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Abstract. This article studies some new insertion algorithms that associate pairs of shifted
tableaux to finite integer sequences in which certain terms may be primed. When primes
are ignored in the input word these algorithms reduce to known correspondences, namely, a
shifted form of Edelman—Greene insertion, Sagan—Worley insertion, and Haiman’s shifted
mixed insertion. These maps have the property that when the input word varies such that
one output tableau is fixed, the other output tableau ranges over all (semi)standard tableaux
of a given shape with no primed diagonal entries. Our algorithms have the same feature, but
now with primes allowed on the main diagonal. One application of this is to give another
Littlewood—Richardson rule for products of Schur ()-functions. It is hoped that there will
exist set-valued generalizations of our bijections that can be used to understand products of
K -theoretic Schur J-functions.

Keywords. Shifted tableaux, Edelman—Greene insertion, Sagan—Worley insertion, shifted
mixed insertion, Schur Q-functions

Mathematics Subject Classifications. 05A19, 05E05

1. Introduction

This article studies some new insertion algorithms that generate pairs of shifted tableaux from
finite integer sequences in which certain terms may be primed. The first half of this introduction
contains a quick summary of our main results. The second half discusses some open problems
that motivate our constructions.

1.1. Outline

Let Sz be the group of permutations of the integers with finite support, and set s; := (i,i+1) €5z
for i € Z. There is a unique associative product o : Sz x Sz — Sz suchthat c os; = o
ifo(i) > o(i+1)and o o s; = os;if 0(i) < o(i + 1) for each ¢ € Z [Hum90, Thm. 7.1].

*Supported by RGC grants ECS 26305218 and GRF 16306120.
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This so-called Demazure product may be defined in terms of the Bruhat order < on Sz, by the
set-wise product identity {0 € Sz : 0 < v}{o € Sz : 0 < w} = {0 € Sz :0 <vow}
for v, w € Sy.

A reduced word for ¢ € S7 is an integer sequence ajas - - - a, of shortest possible length
with 0 = 5,4, 54, - * S4,,, OF equivalently with

0 = 84, 084,008, .

Write R (o) for the set of reduced words for o € Sz. Analogously, an involution word for z € Sy,
is a word ajas - - - a,, of shortest possible length such that

2= 8q, 0" 084, 08¢ O8qy O-++0S5g .

Write Rin (2) for the set of involution words for z € S7. One can show that this set is nonempty
if and only if z = 27! is an involution. The empty word & is both the unique reduced word and
the unique involution word for 1 € S7.

Involution words have been studied previously in different forms and under various names,
for example, in [CJIW16, HMP18, HH19, HZ16, RS90]. We are concerned here with the follow-
ing slight generalization. An index i € [n] is commutation in an involution word a = ajas - - - a,
if s,, commutes with s,, , 0---085,, 05, 084, 0-:-085,,_,. Theindex 7 = 1 is a commutation
whenever the word a is nonempty. A primed involution word for = = z~! € Sy is any word
formed by adding primes to the entries indexed by a subset of commutations in some a € Riny(2).
Such a word is a sequence of letters in the primed alphabet {--- < 1' <1 <2 <2 < ... }.
Write R;" (z) for the set of primed involution words for z. As we will explain in Section 2.2,
all involution words for a given z = 27! € S, have the same number k of commutations, so we
have |R:t (2)| = 2¥|Rin(2)]. For example, if 2 = 321 € S5 C Sz, then

nv

R(z) = {121,212}, Rin(z) = {12,21}, and R, (z) = {12,1'2,21,2'1}.

nv

For any word a, let Incr,,(a) denote the set of sequences (a',a? a®,...) where each a' is
a weakly increasing possibly empty word such that a = a'a?a®---. For a set of words A,
let Incro (A) = | ], 4 Incroo(a). Fix an involution z = 2z~ € Sz. In Section 3 we describe a

specific map a — (P%(a), Q2 (a)) that takes an element of R." (2) or Incro, (R (2)) as its

nv
input and gives a pair of shifted tableaux as its output. Our first main result is the following

theorem about this operation.

Theorem 1.1 (See Theorems 3.11 and 3.15). The map a — (P2:(a), Q% (a)) is a bijection
from R} (2) (respectively, Incro (Rt (2))) to the set of pairs (P, Q) where P is a shifted tableau
with increasing rows and columns, no primed entries on the main diagonal, and row reading
word in Ri" (2), and Q is a standard (respectively, semistandard) shifted tableau of the same

shape.

In this context, a shifted tableau of a strict partition shape A = (A > Ay > -+ > A\ > 0) is
a filling of the shifted diagram SDy :=={(i,i+j—1) € ZxZ:1<i<kand1 < j < \} by
elements of {--- < 1’ <1< 2 <2< ...}. If we draw such a tableau in French notation, then
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its row reading word is formed by reading each of its rows in the usual way from left to right,
starting with the top row.! A shifted tableau is semistandard if its entries are positive and its
rows and columns are weakly increasing as indices increase, with no primed number repeated
in a row and no unprimed number repeated in a column. A semistandard shifted tableau with n
boxes is standard if it contains exactly one of i or i’ as an entry foreachi = 1,2,...,n.

Example 1.2. We present a simple case of the map a — (P2 (a), Q% (a)) to illustrate its domain

and codomain. If z = 321 € S then the elements of Incr..(R;" (2)) have one of 6 forms:

a=(9,0,9,...,9,1,0,80,. ..,020 0 3, ..)
b=(2,9,9,..,0,1',0,0.0,...,0,2,8,8,3,...),
c=(9,0,9,...,9,2,0,8,0,...,.8,1,8,8,,...),
d (? @,@,...,@/,2’,9,@,@,...,@J,l,@,@,@,..)

’

9

R g

p—1 terms qg—p—1 terms
for some integers 0 < p < ¢, or

e=(9,9,0,...,0,12,0,0,0,...),
f=(92,9,9,...,9,12,3.0,7,...),
D e

p—1 terms

for some p > 0. We have P2 (a) = P& (b) = P& (c) = PS(d) = P& (e) = PE(f) =
as this is the unique shifted tableau with increasing rows and columns and no primed entries on
the main diagonal whose row reading word is in {12,1'2,21,2'1}. On the other hand, it will

follow from the definitions in Section 3 that

Q(E)G(a) = 7 Q&(b) = 7 QSG<C) = 7
Q(E)G(d) = 7 Q8G<e) = 7 Q(E)G (f) = '

As 0 < p < g vary, these outputs range over all semistandard shifted tableaux of shape \ = (2).

Restricting a — (P%(a), Q2 (a)) to unprimed words gives the involution Coxeter—Knuth

insertion map in [HMP19, Mar20] and orthogonal Edelman—Greene insertion in [Mar22]. The
latter, in turn, is a special case of the shifted Hecke insertion algorithm from [HKP*17, PP18].
Our correspondence is the “orthogonal” counterpart to a “symplectic” shifted insertion algo-
rithm studied in [Hir23, Mar20, Mar22]; see Remark 2.3.

Itis an open problem to find a “primed” generalization of shifted Hecke insertion that extends
our bijection a — (P (a), Q2 (a)). The image of such a map should consist of pairs of shifted
tableaux (P, () of the same shape, in which P has increasing rows and columns with no primed
entries on the main diagonal, and () is an arbitrary (semistandard) set-valued shifted tableau in
the sense of [IN13, §9.1]. It is less clear what superset of R (z) should be the domain of such

nv

"Equivalently, if the tableau has entry 7;; in box (i, j), then the row reading word is formed by arranging the
numbers T;; in the order that makes (—¢, j) increase lexicographically, as (7, j) varies over all boxes.
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a correspondence. As discussed in the next section, generalizing shifted Hecke insertion in this
way would have interesting applications.

Besides constructing the map a — (P& (a), Q2 (a)), we also seek to understand how a can
vary when P2.(a) is held constant, and how such changes affect Q2 (a). Our second set of
results, sketched below and explained more thoroughly in Sections 3.4 and 3.5, fully solves this
problem.

Theorem 1.3 (See Theorem 3.24 and Corollary 3.25). There are explicit operators ock; on
primed words which act by changing at most three consecutive letters, along with operators 0,
on standard shifted tableaux which act by changing at most three consecutive entries, such that
if a is a primed involution word then Q%:(ock;(a)) = 0;(Q%(a)), and if a and b are both
primed involution words then P2(a) = P2.(b) if and only a = ock;, ock;, - - - ock;, (b) for some
sequence 1,19, . . ., .

Section 3 contains these and our other main results, following some preliminaries in Sec-
tion 2, The proof of Theorem 1.3 is unexpectedly difficult and takes up all of Section 4. We use
Theorems 1.1 and 1.3 to derive some additional results in Section 5. Specifically, in Section 5.1,
we describe a variation of Sagan—Worley insertion from [Sag87, Wor84] whose domain is the set
of all primed compatible sequences. Then in Section 5.4 we investigate two related extensions
of Haiman’s shifted mixed insertion algorithm from [Hai89].

1.2. Motivation

We use the second half of this introduction to explain some of our motivations for considering
the insertion algorithm in Theorems 1.1 and 1.3. These motivations are related to the problem
of finding a combinatorial rule to multiply certain “/K-theoretic” symmetric functions.

The Schur P-function of a strict partition X is the generating function Py = >,z for all
semistandard shifted tableaux 7' of shape A with no primed entries on the main diagonal; here
one sets z7 := [, " where m; is the number of entries of T" equal to i or i’. The Schur Q-
function @), is defined in the same way but without excluding primes from the main diagonal,
or more directly as the scalar multiple Q5 = 2°(Y) Py. It is well-known that both power series are
symmetric functions that are Schur positive, and that the set of all P\’s (respectively, all ())’s)
is a Z-basis for a ring with nonnegative integer structure constants [Ste89].

Ikeda and Naruse introduced K -theoretic analogues GG Py and G, for the Schur P-functions
and (Q-functions in [IN13]. These power series are also symmetric, and may be defined similarly
as the generating functions for all semistandard set-valued shifted tableaux of a given shape,
where for G P, primed entries are again prohibited from appearing in diagonal positions [IN13,
§9.1]. The precise definition involves a bookkeeping parameter 3, which makes both power
series homogeneous if one sets deg(/5) = —1 and deg(x;) = 1. For simplicity, we take 5 = 1 in
our discussion here. With this convention, one recovers P, and (), by taking the homogeneous
terms of lowest degree in GP\ and GQ)), respectively.

It was conjectured in [IN13] that the set of all GP,’s (respectively, all GQ),’s) is a basis for
a ring. For the GP,’s this follows from the main result in [CTY 14]; other proofs also appear
in [HKP*17, §4] and [PY17, §8]. For the GQ)’s, surprisingly, Ikeda and Naruse’s conjecture
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is technically still unresolved, though it is known from [IN13] that each product GQ\GQ),, is
a possibly infinite linear combination of G(),’s. However, in general, it remains to show that
this expansion has finitely many terms and to give an interpretation of its coefficients.> These
difficulties have to do with the fact that G, is no longer a scalar multiple of GP,.

There is a bijective approach to proving that the K -theoretic Schur P-functions generate a
ring, which we sketch below. The results in this article are a first step toward extending this
strategy to handle the K -theoretic Schur ()-functions.

For each even integer n > 0, let If;pf denote the set of fixed-point-free involutions in the
symmetric group S,, := (S1,S2,...,8,-1). Each element z € Iflpf has an associated set of
symplectic Hecke words Hs,(z) defined in [Mar20, §1.3]. This set is infinite unless z is

Lepr == (1,2)(3,4) - - (n — 1,n).

Each word in Hs,(2) is a finite integer sequence that does not begin with an odd letter. The
shortest words in Hs,(2) are the minimal length sequences ajas - - - ax with

2 = Sq, " " SagSas LipfSiy Sas * * * Say,-

Given z € I™f and a strict partition ), define

KP, = Z z¢

d€Incroo (Hsp(2))

where 2 := [, 2. for ¢ = (a', a2, d®,...).

A semistandard weak set-valued shifted tableaux of strict partition shape A is a filling of SD,
by elements of {1’ < 1 < 2/ < 2 < ...}, with multiple elements and repetitions allowed in
each box, but with no primed numbers repeated in a row and no unprimed numbers repeated in
a column. The entries of such a tableau 1" are required to be weakly increasing in the sense that
the largest entry in one box cannot be greater that the smallest entry in the next box in the same
row or column. The weight of 7" is again the monomial 27 := ], 2" where m; is the number
of entries of 7" equal to ¢ or i’. Let K Py := >, z" where the sum is over all semistandard weak
set-valued shifted tableaux of shape A\ with no primed entries on the main diagonal. By [BLM21,
Cor. 6.6], we have GP\, = w(K P)), where w is the automorphism of the algebra of symmetric
functions sending each Schur function s, +— s,t. In turn, each K P, is related to K P, by the
following theorem:

Theorem 1.4 (See [Mar20, Thm. 4.5]). Let z € I". There is a bijection ¢ — (Psp(9), Qsp(0))
from Incroo(Hsp(2)) to the set of pairs (P, Q) where P is a shifted tableau with increasing rows
and columns whose row reading word is in Hsp(2), and Q) is a weak set-valued shifted tableau of
the same shape with no primed entries on the main diagonal. Moreover, one has ©® = 1:9%(®),

This bijection is called symplectic Hecke insertion in [Mar20]. If a = ayas - - - ax € Hsp(2)
then we set Ps,(a) = Psp(¢) and Qsp(a) = Qsp(¢) for ¢ = (a1, as, ..., a5, 2,9,...). The

There is at least a Pieri rule to expand GQ»GQ p into GQ,’s when ;1 = (p) has a single part [BR12, Cor. 5.6].
There is also a formula for the expansion of GQ,GQ,, for any strict ), y into monomials [MGP20, Cor. 7.8].
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value of Ps,(¢) depends only on the underlying word, but not on its division into weakly in-

creasing factors. All letters in a symplectic Hecke word for z € I™Pf arein {1,2,...,n — 1}, so

there are only finitely many shifted tableaux with increasing rows and columns that can have row

reading words in Hsp(z). It follows that KP is the finite sum > rc(p o)aems, ()} [f]:shape(T).
I P

Assume y € [Pf and z € I'Pf for even integers m,n > 0. Lety x z € ", be the
permutation mapping i — y(i) for 1 < ¢ < mandi+ m — z(i) + mfor1l < i < n.
Next, for ¢ = (a',a?,...) € Incroo(Hsp(y)) and ¢ = (b1,b%,...) € Increo(Hsp(2)), let
¢ DY = (a'ct,a®c?, ... ) where ¢ is formed by adding m to each letter of b'.

It is clear from the results about symplectic Hecke words in [Mar20, §1.3] that
(¢,9) — ¢ @1 is a bijection Incro(Hsp(y)) X Incroo(Hsp(2)) = Incroo(Hsp(y X 2)), so
KP,KP, = KP,,.. In turn, if the largest part of \ is less than n — 1, then there exists 2 ¢ If
(with an explicit formula) such that KP, = K Pzt;f)f [MP21, Thm. 4.17]. As w is an algebra

automorphism, we have

KP\KP,=> ¢,KP, and GPGP, =Y ¢ ,GP, (1.1)

where €5, is the number of tableaux in { Ps,(a) : a € Hsp(2PF x zP")} of shape v.?

Here is how one could try to adapt this argument to derive an analogous formula for the
coefficients expanding GQ,GQ),, into GQ-functions. The appropriate analogue of K P, is the
generating function KQ) := > .27 for all weak set-valued shifted tableaux 7" of shape A\, now
with primed entries allowed on the main diagonal. We have GQ, = w(K(Q,) by [BLM21,
Cor. 6.6].

There is a natural candidate for the ()-form of K'P,. When n is even, the symplectic
group Sp,,(C) acts on the type A,,_; flag variety Fl,, with finitely many orbits indexed by I™Pf. The
closures of these orbits have canonical representatives in the connective K-theory ring of Fl,

satisfying a certain stability property [WY 17]. These representatives are polynomials
@ip € Z[/B] [%1,&32, c. ],

and their “stable limits” give certain symmetric functions G PP that satisfy K P, = w(GP?|s—;)
(compare [MP20, Cor. 4.6] with the results in [Mar20, §5]).

For any positive integer n, the orthogonal group O,,(C) likewise acts on Fl,, with finitely
many orbits, now indexed by I,, := {z € S,, : 2 = z7!}. The closures of these orbits again
have canonical representatives in the connective K -theory ring of Fl,, satisfying a certain sta-
bility property [MP20]. These are inhomogeneous polynomials &9 € Z|[3][x1, x5, . . .] indexed
by z € I,,. Mimicking the properties of K P,, one would like to define the “stable limit”

o._ 1 o}
GQZ T nll—g(l)o lemxz
for z € I,,, where 1™ is the identity permutation in S,,, and then set
KQ. = w(GQ?|s=1).

3This becomes a Littlewood—Richardson rule for the symmetric functions GP/SB ) defined in [IN13], which in-
volve a formal parameter 3, via the identity GP/{’B) = 8~ PGP\(Bz1, Bxa, Bs, ... ).
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These definitions would be appropriate because if z is vexillary, that is, 2143-avoiding, then the
limit giving GQ© converges, the resulting power series KQ. is equal to KQ, for a certain strict
partition A\, and any K (@), can be attained in this way [MP20, Thm. 4.11]. Some difficulties
remain, however:

(a) No proof is yet known that lim &%, . converges if z is not vexillary [MP20, Prob. 5.3].

m—o0

(b) There should exist a set of orthogonal Hecke words Ho(z), analogous to Hsp(2), such
that KQ. = > sciner.o (#0(2)) ¥ and KQ,KQ, = KQ,x, forally € I,, and z € I,,. Itis
not known how to define this set even when z is vexillary.

(c) If the first two issues can be addressed, then to prove that the G(),’s generate a ring and
to find a combinatorial interpretation of the G(Q)-expansion of GQ\G(Q),, it remains only
to find an appropriate orthogonal Hecke insertion algorithm. This should bijectively map
elements of Incro.(Ho(z)) to pairs (P, @) of shifted tableaux with the same shape, where
now () is weak set-valued but with primed entries allowed on the main diagonal.

The results in this paper provide a base case for the last item.

Specifically, Ho(z) should be a superset of R;t (z) and the definition of orthogonal Hecke
insertion should be an extension of our map a +— (P (a), Q% (a)). This is because if we
replace the inhomogeneous polynomial &9, . by its terms of lowest degree, then the desired
stable limit does always converge as m — oo (see [HMP18, §1.5]), so at least the lowest degree
terms of GP° and KQ, are well-defined. Both of these give the same homogeneous symmetric
function (by [HMP19, Cor. 4.62], since w fixes every Schur ()-function), which we denote by ().

As explained in Section 3.3, it further holds that Q, =) peincro (R (2)) 2% and Q, Q.= Qyx-
forally € I, and z € [,. This resolves the “homogeneous” forms of (a) and (b), and our
first main theorem gives a homogeneous version of the correspondence desired in (c). As an
application, this leads to another Littlewood—Richardson rule for the Schur @)-functions (see
Corollary 3.18). One hopes that this rule can be generalized to the GQ),’s in future work.

2. Preliminaries

In this section we review some preliminary facts and background material. Section 2.1 surveys
the basic theory of involution words. Section 2.2 then discusses primed words and primed in-
volution words. In Section 2.3 we set up our conventions for shifted tableaux. Throughout, we
write Z for the set of all integers. Whenn € Z is nonnegative, welet [n] := {i € Z : 0 < i < n}.

2.1. Involution words

We use the term word to mean any finite sequence of integers a = ajas - - - a,,. We write £(a):=n
for the length of a word. Recall from the introduction that R (o) denotes the set of reduced words
for a permutation o € Sy, := (s; : ¢ € Z), while R;,,(z) denotes the set of involution words for
an involution z = 27! € 5.

Let = be the equivalence relation on words that has a X (X + 1) Xb~ a(X + 1) X (X +1)b
and aXYb =~ aY X0 forall words a, band all X, Y € Z with | X —Y'| > 1. Foreach o € Sy, the



8 Eric Marberg

set R (o) is an equivalence class under /2, and an arbitrary word belongs to R (o) for some o € Sy,
if and only if its ~-equivalence class contains no words with equal adjacent letters [BBOS, §3.3].
We review a similar result that holds for involution words.

Letly; :={c€Sz:0=01}and I, := S, NIzwhen0 <ne€Z Ifz € Izandi € Z
then s; 0 z 0 s; = z when 2(i) > z2(i + 1), while s; 0 z 0 5; = z8; = s,z when i and i + 1
are fixed points of z, and otherwise s; o z 0 5; = s;25;. It follows (see [HMP18, Lem. 2.1])
that if z € Iz and ay, as, . .., a, € Z then the word ayas - - - a,, belongs to R, (2) if and only
ifz=5,, 0084, 084 084, 0---08,, and for each i € [n] it holds that

(3a¢_1 O©r++08qy 08q ©8qy O Osai_1)(ai) < (Sai—l ©r++08gy 08q O8qy O Osai_1)(1 +a;).

For example, we have 1232 € R;,,(4321) since s; = 2134, s5 0 51 0 S = $38182 = 3214,
$3089081089083 = 8382515253 = 4231, and $3053082,081 0859083089 = S35951525352 = 4321.

Lemma 2.1. If z € Sy has z(i) > z(i + 1) for some i € Z, then some a € Rin,(2) ends in i.

Proof. Lety = zs; = s,z if z(i) = i + 1 and otherwise let y = s;zs;. Then y € I and adding i
to any of its involution words gives an involution word z in view of the remarks above. [

Define = to be the transitive closure of &~ and the relation with XY a = Y X a for all words a
and all letters X, Y € Z. Hu and Zhang prove the first claim in the following result in [HZ16]:

Proposition 2.2 ([HZ16]). Each set Rin(z2) for z € Iz is an equivalence class under =. An
arbitrary word is an involution word for some element of 1y if and only if its =-equivalence
class contains no words with equal adjacent letters.

For example, Rin, (3412) = {132 = 312} and R, (4231) = {123 = 213 = 231 = 321}.

Proof. The first assertion is [HZ16, Thm. 3.1]. The second assertion may be proved from the
first by induction in the following way. Suppose aias - - - a, is a word whose =-equivalence
class contains no words with equal adjacent letters. Then the subword ajas - - - a,_; has the
same property, so by induction it is an involution word for some z € . By the remarks before
Lemma 2.1, to show that a;as - - - a,, is an involution word (necessarily for s, 0 zos,, ) it suffices
to check that z(a,) < z(1 + a,). But if this inequality does not hold then z has an involution
word b1 bs - - - b, 1 with b,,_; = a,, by Lemma 2.1, and by induction ayas - - - a,,—1 = b1bs - - - b1,
SO aas -+ @, = byby---b,_1a,, contradicting our hypothesis about the =-equivalence class
of ajas - - - ay,. O

2.2. Primed words

Let Z/ := Z — ; and given ¢ € Z define i/ := i — 1 € Z. This convention means
a

that (i + 1)’ =4’ + 1 and [i'] = [i] = i forall i € Z, and that
ZUZ ={-- <0 <0<l <1<2<2<---} =17

We refer to elements of Z' as primed letters, and we view all primed involution words in R;" (%)
as finite sequence of elements of %Z.
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“Removing the prime” from x € Z U Z' means to replace x by [z]. “Reversing the prime”
on z € Z U Z' means to replace z by the unique element of {[z] — 1, [z]} \ {z}, so that i € Z
becomes i’ € Z' and vice versa. When working with a pair of numbers z,y € Z L Z/, we will
refer to the operation that reverses the primes on both numbers if exactly one is unprimed and
leaves them unchanged otherwise as “switching their primes.”

We use the term primed word to mean a finite sequence a = ajas---a, Wwith
letters a; € Z L Z'. The unprimed form of a is the word unprime(a) := [ai]|[ag] - [ay]
obtained by removing the primes from all letters.

Let z € I;. In the introduction we defined an index ¢ to be a commutation in an involution
word ajas - - - a, € Rin(z2) if s,, commutes with y 1= s,, , 0+ 084, 084, 084, 00584, ;.
Because s,, must also be a left and right ascent of y, it follows that ¢ € [n] is commutation
in ayas - - - a, if and only if a; and 1 + a; are both fixed points of y, in which case (a;, 1 + a;)
is a 2-cycle of s,, 0 Yy 0 5,, = S84,y = YSq;- On the other hand, if 7 is not a commutation
then s,, 0 y 0 S,, = S4,YS,, has the same number of 2-cycles as y. Thus the number of commu-
tations in ajas - - - a,, is the number of 2-cycles of z.

Recall from the introduction that the set of primed involution words R\, (z) consists of all
primed words formed by adding primes to letters indexed by commutations in involution words.

Remark 2.3. As explained in [Worl2, §2.2-2.3] or [HM21, §8.1], the set I, C S,, indexes the
orbits of the orthogonal group O,,(C) acting on the type A,,_; flag variety Fl,, := GL,(C)/B.
In [BriO1], Brion derives a formula for the cohomology classes of the closures of these orbits,
involving a certain directed graph on the set of orbits. The directed paths that arise in Brion’s
cohomology formula (from the orbit indexed by z to the unique dense orbit) are in bijection
with R:t (2). This is one motivation for studying these sets. This is also why we will often in-
clude the adjective “orthogonal” with constructions involving R." (z). There is a parallel “sym-
plectic” story for a different analogue of reduced words corresponding to the orbits of Sp,,, (C)

acting on Fly, (see, e.g., [HMP20, Mar20, MP21, WY 17]).

In a few places we will need the following additional properties of commutations
from [Mar23].

Proposition 2.4 ([Mar23, Prop. 8.2]). Leta = ajay -+ - a, € R

= (2) for some z € Iy,

(a) Suppose [a;] = [a;11| £ 1 fori € [n — 1]. Then at most one of a; or a1 is primed, so
at most one of the indices i or i + 1 is a commutation in a, and if i = 1 then a;1 € 7Z.

(b) Suppose [a;] = [a;yo] fori € [n—2|. Theni > 1, a;41 = [a;| £ 1 € Z, and at most one
of a; or a; o is primed, so at most one of the indices i or i + 2 is a commutation in a.

Write = for the transitive closure of the relation with aXYb=aY Xbforall X,Y € Z L Z'
suchthat |[ X ] —[Y]| > 1, as well as with aXY Xb=aY XYband aX'Y Xb=aY XY"b for un-
primed numbers X, Y € Z such that | X — Y| = 1, and finally with Xa = X'aand XYa =Y Xa
for unprimed numbers X,Y € Z. In these relations a and b are arbitrary primed words. For
example, we have

1'232' =1'3'23 =13'23 = 3'123 = 3123
=1323=1232=2132=2312=3212=3121.
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The following extension of Proposition 2.2 is a corollary of more general results in [Mar23].

