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Abstract. This article studies some new insertion algorithms that associate pairs of shifted
tableaux to finite integer sequences in which certain terms may be primed. When primes
are ignored in the input word these algorithms reduce to known correspondences, namely, a
shifted form of Edelman–Greene insertion, Sagan–Worley insertion, and Haiman’s shifted
mixed insertion. These maps have the property that when the input word varies such that
one output tableau is fixed, the other output tableau ranges over all (semi)standard tableaux
of a given shape with no primed diagonal entries. Our algorithms have the same feature, but
now with primes allowed on the main diagonal. One application of this is to give another
Littlewood–Richardson rule for products of Schur Q-functions. It is hoped that there will
exist set-valued generalizations of our bijections that can be used to understand products of
K-theoretic Schur Q-functions.
Keywords. Shifted tableaux, Edelman–Greene insertion, Sagan–Worley insertion, shifted
mixed insertion, Schur Q-functions
Mathematics Subject Classifications. 05A19, 05E05

1. Introduction

This article studies some new insertion algorithms that generate pairs of shifted tableaux from
finite integer sequences in which certain terms may be primed. The first half of this introduction
contains a quick summary of our main results. The second half discusses some open problems
that motivate our constructions.

1.1. Outline

LetSZ be the group of permutations of the integers with finite support, and set si := (i, i+1)∈SZ
for i ∈ Z. There is a unique associative product ◦ : SZ × SZ → SZ such that σ ◦ si = σ
if σ(i) > σ(i + 1) and σ ◦ si = σsi if σ(i) < σ(i + 1) for each i ∈ Z [Hum90, Thm. 7.1].
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This so-called Demazure product may be defined in terms of the Bruhat order ⩽ on SZ by the
set-wise product identity {σ ∈ SZ : σ ⩽ v}{σ ∈ SZ : σ ⩽ w} = {σ ∈ SZ : σ ⩽ v ◦ w}
for v, w ∈ SZ.

A reduced word for σ ∈ SZ is an integer sequence a1a2 · · · an of shortest possible length
with σ = sa1sa2 · · · san , or equivalently with

σ = sa1 ◦ sa2 ◦ · · · ◦ san .

WriteR(σ) for the set of reduced words for σ ∈ SZ. Analogously, an involution word for z ∈ SZ
is a word a1a2 · · · an of shortest possible length such that

z = san ◦ · · · ◦ sa2 ◦ sa1 ◦ sa2 ◦ · · · ◦ san .

WriteRinv(z) for the set of involution words for z ∈ SZ. One can show that this set is nonempty
if and only if z = z−1 is an involution. The empty word ∅ is both the unique reduced word and
the unique involution word for 1 ∈ SZ.

Involution words have been studied previously in different forms and under various names,
for example, in [CJW16, HMP18, HH19, HZ16, RS90]. We are concerned here with the follow-
ing slight generalization. An index i ∈ [n] is commutation in an involution word a = a1a2 · · · an
if sai commutes with sai−1

◦ · · · ◦ sa2 ◦ sa1 ◦ sa2 ◦ · · · ◦ sai−1
. The index i = 1 is a commutation

whenever the word a is nonempty. A primed involution word for z = z−1 ∈ SZ is any word
formed by adding primes to the entries indexed by a subset of commutations in some a ∈ Rinv(z).
Such a word is a sequence of letters in the primed alphabet {· · · < 1′ < 1 < 2′ < 2 < . . . }.
Write R+

inv(z) for the set of primed involution words for z. As we will explain in Section 2.2,
all involution words for a given z = z−1 ∈ SZ have the same number k of commutations, so we
have |R+

inv(z)| = 2k|Rinv(z)|. For example, if z = 321 ∈ S3 ⊂ SZ, then

R(z) = {121, 212}, Rinv(z) = {12, 21}, and R+
inv(z) = {12, 1

′2, 21, 2′1}.

For any word a, let Incr∞(a) denote the set of sequences (a1, a2, a3, . . . ) where each ai is
a weakly increasing possibly empty word such that a = a1a2a3 · · · . For a set of words A,
let Incr∞(A) =

⊔
a∈A Incr∞(a). Fix an involution z = z−1 ∈ SZ. In Section 3 we describe a

specific map a 7→ (PO
EG(a), Q

O
EG(a)) that takes an element of R+

inv(z) or Incr∞(R+
inv(z)) as its

input and gives a pair of shifted tableaux as its output. Our first main result is the following
theorem about this operation.

Theorem 1.1 (See Theorems 3.11 and 3.15). The map a 7→ (PO
EG(a), Q

O
EG(a)) is a bijection

fromR+
inv(z) (respectively, Incr∞(R+

inv(z))) to the set of pairs (P,Q)whereP is a shifted tableau
with increasing rows and columns, no primed entries on the main diagonal, and row reading
word in R+

inv(z), and Q is a standard (respectively, semistandard) shifted tableau of the same
shape.

In this context, a shifted tableau of a strict partition shape λ = (λ1 > λ2 > · · · > λk > 0) is
a filling of the shifted diagram SDλ := {(i, i+ j − 1) ∈ Z×Z : 1 ⩽ i ⩽ k and 1 ⩽ j ⩽ λi} by
elements of {· · · < 1′ < 1 < 2′ < 2 < . . . }. If we draw such a tableau in French notation, then
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its row reading word is formed by reading each of its rows in the usual way from left to right,
starting with the top row.1 A shifted tableau is semistandard if its entries are positive and its
rows and columns are weakly increasing as indices increase, with no primed number repeated
in a row and no unprimed number repeated in a column. A semistandard shifted tableau with n
boxes is standard if it contains exactly one of i or i′ as an entry for each i = 1, 2, . . . , n.

Example 1.2. We present a simple case of the map a 7→ (PO
EG(a), Q

O
EG(a)) to illustrate its domain

and codomain. If z = 321 ∈ S3 then the elements of Incr∞(R+
inv(z)) have one of 6 forms:

a = (∅,∅,∅, . . . ,∅, 1 ,∅,∅,∅, . . . ,∅, 2,∅,∅,∅, . . . ),
b = (∅,∅,∅, . . . ,∅, 1′,∅,∅,∅, . . . ,∅, 2,∅,∅,∅, . . . ),
c = (∅,∅,∅, . . . ,∅, 2 ,∅,∅,∅, . . . ,∅, 1,∅,∅,∅, . . . ),
d = (∅,∅,∅, . . . ,∅︸ ︷︷ ︸

p−1 terms

, 2′,∅,∅,∅, . . . ,∅︸ ︷︷ ︸
q−p−1 terms

, 1,∅,∅,∅, . . . ),

for some integers 0 < p < q, or

e = (∅,∅,∅, . . . ,∅, 1 2,∅,∅,∅, . . . ),
f = (∅,∅,∅, . . . ,∅︸ ︷︷ ︸

p−1 terms

, 1′2,∅,∅,∅, . . . ),

for some p > 0. We have PO
EG(a) = PO

EG(b) = PO
EG(c) = PO

EG(d) = PO
EG(e) = PO

EG(f) = 1 2

as this is the unique shifted tableau with increasing rows and columns and no primed entries on
the main diagonal whose row reading word is in {12, 1′2, 21, 2′1}. On the other hand, it will
follow from the definitions in Section 3 that

QO
EG(a) = p q , QO

EG(b) = p′ q , QO
EG(c) = p q′ ,

QO
EG(d) = p′ q′ , QO

EG(e) = p p , QO
EG(f) = p′ p .

