitting but also raise privacy concerns. On the other hand, a model trained
at a larger group size might be too coarse to capture the heterogeneous activity pat-
terns among sub-groups of the population. Finding a way to disaggregate the whole
population into appropriate sub-populations is important in ensuring good uses of the
models.

• Model validations: Considering the validation for activity-based travel demand mod-
els, Yasmin et, al. has summarized three methods of validating an activity-based travel
demand model. The first two validation methods are testing the transportation per-
formance and population behavior against the base-year data and future year data.
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These two methods have been practiced by many researchers including Bowman et,
al. [21]. The other method is by testing the model’s spatial transferablity. That is
testing the usefulness of the transferred model, information, or theory in the new con-
text [132]. Yasmin et al. proposed a multi-level validation pipeline to test the model
transferability at macro-, meso-, and micro-level. Certain applications requires specific
methods of validation. In this dissertation, we validated our mobility models with
multiple validation methods mentioned above.

1.3 Dissertation Outline

The dissertation is structured in the following manner:

• Chapter 2 reviews key concepts in the dissertation, including activity-based travel
demand models, current practice of using large scale cellular data, and existing human
urban mobility models. By reviewing the activity-based travel demand models, we
identify the key components of the models such as data sources, modeling frameworks,
and applications. We also recognize the inefficiencies in collecting the required data for
modeling, which introduces our discussion about using cellular data as an alternative
data source to complement the traditional manual survey. By reviewing the current
application of large scale cellular data in transportation, we find that most research
focuses on exploring the power of large cellular data at aggregate level. Its power in
disaggregated activity-based travel models is still to be matured. Urban computing, as
an interdisciplinary field, has drawn increasing attention in the recent decade. There
has been many models using mobile phone traces to model human mobility. These
works can be characterized by their data sources, some using GPS data, cellular data,
and some using locational based social network data, check-in data, etc. These work
can also be characterized by their applications: some mainly focus on understanding
human mobility laws, some recognize daily activity patterns and some predict the
timing and location of future activities. We find that most of the studies focus on
only one aspect of urban mobility, a fused framework with equally strong power of
recognition and prediction is yet to be proposed.

• Chapter 3 summarizes our lessons learned and success gained from processing noisy
cellular data, and converting the raw data into activity sequences which are the input
for modeling. We follow a common framework of extracting activity locations first
by spatial clustering followed by a filter based on dwell time. Our pre-processing
method is better in handling positioning error and oscillation error so that we can
filter the obvious oscillations without over-filtering short-term travel. Along the pre-
processing pipeline, we can gain many research product that was originally available
purely from manual survey, such as dynamic population estimation, home and work
location distribution, and a good understanding about how people construct their daily
activities.
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• Chapter 4 introduces our activity-based urban mobility models from cellular data. We
present the thinking process of model selections, ground truth collections, step-by-step
model improvements and illustrate the model through a case study with the activity se-
quences of San Francisco regular commuters extracted in previous chapter. We present
the model estimation results, visualizations that help understand activity profiles and
transitions. We also validate our models with three independent data sources: aggre-
gated statistics from travel surveys, a set of collected ground truth activities, and the
results of a traffic micro-simulation informed with the travel plans synthesized from
the developed generative model.

• Chapter 5 studies an application scenario of the activity-based urban mobility mod-
els in Chapter 4. We propose a medium term (hours to days ahead) travel demand
nowcasting problem that fills the gap in the literature, which mainly focuses on ei-
ther long term (months to years ahead) or very short term travel (seconds to minutes
ahead) demand forecast. Long term forecasts aim at urban infrastructure planning
and policy evaluation, while short term predictions typically use high-resolution free-
way detector/camera data to project traffic conditions in the near future and the main
application is for real-time routing and travel time estimation. Our medium term
problem addresses questions such as: based on observations of early morning or noon
traffic, what will traffic be like during the evening commute? This could be critical
in the design of demand-responsive congestion mitigation interventions. And it is a
question we could answer with the mobility models we train in Chapter 4.

• Chapter 6 provides a comprehensive summary of the research motivation, objective,
methodological frameworks, experimental results, applications, and corresponding find-
ings. This chapter also focuses on identifying future research directions for more com-
prehensive and unified activity-based travel demand models with cellular data.

1.4 Contributions

This dissertation focuses on complementing activity-based travel demand models using cel-
lular data. This dissertation presents a comprehensive review of the current problems of
activity-based travel demand models and human mobility models with cellular data. This
dissertation also provides the low cost building blocks that can be used directly in real-world
applications. The contribution of the dissertation are six-fold.

• First, we implement an end-to-end processing and inference pipeline from raw cellular
data to support travel demand models and traffic simulation tools used by transporta-
tion practitioners. The building blocks of the pipeline can be directly applied to any
region with data of similar structure.

• Second, we propose a way of preprocessing raw cellular data that is better in handling
positioning error and oscillation error so that we can filter the obvious oscillations
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without over-filtering short-term travel. This approach can be applied to different
data sources with different temporal-spatial resolution by adjusting only a few hyper-
parameters.

• Third, to the best of the authors’ knowledge, this is the first work using context depen-
dent non-homogeneous generative models of the Input-Output Hidden Markov Model
(IO-HMM) architecture to analyze activity patterns from cellular data. We empiri-
cally show that our generative model outperforms baseline approaches which ignore
contextual information in modeling activity profiles and transitions. In addition, we
further explored using semi-supervised co-training to direct the learning process and
found that we can have both the generative power of IOHMM and discriminate power
from its counter part decision tree model. The directed learning approach leads to
better recognition accuracy and location choice modeling. A distributed implemen-
tation of the learning and inference methods in a MapReduce framework in pySpark
is available at https://github.com/Mogeng/IO-HMM. It includes IO-HMM extended
with multiple output models such as multinomial logistic regression, generalized linear
models, and neural networks.

• Fourth, we propose to validate our models with independent information sources. We
annotate secondary activities such as “recreation”, “food”, “stop in transit” with strong
spatial-temporal evidence. We also estimate heterogeneous context-dependent tran-
sition probabilities. To validate the model, we compare our annotations to “ground-
truth” land-use information of buildings with short range distributed antenna systems,
compare the learned activity patterns with travel survey results, and finally compare
ground truth traffic counts in the San Francisco Bay Area to a micro-simulation of
travel plans derived from the generative model.

• Fifth, we propose an application scenario of the activity-based mobility model we study
in Chapter 4. We solve a medium term travel demand forecast system which fills the
gap between long term travel demand forecast and short term traffic state prediction.

• Sixth, we explore the predictability of human mobility with parametric sequence learn-
ing models as compared to an individualized non-parametric “nearest neighbor” ap-
proach. We improved and compared the state-of-the-art deep generative urban mobil-
ity models. Lessons learned from training different types of urban mobility models are
summarized for future researchers.
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Chapter 2

Literature Review

2.1 Activity-Based Travel Demand Models

Introduction

Activity-based travel demand model derives travel demand from people’s needs and desires
to participate in activities [25]. In some cases these activities may occur within their homes,
but in many cases these activities are located outside their homes, resulting in the need
to travel. Activity-based models are based on behavioral theories about how people make
decisions about activity participation in the presence of constraints, including decisions about
what activity to participate, where to participate, when to participate, how to get there and
with whom. Because they represent decisions and the resulting behavior more realistically,
activity-based models are often better at representing how investments, policies, or other
changes will affect people’s travel behavior.

Activity-based models often provide much more robust capabilities and sensitivities for
evaluating scenarios under different policies, because activity-based models typically function
at individual level and represent how these persons travel across the entire day.

Another critical advantage of activity-based models is that they produce more detailed
performance metrics, such as how travel benefits accrue to different populations, which can
be used to support equity analyses. In addition, activity-based models can produce all of the
trip-based model measures used to support regional planning, regional air quality, transit,
and transportation demand management forecasting [25].

Modeling Framework

To simulate a typical day in an urban area, microsimulation tools need information about
the schedule of each individual and some knowledge about people’s decision making process.

The activity-based model is mainly composed of three modules.

• Household and agents: Agent-based models require agents, preferably grouped into
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Figure 2.1: Activity-based model framework

households, and even better grouped into social networks. A large number of systems
employ iterative proportional fitting to draw agents from the fitted multidimensional
table in order to get their social demographics and activity patterns [9].

• Activity and scheduling: The modeling of the schedule is the central task of an
activity-based modeling approach, realizing its vision of human behaviour as a coherent
(daily) whole[9]. The primary question to be answered are:

– Activity pattern

– Sequence of primary tour including destination, mode, route choice, starting time,
duration, and accompany

– Sequence of secondary tour including destination, mode, route choice, starting
time, duration and accompany
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Figure 2.2: Utility maximizing agent-based modeling

Three different modeling approaches have been attempted to the development of activity-
based models of travel demand:

– Constraints-based models: The primary purpose of constraints-based models
is to check whether any given activity agenda is feasible in a specific spacetime
context. Inputs to these models are activity programs, which describe a set of
activities of certain duration that can be performed at certain times. A combina-
torial algorithm is typically used to generate all possible activity sequences[5].

– Utility-maximizing models: These models extended the complexity of discrete
choice models, in particular, the nested logit model [20]. This nested logit model
is consist of five nests: 1) activity pattern, representing a choice of a pattern
with and one without travel, plus a system of conditional tours defined by four
tiers: 2) primary tour time of day 3) primary destination and mode 4) secondary
tour time of day, and 5) secondary tour destination and mode. Model parame-
ters were estimated simultaneously within each hierarchy and sequentially across
hierarchies.

– Rule-based models: Rule-based models are used to depict decision heuris-
tics, which relaxes the strict and behaviourally unrealistic assumption of utility-
maximizing models. Individuals and households are assumed to conduct activities
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to attain certain goals. Certain rules (either learned from models or empirical
rules) drive the choice of activity participation, jointly with prior commitments
and constraints[100].

• Traffic simulation and rescheduling: Because of the complex and dynamic na-
ture of the activity-based demand model, especially when we tend to generate the
activity chain for an individual over the entire day, microsimulation as a method for
implementing activity-based travel behavior models for forecasting and policy analysis
purposes has received ever-increasing attention [93]. Given the system’s complexity,
closed-form analytical representations of the system are generally not possible, in which
case numerical, computer-based algorithms are the only feasible method for generating
estimates of future system states [92]. Microsimulation represents an effective method
for generating policy-sensitive forecasts from disaggregate, activity-based models. The
performance of an agent’s plan is scored at the end of each iteration of the microsimu-
lation, until a steady-state approximating a dynamic Nash-equilibrium is reached. For
a predetermined share of the agents, new plans are generated by searching for new
shortest-path or by optimizing the starting times and duration. The scoring function
is mainly utility based [9].

Application and Future Trend

Activity-based models have become more widely used in practice. The domain of traffic and
transportation systems is well suited for an activity-based approach because transportation
systems are usually geographically distributed in dynamic changing environments. Tech-
niques and methods resulting from the field of activity-based models have been applied
to many aspects of traffic and transportation systems, including modeling and simulation,
dynamic routing, congestion management, and intelligent traffic control[26].

However, several problems with the current practice of activity-based models need to
be emphasized. First, most of the data comes from travel survey or travel diary that only
includes activity patterns of one typical day. The “day of week” and long term patterns may
not be discovered with current data scheme. This data collection process is also expensive
and with significant delays. Second, individual decision-making may depends on the social
network she belongs to. Current models that do incorporate family and friend decision-
making are based on relatively simple extensions of models of individual choice behaviour
and have been descriptive and analytical. With the ubiquity of smart phones, developing a
conceptual framework, using these alternative data, to assist comprehensive activity-based
models is necessary.
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2.2 Current Practice of Using Large Scale Cellular

Data

The increasing availability of the large scale cellular data has enabled transportation research
at many levels.

• Aggregated human mobility: Call detailed record (CDR) data, although relatively
low in spatial-temporal resolution, allows the study of aggregated human mobility
patterns. For instance, Gonzalez et, al. studied the distribution of travel distance
and simple reproducible patterns using CDR of 100K individuals over six months in
a European data set [55]. Song et, al. discovered a 93% potential predictability in
user mobility across the whole user base [112]. Kung et, al. showed that the home-
work time distributions and average values within a single region are indeed largely
independent of commute distance or country [71].

• Dynamic population: Deville et, al. estimated the population in France and Por-
tugal using 5 months’ and 10 months’ phone call data [31]. They mapped the night
users of each cell tower to the administrative unit proportional to the overlapping area
between the Voronoi tessellation of the cell tower and the administrative unit. A log
linear regression was then used to scale the mobile-phone based population to census-
derived population. They received a R-value of 0.9. Their focus is on the dynamics
of population rather than finding the population residential location. A similar work
was done for the Ivory coast of Africa. Sterly et, al. used the call data of 500K callers
collected by Orange Telecom over 14 days to estimate the population [116]. They sim-
ply assigned the callers to the administrative unit from where they placed the highest
number of calls. Not surprisingly, their result leads to higher population in urban areas
and lower ones in rural areas since many people tend to make more phone calls at work
than home. Ahas et, al. developed a more rigorous but computational expensive model
to estimate the home, work anchor points of 0.5 million users with 12 months’ data
collected by a major operator in Estonia [2]. They reached R-value of 0.99 between the
number of modeled homes and the number of residents in the population register in
Estonia’s 227 municipalities. But in some major cities the R-value was lower, at 0.86.

• Traffic and OD estimation: Considering traffic analysis, two major approaches have
been explored:

– An OD matrix was first estimated from CDR [22, 91, 126, 62, 121]. A rescaling
was performed to match the derived OD with total traffic count. Traffic flow
on the road network was then assigned using iterative proportional fitting (ITA)
[126, 121] or microsimulators [62]. This method was exactly the four-step model
with the OD estimated from real CDR as an alternative to the traditional trip
generator.
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– A direct mapping from cell tower to the road network [28, 110, 76, 131].

It is worth mentioning that while the second approach has been extensively ex-
plored using GPS data (HMM-based model in [120], conditional random field
model in [61, 60]), much complexity will be introduced when applied to CDR
data which has low spatial-temporal resolution .

• Land use and Urban planning: CDR data can also assist urban planning through
analyzing land use. Reades et. al. analyzed the spatial-temporal patterns in the city
of Rome from aggregate mobile phone usage data collected over the course of three
months in late 2006 and covered a region of 47 km2 [101]. A classification algorithm
was used to identify clusters of locations with similar zoned uses and mobile phone
activity patterns from three weeks of CDR data for roughly 600K users in the Boston
region.

• Disaster response: Bengtsson et, al. estimated the geographic distribution of pop-
ulation movements after the devastating Haiti earthquake in 2010 and found that
the distribution corresponded well with results from a population-based survey [16].
They showed feasibility of rapid estimates and identification of areas at potentially
increased risk of cholera outbreak within 12 hours of receiving data. Interestingly, the
predictability of people’s trajectories remained high and even increased slightly during
the three-month period after the earthquake. Lu et, al. found that the duration of
people’s stays outside the city, as well as the time for their return, all followed a skewed,
fat-tailed distribution [85]. These studies suggested that CDR data may be of great
value in predicting population movement as a response to big disasters.

• Disease spread: Mobile phone data could provide valuable, complimentary and con-
temporary data on an ongoing basis in infectious disease control and elimination [118].
Wesolowski analyzed the regional travel patterns of nearly 15 million individuals over
the course of a year in Kenya with mobile phone data. Combined with malaria preva-
lence information, they identified the dynamics of human carriers that drive parasite
importation between regions. They also identified important routes that contribute
to malaria epidemiology on regional spatial scales. The analysis of human movement
patterns from Zanzibar to mainland Tanzania suggested a few people account for most
of the risk for imported malaria [119].

• Special social events: CDR data also provides a special opportunity to characterize
traffic flows generated by special social events. By analyzing about 1 million mobile
traces, Calabrese et, al. concluded that people who live close to an event are prefer-
entially attracted by it and events of the same type show similar spatial distribution
of origins [23]. This study showed that CDR data could potentially be used to pre-
dict where people would come from for future events and take decisions about events
management and congestion mitigation.
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• Inferring social network and demographics: The underlying social network from
cellular data has made a deep understanding of social interaction possible. Eagle et,
al. found that self-reported friendship deviate from mobile phone records depending
on the recency and salience of the interactions [38]. They accurately inferred 95% of
friendships based on the observational data alone. Dong et, al. employed a conditional
random field (CRF) model to jointly classify age and gender of users based on their
calling profile [34]. Furletti et, al. used temporal calling patterns to identify four
categories of users: residents, commuters, in transit and tourists/visitors using around
7.8 million CDR records collected in the city of Pisa, Italy, from January to February
2012 [48].