Proposition 2.5 ([Mar23, Cor. 8.3]). Each set ngv(z) for z € Iy is an equivalence class un-
der =.

2.3. Tableaux

A partition of an integer n > 0 is a finite sequence of integers A = (A > Ao > ... > A\ > 0)
that sum to n. In this event we set £(\) := k, A; := 0 fori > £(\), and [A| :== >, N = n.
A partition is strict if the parts \; are all distinct. The diagram of a partition X is the set of
positions Dy := {(¢,7) € Z x Z : 1 < j < \;}. The shifted diagram of a strict partition p is the
set SD, :={(i,i+j—1):(i,7) € D,}.

In this article, a tableau of shape A means an arbitrary map D) — Z and a shifted tableau
of shape ;« means an arbitrary map SD,, — Z U Z'. If T is a (shifted) tableau then we write T};
for the value assigned to some position (4, j) in its domain. The (main) diagonal of a shifted
tableau is the set of positions (i, 7) in its domain with ¢ = j. We often refer to positions (i, 7) in
the domain of a tableau as its boxes.

A (shifted) tableau is increasing if its rows and columns are strictly increasing as indices
increase. An increasing (shifted) tableau of shape ) is standard if it contains an entry equal to ¢
or i’ for each ¢ € [|A]]. A (shifted) tableau is semistandard if its entries are all positive, its rows
and columns are weakly increasing, no primed entry is repeated in a row, and no unprimed entry
is repeated in a column.* We draw tableaux in French notation, so that row indices increase from
bottom to top and column indices increase from left to right. If

(4] (8] 8 (8]
A=[3 71, S=[3]5]7| , B= [2]7|7] and T = 31577 2.1)
1166\ 1246\ \1’2’4’6 \1’2’4’6

then A is a semistandard tableau and B is a semistandard shifted tableau, while .S is a standard
tableau and 7" is a standard shifted tableau. All four tableaux are of shape A = (4,3,1). We
have Aoz = Bas = So3 = 7 while Ty = 5.

Suppose T is a tableau, or more generally any map from a finite subset of Z x Z to a
totally ordered set. The row reading word of T is the sequence row(7") formed by reading
the entries of 7' from left to right, row by row, starting with the top row (in French nota-
tion). Above, we have row(A) = 43371166, row(S) = 83571246, row(B) = 82'771'2'4'6,
and row(7") = &35'71'2'4’6. The column reading word of T is the sequence col(7") formed
by reading the entries of 7" from top to bottom, column by column, starting with the first col-
umn. Above, we have col(A) = 43131766, col(S) = 83152746, col(B) = 1'2'2'874'76,
and col(T") = 1'32'8'5'4’76.

When T is a shifted tableau, we form unprime(7") by removing all primes from 7"s entries.

Proposition 2.6. Suppose T is a shifted tableau such that row(T') or col(T') is a primed involu-
tion word for an element of 1. Then T is increasing if and only unprime(T') is increasing.

“Semistandard shifted tableaux are sometimes required to have no primed entries on the main diagonal, or
no primed entries in any boxes. Our conventions, which do not impose either condition, follow references like
[Sag87, Wor84].
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Proof. 1If unprime(T) is increasing then 7 is clearly increasing. Assume that 7" is increasing
and row(7T") is a primed involution word. Since row(unprime(7’)) is an involution word and
therefore reduced, no row of 7" can contain both x € Z and 2’ € Z', so the rows of unprime(T’)
are (strictly) increasing. It remains to show that this property also applies to the columns of 7.
Arguing by contradiction, suppose there is a box (i, j) € T such that T;; = z and T;_; ; = 2
for some x € Z. Assume (i, j) is the first such box in the row reading order, so that the box is
maximally northwest in French notation.

Let [ > 0 be maximal such that (7, j + [) is occupied in 7" with 7} ;;; < x + [. Then we
must have 7;_ j1, = v + k" and T} ;1 = x + k for each 0 < k < [ since 7' is increasing and
unprime(7") has increasing rows. If [ > 0 then box (¢, j + [ + 1) is either unoccupied in 7" or
filled with a number greater than = + { + 1. In this case, we can use = to commute 7} ;1; = z +1
to the right in row (") past the remaining letters in row ¢ and then also past the letters in columns
i—1,4,...,j+1—2of rowi—1 to obtain a primed involution word with (z+1)(z+1—1)"(z+1)’
as a consecutive subsequence. This is impossible by Proposition 2.4, so we conclude that [ = 0.

Having [ = 0 means that box (7, j + 1) is either unoccupied in 7" or filled with a number
greater than x + 1. It therefore follows by similar reasoning that [T;_; ;1] = = — 1, as oth-
erwise row(7") would be equivalent under = to a primed involution word with adjacent letters
equal to x and 2/, which is impossible. We now reach one of two contradictions. If i = j then
we can use = to commute 7;;, T;_; ;_1, and T;_; ; past all earlier lettters in row(7") to obtain
a primed involution word starting with 7;;7;_1 ;_1T;_1; € {z(z — 1)2’,z(x — 1)'2'}, which
contradicts (b) of Proposition 2.4. If instead ¢ < j, then since we cannot have T ;_; = 2’ as the
rows of unprime(7T’) are increasing, the inequalities 2’ — 1 < T;_; ;1 < T;;_1 < T;; = x can
only hold if 7; 4 ;_; = 2’ — 1 and T3 ;_; = = — 1, which contradicts the minimality of (3, j).
We conclude that unprime(7’) is increasing.

The argument to show that unprime(T") is increasing when 7 is increasing and col(T) is
a primed involution word is similar to the previous case. One simply “conjugates” all of the
preceding statements, where if 7" is contained in the square [NV — 1] X [N — 1], then conjugation
applies the transformation (i, j) — (N — j, N — i) to the boxes of 7" and = +— 1’ — x to the
entries of 7. ]

. K . . .
In the following lemma, let ~ denote the transitive closure of the symmetric relation on

primed words that has uAC Bv X wCABw and uBCAv & wBACv whenever u and v are
primed words and A, B, C' € Z LI Z/ are such that [A] < [B] < [C']. This is similar to (strict)
Knuth equivalence.

Lemma 2.7. Let T be a shifted tableau. If unprime(T) is increasing then row(T') L col(T).
Consequently, if T is increasing and z € Iz, then row(T) € R." (z) ifand only if col(T) € R\ (2),

nv

and in this case row(T') L col(T).

Proof. Let w be the last column of 7" read in reverse order. Construct U from 7' by removing
the last column. Then by induction col(7) = col(U)w X row(U)w and it remains to check
that row(U)w L row(T"). For this, observe that if 7" has j columns and i := {(w), then starting

K . o
from row(7"), we can use ~ first to commute w; = T;; to the right past the entries in columns
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t—1,1,...,7 —1of row¢— 1, then to commute w, = T;_, ; followed by w; to the right past the
entries in columns i — 2,7 —1,...,j — 1 of row ¢ — 2, and so forth, until we are left with row(U)
followed by w.

If T is increasing and row(T) or col(T') is in R\ (z), then unprime(T) is increasing by Propo-

+

sition 2.6, so row(T") £ col (T") and both reading words are in R;’ (2) asu £ vimpliesu=v. [

3. Shifted Edelman—Greene insertion

This section contains our main results, which are organized around a shifted version of Edelman—
Greene insertion [EG87] that sends primed involution words to pairs of shifted tableaux. Sec-
tion 3.1 gives the precise definition of this insertion algorithm, along with some examples and
basic properties. Section 3.2 then describes its “semistandard” extension. Section 3.3 explains
an application of the semistandard algorithm to formulating a Littlewood—Richardson rule for
Schur @-functions. Sections 3.4 and 3.5 explore some related operators on primed involution
words and standard shifted tableaux. Section 3.6, finally, examines how the primes in a primed
involution word may be used to label the 2-cycles of the corresponding involution.

3.1. Definitions for the standard case

This section give the definition of orthogonal Edelman—Greene insertion and a few of its ba-
sic properties. Suppose 7' is an increasing shifted tableau with no primed entries on the main
diagonal and a number v € Z U Z' such that row(T)u € R (z) for some z € I;. We

nv
. . . . . 0 .
first explain how to insert u into 7" to obtain another shifted tableau 7" <— wu that is increas-
ing with no primed entries on the main diagonal. Later, we will see that this new tableau also

has row(T’ n u) € R (2).

Definition 3.1. Suppose 7' is an increasing shifted tableau with no primed entries on the main
diagonal and v € Z LI Z' is such that row(T")u is a primed involution word for some element

of I;.> We construct another shifted tableau 7' Lu by the following iterative process:

(1) On the ith iteration, an entry w € Z LI Z' is inserted into row or column i, which we
refer to as the current segment. The entries in the current segment will always be strictly
increasing, even after removing all primes. The process begins with u inserted into the
first row of 7T'.

(2) Suppose [w] is less than some entry in the current segment. Let m < M denote the
smallest entries in the current segment with [w] < [m] and [w]| < [M]. If m < M,
then M will be unprimed and in the box directly after m, and [w] = [m] = M — 1.5

(a) If m = M is off the main diagonal then w replaces m and we insert m into the next
row (respectively, column) if the current segment is a row (respectively, column).

3As row(T) is also a primed involution word in this case, Proposition 2.6 implies that unprime(7T’) is increasing.
®This claim only holds since we assume that row(7")u is a primed involution word; see Remark 3.7.
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(b) If m = M is on the main diagonal then m will be unprimed. In this case, we re-
place m by [w] and insert m + 1 if w € Z (respectively, m’ + 1 if w € Z') into the
next column.

(¢c) If m and M are distinct, then we switch the primes on these entries, and continue
by inserting w + 1 into either the next column (if m is on the main diagonal or the
current segment is a column) or the next row (otherwise).

(3) If [w] is not less than some entry in the current segment, then we place w in the segment’s
first empty box (z,y) with x < y.” If z = y and w is primed, then we change the box’s
entry from w to [w] and say that the insertion process ends in column insertion. We also
say the process ends in column insertion if x < y and the current segment is a column.

: : : : 0 :
Otherwise, the process ends in row insertion. Define T' <= u to be the result of this step.

If this process lasts for NV iterations, then we define (z;,y;) and (Z;, 7;) fori € [N — 1] to be the
respective positions of m and M in step (2) on iteration 4, and let (xy,yn) = (T, Jn) be the
new box (x,y) added to the tableau in step (3). We call the sequences

pathS(T,u) := ((w;,y;) : i =1,2,...,N) and path<(T,u) = ((¥;,%):i=1,2,...,N)
the weak and strict bumping paths that result from inserting « into 7'.

Example 3.2. The following examples illustrate most of the cases occurring in Definition 3.1.

(@) If T = and u = 2 then T < w is computed as

~ <3 ~ =T <3 U
2 - |
Here, the insertion process ends in row insertion and the bumping paths are

path(T,u) = path<(T,u) = ((1,2),(2,2)) .

(b) If T' = and u = 2 then T < w is computed as

+«— 3 3 o
(]« ~ [ OEE

Here, the insertion process ends in column insertion and the bumping paths are

paths (T, u) = path<(T,u) = ((1,2), (2,2)).

"It is not obvious, but such a box will always exists and adding it to T will give the diagram of a shifted partition.



14 Eric Marberg

415 .
(©) IfT:‘1 S Ta and u = 2 then T < w is computed as
4 )
4 1
415 ~ 45|+ 3 ~ 315 ~> 315
13[4 «2 [1]2]4 [1[2]4 [1]2]4
~> 3|5 —T<gu
[1]2]4]5]

In this case the insertion process ends in column insertion and the bumping paths are

pathg(T, u) = ((17 2)? (27 2)7 (17 3)7 (174)) )
path~(T,u) = ((1,2),(2,2),(2,3),(1,4)).

(d) IfT:‘1 35, i andu:2thenT£uiscomputedas
5 6
{ {
56 ~ 5(6|«3 ~ 316 ~> 35
1[34] «2 \124 \124 \124
~ 315 178y
\1 214 6\_

In this case the insertion process ends in column insertion and the bumping paths are

path<(T,u) = path<(T,u) = ((1,2), (2,2), (2,3), (1,4)).

. : : : . o .
Proposition 3.21 will show that if 7" and u are as in Definition 3.1 then row(7" <= ) is also
a primed involution word. We can therefore iterate the above insertion process as follows:

Definition 3.3. Given a primed involution word @ = ajas---a, for some element of Iz,
let PS(a) be the shifted tableau & Lo &ay & o & a,and let Q2 (a) be the stan-

dard shifted tableau with the same shape as P2 (a) that has i (respectively, i) in the box added
by inserting a; into P& (ajay - - a;_1) when this ends in row insertion (respectively, column
insertion).

We refer to a +— (P& (a), Q2 (a)) as orthogonal Edelman—Greene insertion. There is a
similar correspondence called symplectic Edelman—Greene insertion, with a different domain
containing only unprimed words, which is denoted a — (P28 (a), Q2% (a)) in [Mar22, Def. 3.23].
For more about the connection between these maps and the orthogonal and symplectic groups,
see Remark 2.3.
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Example 3.4. The words a = 134524’, b = 5'431’4'2, and ¢ = 41’354'2 all have

315
PEOG(a):PI?G(b):PEOG(C):‘l 514 5‘
N - L P U [ o~ [3T5
WhlleQEG(a)_‘l 513 4‘7 QEG<b>_‘1/ ARG 4,‘, andQEG(C)_‘l AP 6’\'

Remark 3.5. The Edelman—Greene correspondence a — (Peg(a), Qec(a)) from [EG87], send-
ing reduced words a € R (o) for o € S, to pairs of unshifted tableaux of the same shape, may
be embedded in Definition 3.3 as follows. Fix o € S,, and choose an involution word b for

z:=(0,n)(-1,n—1)(-2,n—2)---(—n+1,1) € I.

Then a — ba is an injective map R(c) < Rin (0 '20), and when we carry out the bumping
process to compute P& (ba), the first /(b) insertions will result in a shifted tableau of
shape (n,...,3,2,1) whose last column is 0,1,2,...,n — 1. This part of the insertion
tableau P (ba) will remain fixed during the remaining ¢(a) insertions, which will only involve
row bumping operations that follow the rules of the original Edelman—Greene correspondence.
We recover Peg(a) from P (ba) by omitting the first n columns, while Qgg(a) is given by
omitting the first n columns of Q2 (ba) and subtracting /(b) from the remaining entries, which
are all unprimed numbers.

Example 3.6. Whenn = 4wecantakeb = —3, —1,—2,1,0,—1, 3, 2, 1, 0. Then for the reduced
word a = 23121 € R(3412), we have

3] [10]
0\ 1273 o B 6]9]15
Peslbe) = rgtifats] @4 @eclbo) = msisiinia
—3-2-10]1]2 [1]2]4]7]11]12
(3] 5]
compared to Peg(a) =[2]3]and Qec(a) =[3]4]
12 12

As noted in the introduction, a — (P& (a), Q% (a)) restricted to unprimed involution words

reduces to a map previously studied in [HMP19, Mar20, Mar22]. Our inclusion of primes may
seem like a minor generalization. However, there seems to be no simple way to derive our main
results as corollaries of what is known about the unprimed form of orthogonal Edelman—Greene
insertion.

Remark 3.7. Suppose T'is an increasing shifted tableau with no primed entries on the main diag-
onal and u € Z 7' is such that row(T)u € R () for some 2 € I7. Since ar (P2 (a), Q% (a))
restricted to unprimed words coincides with [Mar22, Def. 3.20], [Mar22, Rem. 3.25] implies
the following properties concerning the process to construct 7' L u, stated in the notation of

Definition 3.1:
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(a) Denote the intermediate tableau created by the :th iteration in Definition 3.1 by 7;, so

that 7' = T and T' L= Ty if N > 0 is the length of the two bumping paths.
Then each 7; is a shifted tableau with no primes on the main diagonal, and unprime(7;) is
increasing.

(b) If mand M in step (2) on iteration ¢ are distinct, then the boxes (x;, ;) and (Z;, §;) contain-
ing these entries are adjacent, and the number w being inserted has [w] = [m]| = [M]—1.

(c) Suppose m and M in step (2) on iteration ¢ are distinct and m is on the main diagonal.
Then m = T; is unprimed and M = T;;,1, and we have Ty ;41 = [M] 4+ 1 =m + 2.

There is one final property that will be demonstrated in the proof of Proposition 3.21:

(d) If the ¢th iteration has a number w being inserted into row (respectively, column) 7, then
placing w between rows (respectively, columns) ¢ — 1 and ¢ in the row (respectively,
column) reading word of T; ; gives another primed involution word in R;" (2)
by (3.3) and (3.4). In view of this observation, if the numbers m and M in step (2) on
iteration 7 are distinct, then since we already know that unprime(7;_;) is increasing
and [w] = [m] = [M]—1, it follows from Proposition 2.4 that A/ must be unprimed and
that w can only be primed if m is unprimed and not on the main diagonal (as if m is on the
diagonal then its index in the reading word mentioned above is already a commutation).

We mention some other properties of P& (a) and Q2 (a) that readily follow from the defi-
nitions. Given a shifted tableau 7', form unprime,.(7") from 7" by removing all main diagonal
primes.

Proposition 3.8. If a is a primed involution word then

P,?G(unprime(a)) = unprime(P,?G(a)) and QgG(unprime(a)) = unprimediag(Q(gG(a)).

Proof. This follows from Definitions 3.1 and 3.3: if all primes are removed from a then the inser-
tion process to compute P (a) is unchanged except that no entries added to P (a) are primed,
and all insertions that contribute new boxes to the main diagonal must end in row insertion. [

The first letter in a nonempty involution word is always a commutation. Toggling the prime
on this letter also has a predictable effect on the output of orthogonal Edelman—Greene insertion.

If i € Z then P& (i) = P& (i') =[i|while QZ; (i) =[1]and QZ; (') =[1']. More generally:

Proposition 3.9. If a is a nonempty primed involution word and b is formed from a by toggling
the prime on its first letter, then P2-(a) = P2.(b) and Q2.(b) is formed from QS(a) by toggling
the prime on the entry in box (1,1).

Proof. This again follows directly from Definition 3.1. [
We can also say what happens to P2 (a) and Q2 (a) when a; and a, are interchanged.

Proposition 3.10. Ifa is a primed involution word with at least two letters and b is formed from a
by interchanging its first two letters and then switching their primes, then P2.(a) = P2 (b)
and Q2. (b) is formed from Q2. (a) by toggling the prime on the entry in box (1,2).
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This means thatifa = 1’3’ --- thenb = 3'1"---, whileifa = 13’--- thenb = 31"---.
Proof. This also follows directly from Definition 3.1. [

Our first nontrivial result about orthogonal Edelman—Greene insertion is the following.

Theorem 3.11. Let 2 € I. Then a — (P2:(a), QS (a)) is a bijection from the set of primed in-
volution words R\ () to the set of pairs (P, Q) of shifted tableaux of the same shape, in which P

nv

. . . . . . . . +
is increasing with no primes on the main diagonal, () is standard, and row(P) € R;. (2).

The theorem remains true when we replace R (z) by Rin(2) if we further require Q
to have no primes on the main diagonal [HMP19, Thm. 5.19]. It is routine, following
[Mar20, §3.3] or [PP18, §5.3], to describe a reverse insertion algorithm that gives the
inverse (P (a), Q%(a)) — a. However, we will end up deriving Theorem 3.11 by another
method in Section 4.7. For the rest of this section, we will assume that Theorem 3.11 is given,

and then use this to develop a few other results.

3.2. Extension to the semistandard case

In this section, we discuss a generalization of Definition 3.3 that outputs a pair of shifted
tableaux (P, ()) in which () is semistandard rather than standard.

A positive integer 7 is a descent of a standard shifted tableau 7 if either (a) 7 and 7 4+ 1 both
appear in 7" with ¢ + 1 in a row strictly after 4, (b) i’ and ¢ + 1 both appear in 7" with 7/ + 1
in a column strictly after ¢/, or (c) ¢ and " + 1 both appear in 7. Let Des(T") denote the set of
descents of 7. If T'is as in (2.1), then Des(T") = {1, 3,6}.

Lemma 3.12. If T is a standard shifted tableau then Des(T') = Des(unprimeg;,, (7).

Proof. Form H; by reading the primed entries up column ¢ of 7' then the unprimed entries
across row ¢. For T"in (2.1), this gives H3 = 4’5, Hy = 2’37, and H; = 1’6. Then i € Des(T))
if and only if i + 1 precedes i in unprime(--- H3H,Hy), which is unchanged for T" replaced
by unprime;,.(T'). O

If @ = ayasy - - - a,, is a primed word then let Des(a) := {i € [n — 1] : a; > a;41}.

Proposition 3.13. Leta € R

nv

(2) for some z € Iy. Then Des(a) = Des(Q%:(a)).

Proof. We have Des(a) = Des(unprime(a)) since the word unprime(a) € R, (z) has no equal
adjacent letters. Next, [HKP* 17, Prop. 2.24] asserts that

Des(unprime(a)) = Des(Q2(unprime(a))).
Finally, we have Q2 (unprime(a)) = unprime,,(QZ;(a)) by Proposition 3.8 and
Des(unprime,,(T')) = Des(T)

for all standard shifted tableaux 7" by Lemma 3.12. [
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When a is a word in a totally ordered alphabet and /N is a nonnegative integer, we let Incr v (a)
denote the set of N-tuples of weakly increasing, possibly empty subwords (a',a?, .-, a'V)
such that @ = a'a®---a”. Recall from the introduction that Incr.(a) is the set of infinite se-
quences (a', a?, - - - ) of weakly increasing words with a = a'a? - - - ; here, all but finitely many a’
must be empty. If A is a set of words and N € {0,1,2,...} U {oo} then we let

Incry(A) = |_| Incry(a).

acA
Definition 3.14. Given ¢ = (a',a? ---) € Incry(R;! (2)) for 2 € I7, let
Pee(9) = P(a'a®---)

and form Q2 (¢) from Q2 (a'a?- - -) by replacing each entry j € Z (respectively, j’ € Z') by i
(respectively, i'), where ¢ > 0 is minimal with j < £(a') + £(a?) + - - - + {(a?).

For example, if ¢ = (2,4,1'3, 9,5, ,4",2) € Incrg(41'354'2) then

P&(9) = rraTaTs) ™ Q8l9) = aTaTaTeT

If (a*,a?, -+ ) € Incry (R (2)) then unprime(a’) is strictly increasing as a'a?- - - € R} ().

Theorem 3.15. Let z € Iy. Then ¢ — (P2:(9), Q2:(9)) is a bijection from Incro(R;" (2)) to

the set of pairs (P, (Q)) of shifted tableaux of the same shape in which P is increasing with no

primes on the main diagonal, Q) is semistandard, and row(P) € R} (2).

Proof. Let T be a standard shifted tableau whose shape is a strict partition of m and let « =
(a1, g, . .. ) be a weak composition of m such that I (a) := {a; +as+- -+ a; : 1 > 1} \ {m}
contains Des(T').

We claim that such pairs (7, «v) are in bijection with semistandard shifted tableaux via the
map that replaces j (respectively, j') in T by i (respectively, ') where i@ > 0 is minimal
with j < ay +ag+ - - -+ «;. The shifted tableau U obtained from (7', «) in this way is semistan-
dard because 7 ¢ Des(7T) implies that 7 and i + 1 do not appear in the same column of 7', that 7’
and 7" + 1 do not appear in the same row of 7, and that 7" does not contain both i and i’ + 1.
In the reverse direction, one can recover « from U as the sequence whose ith entry is the num-
ber of boxes containing ¢ or ¢/, and one can recover 1" from U by the standardization process
that replaces each vertical strip of boxes containing i’ by consecutive primed numbers and each
horizontal strip of boxes containing ¢ by consecutive unprimed numbers.

By Proposition 3.13, if ¢ = (a',a?,...) € Incroo(R,(2)), then Q2. (¢) is obtained by
applying this bijection to (T, a) for T = Q& (a'a®---a™) and a = (¢(a'),l(a?),...). Given
this observation, we deduce that ¢ — (P2(¢), Q9% (¢)) is injective and surjective from Theo-
rem 3.11. ]
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3.3. Application to multiplying Schur )-functions

In this section, we explain an application of Theorem 3.15 mentioned in the introduction. Let x;
for ¢ € Z be commuting indeterminates. Given a shifted tableau 7, let T = IT iz x;" where ¢;
is the number of entries in 7" equal to i or i'. The Schur Q)-function of a strict partition \ is
the formal power series @y := >z’ € Z[[x1, 22, ...]] where T ranges over all semistandard
shifted tableaux of shape A. The Schur (Q-functions are symmetric in the z; variables and linearly
independent [Ste89]. We present a new proof that they span a ring with nonnegative integer
structure coeflicients.

For 2 € Iz, let Q. := 3 yiner (it () @7 Where 2% := 2l i g = (0! a?, ).

inv

These power series are denoted GZ in [HMP19, §4.5]. The following is immediate from Theo-
rem 3.15.

Corollary 3.16 ((HMP19, Cor. 4.62]). We have (), = ZTG{PEG(Q);aeRf (2)} Qshape(T)-

nv

Suppose A is a strict partition and 7)), is the increasing shifted tableau of shape A whose entry
in box (4, 7) is ¢ + j — 1. There exists a unique element z € [ (called the dominant involution
of shape \) whose involution Rothe diagram

~

D(z) :={(l,)) €EZXZ:z(i) >j<i<z(j)}

coincides with the transpose of SD, [HMP22, Prop. 4.16]. If we denote this element by 2z € I,
then row(Ty) and col(7}) are both in Ry, (2x) by [HMP22, Thm. 3.9 and Prop. 4.15].% For
example, if A\ = (4,2, 1) then

3
[1]2

and 2z, = (84535455525351)(51538285845354) = (1,5)(2,4)(3,6)

C»JﬂkU"

4]

where s; indicates the omission of that factor.

We need one more definition. Given any z € 7y, let ¢; be the number of positions in row ¢
of D(z). Then the involution shape of = [HMP19, Def. 4.38] is the transpose of the parti-
tion that sorts the sequence (...,c1,c2,¢3,...). When 2 = Zzy4 1) the nonzero values of ¢;
are (cy1, ¢, c3,¢4) = (1,2,3,1) so the involution shape is (3,2,1,1)" = (4,2,1). This coinci-
dence is a general phenomenon.