As 0 < p < q vary, these outputs range over all semistandard shifted tableaux of shape λ = (2).

Restricting a 7→ (PO
EG(a), Q

O
EG(a)) to unprimed words gives the involution Coxeter–Knuth

insertion map in [HMP19, Mar20] and orthogonal Edelman–Greene insertion in [Mar22]. The
latter, in turn, is a special case of the shifted Hecke insertion algorithm from [HKP+17, PP18].
Our correspondence is the “orthogonal” counterpart to a “symplectic” shifted insertion algo-
rithm studied in [Hir23, Mar20, Mar22]; see Remark 2.3.

It is an open problem to find a “primed” generalization of shifted Hecke insertion that extends
our bijection a 7→ (PO

EG(a), Q
O
EG(a)). The image of such a map should consist of pairs of shifted

tableaux (P,Q) of the same shape, in which P has increasing rows and columns with no primed
entries on the main diagonal, and Q is an arbitrary (semistandard) set-valued shifted tableau in
the sense of [IN13, §9.1]. It is less clear what superset ofR+

inv(z) should be the domain of such
1Equivalently, if the tableau has entry Tij in box (i, j), then the row reading word is formed by arranging the

numbers Tij in the order that makes (−i, j) increase lexicographically, as (i, j) varies over all boxes.
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a correspondence. As discussed in the next section, generalizing shifted Hecke insertion in this
way would have interesting applications.

Besides constructing the map a 7→ (PO
EG(a), Q

O
EG(a)), we also seek to understand how a can

vary when PO
EG(a) is held constant, and how such changes affect QO

EG(a). Our second set of
results, sketched below and explained more thoroughly in Sections 3.4 and 3.5, fully solves this
problem.

Theorem 1.3 (See Theorem 3.24 and Corollary 3.25). There are explicit operators ocki on
primed words which act by changing at most three consecutive letters, along with operators di
on standard shifted tableaux which act by changing at most three consecutive entries, such that
if a is a primed involution word then QO

EG(ocki(a)) = di(Q
O
EG(a)), and if a and b are both

primed involution words then PO
EG(a) = PO

EG(b) if and only a = ocki1ocki2 · · · ockik(b) for some
sequence i1, i2, . . . , ik.

Section 3 contains these and our other main results, following some preliminaries in Sec-
tion 2, The proof of Theorem 1.3 is unexpectedly difficult and takes up all of Section 4. We use
Theorems 1.1 and 1.3 to derive some additional results in Section 5. Specifically, in Section 5.1,
we describe a variation of Sagan–Worley insertion from [Sag87, Wor84] whose domain is the set
of all primed compatible sequences. Then in Section 5.4 we investigate two related extensions
of Haiman’s shifted mixed insertion algorithm from [Hai89].

1.2. Motivation

We use the second half of this introduction to explain some of our motivations for considering
the insertion algorithm in Theorems 1.1 and 1.3. These motivations are related to the problem
of finding a combinatorial rule to multiply certain “K-theoretic” symmetric functions.

The Schur P -function of a strict partition λ is the generating function Pλ =
∑

T x
T for all

semistandard shifted tableaux T of shape λ with no primed entries on the main diagonal; here
one sets xT :=

∏
i x

mi
i where mi is the number of entries of T equal to i or i′. The Schur Q-

function Qλ is defined in the same way but without excluding primes from the main diagonal,
or more directly as the scalar multipleQλ = 2ℓ(λ)Pλ. It is well-known that both power series are
symmetric functions that are Schur positive, and that the set of all Pλ’s (respectively, all Qλ’s)
is a Z-basis for a ring with nonnegative integer structure constants [Ste89].

Ikeda and Naruse introducedK-theoretic analoguesGPλ andGQλ for the Schur P -functions
andQ-functions in [IN13]. These power series are also symmetric, and may be defined similarly
as the generating functions for all semistandard set-valued shifted tableaux of a given shape,
where for GPλ primed entries are again prohibited from appearing in diagonal positions [IN13,
§9.1]. The precise definition involves a bookkeeping parameter β, which makes both power
series homogeneous if one sets deg(β) = −1 and deg(xi) = 1. For simplicity, we take β = 1 in
our discussion here. With this convention, one recovers Pλ and Qλ by taking the homogeneous
terms of lowest degree in GPλ and GQλ, respectively.

It was conjectured in [IN13] that the set of all GPλ’s (respectively, all GQλ’s) is a basis for
a ring. For the GPλ’s this follows from the main result in [CTY14]; other proofs also appear
in [HKP+17, §4] and [PY17, §8]. For the GQλ’s, surprisingly, Ikeda and Naruse’s conjecture
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is technically still unresolved, though it is known from [IN13] that each product GQλGQµ is
a possibly infinite linear combination of GQν’s. However, in general, it remains to show that
this expansion has finitely many terms and to give an interpretation of its coefficients.2 These
difficulties have to do with the fact that GQλ is no longer a scalar multiple of GPλ.

There is a bijective approach to proving that the K-theoretic Schur P -functions generate a
ring, which we sketch below. The results in this article are a first step toward extending this
strategy to handle the K-theoretic Schur Q-functions.

For each even integer n > 0, let I fpfn denote the set of fixed-point-free involutions in the
symmetric group Sn := ⟨s1, s2, . . . , sn−1⟩. Each element z ∈ I fpfn has an associated set of
symplectic Hecke words HSp(z) defined in [Mar20, §1.3]. This set is infinite unless z is

1fpf := (1, 2)(3, 4) · · · (n− 1, n).

Each word in HSp(z) is a finite integer sequence that does not begin with an odd letter. The
shortest words inHSp(z) are the minimal length sequences a1a2 · · · ak with

z = sak · · · sa2sa11fpfsi1sa2 · · · sak .

Given z ∈ I fpfn and a strict partition λ, define

KPz :=
∑

ϕ∈Incr∞(HSp(z))

xϕ

where xϕ :=
∏

i x
ℓ(ai)
i for ϕ = (a1, a2, a3, . . . ).