However, most of the aforementioned applications focused on exploring the power of
cellular data at aggregate level. Models that allow analyzing CDR data at individual level
and assisting activity-based demand modeling have yet to be developed

2.3 Urban Mobility Models

Urban mobility models study many aspects of individual travel. This section summarizes
related works on state-of-the-art urban mobility models. We will organize our discussion of
the literature by considering the data sources, modeling techniques, and modeling objectives.
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Author(s) and Date Data Modeling Prediction Method
Gonzalez et al. (2008) [55] CDR Human mobility laws NA Statistical
Song et al. (2010) [112] CDR Human mobility laws NA Statistical
Eagle and Pendland (2009) [37] CDR daily activity pattern (primary) Rest of day PCA
Song et al. (2004) [113] Wi-Fi Location Next location Markov models
Akoush and Sameh (2007) [3] Wi-Fi Location Next location NN
Farrahi and Gatica-Perez (2011) [43] CDR daily activity pattern (primary) NA Topic models
Liao et al. (2006) [80, 78] GPS daily activity pattern NA CRF
Eagle et al. (2009) [36] CDR Location Next Location DBN
Gao et al. (2012) [50] GPS Location Next Location Markov models with context
Cho et al. (2011) [29] LBSN Location Loctaion Topic models
Ashbrook et al. (2003) [7] GPS Location Next location Markov models
Ye et al. (2013) [133] LBSN Activity and location Next activity and location HMM with context
Laasonen (2005) [72] CDR location Next location Trajectory matching
Do and Gatica-Perez (2014) [33] CDR location Next location Random forest
Zheng et al. (2008) [143] GPS Travel mode NA Decision tree
Sohn et al. (2006) [111] CDR Travel mode NA Boosted logistic regression
Phithakkitnukoon et al. (2010) [98] CDR Activity NA Rule based
Mathew et al. (2012) [90] GPS Location Next location HMM
Ying et al. (2011) [136] GPS Activity and Location Next location Trajectory matching
Lee et al. (2009) [75] GPS Human mobility laws NA Statistical
Zheng et al. (2012) [139] GPS daily activity pattern (primary) Location Topic models
Monreale et al. (2009) [94] GPS Location Next location Trajectory matching
Scellato et al. (2011) [105] GPS Duration Duration KNN
Thiagarajan et al. (2009) [120] GPS Map matching NA HMM
Bauman et al. (2013) [12] GPS Location Next location Markov models with context
Chon et al. (2012) [30] GPS Duration Duration Markov models with context
Krumm et al. (2006) [70] GPS Trajectory Destination Trajectory matching
Schneider et al. (2013) [106] CDR Daily activity pattern (primary) NA Statistical
Etter et al. (2013) [39] GPS Loctaion Next location DBN and NN and GBDT
Gambs and Killijian (2012) [49] GPS Loctaion Next location Markov models
Asahara et al. (2011) [6] GPS Loctaion Next location Mixed Markov models
Lu et al. (2012) [87] GPS Loctaion Next location Ensemble
Gomes et al. (2013) [53] GPS Loctaion Next location Multiple
Jeung et al. (2008) [65] GPS Trajectory Next location Trajectory matching
Gidofalvi and Dong (2012) [51] GPS Location and duration Duration and next location Semi Markov models
Baratchi et al. (2014) [10] GPS Daily activity patterns, location, duration NA Hierarchical HSMM
Bhat and Singh (2000) [17] Travel survey Activity and travel scheduling daily travel plan Discrete choice
Bowman and Ben-Akiva (2001) [20] Travel survey Activity and travel scheduling daily travel plan Discrete choice
Widhalm et al. (2015) [128] CDR Daily activity patterns NA DBN
Calabrese et al. (2013) [24] CDR Daily trip length NA Statistical
Liu et al. (2013) [83] GPS Activity NA Ensemble
Bohte and Maat (2009) [19] GPS Activity and travel mode NA Rule based
Stopher et al. (2008) [117] GPS Activity and travel mode NA Rule based
Wolf et al. (2001) [130] GPS Activity and travel mode NA Rule based
Kim et al. (2014) [69] GPS Activity NA Decision tree
Stenneth et al. (2011) [115] GPS Travel mode NA Random forest
Reddy et al. (2010) [102] GPS Travel mode NA DT + DHMM
Doyle et al. (2011) [35] CDR Travel mode NA Rule based
Zheng et al. (2008) [141] GPS Travel mode NA Decision tree
Wang et al. (2010) [124] CDR Travel mode NA K-means
Chen and Bierlaire. (2015) [27] GPS Map matching and travel mode NA HMM
Leontiadis et al. [76] CDR Map matching NA A*
Anderson and Muller (2006) [4] CDR Travel mode NA Clustering + HMM
Widhalm et al. (2012) [127] GPS Travel mode NA Ensemble + HMM
Gong et al. (2012) [54] GPS Travel mode NA Rule based
Schuessler and Axhausen [108] GPS Travel mode NA Rule based
Ben-Akiva and Lerman (1985) [13] Travel survey Travel mode Travel mode Discrete choice
Song et al. (2016) [114] GPS Trajectory Trajectory LSTM
Yin et al. (2017) [135] CDR Activity patterns Activity sequences IOHMM
Lin et al. (2017) [81] CDR Trajectory Trajectory LSTM

Table 2.1: Literature for urban mobility modeling and prediction

Data Sources

Early studies mainly used travel surveys [17, 20, 13]. In the recent decade, with the mobile
phone data more available, passively collected data such as GPS [80, 78, 7, 143, 136, 75,
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139, 94, 105, 120, 70, 10, 19, 69, 102, 141, 27, 54, 114], CDR (call detailed record) [55, 112,
37, 43, 36, 33, 98, 106, 128, 24, 135, 81] and location-based social networks (LBSN) data
[29, 133] has provided grounds for new approaches in urban mobility studies. GPS data is
granular in both spatial and temporal resolution. However, the availability of such granular
data is usually limited to hundreds of travelers. LBSN data is exact in locations, and may
provide additional social relation, comments and reviews on the venues for larger samples
of travelers. However, LBSN data is limited by its discontinuity and sparsity in time. CDR
data provides a trade-off between spatial-temporal resolution and ubiquity, while covering
millions of travelers.

Modeling Techniques

There are two main streams of modeling techniques, one targeting at individualized appli-
cations such as mobility prediction and the other targeting at population applications such
as clustering human daily activity patterns.

Individualized Models

• Markov type models: Simple Markov type models assumes that the current location
depends on the previous location and some other contextual information. This type
of model also includes the models considering contextual conditional probabilities, for
instance, the work using GPS data [50, 7, 32, 70, 49, 6], and CDR data [113, 86, 84, 72].
However, this type of model is only interested in modeling next location but not when
the next activity happens thus does not consider the duration at the same time. To
overcome this limitation, a non-homogeneous semi Markov model was used to model
the activity chain using a travel survey [89]. However, If observations are not accurate,
simple Markov type models may be too naive to capture the error structure.

• Trajectory matching models: Trajectory matching models are similar to Markov
type models, but not restricted to observations and context on the most recent ob-
servation. Another major difference between trajectory matching models and simple
Markov type models is that Markov models are generative, while trajectory matching
models are usually discriminative and are mainly used to make predictions. Because of
its discriminative nature, it would not be a problem to predict location and start time
of the next activity using conditional probabilities. Examples using GPS data include
[140, 140, 136, 94, 70], and examples using CDR data includes [72, 137, 68, 95, 125,
65, 88, 65, 77]. However, since these models are discriminative and focus directly on
the locations, no activity recognition is performed through these models.

• HMM and HSMM models: To account for data noise, a hidden layer is added to
the Markov models. These include HMM model using CDR data [99], using GPS data
[90, 58], and LBSN data [133]. These models are really generative models and respect
the transition between activities. However, only Ye et, al.[133] incorporated contextual
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information but their focus is only predicting the category of the activity instead of
locations.

• DBN and CRF models: To incorporate contextual information, complex graphical
models have been applied to model mobility. As an example of a generative model, a
dynamic Bayesian network (DBN) was adopted to detect abnormal or normal behavior
[36]. On the other hand, Liao et, al. developed a discriminative version of the previous
model [78, 79]. They used hierarchical conditional random field (HCRF) to extract
places and activities. However, this approach needed ground truth obtained from
manual labeling. Thus their model was only applied to four people and was not scalable
to large population.

• Classification models: This class of models are pure machine learning models that
focus on the predictions rather than interpreting the structure of daily routines. For
instance, regression models [33], neural networks [82, 3, 74, 96], K-nearest neighbor-
hood [12], decision tree [39, 53, 122], SVM [53], and ensembling [87] have been used
to make predictions about next activity location or timing. It is worth noting that
most of these models came from the Nokia Mobile Data Challenge. The data included
rich context information including date, location of the user, cell tower id, phone calls
and application usage collected from the smart phones of 80 users. The power of these
models is bound to be reduced if not so much contextual information is available.

Group Models

• Motif Models: These models relate daily mobility patterns with trip chains extracted
from travel diary surveys or mobile phone data [66, 106]. The authors expressed daily
activity chains as daily networks with nodes representing locations and directed edges
representing trips. The same distribution of trip configurations have been found in
different cities, and measured by both travel surveys and mobile phone data. They
found that only 17 unique networks are sufficient to capture the daily mobility pattern
of 90% of the population in surveys and mobile phone datasets for different countries.
The authors found that although most of the people visit less than five locations,
a small fraction behave significantly differently because people report visits up to 17
different places within a day in their surveys. However, focusing on activity transitions,
the authors discarded information about the purpose of the activity, the travel time
and the activity duration as well as the distances and the number of trips between the
visited locations.

• Topic Models: These models tend to use latent topics to identify structure in human
daily routines. Popular Topic models include LDA models [43, 42, 44, 41, 139] and
“eigenbehaviors” [37]. Eagle et, al. using “eigenbehavior” decomposition found that
communities within a population’s social network tend to be clustered within the same
behavior space. Therefore, if strong behavioral homophily is present in the data, it
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should equally be possible to infer an individual’s affiliations by quantifying the indi-
vidual’s distance from a community’s behavior space. On the other hand, Farrahi et,
al. found that most of the routines (topics) were quite interpretable, including “go-
ing to work late”, “going home early”, “working non-stop” and “having no reception”
(phone off)” at different times over varying time-intervals. The advantages of topic
model is that these are generative models and consider the periodic nature of human
routines. However, the construction of daily routines need semantic meaning of each
location. This limits the daily routine to include only home, work and “Other”.

• Nested Logit Discrete Choice Model: Bowman et, al. modeled a hierarchical
nested logit choice model to discover the activity pattern [20]. Under the level of
activity pattern, they modeled the schedule of primary tour and then secondary tour.
Tour models included the choice of time of day, destination and mode of travel, and
were conditioned by the choice of activity pattern. Their framework is shown in Figure
2.2. The model was designed to capture individual’s decisions throughout an entire
day by explicitly representing tours and their interrelationships in an activity pattern.
The model was targeted at assisting activity-based demand models. These features
gave the model potential to improve travel forecasts by capturing activity-based policy
responses. However, in their methodology, the activity pattern was pre-defined by 54
types, but not discovered from the data.

• Hierarchical Hidden Semi Markov Models (HHSMM): Baratchi et, al. pro-
posed a hierarchical hidden semi-Markov-based model which could capture both fre-
quent and rare mobility patterns in the movement of mobile objects [10]. In the top
layer, the authors used a super-state to indicate the hidden mobility pattern. Under the
pattern layer, the activity chain was modeled as a hidden semi-Markov model again.
In this case, they modeled the activity pattern transition and the activity transition
simultaneously using multiple days’ data. Their model outperformed other baseline
models including standard HSMM in terms of next place prediction accuracy. How-
ever, a problem of their HHSMM model was that their HSMM does not depend on the
contextual information such as time of day.

Modeling Objectives

Considering modeling objectives, large amount of works focus on activities, such as activity
locations, [113, 7, 33, 94], start times and durations [105], and daily/weekly activity schedul-
ing [37, 43, 78, 139, 106, 10, 17, 20, 128, 135]. Another branch of research considers trips
linking these activities, studying trajectories [70, 114, 81], travel mode [143, 19, 102, 141,
54, 13], by applying map matching and route choice [120, 27].

Studies that are not concerned with predictive or generative methods fall into two cat-
egories: first category tends to purely understand generic human mobility laws using de-
scriptive statistics [55, 112, 75, 24], the other category focuses on the problem of recognition
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(activity, travel mode, [80, 98, 120, 106, 19, 69, 27]) rather than prediction. The studies of
second category are mainly conducted on mobile phone data since activity type and travel
mode are not explicitly observed from the data itself. For studies that do focus on predictive
(generative) power, most works focus on predicting only next location (or duration) since it
is a well formulated task that is also easier to validate. Some researchers make prediction
by assuming Markov properties [113, 7, 133, 36]; other researchers treat prediction of next
location as a classification (regression) problem using supervised learning [33]; and some
researchers used trajectory matching techniques to make the prediction [136, 94]. However,
not much research has been done on models that are capable in generating a sequence of
locations (duration) for the full day or longer.

Another observation is that most of the previous studies focus on only one aspect of urban
mobility (such as location, duration, travel mode), or model these several aspects separately.
Not many studies focus on modeling daily activity patterns and scheduling that fuse activity
type, location and duration together, which enables the model to generate a sequence of
samples. Eagle and Pendland [37], Farrahi and Gatica-Perez [43], and Zheng et al. [139] used
unsupervised techniques such as PCA and topic models to cluster daily activity patterns.
However, they only included primary activity types such as “home” and “work”, all other
activities are categorized as “other”. Liao et al. unified the process of map matching, place
detection, and significant activity inference through a hierarchical conditional random field
(CRF) using GPS data [78]. However, their model is discriminative in nature and is most
suitable for recognition, rather than generating new sequences. Widhalm et al. [128] used
an undirected relational Markov network to infer urban activities with CDR data. However,
they did not model activity transitions due to the lack of cliques for consecutive activities.
In this dissertation, we improve the modeling of activity patterns (spatial-temporal profiles
of primary and secondary activity) with explicit modeling of contextual dependent activity
transition probabilities.
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Chapter 3

From Cellular Data to Urban
Activities

3.1 Introduction

Cellular data does not give information about activities directly. Raw CDR data contains a
timestamped record for each communication of anonymous users’ devices served by the cel-
lular network. Due to positioning errors and connection oscillations, it is not straightforward
to extract features to model urban mobility from raw CDR sequences. A pre-processing step
is first performed to convert the records to a sequence of stay location clusters that may
correspond to distinct yet unlabeled activities, as shown in Fig. 3.1. The clustering can be
seen as a first layer of hashing locations, which preserves privacy. Attributes of each activity,
such as the start time, duration, location features, and the context of the activity (whether
this activity happens during a home-based trip, work-based trip, or a commute trip), is also
extracted as a result of this processing.

From the activity sequences, primary activities such as home and work can be inferred1.
Detecting home and work location features are useful in many respects: first, with home
and work inferred, we can identify specific groups of users by a set of predefined decision
rules. One of the most simple rules is to group users by their geographical area. This
makes it possible to train separate models for users residing in a specific neighborhood or
a Transportation Analysis Zone (TAZ) since people living in different geographical zones
might show different travel behaviors. Moreover, we can train separate models for regu-
lar commuters/part-time/unemployed groups of residents within a community. The model
structures are expected to be significantly different within each group. Finally, home and
work inference for anonymized cellular users adjusted to the full population provides day-
time/nighttime population density estimates, as shown in Fig. 3.3.

1Note that once the pre-processing and home/work inference steps are applied, only features associated
with location clusters are used for modeling, such as distances to home and work. This can be seen as a
second layer of anonymization of user’s locations, since no specific location cluster IDs are associated with
any user at any time in the modeling process itself.



CHAPTER 3. FROM CELLULAR DATA TO URBAN ACTIVITIES 20

Figure 3.1: Call Detail Records (CDR) data processing. The table at left represents the
raw CDR format, i.e., time stamped record of communications. A stay points detection
algorithm is used to convert the raw CDR data to a sequence of stay locations with start
time, duration and location ID, as represented in the table at right.

With the activity sequences (including home and work anchor activities) identified, we
can understand the daily activity structure of travelers that are traditionally available solely
via manual surveying. They include: (1) the distribution of number of tours before going to
work, during work and after getting back home; (2) the distribution of number of stops during
each type of tour (home-based, work-based and commute tours); and (3) the interactions in
stop-making across different times of day (e.g. how making an evening commute stop will
affect the decision in making a post-home stop) [17].