Lemma 3.17. Suppose ) is a strict partition. Then the following properties hold:
(a) The involution shape of z) is .
(b) It holds that Q),, = Q.

(c) We have P2-(a) = Ty forall a € R, (z)).

81n the terminology of [HMP22], col(T}) is the standard reading word of the unique involution pipe dream
for z) described in [HMP22, Prop. 4.15], while row(T)) is an alternate reading word in the sense of [HMP22,
Def. 3.4].
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Proof. For part (a), observe that since D(Z)\) is the transpose of SD,, the relevant value of ¢; is
just height of column i of SD,. We claim that these numbers are a permutation of the heights of
the columns of the unshifted diagram D). As the latters heights are the parts of A", our claim
implies that (..., ¢y, co, c3,...) sorts to AT so the involution shape of z, is )\ as desired.

To justify our claim, note that SD) can be formed by rearranging the columns of D, in the
following way. Since A is strict, D) has a column of height k£ foreach £ = 1,2,...,/()\). Remove
these columns from D), and then place them in ascending order on the left side of what remains.
The result is SD,.

One can compute that P2 (col(Ty)) = Ty directly from the definition of PS.. Given this
observation and Corollary 3.16, to prove parts (b) and (c) it suffices to show that ),, = Q..
We do this by appealing to results in [HMP19]. The permutation z) is 132-avoiding by [ManOl1,
Ex. 2.2.2] and so also 2143-avoiding (i.e., vexillary). By [HMP19, Thm. 4.67], the symmetric
function @), is equal to a single Schur ()-function whenever y € 7 is vexillary, and so in
particular when y = z,.

Finally, [HMP19, Cor 4.42] identifies the top term in the Schur ()-expansion of (), for any
involution y: this is precisely the Schur ()-function indexed by the involution shape of y. Since
this term is the only term when y = z,, we conclude from part (a) that ), = ) asneeded. [

As in the introduction, given elements v € S, and w € S,, let v X w € §,,., be the
permutation mapping i — v(¢) for i € [m| and m + j — m + w(yj) for j € [n].

Corollary 3.18. If \ and pu are strict partitions then Q\Q, =Y, 9, Qv where the sum is over
strict partitions v and g¥,, is the number of elements in { P8(a) : a € Rif (zx X z,) } of shape v.

Proof. Lety € IzNS,, and z € IzNS,,. It follows from Proposition 2.5 that Incro, (R (y x 2))
is in bijection with the product Incro.(R;! (y)) x Incroo(R;" (2)) via the map

((a*,a?,...), (b 0%, ...)) = (a'c, a®c?, .. .)

where ¢ is formed by adding m to each letter of 4. This implies that Q, Q. = Q,x., and so the
result follows from Corollary 3.16. [

3.4. Orthogonal Coxeter—-Knuth equivalence

An essential property of orthogonal Edelman—Greene insertion is that the fibers of P are equiv-
alence classes for a simple relation on primed words, which we define in this section. Let ock
denote the operator that acts on 1- and 2-letter primed words by interchanging

XX, XY +VYX, XY &VX, XY&VYVX and XY &YX (3.1)
forall X,Y € Z. In addition, let ock act on 3-letter primed words as the involution interchanging
XYX < YXY, XYX+YXY, ACB+<+ CAB, and BCA <« BAC (3.2

forall XY € Z with |[X — Y| = land all A,B,C € ZUZ with [A] < [B] < [C],
while fixing any 3-letter words not of these forms. Given a primed word a = ajasas---a,
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and i € [n — 2], we define

ock_1(a) := ock(ay)azag - - - ap,
ocko(a) := ock(ajaz)as - - - ay,

while setting ock;(a) := a fori € Z with i + 2 ¢ [¢(a)]. For example, if a = 45’7121’ then

ock_y(a) = 4'5'7121", ockg(a) = 54'7121’, ock;(a) = 457121,
ocks(a) = 45'1721", ocks(a) = 45'1721", ocky(a) = 45'72'12.

The abbreviation “ock” is for orthogonal Coxeter—Knuth operator.

Lemma 3.19. Ifi > 0 and a is a primed involution word then
unprime(ock;(a)) = ock;(unprime(a)).

Proof. This is clear unless ¢ € [((a) — 2] and [a;| = [a;42], but if this happens then Proposi-
tion 2.4 tells us that a;,; € Z and at most one of a; or a; 5 is primed, so the result still holds. [

The transitive closure of the relation on unprimed words with a ~ ock;(a) for all i > 0 is of-
ten called Coxeter—Knuth equivalence [EG87, Def. 6.19]. We define orthogonal Coxeter—Knuth

. 0 . . . . 0
equivalence ~ to be the transitive closure of the relation on primed words with a ~ ock;(a) for
all s € Z.

Lemma 3.20. Ifa € R (2) for some z € Iz and a 2 b, thenb € R (2).

nv

Proof. The first two relations in (3.1) applied to the beginning of a are special cases of =, while
the last two relations in (3.1) are compositions of the first three. The word a € R (z) can only
beginasa=XY"--- for X, Y € Zif | X —Y| > 1, in which case applying the third relation in (3.1)
corresponds to the =-equivalence a = XY’ - - =X'Y'... =Y'X'... =Y X' -.. = ocke(a).
The relations in (3.2) are all special cases of =, so ock;(a) € R;" (z) for all i by Proposi-

nv

tion 2.5. 0
With the following result, we begin to see the close relationship between % and the map PZ.

Proposition 3.21. Let T be an increasing shifted tableau. Fix z € I and suppose u € 7.1 7/
has row(TYu€ R (2). Then rom(T)u < rom(T <2 ), so if a€ Rt (2) then a £ row(PS:(a)).

nv nv

Proof. LetT = Ty, T1,15,..., Ty =T &L 4 be the shifted tableaux formed by successive
iterations of the algorithm in Definition 3.1, and let u = wug, uy, us, ..., uy_1 be the numbers
such that w;_; is inserted into row or column ¢ of 7;_; on iteration 7. Let Rl(j) be the word
formed by reading the jth row of 7; from left to right and let Ci(j ) be the word formed by reading

the jth column of 7; from top to bottom. Finally, let TN =Ty =T <3 u and construct Tz
from 7} for : < N by adding u; to the end of row (respectively, column) 7 4 1 if the insertion
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(a) IfT:‘l5,2andu:2thenp:2<N:3,u0:2<u1:3’<u2:5’,and
[57]
~ 516 ~ 516|3 ~ ~ 315
T(): 7 ) le ) T2: 3 6; T3:
[1[3']4]2 1|24 o Ta 112416
[7]
(b) If T = 5|16 landu=4thenp=2< N =3, up =4 <u; =5 < uy =6, and
HEE
) 7] ) 7] % ) 7]
Ty= [5]6] . Ti=_[5[6[5] To= otz Ts=_[5]6
11354 1134 13712 113147

Figure 3.1: Examples for the proof of Proposition 3.21.

on iteration ¢ + 1 is into a row (respectively, column). Figure 3.1 shows two examples of these
definitions.

Suppose there are exactly p € [N] iterations involving row insertion. We will show that if
there are no iterations involving column insertion (so that p = V) then

row(T)u = row(Tp) R row(T}) R...R row(Ty), (3.3)

and if there is at least one iteration involving column insertion then

row(T)u = row(7j) R row(T}) R ... row(T},_1)

- - (3.4)
col(T},) R col(T},41) R...R col(Tw).

O 20

The first case is precisely the desired identity as 7' L= Ty. In the second case, it follows

that R.F (z) contains col(T & u), so by Lemma 2.7 we have row(7")u 2 col(T i w) N

row (T’ n u) as desired.

We argue by induction on . Assume the first ¢ — 1 equivalences hold in (3.3) or (3.4).
Then R;,(z) contains the relevant reading word row(7}_,) or col(T}_;), so the assertions in (d)
of Remark 3.7 hold up to iteration <. From these and the other properties in Remark 3.7, we see
that if iteration ¢ involves row (respectively, column) insertion and the next iteration does not
change the insertion direction, then Rz(i_)lui_l 2 uiRgi) (respectively, ui_lCi(i)l 2 C’Z-(i)ui). In
example (a) in Figure 3.1,

RVup=1342 2 1324 R 3124 = w; RY  and u,CY =564 2 546 = CPus.
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It follows that if i < p — 1 then row(T_;) R row(T;) and if i > p then col(T;_;) R col(T;).
Suppose p < N so that the insertion direction changes from rows to columns after iteration p.
It remains to show that row(7},_;) R col(7},). In this situation it must hold that

(up—ﬂ < min(Rgl)l) = Tipp,

so there are two cases to consider according to whether [u,_1| < T}, or [u,_1] = T).

First assume that [u,_1] < T},. To show that row(7},_;) 2 col(T},), we describe two enlarged
“tableaux” with the same row and column reading words as T 1 and T respectively, that have
certain diagonal reading words that are easily related. Let D = {(24, 2 j) : (i,j) € T'}. Then
define V : DU{(2p —1,2p — 1)} — Z U Z’ to be the map with

V2i,2j = (Tp—l)ij and V2p—1,2p—1 = Up—1,
and define W : DLI{(2p+ 1,2p+ 1)} — Z U Z’ to be the map with
Waioj = (Tp);; and  Wapiopi1 = Uy
For example (a) in Figure 3.1, we have p = 2, u, 1 = 3’, and u, = 5', along with

Jois i
V=. .13 and W =

ERulE 0.3

Since row(7},_;) = row(V') and col(T},) = col(WW), it suffices to show that row(V/) R col(W).
Form the northeast (respectively, southwest) diagonal reading words of V' (and similarly for 1)
by reading the main diagonals of V' from left to right, going in the northeast (respectively, south-
west) direction. In our example, these words for V' are 135264 and 531624, respectively. Fi-
nally define V and W by removmg the main diagonals from V' and W. Observe that V = V.

Recall the definition of L from Lemma 2.7; this is a subrelation of N. First, we claim
that row(V') is equivalent under £ to the southwest diagonal reading word of V. To see this,
start with row(1") and consider the diagonals of V' from left to right. If a;a, - - - a, is the first
diagonal in increasing order, then we can use ~ to commute a; backwards in row(V") until it
o K .
is just after ao, and then we can use ~ to commute first a; and then a; backwards until they
after both just after a3, and so on, until we are left with q,, - - - aga, followed by the row reading
word of V' with its first diagonal omitted. We then proceed in the same way over the remaining
diagonals, eventually reaching the southwest diagonal reading word of V' via rﬁ—equivalences.

o . . K . .

It follows similarly that col(1/) is equivalent under ~ to the northeast diagonal reading word
of W. One can repeat the argument in the previous paragraph, after replacing row by col and
redefining a;as - - - a, to be the first diagonal in decreasing order.

The arguments above also show that the southwest (respectively, northeast) diagonal reading

word of V = W is equivalent under £ to its row (respectively, column) reading word. But the
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row and column reading words of V' = W are equivalent under K by Lemma 2.7, since this
tableau is increasing when all primes are removed from its entries by (a) of Remark 3.7. Thus
all four reading words for V =W are equivalent under K.

The diagonal reading words of V' and W are given by adding the first diagonal (in one of
two orders) to the start of the corresponding diagonal reading words of V = W. Thus, to show
that row(1) 2 col(W), we are reduced to checking the simpler property that the main diagonal

of V' in the southwest reading order is equivalent under 2 to the main diagonal of W in the
northeast reading order. This is straightforward since both words have at most one primed letter;
for example, 53’1 R 351 R 315 R 135, Itis only in this last step that we need to use the
relation ~ instead of only . We conclude that row(T},_1) R col(T},) when [u, 1] < T}p.

We are left to consider the case when [u,_1| = T},,. By Remark 3.7 this can only occur
when T}, = Tpps1 — 1 = Tpy1ps1 — 2 € Z. Let i be the index of v := T, in row(T}, ;).
This index must be a commutation since all letters preceding v are at least 1,1 41 = v + 2,

so truncating row(7},_,) just before ¢ gives a primed involution word for an element of [, that

fixes v and v + 1. By moving u,_; across row p of Tp_l, we see that row(7,,_) is equivalent

under < to a word with letters v(v 4 1)u,_; in positions 4, ¢ + 1, and i + 2. As [u,—1| = v and
the index of v is a commutation, Proposition 2.4 implies that u,,_; = v is unprimed.
Finally define V : DU {(2p+ 1,2p + 1)} — Z U Z' to have

Vaigj = (Tp-1)ij = (Tp)i; and  Vopi1opi1 = up—1+ 1 = u.

For example (b) in Figure 3.1, this gives
[7]
V= . -[5] 6]

Then row(7,_;) R row(V") and col(7},) = col(V'), so it suffices to show that row(V") 2 col(V).
This follows by repeating the argument in the case when [u, ;]| < T, but with W := V' (and
with V' = W again formed from V' by omitting the main diagonal). That is, we first show that

. . . K
the row and southwest diagonal reading words of V' are equivalent under ~, as are the column
and northeast diagonal reading words. Then we observe that the row, column, and both diagonal

. = 5 . K ) . . .
reading words of V' = W also equivalent under ~. This reduces things to checking that reading
the main diagonal of V' in increasing or decreasing order gives equivalent words under 2. This

is straightforward as the main diagonal of V' has no primed entries. [l
3.5. Dual equivalence operators for shifted tableaux

Proposition 3.21 implies that if a and b are primed involution words with P& (a) = P (b)
thena 2 b. We will eventually prove the converse statement, that if a R bthen P& (a) = P& (b).
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The proof of this fact is more difficult, and requires us to understand how the operators ock;
interact with PS, and Q. The results in this section precisely explain this interaction.
Assume 7' is a standard shifted tableau. Choose ¢ > 0 such that the domain of 7' fits in-
side [¢q] x [g]. Let C; be the increasing sequence of primed entries in column i of 7', and let R;
be the increasing sequence of unprimed entries in row ¢ of 1. The shifted reading word of T' is

shword(T') := unprime(C, R, - - - CoR2C1 Ry). (3.5)

For example, if 7" is the standard shifted tableau

357
\1’ 246

T — (3.6)

then the nonempty sequences C;R; are C1 R; = 1’6, Co Ry = 2'37, C3R3 = 4’5, so the shifted
reading word is shword(7") = 4523716.

A useful feature of this way of defining the shifted reading word is that it automatically
holds that shword(7") = shword(unprime,(T")), where as above unprime,,,, is the operation
removing all primes from the main diagonal. As noted in the proof of Proposition 3.12, we
have i € Des(T') if and only if i + 1 appears before 7 in shword(7") when reading from left to
right.

Let n be the number of boxes in 7. For each ¢ € [n], write [J; for the unique position of T
containing ¢ or ¢’. Then define s,(7") to be the shifted tableau formed from 7" as follows:

(a) If OJ; and [J; 1 are not in the same row or column, then swap ¢ with ¢ + 1 and i’ with i+ 1'.

(b) If [J; and [J;, 4 are in the same row or column and neither box is on the main diagonal,
then reverse the primes on the entries in both boxes.

(c) If [J; and [J;,; are in the same row or column but one box is on the main diagonal, then
reverse the prime on the entry in the non-diagonal box; then, if both [J;_; and [J,,; are
on the main diagonal when i — 1 € [n] (respectively, if both [J; and [, ;5 are on the main
diagonal when i + 2 € [n]), switch the primes on the entries in these diagonal boxes.

Case (c) of this definition is illustrated by
. 2 I\ O E A R g7 [3]5]7
\[U[2]4]6]) 1246 \[V]2]4]6]) " [V]2]4]6]

Cases (a) and (b) are respectively illustrated by
. 3IFTTN _ [415]7] g s 3[&T7\  [3]5]7
S\[V]2]4]6]) " [V][2]3]6 \[U]2]4T6]) T [V]2]4]6]

Next, for each i € Z, we construct a shifted tableau 9;(7") of the same shape from 7" as
follows. If i + 2 ¢ [n] then we set 9;(7) := T. We form d_;(7") (respectively, 0¢(7")) from T’
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by reversing the prime on the entry in the first (respectively, second) box in the first row, which
is always the unique position containing 1 or 1’ (respectively, 2 or 2'). For example

R 3[5]7]\ 35,7and0 3[5 7\ [3]5]7
-1 [U]2]4]6]) [1]2]4]6 0\1'2’4’6 [V 2]4]6]

Finally, if i € [n — 2] then we set

5;(T) if i + 2 is between i and 7 + 1 in shword(7")
0,(T) :== ¢ 5,41(T) if i is between i + 1 and 7 + 2 in shword(T")
T if i + 1 is between i and 7 + 2 in shword(7T").

We refer to 0; as a dual equivalence operator on standard shifted tableaux.

Remark 3.22. If (J,_; and [J; ; are on the main diagonal, then these boxes must be (¢—1,¢—1)
and (g, q) for some ¢ and OJ; = (¢ — 1, ¢), in which case [J; 5 cannot occur in row ¢, so i + 2
is not between ¢ and ¢ + 1 in shword(7"). Similarly, if [J;,; and [J;, 3 are on the main diagonal,
then these boxes must be (¢, ¢) and (¢ + 1,q + 1) for some ¢ and [J; ;5 = (q,q + 1), in which
case [J; cannot occur in column ¢, so i is not between ¢ + 1 and ¢ + 2 in shword(7"). Comparing
these facts with the definition of s;, we see that 9;(7") can only differ from 7" in positions [J;,
i1, and O 4.

For the tableau 7" in (3.6), our definition of 0; gives

3[5[7 357
o (\1’ 2|7 6)_\1 2[afs) =)
3[5']7 3[5'[7 NEK
%2 (\1’ 2|4 6)_03 (\1’ 2|4 6)_\1' 7i56]~ )
) sIFT7y _  [B[5]7]_
\[U]2]4]6]) T [V]2]4 6]

3[5[7 3]6]7
% (\1’ 2[4 6)‘\1’ 5]~ =0

Given a shifted tableau 7', let #primes(7T’) be the total number of boxes in 7" with primed
entries and let #primes,,,,(T') be the number of such boxes that are on the main diagonal. Since
we always have shword(7") = shword(unprime,,,(7')), it holds by definition that if i ## —1 then

unprime ;;,,(9;(1)) = 0;(unprime,,, (7)) and
#primesdiag<T> = #primesdiag(ai(T>>'

It is also obvious that 0 _; and 0, are involutions. We note a few other properties of 9;:

(3.7

Proposition 3.23. Suppose T is a standard shifted tableau with n boxes. Let O; for j € [n]
denote the unique box of T' containing j or j'. Finally choose i € [n — 1]. Then:
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(a) The operator 0; is an involution which only changes the values of T in U;, U, 1, and L; ;.

(b) If OJ; and O, 15 are not both on the main diagonal, then #primes(T) = #primes(0;(T"))
and the main diagonal positions with primed entries in 0;(T) are the same as those in T.

(c¢) IfO; and O, 5 are both on the main diagonal, then #primes(T") = #primes(0,(T)) £ 1.

Proof. Part (a) is clear if ¢ + 1 is between ¢ and ¢ + 2 in shword(T"). Suppose instead that i + 2
is between ¢ and ¢ 4+ 1 in shword(7"). If J; and [J;;; are not in the same row or column,
then shword(s;(7")) is formed from shword(7") by swapping the positions of ¢ and i + 1, so i + 2
is also between i and ¢ + 1 in shword(s;(7")) and we have 0,(0,(7)) = s;(s;(T)) = T. If OJ;
and [J;,; are in the same row or column but at least one of the boxes is on the main diagonal,
then our assumption that 7 + 2 is between 7 and ¢ + 1 in shword(7") forces UJ;, [J;, 1, and [J;, 5 to
be arranged in 7" as

i+ 2 i+ 2 1+ 2 i+ 2

A 7 le+1 7o+ o+ 1

In each of these cases we have 0;(0;(7")) = s;11(s:(T)) = T.

Finally, suppose LJ; and [, are in the same row or column but neither box is on the main
diagonal. Then the entry in one box must be primed and the other must be unprimed for 7 + 2
to be between ¢ and 7 + 1 in shword(7"). If [J; and [, are in the same column, then they must
be some adjacent positions (j, k) and (j + 1, k), and 9; acts as s; by reversing the primes on
both positions. In this case, consider the sequence of unprimed boxes to the right of [J;,; in
row j + 1, followed by the primed boxes in column j, and then the unprimed boxes to the left
of [J; in row j. For example, if []; and [];,, are the boxes containing * in

x|1(12]3
6|7|8]|x
5
\ 4

then the relevant sequence is a subsequence of the positions labeled 1, 2, ..., 8. It is impossible
for LJ; . to occur in this sequence, and if we ignore the entries it contributes to the shifted reading
word then shword(s;(7)) is obtained from shword(7") by swapping 7 and i + 1.

Thus if [J; and [J;,; are in the same column, then ¢ + 2 still appears between ¢ and 7 4 1 in
the shifted reading word of 0,(7") = s;(7T") s0 9;(9;(7")) = s;(s;(T")) = T'. The same conclusion
follows when [J; and [, are the adjacent positions (j, k) and (7, k + 1), if we instead consider
the sequence of primed boxes above [J;,; in column k£ + 1, followed by the unprimed boxes in
row k + 1, and then the primed boxes below [J; in column k.

The argument to show that 9;(9;(7")) = T when i is between i + 1 and 7 + 2 in shword(7")
is similar. This concludes the proof of part (a) by Remark 3.22.

For part (b), suppose L; and L], , 5 are not both on the main diagonal. Then at most one of the
three boxes [J;, [J; 11, [J; o that could change in 9;(7") compared to 7" is on the main diagonal.
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Since the operator s; changes the primes on either zero or two main diagonal boxes, it follows
that the main diagonal positions with primed entries in 0;(7") are the same as those in T’

Additionally, if 7 4 2 is between i and ¢ + 1 in shword(7") and 0J; and [J;,; are in the same
row or column, then neither box can be on the main diagonal and exactly one must have a primed
entry, so #primes(T") = #primes(s;(7")). Likewise, if i is between ¢ + 1 and i + 2 in shword(T")
and [J;;; and [J;; - are in the same row or column, then neither box can be on the main diag-
onal and exactly one must have a primed entry, so #primes(7') = #primes(s;,1(7")). There-
fore #primes(T") = #primes(0;(T")). This proves part (b).

Finally, for part (c), observe that if [J; and [J; 5 are both on the main diagonal, then we must
have 0J; = (¢ — 1, — 1), 041 = (¢ — 1,q), and O;, 2 = (g, q) for some ¢q. No matter how
the entries in these boxes are primed, we have 9;(7) = s,(T) = s;11(T) so #primes(T) =
#primes(9;(7)) + 1. O

Our proof of the following theorem occupies all of Section 4.

Theorem 3.24. Suppose i € Z and a is a primed involution word for an element of 1. Then it
holds that P2 (ock;(a)) = P2(a) and Q2 (ock;(a)) = 0,(Q%(a)).

When a has no primed letters, this theorem is equivalent to results in [Mar22]; see Propo-
sition 4.1. Extending these identities to primed involution words is surprisingly involved. The
proof of the unprimed version of Theorem 3.24 in [Mar22] relies heavily on the involution Lit-
tle map, which gives a family of bijections | |,_y Rinv(2) < |],cy Rinv(2) for certain finite
subsets X, Y C Iz. Describing a “primed involution Little map” does not appear to be straight-
forward; one difficulty is that with primes allowed, the unions | |, Ri", (2) and | |,y R, (2)

often have different sizes. As such, proving Theorem 3.24 requires a quite different strategy
compared to [Mar22].

Corollary 3.25. Two primed involution words satisfy a 2 b if and only if PE(a) = P2.(b).

Proof. Let a and b be two primed involution words. If P& (a) = P (b) then

a 2 row(P&(a)) = row(P& (b)) ~ b

by Proposition 3.21. Conversely, if a 2 bthen b = ock;, ock;, - - - ock;, (a) for some indi-
ces i1, iy, . . ., ik € Z, s0 P (b) = P& (ock;,ock;, - - - ock;, (a)) = P (a) by Theorem 3.24. [

Recall the definition of the relation iy from Lemma 2.7.

Corollary 3.26. Suppose T is an increasing shifted tableau with row(T) € R (z) for
some z € Iz. Then row(T) ﬁcol(T) e R;\,(2) and PE;(row(T')) = Pg;(col(T)) = unprime ,, (T).

nv

Proof. We have row(T) K col(T) € R;f () by Lemma 2.7 so P& (row(T)) = P& (col(T)).
When we compute P (col(T')) from Definition 3.1, each column of T contributes the same

column to the output but with primes removed from the diagonal, giving unprime;,,.(7). [
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3.6. Properties of marked cycles

On standard shifted tableaux with no primes on the main diagonal, the operators 9, for i > 0
coincide with the maps ;11 in [Ass18, §6]. The definitions of 9, and ), diverge when there
are primed entries on the main diagonal, as v, ;; never changes the locations of these entries.
However, [Ass18, Thm. 6.3] (stating that {t; }1<;<, is a dual equivalence for standard shifted
tableaux) is still true if one replaces v); by 0,_1, as we explain in this section. The results here
will also be of use in Section 4.

Let cyc(z) = {{i,5} : i < j = z(i)} denote the set of 2-cycles in z. Then for each
(unprimed) involution word a = ajas - - - a, € Rinv(z) and i € [n], let

vi(a) = (3.8)

San * " SagiaSas, (10i, 1+ a;}) if 4 is a commutation in a
1%} otherwise.

If 2 = 654321 € Iz, then cyc(z) = {{1,6},{2,5},{3,4}} and for a = 513243541 € Rin(2),
we have v, (a) = {3,4}, v2(a) = {2,5}, 13(a) = {1,6}, and v;(a) = @ fori € {4,5,6,7,8,9}.

Proposition 3.27. The map i — ~;(a) is a bijection from the set of commutations in a to cyc(z).

Proof. We prove this by induction on the length n of a. The base case when n = 0 holds trivially.
Assume n > 0, define b = ajas -+ - a,_1, and let y € Iz be such that b € R, (y). Suppose the
result holds when a and z are replaced by b and y.

If n is a commutation in a then a,, and 1 4 a,, are fixed points of y, and the commutations
in a are just the commutations of b plus n. In this case we have z = ys,, and cyc(z) = cyc(y) U
{{an,1 + a,}}, along with v;(a) = s,,(7i(b)) = 7:(b) for each commutation i € [n — 1]
(since ;(b) € cyc(y) by induction) and ,,(a) = {an, 1 + a,}. As i — ~,;(b) is a bijection from
commutations in b to cyc(y), it follows that i — 7;(a) is a bijection from commutations in a
to cyc(z).