A semistandard weak set-valued shifted tableaux of strict partition shape λ is a filling of SDλ

by elements of {1′ < 1 < 2′ < 2 < . . . }, with multiple elements and repetitions allowed in
each box, but with no primed numbers repeated in a row and no unprimed numbers repeated in
a column. The entries of such a tableau T are required to be weakly increasing in the sense that
the largest entry in one box cannot be greater that the smallest entry in the next box in the same
row or column. The weight of T is again the monomial xT :=

∏
i x

mi
i where mi is the number

of entries of T equal to i or i′. LetKPλ :=
∑

T x
T where the sum is over all semistandard weak

set-valued shifted tableaux of shape λwith no primed entries on the main diagonal. By [BLM21,
Cor. 6.6], we have GPλ = ω(KPλ), where ω is the automorphism of the algebra of symmetric
functions sending each Schur function sλ 7→ sλ⊤ . In turn, each KPz is related to KPλ by the
following theorem:

Theorem 1.4 (See [Mar20, Thm. 4.5]). Let z ∈ I fpfn . There is a bijection ϕ 7→ (PSp(ϕ), QSp(ϕ))
from Incr∞(HSp(z)) to the set of pairs (P,Q) where P is a shifted tableau with increasing rows
and columns whose row reading word is inHSp(z), andQ is a weak set-valued shifted tableau of
the same shape with no primed entries on the main diagonal. Moreover, one has xϕ = xQSp(ϕ).

This bijection is called symplectic Hecke insertion in [Mar20]. If a = a1a2 · · · ak ∈ HSp(z)
then we set PSp(a) = PSp(ϕ) and QSp(a) = QSp(ϕ) for ϕ = (a1, a2, . . . , ak,∅,∅, . . . ). The

2There is at least a Pieri rule to expand GQλGQµ into GQν’s when µ = (p) has a single part [BR12, Cor. 5.6].
There is also a formula for the expansion of GQλGQµ for any strict λ, µ into monomials [MGP20, Cor. 7.8].
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value of PSp(ϕ) depends only on the underlying word, but not on its division into weakly in-
creasing factors. All letters in a symplectic Hecke word for z ∈ I fpfn are in {1, 2, . . . , n− 1}, so
there are only finitely many shifted tableaux with increasing rows and columns that can have row
reading words inHSp(z). It follows that KPz is the finite sum

∑
T∈{PSp(a):a∈HSp(z)}KPshape(T ).

Assume y ∈ I fpfm and z ∈ I fpfn for even integers m,n ⩾ 0. Let y × z ∈ I fpfm+n be the
permutation mapping i 7→ y(i) for 1 ⩽ i ⩽ m and i + m 7→ z(i) + m for 1 ⩽ i ⩽ n.
Next, for ϕ = (a1, a2, . . . ) ∈ Incr∞(HSp(y)) and ψ = (b1, b2, . . . ) ∈ Incr∞(HSp(z)), let
ϕ⊕ ψ = (a1c1, a2c2, . . . ) where ci is formed by adding m to each letter of bi.

It is clear from the results about symplectic Hecke words in [Mar20, §1.3] that
(ϕ, ψ) 7→ ϕ⊕ ψ is a bijection Incr∞(HSp(y)) × Incr∞(HSp(z))

∼−→ Incr∞(HSp(y × z)), so
KPyKPz = KPy×z. In turn, if the largest part of λ is less than n−1, then there exists zfpfλ ∈ I fpfn

(with an explicit formula) such that KPλ = KPzfpfλ
[MP21, Thm. 4.17]. As ω is an algebra

automorphism, we have

KPλKPµ =
∑
ν

eνλµKPν and GPλGPµ =
∑
ν

eνλµGPν (1.1)

where eνλµ is the number of tableaux in {PSp(a) : a ∈ HSp(z
fpf
λ × zfpfµ )} of shape ν.3

Here is how one could try to adapt this argument to derive an analogous formula for the
coefficients expanding GQλGQµ into GQ-functions. The appropriate analogue of KPλ is the
generating function KQλ :=

∑
T x

T for all weak set-valued shifted tableaux T of shape λ, now
with primed entries allowed on the main diagonal. We have GQλ = ω(KQλ) by [BLM21,
Cor. 6.6].

There is a natural candidate for the Q-form of KPz. When n is even, the symplectic
group Spn(C) acts on the typeAn−1 flag variety Fln with finitely many orbits indexed by I fpfn . The
closures of these orbits have canonical representatives in the connective K-theory ring of Fln
satisfying a certain stability property [WY17]. These representatives are polynomials

GSp
z ∈ Z[β][x1, x2, . . . ],

and their “stable limits” give certain symmetric functionsGP Sp
z that satisfyKPz = ω(GP Sp

z |β=1)
(compare [MP20, Cor. 4.6] with the results in [Mar20, §5]).

For any positive integer n, the orthogonal group On(C) likewise acts on Fln with finitely
many orbits, now indexed by In := {z ∈ Sn : z = z−1}. The closures of these orbits again
have canonical representatives in the connective K-theory ring of Fln satisfying a certain sta-
bility property [MP20]. These are inhomogeneous polynomials GO

z ∈ Z[β][x1, x2, . . . ] indexed
by z ∈ In. Mimicking the properties of KPz, one would like to define the “stable limit”

GQO
z := lim

m→∞
GO

1m×z

for z ∈ In, where 1m is the identity permutation in Sm, and then set

KQz := ω(GQO
z |β=1).

3This becomes a Littlewood–Richardson rule for the symmetric functions GP (β)
λ defined in [IN13], which in-

volve a formal parameter β, via the identity GP
(β)
λ = β−|λ|GPλ(βx1, βx2, βx3, . . . ).
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These definitions would be appropriate because if z is vexillary, that is, 2143-avoiding, then the
limit giving GQO

z converges, the resulting power series KQz is equal to KQλ for a certain strict
partition λ, and any KQλ can be attained in this way [MP20, Thm. 4.11]. Some difficulties
remain, however:

(a) No proof is yet known that lim
m→∞

GO
1m×z converges if z is not vexillary [MP20, Prob. 5.3].

(b) There should exist a set of orthogonal Hecke words HO(z), analogous to HSp(z), such
that KQz =

∑
ϕ∈Incr∞(HO(z))

xϕ and KQyKQz = KQy×z for all y ∈ Im and z ∈ In. It is
not known how to define this set even when z is vexillary.

(c) If the first two issues can be addressed, then to prove that the GQλ’s generate a ring and
to find a combinatorial interpretation of the GQ-expansion of GQλGQµ, it remains only
to find an appropriate orthogonal Hecke insertion algorithm. This should bijectively map
elements of Incr∞(HO(z)) to pairs (P,Q) of shifted tableaux with the same shape, where
now Q is weak set-valued but with primed entries allowed on the main diagonal.

The results in this paper provide a base case for the last item.
Specifically, HO(z) should be a superset of R+

inv(z) and the definition of orthogonal Hecke
insertion should be an extension of our map a 7→ (PO

EG(a), Q
O
EG(a)). This is because if we

replace the inhomogeneous polynomial GO
1m×z by its terms of lowest degree, then the desired

stable limit does always converge as m→∞ (see [HMP18, §1.5]), so at least the lowest degree
terms of GPO

z and KQz are well-defined. Both of these give the same homogeneous symmetric
function (by [HMP19, Cor. 4.62], sinceω fixes every SchurQ-function), which we denote byQz.