3.2 Processing Pipeline

Stay points detection in CDR

The goal of stay location recognition is to turn CDR logs into a list of sequential stay location
identifiers with start time and duration for each user, as illustrated in Fig. 3.1. Each record
of raw CDR logs (such as a phone call, short message, or data usage) contains the timestamp
and the approximated latitude and longitude of events recorded by the data provider. This
is a CDR-specific step that requires fine-tuning of several threshold parameters. Note that
once the pre-processing steps and the following are applied, only features associated with
clusters locations are used, such as distances to home and work. This can be seen as a
layer of anonymization of user’s locations, since no specific location cluster IDs are further
associated with any user at any time in the activity modeling process itself. The main steps
of the algorithm are as follows:

(1) Cluster CDR records. The first step in stay location detection is filtering out po-
sitioning errors. This is achieved by spatial clustering. For GPS data, accuracy ranges of
10-100m are used in many studies that use GPS to detect stay locations [40]. The distance
thresholds for GPS stay-location clustering is much smaller than the thresholds for CDR
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Figure 3.2: Sample oscillation graph. Each node in the graph represent a location cluster.
Edges in the oscillation graph connect clusters that are suspicious for oscillations. The
thicker the edge,the more oscillations have been observed.

records. For example, a roaming distance of 300 meters [66] and 1000 meters [128] was used
to cluster points to reflect the spatial measurement accuracy of the CDRs. For our stay-
location detection, we use a density based clustering with similar parameters. At the end
of the clustering step, consecutive data points with the same cluster ID are combined into a
single record with start time equal to the timestamp of the first of the consecutive events at
that cluster, and end time equal to the time stamp of the last of the consecutive events at
that location cluster.

(2) Construct and process an oscillation graph. Consecutive CDR records may have
nearly identical timestamps, but different location IDs. Such oscillations occur because the
cell phone is communicating with multiple cell towers. These instantaneous location jumps
may occur because of traveling users whose cell phone have just come in contact with a new
cell tower along the way, but often such location jumps are observed even though users are
standing still. In the latter case a user’s location appears to oscillate back and forth between
two clusters.

When a user’s location is simultaneously (with the same timestamp) reported in two
location clusters, an edge between these two clusters is added to the oscillation graph. Edges
in the oscillation graph connect clusters that are suspicious for oscillations. An example
oscillation graph described in that section is shown in Figure 3.2. Each node in the graph
represents a location cluster. There is an edge if oscillation has been observed between two
clusters. The thicker the edge, the more oscillations have been observed.

(3) Filter oscillation points. With cluster-pairs transformed into an oscillation graph,
one can discern oscillations from travel based on the pattern of location cluster sequences.
Suppose the locations of two consecutive records are location cluster A and location cluster
B, respectively. If edge (A, B) exists in the oscillation graph, and if the user visits cluster
A, then B, back and forth, the visit to B is determined to be an oscillation - the points are
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combined into a single record with a duration determined by the combined time spent in
A and B. We assign the location of these records to cluster A if the user spends more time
in A than B, else it is assigned to cluster B. Note that though the thickness of the edges,
as a hyperparameter for the pre-processing, does not matter in our method, it might be
fine-tuned for the processing of other types of data.

(4) Filter locations with short durations. At this point, positioning noise and oscillation
noise are removed. Now we have a sequential list of location cluster visits, each with a
start and end time. Some of these cluster visits are stay locations, and others are pass-by
points. The accepted threshold for stay locations varies widely. The threshold was set to
20 minutes in [142], 15 minutes in [128] and 10 minutes in [66]. Several GPS applications
use stay durations ranging from 90 seconds to 10 minutes. We chose 5 minutes because in
the activity-based modeling context, 5 minutes is an appropriate threshold for an activity
location, as opposed to a way-point.

Home and Work Location Inference

We recognize the importance of long-term recurrent stay points such as “home” and “work”
that enforce a structure in the users’ daily mobility. Various strategies have been used for
home and work location detection. A mixture of Gaussians is a popular method to model
locations centered on home and work [29]. Another suggested definition of “home” was the
location where the user spends more than 50% of time during night hours with night hours
defined as 8pm to 8am [71]. Similarly, work hours can be defined as the area where the user
spends more than 50% of time during day hours.

We adopt accepted methods in order to simplify processing and, most importantly, infer
“anchor” points in the daily sequences that provide space-time context that is crucial to
build a generative model of secondary activities. A range of travel choices, such as mode of
transportation and destination choice, depend on the overall structure of the day. Moreover,
early identification of home and work allows pre-clustering users into groups with similar
behaviors by using heuristic decision rules (employed/unemployed/part-time worker, etc).

Our detection of the home and work locations is similar to the method of [71]. We
identify home as the location where the user spends the most stay hours during home hours,
and we identify work as the location where the user spends the most hours during the work
hours. However, we define home and work hours to be much narrower time windows than
the 8am-8pm criteria used in [71]. Borrowing from [66], the hours from midnight to 6am are
defined as home activity hours, and 1pm to 5pm on weekdays are defined as working hours
because they capture the core set of working hours for both early and late workers [63].

3.3 Description of Data

The data used in these studies comprise a month of anonymized and aggregated CDR logs
collected in Summer 2015 by a major mobile carrier in the US, serving millions of customers
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in the San Francisco Bay Area. No personally identifiable information (PII) was gathered or
used for this study. As described previously, CDR raw locations are converted into highly
aggregated location features before any actual modeling takes places.

3.4 Experimental Results

We pre-process the data following the aforementioned steps. The home and work locations
are identified during the pre-processing step. For further modeling purpose, we focus on
regular commuters that:

• showed up for more than 21 days a month at their identified “home” place;

• showed up for more than 14 days a month at their identified “work” place;

• have home and work not at the same location.

These criteria identify regular working commuters with a day structure containing both
distinct Home and Work.



CHAPTER 3. FROM CELLULAR DATA TO URBAN ACTIVITIES 24

Home/Work Inference results

Figure 3.3: Density map of inferred home and work locations for San Francisco residents,
aggregated at the census tract level (left), and an overall geographical scope of analysis with
work locations density (right).

Fig. 3.3 shows the density map of inferred home and work locations for San Francisco res-
idents (individuals with home in San Francisco city), aggregated at the census tract level.
As shown in the right of Fig. 3.3, the work locations are spread in the SF Bay Area. The
highest density occurs in San Francisco, Oakland, and some South Bay cities. Focusing on
work locations in San Francisco, many of the inferred work locations are in Downtown San
Francisco, the Financial District, and SoMA - three San Francisco neighborhoods with high
employment density [67]. As expected, the home locations are more spread out throughout
the city.
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Number of Daily Activities

(a) Weekday (b) Weekend

Figure 3.4: Empirical distributions of the average number of daily activities of San Francisco
subscribers on a weekday (left) and on a weekend (right), after pre-processing.

Empirical distributions of the average number of daily activities for this population is shown
in Fig. 3.4. The median number of activities is 4.4 per weekday and 4.0 per weekend. This
is consistent with the California Household Travel Survey, reporting a number of 4 activities
per day [1].

Summary Statistics For Day Skeleton

Table 3.1: Summary Statistics for Day Skeleton

Weekday Weekend
H 9.5% 72.3%
HWH 88.1% 26.6%
HWHWH 2.4% 1.1%

For San Francisco regular commuters, Table 3.1 shows that on average 88.1% of them visit
their work place once on a typical weekday, featuring a Home-Work-Home (HWH) day
skeleton. Note that going out for a lunch from work place and returning to the work place is
considered as HWH day skeleton because no home activities happen between the two work
activities. 2.4% of the regular commuters have some home activities between two visits to
their work place, featuring a HWHWH day skeleton. 9.5% of regular commuters do not go
to work on a typical weekday, featuring a home-based day skeleton.
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On a typical weekend, 72.3% of the regular commuters do not go to work at all. 26.6%
of the commuters visit their work place once and 1.1% of the commuters have some home
activities between two visits to their work place. These numbers are similar to the ones in
the 2015 American Time Use Survey conducted by the Bureau of Labor Statistics [97].

Distribution of Tours for HWH Days

Table 3.2: Distribution of Tours for HWH Days

Before-morning-commute Work-based Post-home
0 93.8% 72.5% 77.9%
1 5.6% 21.8% 19.7%
2 0.5% 4.3% 2.1%
3+ 0.1% 1.4% 0.3%

Consider a Home-Work-Home day for a regular commuter, a user might have some home-
based tours before-morning-commute (e.g. morning workout tour), a home-to-work commute
tour, some work-based tours (e.g. lunch tour) and a work-to-home commute tour and some
home-based tours after coming back from work (e.g. recreation tour).

Table 3.2 shows that 93.8% of the regular commuters go to work directly without any
before-morning-commute tours. 6.2% of commuters have one or more tours before-morning-
commute. 72.5% of people do not have any tours during work, which means they might have
lunch at their work place. 77.9% of people do not have any post-home activities.

Bhat summarized a similar table based on 1990 Bay Area Household Travel Survey by
the Metropolitan Transportation Commission (MTC) [17]. He showed that 96.9% of the
people did not have any before-morning-commute tours, 74% of the people did not have any
work-based tours and 79.7% of the people did not have any post-home tours. We can see
that the proportions of no tours in 1990 Bay Area Household Travel Survey are consistently
slightly higher than our numbers. There might be two reasons. First, people’s behavior
pattern might have shifted a little over 25 years. Second, users might tend to under-report
their activities and tours in travel surveys for privacy concerns. It is also worth noting
that the statistics on day structures are summarized based on the home and work locations
identified with the criterion we proposed. We might miss a certain proportion of workers
who do not have regular home or work hours, such as people who work at late night. This
might cause a little deviation when comparing our results with Bhat’s.
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Distribution of Activities for HWH Days

Table 3.3: Distribution of Activities for HWH Days

Before-
morning-
commute

Home-work
commute

Work-based Work-home
commute

Post-home

0 93.8% 58.5% 72.5% 42.4% 77.9%
1 3.9% 27.9% 16.1% 30.5% 12.3%
2 1.3% 9.2% 6.3% 15.6% 5.7%
3 0.5% 2.7% 2.5% 6.6% 2.3%
4+ 0.5% 1.7% 2.6% 4.9% 1.8%

Activities can happen during tours. Table 3.3 summarizes the distribution of number of
activities during each type of tour for San Francisco regular commuters.

We can see that 41.5% of people make at least one stop during home-work commute
tour, and 57.6% of people make at least one stop during work-home commute. This means
more people choose to participate in activities after work rather than before going to work.
The trend is also captured in the report by Bhat. However, in his report, the percentage of
people who participate in activities during home-work commute is 14.8% and the percentage
of people who participate in activities during work-home commute is 26%. These numbers
are lower than our numbers. Again we suspect people tend to under-report their activities
in manual surveys.

Interactions in Stop-Making Across Different Times of Day

Table 3.4: Interactions in Stop-Making Across Different Times of Day

Control Variable Value
Percentage of individuals having an activity during
Mid-day Evening commute Post-home

Had a mid-day Yes - 58.4 21.6
activity? No - 57.3 22.3
Had an evening Yes 27.9 - 19.9
commute activity? No 27.0 - 25.1
Had a post-home Yes 26.9 51.8 -
activity? No 27.7 59.2 -

To understand how people construct their daily life, it also helps to summarize the inter-
actions in activity participation across different times of day. From Table 3.4, we can see
that there is little interactions between having a mid-day activity and having a work-home
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commute/post-home activity. However, people having an evening commute activity are less
likely to have a post-home activity and vice versa, people who have a post-home activity are
less likely to have an evening commute activity. This is also observed in Bhat’s report [17].
They also found the reason for the interaction is that about half of the mid-day activities
are for eating purposes and the other half for work-related businesses. On the contrary,
around half of the evening commute activities and more than half of the post-home activ-
ities are for social-recreational or shopping purposes. There is a substantial substitution
in activity-participation between the evening commute and post-home periods. In contrast,
this substitution effect is minor between mid-day activities and evening commute/post-home
activities.

Also we found that for people who attend at least one evening commute or post-home
activities, they tend to leave their work place earlier, on average at around 4:30 pm. On the
other hand, commuters who do not have any evening commute/post-home activities, leave
work later, on average at about 6:10 pm.

3.5 Conclusion

In this chapter, we followed a common framework of extracting activity locations first by
spatial clustering followed by a filter based on dwell time. Our preprocessing method is
better in handling positioning errors and oscillation errors so that we can filter the obvious
oscillations without over-filtering short-term travel. With the activity sequences identified,
we can have a primary understanding about how people construct their daily activities. We
found similar patterns to the findings in Bhat’s report, which is based on 1990 Bay Area
travel survey [17]. However, we found evidence that people may under-report their daily
activities in manual surveys due to privacy concerns. This makes cellular data a better
source for understanding the true activity patterns.
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Chapter 4

Activity-Based Urban Mobility
Models from Cellular Data

4.1 Introduction

As we have reviewed in Chapter 2.3, most urban mobility models from cellular data focus
on a single aspect of urban mobility, such as activity location, duration or travel mode
between two activity locations. Trip purposes (or activity types) are not the focus in these
urban mobility studies. However, trip purpose is an important aspect in activity-based travel
demand models, as we have reviewed in Chapter 2.1. Typical activity-based travel models
used by practitioners are incredibly rich in describing the intricacies of human activities and
context of decision making in travel-related choices. For years, trip purpose is included in
discrete choice models of travel mode as context information [14]. It is a significant factor
influencing decisions on mode and other attributes of travel.

Therefore, one key research challenge lies in developing urban mobility models with trip
purposes (“home”, “work”, “dining”, “shopping”, “recreation”, etc.) recognized from noisy
locational data, such as anonymized mobile phone traces registered via cellular network,
with a level of activity-chain detail that is comparable in richness to that of a specifically
designed travel survey.

As we have reviewed main related works on urban mobility models, a summary of relevant
developments in activity-based urban mobility models is given below with respect to the main
methods and approaches.

Supervised models: Considering activity recognition, supervised learning methods
require data with labeled ground truth. The ground truth is either manually labeled [39,
53], or collected for a small group of participants from a survey accompanying GPS data [69].
Liu et al. classified activities into “home”, “work/school”, “non-work obligatory”, “social
visit” and “leisure” using different supervised learning models including SVM and decision
trees. Their data was collected from natural mobile phone communication patterns of 80
users over a year with labeled ground truth [83]. Liao et al. manually labeled ground truth
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to extract places and activities [78, 79]. However, this model was only applied to four people
and is not scalable to large populations.

Unsupervised models: On the other hand, unsupervised models are used to cluster
activities with similar temporal and spatial profiles. “Eigenbehavior” models by Eagle et al.
[37] and previously mentioned LDA and ATM models by [43, 41] all fall into this category.

Discriminative models: Discriminative state-space models such as CRFs [78, 79] are
more flexible when modeling the relationship between input, output and state variables.
However, due to their undirected nature, discriminative state-space models cannot be used
for activity generation directly.

Generative models: Hidden (semi-) Markov models are generative models that can
not only be used to analyze activity patterns, but also to generate new sequences [58]. Using
GPS data, Baratchi et al. developed a hierarchical hidden semi-Markov-based model that
captures both frequent and rare mobility patterns in the movement of mobile objects [10].

The study of most direct relevance to our work is by Widhalm et, al. [128]. They
used similar temporal-spatial features to infer urban activities with an undirected relational
Markov network. However, one major drawback of their model is the lack of cliques for con-
secutive activities, i.e., the study did not model activity transitions. This is unfavorable for
activity inference and new sample generation. Sampling consecutive activities independently
without considering the dependencies of following activities to previous activities is not ap-
propriate. To overcome this drawback, we explicitly model contextual dependent activity
transition probabilities to improve the accuracy of activity inference and the reliability of
new activity chain generation, as detailed in Chapter 4.4.

In this chapter, we develop generative activity-based urban mobility models from cellular
data with user activities recognized along the model development phase. These urban mobil-
ity models reveal temporal activity profiles and the pattern of transitions between activities.
We explore different ways of improving the urban mobility models, such as using input output
hidden Markov model (IOHMM) instead of standard HMM to incorporate context variables
in transition and emission models. We also explored using semi-supervised co-training to
direct the learning process so that we can have the generative power of IOHMM and the
discriminative model of its counterpart decision tree model at the same time. Validations
of models using CDR data are usually difficult due to its low spatial resolution. In addition
to validation through comparing aggregated statistics with travel survey by Widhalm et,
al.[128], we provide a direct validation on activity recognition using a set of “ground truth”
activities based on short range antennas. To validate the urban mobility model and to show
its capability of generating realistic activity chains, we use the model to generate synthetic
travel plans of individuals with home and work locations sampled from census data. We
show that the generated activity chains are realistic and are consistent with the distribution
reported in the travel surveys. The synthetic travel plans are used as inputs to an agent-
based microscopic traffic simulator. We validate the resulting traffic volumes against an
independent dataset of traffic counts collected on all the major freeways within the region
of study.
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4.2 Modeling Framework

For the activity-based urban mobility model, not only are we interested in understanding
the activity patterns themselves, we also aim to model these patterns in a generative proba-
bilistic framework suitable for generating inputs to activity-based travel micro-simulations.
Thus, we require generative models. At the same time, privacy considerations and lim-
ited availability of ground truth location data preclude us from using fully discriminative
supervised approaches, suggesting the choice of unsupervised and semi-supervised models.
In order to produce activity patterns for large populations of users, we build models that
can leverage distributed implementation and that can share parameters across multiple user
groups. These objectives led us to an IOHMM approach with modular heterogeneous tran-
sitions/emissions components with interpretable parameters, as detailed in Chapter 4.4.