If n is not a commutation in a then z = s,,YS,, S0 cyc(z) = $,,(cyc(y)), and the commu-
tations in a are the same as in b. As v;(a) = s,,(7i(b)) for i € [n — 1], the desired property
clear. U

The following lemma lets us relate 7;(a) and ;(b) when a = b in the sense of Proposition 2.2.

Lemma 3.28. Suppose a € Rin(z) is an unprimed involution and n = ((a). Fixi € [n).

(a) If j € [n— 1] and |a; — a;41| > 1 then

Yi+1(a) ifi=j
Yilar - aj10511050502 - an) = S yi(a)  fi=G+1

vi(a) otherwise.
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(b) Ifj € [n— 2| and aj; = aj1o = aj41 £ 1 then

’Yj+2(a) ifi=j
Yil@1 - Q10j4105G5410543 - - Gy) =  Y5(a) ifi=7+2

vi(a) otherwise.

(c) If n > 2 and |a; — as| = 1 then ~;(asaias - - - a,) = v;(a) for all values of i.
Proof. Suppose j € [n — 1] and |a; — a;41| > 1. Let
b= Ay Qj—1Q54105A5492 - Qp = a.

Since s, and s,,,, commute, we have v;(a) = 7;(b) for i ¢ {j,7 + 1}. In addition, the in-

dex j (respectively, 7 + 1) is a commutation in « if and only if j + 1 (respectively, j) is a

commutation in b, and the permutations s,; and s, , each preserve both of the sets {a;,1+a;}

and {a;j11,1 + aj;1}. Itfollows from (3.8) in this case that v;(b) = 7,41 (a) and ;41 (b) = 7v;(a).
Next, suppose j € [n — 2] and a; = aj42 = aj+; £ 1. Let

b= Ay - Qj—10j41A50541Q543 - Ap = A.

Then ¢ (respectively, ¢ + 2) is a commutation in a if and only if ¢ 4+ 2 (respectively, 7) is a
commutation on ock;(a), while 7 + 1 is not a commutation in either word, by Propositions 2.4
and 2.5. The permutation s, ,Sq,,, = Sa;5a,,, transforms {a;, 1 +a;} to {a;1,1 + a;1 } while
Sais1Sa; transforms {a; ;1,14 a1} to {a;, 1+ a;}, so it follows from (3.8) that ;(b) = v;42(a)
and 7;12(b) = vi(a).

For part (c) we may assume that n = 2, and then the desired result is clear from (3.8). [

For a primed involution word & = dyds - - - G, € R;' (2) with @ = unprime(a), let

marked(a) := {~;(a) : i € [n] with a;, € Z'}. (3.9)

Proposition 3.29. Suppose a € R (z) for z € Iz and a = unprime(a). Let i € Z.

nv

(a) If i = —1 then marked(ock;(a)) = marked(a) A {vi(a)}, where A is symmetric set
difference.

(b) Suppose i = 0 and a has at least two letters. If |a; — as| > 1 and exactly one of ay
or Gy is primed, then exactly one of v1(a) or y2(a) belongs to marked(a) and it holds
that marked(ock;(a)) = marked(a) A {v(a),y2(a)}.

(c) In all other cases marked(ock;(a)) = marked(a).

Proof. Parts (a) and (b) hold as @ # ~;(a) € cyc(z). Part (c) follows directly from Lemma 3.28.
]
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Fix a strict partition A and define z, as in Lemma 3.17. For each S C cyc(zy), let A3 be the
set of standard shifted tableaux Q2. (a) for a € R;' (2)) with marked(a) = S. Proposition 3.8

nv

implies that A}, is set of all standard shifted tableaux of shape \ with no primed diagonal entries.

Corollary 3.30. Fix S C cyc(zy) and 1 < i < |\ — 2. Then 0; restricts to an involution of A%
and unprimey,,, defines a descent-preserving bijection Ay — A} that commutes with 0;.

Proof. We have d;(Ag) = A§ by Proposition 3.29. The map unprime,,, is a bijection since
|A3| = |AL| = |Rinv(22)|. Tt is descent-preserving by Proposition 3.12 and commutes with 9,
by (3.7). 0

Assaf’s result [Ass18, Thm. 6.3] asserts that the maps {0,_1 : 1 < i < |A|} give a dual
equivalence for A). The preceding corollary shows that these maps define isomorphic dual
equivalences for each A%, and therefore give a dual equivalence for all standard shifted tableaux
of shape \.

4. Proofs of the two main theorems

This section is devoted to proving Theorem 3.24. We will also end up deriving Theorem 3.11
as a corollary of our methods; the proofs of these theorems are in Section 4.7.

Remark. Many of the results leading up to these proofs only apply to unprimed words. Accord-
ingly, just for this section, we adopt the convention of writing all primed words with = symbols
(that is, as a, b, etc.) to distinguish them from unprimed words (which we write as a, b, etc.).

An outline of our proof strategy is as follows. Underpinning everything is the following
result, which says that Theorem 3.24 holds for unprimed words.

Proposition 4.1 ([Mar22]). Suppose i > 0 and a = unprime(a) € Rin(2) for z € Iy. Then

Pgg(ocki(a)) = Pegla) and  Qgg(ocki(a)) = 0:(QEg(a)).

Proof. The assertion that P& (ock;(a)) = P (a) follows from [Mar22, Thm. 3.31]. The asser-
tion that Q2 (ock;(a)) = 0;(Q%(a)) follows from [Mar22, Thm. 5.11]. O

Let a be a primed involution word with unprimed form a = unprime(a). In view of Proposi-
tion 4.1, to prove Theorem 3.24 we just need to understand the relationship between the indices of
the primed letters in G and the locations of the primed entries in P& (@) and on the main diagonal
of Q2 (a). Sections 4.1, 4.2, and 4.3 are devoted to proving a result that expresses the positions
of the relevant primes in terms of the set marked(a) and a permutation 7(a) that can be read off
from the successive tableaux Po(ajas - - - a;) for i € [¢(a)]. Then, in Sections 4.4, 4.5 and 4.6,
we will prove a series of lemmas clarifying the relationship between 7(a) and 7(ock;(a)).
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4.1. Properties of bumping paths

We start by listing some properties of the bumping paths in Definition 3.1. In this subsection,
let T be an increasing shifted tableau with no primes on the main diagonal and let u € Z U Z’
be such that row(7")u is a primed involution word for an element of /. We will only apply the
results here when 7" = unprime(7’) and u € Z, but we will allow primes in our initial statements
since the proofs are identical to the unprimed case. Write

pathS(T,u) := (x4, 4:) :i=1,2,...,N),

path<(T,u) = ((#,i) i = 1,2,..., N), -

for the weak and strict bumping paths specified in Definition 3.1.

The algorithm in Definition 3.1 starts by inserting entries into successive rows, and at some
point may switch to inserting into successive columns. Each iteration contributes one position
to the weak and strict bumping paths, and the switch from row to column insertion takes place
at most once, directly after the weak bumping path meets the main diagonal. It follows that
both path<(7T’,u) and path= (T, u) contain at most one position on the main diagonal. Let p be
the unique index of the diagonal position in path~(T’,u) (which will have =, = y, = p), or
set p := N if no such index exists.

The following additional observations are straightforward to derive from the definitions and
Remark 3.7. We omit a detailed proof. For (x,y) € Z x Z, let

N(z,y) :={(,)) €EZXZ :x>1i,y>j} and N(z,y):={(i,j) €EZXZ :z<i,y<j}
Define N7, u) := Ulgigpﬂ(ii,@i) and N (T, u) := Up<k<N Nz, yi).
Proposition 4.2. The following properties hold:
(a) If 1 <i<pthenz;, =%; =iandy; € {y;,y; + 1}, while
N2y z...2Y and 1 2P = ... 2 Yp.
(b) If p < k < N then y, = y, = k and Ty, € {xy, xp + 1}, while

PZTpyl ZTpy2 2 ... 20N and p+12Tp 2 Tp0 > ... 2 InN.

(c) If (xp,yp) # (Tp, Yp), then p < N and (T, u) "N(T,u) = {(p,p+ 1)} and

(pvp) = (xpvyp>7
(p,p+1) = ('i'pagp) = (prrl?prrl)’
(p+1,p+1) = (Tps1, Jpt1)-

If instead (x,,y,) = (ZTp, Yp), then T, u) N N(T,u) = @.
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We sometimes treat the sequences path™(T,u) and path<(7,u) as sets. This practice is
justified as Proposition 4.2 shows that the positions in each path are all distinct and their order
is uniquely determined.

With p as above, write

rpathS(T,u) == ((zi,ys) 11 =1,2,...,p),

4.2
rpath<(T,u) == ((Z3,5) :i=1,2,...,p) “42)
for the first p terms of path=(T’, u) and path= (T, u), and let
thgT, = iy Ui S 1, —|—2,...,N7
cpath (T, u) = (zi,3) -1 = p + Ly ) s

cpath(T,u) := ((Zs,4:) :i=p+1,p+2,...,N).

We think of these subsequences as the “row-bumping paths” and “column-bumping paths” from
inserting u into 7'.
Finally, if G is a primed involution word with n = ¢(a) and ¢ € [n/], then we let

path$(a) := pathS(T,a;) and path:(a) := path~(T, ;) for T := P (ayay---Gi1).
We define the sequences rpath:(a), cpath(a), rpathy (), and cpath~ () analogously.
Proposition 4.3. Let & = a1a5 - - - 4y, be a primed involution word and choose i € [n — 1].

(a) Suppose ;11 < ;. In each row where rpathy (@) and rpathfﬂ(d) both have positions, the

position in rpath (@) is weakly to the right of the position in rpathfﬂ(&). Consequently, if

path;(a) has a diagonal position, then pathy,(a) has a non-terminal diagonal position.

(b) Suppose a; < a;.1. In each row where rpath(a) and rpathZ, | (a) both have positions, the
position in rpath$(a) is strictly to the left of the position in rpathy  (a). Consequently, if

pathfﬂ(d) has a diagonal position, then path(a) has a non-terminal diagonal position.

Proof. Both parts can be checked directly, using Remark 3.7 and Proposition 4.2, together with
the general principle that in a given row, after inserting a number which bumps some box (and
then possibly increasing entries to the right of this box as a result of subsequent column inser-
tions), inserting a smaller number will always bump a box that is weakly farther to the left, while
inserting a larger number will always bump a box that is strictly farther to the right. [

4.2. Controlling cycle migration

Fix z € Iz and recall the definition of v;(a) € {@} U cyc(z) for a € Rin(z) from (3.8).
Suppose 7' is a shifted tableau and b is a word such that row(7")b € R, (2). For (i, j) € Z X Z,
let

%) if (4, 7) is not in the domain of 7"

41 0) = 4.4
1(T0) {%(VOW(T)(?) if (4, 7) is in the domain of T, (4.4)

where k is the index of the letter in row(7") contributed by box (i,7). We also
let v;;(T") == (T, @).
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The main result of this section is a lemma that precisely describes how the values of (4.4)
evolve when we insert the first letter of b into 7" via Definition 3.1. In Section 4.3, we will use
this lemma to explain how to compute P& (a) and Q2¢(a) from PE(a), Q2 (a), and the set
marked(a) when a is primed involution word with a = unprime(a).

Example 4.4. If T = F&(51324) = g 212 1and b = 3154 then we have
722 (T’ b) 723 (T’ b) {1’ 6} {37 4}
Y11 (T, b)|m12(T, b) | 113(T, b) {2,5} g g

Below, we assume the shifted tableau 7 is increasing and the unprimed word b is nonempty
with first letter v € Z. Let c be the subword of b formed by removing its first letter. Denote
the weak and strict bumping paths resulting from inserting w into 7" as in (4.1), so that /V is the
length of both paths. Set vy = u and write u; for the entry of 7" in position (Z;, §;) fori € [N —1].
Then define 6y := 77|41 (row(7)b) where |T'| is the number of boxes in 7" and let

9, — {%:iyi(Ta b) if (w4,y;) = (i, ¥:) and either z; # y; or u;—1 + 1 < u; 4.5)

0;_1 otherwise

fori € [N — 1]. Foreach 0 < i < N we have §; € {&} Ll cyc(z).

Example 4.5. Let T = P2.(51324) and b = 3154 as in Example 4.4. Then u = 3 and

pathg(T, u) = ((miayi) 11 = 17273) = ((LB)? (273)’ (373))7
path<(T, u) = ((fizagz) tl= 17273) = ((173>7 (273)7 (373))7

so ug = 3, u; = 4, and up = 5, while 6y = @, 6, = &, and 6, = {3,4}.
Lemma 4.6. For each position (x,y) in the domain of U := T L u, the following holds:
(a) If (z,y) = (zi,y:) = (%4, U;) for some i € [N], then

Yoy (T,b) ifrx=yandi < N andu;—1 +1 =,

Upy =ui—1 and %cy(Ua c) = {9 ) otherwise

(b) If (z,y) € {(zi,y:) # (Zi,U;) } for some i € [N] with x; # y; and T; # §;, then

Up =Ty, and 7., (U, c) = _ 7
Y Y Y {’Yxiyi(T7 b) lf(ZE, y) = (:Ezyyz)
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(c) If (x,y) € {(i,7),(i,i+ 1),(i + 1,3+ 1)} for some i € [N]| with x; = y; # 1;, then

Yirriv1(T50) # 2 if (x,y) = (i,1)
Uacy = Txy and ’Ya:y(Ua C) = ’Vi,i—i-l(T? b) =0 lf(fE, y) = (sz + 1)

In this case (v, y;) = (i,1), (T0,0) = (@ix1, Y1) = (4,0 + 1), and (Tiy1, Gir1) =
(i+1,i+1).

(d) Otherwise, (z,y) ¢ paths(T,u) U path(T,u), Uy, = Ty, and vuy (U, €) = Y2y (T}, b).

Proof. Suppose V' is a shifted tableau with all entries in Z. If we are given a total order-
ing (i1, j1) < (i2,j2) < (i3,73) < ... of the boxes of V' such that the entries read in this order
form an involution word a, then we can define a tableau I" of the same shape as V' whose entry in
box (i, ji) is the value of v (a). Let T (V), T<(V), I**(V'), and I'"¢(V') denote the tableaux
constructed in this way relative to the row, column, southwest diagonal, and northeast diago-
nal reading orders, respectively. These tableaux are only well-defined when the corresponding
reading words are involution words.

If V is an increasing shifted tableau with row(V') € R, (2), then col(V') is also in R, (2) by
Lemma 2.7, so I'"™" (V) and I'°'(V) are both defined. In this case, since row(V') is transformed
by col(V') by a sequence of swaps involving non-consecutive letters in adjacent positions (which
we will refer to as “commutations” for the rest of this proof, slightly abusing our previous ter-
minology), it follows from part (a) of Lemma 3.28 that we actually have T (V) = T'°/(V).

We now turn to the claims in lemma. The assertions about the values of U, are straightfor-
ward from Definition 3.1 since there are no repeated positions in the relevant bumping paths. It

remains to justify the formulas for Yoy(U, ¢). Define T’ = T, 11,15, ..., In =T Lu=U
and T; as in the proof of Proposition 3.21, and suppose there are exactly p € [N] iterations

involving row insertion in the process to construct 7' & u. Because all of these tableaux have
only unprimed entries, the numbers wu; defined in the proof of Proposition 3.21 coincide with the
numbers u; defined above in this section.

Now consider the tableaux I'"(T}) for i < p and I'°°(T}) for i > p, which are all well-
defined by (3.3) and (3.4). Figure 4.1 shows two examples of this sequence. We may assume

without loss of generality that b has length one so that c is empty. Then the first tableau FrfW(TO)
has value 7, (7, b) forall (z,y) € T and its last box in the first row (containing u = wu in 1) has

value 6. On the other hand, we have ['®/(Tyy) = I"™(Ty) = T"™(U) as Ty = T Su=U
is increasing with row reading word in Rin(2). Thus, each box (z,y) in T (Ty) = I'(Ty)
has entry ., (U, ¢) and our goal is to show that this value is as described by the given formulas.

For each 7 let ¢; be the entry of F”’W(Ti) in the unique box that is not in 7', so that ¢y = 6.
First choose i € [p — 1] so that (z;,y;) is not on the main diagonal. If (z;,v;) = (#;,7;), then
we can transform row(7}_;) to row(7}) using only commutations, so it follows from part (a)
of Proposition 3.21 that T"%(T}) is formed from I (T}_;) by moving box (z;,%;) to the end
of row ¢ + 1 and then moving ¢, ; from the end of row i to replace box (z;,y;). Likewise,

if (;,y;) # (&1, 71), then transforming row(7;_;) to row(7};) will involve one braid relation as
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F row I‘\ row

516 ) {4,7}| @
1 314 2‘ {1,3}{2,5} @ %) ’

Frow Frow( 516 3‘) o {477} %] {275}
1]2]4 {1,3}| @ %] ’
516 0
(T:\l 3[4 )<—(U=2)M - =
Fcol Fcol( 316 = 2,5} o |,
214
{1,3}| @ 2]
Fcol Fcol ( 315 ) _ {2,5}|{4,7}
1124 6‘ {1,3} @ %] %]
\

Figure 4.1: Example for the proof of Lemma 4.6; compare with Figure 3.1(a).

we must have (Z;,7;) = (x;,y; + 1) and w;_1 = Ty, = T3,5, — 1. In this case it follows using
parts (a) and (b) of Proposition 3.21 that F”’W(f}) is formed from F"’W(Ti_l) by moving ¢; 1
from the end of row i to the end of row i+ 1 and switching the entries in the adjacent boxes (;, ;)
and (Z;, 7;).

It follows by induction that p; = 6; for all i € [p — 1]. When p = N, these observations
describe a precise sequence of transitions that take us from Fr°W(T0) to FmW(TN). Comparing
this process with the definition of ; shows that the desired formulas for 7,, (U, ¢) all hold.

Assume instead that p < N. It follows by similar reasoning that if p < ¢ < [V, then Fc°'(7~})
is formed from "< (Ti_l) in one of two ways. If (z;,y;) = (Z;, ¥;), then we move box (z;, y;)
to the end of column ¢ + 1 and then move ¢, _; from the end of column i to replace box (z;, y;).
If (z;,v;) # (Z:,7;), then we move ;1 from the end of column ¢ to the end of column 7 + 1
and switch the entries in boxes (z;, y;) and (Z;, 7;).

It remains to compare I"¥(7},_;) with ['°(7},). We wish to justify the following claims:

(1) If (2,,v,) = (Zp,%p) = (p,p) and u,_; +1 < u,, then ['°!(T,) is formed from I (T,, ;)
by moving box (p, p) to the end of column p+1 and then moving ,,_; to replace box (p, p).

(2) If (2, y,) = (Zp,9p) = (p,p) and u,_; +1 = wu,, then [°(T},) is formed from I"*%(7},_,)
by moving ,,_; from the end of row p to the end of column p + 1.

(3) If (x,,1,) = (p,p) and (Z,,%,) = (p,p + 1), then ,_; and box (p,p + 1) of T"(T,,_;)
are both the null element @, while boxes (p,p) and (p + 1,p + 1) are both present with
respective non-null elements « and /3. In this case, '® (T ) is formed from Fr°W(Tp 1) by
removing ¢, and placing & in boxes (p+1,p+1) and (p+2,p+1), ain box (p, p+1),
and (3 in box (p, p).
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Figure 4.2: Example for the proof of Lemma 4.6; compare with Figure 3.1(b).

(4) Together, (2) and (3) imply that if (z,,y,) = (p,p) and (Z,,9,) = (p,p+ 1), thenp < N
and (T}, ,) is formed from I'"¥(7},_;) by moving ¢,_, = @ from the end of row p to
the end of column p + 2 and then swapping the entries in boxes (p,p) and (p + 1,p + 1);
moreover, both tableaux have & in position (p,p + 1).

Putting together these claims with our observations about Fr°‘”(~7~}) for i < p and (7))
for i > p completely describes how ™" (T) evolves into ['®'(Ty) = I'™%(Ty) during the

bumping process that defines 7' & . Once again, comparing this process with the definition
of 6; shows that the desired formulas for ~,, (U, c) all hold.

It remains to prove claims (1), (2), and (3). The first two claims correspond to the case
when u,_1 < T),. For this situation, define V" and W as in the [u, 1| < T}, case of the proof
of Proposition 3.21. Since row(7},_;) = row(V/), it follows that T"¥(V/) has the same entry
in box (2i,25) (respectively, box (2p — 1,2p — 1)) as T"(T},_,) does in each box (4,j) € T
(respectively, the unique box not in T'). Likewise, as col(7},) = col(WW), it follows that [°'(TV/)
has the same entry in each box (2i,2j) (respectively, box (2p + 1,2p + 1)) as T°°(T}) does
in each box (i,j) € T (respectively, the unique box not in 7). Finally, since the row reading
word of V' (respectively, the column reading word of W) can be transformed to its southwest
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(respectively, northeast) diagonal reading word by a sequence of commutations as described in
the proof of Proposition 3.21, we deduce from part (a) of Lemma 3.28 that ['™"(1/) = (V)
and T<°'(1W) = T"¢(W). One can observe these properties for the example in Figure 4.1, where
we have

Co anl . [ o
revy(v)y=rw)=r"y| . -|3 = . . {25

jugulc

sy - |e| | o

and

. . . e
.o .. . . s -

FCOl(W) — Fne(W) — Ine

3y - | e | | @

Given the observations in the preceding paragraph, to prove claims (1) and (2), we just
need to check that I'"¢(11) is formed from (V') either by shifting boxes (2p — 1,2p — 1)
and (2p, 2p) up one row and one column when u,_; + 1 < w,, or by moving box (2p—1,2p—1)
to (2p+ 1,2p + 1) when w, 1 + 1 = u,. This is equivalent to showing that I'"*(V) = (V)
when u,_; + 1 < u, and that I'""*(V') is formed from I'** (V") by swapping boxes (2p—1,2p—1)
and (2p, 2p) when u,,_; +1 = w,,. In the first case, the diagonals of V" have no consecutive entries
and so can be reordered using only commutations, so the identity I'"*(1") = I'*¥(V') follows from
part (a) of Lemma 3.28. When u,,_; + 1 = u,, we can also reverse all diagonals in " using only
commutations to go from the southwest diagonal reading word to northeast diagonal reading
word, except for one step that exchanges the consecutive numbers in boxes (2p — 1,2p — 1)
and (2p,2p) when these have been pulled to the start of the relevant word. By part (c) of
Lemma 3.28, this has the effect of swapping boxes (2p — 1,2p — 1) and (2p, 2p) in T="(V)
to form I'"¢(V), as desired. We conclude that our first two claims (1) and (2) both hold.

Suppose instead that we are in the situation of claim (3), so that u,_; = T,,. It follows

from (d) of Remark 3.7 that ,_; and box (p,p + 1) of ["¥(T,,_) are both null. Define V" as

in the [u,_,] = T, case of the proof of Proposition 3.21. Since we can transform row(7},_;)
to row(V') by a sequence of commutations followed by one braid relation, it follows from

Lemma 3.28 that

* box (2p + 1,2p + 1) of I'"™" (V) has the same entry as the box of [ (7},_;) not in 7T’;

* box (2p, 2p) of I'™" (V') has the same entry as box (p,p + 1) of I'"™(T,,_4);
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* box (2p,2p + 2) of I'"™"(V') has the same entry as box (p, p) of I'"™"(T,,_1);

* any other box (27, 2j5) of I'™ (V) has the same entry as box (i, j) of I"™(7},_).

Alternatively, as col(T},) = col(V/), it follows that T°°'(V/) has the same entry in each box (27, 2)
(respectively, box (2p + 1,2p + 1)) as T°°(T},) does in each box (i,j) € T (respectively, the
unique box not in 7°). Finally, since the row reading word of V' (respectively, the column reading
word of V') can be transformed to its southwest (respectively, northeast) diagonal reading word
by a sequence of commutations, we have '™ (V) = (V) and I'®/(V) = I'""¢(V/). One can
observe these properties in the example in Figure 4.2, where we have

{4,8}

i |
Frow(v) — FSW(V> = s . li . E‘ = . . . 2] - {6, T}

a2y - |35 - | @

and

rey)y=reWv)y=1r<| - - -5]-[6]|= - - - jas8) - [e7n

{1,2} - [{3,5} - @

By the facts just listed, to prove claim (3), it suffices to check that I'"¢(V) is formed
from I'*" (V') by swapping boxes (2p, 2p) and (2p + 2,2p + 2). For this, observe that we can
reverse the diagonals of V' to go from the southwest diagonal reading word to the northeast di-
agonal reading word using only commutations, except when we need to reorder the consecutive
entries in boxes (2p, 2p), (2p+ 1,2p+ 1), and (2p + 2, 2p + 2) after these have been brought to
the start of the relevant word. Since this reordering is accomplished by the sequence of swaps
(up+2) (up+L)up - - - = (up+ 1) (up+2)up - - = (up+L)up(up+2) - - - = up(up+1) (up+2) - -,
it follows from parts (a) and (c) of Lemma 3.28 that exchanging boxes (2p, 2p) and (2p+2, 2p+2)
in (V') produces I'"¢(V'), as needed. The completes the proof of claim (3), which also finishes
the proof of the lemma. [
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4.3. A formula to compute primed boxes from marked cycles

Suppose a is a primed involution word with unprimed form a = unprime(a). In this section
we will develop some notation to express a formula for P (@) and Q2 (a) in terms
of P& (a), Q2 (a), and the set of marked cycles marked(a).

In more detail, if a = ajay - - - a,, € Riny(2) forsome z € [y and T = @ <8 ay £ o <8 a;
for some i € [n], then the entries of 7" on the main diagonal form a strictly increasing sequence
and the indices of these entries in row(7")a; 1a;42 - - - a, are a sequence of commutations that
each contribute one 2-cycle of z. Arranging these sequences into a two-line array gives what we
call the cycle sequence cseq;(a). The successive values of cseq;(a) fori = 1,2,... n can only
change in a small of number of ways. Our main formula will involve a permutation of cyc(z)
defined by these changes.