As explained in Section 3.3, it further holds thatQz=
∑

ϕ∈Incr∞(R+
inv(z))

xϕ andQyQz=Qy×z

for all y ∈ Im and z ∈ In. This resolves the “homogeneous” forms of (a) and (b), and our
first main theorem gives a homogeneous version of the correspondence desired in (c). As an
application, this leads to another Littlewood–Richardson rule for the Schur Q-functions (see
Corollary 3.18). One hopes that this rule can be generalized to the GQλ’s in future work.

2. Preliminaries

In this section we review some preliminary facts and background material. Section 2.1 surveys
the basic theory of involution words. Section 2.2 then discusses primed words and primed in-
volution words. In Section 2.3 we set up our conventions for shifted tableaux. Throughout, we
writeZ for the set of all integers. When n ∈ Z is nonnegative, we let [n] := {i ∈ Z : 0 < i ⩽ n}.

2.1. Involution words

We use the term word to mean any finite sequence of integers a = a1a2 · · · an. We write ℓ(a) :=n
for the length of a word. Recall from the introduction thatR(σ) denotes the set of reduced words
for a permutation σ ∈ SZ := ⟨si : i ∈ Z⟩, while Rinv(z) denotes the set of involution words for
an involution z = z−1 ∈ SZ.

Let ≈ be the equivalence relation on words that has aX(X + 1)Xb ≈ a(X + 1)X(X + 1)b
and aXY b ≈ aY Xb for all words a, b and allX, Y ∈ Z with |X−Y | > 1. For each σ ∈ SZ, the
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setR(σ) is an equivalence class under≈, and an arbitrary word belongs toR(σ) for some σ ∈ SZ
if and only if its≈-equivalence class contains no words with equal adjacent letters [BB05, §3.3].
We review a similar result that holds for involution words.

Let IZ := {σ ∈ SZ : σ = σ−1} and In := Sn ∩ IZ when 0 < n ∈ Z. If z ∈ IZ and i ∈ Z
then si ◦ z ◦ si = z when z(i) > z(i + 1), while si ◦ z ◦ si = zsi = siz when i and i + 1
are fixed points of z, and otherwise si ◦ z ◦ si = sizsi. It follows (see [HMP18, Lem. 2.1])
that if z ∈ IZ and a1, a2, . . . , an ∈ Z then the word a1a2 · · · an belongs to Rinv(z) if and only
if z = san ◦ · · · ◦ sa2 ◦ sa1 ◦ sa2 ◦ · · · ◦ san and for each i ∈ [n] it holds that

(sai−1
◦ · · · ◦ sa2 ◦ sa1 ◦ sa2 ◦ · · · ◦ sai−1

)(ai) < (sai−1
◦ · · · ◦ sa2 ◦ sa1 ◦ sa2 ◦ · · · ◦ sai−1

)(1 + ai).

For example, we have 1232 ∈ Rinv(4321) since s1 = 2134, s2 ◦ s1 ◦ s2 = s2s1s2 = 3214,
s3◦s2◦s1◦s2◦s3 = s3s2s1s2s3 = 4231, and s2◦s3◦s2◦s1◦s2◦s3◦s2 = s3s2s1s2s3s2 = 4321.

Lemma 2.1. If z ∈ SZ has z(i) > z(i+ 1) for some i ∈ Z, then some a ∈ Rinv(z) ends in i.

Proof. Let y = zsi = siz if z(i) = i+1 and otherwise let y = sizsi. Then y ∈ IZ and adding i
to any of its involution words gives an involution word z in view of the remarks above.

Define≡ to be the transitive closure of≈ and the relation withXY a ≡ Y Xa for all words a
and all letters X, Y ∈ Z. Hu and Zhang prove the first claim in the following result in [HZ16]:

Proposition 2.2 ([HZ16]). Each set Rinv(z) for z ∈ IZ is an equivalence class under ≡. An
arbitrary word is an involution word for some element of IZ if and only if its ≡-equivalence
class contains no words with equal adjacent letters.

For example,Rinv(3412) = {132 ≡ 312} andRinv(4231) = {123 ≡ 213 ≡ 231 ≡ 321}.

Proof. The first assertion is [HZ16, Thm. 3.1]. The second assertion may be proved from the
first by induction in the following way. Suppose a1a2 · · · an is a word whose ≡-equivalence
class contains no words with equal adjacent letters. Then the subword a1a2 · · · an−1 has the
same property, so by induction it is an involution word for some z ∈ IZ. By the remarks before
Lemma 2.1, to show that a1a2 · · · an is an involution word (necessarily for san ◦z◦san) it suffices
to check that z(an) < z(1 + an). But if this inequality does not hold then z has an involution
word b1b2 · · · bn−1 with bn−1 = an by Lemma 2.1, and by induction a1a2 · · · an−1 ≡ b1b2 · · · bn−1,
so a1a2 · · · an ≡ b1b2 · · · bn−1an, contradicting our hypothesis about the ≡-equivalence class
of a1a2 · · · an.

2.2. Primed words

Let Z′ := Z − 1
2

and given i ∈ Z define i′ := i − 1
2
∈ Z. This convention means

that (i+ 1)′ = i′ + 1 and ⌈i′⌉ = ⌈i⌉ = i for all i ∈ Z, and that

Z ⊔ Z′ = {· · · < 0′ < 0 < 1′ < 1 < 2′ < 2 < · · · } = 1
2
Z.

We refer to elements of Z′ as primed letters, and we view all primed involution words inR+
inv(z)

as finite sequence of elements of 1
2
Z.
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“Removing the prime” from x ∈ Z ⊔ Z′ means to replace x by ⌈x⌉. “Reversing the prime”
on x ∈ Z ⊔ Z′ means to replace x by the unique element of {⌈x⌉ − 1

2
, ⌈x⌉} \ {x}, so that i ∈ Z

becomes i′ ∈ Z′ and vice versa. When working with a pair of numbers x, y ∈ Z ⊔ Z′, we will
refer to the operation that reverses the primes on both numbers if exactly one is unprimed and
leaves them unchanged otherwise as “switching their primes.”

We use the term primed word to mean a finite sequence a = a1a2 · · · an with
letters ai ∈ Z ⊔ Z′. The unprimed form of a is the word unprime(a) := ⌈a1⌉⌈a2⌉ · · · ⌈an⌉
obtained by removing the primes from all letters.

Let z ∈ IZ. In the introduction we defined an index i to be a commutation in an involution
word a1a2 · · · an ∈ Rinv(z) if sai commutes with y := sai−1

◦ · · · ◦ sa2 ◦ sa1 ◦ sa2 ◦ · · · ◦ sai−1
.

Because sai must also be a left and right ascent of y, it follows that i ∈ [n] is commutation
in a1a2 · · · an if and only if ai and 1 + ai are both fixed points of y, in which case (ai, 1 + ai)
is a 2-cycle of sai ◦ y ◦ sai = saiy = ysai . On the other hand, if i is not a commutation
then sai ◦ y ◦ sai = saiysai has the same number of 2-cycles as y. Thus the number of commu-
tations in a1a2 · · · an is the number of 2-cycles of z.