The developed data processing and modeling pipeline is presented in Fig. 4.1. The left
column shows the primary data sources. This includes the cellular call detail data (CDR), a
comprehensive point of interest (POI) database within the region of interest, and the traffic
data (vehicle counts, volumes) to calibrate and validate the microscopic traffic simulation.
POI databases are usually available from open source maps such as OpenStreetMap, or
comercial APIs such as Google Places API and Factual Places API. These POI databases
provide a list of POIs and their category labels around a location upon query. These POI
information is useful in constructing the labeled activities as “ground truth”. The middle
column contains the key modules to develop the urban mobility models and the right column
shows the resulting products. Our key contribution is the activity recognition and generation
module outlined with the red dashed rectangle, and in particular the components shown in
shaded yellow.
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Figure 4.1: Modeling framework diagram. The left column represents the input to the
research; the middle column represents the key modeling components; and the right column
represents the products of the research. Our key contribution of activity recognition and
generation module are outlined with the red dashed rectangle, and the key components are
shown in shaded yellow.

With the processed activity sequences and inferred primary activities from previous chap-
ter, we can perform the secondary activity recognition and analyze the activity patterns, in-
cluding spatial-temporal profiles of activities and activity transition probabilities. These are
the cores of our urban mobility models. The resulting models and analysis will be the third
product of the research. To validate the activity recognition results, we collect a small set of
ground truth activities based on short range antennas which have relatively high spatial res-
olution. Point of interests (POI) data are joined with these short range antennas to identify
the possible activities performed there and a set of rules are used to help us collect labeled
activities, as detailed in Chapter 4.3. With the model coefficients and a set of sampled
home and work locations of the total population, we can generate activity sequences and
produce synthetic travel plans required by a microscopic traffic simulator. Ground truth
traffic counts data is used to validate the simulation results and showcase the validity of
the presented work for transportation planning and operations practice. This is the fourth
product in Fig. 4.1.
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4.3 Collection of Ground Truth Activities

Model selection for the activity-based urban mobility models includes the choice of hidden
states (activity types). One would like to set a high number of hidden states that encompasses
a wide variety of travel purposes, however, data quality and availability limits the number of
feasibly identifiable activities. Moreover, an ambiguity in semantic meaning of activity types
(consider “leisure” vs “recreation”) suggests limiting the number of hidden states to mitigate
confusion in practical applications. We describe here an empirical procedure for collecting
ground truth data on activity types that provide useful insights on these modeling choices.
The number of hidden states of the IOHMM is set according to the labels of these ground
truth activities. For CDR, it is usually hard to collect ground truth activities due to its
low spatial resolution. However, there is a set of short range antennas that serve only small
areas, which have relatively high spatial resolution. These short range antennas provide us
the opportunity to collect “ground truth” activities.
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(a) DAS in a major train station used by suburban commuters.

(b) DAS in a fitness center with multiple recreational health studios.

(c) DAS in a business district building with a large food court.

Figure 4.2: Structural patterns of empirical data collected at short range DASs well explain
the activity performed around the DASs: the number of activities start times within a course
of a week (left) and an empirical joint distribution plot of the visit duration vs start times
(right).

Short Range Distributed Antenna Systems (DASs)

A common component of a cellular networks is a set of distributed antenna systems (DASs)
that are short ranged, including Indoor DASs (IDASs) and Outdoor DASs (ODASs). IDASs
are usually installed in large commercial buildings such as shopping malls to ensure better
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Table 4.1: Rules of labeling secondary activities based on activity spatial-temporal features

Activity
Duration
(hours)

Start
hour

Context
Location
category

Lunch 0.25 - 1 11-12 Food
Dinner 0.25 - 2 17-18 Food

Shop 0.25 - 1
7-9
14-15
20-21

Home based or during
evening commute

Shop

Transport < 0.25 Commute Transport

Recreation 1-4 7-21
Home based or during
evening commute

Recreation

Personal any 7-21 Personal
Travel any any Out of the region

signal coverage. ODASs are usually installed at high occupancy outdoor venues such as
stadiums or concert arenas. These antennas are set up to maximize signal strength for
the users located in the building or stadium served by a given DAS, ensuring more precise
localization. Fig. 4.2 illustrates the times and durations of connections established by users
served by three particular DASs. The patterns are structured in time, indicating the activities
performed there are quite regular and their purpose can be inferred from domain knowledge
with high confidence.

Designation of Rules for Ground Truth

IDASs are often installed in large mixed-use commercial buildings. For example, one com-
mercial building with IDAS installed could have bakeries, restaurants, taxi stands, gym and
fitness centers, retail stores, as well as other businesses such as accounting and financial
services. We design a set of spatial-temporal decision rules to label a set of activities that
can be considered as the ground truth. For instance, if a user is connected to a DAS in
a food court at noon for one hour, this is most likely to be indicative of a lunch activity.
Although we do not have complete certainty that this is indeed the activity type, the event
is indistinguishable from a lunch break in terms of its mobility footprint, and with high
likelihood we interpret this as a food activity.

We first acquire place information from POI databases such as Google places API and
Factual Global Places API. Then, we join this information with the locations of the DASs
in order to extract activities that could be performed at each DAS. The place information
provides listings of local business and point of interest (POI) at most given locations. Since
multiple activities can happen at the same location, we need some additional rules based on
the spatial-temporal features of activities, as shown in Table 4.1. The “location category”
column of the table indicates that the category is among the category labels returned from
the APIs.
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4.4 Semi-Supervised IOHMM for Secondary Activity

Modeling

Given the user stay history, that is, a list of stay location features with start times and
duration, we would like to convert it into a sequence of activities enriched with semantic labels
(“shopping”, “leisure”, etc.), and a heterogeneous context-dependent probability model of
transitions between the activities.

IOHMM Architecture

zt-1

ut-1

xt-1

zt+1

ut+1

xt+1

zt

ut

xt

zt-1

ut-1

xt-1

zt-1

ut-1

xt-1

Figure 4.3: IOHMM Architecture. The solid nodes represent observed information, while
the transparent (white) nodes represent latent random variables. The top layer contains the
observed input variables ut; the middle layer contains latent categorical variables zt; and the
bottom layer contains observed output variables xt.

Hidden Markov Models (HMMs) have been extensively used in the context of action
recognition and signal processing. However, standard HMMs assume homogeneous transition
and emission probabilities. This assumption is overly restrictive. For instance, if a user
engages in a home activity on a weekday, and departs for the next activity in the morning,
she is likely going to work. If she departs in the evening, the trip purpose is likely to
be recreation or shopping. Therefore, we propose to use the IOHMM architecture that
incorporates contextual information to overcome the drawbacks of the standard HMM. In
Fig. 4.3, the solid (blue) nodes represent observed information, while the transparent (white)
nodes represent latent random variables. The top layer contains the observed contextual
variables ut, such as time of day, day of the week, and information about activities in the
past (such as the number of hours worked on that day). Note that the values of the input
variables ut used to represent the context have to be known prior to a transition. The middle
layer contains latent categorical variables zt corresponding to unobserved activity types. The



CHAPTER 4. ACTIVITY-BASED URBAN MOBILITY MODELS FROM CELLULAR
DATA 37

bottom layer contains observed variables xt that are available during training of the models
(but not when generating activity sequences), such as location features and duration of the
stay.

Likelihood of a data sequence under this model is given by:

L (θ,x,u) =
∑
z

(
Pr (z1 | u1;θin) ·

T∏
t=2

Pr (zt | zt−1,ut;θtr) ·

T∏
t=1

Pr (xt | zt,ut;θem)
)
. (4.1)

IO-HMM architecture has been well described in [15]. Variable notation and important
differences between IO-HMM and standard HMM are summarized in Table 4.2.

Parameter Estimation

IOHMM includes three groups of unknown parameters: initial probability parameters (θin),
transition model parameters (θtr), and emission model parameters (θem). Expectation-
Maximization (EM) is a widely used approach to estimate the parameters of IOHMM. The
EM algorithm consists of two steps.

E step: Compute the expected value of the complete data-log likelihood, given the
observed data and parameters estimated at the previous step.

M step: Update the parameters to maximize the expected data likelihood given by:

Q
(
θ,θk

)
=
∑
i=1

γi,1 log Pr (z1 = i | u1;θin)

+
T∑
t=2

∑
i

∑
j

ξij,t log Pr (zt = j | zt−1 = i,ut;θtr)

+
T∑
t=1

∑
i

γi,t log Pr (xt | zt = i,ut;θem) . (4.2)

In the above, Q
(
θ,θk

)
is the expected value of the complete data log likelihood; k

represents the EM iteration; T is the total number of timestamps in each sequence; ut,
zt and xt are the inputs, hidden states, and observations at step t; and θ are the model
parameters to be estimated. The meaning of other variables is given in the first column of
Table 4.2.
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Transition and Emission models

The parameter estimation procedure of IOHMM described above implies that any supervised
learning model that supports gradient ascent on the log probability can be integrated into the
IOHMM. For example, in Equation 4.2, each of the model parameters (θ) can be estimated
with neural networks. A neural network with a softmax layer can be used to learn the
initial probability parameters (θin) through back-propagation, another neural network with
a softmax layer for learning the transition probability parameters (θtr), and a third with
customized layers for estimating emission model parameters (θem).

Note that the EM algorithm can be naturally implemented in a MapReduce framework,
a programming model and an associated implementation for processing large data sets on
computing clusters. The Expectation step can be fit into the Map step, calculating the
posterior state probability γ and posterior transition probability ξ in parallel for each training
sequence. The estimated posterior probabilities γ and ξ are collected in the Reduce step.
The source code of an implementation developed as a part of this research is available from
https://github.com/Mogeng/IOHMM.

Semi-Supervised Co-Training

Supervised learning of activity types requires data with labeled ground truth. In urban
mobility, the ground truth activities are derived by manual label [78], or collected for a small
group of participants from a survey accompanying GPS data [69]. Privacy concerns and
spatial resolution of CDR data precludes us from obtaining extensive ground truth labels.
While fully unsupervised models can be used to cluster activities with similar temporal and
spatial profiles, the recognized activities may not correspond to conventional activity types.
In this subsection, we propose to use semi-supervised learning to reach a compromise – we
use a small set of ground truth activities based on short range distributed antenna systems
(DASs) to direct the learning process.

Traditionally, semi-supervised learning is used to improve classifier performance, that is,
to use “cheap” unlabeled data to assist training of labeled data. In our work, we adopt
another view of semi-supervised approach, that is, we use labeled data to help direct the
pattern recognition from unlabeled data. Zhu [144] did a thorough literature review on semi-
supervised learning methods, including self-training, co-training, graph-based methods and
Expectation-Maximization (EM) in generative models. In our work, we took the advantage
of EM in generative models and co-training to improve the activity pattern recognition
performance.

The idea behind co-training is that one uses two views of a sample that inform the learning
algorithms by teaching one another. Ideally each sample is represented by two independent
sets of features, which is however unlikely to exist [47]. Co-training can also be applied by
using the same set of features but two different classifiers, which has been proven to perform
well [52]. It is expected to be less sensitive to mistakes than self-training.
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In this work, we choose to use a semi-supervised IOHMM with EM algorithm as the
generative classifier, and a decision tree (DT) classifier as its discriminative counterpart.
With this combination, we have both the classification power of discriminative model and
the generative power of IOHMM models. We will also include a self-training experiment
using only the semi-supervised IOHMM with EM algorithm as the baseline.

Algorithm 1 Self-training of urban activities

Input: Labeled data L, unlabeled sequences S, confidence thresholds θ
Output: IOHMM model m.

1: while L changes do
2: Train semi-supervised IOHMM m from S and L.
3: Classify the unlabeled data with m and
4: Add data labeled by m with confidence ≥ θ to L.
5: end while
6: return m.

Algorithm 2 Co-training of urban activities

Input: Labeled data L, unlabeled sequences S, confidence thresholds θ1 and θ2.
Output: IOHMM model m1 and DT model m2.

Initialization: L1 = L2 = L
1: while L1, L2 changes do
2: Train semi-supervised IOHMM m1 from S and L1.
3: Train DT model m2 from L2.
4: Classify the unlabeled data with m1 and m2 separately.
5: Add data labeled by m1 with confidence ≥ θ1 to L2.
6: Add data labeled by m2 with confidence ≥ θ2 to L1.
7: end while
8: return m1, m2.

The difference between IOHMM and semi-supervised IOHMM lies in the forward-backward
algorithms. If we have ground truth activity (hidden states z) for timestamp t, then we will
use Ij,t to replace ϕij,t where Ij,t is 1 if the hidden state zt = j at timestamp t in the labeled
data, 0 otherwise, since Pr (zt = j | zt−1 = i) reduces to Pr (zt = j) with observed informa-
tion. A summary of the differences between HMM, IOHMM and semi-supervised IOHMM
is presented in TABLE 4.2.

4.5 Model Specifications

As we have mentioned, there are two components in the co-training process, one is the
generative IOHMM, and the other is the decision tree classifier. We will present our speci-
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fications (features) in this section. Note that we use the same IOHMM specification for the
unsupervised IOHMM and HMM model where it applies.

IOHMM Specification

Input-Output Variables

In practice, models of simple structure (linear, multinomial logistic, Gaussian) with inter-
pretable variables and parameters are preferred. For example, in an application below, we
include the following input variables ut: (1) a binary variable indicating whether the day
is a weekend; (2) five binary variables indicating the time of day that the activity starts,
morning (5 to 10am), lunch (10am to 2pm), afternoon (12 to 2pm), dinner (4 to 8pm) or
night (5pm to midnight); and (3) for the users with identified work location, the number of
hours the user has spent at work this day - this variable contains accumulated knowledge on
the past activities.

The IOHMM model also includes the following outputs xt at each timestamp t: (1) x(1),
the distance between the current stay location and the user’s home; (2) x(2), the distance
between the current stay location and the user’s work place; (3) x(3), the duration of the
activity; and (4) x(4), whether the user has visited this stay location cluster previously.

The selection of the inputs and outputs is guided by common knowledge. The activity
start time is relevant for differentiating activity types. The number of hours worked in a day
is a strong indicator of a person’s likelihood to return to work (after a midday activity, for
example). The model inputs contain information that is known at the start of the transition
to a new activity. In contrast, the output features contain information that is not available
at the transition to a new activity. For example the duration and the location or land-use in
the vicinity of a new activity is unknown at the time of the transition. In other words, output
variables can be observed when training the models, but must be inferred when sampling
sequences of activities from the model.

The model outputs have a strong dependence on the activity type. For example, the
distance that a person is willing to travel from home for a leisure trip may be longer than
the distance that a person is willing to travel for a shopping trip. The duration depends
both on the activity type, activity start time, and on the previous activities in the day. e.g.,
the expected duration of a work activity will decrease if a person has already worked in the
day.

Initial, Transition and Emission Models

Multinomial logistic regression models are used as the initial probability model and transition
probability models. Note that for succinctness, we use θ in each of the following equations
to represent the θin,tr,em in Equation 4.2. The first term of Equation 4.2 can be written as:

Pr (z1 = i | u1;θ) =
eθ
iut∑

k e
θkut

. (4.3)
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The θ for initial probability model is a matrix with the ith row (θi) being the coefficients
for the initial state being in state i. The second term of Equation 4.2 can be written as:

Pr (zt = j | zt−1 = i, ;θ) =
eθ
j
iut∑

k e
θki ut

. (4.4)

The θ for transition probability models is a set of matrices with the jth row of the ith

matrix (θji ) being the coefficients for the next state being in state j given the current state
being in state i.

To gain interpretability, we use linear models for the outputs represented as continuous
random variables. We assume a Gaussian distribution for the distance to home and work
variables x(1) and x(2) and the activity duration variable x(3). Where x(1) and x(2) depend
only on the hidden activity type, the duration variable x(3) depends on the hidden activity
and also the contextual input variables. The third term of Equation 4.2 can be written as:

Pr (xt | zt = i,ut;θi) =
1√

2πσi
e
− (xt−θi·ut)

2

2σ2
i , (4.5)

The θ for one such output emission model is a set of arrays where θi and σi denote the
coefficients and the standard deviation of the linear model when the hidden state is i. While
we chose to represent outputs x(1),(2),(3) as Gaussian random variables, Gamma regression
could be applied to duration x(3) to capture the non-negative, continuous, and right-skewed
nature of these response variables. Moreover, response variables x(1) and x(2) could be mod-
eled simultaneously using multivariate linear regression to capture the correlations between
distance to home and distance to work.