As in Section 4.2, suppose T is an increasing shifted tableau and b is a word
with row(T)b € Rin(2). If T has exactly ¢ rows, then the cycle sequence cseq(T,b) is the
two-line array

o Y11(T,0) Y22 (T,b) ... 74e(T,D)
cseq(T',b) := [ T, T T, . (4.6)

If T = P& (51324) and b = 3154 as in Example 4.4 then
cseq(7T,b) = l ?’5} §1,6} } = cseqs(513243154).

The second row of cseq(7', b) is strictly increasing and the elements in the first row are distinct
2-cycles of z, since the index of T}; in row(7)b is a commutation for all diagonal positions (3, 7)
in 7. For involution words a = ajas - --a, and 0 < i < n, we define cseq;(a) := cseq(T,b)
where T = PEG(alag cee CLi) and b = Aip1A542 ° Ay

We introduce some auxiliary notation to help compare cseq; (a) with cseq,_(a). Assume bis
nonempty and let v = wg be its first letter. Denote the weak and strict bumping
paths resulting from inserting v into 7" as in (4.1). Set u; := Tj,4 for ¢ € [N — 1] and
define 0y := 711 (row(T)b) and ; for i € [N — 1] by (4.5). Finally, define the sequence

AP (T by = (i, Gy iy, 0im1) 1= 1,2,...,p) (4.7)

where p is the index of the unique diagonal position in path< (7, u) or else p = N.
Continuing from Example 4.5, we see that if T = P2 (51324)
and b = 3154 then p = 3 and AP'™P (T b) = ((1,1,3,9),(2,2,4,9),(3,3,5,{3,4})). We

think of APU™P(T" b) as a record of the change between T & wand T, and we can use it to
compute successive values of 6; by the formula

6, — {%,yi(T, b) ify; = y; and either i # y; or u;_; + 1 < u; fori € [p— 1], 4.8)

0;_1 otherwise

For any involution word a = aqas - - - a,, € Riny(z) and j € [n], define A?”mp(a) = Abume (T 1)
where T = P& (ayas - a;j—1) and b = ;a4 - - - a,,. The following result shows that cseq;(a)
is completely determined by cseq; ,(a) and A?“mp(a).
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Lemma 4.7. Let a be an (unprimed) involution word and choose j € [((a)]. Suppose

TroY2 - bu -
cseq;-1(e) = { 011 022 Cj ] and  A""P(a) = {(Yi, Tis i1, 0i-1) biepp)-

Exactly one of the following cases applies:

(a) The sequence pathf (a) ends before reaching the main diagonal if and only if p < y,. In
this case i appears in Q@c(a) in an off-diagonal position and cseq;(a) = cseq;_, (a).

(b) The sequence pathf (a) terminates on the main diagonal if and only if p = y, = 4, = q+1.
In this case i appears in Q2c(a) in position (¢ + 1,q + 1) and

e 0
cseq (a) — T2 Yq q
J CL Cy ... Cq U

(c) The sequences pathf(a) and pathj< (a) reach (but do not terminate on) the main diagonal
in the same row if and only if p = y, = 9, < q. In this case i’ appears in Q2.(a) and we
have

Y- .- pr—l n Vp-&-l ’}/q:|

up—1+1<¢, and cseq;(a)=
P P J €1 oo Cpo1 Up1 Cpp1 ... G4

where 1) := 7y, if up_1 + 1 =c,andn =0, 1 ifu,_1 +1 < ¢

(d) The sequences pathf(a) and pathf(a) reach the main diagonal in different rows if and
only if p =y, < 9, = p+ 1 < q. In this case i’ appears in Q‘EG(a) and we have

Yoo Yp—1 VYp+1 Vp Tp+2 .- ’Yq:|.

u, 1 =c, and cseq;(a)=
P P
J ClL ... Cpo1 Gy Cp+1 Cpy2  --- Cqg

Proof. The assertion that exactly one of these cases applies follows from Proposition 4.2. The

claims about u,_; in cases (c) and (d) are clear from how PEOG(a1a2 e aj) L a; is defined.
The description of cseq;(a) is immediate from the formulas in Lemma 4.6. [

Putting all of this together, we associate a permutation of (%) ={{i,j}:4,j€Z,i<j}to
each involution word. Leta = ayas . . . a, be an (unprimed) involution word for some z € [. For
each i € [n], let 7;(a) be the following permutation of (%) with support in cyc(z). If cseq;_; (a)
and cseq,(a) are equal or have different lengths then 7;(a) := 1. Otherwise, writing

, _ |72 - T Uy — | T2 e T
csed; () [cl Coy ... cq} and  cseq,(a) {dl dy ... dq]’

there is either a unique index j € [g] with d; < ¢;, or a unique index j € [¢ — 1]
with 7,41 = 1; # v, = 1,41, and in both cases we define 7;(a) to be the transposition of (g)
that swaps 7); and ~; while fixing all other elements. We then let 7(a) := 7 (a)m2(a) - - - 7,(a).
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Example 4.8. Suppose a = 513243154. This word is in Rin,(2) for z = (1,6)(2,5)(3,4) € Iz.
The successive values of PS(ajay - - - a;) are

5 3 3[5

BE ifzls] (12
5] [5] 5] 5]

3[4 3[4 3[4 3[4]5

[1]2]3] [1]2]3]4] [1]2[3]4]5] [1][2]3]4]5]

and the successive values of 7., (T, b) for T = P& (ajay - -+ a;) and b = a;1a;45 - - - ag are

{3,4} {1,6} {1,6}/{3,4}
{3,4} {2,5}/{3,4}
{2,5}{1, 6} {2,5} & |{3.4} {2,5} & | &
{8,4} {8,4} {3,4} {3,4}
{1,6} @ {2,5} @ {2,5} @ {2,5} @ @
{2,565} @ 2] {1,6} @ 2] oz {1,6} @ 2] oz <z {1,6} @ oz 2] z

Thus, we have

cseqq (a) = — §374} ] ) cseqy(a) = cseqs(a) = i ?75} 5176} } 7
cseqy(a) = - ?5} ] ; cseqg(a) = - ?’5} ;;1»6} §3a4} ] ’
cseqs(a) = [ i2,5} ;3,4} } , cseq(a) = cseqg(a) = cseqqy(a) = [ il,G} 52,5} §)3,4} ] ’

which means that 7 (a) = 73(a) = 75(a) = 76(a) = 78(a) = T9(a) = 1 while
m(a) = ({2,5} <> {3,4}), m(a) = ({1,6} <> {3,4}), and 7(a) = ({1,6} < {2,5}),
so we have 7(a) = ({1,6} < {3,4}).

Suppose a is a primed involution word with a = unprime(a). Recall the definition of the
set marked(a) from (3.9). The following result is complementary to Proposition 4.1 and gives
the second key ingredient in our proof of Theorem 3.24. This proposition reduces the task of
locating the (diagonal) primes in P& (a) and Q. (a) to understanding 7(a) and marked(a).
Proposition 4.9. Suppose a € R} (z) and a = unprime(a). Let (i,j) € Z x Z
and 0=";;(PEg(a)). If i j (respectively, i=j), then the entry of P2(a) (respectively Q2(a))
in position (i, j) is primed if and only if 0 # @ and 7(a)(0) € marked(a).

Proof. One can define orthogonal Edelman—Greene insertion by a slightly different bumping
process, in which an insertion tableau P () is built up with diagonal primes along with a
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recording tableau QVEG(A) having no diagonal primes, and then at the final stage P ()
and Q2. (a) are formed by moving any diagonal primes in PEG( ) to Q (a). From this perspec-
tive the proposition is just locating the primes in PEG( ). The following argument is organized
around this observation.

Let n = £(a) = ¢(a) and form P2, (a) from P2 (a) by adding primes to the main diag-
onal positions that are primed in Q2 (a). Note that we have PEG( ) = unprime(P%(a)) by
Proposition 3.8. We will show that the entry in position (z,y) of Pé)c( ) is primed if and only
if 0 := %y(PEG( )) has @ # 0 € cyc(z) and 7(a)(0) € marked(a). Define

T7 .= P& (aag---a;) and b = a;10,49- -0, for0<j<n,
and abbreviate by writing marked(7T7, b7) := marked(row(77)’). It suffices to check that
marked (77, b7) = {7;(a)(0) : 0 € marked(T7~",0/~")} forall j € [n],

since this will imply that marked(row(]BEG(&))) ={0:7(a)(f) € marked(a)}.

Let ~ be the transitive closure of the relation on primed involution words that
has w ~ ock;(w) for all i € Z such that marked(w) = marked(ock;(w)). In Lemma 4.7, if we
are in case (a), case (b), or case (c) with 7 = , then 7;(a) = 1 and it follows by tracing through
the proof of Proposition 3.21 and using Proposition 3.29 that row(771)b'~! ~ row(T)V as
needed.

If we are in case (c) of Lemma 4.7 with 1 # ~,, then 7;(a) is the transposition of cyc(z)
interchanging 7 <+ 7,, and it follows similarly that marked (77, %) is formed by applying this
transposition to all elements of marked(77~1, 7 ~1).

Finally, suppose we are in case (d) of Lemma 4.7, so that 7;(a) = (7, ¢ Yp41). Form UJ
from T by switching the primes on the entries in positions (p,p) and (p + 1,p + 1). Then,
again following the proof of Proposition 3.21 and using Proposition 3.29, one checks
that row(T7=1)p7=1 ~ row(U?)V’. Thus

marked(77~", b/ ~") = marked (U7, b7) = {7;(a)(0) : § € marked(T7~",&/~")}
as desired. O]

As an application, we explain how to deduce Theorem 3.24 in the case when inserting three
consecutive letters in & contributes two diagonal positions to P (a).

Lemma 4.10. Suppose a is a primed involution word and n = ((a). Write O; for j € [n] to
denote the unique box of Q2.(a) containing j or j'. Assume that i € [n — 2] and O; and O;
are both on the main diagonal. Then P2.(ock;(a)) = P2.(a) and Q8. (ock;(a)) = 0;(Q8(a)).

Proof. Write [; = (¢ — 1,¢ — 1) and Q = Q2(a). Then we must have (J;,; = (¢ — 1,q)
and O;1» = (q,q), and consequently 9;(Q) = 5;,(Q) = s,41(Q) is formed from @) by swap-
ping i+1 and ¢'+1, and then reversing the primes on the entries in the diagonal boxes (¢—1, ¢—1)
and (g, q) if these entries are not both primed or both unprimed.
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After possibly invoking Proposition 3.23 to interchange ) with 9;(()), we may assume that
the entry in position (¢ — 1,¢) of Q is i + 1 rather than i/ + 1. Let b = ock;(a) and de-
fine a = unprime(a) and b = unprime(b). Then b = ock;(a) by Lemma 3.19. It is evident
from Lemma 4.7 that 7;(a) = 7;.1(a) = 7;42(a) = 1. Since we know from Proposition 4.1
that QP (b) is formed by applying 9; to QP;(a) = unprime,,(Q), which adds a prime to posi-
tion (¢ — 1, q), it is also clear from Lemma 4.7 that 7;(b) = 7,,2(b) = 1.

To compute 7;1(b), consider the weak bumping paths path(b), path$  (b), and path, ,(b)
that result from inserting b;, b;11, and b; 5 successively into

PSG(alag ceeail1) = PSG(ble b)),

In view of Proposition 4.2, the first path must terminate at position (¢ — 1, ¢ — 1), the last two
positions of the second path must be (¢ — 1, — 1) followed by (¢ — 1, ¢), and the last two
positions of the third path must be (¢ — 1, ¢) followed by (g, q).

If the first row of cseq, ,(a)is [ 71 ... 7, |.thensince cseq;,,(a) = cseq, ,(b) by Propo-
sition 4.1, we deduce from Lemma 4.6 that the first rows of cseq, ,(a) = cseq,_;(b), cseq,(b),
and cseq;,(b) are [ Y1o--- Vg2 }, [ Mo Yg—2 Vg ], and [ Mo Vg—2 Vg1 ],

respectively. Thus 7,.(b) is the permutation of cyc(z) that swaps v,_; and 7,. Multi-
plying 71(a)m2(a) - - - 7;42(a) on the right by this permutation gives 71 (b)72(b) - - - 7;42(b) and
vice versa.

As we know that P2 (a) = P (b) and Q2 (b) = 0;(QZ(a)) by Proposition 4.1, it follows

from Proposition 4.9 that PS.(d) = P (b) and Q2 (b) = 9;(Q%(a)). O

4.4. Constraints on cycle sequences and the 213 <> 231 case of Theorem 3.24

The next few sections prove a series of technical results constraining the values of cseq,(a)
and 7;(a) for an (unprimed) involution word a.

In the following lemma, let entries(7") C ZUZ' denote the set of entries in a shifted tableau 7'.
Also let diag(7") denote the subset of entries appearing on the main diagonal of 7.

Lemma 4.11. Suppose a and b are (unprimed) involution words for elements of Iy.
Fix 0 < i < l(a) — 2 with ;1 < a;42 and suppose 0 < j < €(b) — 2 is an index such that:

(a) cseq;(a) = cseq;(b) and cseq, ,(a) = cseq;,5(b),
(b) |diag(QZs(a)) N{i+ 1,3+ 2}| = |diag(QBs(b))
(c) |entries(Q8:(a)) N {i + 1,i + 2}| = |entries(Q2(b)) N {j + 1,5 + 2}|.

, and

Then 7;11(a)Tiy2(a) = Tj41(b)Tj42(b) as permutations of (3).

Proof. Let s(a) := |diag(Q2(a)) N {i + 1,i + 2}| € {0, 1} be the number of diagonal entries
in Q9 (a) equal to i+ 1 ori+2andletr(a) := 2 — |entries(Q2(a)) N{i+1,i+2}| € {0,1,2}
be the number of (necessarily off-diagonal) entries in Q2 (a) equal to i’ + 1 or i’ + 2. Similarly
let s(b) € {0,1} be the number of diagonal entries in Q2 (b) equal to j + 1 or j + 2 and
let 7(b) € {0, 1,2} be the number of entries in Q2 (a) equal to 5’ + 1 or j" + 2.
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Conditions (b) and (c) imply that r(a) = r(b) and s(a) = s(b). The key idea in the proof
of this lemma is to observe how this fact combined with Lemma 4.7 limits the possible values
of cseq,, ; (@) and cseq;,(b) once cseq,(a) = cseq;(b) and cseq; ,5(a) = cseq; ,(b) are given.
We will then deduce that 7,1 (a)7i4+2(a) = 741(b)7;42(b) from these constraints.

From now on set r := r(a) = r(b) and s := s(a) = s(b). The desired equality holds
when r = 0 since then 7,11 (a) = T;42(a) = Tj+1(b) = Tj42(b) = 1 by (a) of Lemma 4.7.

Assume r = 1. Then, by (a) of Lemma 4.7, at least one of 7;.1(a) or 7;,2(a) is trivial,
and likewise for 7;1(b) or 7j,2(b). Suppose further that s = 0. Then cseq;(a) = cseq;(b)
and cseq, , 5(a) =cseq;, »(b) have the same number of columns, so we have cseq;,(a) = cseq,  ,(a)
or cseq, . (a) =cseq; »(a) (or both), as well as cseq;;(b) =cseq,, , (b) or cseq;,, (b) =cseq; ,(b)
(or both). Write

o . Y Y2 .- ’Yq

cseq,(a) = cseq.(b) = 4.9
qz( ) q]( ) |: 1 Cy Cq ‘| ( )
and suppose the first row of cseq, ,(a) = cseq; (D) is [ m m ... ng]. Ifthis is equal to

the first row of cseq,(a) = cseq,(b), then we must be in the “or both” case when

cseq;(a) = cseq,,(a) = cseq; »(a) and cseq;(b) = cseq,,,(b) = cseq;, (D),

and then 7,41(a) = Ti12(a) = 7j41(b) = Tj12(b) = 1. Otherwise, it follows by examining
cases (c) and (d) in Lemma 4.7 that there is either a unique index p € [¢| with 7, # 7,, or a uni-
que p € [¢— 1] with y,11 =1, # ¥, = 1p+1, and in either case 7,11 (a)7;42(a) = 7j11(b)Tj42(b)
is the permutation of (?) swapping 7, and 7),.

Next suppose r = s = 1. Consider the weak bumping paths path,,(a) and pathy ,(a)
that result from inserting a;,1 and a;,o successively into PEOG(alag ;). Since a;11 < @iy,
it follows from Proposition 4.3 that path, ,(a) terminates at a diagonal position (¢ + 1,q + 1)
and path;; () contains a unique non-terminal diagonal position (p, p) for some p € [g]. Denote
cseq,(a) = cseq,(b) as in (4.9). There are four possibilities for cseq; , ,(a) = cseq;,(b), namely:

[% B Y mm} {% e T Y 77q+1:|
6 ... ¢,—1 ... ¢, ¢ ’ 6 ... dy, ... ¢4 C ’
1 P q “q+l 1 P q g+l (4.10)
7o Tp+l Up < g Mgl or Yoo Moo g p
c1 ... G Cpt1l -+ Cq Cgp1 | cr ..o dy o..ocqg o Cgpr1 |
where 7, Ng+1 ¢ {71,7%2,...,7} and d, < ¢, — 1. In each case, one can work out the unique

possibility for cseq;,, ; (a) by examining cases (b), (c), and (d) in Lemma 4.7.

As we pass from cseq;(b) to cseq; (D) to cseq;,5(b), it follows from Lemma 4.7 that one
step must add an extra column and the other must alter the first ¢ columns either by chang-
ing a single column or swapping adjacent entries in the first row. From this observation, we
deduce that if cseq,,,(a) = cseq; ,(b) has one of the first three forms in (4.10), then there
are two possibilities for cseq; ,,(b), but in either case the factors 7;,1(b) and 7;,(b) commute
and 7,41 (a)T42(a) = 7,41(b)Tj42(b) is respectively either the identity permutation, the trans-
position (7,,7,), or the transposition (7,, V,41). If cseq;,o(a) = cseq;,,(b) has the last form
in (4.10) then

lm o e

csedii(a) =csequ®)=| o g . @10
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SO Ti+l(a) = Tj+1 (b) and TZ‘+2(CL) = Tj+2<b).9

Finally suppose r = 2 so that s = 0. Then cseq,(a) = cseq;(b) and cseq, ,(a) = cseq; 5(b)
have the same number of columns but cseq,(a) # cseq,, (a) # cseq;,»(a) and cseq;(b) #
cseq;,1(b) # cseq,,4(b). Denote cseq;(a) = cseq;(b) as in (4.9) and consider the weak bumping
paths paths,(a) and pathf,,(a) that result from inserting a;11 and a;i» successively
into P%(ajas---a;). Both paths now must contain unique non-terminal diagonal posi-
tions (k, k) and ([, [), and it follows from Proposition 4.3 that k < [ since we assume a; 11 < a;12.
We may thus list the possibilities for cseq; ,(a) = cseq;,,(b) as follows. To start, this array
could be

) T e e e g | o T e Tl e T T s Vg
¢ .o dy oo dp oL gy ¢ ... dp ... ¢ Cl41 - Cq |

where in these cases for each p € {k,[} either d, = ¢, —landn, = y,ord, < ¢, — 1
and 1, € {71,72,-.-,7}- When k + 1 < [, the array could also be

(2) oo Ve+1 TV N or
c1 ... Ck Cht1 - di ... cq
"o Ve+1 Yk e Y1 M - Vg
1 ... Ck Ck+1 --- C Ci41 .- Cq |’

where again either d, = ¢, — land g, = y,ord; < ¢ — 1land n ¢ {71,7%,...,7,}. Finally,
if & + 1 = [ then cseq,  ,(a) = cseq,,,(b) could also be either

(3) Moo Vel Vk N .or
L G 1 —1 o0 g
(4) Yoo Vel Ve+2 Yk N } or
L ct ... Cg Ck+1 Ck42 ... (4
o Ye+1 Tk Nt
5 1,
) La o dis1 ... cq}
where dj11 < ¢p41 — Land ny & {71,72, ..., 7} or the array could be
Yoo T Vk a7
6 0,
( ) ct ... dk dk+1 N & }
where dj, < ¢, — Land n, & {71,72,...,7} and dy41 < ¢x+1 — 1. In each case, one can again

work out the unique possibility for cseq, ; (a) by examining cases (c) and (d) in Lemma 4.7.
The values for cseq;,, (b) are constrained by Lemma 4.7 and the fact that

cseq;(a) = Csqu'(b) # CseCIj+1<b) # cseqj+2(b) = cseq; o(a).

°If p = ¢, then Lemma 4.7 with our assumptions that cseq;(a) = cseq;(b) and cseq, , 5(a) = cseq;, 5(b) does
not uniquely determine the first row of cseq,, ; (b). But considering the arrays’ second rows shows that (4.11) must
hold.
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In cases (1)-(3) there are two possibilities for cseq,, ;(b) but for either one 7;,,(b) and 7;,(b)
commute and 7,1 1(a)7;42(a) = 7j41(b)7j42(D). In case (4), we must have

Yo Vel Ve Ve+2 - ’Yq]

Cseqi+1( ) Csqu+1(b) [61 .. Ch Ck+1 Ck42 ... Cq

In case (5), we must have

Mo Ve Ve - ”Yq]

cseq,,(a) = cseq;,,(b) = [ e Chi1 -+ Cq

In case (6), we must have

Moo e Vel - 'Yq}'

cseq, (a) = cseq;,(b) = [ ¢ .o dy g1 ...

In each case Tit+1 (CL) = Tj+1(b) and Ti+2(a) = Tj+2(b), SO Ti+1(a)7',~+2(a) = Tj+1(b)7'j+2(b). OJ

The action of ock; comes in three different forms: either ock; transforms a “213-pattern” to
a “231-pattern”, a “121-pattern” to a “212-pattern”, or a “132-pattern” to a “312-pattern”. We
can use the lemmas in this section to derive the following result. This lemma, combined with
Proposition 4.9, will be used to prove Theorem 3.24 when ock; acts a 213 <+ 231 transformation.

Lemma 4.12. Suppose a = ayas - - - a,, is an (unprimed) involution word for an element of 1.
Assume i € [n — 2| and a; 41 < a; < a;y9. Then T(ock;(a)) = 7(a).

Proof. Let b := ock;(a) = ay---a;a;42a;41 - a,. We wish to prove that 7(a) = 7(b).
Write [J; for j € [n] to denote the box of Q2 (a) containing j or j'. We first check that [J;
and [;, o are not both on the main diagonal. Arguing by contradiction, we observe that these
positions could only both be on the diagonal if the weak bumping paths pathf( ), path;: +1( a),
and pathf+2(a) that result from inserting a;, a; 1, and a; 2 successively into PEG(alag “@i_1)
respectively terminate at (¢ — 1,q — 1), (q 1,q), and (q, q) for some ¢ > 0. Assume this is the
case, so that we have path$(a) = rpath$(a) and path$,, (a) = rpatth( a).

Since a; > a;41, Proposition 4.3 implies that the positions in rpath, () are all weakly to
the left of the corresponding positions in rpath:~(a). The second to last position in path} +1( a)
must therefore be (¢ — 1, ¢ — 1), so the entry in position (¢ — 1,q) of P& (ajay - - - a;11) is the
same as the entry in position (¢—1,¢—1) of PEG(alaQ ;). Since a; 11 < a; < a;ro, itiseasy
to check that the first ¢ — 1 positions in path;} +2( a) are strictly to the right of the corresponding
positions in path$(a), and that if pathS,,(a) reaches row ¢ then its position in that row must
be strictly to the right of (¢ — 1,¢). But this makes it impossible for pathS,,(a) to terminate
at (¢, ).

Thus [J; and [, 5 are not both on the main diagonal. By Proposmon 4.1 P& (aray -+ - aj) =
P&(biby -+ -b;) for all j € [n] \ {i + 1} along with Q9 (b) = 0,(Q%(a)), so 7(a) = 7;(b)
for all j € [n] \ {i + 1,7 + 2}. It remains to show that Tiﬂ(a)mrg(a) = Ti41(0)Tit2(D).
Evidently cseq;(a) = «cseq;(b) and cseq, 5(a) = cseq,o(b) and a;31 <  aiqo.
Since Q2:(b) = 0;(Q%(a)) and 0J; and [J;,» are not both on the main diagonal, it follows
from Proposition 3.23 that conditions (b) and (c) in Lemma 4.11 also hold, so that result implies

that 7341 (a)7i12(a) = 7it1(0)Tiq2(D). O
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4.5. Constrains from intersecting and non-intersecting bumping paths

This section contains two technical lemmas that constrain how cseq,(a) and Q2¢(a) can change
when adjacent letters are swapped and the successive bumping paths associated to these letters
either intersect or remain disjoint.

Lemma 4.13. Let a, b, c be unprimed words with n := {(a). Suppose X,Y € 7 are such that
(a) XYbandY Xc are reduced words for the same permutation in Sz, and
(b) aXYband aY X c are involution words (necessarily for the same element in 17).

Let T := P2.(a). If rpath<(T, X) N rpath<(T,Y) is nonempty then its first position is also
in rpathS(T, X) N rpathS(T,Y). If rpath=(T, X) N rpath<(T,Y) has an off-diagonal position
then

* cseq, 1 (aXYb) = cseq,  (aY Xc);
 n+1is on the diagonal in Q2-(aXYb) if and only if it is on the diagonal in Q2.(aY Xc¢);
o n' + 1Lisin Q2 (aXY) ifand only if ' + 1 is in Q2 (aY Xc).

Proof. Suppose rpath=(T, X )Nrpath<(T,Y") is nonempty and the first position in this intersec-
tion is (j,k). To show that (j,k) also belongs to rpathS(T, X) N rpath~(T,Y),
write Xo:=X <Y;:=Y and let X; and Y; be the entries of 7" in the ith positions of path<(7’, X)
and path=(T,Y") respectively. Then X; ; < Y;_; and the smallest entry of 7" in row j that
is greater than both of these numbers is X; = Y by definition. This means that row j of T’
cannot contain any entry w with X; ; < w < Yj_;, so by Remark 3.7, row j of 7" also cannot
contain X; ;. Hence (j, k) € rpathS(T, X) N rpaths(T,Y") as desired.

It is clear from Definition 3.1 that rpath=(7, X) and rpath<(T,Y’) coincide after their
first j — 1 positions, and it follows by our claim that rpath<(T’, X) and rpath<(T,Y") also co-
incide after their first j — 1 positions. If j # k, then all of these paths continue after row 7,
and we have ~,, (T, XYb) = ~,,(T,Y Xc) for all positions (z,y) since XYb and Y Xc are
reduced words for the same permutation. Given these observations, the result follows from
Lemma 4.7. ]

The next lemma gives us precise control over cycle sequences and diagonal entries when
swapping adjacent letters in an involution word that are “far apart” and have disjoint bumping
paths.