Recall from the introduction that the set of primed involution words R+
inv(z) consists of all

primed words formed by adding primes to letters indexed by commutations in involution words.
Remark 2.3. As explained in [Wor12, §2.2-2.3] or [HM21, §8.1], the set In ⊂ Sn indexes the
orbits of the orthogonal group On(C) acting on the type An−1 flag variety Fln := GLn(C)/B.
In [Bri01], Brion derives a formula for the cohomology classes of the closures of these orbits,
involving a certain directed graph on the set of orbits. The directed paths that arise in Brion’s
cohomology formula (from the orbit indexed by z to the unique dense orbit) are in bijection
with R+

inv(z). This is one motivation for studying these sets. This is also why we will often in-
clude the adjective “orthogonal” with constructions involvingR+

inv(z). There is a parallel “sym-
plectic” story for a different analogue of reduced words corresponding to the orbits of Sp2n(C)
acting on Fl2n (see, e.g., [HMP20, Mar20, MP21, WY17]).

In a few places we will need the following additional properties of commutations
from [Mar23].

Proposition 2.4 ([Mar23, Prop. 8.2]). Let a = a1a2 · · · an ∈ R+
inv(z) for some z ∈ IZ.

(a) Suppose ⌈ai⌉ = ⌈ai+1⌉ ± 1 for i ∈ [n − 1]. Then at most one of ai or ai+1 is primed, so
at most one of the indices i or i+ 1 is a commutation in a, and if i = 1 then ai+1 ∈ Z.

(b) Suppose ⌈ai⌉ = ⌈ai+2⌉ for i ∈ [n− 2]. Then i > 1, ai+1 = ⌈ai⌉± 1 ∈ Z, and at most one
of ai or ai+2 is primed, so at most one of the indices i or i+ 2 is a commutation in a.

Write ≡̂ for the transitive closure of the relation with aXY b ≡̂ aY Xb for all X, Y ∈ Z ⊔ Z′

such that |⌈X⌉−⌈Y ⌉| > 1, as well as with aXY Xb ≡̂ aY XY b and aX ′Y Xb ≡̂ aY XY ′b for un-
primed numbersX, Y ∈ Z such that |X−Y | = 1, and finally withXa ≡̂X ′a andXY a ≡̂Y Xa
for unprimed numbers X, Y ∈ Z. In these relations a and b are arbitrary primed words. For
example, we have

1′232′ ≡̂ 1′3′23 ≡̂ 13′23 ≡̂ 3′123 ≡̂ 3123

≡̂ 1323 ≡̂ 1232 ≡̂ 2132 ≡̂ 2312 ≡̂ 3212 ≡̂ 3121.
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The following extension of Proposition 2.2 is a corollary of more general results in [Mar23].

Proposition 2.5 ([Mar23, Cor. 8.3]). Each set R+
inv(z) for z ∈ IZ is an equivalence class un-

der ≡̂.

2.3. Tableaux

A partition of an integer n ⩾ 0 is a finite sequence of integers λ = (λ1 ⩾ λ2 ⩾ . . . ⩾ λk > 0)
that sum to n. In this event we set ℓ(λ) := k, λi := 0 for i > ℓ(λ), and |λ| :=

∑
i λi = n.

A partition is strict if the parts λi are all distinct. The diagram of a partition λ is the set of
positions Dλ := {(i, j) ∈ Z×Z : 1 ⩽ j ⩽ λi}. The shifted diagram of a strict partition µ is the
set SDµ := {(i, i+ j − 1) : (i, j) ∈ Dµ}.

In this article, a tableau of shape λ means an arbitrary map Dλ → Z and a shifted tableau
of shape µ means an arbitrary map SDµ → Z ⊔ Z′. If T is a (shifted) tableau then we write Tij
for the value assigned to some position (i, j) in its domain. The (main) diagonal of a shifted
tableau is the set of positions (i, j) in its domain with i = j. We often refer to positions (i, j) in
the domain of a tableau as its boxes.

A (shifted) tableau is increasing if its rows and columns are strictly increasing as indices
increase. An increasing (shifted) tableau of shape λ is standard if it contains an entry equal to i
or i′ for each i ∈ [|λ|]. A (shifted) tableau is semistandard if its entries are all positive, its rows
and columns are weakly increasing, no primed entry is repeated in a row, and no unprimed entry
is repeated in a column.4 We draw tableaux in French notation, so that row indices increase from
bottom to top and column indices increase from left to right. If

A =
4

3 3 7

1 1 6 6

, S =
8

3 5 7

1 2 4 6

, B =
8

2′ 7 7

1′ 2′ 4′ 6

, and T =
8′

3 5′ 7

1′ 2′ 4′ 6

, (2.1)

then A is a semistandard tableau and B is a semistandard shifted tableau, while S is a standard
tableau and T is a standard shifted tableau. All four tableaux are of shape λ = (4, 3, 1). We
have A23 = B23 = S23 = 7 while T23 = 5′.

Suppose T is a tableau, or more generally any map from a finite subset of Z × Z to a
totally ordered set. The row reading word of T is the sequence row(T ) formed by reading
the entries of T from left to right, row by row, starting with the top row (in French nota-
tion). Above, we have row(A) = 43371166, row(S) = 83571246, row(B) = 82′771′2′4′6,
and row(T ) = 8′35′71′2′4′6. The column reading word of T is the sequence col(T ) formed
by reading the entries of T from top to bottom, column by column, starting with the first col-
umn. Above, we have col(A) = 43131766, col(S) = 83152746, col(B) = 1′2′2′874′76,
and col(T ) = 1′32′8′5′4′76.

When T is a shifted tableau, we form unprime(T ) by removing all primes from T ’s entries.

Proposition 2.6. Suppose T is a shifted tableau such that row(T ) or col(T ) is a primed involu-
tion word for an element of IZ. Then T is increasing if and only unprime(T ) is increasing.

4Semistandard shifted tableaux are sometimes required to have no primed entries on the main diagonal, or
no primed entries in any boxes. Our conventions, which do not impose either condition, follow references like
[Sag87, Wor84].
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Proof. If unprime(T ) is increasing then T is clearly increasing. Assume that T is increasing
and row(T ) is a primed involution word. Since row(unprime(T )) is an involution word and
therefore reduced, no row of T can contain both x ∈ Z and x′ ∈ Z′, so the rows of unprime(T )
are (strictly) increasing. It remains to show that this property also applies to the columns of T .
Arguing by contradiction, suppose there is a box (i, j) ∈ T such that Tij = x and Ti−1,j = x′

for some x ∈ Z. Assume (i, j) is the first such box in the row reading order, so that the box is
maximally northwest in French notation.