Output x(4) is a binary variable, and we used logistic regression model as the output
model. The probability in the third term of Equation 4.2 can be written as:

Pr (xt = 1 | zt = i,ut;θi) =
1

1 + e−θi·ut
. (4.6)

Finally, we emphasize that an activity label is just a latent categorical variable. A seman-
tic label can be associated to it following an in-depth analysis the we present in Section 4.7
below.

Decision Tree Specification

Decision trees are interpretable classifiers that are capable of generating arbitrarily complex
decision boundaries. They have been used successfully in many diverse areas [103]. In this
work, we use CART (Classification and Regression Trees) classifier. The features we include
are the combination of input and output features in IOHMM.
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4.6 Description of Data

The data we used in this chapter are the processed activity (yet unlabeled) sequences from
the previous chapter. Each sequence contains the one month activities from a San Francisco
regular commuter. As we mentioned, the median number of activities is 4.4 per weekday
and 4.0 per weekend. The model was trained on a group of 20,000 anonymous San Francisco
residents (about 2% of the population).

4.7 Experimental Results

In this section we present the results of the unsupervised IOHMM and co-training IOHMM
that have been fit to the four super-districts that make up the city of San Francisco.

Two temporal representations help identify the latent semantics of the hidden states
(i.e. activities). Fig. 4.4a depicts the distribution of start times of activities using unsu-
pervised IOHMM model and Fig. 4.4b depicts the distribution of start times of activities
using co-training. The y-axis gives the number of activities started at a given hour. For the
unsupervised model, by evaluating these weekly activity start-time patterns in combination
with the output coefficients in Table 4.3, and the joint distribution of start time and duration
in Fig. 4.5 we can assign semantic labels for activity type to each of latent activity states.
From the two figures we can see that the activity profiles recognized from co-training are
very similar to the ones recognized by unsupervised IOHMM. We will discuss the results
from unsupervised IOHMM in the following sections since the unsupervised model can be
applied to areas where high resolution data (such as short range antennas) is not available
thus ground truth data cannot be collected to assist semi-supervised models.
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(a) Unsupervised IOHMM

(b) Co-training

Figure 4.4: Number of activities (labeled per highest posterior probability) by their respective
start time within a course of a week.

The coefficients of the unsupervised IOHMM emission models are reported in Table 4.3.
Recall that we use linear models as the output models for x(1), distance to home, x(2),
distance to work, and x(3), duration of the activities. Logistic regression was used as the
output model for x(4), cluster has been visited before. Since x(1) and x(2) depend only on
the hidden activity, only the intercepts are estimated. For x(3), we specify that the duration
depends on activity type and also on the “day of week”, “time of day” and “hours worked”
input variables, there are 8 coefficients estimated per hidden state for this output. Since x(4)

“has visited” is a binary variable, only one parameter per hidden state is identifiable.

Primary Activities: Home and Work

Activity state 0, shown in green in Fig. 4.4a is the “home” activity. The typical start time
ranges from 3pm to midnight. The home activity exhibits greater variation in start time
on Friday and weekends than on other weekdays. The positive “weekend” coefficient on the
duration of this activity indicates that people stay at home longer during weekends.

The temporal profile of home activities in Fig. 4.5a has two major clusters. The upper
cluster indicates regular overnight home activities. This cluster can be further separated into
two clusters. One peaks at 6pm, representing the home activity directly after work. The
other peaks at 9pm, representing the home activity after some secondary activities in the
evening. Since the home activity duration is generally set by the regular work start hour,



CHAPTER 4. ACTIVITY-BASED URBAN MOBILITY MODELS FROM CELLULAR
DATA 45

T
ab

le
4.

3:
U

n
su

p
er

v
is

ed
IO

H
M

M
M

o
d
el

co
effi

ci
en

ts
fo

r
th

e
ou

tp
u
t

va
ri

ab
le

s
p

er
h
id

d
en

ac
ti

v
it

y
(s

ee
in

te
rp

re
ta

ti
on

in
th

e
te

x
t)

.

S
ta

te
:

la
te

n
t

ac
ti

v
it

y
D

is
t

to
h
om

e
D

is
t

to
w

or
k

D
u
ra

ti
on

V
is

it
ed

co
n
st

an
t

w
ee

ke
n
d

m
or

n
in

g
lu

n
ch

af
te

rn
o
on

d
in

n
er

ev
en

in
g

h
ou

rs
w

or
ke

d
n
o

ye
s

0:
H

om
e

0.
00

7.
22

9.
45

2.
17

-6
.2

9
-2

.5
7

-0
.9

4
0.

20
1.

29
-0

.0
3

0
2.

19
1:

W
or

k
7.

22
0.

00
4.

00
-0

.0
2

2.
98

0.
76

0.
19

-0
.6

4
-0

.1
0

-0
.2

6
0

1.
76

2:
F

o
o
d
/S

h
op

2.
37

1.
90

0.
84

0.
18

0.
00

-0
.0

1
-0

.0
4

-0
.0

1
0.

25
0.

00
0

-0
.5

3
3:

S
to

p
in

T
ra

n
si

t
3.

21
3.

63
0.

16
0.

00
-0

.0
1

0.
00

0.
00

0.
00

0.
00

0.
00

0
-0

.4
6

4:
R

ec
re

at
io

n
2.

36
15

.0
3

2.
76

0.
17

-0
.4

2
-0

.6
4

-0
.4

5
-0

.6
8

0.
37

0.
04

0
-0

.4
4

5:
P

er
so

n
al

18
.7

9
16

.9
4

0.
93

0.
46

0.
17

0.
12

-0
.0

5
-0

.0
3

-0
.0

5
0.

01
0

-1
.3

5
6:

D
is

ta
n
t

T
ra

ve
l

78
7.

94
78

4.
71

4.
26

0.
78

-0
.7

5
-0

.3
9

-0
.7

6
-1

.2
7

1.
11

0.
29

0
-1

.1
7



CHAPTER 4. ACTIVITY-BASED URBAN MOBILITY MODELS FROM CELLULAR
DATA 46

the downward slope of the upper cluster signifies that if a user arrives at home later in the
day, they are likely to spend fewer hours at home.

Activity state 1, shown in blue in Fig. 4.4a is the “work” activity. It has highest peaks
in Fig. 4.4a, signifying that it is a very regular activity with concentrated start times.

According to Table 4.3, a work activity has a base duration of 4 hours, if it starts in
the morning, the user is likely to stay 2.98 hours longer, that is 6.98 hours in total; if
it begins in the afternoon or evening the average duration is shorter. As a compounding
effect of returning to work in the afternoon or evening, the “hours worked” column indicates
that the expected duration will decrease by 0.26 hours for every hour that the user already
spent at work in the day. The “is weekend” column indicates that if a user chose to work
on weekend, the average work activity duration is not significantly different from that on
weekdays; note that (from Fig. 4.4a) the probability of visiting the work activity is much
lower on the weekend. The “visited” column indicates the propensity of the location being
frequently revisited. For the work activity, the coefficient 1.76 indicates a very high likelihood
of returning to the same location to perform the same activity.

From Fig. 4.5b, we can see that the temporal profile of work activities has three clusters.
The upper cluster indicates regular “9 to 5” work activities without a break. The lower
left cluster represents the morning work activities and the lower right cluster represents the
afternoon work activities. All three clusters are tilted at -45 degrees. This is due to the
usually fixed lunch hour at noon and end of work at about 5pm.

Secondary Activities

The remaining states are secondary activities. “Food/shop” activity peaks in start time
around noon and in the evening. As shown in Table 4.3, “food/shop” activity has an average
duration of about 0.84 hours, and is close to both home and work place. As shown in
Fig. 4.5c, the duration of this activity is slightly longer in the evening. From Fig. 4.4a we see
that, on weekends, this activity peaks at noon. The weekend activity duration, according to
Table 4.3, is about 0.2 hours longer than it is on weekdays.

“Short stop in transit” is located close to home and work, and has an average duration
of about 10 minutes, according to Table 4.3. From Fig. 4.5e, we can see that this activity
peaks in the early morning and late afternoon right before home activity. Fig. 4.5d and
Table 4.3 also indicate that the duration is not affected by time of day or day type (weekend
vs. weekday). From Fig. 4.4a, we can see that this activity is visited more frequently
on weekdays than weekends. It is worth noting that although short stop in transit is less
revisited than home and work activities, it is more likely to be revisited compared to other
activities.

As seen in Table 4.3, the “recreation” activity is quite close to home but far from the
work place. The state has an average duration of 2.7 hours, much longer than the durations
of food/shop activity and short stop in transit. This activity last longer in evening hours or
weekends. As shown in Fig. 4.4a, this activity often starts in the early morning or evening
hours on weekdays, and tellingly, more users engage in this activity on Fridays and weekends.
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Activity state 5 is “personal” business. The distances from home and work are 19 and 17
miles, respectively, and the average duration of this activity is 0.93 hours. This state could
encompass both off-site work related trips and/or longer-distance dining or leisure activities.
As shown in Fig. 4.4a. Due to the distance of this activity, more users engage in this activity
on weekends and this activity is least likely to be revisited.

Activity state 6, “distant travel”, or more accurately activities that occur while traveling,
is the most irregular and infrequent. The average distances from home and work are quite
high (average 800 miles). This activity type seems to occur predominantly on Fridays and
weekends according to Fig. 4.4a.

(a) 0: Home (b) 1: Work (c) 2: Food/Shop

(d) 3: Stop in Transit (e) 4: Recreation (f) 5: Personal

Figure 4.5: Joint distribution plot of duration and start hour per activity type. The labels
are gained by assigning the activity to the one with the highest posterior probability after
training.
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(a) Morning (6-10am) (b) Night (5pm-midnight)

(c) Afternoon (12-2pm), users who have not vis-
ited work

(d) Afternoon (12-2pm), users who have worked
5 hours

Figure 4.6: Heterogeneous activity transition matrices under different contextual variables.

Activity Transitions

We omitted “distant travel” activity from the transition matrix since if a person is traveling
a long distance, the next activity is also most likely to be categorized as “distant travel”;
the distance dominates the state. Fig. 4.6a shows the transition matrix associated with
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mornings. The labels on the left indicate the state the user is transitioning from, and
the labels on the top indicate the state the user is transitioning to. The most significant
transition is from “home” to “work.” Fig. 4.6b shows the transition matrix associated with
evenings. The transitions from all other states to “home” are significant. However, if the
user’s transition from activity is “home”, then she is more likely to transition to “food” or
“recreation” activities. Fig. 4.6c shows the transition matrix in the afternoon, for users who
have not yet visited the “work” state in the day. For these users, there is a high probability
of going to work. As in Fig. 4.6d, by keeping all the input context information equal as in
the previous case, and only specifying that the simulated user has previously worked for 5
hours on that day, one can see that the probability of going to work is significantly reduced.

4.8 Model Validations

Recognition Accuracy

The distribution of collected ground truth activities are biased and do not correspond to the
true distribution of urban activities. To reasonably evaluate performance of IOHMM, we
need to sample a subset of ground truth activities so that the sample weight is consistent
with the true distribution of urban activities. According to the the distribution given by the
2015 Travel Decisions Surveys (TDS), conducted by San Francisco Municipal Transportation
Agency (SFMTA)[104], we sampled (scaled) 10000 home activities, 7500 work activities,
5000 Food/Shop activities, 7500 Stop in Transit activities, 3000 recreation activities, 4000
personal activities and 1000 Travel activities.

Table 4.4: Confusion matrix of inferred activities vs “groun truth” activities

Ground Truth
Annotations

Home Work Food/Shop Transit Recreation Personal Travel
Home 9994 0 0 0 1 1 4 0.999

Recall

Work 0 7495 0 0 0 2 3 0.999
Food/Shop 0 0 3013 413 1307 267 0 0.603

Transit 0 0 31 6980 359 130 0 0.931
Recreation 0 0 1519 0 1403 78 0 0.468
Personal 0 0 321 17 84 3426 152 0.857
Travel 0 0 0 0 0 11 989 0.989

1.000 1.000 0.617 0.942 0.445 0.875 0.862
0.876

Precision

For the unsupervised IOHMM model, we get 87.6% accuracy on all activities, with a
macro-precision of 82%, a macro-recall of 83.5% and a macro-f1 score of 0.827. From the
confusion matrix in Table 4.4, we can see that most confusion happens between “food/shop”
and “recreation” activities. This is natural because “food/shop” and “recreation” activities
are similar in time and space. We also notice that some “food/shop” activities are mistaken as
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Table 4.5: Comparison of model accuracy

Model
All Activities Secondary Activities

Accuracy F1 Accuracy F1
HMM 0.859 0.783 0.739 0.698

Partial IOHMM 0.866 0.824 0.752 0.754
Full IOHMM 0.876 0.827 0.771 0.758
Self-training 0.930 0.915 0.875 0.883
Co-training 0.961 0.949 0.930 0.930

a “short stop in transit”, this is because some “food/shop” activities and “stop in transit” are
close in space, thus some short “food/shop” activities are taken as “stop in transit” because of
the duration. Since the activities that we labeled as “personal” are mainly medium distance
activities that could encompass longer-distance dining, some “food/shop” activities could
also be confused as “personal”.

To compare the performance of different models, we also report the accuracy of (1)
Hidden Markov Models (HMM) with the same output as IOHMM but with no inputs; (2)
Partial IOHMM with transition probabilities dependent on inputs while all emissions are
only conditioned on hidden states; (3) Full IOHMM as described; (4) Self-training with EM;
and (5) Semi-supervised co-training, in Table 4.5.

We report the accuracy and macro-f1 score as metrics of success for our models. F1 score
can be interpreted as a weighted average of the precision and recall. For multi-class tasks,
macro-f1 score calculates the average per-class precision and recall and then perform the f1
score calculation.

Comparing full IOHMM, partial IOHMM, and standard HMM, we can see that the full
IOHMM has the best performance. Since “home” and “work” are rather easy to infer, we
also report the performance for secondary activities only. For the five class classification
task, we get 77.1% accuracy. Another observation is that the macro-f1 score of the partial
and full IOHMMs do not differ too much, but all outperform the pure HMM. These results
exhibit the benefits of the context-dependent transition models. Since “home” and “work”
have high accuracy, the improved performance is mainly in secondary activity recognition.
In all cases, f1 score is smaller than the accuracy. This is because the class that has higher
support also has higher accuracy. Since accuracy score is a weighted average with support
while macro-f1 score is an unweighted average, f1 score is lower than the accuracy.

On the other hand, comparing the semi-supervised approaches with the unsupervised
approach, we can see that semi-supervised co-training has the best recognition accuracy and
f1 score, which outperforms the self-training results, which outperforms the unsupervised
IOHMM. As expected, this improvement on the activity recognition is due to the learning
direction given by the ground truth activities. We acknowledge that the ground truth activ-
ities used in the semi-supervised methods have the same temporal-spatial distribution as the
ground truth activities used for validation. Since they were collected strictly, there might
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be overfitting issues which results in the very high recognition accuracy of semi-supervised
models. We show in Chapter 5 that semi-supervised models are also better in predicting
activity sequences than unsupervised models in a totally different task, which shows the
advantage of the directed learning process.

Survey-derived statistics

Another way to evaluate the method is to compare our model with aggregated statistics from
surveys. We consider the Travel Decisions Survey (TDS), which contains 1000 random digit
dial and cell phone samplings in the area of interest. Overall, the activity proportions of our
model match with TDS. If we split our Food/Shop activities into half food and half shop,
food and recreation is 20% in our model versus 21% in TDS; shopping and errand (personal)
is 21% in our model versus 20% in TDS. Work/school activity is 22.5% in our model vs 23%
in TDS. The main difference is with the “Home” activity, for which TDS report a proportion
of 35%, which is a little higher than the proportion of 30% reported by our model. This
discrepancy is likely due to under-reporting of secondary activities in TDS.

4.9 Activity Sequence Generation from an IOHMM

One of our goals is to enable activity-based travel demand models that use cellular data
to create synthetic agent travel patterns without compromising the privacy of cell phone
users. As such, we test our models’ generative power in the Bay Area context — we simulate
463, 000 agents in the Bay Area (15% sample of the commuters) and create a day-long activity
plan for all agents with anticipated start-times, locations, and durations of all activities in
the day.