Lemma 4.14. Suppose a,b are unprimed words and X,Y € 7 are such that X +1 < Y
and aXYb is an involution word for an element of Iz. Let T = P2:(a) and n = {(a), and
assume rpath= (T, X) and rpath~(T,Y’) are disjoint. Then cseq,,,,(aXYb) = cseq,,,,(aY Xb),
and for each ¢ € {0, 1}, the number n + 1 + € is on the main diagonal in Q2-(aXYb) if and
only if n + 2 — € is on the main diagonal in Q2.(aY Xb), while n/ + 1 + € is in Q2 (aX YD) if
and only if n' + 2 — e is in Q2 (aY X).
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Proof. Again write X := X < Y := Y and let X; and Y; be the entries of 7" in the 7th positions
of path= (T, X) and path<(7’,Y) respectively. Suppose rpath< (7", X) and rpath<(T',Y) are dis-
joint. Lemma 4.13 with b = c implies that rpath< (7, X') and rpath<(T', Y") must also be disjoint.
We argue that since X +1 < Y, it must further hold that rpath<(7", X) and rpath~(T’,Y) are dis-
joint. To see this, note that if X; = Y;—1in some row i > 0 of T" occupied by both rpath< (7", X)
and rpath< (T, Y"), then this row of 7' must also contain X; — 1 and we must have X; ; = X; —1
and Y;_; = X;, since otherwise rpathS(T, X) and rpathS(T,Y) would intersect in the posi-
tion of X; in row ¢. But this means that if X; = Y; — 1 for any row ¢ > 0 then we also
have X, = Xy — 1, which is a contradiction since Xg = X and Y, =Y.

From these properties, we deduce that in any given row occupied by all four paths, the po-
sition in rpath<(7', X) is weakly to the left of the position in rpath<(7, X), which is strictly
to the left of the position in rpathS(T,Y’), which finally is weakly to the left of the
position in rpath<(7,Y). It follows that if (i,i) € rpathS(T, X) N rpath<(T, X) then any
diagonal position (j,j) € rpathS(T,Y) must have i < j, while if (i,i) € rpathS(T, X)
and (i,i + 1) € rpath<(T,X) then any diagonal position (j,j) € rpathS(T,Y) must
have: + 1 < j.

In addition, T}, and ~,,(7) only differ from (T & W) gy and vy, (T L w) at posi-
tions (z,y) € pathS(T,w) U path<(T,w) by Lemma 4.6. Since 7,4+1(aXYb) = yn42(aY XD)
and v,4+1(aY Xb) = 7,42(aXYb) as X + 1 < Y/, it follows in view of Proposition 4.2 that

AP (g XYb) = APYTP(aY Xb). (4.12)

To prove the lemma, it suffices to show that A2\ (aY X'b) and AP5P(aX'Y'b) end with the same

tuple, or that rpath=(7’,Y") and rpath~(T &, Y’) both never reach the main diagonal. In the
former situation Lemma 4.7 implies the desired result. In the latter situation Lemma 4.7 implies

cseq, (aXYb) = cseq, (aY Xb) = cseq,,,, (aY XD),
which means that cseq,, ,  (aXY'b) = cseq,,,,(aY Xb) in view of (4.12), along with
cseq,, 1 (aXYb) = cseq,, . »(aXYD),

50 cseq, ,,(aXYb) = cseq,, . »(aY Xb) holds. The other assertions about the locations of n + 1,
n+2,n +1,and n' + 2 in Q2 (aXYb) and Q2 (aY Xb) are easy to deduce from Lemma 4.7.

To this end, recall the definitions of cpath<(7, X) and cpath<(T, X) from (4.3). If the
positions in cpathS(T, X) U cpath<(T, X) are disjoint from rpath~(7,Y) U rpath<(T,Y),
then the latter union is disjoint from path=(T, X) U path<(T, X), and so the stronger prop-
erty AP (Y Xb) = AP (aX YD) holds in view of Lemma 4.6.

Instead suppose cpathS(T, X') U cpath=(T, X) and rpath<(7,Y’) U rpath<(T,Y) are not
disjoint. For each i > 0, let cpath<(T’, X, 1) be the set of positions in cpath(7’, X) in row i,
and let

cpaths(T, X,i) := {(i — 1,7) € cpathS(T, X) : (i, ) € cpath~(T, X)}.

Then each position in cpath (T, X') Ucpath<(T, X) is in cpathS(T, X, i) Ucpath<(T, X, i) for
a unique value of i, and every position in cpath<(T, X, 1) U cpath<(T, X, ) occurs in a column
strictly to the left of every position in cpath™ (7", X, i+1)Ucpath<(T’, X, i+1) by Proposition 4.2.
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Let 7 be minimal such that the unions cpath<(7T’, X, i) Ucpath<(7, X, ) and rpath~(T,Y) U
rpath<(T,Y) intersect. Assume the leftmost position in cpath~(T, X, i) U cpath<(T, X, ) is in
column 5 + 1 while

|cpathS(T, X,i)| =1 and |[cpath™(T, X,i)| = k +

for some integers k,! > 0 with £ + [ > 0. If 7 = 1 then we must have [ = 0 and 7 + &£ — 1 must
be the length of the first row of 7". If i > 1 then we must have Yj ., = Y, +tfort € [I].
Finally, all positions in cpathS(7’, X, i) U cpath<(T, X, 4) must be occupied in T, except that
when [ = 0 the single position (7, j + k) may be outside the domain of 7.

First assume all positions in cpath(T’, X, i) U cpath<(T, X, 1) are occupied in 7. Then we
must have i > 1, so the entries of 7" in positions {i — 1,i} x {j +1,j+2,...,j + k+ 1} are

Xj+1 Xjt2 Xj+ Xje +1 | Xjpr +2 Xjrr +1

Tic14+1 | Tim1,j+2 e Tio1,j+k Xtk Xjrk+1 Xk +1—1

. . . 0
while the corresponding entries of T' < u are'”

j Xj+1 Xjrr-1 | Xje+1 | Xjpp +2 o Xj+k +1

? ? ? Xjtk Xjte+1 Xk +1—1

In this case one of the following holds:
(1) ¢ =jand T} = X
2 i=j+landk=0andT;_y; 1 +1=T;1; =T; —1 =X, or
(3) 7 < j and X appears in column j of 7" above row .

Position (i—1, j+k+{+1) in 7" must be unoccupied or contain an entry greater than X+, so
position (¢, j +k+{+1) in T is unoccupied or contains an entry greater than X, +/+ 1. This
implies that neither (i — 1, j+k+1) nor (i, j +k -+1) can belong to rpath=(T, Y) \ rpath<(7, Y").
Therefore if (, 3) is in the intersection of rpath=(T,Y") and cpath<(T, X,4) U cpath<(T, X, )

10Most of the boxes labeled by question marks in T’ & X contain the same entries as the corresponding positions
of T Such an entry could be different if its position belongs to rpath (7', X) N rpath=(T, X). A given row has at
most one such position, which must be strictly to the left of any terms of rpathS (T,Y) in the same row.
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then (z,y) or (z,y + 1) must be in the intersection of rpath<(7,Y) and
cpathS(T, X, i) Ucpath<(T, X, ). Furthermore, if (i —1,y) € rpath<(T,Y) Ncpath~(T, X, i)
then (i,y) € rpath~(T,Y) Ncpath~(T, X, ).

So we may assume that (i, j + 0) € rpath(7,Y) N cpath~(T, X, i) for some § € [k + I].
If k < 6 < [ then we also have (i — 1,5 + &) € rpath<(T,Y) N cpathS(T, X,4). In view of
the minimality of ¢, apart from these one or two positions there are no other elements in the
intersection of rpath<(7,Y’) and cpath™ (T, X) Ucpath<(T, X), since rpath<(T’,Y") contains at
most one position in each row, and since all positions of rpath= (7", Y') above row 7 contain entries
of T that are greater than X, s while all positions cpath(T’, X) U cpath<(T, X) above row i
contain entries of 7" that are at most X ;. To proceed, we divide our analysis into six subcases:

(a) Ifk+1 < & < [ then Lemma 4.6 implies A™/1P(aY Xb) = A" (aXY'b) which suffices.

(b) Suppose k > 0and 6 = k+ 1,sothat! > O while (i —1,j +k+1)and (i,j +k + 1)
are both in rpath=(7,Y"). We cannot have T;_; ;. = X, — 1, since then (i — 1, j + k)
would be in rpath=(7,Y") and not rpath<(T, X), meaning that (i — 1, j + k) would have
to belong to cpath™(T’, X, ). Therefore (i — 1,5 + k + 1) is also in rpath~(T,Y"). This
means that terms i and i + 1 of A>"P(aY Xb) are

(]+kvj+k+17Xj+k79) and (y7g>Xj+k+170>

for the 2-cycle 0 = ;1 j1k41(T, XYD) = vie1j14+1(7,Y Xb) and some columns
y < §<j+k+1. By Lemma4.6, termsiand i + 1 of AP (aXYb) are

(J+k+17]+k+17X]+k777) and (y73~77Xj+k+1,9)

for n = Yijskr1(T, XYD) = 7 j16+1(T,YXb) and the same values of 6, y, .
Thus AP"P(aY Xb) and AP (X Y'b) only differ in their ith terms, so their final terms
coincide as needed.

(c) Suppose k = 0and 06 = k& + 1 = 1, so that again [ > 0. Then cases (1) and (2) would
each lead to a contradiction of our assumption that rpath< (7', X )Nrpath<(T,Y") is empty:
case (1) would imply that this intersection contains (¢, 7) while case (2) could imply that it
contains (i — 1,7 —1). Therefore we are in case (3) so position (¢, j) in 7" contains an entry
that is at most X; — 1 while position (¢ + 1, j) in 7" contains an entry that is at most X ;.

It follows that terms i and i + 1 of A™/P(aY Xb) have the form
(j+1,j+1,X;,0) and (j+1,7+1,X,+1,7n)

while terms i and i + 1 of A™P(a X Y'b) have the form
J+1,7+1,X;,n) and (j+1,5+1,X;+1,6)

for
0 = %’—l,j-&-l(Ta XYb) - ’yi—l,j—‘rl(T? YXb)
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(d)

(e)

®
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and
ni= ,Yi,j+1(T7 XYb) = 7i,j+1(Ta YXb)

As in the previous paragraph, it follows that A>YP(aY X b) and A>P(a X Y'b) do not dif-
fer outside these two terms, so either both sequences end in the same tuple in

view of (4.8) or rpath<(7,Y) and rpath<(T < X,Y) never reach the main diagonal
since (i + 1, j + 1) is not a diagonal position. This is again sufficient to conclude that the
lemma holds.

The case =k > 1 cannot occur, as in this event, it would follow in view of Proposition 4.2
that (i —1,j+k) and (¢, j + k) are both in rpath~(7,Y") with X1 < Tj—1 4k < Xj1s
which contradicts the fact that T; 1 j 1 < X; 51 as (1 — 1,5 + k) ¢ rpath~(T, X).

If k > Oand 1 < & < Fk, then it follows from Lemma 4.6 that AP"P(aY Xb)
and APYP(aXYD) differ only in their ith term, and if this term of A™P(aY Xb)
is (y,7,d,n) then the corresponding term of AP (aXYb) is (1 4+ y,1 + 7,d,7n). Both
sequences then have more than 7 terms so they end with the same tuple as needed.

Next suppose k > Oand 0 = 1. If X; < Y;_; then the argument in subcase (e) still applies.

Assume Y;_; < X;. Then we cannot be in cases (1) or (2) without contradicting
rpath(T, X) N rpathS(T,Y) = @,

so X, appears in column j of 7" above row ¢ and position (i + 1, 7) in 7' contains an
entry that is at most X;. The entry in position (¢, j) of 7" cannot be greater than Y;_;
since (i,7 + 1) € rpath~(7,Y), and this entry must also not be equal to Y;_; since then
we would have X = Y;_; +1 which can only hold if X; = Y;_,, in which case column j
of T" would have two equal entries, contradicting the fact that all columns of 7" are strictly
increasing. Thus position (7, j) in 7" contains an entry that is less than Y;_.

It follows that APY°(aY Xb) and APV (aXYD) only differ in terms i and i + 1:

while these terms in APMP(aY Xb) must have the form (j + 1,5 + 1,Y; 1,6)
and (j+1,7+1,X;4,n) for some 2-cycles § and 7, the corresponding terms
of APYP(aX YD) are

(j+17j+2’yi—170) and (j+17j+1an+179>
whenY;_; = X, or
(.]+17j+17§/1—179) and (j+17]+17Xj7¢)

when Y;_; < X, where we may have ¢ # 7. As in our earlier cases, we conclude that
either both sequences end in the same tuple in view of (4.8), or we observe that (i+1, j+1)
is not a diagonal position so rpath<(7,Y") and rpath<(T & X, Y') never reach the main
diagonal.
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This completes our argument if all positions in cpath™ (7', X, i) U cpath<(7, X, 1) are occupied
inT.
When this does not occur, we must have [ = 0 and (7, j + k) ¢ T'. In this case row ¢ of T is

Tin Tia Tij | Xj+1 | Xj42 [ Xtk

while row ¢ of T' £ X is

Ti1 Ti2 e Tj X5 | Xj+1 X k=2 X k-1

Here, cases (1) or (3) from above must apply. We cannot have (i,j + k) € rpath<(T,Y) \
rpath<(T,Y) if (i,7 + k) ¢ T, so again (1,7 + &) € rpath<(T,Y) N cpath<(T, X, 1) for
some § € [k]|. By the minimality of ¢, this position is the unique element in both rpath<(T,Y")
and cpath=(T, X') U cpath<(T, X), since rpath<(7’,Y") contains at most one position in each
row, and since all positions of rpath= (7", Y") above row 7 contain entries greater than X5 while
all positions of rpath=(7,Y) U rpath<(T,Y’) above row i contain entries that are at most X;.
We are left with two further subcases:

(g) If X; < Y,_4, then it follows from Lemma 4.6 as in subcase (e) that Agi"}p(aYX b)
and A™7P(aXYb) differ only in their ith term, where if this term of A™P(aY Xb)
is (y,7,d,n) then the corresponding term of A?%(aXYb) is (1 4+ y,1 + ¢,d, 7). In
this event, both sequences have more than i terms unless y = § = j + k. Since (j,j + k)

is not a diagonal position, we conclude that the lemma holds holds either way.

(h) Assume Y; ; < X;. Then we cannot be in case (1) without contradicting
rpaths(T, X)Nrpath~(T,Y) = &, s0i < j and X; appears in column j of T’ above row i.
If & < k then we can repeat the argument given in subcase (f) to deduce our result. If 6 = k&
then we must have k = 1and Y; ; < X. In this situation, A>4"\*(aY Xb) has only i terms
and ends with a term of the form (j + 1,5 + 1,Y;4,0) for some
2-cycle 6, and APMTP(aXYb) is formed from APYP(aY Xb) by appending the
tuple (7 + 1,5 + 1, X;, ¢) for some 2-cycle ¢. Since neither (7, + 1) nor (: +1,j + 1)
is a diagonal position, this shows that rpath<(7,Y") and rpath~(T & X, Y') never reach
the main diagonal so the lemma again holds.

This completes our proof of the lemma. 0

4.6. The 121 <+ 212 and 132 < 312 cases of Theorem 3.24

In this section we prove one final lemma to help prove Theorem 3.24 in the case when ock; acts
by transforming a “121-pattern” to a “212-pattern” or a “132-pattern” to a “312-pattern”. This
is our most technical result; it is the main application of the lemmas in the previous section.
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Lemma 4.15. Suppose a = ajasy - - - a,, is an (unprimed) involution word for an element of Iz.
Write O; for j € [n] to denote the box of QS.(a) containing j or j'. Suppose i € [n — 2]
is such that a; < @10 < a1, but UJ; and Uy, are not both on the main diagonal.
Then T(ock;(a)) = 7(a).

Proof. Define b = ock;(a). Our goal is to show that that 7(a) = 7(b). We have either
a; < Qjro < Aj4q and b=ay--- Ait1AQ542 "« * Qp,

or
a; = Qi1 < Aj41 and b=a;--- Qi 1A; Q541 * Ay

In either case, Proposition 4.1 implies that P& (ajas - -+ a;) = P (biby---b;) for j € [n] \
{i,i + 1} so we have cseq;(a) = cseq,(b) for j € [n] \ {i,4 + 1}. Thus 7;(a) = 7;(b) for
J € [n]\{4,i+1,i+2} and it is enough to show that 7;(a)7;11(a)7i12(a) = 7:(0)Tit1(b)Tis2(b).

Let s(a) be the number of diagonal entries in Q2 (a) equal to 7, i + 1, or i + 2. We must
have s(a) € {0, 1} since ¢ and i+ 2 are not both on the main diagonal. Letr(a) € {0, 1,2} be the
number of (off-diagonal) entries in Q2 (a) equal to ', i'+1, or i’ +2. Since Q2 (b) = 0;(Q%(a))
by Proposition 4.1, we deduce from Proposition 3.23 that s(a) = s(b) and r(a) = r(b).

Claim 4.16. If rpath;(a) and rpath;(b) intersect off the main diagonal then T(a) = 7(b).

Proof of the claim. In case, Lemma 4.13 implies that cseq;(a) = cseq,(b) so 7;(a) = 7;(D).
As s(a) = s(b) and r(a) = r(b), we can use Lemma 4.11 to deduce that 7,1 (a)7;,2(a) =
Tit1(b)Tit2(b). O

)

Claim 4.17. If a; < a; 5 and the paths rpath:(a) and rpath:(b) are disjoint then 7(a) = 7 (D).

Proof of the claim. In this case Lemma 4.14 implies that cseq,, ; (a) = cseq;,,(b) 80 T;y2(a) =
Tiro(b). Ass(a) = s(b)andr(a) = r(b), Lemma4.11 again implies 7;(a)7;11(a) = 7;(b)Ti11(b).
O

Thus, we may assume that rpath;~(a) and rpath; () intersect in at most one position, which
is on the main diagonal, and that if a; < a;» then rpath(a) and rpath:(b) intersect in at least
one position. For the next part of our argument, we will assume that if a; < a;» then the first
position in the (nonempty) intersection of rpathy (a) and rpath(b) is off the main diagonal.

We define an index j and a number u in the following way. If a; = a;12 < a;;1, then we
set 7 := 0and v := a;. If instead a; < a;,2 < a;y1, then let j > 0 be the row index of the
the first position in the intersection of rpath(a) and rpath(b). This position cannot belong
to rpath;~(a) N rpath;=(b), so it must be occupied in 7', and we define u to be its entry.

Define k to be the row index of the last position in rpath;(a). Then j < k and the following
observations are consequences of our assumption that rpath;~(a) and rpath;=(b) do not intersect
off the main diagonal:

(A1) Suppose t € {1,2,...,k —j—1}ort = 0 < j. Then row j + ¢t of T contains
both v + ¢ and u + t + 1, and the positions of u +¢ and v +t 4+ 1 in row 7 + ¢ of 1" are
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in rpath;"(a) N rpath:(b) and rpath(b), respectively. Moreover, if row j -+ t of T’ con-
tains u + ¢ — 1 then its position is in rpathy(a), and otherwise the position of u -+ ¢ in
row j+t of T'is in rpath(a). It follows that if j > 0 then row j of 7" does not contain u— 1,
since rpath$(a) and rpathy (b) share a position in this row.

(A2) The position (k, k) is in rpath:(a), since otherwise the last position in rpath:(a) would be
an off-diagonal element of rpath;(a) Nrpath;(b) If occupied, the entry of position (k, k)
in 7" must be at least u + k — j — 1.

Suppose z,y € Z are such that row(7")zy is an involution word. The tableau T’ & 4 differs
from T only in the positions that belong to path=(T’, x), which contain successively increasing
entries until the last position which is not in 7.

If we know only the first & — 1 positions of path<(T, ) and path<(T, z), but we know that
the entry of 7' in the kth term of path=(T, z) is bounded below by some number N when this

e . 0 i
position is present in 7', then we can compute the subtableau of 7' <— z formed by omitting
all entries greater than N. In this event, we can then also compute the initial subsequences

of pathS(T &z, y) and path<(T &z, y) that consist of positions with entries of T & 2 that
are bounded above by N. These observations let us deduce the following additional properties:

(A3) The first k£ — 1 terms of rpath;(a) and rpathy, (b) coincide, as do the first & — 1 terms
of rpath;~(b) and rpathy (), as do the first & — 1 terms of rpath(a) and rpathy ; (b).

(A4) The first kK — 1 terms of rpath(b) and rpathfﬂ(a) are the same except in the rows j + ¢
where T does not contain u +t — 1, fort € {1,2,...,k—j— 1} ort =0 < j. In these
rows, rpath; (a) contains the position of u + ¢ + 1 in T, rather than the position of u + ¢
which is in rpath3 ().

(A5) The first j terms of path ,(a) and path:, ,(b) coincide, as do the first j terms of path ,(a)

and pathf+2(b). If 5 > 0O then term j of all four paths is the position of v+ 1 in row j of 7.

(A6) If t € [k — j — 1], then the (j + t)th terms of path$,(a), pathS,(a), pathS,(b),
and pathf+2(b) are either the respective positions inrow j+tof T'of u+t—1, u+t, u+t,
and v+t + 1 when row j + ¢ of T" contains the entry u + ¢ — 1, or the respective positions
ofu+t,u+t+1,u+t+1,and v+t -+ 1 when the same row does not contain « +¢ — 1.

Combining the preceding observations, we arrive at the following key claim:
(A7) Letv =u+ k — 7 — 1 and assume k£ > 1. Then the entries of the shifted tableaux
T, TE&a, and TEa < ai
< <

in the (k — 1)th positions of rpath;~(a), rpathy (a), and rpathy ,(a) are v, v + 1, and v,
respectively. Likewise, the entries of the shifted tableaux

T, TEb, and T b < by

in the (k — 1)th positions of rpath;(b), rpath;; (b), and rpathy ,(b) are v+1, v, and v+1,
respectively.
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This last property still makes sense when 7 = 0 and k£ = 1 if we define the entries in the “Oth
position” of rpath, (a) and rpath’; (b) to be a,, and b,,, respectively.

We need just one other observation. Let U be the shifted tableau formed from 7" by omitting
the first £k — 1 rows. Using Proposition 3.21 and property (A7), one can check that a is equivalent

under ~ to a word that begins with row(U)v (v + 1)v. If U were empty or if all entries in U
were greater than v + 2 then this word is an involution equivalent under = to v (v + 1) v row(U)
which is impossible by Proposition 2.2. Thus:

(A8) The entry of T" in position (k, k) is occupied by v, v + 1, or v + 2.

We can now reason precisely about the possibilities for 7;(a), 7;41(a), Ti2(a), 7:(b), Tir1(b),
and 7, 2(b). Below, we will refer to the entries of the shifted tableaux arranged in the diagram

. a; a;
P& (a1 ai-1) —— P&(a1---a;) = P&(ar -+ aip1) —= PS(a1 - aiya)

PE(by - by) o PE(by -+ bit1)

(4.13)
where in this picture, an arrow — connects two tableaux if inserting v into the first tableau
according to Definition 3.1 gives the second. We also write

Ci Cy ... C4

cseq;_q(a) = cseq;_,(b) = { Mmooz T ] ) (4.14)

Claim 4.18. Assume that rpath;-(a) and rpath:(b) intersect in at most one position, which is
on the main diagonal, and that if a; < a;,o then the intersection of rpath (a) and rpath$(b) is
nonempty and its first position is off the main diagonal. Then 7(a) = 7(b).

Proof of the claim. As in earlier claims, it suffices to show

Ti(a)Tiy1(a)Tiva(a) = 7i(0)Tig1 () Tig2(D).