Let l ⩾ 0 be maximal such that (i, j + l) is occupied in T with Ti,j+l ⩽ x + l. Then we
must have Ti−1,j+k = x + k′ and Ti,j+k = x + k for each 0 ⩽ k ⩽ l since T is increasing and
unprime(T ) has increasing rows. If l > 0 then box (i, j + l + 1) is either unoccupied in T or
filled with a number greater than x+ l+1. In this case, we can use ≡̂ to commute Ti,j+l = x+ l
to the right in row(T ) past the remaining letters in row i and then also past the letters in columns
i−1, i, . . . , j+l−2 of row i−1 to obtain a primed involution word with (x+l)(x+l−1)′(x+l)′
as a consecutive subsequence. This is impossible by Proposition 2.4, so we conclude that l = 0.

Having l = 0 means that box (i, j + 1) is either unoccupied in T or filled with a number
greater than x + 1. It therefore follows by similar reasoning that ⌈Ti−1,j−1⌉ = x − 1, as oth-
erwise row(T ) would be equivalent under ≡̂ to a primed involution word with adjacent letters
equal to x and x′, which is impossible. We now reach one of two contradictions. If i = j then
we can use ≡̂ to commute Tij , Ti−1,j−1, and Ti−1,j past all earlier lettters in row(T ) to obtain
a primed involution word starting with TijTi−1,j−1Ti−1,j ∈ {x(x − 1)x′, x(x − 1)′x′}, which
contradicts (b) of Proposition 2.4. If instead i < j, then since we cannot have Ti,j−1 = x′ as the
rows of unprime(T ) are increasing, the inequalities x′ − 1 ⩽ Ti−1,j−1 < Ti,j−1 < Tij = x can
only hold if Ti−1,j−1 = x′ − 1 and T2,j−1 = x − 1, which contradicts the minimality of (i, j).
We conclude that unprime(T ) is increasing.

The argument to show that unprime(T ) is increasing when T is increasing and col(T ) is
a primed involution word is similar to the previous case. One simply “conjugates” all of the
preceding statements, where if T is contained in the square [N − 1]× [N − 1], then conjugation
applies the transformation (i, j) 7→ (N − j,N − i) to the boxes of T and x 7→ 1′ − x to the
entries of T .

In the following lemma, let K∼ denote the transitive closure of the symmetric relation on
primed words that has uACBv K∼ uCABw and uBCAv K∼ uBACv whenever u and v are
primed words and A,B,C ∈ Z ⊔ Z′ are such that ⌈A⌉ < ⌈B⌉ < ⌈C⌉. This is similar to (strict)
Knuth equivalence.

Lemma 2.7. Let T be a shifted tableau. If unprime(T ) is increasing then row(T )
K∼ col(T ).

Consequently, if T is increasing and z∈IZ, then row(T )∈R+
inv(z) if and only if col(T )∈R+

inv(z),
and in this case row(T ) K∼ col(T ).

Proof. Let w be the last column of T read in reverse order. Construct U from T by removing
the last column. Then by induction col(T ) = col(U)w

K∼ row(U)w and it remains to check
that row(U)w K∼ row(T ). For this, observe that if T has j columns and i := ℓ(w), then starting
from row(T ), we can use K∼ first to commute w1 = Tij to the right past the entries in columns
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i− 1, i, . . . , j− 1 of row i− 1, then to commute w2 = Ti−1,j followed by w1 to the right past the
entries in columns i− 2, i− 1, . . . , j− 1 of row i− 2, and so forth, until we are left with row(U)
followed by w.

If T is increasing and row(T ) or col(T ) is inR+
inv(z), then unprime(T ) is increasing by Propo-

sition 2.6, so row(T ) K∼ col(T ) and both reading words are inR+
inv(z) as u K∼ v implies u ≡̂ v.

3. Shifted Edelman–Greene insertion

This section contains our main results, which are organized around a shifted version of Edelman–
Greene insertion [EG87] that sends primed involution words to pairs of shifted tableaux. Sec-
tion 3.1 gives the precise definition of this insertion algorithm, along with some examples and
basic properties. Section 3.2 then describes its “semistandard” extension. Section 3.3 explains
an application of the semistandard algorithm to formulating a Littlewood–Richardson rule for
Schur Q-functions. Sections 3.4 and 3.5 explore some related operators on primed involution
words and standard shifted tableaux. Section 3.6, finally, examines how the primes in a primed
involution word may be used to label the 2-cycles of the corresponding involution.

3.1. Definitions for the standard case

This section give the definition of orthogonal Edelman–Greene insertion and a few of its ba-
sic properties. Suppose T is an increasing shifted tableau with no primed entries on the main
diagonal and a number u ∈ Z ⊔ Z′ such that row(T )u ∈ R+

inv(z) for some z ∈ IZ. We
first explain how to insert u into T to obtain another shifted tableau T O←− u that is increas-
ing with no primed entries on the main diagonal. Later, we will see that this new tableau also
has row(T O←− u) ∈ R+

inv(z).

Definition 3.1. Suppose T is an increasing shifted tableau with no primed entries on the main
diagonal and u ∈ Z ⊔ Z′ is such that row(T )u is a primed involution word for some element
of IZ.5 We construct another shifted tableau T O←− u by the following iterative process:

(1) On the ith iteration, an entry w ∈ Z ⊔ Z′ is inserted into row or column i, which we
refer to as the current segment. The entries in the current segment will always be strictly
increasing, even after removing all primes. The process begins with u inserted into the
first row of T .

(2) Suppose ⌈w⌉ is less than some entry in the current segment. Let m ⩽ M denote the
smallest entries in the current segment with ⌈w⌉ ⩽ ⌈m⌉ and ⌈w⌉ < ⌈M⌉. If m < M ,
then M will be unprimed and in the box directly after m, and ⌈w⌉ = ⌈m⌉ =M − 1.6

(a) If m =M is off the main diagonal then w replaces m and we insert m into the next
row (respectively, column) if the current segment is a row (respectively, column).

5As row(T ) is also a primed involution word in this case, Proposition 2.6 implies that unprime(T ) is increasing.
6This claim only holds since we assume that row(T )u is a primed involution word; see Remark 3.7.
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(b) If m = M is on the main diagonal then m will be unprimed. In this case, we re-
place m by ⌈w⌉ and insert m+ 1 if w ∈ Z (respectively, m′ + 1 if w ∈ Z′) into the
next column.

(c) If m and M are distinct, then we switch the primes on these entries, and continue
by inserting w + 1 into either the next column (if m is on the main diagonal or the
current segment is a column) or the next row (otherwise).

(3) If ⌈w⌉ is not less than some entry in the current segment, then we placew in the segment’s
first empty box (x, y) with x ⩽ y.7 If x = y and w is primed, then we change the box’s
entry from w to ⌈w⌉ and say that the insertion process ends in column insertion. We also
say the process ends in column insertion if x < y and the current segment is a column.
Otherwise, the process ends in row insertion. Define T O←− u to be the result of this step.