As travel patterns vary greatly over the region, we trained 34 IOHMMs, each for a
subset of cell phone users residing within each of the 34 super-districts as defined by the San
Francisco Metropolitan Transportation Commission (MTC). Using the Iterative Proportional
Fitting [45] procedure to fit the population marginals with the census data, we sample
residents home and work locations to create synthetic driver with a predetermined home
TAZ and work TAZ. The numbers were further adjusted according to occupancy statistics
from CHTS (single driver, two and multi-person carpool). The precise home and work
locations (lat/lon coordinates) are sampled uniformly within the home and work TAZs.

Each simulated user is assumed to start her day at home. The home departure time and
the transition time are drawn from their respective distributions to determine the start time
of the first activity. Home departure times for the first non-home activity of the day are
modeled as Gaussian random variables with super-district dependent mean departure time
and standard deviation calibrated from CDR records. As IOHMM is trained on the observed
travel sequences with revealed departures times, we assume that it captures the dependencies
of transition times on the origin and destination, travel mode and traffic conditions.
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Generation continues until the activity start time reaches midnight. At every step, previ-
ous activity state and context information are used to obtain transition probabilities from the
IOHMM and sample the next activity state according to the transition probabilities. After
the activity type has been selected, the activity duration is sampled from a truncated nor-
mal distribution with mean and standard deviation coming from output x(3) of the IOHMM.
Next, the activity location is selected - if the activity is a home-activity or work-activity, the
exercise is trivial. If not, we use IOHMM outputs x(1) and x(2) - the distance between the
stay location and the user’s home output and distance from the stay location to the user’s
work output from the IOHMM to generate a new destination TAZ from the choice set of
TAZs within matching distances. The precise location of the activity is sampled uniformly
from the selected TAZ. Note that future research on destination location choice models could
improve the location selection process for secondary activities.

Due to the nature of IOHMM, we must filter out and discard unrealistic activity chains
generated in this process. One reason of the unrealistic chain is due to the softmax approx-
imation of the transition probabilities - though there is strictly no transitions from home
to home or from work to work (thus the probabilities should be strictly zero), the softmax
function cannot be exactly zero. The second reason of unrealistic chain is due to the coarse
representation of the contextual variables, especially the temporal variables - different start
times may end up with the same contextual variables. This problem can be solved by in-
creasing the dimension of the contextual variables. However, this may cause the overfitting
issue thus is not presented in this work without sufficient amount of data. We determine
unrealistic activity chains to be chains that do not end the day at home and activity chains
where 3 or more of the same activity type occur in a row. These filters constrain the overall
structure of the day to be aligned with a feasible/conventional day structure. For simulation
purposes we also filter activity chains that include long-distance travel out of the Bay Area.
Fig. 4.7 presents 4 common and interesting (among top 20) activity patterns generated from
IOHMM model.

Overall, the aggregated statistics of activity patterns match with the travel surveys. For
example, the percentage of US employed person who go to work on an average weekday is
82.9% [73], this number is 83.7% for our simulated population. Considering the summary
statistics for people who go to work, we compare the percentage of people who participate
in activities at different times of day. The percentage of people participating in at least one
activity before morning commute, during morning commute and after work is 3.1%, 14.8%
and 46.3% in the Bay Area Travel Survey [17] and these numbers are 2.9%, 15.2% and 43.7%
in our simulated population.
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Figure 4.7: Distribution of activity start times over a course of a day of four example common
activity patterns generated from the Bay Area IOHMMs. Note that all simulated activitity
patterns start at home, so (a) designates the Home-Work-Home travel pattern. The x-axis
designates the start time of the activity, the y-axis represents the proportion of trips (for
users with this activity pattern) starting at this time.

4.10 Evaluation via Traffic Micro-simulation

Traffic micro-simulation is a conventional approach in studying performance and evaluating
transportation planning and development scenarios. Ground truth observations of the flows
at sections of the road network provide an independent data source that can be used to
evaluate the accuracy of the activity generation model. We present here a summary of the
validation results based on the traffic volume data collected by the California DOT freeway
Performance Management System (PeMS) in the 9 counties of the Bay Area (see Fig. 4.8).
Micro-simulation of a typical weekday traffic is performed using the MATSim platform [9].
MATSim is a state-of-the-art agent based traffic micro-simulation tool that performs traffic
assignment for the set of agents with pre-defined activity plans. It varies departure times
and routing of each agent depending on the congestion generated on the network, in order to
maximize agent’s daily utility score. We have compared the results of the flows produced on
the Bay Area network containing all freeways and primary and secondary roads (a total of
24’654 links) from the generated activity sequences with the observed traffic volumes. As the
model is trained to reproduce average weekday, hourly traffic volumes are taken as averages
over all weekdays (except for Mondays and Fridays) of Summer 2015. The simulation is run
at 15% of the total population, and the road capacities as well as total resulting counts are
scaled accordingly.

Note that observed traffic counts are not used for model calibration. They are used as
independent data to evaluate the validity of the synthetic travel sequences produced with
IOHMM. The locations of the sensors on the road network are presented in Fig. 4.8. It
also demonstrates examples of the three characteristic hourly volume profiles comparing
the modeled and observed counts. The results for the full set of sensors are presented
in Fig. 4.9. Fig. 4.9a shows a comparison of the volumes for three distinct time periods.
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Fig. 4.9b summarizes the validation results over all 600 sensors in terms of the relative error
(% volume) over-/under-estimated by the model as compared to the ground truth. One
can notice lower accuracy at night and early morning hours explained by the fact that the
model was developed and applied on a subset of daily commuters and did not include a
large portion of trips performed by unemployed population and people working from home,
besides multiple other traffic components (commercial fleets, taxis, visitors) that are out of
scope of the model. Despite it’s relative simplicity, the model has demonstrated a reasonable
accuracy (r2 = 0.81, p < 10−3 in Fig. 4.9a ) as compared to the ground truth data.
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Figure 4.8: A fragment of the SF Bay Area road network with the location of 600 traffic
volume detectors used for validation (shown with small black dots). Inlet graphs illustrate
three sample hourly vehicle volume profiles for observed (orange) and modeled (blue) flows
on a typical weekday in Summer 2015.
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(a) Modeled vs observed volumes at 8am
(black),1pm (red) and 6pm (blue) (r2 =
0.81, p < 10−3).

(b) Mean relative error (%) over all 600 sensors of
modeled vs observed traffic volumes during the day
over all 600 sensors.

Figure 4.9: Micro-simulation validation with the observed freeway traffic volumes

4.11 Conclusion

In this chapter, we developed scalable and interpretable generative activity-based urban mo-
bility models for regional mobility analysis from cellular data. As an illustration, we inferred
the activity patterns including primary, secondary activities and heterogeneous activity tran-
sitions of a set of anonymized San Francisco Bay Area commuters using unsupervised and
semi-supervised generative state-space models. We validated this inference by comparing it
with (1) 2015 Travel Decisions Surveys (TDS) on the aggregated activity statistics; and (2)
a set of ground truth activities based on short range distributed antenna system (DAS); (3)
observed volumes of vehicular traffic flow in the regional road network on an average week-
day. To examine the generative power of the model, we synthesized travel plans for each
agent with home and work locations sampled from census data. An agent-based microscopic
traffic simulation was conducted to compare the resulting traffic with real traffic, and a rea-
sonable fit accuracy was observed. An interesting extension to this work is to compare the
activity sequence generation power of different techniques, from baseline models with only
home and work activities to more advanced IOHMM models and recurrent neural network
such as long short term memory (LSTM) models.

Several improvements can be built upon the presented work. Partitioning a population
into sub-groups (whether socially or spatially) for shared parameter modeling is a partly open
problem. Currently we approached it by defining rules to identify groups of a similar day
structure, and applying geographic constraints. This step will be compared to an alternative
specification that involves a mixture of urban mobility models.
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With privacy concerns and data limitations in mind, the location choice model imple-
mented in this chapter is relatively simple. Future work may incorporate a discrete choice
model on a set of TAZs so that locations can be directly sampled when generating activity
sequences.

Activity patterns inferred and analyzed in this chapter reveal the spatial and temporal
profile of activities of regular commuters, as well as the heterogeneous transition probabilities
dependent on contextual information. The generative nature of our proposed model allows
to sample accurate travel scenario inputs needed by activity-based travel micro-simulation
models. A range of issues remain where the advantages of using cellular data alone are
not straightforward. This includes travel mode detection, identification of the number of
car-pools, modeling short-range and non-motorized travel to name a few. Nevertheless, such
methods derived from automatically and continuously collected cell phone data are bound to
make a substantial impact on urban and transportation planning, and represent a significant
improvement upon the state-of-the-art.
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Chapter 5

AM-PM: Travel Demand Nowcasting

5.1 Introduction

Travel demand forecasting has been an integral part of most Intelligent Transportation Sys-
tems research and applications [123]. Long term forecasts (days, months, or even years
ahead) provide the basis for transportation planning and scenario evaluation. For example,
transportation planers may need to answer the question of: how many people will be affected
if a new subway line is introduced? How will travel patterns be changed if a major bridge is
upgraded? These studies typically use data collected from travel surveys that are infrequent,
expensive, and reflect changes in transportation only after significant delays.

On the other hand, short term prediction (seconds to hours ahead) studies traffic con-
ditions in a transportation network based on its past behavior, which is critical for many
applications such as travel time estimation, real time routing, etc. These studies use high-
resolution data, usually collected from sensors and detectors on freeways. However, one
main concern is that these studies are limited to regions where high-resolution data is avail-
able. Moreover, such forecasts can only inform local operations such as adapting traffic light
timing in response to growing queues.

One missing element of comprehensive transportation systems optimization systems is
medium term forecasting (hours to days ahead), which, for example, could answer the ques-
tion: based on observations of early morning or noon traffic, what will traffic be like dur-
ing the evening commute? This could be a critical piece of knowledge used in the design
of demand-responsive congestion mitigation interventions. In this chapter, we propose a
medium term travel demand forecasting system to fill this gap. The idea is that given a
large volume of partially observed user traces derived from cellular data available at dif-
ferent times of day (e.g., 3:00 am, 9:00 am, 3:00 pm, etc.), we complete the individual
daily activity sequences for the remaining period with pre-trained generative urban mobility
models.

To validate the predictions, we compare (1) at individual level: the discrepancies (e.g.
differences in number of activities, travel distance, Hamming distance, etc.) between pre-
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dicted sequences and ground truth sequences (observed by the end of a day) per individual;
(2) at aggregated level: the hourly travel demand - number of activities, travel distances
from all users; and (3) the resulting traffic volumes on all the major freeways within the
region of study from predicted sequences and ground truth sequences. Results prove that we
can improve the medium term travel demand forecast by incorporating observed information
by the time of prediction. The mean absolute percentage error can be less than 5% one hour
ahead and around 10% three hours ahead for the regional road network.

The main contributions of this chapter lie in three aspects:

• We proposed and solved a medium term travel demand forecast system which fills the
gap between mainstreams of long term travel demand forecast and short term traffic
state prediction.

• We improved and compared the state-of-the-art deep generative urban mobility models.
Lessons learned from training different types of urban mobility models are summarized
for future researchers.

• We explored the predictability of human mobility with parametric sequence learning
models as related to using individualized non-parametric “nearest neighbor” approach.

Chapter 5.2 reviews related work on long term travel demand forecast models and short
term traffic prediction models. Chapter 5.3 depicts the framework of medium term travel
demand forecast. Chapter 5.4 improves the state-of-the-art deep generative urban mobility
models using long short term memory (LSTM). Technical details on sequence completion
from partially observed sequence are presented in Chapter 5.6. We describe the data in
Chapter 5.7. In Chapter 5.8, we report on experiments, model selection, and validation
results. We conclude the present work and offers discussions in Chapter 5.9.

5.2 Related Work

Long Term Travel Demand Forecast

Long term travel demand models are the main tools for evaluating how travel demand
changes in response to different input assumptions, scenarios and policies [25]. For example,
how will the national, regional, or even local transportation system perform 30 years into
the future? What policies or investments could influence this performance?

Earlier efforts on travel demand models has focused on trip-based approaches which
comprises of four steps: trip generation, trip distribution, mode split, and route assign-
ment [56, 11]. In the recent decades, such forecasts are performed by activity-based models
for demographic projections of a population. Activity scheduling is the central task of
an activity-based model. Three main approaches for activity scheduling (constrains-based,
utility-based, and rule-based) all require detailed activity diaries data (activity start time,
duration, location, transportation mode, etc.) as input [5]. However, the data collection
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is usually performed through travel surveys that are infrequent, expensive, and reflect the
changes in transportation with significant delays. Travel demand models are mainly tar-
geted at “typical day” travel demand forecast in the long term future. The tolerance to the
forecast error is also high. As smart phone data become ubiquitous, developing a conceptual
framework using alternative data, to frequently update activity-based models provides a new
opportunity to make the near-term travel demand “nowcasting” more accurate.

Short Term Traffic Forecasting

With growing availability of data, short-term traffic forecasting became a very developed
research area. It concerns predictions of traffic parameters made from seconds to hours into
the future based on current and past traffic information. Most of the effort has focused on
modeling traffic characteristics such as volume, density, speed, and travel times [123]. Vla-
hogianni thoroughly summarized the available literature and categorize papers mainly based
on (1) What is the study area (motorway or arterial); (2) What is the study predicting (traf-
fic volume, speed, density, or travel time); (3) What is the prediction algorithm (statistical
time series model, machine learning model or hybrid).

However, there are certain limitations in short term traffic prediction. First, most of the
studies use detectors or camera video (AVI) data. However, these data are mainly available
on freeways and arterials, but not on the whole network. Thus, traffic predictions are mainly
available for area where detectors/AVI data is available. To enrich the source of data, GPS
of probe vehicles has been used in travel time and speed prediction. Zheng and Van Zuylen
predicted complete link travel times based on the information collected by probe vehicles
using three-layer neural network model [138]. Ye et, al. further introduced acceleration
information and information from adjacent segments to improve the prediction of the travel
speed of current forecasting segment [134]. Second, the prediction horizon usually ranges
from a few seconds to a few hours. This will limit the use cases for the traffic prediction. For
example, people may plan their afternoon trips in the morning based on traffic predictions
more than a few hours ahead.

To summarize, existing literature has focused on long term travel demand and short term
traffic state forecasts, while current methods of individual human mobility modeling have
limitations that make them only partly useful for medium term forecasting. In this chapter,
we fill this gap with sequence learning methods applied to build generative urban mobility
models from cellular data.
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5.3 Modeling framework

Data Key Components

Historical
CDR

Historical
Activity 

Sequences

Parametric
Mobility
Models

Stored 
Data

Streaming 
Data

Process
Derived 

Data
Outputs

Streaming 
CDR

Daily
CDR

Update

Update

Patially
Observed
Activity 

Sequences

Ground Truth
Activity 

Sequences

Completed
Activity 

Sequences

Traffic
Now-

Casting

Process

Process

Sequence 
Predictor

Individual/
Aggregated

Traffic
Validator

Observed
Traffic

Process

Train

Simulation

Figure 5.1: AM-PM Modeling framework diagram. The left column represents the input to
the algorithms and the right column represents the model components. Our key contribution
of improved deep urban mobility models, sequence predictor, and validation are shown in
shaded yellow.

The developed data processing and modeling pipeline is presented in Fig. 5.1. Anonymized
historical CDR data are processed to unlabeled historical activity sequences [135]. Urban
mobility models are built upon these historical activity sequences. In this chapter, we im-
proved the state-of-the-art urban mobility models by using deep LSTM models, as detailed
in Chapter 5.4, and improving the model selection process by separating home and work
activities into smaller sub-activities.

On a target day, we receive streaming CDR data at different times of day (e.g. 3:00 am,
9:00 am, 3:00 pm, etc.), which are then processed to partially observed activity sequences.
These partially observed sequences, along with the pre-trained parametric urban mobility
models, are sent to the sequence predictor. The sequence predictor predicts and completes
the activity sequences for the rest of the day based on the observed information, as detailed in
Chapter 5.6. The completed activity sequences are sent to MATSim, a state-of-the-art agent-
based traffic micro-simulation tool that performs traffic assignment. MATSim generates the
predicted traffic conditions for the day.
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Figure 5.2: Comparison of Deep Urban Mobility Architectures, IOHMM (left) and LSTM
(right). The solid nodes represent observed information, while the transparent (white) nodes
represent latent random variables. The top layer contains the observed input variables ut; the
middle layer contains categorical variables zt (latent in IOHMM since we include secondary
activities while observed in LSTM since we only include “home”, “work”, and “other”); and
the bottom layer contains observed output variables xt. ht are LSTM cells in the LSTM
architecture.