As noted above, there are three possibilities for the entry of 7" in position (k, k). First suppose
the entry of 7" in position (k, k) is v. Then, in view of Remark 3.7, the entries of 7" in posi-
tions {k, k+1,k+2} x{k, k+1,k+2} mustbe T}y, +; = v+i+jforall 0 < ¢ < j < 2. Using
Lemma 4.7 and property (A7), one checks that the entries in these positions are the same for all
six tableaux in (4.13), and that 7;(a) = (&, Yk+1) = Tiz2(b) and 7,41 (a) = (Vk, Ves2) = Tix1(D)
and Ti+2(a/) = (7k+1a7k+2) = Tz(b) Thus

Ti(a)Tiv1(a)Tiva(a) = (D) Tit1(b)Tir2(b) = (Ve Yrt2)-

Suppose next that the entry of 7" in position (k, k) is v + 1. Then, again in view of Re-
mark 3.7, the entries of T in positions {k, k + 1} x {k,k+ 1} mustbe T}, y+; = v + 1+ j for
all 0 <2< j < 1. Assume k£ > 1. Then row k£ — 1 of T" contains v and v + 1 in off-diagonal
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positions, so the entry in position (k — 1, k + 1) of T"is at most v + 1. If equality holds, then the
entries of the six tableaux in (4.13) in positions {k — 1,k,k + 1} x {k, k + 1} must be

v+ 3 v+ 3 v+ 2 v+ 2

; i a;
v+llv+2|—| v |v+2|—— | v v—&—l# v o |v+1

v (v+1 7 Jv+1 ? v ? ?

v+3 v+3

v+1l|lv+2]——>| v |[v+2

v |v+1 ?7 Jv+1

On the other hand, if the entry in position (k — 1,k + 1) of T is less than v + 1 then posi-
tion (k — 1, k + 2) of T"must have an entry less than v 4+ 2. When this happens or when k£ = 1,
the entries in the six tableaux in (4.13) in positions { k, k+1} x {k, k+1, k+2} must instead be

v+3 7 v+3| 7 v+2v+3 v+2|v+3
a; ait1 @ity
7 7 7
v4+1lv+2| 7 v ([v+1jv+2 v o |v+1jv+2 v ([v+1jv+2
k) %{»2
v+3| 7 v+3| ?
bit1 ’
v+1lv+2] 7 v o |v+1jv+2

where | 7 |denotes a position that may be unoccupied. In both cases, it follows using Lemmas 4.6
that the values of 7,,, applied to the six tableaux in (4.13) in positions { k, k+1} x {k, k+1} are

Yk+1 Yk+1 ) Vk+1 ) Tk
ai aj41 N az+2\
7 7 7
Yk @ Yk @ Yk a Ve+1| D
bz\l Alz
Tk Tk
>
bit1
V41| 2 Ve41| D

Thus, it follows by Lemma 4.7 that 7;(a) = 7;11(a) = 7i11(b) = Ti12(b) = 1 and 7342(a) =

7i(b) = (Vs Ye+1), 80 Ti@)Tis1(a)Tivz(a) = 73(b)Tiz1(0)Tir2(b) = (Y&, Ve+1) as needed.
Finally, suppose the entry of 7" in position (k, k) isv + 2. If £ > 1 thenrow k — 1 of T

contains v and v + 1 off the main diagonal, so the entry in position (k — 1,k + 1) of 7" must be
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less than v + 2. There are two subcases depending on the entry in position (k — 1,k + 2) of T'.
If £ > 1 and this position contains a number less than v 4 2, or if £ = 1, then the entries in the
six tableaux in (4.13) in positions {k, k + 1} x {k,k + 1,k + 2} are

? ? ? 7 v+ 2 7 v+2 7?7
i\ Gitl it
7 7 7
v+2( 7 ? v |v+2] 7 v |v+1| ? v |v+1jv+2
lh\) /bi+2
? ? ? ?
N\
bit1
v+1lv+2] 7 v |lv+1jlv+2

If k£ > 1 and position (k— 1, k+2) of T is unoccupied or contains a number greater than or equal
to v+ 2, then positions (k — 1, k) and (k — 1, k + 1) of 7" must contain the numbers v and v + 1.
In this case the entries in the six tableaux in (4.13) in positions {k — 1, k, k + 1} x {k, k + 1}
are

? ? v+ 2 v+2
vt2| 7 || v+2&> v v—&-lﬁ v |v+1
v |v+1 7 |v+1 ? v ? ?
N e

? ?

v+ 1 U+QT> v o |v+2

v (v+1 7 Jv+1

Write 7, and 7,1, for the entries in the first row of cseq,  ,(a) in columns % and &k + 1. The fol-
lowing assertions apply equally to both of the cases above. First, since cseq, ;(a) = cseq,_,(b)
and cseq,  ,(a) =cseq;, ,,(b), one can check using Lemmas 4.6 and 4.7 that y, =n;. If cseq; _,(a)
has only % columns, then it follows similarly that the values of ,, applied to the six tableaux
in (4.13) in positions {k, k + 1} x {k,k + 1} are

Tk ) Mk+1

Vi ? Met1| Vw Mk+1| 2 T | 9

K A{z

YW | @ | Ty | k| B

where we set § := & in the first subcase above and 5 := 71 in the second. Thus 7;(a) =
Tiva(a) = (Y, Mes1) and i1 (a) = 73(b) = 71 (b) = Tipa(b) = 1, giving

Ti(a)Tir1(a)Tive(a) = (D) Tis1(b)Tiga(b) = 1
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as desired. If cseq,_, (a) has at least k£ + 1 columns, then it follows likewise that the values of 7,
applied to the six tableaux in (4.13) in positions {k,k + 1} x {k,k + 1} are

Vh+1 Vh+1 Vi Met1
+ aq + @it N ai+2\ +
7 7 7
Tk ? Me+1| Yk Me+1| 9 Tk %)
N S
Yk+1 Vk+1
b }
1+1
Tk (%) Tk B

where /3 has the same definition as before. Thus Lemma 4.7 gives 7;(a) = 7;42(a) = (Y&, Mk+1)
and Ti+1 (a) = (")/k, 7k+l) while Tl(b) = Ti+1 (b) = 1 and Ti+2(b) = (’}/qul, Uk+1), SO

7i(a)Tip1(a)Tiva(a) = 7i(0)Tiy1 (0) Tir2(D) = (Vhy1s Mht1)
as needed. This completes our proof of the claim. 0

It remains to consider the case when a; < a; - and rpath(a) and rpath; (b) do not intersect
off the main diagonal, but rpath:(a) and rpath$(b) intersect in a unique position which is on
the main diagonal. Suppose this position is (k, k). This position must be occupied in 7', since
otherwise one can check using Remark 3.7 that both 7 and 7 4 2 would be on the main diagonal
of Q2 (a). The reasoning we used to justify (A3) lets us similarly derive the following claims:

(B1) The first £ — 1 terms of path;(a) and pathy,,(b) coincide, as do the first & — 1 terms
of path;%(a) and path;~(b). Each of the first k£ — 1 terms of the first two paths is strictly
to the right of the main diagonal and strictly to the left of the corresponding term in the
second two paths. The same statements hold for the corresponding weak bumping paths.

(B2) The first k — 1 terms of path ,(a) and pathy,(b) coincide. Each of the first k — 1 terms of
these paths is strictly to the right of the corresponding term in path;(a) or path;  (b), and
weakly to the left of corresponding term in pathy, (a) or path;~(b). The same statements
hold for the corresponding weak bumping paths.

Ifk=1thenletu :=a; = by1 < v := a;19 = bj1s < w := a;y; = b;. If £ > 1 then define
u, v, and w to be the entries of T', T’ <3 a; <3 a;y1,and T <3 a;, respectively, in position k£ — 1
of path;~(a), pathy ,(a), and path:, (a) respectively. It follows from (B1) and (B2) that:

(B3) Assume k£ > 1. Then u is also the entry of 7' & bin position k& — 1 of pathy,(b).

<

Likewise, v is also the entry of T’ Ep L bi41 in position k — 1 of pathy ,(b). In turn, w

is also the entry of 7" in position & — 1 of path;~(b), and u < v < w.
(B4) The entry of T in position (k, k) is at least w since (k, k) € rpath(b).

This leaves us with three possibilities 7;(a), 7;11(a), Tir2(a), 7:(b), T;41(b), and 7;12(b), as we
discuss in the proof of our final claim.
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Claim 4.19. Assume a; < a; o and rpath:(a) and rpath; (b) have no main diagonal intersection,
but rpath$(a) and rpath$(b) intersect in a unique diagonal position (k, k). Then 7(a) = 7(b).

Proof of the claim. Denote cseq, ;(a) = cseq,_(b) as in (4.14) above. Again write 7 and 7.1
for the entries in the first row of cseq,  ,(a) in columns k and £ + 1.

First suppose the entry in position (k, k) of T"is w. Then, in view of Remark 3.7, the entries
of T in positions {k,k + 1} x {k,k + 1} mustbe Tjy;4; =w+i+jforall 0 <i < j < 1.
If £ > 1, then row k£ — 1 of T" contains both v and w in positions off the main diagonal, so the
entry in position (k — 1,k + 1) of 7" is at most w. If k£ > 1 and this entry is equal to w, then the
entries of the six tableaux in (4.13) in positions {k — 1,k,k + 1} x {k,k + 1} are

w+ 2 w + 2 w+1 w
w w1 — | w—i—l% u w |2 v
u w ? w ? v ? ?
X Pe
w+ 2 w+ 2
w o |w+l ——F—>| u w
u v ? v

Alternatively, if £ > 1 and the entry in position (k — 1,k + 1) of T is less than w, then the entry
of T in position (k — 1, k 4+ 2) must be occupied by a number less than w + 1. In this case, or
if k = 1, the entries of the six tableaux in (4.13) in positions {k, k+ 1} x {k, k+1,k+2} are

w+2| 7?7 w42 7 w+ 1w+ 2 w w4+ 2
ai @it1 @ity
7 7 7
w |jw4+1] ? u w |w+1 u w w41 u v o |w+1
aik %+2
w+2 7 w+2) 7
—
w |w4+ 1w+ 2 [ w w41

In both situations, it follows by Lemma 4.6 that the values of ~,, applied to the six tableaux
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in (4.13) in positions {k, k + 1} x {k,k + 1} are

Ve+1 Vk+1 ) Vk+1 ) Yk+1
ZIN Aj41 N a1,+%
7 7 7
T | @ Mk ? Mk ? Mk ?
o & %ﬁ
Tk Tk
\
a; 4
Ve+1| 9 Nk | Ve+1

so by Lemma 4.7 we have 7;(a) = (7k, nx) and 741 (a) = 742(a) = 1 while 7;(b) = 7,42(b) =
(Vs Ve1) and 7 1(0) = (M, Yrs1)s 80 Ti(a)Tir1(a)Tira(a) = 75(0)Tiy1(0)Tig2(b) = (Y&, M) as
desired.

Suppose next that the entry in position (k, k) of T is w + 1. If & > 1 then the entry in
position (k — 1,k + 1) of 7" is at most w, so the entries of the six tableaux in (4.13) in posi-
tions {k,k + 1} x {k,k + 1} are

? 7 w+ 1 w
a,'\ aj41 N a,H,%
7 7 7
w+ 1] 7 u |w+1 u w u v
? ?
N\
a 7
w |w—+1 [ w

First assume the array cseq,_,(a) has only k£ columns. Then it follows by Lemma 4.6 that the
values of ., applied to the six tableaux in (4.13) in positions {k, k + 1} x {k, k + 1} are

Tk Tk
a; y ai+1 y ai+2>

a& % 2

Vi || ™ Vi

so by Lemma 4.7 we have 7;(a) =7i1(b) = (7%, ) and 7,11 (a) =Tiy2(a) =7;(0) = 7i12(b) = 1,
so7;(a)Tiv1(a)Tia(a) = 7i(0) 71 (D) Tira(b) = (Y&, mk) as needed. If cseq, , (a) has atleast k+1
columns, then it follows likewise that the values of ~,, applied to the six tableaux in (4.13) in
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positions {k,k + 1} x {k,k + 1} are

Ve+1 Vk+1 ) Tk ) Tk

D\ Gitl \ a,,+%

7 7 7
Yk ? M | Yk n | 9 Nk ?

a +\ %ﬁ
Ve+1 Ve+1
T
Yk z Nk | Yk

so by Lemma 4.7 we have 7i(a) = 7,41(b) = (v, m) and 7i11(a) = 7i2(b) = (&, Yrt1)
and 7;19(a) = 7(b) = 1, so 7i(a)Tip1(a)Tira(a) = 7(0)Tiv1(b)Tiva(b) = (Y, Ves1, k) @S
desired.

Finally suppose that the entry in position (k, k) of T'is z > w + 1. If k > 1 then the entry
in position (k — 1,k + 1) of T is at most w, so the entries of the six tableaux in (4.13) in posi-
tions {k,k + 1} x {k,k + 1} are

? ? T w
L\ Git1l Gt
7 7 7
T ? u T u w u v
aiﬂ\/‘ /u
? ?
N\
a 7
w T u w

If the array cseq,_, (a) has only & columns, the values of 7,, applied to the six tableaux in (4.13)
in positions {k,k + 1} x {k,k + 1} are

w ait1 Yk ait MNk+1
— e 4

GR % 2

Met1| Yo | a7 | M |Mrt1

so by Lemma 4.7 we have 7;(a) = (Y, m) and 741(a) = 1 and 740(a) = (Vk, Mks1)
while 7;(b) = (Y, Mk+1) and 7;01(b) = (Mg, Mk+1) and 742(b) = 1, so we have
Ti(a)Tip1(a)Tire(a) = 7;(0)Tie1(b)Tiva(b) = (Yks Mks1, k) as needed. If cseq,_;(a) has at
least £ + 1 columns, then the values of 7,, applied to the six tableaux in (4.13) in posi-
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tions {k,k + 1} x {k,k + 1} are

V41 V41 Tk Mt 1
1l + aipr | airz +
7 7 7
Vi ? M | Yk Nk | Mk+1 Mk ?
a& %ﬁ
Ve+1 Ve+1
a7
MNek+1| Yk Nk | Mk+1

so by Lemma 4.7 we have 7;(a) = (7, 7) and 7i41(a) = (Y%, Ye+1) and 7i42(a) = (e, Met1)
while 7;(b) = (Y&, Me+1) and Tip1(b) = (M, Mrt1) and Tip2(D) = (Yrg1, Me41)5 SO

Ti(a)Tiv1(a)Tiva(a) = (D) Tip1(0)Tir2(b) = (Ve Mhr1, Vir1, k)
as desired. This completes our proof of the claim. [

Combining our successive claims also completes the proof of the lemma. 0

4.7. Proofs of Theorems 3.11 and 3.24
Combining all of the results above now lets us fill in the proofs to Theorems 3.11 and 3.24.

Proof of Theorem 3.11. Remark 3.7 and Proposition 3.21 imply that if a € R (z) for
some z € Iz, then P2 (a) is an increasing shifted tableau with no primes on the main diag-
onal whose row reading word is in R;" (z). In this case it follows by definition that Q2. (a) is a
standard shifted tableau of the same shape.

Let (P, Q) be an arbitrary pair of shifted tableaux of the same shape, such that @ is stan-
dard and P increasing with no primed on the main diagonal and row(P) € R; (). The un-
primed form [HMP19, Thm. 5.19] of Theorem 3.11 asserts that there is a unique unprimed
word a € Rin(z) with PG;(a) = unprime(P) and QFg(a) = unprime,,(Q). Since we
have ~;;(P) € cyc(z) for all diagonal positions (¢,7) in P, Proposition 4.9 implies that there
is a unique way to assign primes to the commutations in a to obtain a primed word a@ € R} ()
with P& (a) = P and Q2:(a) = Q. We conclude that a — (PZ(a), Q2:(a)) is a bijection
from R;" (2) to the desired image. [l

nv

Proof of Theorem 3.24. Let a be a primed involution word with n = £(a) and @ = unprime(a).
Choose i € Z with i + 2 € [n] and let b = ock;(@). We wish to show that P& (a) = P (b)
and Q2 (b) = 0;(Q2(a)). This holds if 7 < 0 by Propositions 3.9 and 3.10. Assume i € [n — 2]

~

and let b = unprime(b). Then b = ock;(a) by Lemma 3.19 and we have

unprime(P%(a)) = P& (a) = P2 (b) = unprime(P% (b)) (4.15)
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by Proposition 3.8 for the first and last equalities and Proposition 4.1 for the second equality.
Likewise, we have

unprime i (2:(Q86(8))) = 0 (unprimey, (QB(@) = %(QEela))
: .

= QSG(b) - unprimediag(QgG( ))

by (3.7) for the first equality, Proposition 3.8 for the second and last equalities, and Proposi-
tion 4.1 for the third equality.

As usual write [J; for the box of Q2 (@) containing j or j'. If OJ; and [J; » are both on the
main diagonal, then we have P2.(a) = P2 (b) by Lemma 4.10. Otherwise, we have 7(a) = 7(b)
by Lemmas 4.12 and 4.15, so P& () = PS;(b) follows from Proposition 4.9 and (4.15).

It follows from the definitions of 9; and Q2 that 9;(Q%(a)) and Q8 (b) each only differ
from Q2. (@) in their entries in positions (J;, (J; 41, and (J; 5. In view of (4.16), the only possible
difference between ;(Q% (a)) and Q2 (b) is whether there are primes in whichever of [;, [, 1,
or [J;, - are also on the main diagonal.

If all three of [J;, ;. , and [J; . are off the diagonal then necessarily 9,(Q%(a)) = Q% (b).
If exactly two of these positions are on the main diagonal then the same conclusion holds
by Lemma 4.10. We cannot have all three of [];, [];,1, and [J;; > on the main diagonal, and
if exactly one of these positions is on the main diagonal then we just need to show
that its entry is primed in 9;(Q%(a)) if and only if it is primed in Q2 (b), or equivalently
that #primes ;;,, (0:(Q8c(@))) = #primes ., ( O.(b)). This holds since (3.7) asserts that

#primesdiag (DZQSG (&)> = #primesdiag((QgG (d)»a

and by definition

#primes( P (a)) + #primes;,,(QEc(a)) = #primes(a)

= #primes(b)
= #pnmes(PEG(i))) + #primesdiag<Q(E)G (l;>)

But PI?G(&) = PI?G([;)’ SO #primesdiag(ai(QgG(d))) = #primesdiag(Q(E)G (i))) O

5. Other insertion algorithms

In this final section, we discuss some novel “primed” variations of Sagan—Worley insertion (see
[Sag87, §8] or [Wor84, §6.1]) and shifted mixed insertion algorithm (see [Hai89, Def. 6.7]). The
domains of these maps are similar to various super-RSK correspondences (see, e.g., [LSNS06,
Mut19, SWO1]). Sections 5.1, 5.3, and 5.2 focus on Sagan—Worley insertion, while Sections 5.4
and 5.5 discuss shifted mixed insertion. This section is mostly independent of the earlier parts
of this paper, with the exception of Proposition 5.4 and Corollary 5.15.
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5.1. Modifying Sagan—Worley insertion

This section presents the definitions of two versions of the Sagan—Worley insertion algorithm,
which sends primed compatible sequences to pairs of shifted tableaux. A compatible sequence
is a two-line array of positive integers

11 g ... ip
= 5.1

(b |: ay ag ... Qp 1 ( )
where the entries in the top row are weakly increasing and such that if i; = 4, then a; < a;41.
We call the top row ;15 - - - 7,, of ¢ its index and we call the bottom row ajas - - - a,, its value. A
primed compatible sequence is a two-line array satisfying the same conditions, except its value

. . 1 . .
may have entries 0 < a; € Z U Z' if no column a with a € Z' is repeated. Thus

3] '111223}
1

11122 .
4455 6 an A 4 5 5 6 1

are primed compatible sequences while the following are not:

and 1y 5 5 61

11122 3] (11 12 23
[ 55 6 1| i ] '
When given as an input to an insertion algorithm, the index of a (primed) compatible sequence
will give the labels of the recording tableau. The condition “if ¢; = 7;4; then a; < a;j4” is
designed to ensure that this tableau will be semistandard.

We identify a (primed) word a = ayas - - - a,, with the (primed) compatible sequence whose
value is a and whose index is 1,2, 3, ..., n. If we never have a; = a;,, € Z/, then we can form
a primed compatible sequence ¢ with value a from each increasing factorization in Incry(a) by
placing ¢ above all letters in the ith factor. The increasing factorization

et - |11 3 33
a = (45",2,2'37") correspondsto ¢ = A5 o 3 7
in this way. This gives a bijection from Incry(a) (When a has no adjacent equal primed letters)
to primed compatible sequences with value a and whose index does not exceed /N (when N is
finite).

Definition 5.1. Suppose ¢ is a primed compatible sequence written in the form (5.1). We
construct a sequence of increasing shifted tableaux with no primed entries on the main diag-
onal @ = Py, Py, ..., P, in which P; is formed from P;_; as follows:

(1) On each iteration, an entry u € ZLIZ' is inserted into a row or column of a shifted tableau.
The process begins with a; inserted into the first row of P;_;.

(2) If inserting into a row when u € Z, or into a column when u € Z/, locate the first entry v
in the row or column such that u < v; otherwise, locate the first entry v such that v < v.
When such an entry exists, we say that v “bumps” v from its position.
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(3) If no such v exists then v is added to the end of the row or column to form P;. If w is primed
and the added position is on the main diagonal, then we change its value to [u] and say that
the insertion process ends in column insertion. Otherwise, we say that the process ends in
column (respectively, row) insertion if we are inserting into a column (respectively, row).

(4) If v is not on the main diagonal, then replace v by w and insert v into either the next row
(if we were inserting into a row) or next column (if we were inserting into a column).

(5) Assume v is on the main diagonal.!' If [«] = [v] then continue by inserting [v] into the
next column. If [u] # [v] then replace v by @ and insert © into the next column, where @
and v are given by switching the primes of « and v.

Now define P8y (¢) := P, and let QS,(4) be the shifted tableau with the same shape whose
entry in the unique box of P; that is not in P;_; is either 7; (when adding a; to ;_; ends in row
insertion) or @; (when adding a; to P;_; ends in column insertion).

This slightly modifies the original definition of Sagan—Worley insertion from [Sag87, §8]
or [Wor84, §6.1]. The latter map, which we will denote by ¢ — (Pah (6), Q2b,(¢)), is given by
repeating Definition 5.1 with two changes:

e first, in step (3) we do not remove the prime from a newly added diagonal entry and we
say that the insertion process ends in column insertion only if the last step inserts into a
column;

* second, in step (5) when [u] # [v], we redefine @ and © to be @ := w and ¥ := v.

It is convenient to think of these maps as “orthogonal” and “symplectic” versions of the same
algorithm. Proposition 5.6 will make the basis for this parallelism more precise. Primes may
occur on the main diagonal of Pss\fv(gb) or QS (¢) but not on the main diagonal of Q;‘}V(qb)

or Ps()w(¢)-

Example 5.2. Suppose ¢ = le é, ;, g ?, . Then in the notation of Definition 5.1

4 4
Plza P2:7 P3:7 P4:‘2 3 5/‘7 P5:‘2 3 5/|7,‘7

so we have

(4] 2/
3

PSOW(QS):‘Q 5/|7/‘ and ng(éb):‘l 1 2/|2‘-

On the other hand, one can check that

PSS\?V(¢):‘2/ g 5/|7/‘ and Qg\ev(@:‘

1[1]2]2]

"In this setting the diagonal entry v will always be unprimed and therefore equal to [v], but we do not draw
attention to this property as it will not hold in a modified version of this algorithm described below.
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o . 111 13 3355 5
Similarly, if ¢ = 4145 59 9337 7 then
o |4]4]¥ Soo o |4]4]
PSW(¢)_\2 2[3]3[5]7]7] PSW(¢)_\2’ 2[3]3[5]7]7]
33 and 313
0 _ Sp —
QSW(QS)_M 1[1]1]3][5]5] SW(¢)_\1 1[1]1]3[5]5]
Finally, comparing with Example 3.4, if ¢ = 41'354'2 then
o B 3|4 Sp B 314
PSW(C)_‘]_ 2 4/ 5‘ PSW(C)_‘]_/ 24/ 5‘
35 and 3|9
0 — Sp _
QSW(C>_‘1 2/ 4 6/‘ SW(C) _‘ 1 2/ 4 6/ ‘

The following example illustrates some more differences between these two algorithms.

Example 5.3. For x,y € Z U Z' identify the word xy with { i ; } If x € Z then
Poy(wx) =[z]z]  Pgy(za') =[z]z] Pey(a's') =[z]z] Pgy(a'z) =[z]z]
Q(s)w(m) = > ng(a:x’) = > QSW(JU/?U/) = u ng(x'w) = ’

while
Pon(az) =[] Poy(ea) =[z]z]  Pop(a'a’) =['[z]  Poy(a'z) =[+[«]

sw(zr) =[1]2] Qgy(za') =[1]2] Q=) =[1]2'], Qsh(2'x) =[1]2]

Alternatively, if z,y € Z and = < y then

Psovv(yflf) = > Psow(yl"/) = 7 Psow(y, )= a Psow(ylx) = v
ng(yx) = 7 Q(S)W<yxl> = 7 SW( / /) = 7 Q(S)WQ//Q;) = 7
while
P (yr) =[x ]y], Paplya) =[2'Ty] Pa'a) =[]y}, Paz)=[z]y]
swlyr) =[1]2] Qeh(ye) =[1]2] Qeh(v'a) =[1]2], Q(y=) =[1]2']

We can derive some nontrivial properties of Sagan—Worley insertion by observing that its

bumping mechanics are identical to shifted Edelman—Greene insertion applied to 2—equivalence
classes of primed involution words involving no braid relations. One can try to convert a primed
word to an element of such a class by “doubling” every letter, so that distinct adjacent letters
always differ by more than one. This is our motivation for the following definition.

Given a primed word a = ajas - - - a,, form double(a) by applying the map with ¢ +— 24
and 7' — (2i)' for i € Z to the letters of a. If ¢ is a primed compatible sequence then define
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double(¢) by applying double to its value. For a shifted tableau 7', construct double(7") by
applying double to all of its entries.

A primed word a is a partial signed permutation if unprime(a) has all distinct letters.'? De-
fine a primed compatible sequence to be value-strict if its value is a partial signed permutation.

Proposition 5.4. Suppose ¢ is a primed compatible sequence that is value-strict. Then the value
of double(¢) is a primed involution word, and it holds that

double o PS,(¢) = P2 o double(¢) and Q%(¢) = QL o double().

Proof. Let ¢ be asin (5.1). The first claim holds since unprime(double(ajas - - - a,,)) is an involu-
tion word where every index is a commutation. This ensures that P& o double(¢)
and Q2 o double(¢) are defined, and that the first tableau coincides with PSy, o double(¢) =

double o P&, (¢) while the second coincides with QS o double(¢) = QS (). O

Example 5.5. To compute Q2 o double(¢), view double(¢) as an element of Incr(R;" (2))
11 3 33 o

for some z € I. If ¢ = A5 o 3 7| (45", 2,2'37") then

double(¢) «» (8 10, @,4’ 6 14)

SO

PE. o double(¢) = |

| and QSGodoubIe(@:‘

416 L0’ 1]1]3]3]

5.2. Bijective properties

In this section we derive a formula analogous to Proposition 4.9 which relates our two versions of
Sagan—Worley insertion. Then we use this result to show that orthogonal Sagan—Worley insertion
defines a bijective mapping.

Let a = ajay - - - a, be a primed word, so that PSy,(a) := P8y ({ Clh 22 Z }) via
our identification of primed words with primed compatible sequences. For each j € [n], consider
the shifted tableaux P8y (ajas---a;_1) and Py (ajas - - -a;). If these tableaux have different
numbers of rows or the same entries in all diagonal positions, then define T].SW(a) to be the
identity permutation of Z. Otherwise, there is a unique diagonal position with different entries
in the two tableaux, and we let T]-SW(CL) be the transposition interchanging these. If a = 452’37’
as in Example 5.2, then 75"V (a) = (2,4) and 73\ (a) = 1for j € {1,2,4,5}. Let

(a) == V(@) (@) - 7 (a).
For a primed compatible sequence ¢ whose value is ayas - - - a,, define

TSW(QS) = TSW(a1a2 Ce ).

12This terminology is motivated by the fact that if unprime(a) is a permutation of 1,2,3,...,n then a is the
one-line representation of a signed permutation, that is, an element of the hyperoctahedral group.
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Let T be a semistandard shifted tableau. A position (7, 7) in T is free if [T;;] # [Tyy]
whenever > i or y < j, which in French notation means that (x,y) lies strictly above or
strictly to the left of (¢, 7). Every diagonal position in 7" is free. Adding or removing primes
from free positions does not change whether 7 is semistandard. If (i — 1,5 — 1) and (4, j)
are both positions in 7', then we must have [7T;_; ;1] < [T;;]. It follows that if u € Z is
the unprimed form of the entry of 7" in some position (7, j), then (7, j) is free if and only if it
contributes the first letter equal to w or u’ in the reading word row(7"). Consequently, if u and v
are the entries in distinct free positions in 7', then [u] # [v]. Let unprime;,, (') be the tableau
formed from 7' by removing the primes from all free positions. This is called the canonical form
of T"in [GLP20, Def. 2.6].