If this process lasts for N iterations, then we define (xi, yi) and (x̃i, ỹi) for i ∈ [N − 1] to be the
respective positions of m and M in step (2) on iteration i, and let (xN , yN) = (x̃N , ỹN) be the
new box (x, y) added to the tableau in step (3). We call the sequences

path⩽(T, u) := ((xi, yi) : i = 1, 2, . . . , N) and path<(T, u) := ((x̃i, ỹi) : i = 1, 2, . . . , N)

the weak and strict bumping paths that result from inserting u into T .

Example 3.2. The following examples illustrate most of the cases occurring in Definition 3.1.

(a) If T = 1 3 4 and u = 2 then T O←− u is computed as

1 3 4 ← 2
;

← 3

1 2 4
;

3

1 2 4
= T

O←− u.

Here, the insertion process ends in row insertion and the bumping paths are

path⩽(T, u) = path<(T, u) = ((1, 2), (2, 2)) .

(b) If T = 1 3′ 4 and u = 2 then T O←− u is computed as

1 3′ 4 ← 2
;

← 3′

1 2 4
;

3

1 2 4
= T

O←− u.

Here, the insertion process ends in column insertion and the bumping paths are

path⩽(T, u) = path<(T, u) = ((1, 2), (2, 2)) .

7It is not obvious, but such a box will always exists and adding it to T will give the diagram of a shifted partition.
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(c) If T =
4 5

1 3 4′
and u = 2 then T O←− u is computed as

4 5

1 3 4′ ← 2

; 4 5 ← 3

1 2 4′
;

4
↓

3 5

1 2 4′
;

5
↓

3 5′

1 2 4

;
3 5′

1 2 4 5
= T

O←− u.

In this case the insertion process ends in column insertion and the bumping paths are

path⩽(T, u) = ((1, 2), (2, 2), (1, 3), (1, 4)) ,

path<(T, u) = ((1, 2), (2, 2), (2, 3), (1, 4)) .

(d) If T =
5 6

1 3′ 4
and u = 2 then T O←− u is computed as

5 6

1 3′ 4 ← 2

; 5 6 ← 3′

1 2 4

;

5′

↓
3 6

1 2 4

;

6
↓

3 5′

1 2 4

;
3 5′

1 2 4 6
= T

O←− u.

In this case the insertion process ends in column insertion and the bumping paths are

path⩽(T, u) = path<(T, u) = ((1, 2), (2, 2), (2, 3), (1, 4)) .

Proposition 3.21 will show that if T and u are as in Definition 3.1 then row(T
O←− u) is also

a primed involution word. We can therefore iterate the above insertion process as follows:

Definition 3.3. Given a primed involution word a = a1a2 · · · an for some element of IZ,
let PO

EG(a) be the shifted tableau ∅ O←− a1
O←− a2

O←− · · · O←− an and let QO
EG(a) be the stan-

dard shifted tableau with the same shape as PO
EG(a) that has i (respectively, i′) in the box added

by inserting ai into PO
EG(a1a2 · · · ai−1) when this ends in row insertion (respectively, column

insertion).

We refer to a 7→ (PO
EG(a), Q

O
EG(a)) as orthogonal Edelman–Greene insertion. There is a

similar correspondence called symplectic Edelman–Greene insertion, with a different domain
containing only unprimed words, which is denoted a 7→ (P Sp

EG(a), Q
Sp
EG(a)) in [Mar22, Def. 3.23].

For more about the connection between these maps and the orthogonal and symplectic groups,
see Remark 2.3.
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Example 3.4. The words a = 134524′, b = 5′431′4′2, and c = 41′354′2 all have

PO
EG(a) = PO

EG(b) = PO
EG(c) =

3 5′

1 2 4 5

while QO
EG(a) =

5 6

1 2 3 4
, QO

EG(b) =
5′ 6′

1′ 2′ 3′ 4′
, and QO

EG(c) =
3′ 5

1 2′ 4 6′
.

Remark 3.5. The Edelman–Greene correspondence a 7→ (PEG(a), QEG(a)) from [EG87], send-
ing reduced words a ∈ R(σ) for σ ∈ Sn to pairs of unshifted tableaux of the same shape, may
be embedded in Definition 3.3 as follows. Fix σ ∈ Sn and choose an involution word b for

z := (0, n)(−1, n− 1)(−2, n− 2) · · · (−n+ 1, 1) ∈ IZ.

Then a 7→ ba is an injective map R(σ) ↪→ Rinv(σ
−1zσ), and when we carry out the bumping

process to compute PO
EG(ba), the first ℓ(b) insertions will result in a shifted tableau of

shape (n, . . . , 3, 2, 1) whose last column is 0, 1, 2, . . . , n − 1. This part of the insertion
tableau PO

EG(ba) will remain fixed during the remaining ℓ(a) insertions, which will only involve
row bumping operations that follow the rules of the original Edelman–Greene correspondence.
We recover PEG(a) from PO

EG(ba) by omitting the first n columns, while QEG(a) is given by
omitting the first n columns of QO

EG(ba) and subtracting ℓ(b) from the remaining entries, which
are all unprimed numbers.

Example 3.6. Whenn = 4we can take b = −3,−1,−2, 1, 0,−1, 3, 2, 1, 0. Then for the reduced
word a = 23121 ∈ R(3412), we have

PO
EG(ba) =

3

1 2 3

−1 0 1 2 3

−3−2−1 0 1 2

and QO
EG(ba) =

10

6 9 15

3 5 8 13 14

1 2 4 7 11 12

compared to PEG(a) =
3
2 3
1 2

and QEG(a) =
5
3 4
1 2

.

As noted in the introduction, a 7→ (PO
EG(a), Q

O
EG(a)) restricted to unprimed involution words

reduces to a map previously studied in [HMP19, Mar20, Mar22]. Our inclusion of primes may
seem like a minor generalization. However, there seems to be no simple way to derive our main
results as corollaries of what is known about the unprimed form of orthogonal Edelman–Greene
insertion.
Remark 3.7. Suppose T is an increasing shifted tableau with no primed entries on the main diag-
onal and u∈Z⊔Z′ is such that row(T )u∈R+

inv(z) for some z ∈ IZ. Since a 7→(PO
EG(a), Q

O
EG(a))

restricted to unprimed words coincides with [Mar22, Def. 3.20], [Mar22, Rem. 3.25] implies
the following properties concerning the process to construct T O←− u, stated in the notation of
Definition 3.1:
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(a) Denote the intermediate tableau created by the ith iteration in Definition 3.1 by Ti, so
that T = T0 and T

O←− u = TN if N > 0 is the length of the two bumping paths.
Then each Ti is a shifted tableau with no primes on the main diagonal, and unprime(Ti) is
increasing.

(b) Ifm andM in step (2) on iteration i are distinct, then the boxes (xi, yi) and (x̃i, ỹi) contain-
ing these entries are adjacent, and the numberw being inserted has ⌈w⌉ = ⌈m⌉ = ⌈M⌉−1.

(c) Suppose m and M in step (2) on iteration i are distinct and m is on the main diagonal.
Then m = Tii is unprimed and M = Ti,i+1, and we have Ti+1,i+1 = ⌈M⌉+ 1 = m+ 2.