By the end of the day, full day CDR are observed and processed to ground truth activity
sequences. These ground truth activity sequences are validated against the predicted activity
sequences at both individual level and aggregated level at different times of day. We also
validate the resulting traffic from predicted activity sequences versus ground truth sequences,
as detailed in Chapter 5.8. Finally, historical CDR database is updated with the new day’s
CDR, and urban mobility models can be updated and re-trained overnight.

5.4 Long Short Term Memory (LSTM) Urban

Mobility Models

LSTM models have been extensively used for modeling complex sequences, including natural
language, videos and handwriting trajectories. We design a 2-layer LSTM model structure
for modeling activity sequences as shown in Fig. 5.2b.

The top layer models activity transitions between “home”, “work”, and “other” (we
treat all secondary activities as “other” since we do not have full ground truth labels for all
secondary activities). ut represents the input contextual features similar to the ones specified
in IOHMM models. The only difference is that we include the observed previous activity
(one of “home”, “work”, and “other”) in this feature vector. The reasons are (1) in LSTM
models, the previous activity type is observed prior to transition to a new activity, and (2)
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for generating new activity-based on the previous activity, we need to include this previous
activity in the training phase. Note that in IOHMM models, we use dynamic programming
to get the probabilities of previous activity, as detailed in Chapter 5.6. h1t represent the first
layer of LSTM cells and zt represents the observed current activity type. The loss function
for this top layer is:

L1 (θ1) = −
T∑
t=1

∑
j

(zt = j) · log φ
(
h1t ;θ1

)
j

where φ is the softmax function, θ1 is the collection of parameters for this LSTM neural
network, and j belongs to one of the activity types “home”, “work” and “other”.

The bottom layer is a mixture density network (MDN) which models the distributions
of spatial (location) and temporal (duration) variables xt associated with each activity type
zt. MDN was first described in [18] and was further developed for handwriting synthesis tasks
[57]. The contextual vector ut, first layer LSTM cells h1t , second layer LSTM cells from previ-
ous timestamp h2t−1, and the current activity type zt are the inputs to the second layer LSTM
cells h2t , which generates the coefficients of the mixture distributions (in our task we assume
Gaussian distribution for each output feature) {π̂, µ̂dh , µ̂dw , µ̂st, µ̂dur, σ̂dh , σ̂dw , σ̂st, σ̂dur, ρ̂st, dur}.
At each timestamp t, π̂t is an M by 1 array representing the mixture component weights,
M is the number of mixture components. µ̂dh,t, µ̂dw,t, µ̂st,t, and µ̂dur,t are M by 1 arrays
representing the component means of the distance to home, distance to work, start time,
and duration. σ̂dh,t, σ̂dw,t, σ̂st,t, and σ̂dur,t are M by 1 arrays representing the component
standard deviations of the distance to home, distance to work, start time, and duration.
ρ̂st, dur,t represents the correlation between start time and duration. This second layer mix-
ture networks is meant to divide “home”, “work”, and “other” activities into smaller and
finer components, each has its local spatial-temporal distributions. The loss function for this
bottom layer is:

L2 (θ2) =
T∑
t=1

− log
M∑
i

πi
tN (xt|µ̂i

t, σ̂
i
t, ρ̂

i
t)

where θ2 is the collection of parameters of the neural network used to generate the mixture
density distribution coefficients {π̂, µ̂, σ̂, ρ̂}, i is the index of the mixture component. N is
the Gaussian probability density function.

This two-layer structure extends Lin et al. [81] as we moved the modeling of activity
types into the first layer. Otherwise we keep the same model specifications and loss functions
as in that paper.

5.5 Model Specifications

Model selection for the IOHMM models includes the choice of hidden states. The choice
should come directly from the collection of ground truth activities (Recall that we collected
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ground truth activities for “Food/Shop”, “Stop in Transit”, “Recreation”, “Personal Busi-
ness”, and “Travel”.)

(a) Home (b) Work

Figure 5.3: Joint distribution plot of duration and start hour for home (left) and work (right).

We further noticed a significant heterogeneity within home and work activities. The
temporal profile of home activities in Fig. 5.3a has two major clusters. The upper cluster
indicates regular overnight home activities (H1) and the lower cluster indicates short stay
at home before going to some other activities (H2). The temporal profile of work activities
in Fig. 5.3b has three clusters. The upper cluster indicates regular “9 to 5” work activities
without a break (W1). The lower left cluster represents the morning work activities (W2) and
the lower right cluster represents the afternoon work activities (W3). It is easy to imagine
that the transition probability from H2 to work is lower, and the transition probability
from W2 to “Food/Shop” should be higher but to “Recreation” should be lower than the
transition probability from W1 or W3. By separating home and work activities into sub-
activities, we expect to get better contextual-dependent transition probabilities. A more
rigorous definition of sub-activities is:

1. H1: cross day home activity that starts before 3:00 am and end after 3:00 am.

2. H2: other home activities.

3. W1: work activity if it is the only work activity in a day.

4. W2: first work activity if there are more than one.

5. W3: second work activity if there are more than one.
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6. W4: other work activities.

We compare experimentally the basic and extended specifications (one with 7 activities
and the other with 11 activities) in Chapter 5.8.

5.6 Predictive Methodology with Cellular Data

The problem we are solving in this section is to predict the activity sequence of the rest of
day, given partially observed sequences at a cut time (e.g. 9:00 am). This problem can be
tackled by breaking it into two inferential sub-problems: (1) what an individual has done;
and (2) what he/she is likely to do. We will show how these two sub-problems are tackled
using IOHMM model and LSTM model, respectively.

Prediction using IOHMM models

Filtering

The first step is calculating Pr (zt−1 = i | u1,...,t−1,x1,...,t−1). Since the next activity to be
generated depend on the contextual variables such as time of day and day of week informa-
tion, as well as the previous hidden activity, we need to understand what is the last observed
activity. There are two cases:

1. By the cut time, the last observed activity is completed. That is, the person is traveling
to the next activity location. This case is simple since we can use standard forward
algorithm to estimate the posterior probability Pr (zt−1 = i | u1,...,t−1,x1,...,t−1) of the
last observed activity. One thing to note is that we need to sample a travel time that
is longer than the observed travel time from the complete of the last activity to respect
the fact that no new activities happen before the cut time.

2. By the cut time, the last observed activity is not completed. In this case, we apply a
modification to the forward algorithm: the emission probability of duration of last ac-
tivity is a survival function: Pr (xt > dot | zt = i,ut), where dot is the observed duration
of the last activity until the cut time. After the filtering, we sample a new duration
with the truncated distribution whose lower bound is dot to respect the fact that the
activity ends after the cut time.

Activity generation

With the last activity inferred, the activity generation algorithm is same as what we have
described in Chapter 4.9: at the end of this activity the relevant context information ut is
updated and the next activity is selected given the newly obtained transition probabilities.
Next, the activity duration is sampled from the conditional distribution given the activity
type and the start time. Next, the activity location is selected - if the activity is a home
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or work activity, the exercise is trivial. If not, we calculate the probability of choosing each
cluster in the user’s historical location clusters based on the conditional distribution of x(1)

distance to home and x(2) distance to work given the activity type. This is different from
Chapter 4.9: in that chapter, the population is synthetic, we do not have location history
of the user and thus can only generate a new destination from the choice set of TAZs and
a random point within the TAZ. By adopting the historical location clusters of the user, we
reduce the variance of the location choice. The process continues until the full daily sequence
of activities is generated.

Prediction using LSTM models

The procedure is straightforward based on Fig. 5.2b. The LSTM model first calculates
h11,..,t−1, h

2
1,..,t−1 based on observed u1,..,t−1 and z1,..,t−1. To generate the next activity at

timestamp t, we first update the contextual vector ut and top LSTM layer h1t . The softmax
outputs of the top layer is used for sampling the new activity type zt. zt, along with ut,
h1t , h

2
t−1 are used in the bottom layer of the model. The sampling of the output variables

distance to home, distance to work, and duration from the distributions of mixture density
network (MDN) is similar to the ones described in [81, 57]. The rest of the generation process
is similar to the generation process of IOHMM model.

5.7 Description of Data

In this section, we describe two regional experiments of medium term travel demand fore-
cast at different times of day. The master data used in these studies comprise a month of
anonymized and aggregated CDR logs collected in Summer 2015 by a major mobile carrier
in the US, serving millions of customers in the San Francisco Bay Area. No personally
identifiable information (PII) was gathered or used for this study. As described previously,
CDR raw locations are converted into highly aggregated location features before any actual
modeling takes places.

The first experiment use the City of San Francisco for model selection. We evaluate the
prediction performance of different models and validate the predictions at individual and
aggregated level. The second experiment scales to whole San Francisco Bay Area where
we predict the traffic conditions based on trained models for commuters from each of the
34 super-districts. We evaluate the resulting traffic from micro-simulation and validate it
against the resulting traffic of observed ground truth data.

We choose a typical weekday June 10, 2015 as the target day. For each regular commuter
with available data on that day, we slice the data by different cut time (e.g. 3:00 am, 4:00
am, ..., 11:00 pm) and predict the activities for the rest of the day based on the observed
information by the cut time.
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5.8 Experimental Results

Model Comparison

In this subsection, we evaluate the performance of different models and methods.

1. NN: Nearest Neighbor model, the benchmark model and the expected upper bound of
the performance. NN is a fully personalized model that match the observed trajectory
with the trajectory history of the user, and use the matched trajectory as prediction for
the rest of day. The distance features we used are (1) difference in day type (weekday
or weekend, 0 if equal and 1 if not), and (2) the Hamming distance between observed
partial sequence and each historical sequence by cut time. We calculate the Hamming
distance by segmenting each sequence into 15-minutes segments. For each 15-minutes
segment, we set the distance as 0 if the location clusters in two sequences are same (in
most of the 15 minutes) and 1 if not. The total Hamming distance is the sum of each
segment. We give the day type feature a high weight (in this case 100) so that NN
will search the matching sequence within the same day type. Note that NN model is
only used for trajectory matching and does not provide insights and interpretability as
other activity models.

2. IOHMM-unsupervised-7: The IOHMM model with 7 hidden states, with the input
and output features specified in Section 4.4.

3. IOHMM-co-training-7: The co-training IOHMM model specified in Section 4.4. In
this model we treat home and work as two activities, thus with 5 secondary activities
there are 7 states in total. The threshold parameters for both semi-supervised IOHMM
model with EM (θ1) and Decision Tree (θ2) are 0.9. This threshold is chosen based on
literature and validation accuracies on secondary activity recognition.

4. IOHMM-co-training-11: In this model we separate “home” and “work” to 6 sub-
activities defined in Section. 5.5. Thus there are 11 states in total.

5. LSTM-3: The LSTM model specified in Section 5.4. We used 64 hidden units in each
LSTM cell and 40 mixture components in the mixture density network (MDN).

6. LSTM-7: In this model we separate “home” and “work” to 6 sub-activities thus there
are 7 activity types including “other”.
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Figure 5.4: Models comparison. Two validation metrics are used: median travel distance
error (left) and median Hamming distance (right). The x-axis is the prediction hour (cut
hour) and the y-axis is the validation error. Each series of points represents the performance
of a model.

In Fig. 5.4, we plot how the two validation metrics, (1) median travel distance error
(left), and, (2) median Hamming distance (right) change for different cut hours using differ-
ent models. The travel distance error is calculated as the difference between the observed
daily travel distance and predicted daily travel distance. The median error of all users are
used in the plot. The travel distance error mainly captures the spatial location choice perfor-
mance of models. The Hamming distance is calculated as in NN models by segmenting the
daily sequence into 96 discrete 15-minutes segments. The median error of all users are used
in the plot. The Hamming error mainly captures the temporal day structure performance
of models. From Fig. 5.4, we can see that: (1) NN models performs best among all models
because it is a fully personalized non-parametric model; (2) IOHMM models are better at
spatial performance than LSTM models since we used co-training to direct the learning of
secondary activity profiles. This is also proven by comparing the unsupervised model perfor-
mance with the co-training results; (3) LSTM models are better at capturing the day struc-
tures. Hamming error captures the performance of day structures such as “home”, “work”,
and important secondary activities. LSTM models slightly outperforms IOHMM models in
this metric because it is more flexible and deeper in modeling activity transitions and long
term dependencies; (4) By separating “Home” and “Work” into smaller sub-activities, we
get better spatial-temporal performance in both IOHMM models and LSTM-models. This
proves our assumption that by separating these primary activities, we can better learn the
activity transitions between primary activities and between primary activities and secondary
activities; (5) We can explore the limit of the predictability of human mobility. The median
travel distance error at the beginning of the day using fully personalized model is about 3
miles, and this number is about 5 miles using non-parametric group models. The median
Hamming error is 20 at the beginning of the day using fully personalized model, that is, 5
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hours of wrongly predicted activities within a day. This error is mainly due to the shift in
home and work hours. Since different people has different start hour of work and preferences
on the time of going back home, fully personalized model is better at capturing this based
on the individual’s history.

Aggregated Level Evaluation

We validate the predicted versus observed hourly aggregated travel behavior in this subsec-
tion. We adopt the IOHMM-co-training-11 as our urban mobility model. The aggregated
pattern is very similar between the best performed IOHMM and LSTM models.

Fig. 5.5a shows the average number of activities (y-axis) starting in each hour (x-axis).
To make it more informative, we decompose the total number of activities into “home”,
“work” and “other”. We can see that the predicted number of activities of each type is quite
comparable to the ground truth observed at the end of the day. The same peak of work
activities in the morning and home activities in the evening are observed in all predictions
and ground truth. The main difference between our predictions and the ground truth is that
we tend to under-predict the number of “other” activities.

Fig. 5.5b shows the average travel distance in miles (y-axis) in each hour (x-axis). One
observation is that the travel distance of “to work” in the morning peak and “to home” in the
evening peak are low compared to “to other”. This is because some people go for secondary
activities before arriving at work and home, as shown in Fig. 5.5a. The other observation
is that though the predicted number of secondary activities is lower, the travel distances
to these locations are higher in our predictions. This indicates some inefficiencies in our
secondary location choice - people select most convenient locations for secondary activities,
and points towards possible improvements in location choice model for secondary activities.
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Figure 5.5: Predicted aggregated travel demand. The average number of activities (top)
and travel distance in miles (bottom) (y-axis) starting in each hour (x-axis). Each of the
four subplot represents the prediction at hour 3:00 am, 9:00 am, 3:00 pm, and the observed
ground truth.

Evaluation via Traffic Micro-simulation

In this subsection, we span the scope of the study to the 34 super-districts as defined by
the San Francisco Metropolitan Transportation Commission (MTC) to validate the predicted
resulting traffic in a region with 7.5M citizens. Since most of the short range DASs are located
in urban area such as the City of San Francisco, the ground truth secondary activities are
rarely available for other super-districts in Bay Area. Thus we train 34 semi-supervised
IOHMM model with “home” and “work” as ground truth, one for each super-district. For
each regular commuter with data available on June 10, 2015, we predict his/her activities
for the rest of day based on the activities observed by a cut time. Traffic micro-simulation is
a conventional approach in studying performance and evaluating transportation scenarios.
MATSim is a state-of-the-art agent based traffic micro-simulation tool that performs traffic
assignment for the set of agents with pre-defined activity plans. For each cut time (e.g.
3:00 am, 9:00 am, 3:00 pm, 9:00 pm), we compared the results of the flows produced on
the Bay Area network containing all freeways and primary and secondary roads (a total of
24’654 links) from the predicted activity sequences with the ground truth activity sequences.
TABLE 5.1 summarizes the fit score (1) adjusted R2; (2) mean absolute percentage error
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(MAPE, %). Fig. 5.6 plots the volume profiles of two freeway locations, one near the entrance
of bay bridge in the eastbound and the other near the crossing of I-880 and US-101. For each
location, 4 subplots shows the predictions (in blue) at 3:00 am, 9:00 am, 3:00 pm and 9:00
pm vs the ground truth profiles (in orange). We can see that (1) the predictions get closer
to the ground truth volumes with more observed data in the day and (2) our predictions
tend to generate slightly higher traffic volumes than ground truth traffic. This is consistent
with our previous discussion on the inefficiencies in secondary location choices.

Table 5.1: The coefficient of determination (R2) and mean absolute percentage error (MAPE,
%, in the parenthesis) of the predicted versus ground truth resulting traffic counts on 600
locations on the Bay Area road network. The row index is the prediction hour and the
column index is the predicted hour. No scores are reported under diagonal because the
traffic in the predicted hour is already observed by the prediction hour.