We say that u € Z is initially primed (respectively, initially unprimed) in a primed word if v’
(respectively, u) appears in the word and is before any other letters equal to u (respectively u').
Form unprime,,;;(a) from a primed word a by unpriming the first appearance of «’ for each ini-
tially primed letter v € Z. This is called the canonical form of a in [GLP20, Def. 2.1]. The
previous paragraph implies that unprime;,;,(row(7")) = row(unprime,,(7")) for any semistan-
dard shifted tableau 7.

init

Proposition 5.6. Suppose ¢ is a primed compatible sequence written as in (5.1).

(a) The shifted tableaux PgW(gb) and PSSEV(QS) are semistandard with the same free positions,
and it holds that _ o ] s
Unprlmefree(PSW(¢>> = unprlmefree(PSEV(¢))7

unprime . (Q2(0)) = Q2 (9).

(b) Let (i, 7) be a free position in PSS\‘/’V(QS) and let u € 7 be this position’s value with its prime
removed. The entry of P_gﬁv(@ in position (i, j) is primed if and only if u is initially primed
in the value of . If i # j (respectively, i = j), then the entry of PS,/(¢) (respectively,
Q2(9)) in position (i, j) is primed if and only if 7> (¢) (u) is initially primed in the value
of ¢.

Proof. 1t is known that PSS\',’V(gb) is always a semistandard shifted tableau [Sag87, Thm. 8.1].
Suppose during the insertion process that defines Pss\ﬁ,(gf)), a free position (x,y) with entry v is
bumped by a number u. The sequence of insertions leading to this point starts with some number
inserted into a semistandard shifted tableau. It follows that we can only have [u| = [v] if u
bumps v when inserted into a row, since otherwise u would have been bumped on the previous
iteration from a position contributing an earlier letter in the row reading word, contradicting our
assumption that the position of v is free. From this observation, it also follows that v would still
bump the position (z, y) if we toggled the prime on its entry v: this is clear if [u] < [v] orif v is
primed, and itholds if [u| = v € Z as then we must be inserting into a row with u = v'. Another
relevant property is that the position which v subsequently bumps on the next iteration (or the
new position added to the tableau if v is placed at the end of a row or column) only depends
on [v]. This position is also free unless v is on the main diagonal with [«] = [v], in which case
the free entry is unchanged (as is illustrated in Example 5.3). Finally, if 7" = PSSVPV(al as---aj_1)
has no entries equal to [a;] or [a;]’, then when a; is inserted into 7" it is placed into the first row
and is automatically free.

(5.2)
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Given these observations, it follows by induction on the number of columns of ¢ that PSS\}’V (9)
contains u’ in a free position for some u € Z if and only if « is initially primed in the value of ¢.
Moreover, we see in this way that the tableau P8y (¢) is formed from PSSV‘:,(gb) by toggling the
primes on certain free positions, and that the identities (5.2) hold. We already know that Pssvpv(qb)
is semistandard, so Py (¢) is also a semistandard shifted tableau.

For the last part of the result, consider a semistandard shifted tableau 7" and let [, for u € Z
denote the free position of 1" containing u or «/, if this exists. If [J, and [J, are both defined,
then let (u,v) € Sz act on T by reversing the primes on the entries in these positions if they are
not both primed or both unprimed, and otherwise leaves 7" unchanged. This operation extends
to an action of the group of permutations of the entries of unprime(7).

Let a = ajas - - - a, be the value of ¢. Form PSy(a) from PS,(a) by adding primes to all
diagonal positions that are primed in QS (a). Then ﬁgw(a) is constructed by the same insertion
process as the one that defines Pss\fv(a), except that whenever an inserted number u is about to
bump a diagonal entry v with [u] < [v] and {u,v} ¢ Z and {u,v} ¢ 7Z', we reverse the

primes on u and v. In the exceptional case 7>"(a) is the transposition exchanging [u] and [v],
and outside this case Tjsw(a) = 1. Thus, with respect to the action defined in the previous

paragraph, it follows that 75V (a) : PSy(a) — PZP(a). This implies the rest of the desired
result. -

Remark 5.7. Orthogonal and symplectic Sagan—Worley insertion restrict to the same map on all
(unprimed) compatible sequences. Proposition 5.6 shows that we also have Py (a) = PSSV’i,(a)
for all primed words that have a = unprime,,;,(a). Therefore both a — PSy(a) and a — Poh (a)

descend to the same map from “equivalence classes” of words to “equivalence classes” of shifted
tableaux in the sense of [GLP20, Defs. 2.1 and 2.6].

We may represent a primed compatible sequence ¢ as the matrix A whose entry in posi-

tion (i, 7) is the number of columns equal to [ ;., } or [ g } , and where this number is circled

if the column ; , | appears. This gives a bijection between primed compatible sequences and

N-valued matrices with finitely many nonzero entries, in which nonzero entries be optionally
circled. Following [Sag87], we call the latter circled matrices. For example,

111
¢_{2,22

This circled matrix A has all entries A;; € {0, 1,2, 3}; that is, the circles have no effect on
the value A;;. A primed compatible sequence is value-strict if and only if its associated circled
matrix has all entries in {0, 1} and at most nonzero entry in each column.

3 S,
1] has associated circled matrix A = | 2 @ . (5.3

2
L 10

2 2
1 2

Theorem 5.8. The map ¢ — (PS,/(6), Q%/(9)) is a bijection from primed compatible se-
quences to pairs (P, Q) of semistandard shifted tableaux of the same shape, where P has no
primes on the main diagonal and where the number of times that j or j' (for any j € 7Z) appear
in P and in Q). Moreover, if A = [A;;] is the circled matrix of ¢ then each row sum ). A;;
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(respectively, column sum Y, Ajy) is the number of times that j or j' appear in Pg,(¢) (re-
spectively, in Q,(9)).

Remark 5.9. Theorem 5.8 remains true when the relevant map is replaced by

¢ = (Pop(), Q())

if one requires () instead of P to have no diagonal primes (see [Sag87, Thm. 8.1] or [Wor84,
Thm. 6.1.1]).

Proof. Let ¢ be a primed compatible sequence. Toggling whether a given number in the value
of ¢ is initially primed or not has no effect on 7°V(¢) by Proposition 5.6. The result is therefore
clear from the same result and [Sag87, Thm. 8.1] or [Wor84, Thm. 6.1.1]. ]

If ¢ and A are as in (5.3) then A has row sums 1, 2 and column sums 3, 3, 1, while

212 212
Psow(d)):‘l aE 2|2‘ and Q(sjw(@:‘l/ 111 2/|3/‘-

5.3. Orthogonal Knuth operators

There is a conjectural analogue of Theorem 3.24 for Sagan—Worley insertion, which we describe
in this section. Let okn denote the operator that acts on 1- and 2-letter primed words by inter-
changing

XX, XX XX, XX & XX,

XY &YX, XYoV'X, XY VX, and XV VX,

for all distinct X, Y € Z. Let okn act on 3-letter primed words as the involution interchanging
ACB < CAB and YXZ < YZX

forall A,B,C,X,Y,Z € ZUZ with [A] < B < [C] — 3 andX+% < [Y] < Z, while
fixing any 3-letter words not of these forms. For a primed word a = aqas - - - a, and ¢ € [n — 2],

define
okn_;

(a) := okn(ayi)agas - - - ap,
okng(a) := okn(ajaz)ag - - - an,
okn;(a) :==ay -+ - a;—10kn(a;a;110;42) G453 - - - Qp,
while setting okn;(a) := a for i € Z with i + 2 ¢ [{(a)]. These orthogonal Knuth operators
coincide with ock; on partial signed permutations.

Conjecture 5.10. If i € Z then P, (okn;(a)) = Py (a) and QQy (okn;(a)) = 0,(QSy(a)).

It is trivial to verify these identities when i € {—1,0}. As with Theorem 3.24, the difficulty

o . hK . .
lies in the case when 1 < i € £(a) — 2. Let "~ denote the transitive closure of the relation on
primed words with a ~ okn;(a) for all i € Z.
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Proposition 5.11. If a is a primed word then a "2 row(PS,(a)).

Proof. One can mimick the proof of Proposition 3.21, using the relation " in place and g, after
rewriting Definition 5.1 in a form similar to Definitions 3.1 and 3.3. We omit the details. [

Thus, Conjecture 5.10 would imply the following:
Conjecture 5.12. Two primed words satisfy a ¥ b if and only if PQ,(a) = PSy(b).

A version of this property for the original “symplectic” form of Sagan—Worley insertion is
already known. Modify the definition of okn; by setting

spkn_;(a) :==a and spkny(a):= asaiazay---a, if [a1] # [as] and n := f(a) > 2,

while defining spkn; (@) := okn;(a) in all other cases. Write ~ for the transitive closure of the re-
lation with a ~ spkn,(a) for all ¢ € Z. Notice that if X € Z then XX ~ X X' % X' X' ~ X'X

while X X % X X7 X/ xR XX

Worley [Wor84, Thm. 6.2.2] shows that two primed words satisfy a ~ b if and only
if P22 (a) = P22 (b), so in particular Poh (spkn;(a)) = PSP (a) for all . We do not know
of a reference for this analogue of the second identity in Conjecture 5.10:

Conjecture 5.13. If i > 0 and a is any primed word then Q25 (spkn, (a)) = 0,(Q25,(a)).

The case i = —1 is excluded from this conjecture because QSW(spkn 1 (a)) #0_1(Q(a))
whenever a is nonempty, as then spkn_, (a) = a but Q2 (a) # 0_1(Q3 (a)) The case i = 0
is excluded because one can check directly that Qg{j\,(spkno(a)) = 00( w(a)) for all primed

words a.

Proposition 5.14. If7 > 0 and
Q3w(okni(a)) = 0:(QSy(a) and Q3 (spkn;(a)) = 0;(Qeh(a)).

Proof. In this case
sw(spkn;(a)) = Qs (okni(a)) = unprime,,(QSy (okn;(a)))

by Proposition 5.6, and this is equal to unprime . (9:(QSy (a))) = 0;( ob(@)) via (3.7) and the
same lemma. [

If Conjecture 5.13 were known, then one could derive Conjectures 5.10 and 5.12 by (a sim-
plified version of) the strategy we used in Section 4 to prove Theorem 3.24.
In more detail, suppose a is a primed word, i € [¢(a) — 2], and b := okn;(a). The numbers

that are initially primed in @ are the same as in b, so unprime,,; (b) = okn;(unprime,,;(a)) and

unprimefree(PSW<a)) PS\?V(unprlmemlt(a)) PS\;)V<unpr|meznll(b)) = unprimefree(PSW<b>>

by Proposition 5.6 and [W0r84, Thm. 6.2.2]. To prove that PSy(a) = P&,(b) it suffices by
Proposition 5.6 to show that 7>V(a) = 75W(b). This can be achieved by proving appropriate
Verswns of the lemmas in Sections 4.4 and 4.7. Then one can deduce Q% (b) = 0;(QSy(a))
from Q w(b) =0, ( tv(a)) by an argument similar to the proof of Theorem 3.24 in Section 4.7.
For partial 51gned permutations, all of these conjectural results follow from Section 3.4:
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Corollary 5.15. Suppose a and b are partial signed permutations. Then a 2 if and only
if P&y(a) = P&y/(b). Moreover, Q% (okn;(a)) = 0,(Q%/(a)) for all i.

Proof. This follows from Proposition 5.4 given Theorem 3.24 and Corollary 3.25, as the oper-
ators okn; and ock; coincide on partial signed permutations, as do the relations andR. O

Our two forms of Sagan—Worley insertion do not coincide on partial signed permutations.
However, because of Proposition 5.14, the previous corollary implies the following:

Corollary 5.16. If a is a partial signed permutation then ng,v(spkni(a)) =0 gﬁv(a))for alli.

5.4. Extending shifted mixed insertion

We now discuss two similar “primed” extensions of Haiman’s shifted mixed insertion algo-
rithm [Hai89, Def. 6.7]. These algorithms will turn out to be closely related to the forms of
Sagan—Worley insertion analyzed above. Define a primed compatible sequence to be index-
strict if its index is strictly increasing. A primed compatible sequence is index-strict if and only
if its associated circled matrix has all entries in {0, 1} and at most nonzero entry in each row.

Definition 5.17. Suppose ¢ is an index-strict primed compatible sequence written asin (5.1). We
construct a sequence of shifted tableaux @ = Uy, Uy, . .., U,, = U whose entries are pairs (¢, u)
where € € {£} and u € Z LU Z'. These tableaux become weakly increasing with no primes on
the main diagonal if every entry (e, u) is replaced by u. The tableau U; is formed from U,_; as
follows:

(1) Definea € {£} x Ztobe (+, [a;])ifa; € Zor (—, [a;]) if a; € Z'. Insert this pair into
the first row of U;_; according to the following procedure.

(2) Ateach stage, a pair 51 = (€1, u;) with u; € Z U 7' is inserted into a row (when u; € Z)
or a column (when u; € Z'). If every pair S = (€2, u2) in that row or column has u; > us
then f3; is added to the end; the added box can only be on the main diagonal if u; € Z."
Otherwise let 55 = (€2, ug) be the leftmost pair in the row or column with u; < us.

(3) If B5 is on the main diagonal, then it will always holds that uy € 7Z, and we proceed by
replacing 35 with (31 and inserting (e, u)) into the column to the right of /3.

(4) If 35 is not on the main diagonal, then replace 55 with (€5, u; ) and insert (€7, us) into either
the row after 35 when uy € Z or the column to the right of 5, when uy € Z'.

Form P{,,(¢) from U by replacing each main diagonal entry (e, ) with ¢ = — by 2/, and all
other entries (¢, 7) by z. Let Q9),(¢) be the shifted tableau with the same shape whose entry
in the box of U; that is not in U;_; is either 4; or z';-, with a primed number occurring precisely
when this box is off the main diagonal and its entry in U; has the form (e, z) with e = —.

BIf u; € Z’ then the previous iteration must have bumped a position in the preceding column, so as our tableaux
U; are weakly increasing (when ignoring signs), 81 must be strictly bounded by some (3 is the current column.



74 Eric Marberg

Unlike earlier algorithms, here successive insertions do not always occur in consecutive rows
and columns; also, the orientation of insertion can switch multiple times from rows to columns
and from columns back to rows. As our notation suggests, Definition 5.17 has a “symplectic”
variant.

Definition 5.18. Given an index-strict primed compatible sequence ¢ written as in (5.1), define
shifted tableaux @ = Uy, Uy, ..., U, = U by repeating Definition 5.17, but modifying step (3)
so that the entry (5 is replaced by (e, u;) while (€1, u) is inserted into the next column. Then:

« Form P3P, (¢) from U by replacing all entries (e, ) by .

* Let Qa'?\,l (¢) be the shifted tableau with the same shape whose entry in the box of U; that
is not in U;_; is either i; or i, with a primed number occurring precisely when the entry
of U, in this box has the form (e, z) with e = —.

Remark 5.19. When the index of ¢ consists of the numbers 1,2, 3, ..., n and the value of ¢ has
no primed entries, both ¢ — (P (), QSu(¢)) and ¢ — (P32 (4), Q3P (¢)) reduce to shifted
mixed insertion [Hai89, Def. 6.7]. Neither extension seems to have appeared in the literature.
We refer to these maps as orthogonal and symplectic mixed insertion. More generally, the two
algorithms restrict to the same map on all index-strict (unprimed) compatible sequences.

Example 5.20. Suppose our index-strict primed compatible sequence is

o_[2 3457
2211 2

Then, writing £z in place of (£, ), the sequence of shifted tableaux U; in Definition 5.17 are

2 2 9
U1:—2,U2:—2+2,U3: ,U4: 7U5: s
1|+ 112 1122
— -
so Py () = B 21 T2 ‘and QR (0) = E ;l 5T7) The tableaux U; in Definition 5.18 are
+2 +2 +2
U1:—2,U2:—2+2,U3: ,U4: 7U5: )
/ / /
—1 |42 —1[+1]-2 11|22

so we have P,f,‘\’,l(@ :‘1 : 2,|2‘anan’,’w(¢):‘2, ST

5.5. Relating shifted mixed insertion to Sagan—Worley insertion

The original forms of shifted mixed insertion and Sagan—Worley insertion take permutations as
inputs. Inverting these inputs exchanges the outputs of the two algorithms by [Hai89, Thm. 6.10].
In this final section we show that this property extends to our primed forms of both insertion
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algorithms, with inversion replaced by a transpose operation ¢ — ¢' on primed compatible
sequences.

The relevant transpose operation is given as follows. Starting from a primed compatible
sequence ¢, first move any primes from the value to the entries directly above them, then in-
terchange the two rows and reorder the columns to be lexicographically increasing, and call the
result ¢ . If

[2 345 7 o [1 12 22
(b_ 2/ 2 1 1/ 2/:| then ¢ _|:4 5/ 2/ 3 7/ ) (54)

for example. In terms of the associated circled matrices, this operation is just the matrix trans-
pose, so it interchanges index-strict and value-strict compatible sequences.
One can observe the identities in the following theorem by comparing Examples 5.2 and 5.20.

Theorem 5.21. If ¢ is index-strict, then it holds that PS,(¢) = ng(¢T)
and Q9(¢) = PS,(67), and it also holds that PR ,(6) = QX (¢") and Q30,(0) = Pab(¢7).

Proof. The desired identities generalize [Hai89, Thm. 6.10] in the following sense. As noted in
Remarks 5.7 and 5.19, on index-strict (unprimed) compatible sequences, orthogonal and sym-
plectic Sagan—Worley insertion restrict to the same map ¢ — (Psw/(¢), Qsw(¢)), while orthog-
onal and symplectic mixed insertion restrict to the same map ¢ — (Pam (), Qum(¢)). [Hai89,
Thm. 6.10] asserts that if the index of ¢ is 1,2,...,n and the value of ¢ is a permutation
of 1,2,...,n, then Pym(¢) = Qsw(¢ ") and Qum (o) = Psw(¢"). This property extends to the
case when ¢ is any (unprimed) compatible sequence that is both index- and value-strict, since
then all of the relevant tableaux are obtained from the permutation case by applying appropriate
order-preserving bijections to their entries.

Let ¢ be a primed compatible sequence written as in (5.1). We will only prove
that Py (6) = Q3 (¢") and QR (¢) = PSy(4"), as the argument for the symplectic case
is similar. We first assume ¢ is both index-strict and value-strict. Then we have

unprime(QPm(4)) = QP (unprime(¢)) = Pay(unprime(¢ ")) = unprime(Pgy (¢ 1)),
unprimegi,e (P () = PSw(unprime(¢)) = Q9 (unprime(¢ ")) = unprime g, (QSw (6 )),

using the preceding paragraph for the middle equalities, and the definitions of our insertion algo-
rithms for the others. Thus, we already know that if we ignore all primes then the corresponding
entries are equal in Q9 (¢) and P8y (¢7), and also in P, (¢) and QS (¢ 7). More specifically,
since the outputs of Q9,, and P&, never have primed entries on the main diagonal, to prove
that Py, (¢) = QQy(¢") and QS (¢) = PSy(¢") we just need to show that each off-diagonal
box is primed in QQ,,(¢) if and only if it is primed in P8, (¢ "), and each diagonal box is primed
in P (¢) if and only if it is primed in QQy (¢ ).

We will demonstrate this by an inductive argument. Let ngS be the compatible sequence

(5.5)

in

formed from ¢ by omitting its last column { } . Then ¢ is still index- and value-strict, so we

n

may assume by induction that Q9 (¢) = PQy(¢7) and PS,(¢) = Q9 (6" ). To deduce that
these identities also hold for ¢, we must understand how the shifted tableaux Py (¢), Qv (4),

PSOW(CbT)a and ng(ng) are constructed from P}-CI)M (gﬁ), SM(CE)’ Psow(ﬁlﬁ)a and ng(qu)_
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We consider the mixed insertion case first. Define U from P8y (q?)) by replacing each main
diagonal entry = by (¢, [x]) where ¢ = + (respectively, ¢ = —) if z is unprimed (respec-
tively, primed), and then replacing each off-diagonal entry = by (e, ) where ¢ = + (respec-
tively, ¢ = —) if the entry in the same position of QSM((ZB) is unprimed (respectively, primed).
Construct U from P$,(¢) analogously. Each box in these tableaux contains an entry of the
form (e, x) and we refer to € as the sign of the box. Finally, let & = (¢, [a,|) where e = + (re-
spectively, e = —) if a,, is unprimed (respectively, primed). Then U is obtained by inserting «
into the first row of U/ according to the procedure in Definition 5.17.

The set of boxes in U (respectively, U) with negative sign is the union of the sets of primed
positions in QQ,,(¢) (respectively, SM(@) and diagonal primed positions in P3,(¢) (respec-
tively, PS,,(¢)). From Definition 5.17, we see that the signs of the boxes in U are the same in U,
except that if inserting o successively bumps a sequence of diagonal boxes A;, Ay, ..., Ay
and eventually terminates at a new box A,, then box A; adopts the sign of o and box A;
adopts the sign of box A; in U for each i € [p — 1]. Notice that boxes A;, As, ..., A, 1 are
the main diagonal positions where unprimediag(PﬁM(qg)) differs from unprime,,(P9,(¢)), and
that A, is the unique box of the second tableau that is not in the first.

We now examine the Sagan—Worley insertion case. For any primed compatible sequence v
form Py (¢) from P8, (1) by adding a prime to each main diagonal box that is primed
in Q9 (¥). The set of primed boxes in PQ,,(¢)) is the union of the sets of primed positions
in P8y (¢) and diagonal primed positions in Q9 (). Let & = Ty, Ty, T3, ..., T, be the se-
quence of shifted tableaux formed by successively inserting the entries in the second row ¢ "
according to the bumping procedure in Definition 5.1, but modified so that we do not remove
primes from new boxes added to the main diagonal in step (3). Then we have T}, = psow(qﬁT).
Define o = TO, i, Ty, ... ,Tn,l = ]Ssc>w<qu) to be the analogous sequence of shifted tableaux
formed by successively inserting the entries in the second row gET by the same modified bumping
procedure.

Suppose by, by, .. ., b, are the entries in the second row of ¢ and b; is the largest entry in
this list. Note that b; is either ¢, or 4,, according to whether a,, is primed or unprimed. Then o7
is formed from ¢ by omitting column j, so T; = T, for0 < i < J and Tj is formed from Tj_l
by adding b; to the end of the first row. As we insert the remaining entries b;1,0;12,...,b,
into 7} to form T}, for j < k < n, the maximal entry b; may be bumped to a new position but
the remaining entries are almost the same as in Tk,l. The only difference is that whenever the
unique maximal entry is bumped from a main diagonal position, its prime is switched with the
entry replacing it.

Thus if the maximal entry is successively bumped from a sequence of main diagonal
boxes By, By, ..., B,—1 and eventually ends up in some box 5,, then box B; in ]5§W(¢T) re-
tains the prime of b; (which is the prime of a,,), while box B, 1 in P, (¢ ") for each i € [g — 1]
retains the prime of whichever number ends up bumping the maximal entry from box ;. We can
identify these primes as well as the boxes B, Bs, . . ., B, by comparing the associated recording
tableaux: the first ¢ — 1 boxes are the main diagonal positions where unprimedmg(QSOW(gﬁT)) dif-
fers from unprime,;,, (QQy (¢ ")), as these positions indicate where a smaller entry would arrive
at a later insertion step if the maximal entry b; were never inserted; the primes of the bumping
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entries are the primes of these positions in Q(S)W@T), or equivalently in pé)w(qu); and B, is
the unique box of Q9 (¢") that is not in Q2 (¢ ). We conclude that the primes of the boxes
in P,(¢") are the same as in ]SSC)W@T), except box B; adopts the prime of a,, and box B,
adopts the prime of box B; in PS,,(¢") for each i € [q — 1].

Our hypothesis that QR (¢) = PSy(¢") and PRy () = Q9w (¢ ") implies U = PSy(¢").
To show that Q9 (¢) = PSy(¢") and Py (¢) = QQy(4 ") it suffices by (5.5) to check that
the negative boxes in U have the same locations as the primed boxes in J—Z’SOW(gzﬁT). Comparing
our descriptions of these boxes above, we see that it is enough to show that p = ¢ and that the
boxes A; = B; coincide for all 4, and this also follows by (5.5).

To finish the proof, let ¢ be any index-strict primed compatible sequence with n columns.
Form 1 from ¢ by taking its transpose, then replacing the index by the consecutive
numbers 1 < 2 < --- < n, and then taking the transpose again. For example, if

o2 345 7 then1/)—12345T—23457
"l 210 2 “lay 23T T3 412 5|

It is clear that PQy (") = PSy(¥7) and Q8 (6) = Q8w (v). Let
F{l'<1<2<2<---<n<n}=>{l'<1<2<2<...}

be the unique map with F (i) = j and F(i') = j' if j is the entry in the index of ¢ in column .
Then ¢ is formed by applying F to the value of 1, and we have F(QQ,(¢v")) = QS (¢ ") and

F(PSu())=PS3u(e). As we already know that Q3 (¢) = PSOWWT) and Py (¢) :QSW(@DT)’
the theorem follows. [

It would interesting to find a way to extend Definitions 5.17 and 5.18 so that Theorem 5.21
holds for all primed compatible sequences, similar to what is done in [SWO01, §3.4] for mixed

insertion.
Recall that we identify a = aja, - - - a,, with the compatible sequence a Z o Z
1 2 P n
Corollary 5.22. The map a — (PS,(a), Q9,(a)) (respectively, a — (PR, (a), Q3% ,(a))) is a
bijection from the set of primed words with all positive letters to the set of pairs (P, Q) of shifted
tableaux of the same shape, in which P is semistandard, () is standard, and Q) (respectively, P)

has no primed entries on the main diagonal.

Proof. Primed words with positive letters correspond to circled matrices with just one nonzero
entry, given by 1 or 1’, in each of the first /(a) rows, and no other nonzero rows. By Theorem 5.8
and Remark 5.9, the maps ¢ — (PSy(¢), Q9 () and ¢ — (P (4), Qab,(4)) are bijections
from the set of transposes of such compatible sequences to the set of pairs of shifted tableaux with
the desired properties, but in reverse order. The result thus holds by Theorems 5.8 and 5.21. [
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