3 6 9 12 15 18 21 24

3
1 0.864 0.881 0.876 0.890 0.891 0.924 0.896

(0) (38.1) (16.2) (18.0) (19.1) (14.2) (14.5) (19.7)

9
- - 0.997 0.977 0.947 0.931 0.934 0.937
- - (2.9) (9.0) (14.1) (10.8) (13.4) (15.1)

15
- - - - 0.995 0.962 0.960 0.955
- - - - (4.4) (8.8) (11.1) (13.0)

21
- - - - - - 0.999 0.998
- - - - - - (2.1) (3.8)

TABLE 5.1 proves that we can use observed information of the day to improve traffic
volume prediction. The coefficient of determination increases and the MAPE decreases with
the prediction hour. When we make prediction at the beginning of each hour, we can improve
the coefficients of determination in that hour to be greater than 0.99 and the MAPE less
than 5%. The artifact of perfect prediction of 3:00 am is because we defined the start of
the day as 3am, there should be few traffic occurring during that hour. If we predict three
hours ahead (e.g. prediction of 6:00 pm traffic at 3:00 pm), the coefficients of determination
are greater than 0.96 and the MAPEs are less than 10% (except for the prediction for 6:00
am). The lower predictability at off-peak hours (e.g. 6:00 am and 12:00 am) is consistent
with the observations in [135] of higher variability in travel choices for secondary activities.

5.9 Conclusion

In this chapter, we proposed a medium term travel demand nowcasting system. It predicts
daily travel demand and traffic conditions at different times of day with partially observed
user traces from cellular data and pre-trained urban mobility models. This solution bridges
the gap between long term forecast (days, months to years ahead) and short term prediction
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(seconds to hours ahead), which are the two mainstreams of literature in travel demand
forecasting.

We improved the state-of-the-art deep generative parametric mobility models using LSTMs
and finer model selection process. We provided partially observed user traces at different
times of day to these models and generated the complete daily sequences. We validated the
results with the ground truth sequences based on (1) individual level discrepancies; (2) aggre-
gated level hourly travel demand; and (3) the resulting traffic through micro-simulation. A
non-parametric individualized nearest neighbor model was explored as the practical limit of
predictability of individual’s daily travel. We demonstrated that parametric models trained
at aggregated group level (due to privacy concern) can approach this limit in terms of predic-
tion accuracy. Among the generative models we compared, IOHMM models are interpretable
and has the power of activity recognition as a range of travel choices might depend on the
activity types. Co-training applied to IOHMM models performs better at secondary activity
location choices since we used the ground truth activities to direct the learning process.
LSTM models are better at learning day structures since they use continuous hidden state
space and are expected to be better at learning long term dependencies. Future research
will focus on incorporating activity types in LSTM models and using existing ground truth
labels to direct the learning process of LSTM models.

We consider San Francisco residents as a group in the first experiment and each super-
district as a group in the second experiment. We trained one urban mobility model for
each group. However, certain heterogeneity in activity patterns exists among different sub-
groups. Correctly partitioning the population into sub-groups should help us better approach
the limit of the predictability in human mobility. We acknowledge it as a current limitation
of the chapter.

In terms of traffic volumes, our experiments show promising results of medium term
forecast. We have reached a MAPE of less than 5% one hour ahead and 10% three hour
ahead. Results also show that we can improve the prediction accuracy by incorporating
more of the observed data by the time of prediction. Our prediction of traffic conditions is
available not only for freeways and arterial where high-resolution detectors data are available
from direct observations. Our system provides accurate prediction for the whole network,
detailed in terms of activities and travel itineraries of citizens, providing an actionable model
to improve performance of regional transportation systems and inform interventions towards
reducing negative impacts of congestion.
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Figure 5.6: A fragment of the SF Bay Area road network. Inlet graphs illustrate two sample
hourly vehicle volume profiles for observed (orange) and predicted (blue) at 3am, 9am, 3pm,
and 9pm.
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Chapter 6

Conclusions

Transportation is one of the defining challenges of our age. Our cities are getting more
congested and less dependable. People are spending more time, paying more money, and
causing more environmental externalities living their daily lives. To address the current
problems and meet growing travel demand, one solution is improving the efficiency and
effectiveness of the existing infrastructure. On the other hand, IT-reliant innovations have
already made an important impact on transportation industry across cities and countries,
such as navigation services such as Google maps and on-demand ridesharing services such
as Lyft and Uber. These novel mobility paradigms change the transportation landscape
quicker than traditional data sources, such as travel surveys, are able to reflect. Public
agencies charged with a mandate to manage critical transportation infrastructures are slow
to react to these changes, as they are reliant on out-dated information, tools and models.

The current manually collected travel surveys, such as The National Household Travel
Survey (NHTS), usually happens every a few years. The cycle takes a long time due to
the long data collection, cleaning, analytic, and modeling process. It also takes millions of
dollars for a regional travel survey to take place. However, the quality of the data cannot
be guaranteed. Based on our analysis, people may tend to under-report their daily travel
diary due to privacy concerns. On the other hand, typical travel surveys covers only one
percent of households in a metropolitan area, and typically only records a few day of travel
per household. Therefore, no weekly travel pattern or long term effect can be captured.

Thanks to the ubiquitous sensor networks and location-based services, people generate
data while traveling, just by carrying and using a mobile phone. Therefore, it is appealing to
use data from such services as a substitute for manual surveying. Cellular data vastly increase
the population coverage. Since the data are continuously collected, weekly travel patterns
and long term changes can also be analyzed. The data processing and modeling pipeline
can be automated so the delay normally associated with administering and processing travel
surveys is eliminated. The spatially and temporally rich cell phone traces can support models
of the locational and temporal activity choices.

In this dissertation, we investigated the use of cellular data to complement traditional
travel surveys for activity-based travel demand models. We developed scalable and inter-
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pretable generative activity-based urban mobility models for regional mobility analysis from
cellular data. We also presented a direct application of the trained activity-based urban
mobility model for medium term travel demand nowcasting, which is a missing piece in the
literature. The main findings and contributions are summarized as follows.

6.1 Findings and Contributions

Inference of activity types and analysis of activity patterns from cellular data are non-trivial
tasks. Cellular data, while collected at large scale, suffers from low spatial and temporal
resolutions. Temporally, cellular data might contain gaps where important information may
be missing. Spatially, cellular data is triangulated so the locations are not exact. In addition
the cell tower might be switched due to capacity constraints so the user is observed at
multiple cell towers even when she is standing still. In chapter 3, we summarized our lessons
learned from processing noisy cellular data. After the initial spatial clustering, we examined
the cases where the user was standing still but was observed to have moved. To do so, we
constructed an oscillation graph of the clusters for each user where the edges indicates the
probability of oscillation between the clusters. In this case, some short activities due to
tower oscillations can be merged as a single activity so that we will not over-filter short-term
travel and miss many activities. Along the processing pipeline, we also found that the daily
skeleton we processed from the cellular data match with the statistics from a travel survey.
These statistics are important in helping us understand how people construct their daily
lives. For example, there is a strong substitution effect between evening-commute activities
and post-home activities. If a person pursues an evening-commute activity, she is much less
like to have a post-home activity and vise versa. This substitution effect is not observed
between work-based activities and evening-commute/post-home activities because they are
usually for different purposes. Another finding is that people who have evening-commute or
post-home activities tend to leave work earlier, at around 4:30pm, while people who do not
have evening-commute or post-home activities tend to leave work later, at around 6:10pm.

In Chapter 4, we found a way to collect ground truth activities using data from short
range distributed antenna systems (DAS). We found that DASs are very helpful in identify-
ing activity types thanks to their high spatial resolution. The visits to these DASs are very
structured in the temporal dimension too. We developed several scalable and interpretable
activity-based models for regional mobility analysis from cellular data. As an illustration,
we inferred the activity patterns including primary, secondary activities and heterogeneous
activity transitions of a set of anonymized San Francisco Bay Area commuters using un-
supervised and semi-supervised generative state-space models. We validated the inferred
activities with a set of ground truth activities based on the DASs. We found that the semi-
supervised co-training model has the best classification performance. This semi-supervised
co-training model preserves the generative power of the IOHMM model and the classifica-
tion power of the decision tree model. We also confirmed the advantages of IOHMM over
standard HMM where IOHMM can incoporate more contextual information. For example,
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if a user is observed to go to some activity from home, if it is a weekday morning, she is
likely to go to work but if it is a weekend evening, it is likely to be for food or recreation.
We also found that the marginal proportion of each activity type is consistent with the 2015
Travel Decisions Surveys. To test the generative power of the IOHMM model, we synthe-
sized travel plans for each agent with home and work locations sampled from census data.
An agent-based microscopic traffic simulation was conducted to compare the resulting traffic
with the observed volumes of vehicular traffic flow in the regional road network on an average
weekday. We found that the fit was quite reasonable, with a coefficient of determination of
0.81.

In Chapter 5, we presented a direct application of the activity-based urban mobility
model. We proposed a medium term travel demand nowcasting problem which predicts the
traffic conditions hours to days ahead. This medium term travel demand nowcasting problem
fills a gap in the literature, which mainly studies long term travel demand forecast (months
to years ahead) and extremely short term traffic prediction (seconds to minutes ahead). In
this chapter, we discussed several ways to improve the urban mobility models specifically for
this application. One improvement we made was to separate home and work activities into
smaller sub-activities, such as overnight home activities and short stay at home before going
for another activity. By separating these home and work activities, we got better context-
dependent transition probabilities. For example, the transition from morning work activity
to recreation should not be as strong as the transition from an afternoon work activity
to recreation. Another improvement we made was to make the IOHMM model deeper and
continuous in hidden state space. We developed a LSTM urban mobility model and compared
it with the IOHMM model. A non-parametric individualized nearest neighbor model was
explored as the practical limit of predictability of individuals daily travel. This nearest
neighbor model should have the best predictive performance since it is fully personalized.
We demonstrated that parametric models trained at aggregated group level (due to privacy
concern) can approach this limit in terms of prediction accuracy. Among the generative
models we compared, co-training applied to IOHMM models performs better at secondary
activity location choices since we used the ground truth activities to direct the learning
process. LSTM models are better at learning day structures since they use continuous
hidden state space and are expected to be better at learning long term dependencies. In
terms of validation of traffic volumes, our experiments show promising results of medium
term forecast. We have reached a mean absolute percentage error (MAPE) of less than 5%
one hour ahead and 10% three hours ahead. Results also show that we can improve the
prediction accuracy by incorporating more of the observed data by the time of prediction. It
is worth mentioning that our prediction of traffic conditions is not restricted to area where
high-resolution freeway detectors data are available since our main data source is the cellular
data which is more ubiquitous.
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6.2 Directions for Future Research

This dissertation took the first step in using cellular data to support activity-based travel
demand models. This approach should be further developed in the following directions:

Travel modes

This dissertation using cellular data to inform activity-based travel demand models have
achieved a good understanding of the activity (trip purpose) patterns. However, the missing
piece is travel mode and route inferences. We have left the mode and route choice to our
micro-simulator MATSim after the activity types, timing and locations are determined. Ide-
ally, these mode and route choices should also be informed from the cellular data. Moreover,
a discrete choice model (DCM) based on the inferred travel mode could be trained so that
such model can be directly used for transportation planning. However, this mode detection
and travel mode classification task is non-trivial. To develop a discriminative classifier that
detects the mode of the observed trips or a sequence of modes in a multiple leg journey,
we need a considerable amount of ground truth data with known modes to be available for
training. Such a classifier also requires a k-shortest path algorithm that generates plausible
alternatives routes for the journey. On the other hand, these discriminative travel mode
classifiers might not be spatially transferable since certain location features might occur in
the input vector. Therefore, it would be better to utilize the discriminative recognition step
of the observed mode in order to build a behaviorally grounded model that predicts the
chosen mode within a set of available alternatives as a function of user characteristics and
transportation system variables. It would be based on the discrete choice modeling paradigm
and results in a set of parameters calibrated for distinct neighborhoods and/or segments of
population.

Location choice model

With privacy concerns and data limitations in mind, the location choice model implemented
in this dissertation is relatively simple. We use only the distance to home and distance to
work as the features people consider when choosing activity locations. This is a compromise
when we train a model across a group of users. If we do not use these location features but
the exact location/cluster instead, we will face privacy concerns as well as feature sparsity
issues. Though these two features are sufficient in helping us recognize activities, they are
relatively simple when sampling locations in new sequences. Certain improvements can be
made to the location choice model without sacrificing privacy. Future work may incorporate
a discrete choice model on a set of TAZs so that locations can be directly sampled when
generating activity sequences.
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Population heterogeneity

Partitioning a population into sub-groups (whether socially or spatially) for shared parameter
modeling is a partly open problem. Currently we approached it by defining rules to identify
groups of a similar day structure, and applying geographic constraints. The underlying
assumption is that people within the same group tend to have similar activity patterns.
However, if we define a group that is too small, we have to train too many models to cover
the whole population and this is likely to sacrifice user privacy. On the other hand, if we
define a group that is too large, we may not be able to capture heterogeneity of activity
patterns that exists among different sub-groups. Correctly partitioning the population into
sub-groups should help us better approach the limit of the predictability in human mobility.
We acknowledge it as a current limitation of the dissertation. Future works may replace
these geographic constrains by an alternative specification that involves a mixture of IOHMM
models. This mixture IOHMM has the following architecture: each user belongs to a lifestyle
(activity pattern) which is a hidden state; each life style has a corresponding IOHMM model
that represents its activity profiles. After a training process, we will be able to understand
what is the lifestyle of a user (or what is the probability the user belongs to each lifestyle)
and what is the IOHMM model for each lifestyle. The training process might incorporate a
hierarchical EM inference.

Better urban mobility model

In this dissertation, we have improved the state-of-the-art activity-based urban mobility
model. We have shown how IOHMM outperforms the partial IOHMM which outperforms
the vanilla HMM model. We further improved the recognition accuracy by using semi-
supervised co-training which adds a discriminative decision tree to the training process. In
this way, the learning process is directed and will not free flow too far. To learn better
activity transitions for better activity generation, we separated home and work activities
into smaller sub-activities. We showed that the activity prediction under this finer schema
has lower error. In addition, we proposed a LSTM-based urban mobility model, which
goes deeper and continuous in hidden state spaces. This urban mobility model can better
capture the temporal structure and long term dependencies thus predicts the day structure
better. Future research will focus on incorporating activity types in LSTM models and
using existing ground truth labels to direct the learning process of LSTM models. On the
other hand, this LSTM model has lower interpretability than the IOHMM model; future
research may improve the interpretability of the LSTM based model while preserving its
deeper architecture.

Utility-based urban mobility model

In this dissertation, we make our first attempt to complement traditional travel surveys with
cellular data. The mainstream of the research using traditional travel surveys are utility-
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based models. These models have the capability to model activity types and travel modes all
together. These utility-based models can also be used to generate activities and trips directly.
However, these models are usually based on the assumptions that there are no uncertainties
in information about activity types and travel modes, as is true for travel surveys. Future
research may study an end-to-end utility based urban mobility models that is capable of
modeling activity types and travel modes in a unified framework, and is capable of dealing
with the uncertainties in cellular data.

6.3 Concluding Remarks

The development of travel demand models requires the increasing availability and better
quality of travel data. With data from travel surveys, researchers develop activity-based
travel demand models, which outperforms traditional tour-based travel demand models with
more consistent sub-models and more detailed evaluation metrics. However, these traditional
travel surveys suffer from expensive processes of data collection and cleaning which make it
difficult to keep models up to date. Thanks to the ubiquitous mobile phone data, we see
an opportunity to improve the travel demand models into a new stage. Cellular data is rich
in time and space, and is collected continuously and pervasively. The process of cleaning
and analyzing it can be automated, making the time and cost of using cellular data less
expensive.

In this study, we present an end-to-end research pipeline from processing raw cellular
data, building activity-based urban mobility models, to validating the model performances
with independent data sources. Though cellular data is the main data source in this study,
traditional travel surveys play an important role in the following ways: first, statistics from
travel survey such as the number of activities per person per day are the main reference
points for tuning/validation of hyper-parameters in the pre-processing step. Second, the
user population distribution of a certain mobile carrier may not be the same as the true
population distribution. A rescaling/resampling step based on travel surveys and population
data is required as part of any travel study based on cell phone data. Finally, we validate our
activity recognition results with travel survey data to ensure that the marginal distribution
of activities corresponds well within the two data sources. It is worth noting that on the one
hand, our study cannot be solid without traditional travel surveys. On the other hand, our
main modeling modules are independent with the data from traditional surveys: it is mainly
used in hyper-parameter tuning, rescaling and validation.

For future works, we imagine two branches can emerge from this study. One branch
could propose a unified utility-based urban mobility model that benefit from data fusion
of traditional travel survey and cellular data. Traditional travel surveys are not only used
for rescaling/validation purposes, but used in the actual modeling phase. The other branch
could explore ways of reducing the sample size from the traditional travel survey (or totally
getting rid of travel surveys). These potential improvements are bound to make substantial
impacts on urban and transportation planing, and improve the travel demand models into
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a new stage.
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