There is one final property that will be demonstrated in the proof of Proposition 3.21:

(d) If the ith iteration has a number w being inserted into row (respectively, column) i, then
placing w between rows (respectively, columns) i − 1 and i in the row (respectively,
column) reading word of Ti−1 gives another primed involution word in R+

inv(z)
by (3.3) and (3.4). In view of this observation, if the numbers m and M in step (2) on
iteration i are distinct, then since we already know that unprime(Ti−1) is increasing
and ⌈w⌉ = ⌈m⌉ = ⌈M⌉−1, it follows from Proposition 2.4 thatM must be unprimed and
that w can only be primed ifm is unprimed and not on the main diagonal (as ifm is on the
diagonal then its index in the reading word mentioned above is already a commutation).

We mention some other properties of PO
EG(a) and QO

EG(a) that readily follow from the defi-
nitions. Given a shifted tableau T , form unprimediag(T ) from T by removing all main diagonal
primes.

Proposition 3.8. If a is a primed involution word then

PO
EG(unprime(a)) = unprime(PO

EG(a)) and QO
EG(unprime(a)) = unprimediag(Q

O
EG(a)).

Proof. This follows from Definitions 3.1 and 3.3: if all primes are removed from a then the inser-
tion process to compute PO

EG(a) is unchanged except that no entries added to PO
EG(a) are primed,

and all insertions that contribute new boxes to the main diagonal must end in row insertion.

The first letter in a nonempty involution word is always a commutation. Toggling the prime
on this letter also has a predictable effect on the output of orthogonal Edelman–Greene insertion.
If i ∈ Z then PO

EG(i) = PO
EG(i

′) = i while QO
EG(i) = 1 and QO

EG(i
′) = 1′ . More generally:

Proposition 3.9. If a is a nonempty primed involution word and b is formed from a by toggling
the prime on its first letter, then PO

EG(a) = PO
EG(b) andQO

EG(b) is formed fromQO
EG(a) by toggling

the prime on the entry in box (1, 1).

Proof. This again follows directly from Definition 3.1.

We can also say what happens to PO
EG(a) and QO

EG(a) when a1 and a2 are interchanged.

Proposition 3.10. If a is a primed involution word with at least two letters and b is formed from a
by interchanging its first two letters and then switching their primes, then PO

EG(a) = PO
EG(b)

and QO
EG(b) is formed from QO

EG(a) by toggling the prime on the entry in box (1, 2).
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This means that if a = 1′3′ · · · then b = 3′1′ · · · , while if a = 13′ · · · then b = 31′ · · · .

Proof. This also follows directly from Definition 3.1.

Our first nontrivial result about orthogonal Edelman–Greene insertion is the following.

Theorem 3.11. Let z ∈ IZ. Then a 7→ (PO
EG(a), Q

O
EG(a)) is a bijection from the set of primed in-

volution wordsR+
inv(z) to the set of pairs (P,Q) of shifted tableaux of the same shape, in whichP

is increasing with no primes on the main diagonal, Q is standard, and row(P ) ∈ R+
inv(z).

The theorem remains true when we replace R+
inv(z) by Rinv(z) if we further require Q

to have no primes on the main diagonal [HMP19, Thm. 5.19]. It is routine, following
[Mar20, §3.3] or [PP18, §5.3], to describe a reverse insertion algorithm that gives the
inverse (PO

EG(a), Q
O
EG(a)) 7→ a. However, we will end up deriving Theorem 3.11 by another

method in Section 4.7. For the rest of this section, we will assume that Theorem 3.11 is given,
and then use this to develop a few other results.

3.2. Extension to the semistandard case

In this section, we discuss a generalization of Definition 3.3 that outputs a pair of shifted
tableaux (P,Q) in which Q is semistandard rather than standard.

A positive integer i is a descent of a standard shifted tableau T if either (a) i and i+ 1 both
appear in T with i + 1 in a row strictly after i, (b) i′ and i′ + 1 both appear in T with i′ + 1
in a column strictly after i′, or (c) i and i′ + 1 both appear in T . Let Des(T ) denote the set of
descents of T . If T is as in (2.1), then Des(T ) = {1, 3, 6}.

Lemma 3.12. If T is a standard shifted tableau then Des(T ) = Des(unprimediag(T )).

Proof. Form Hi by reading the primed entries up column i of T then the unprimed entries
across row i. For T in (2.1), this gives H3 = 4′5′, H2 = 2′37, and H1 = 1′6. Then i ∈ Des(T )
if and only if i + 1 precedes i in unprime(· · ·H3H2H1), which is unchanged for T replaced
by unprimediag(T ).

If a = a1a2 · · · an is a primed word then let Des(a) := {i ∈ [n− 1] : ai > ai+1}.

Proposition 3.13. Let a ∈ R+
inv(z) for some z ∈ IZ. Then Des(a) = Des(QO

EG(a)).

Proof. We have Des(a) = Des(unprime(a)) since the word unprime(a) ∈ Rinv(z) has no equal
adjacent letters. Next, [HKP+17, Prop. 2.24] asserts that

Des(unprime(a)) = Des(QO
EG(unprime(a))).

Finally, we have QO
EG(unprime(a)) = unprimediag(Q

O
EG(a)) by Proposition 3.8 and

Des(unprimediag(T )) = Des(T )

for all standard shifted tableaux T by Lemma 3.12.
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When a is a word in a totally ordered alphabet andN is a nonnegative integer, we let IncrN(a)
denote the set of N -tuples of weakly increasing, possibly empty subwords (a1, a2, · · · , aN)
such that a = a1a2 · · · aN . Recall from the introduction that Incr∞(a) is the set of infinite se-
quences (a1, a2, · · · ) of weakly increasing words with a = a1a2 · · · ; here, all but finitely many ai
must be empty. If A is a set of words and N ∈ {0, 1, 2, . . . } ⊔ {∞} then we let

IncrN(A) =
⊔
a∈A

IncrN(a).

Definition 3.14. Given ϕ = (a1, a2, · · · ) ∈ IncrN(R+
inv(z)) for z ∈ IZ, let

PO
EG(ϕ) := PO

EG(a
1a2 · · · )

and form QO
EG(ϕ) from QO

EG(a
1a2 · · · ) by replacing each entry j ∈ Z (respectively, j′ ∈ Z′) by i

(respectively, i′), where i > 0 is minimal with j ⩽ ℓ(a1) + ℓ(a2) + · · ·+ ℓ(ai).

For example, if ϕ = (∅, 4, 1′3,∅, 5,∅, 4′, 2) ∈ Incr8(41
′354′2) then

PO
EG(ϕ) =

3 5′

1 2 4 5
and QO

EG(ϕ) =
3′ 7

2 3′ 5 8′
.

If (a1, a2, · · · ) ∈ IncrN(R+
inv(z)) then unprime(ai) is strictly increasing as a1a2 · · · ∈ R+

inv(z).

Theorem 3.15. Let z ∈ IZ. Then ϕ 7→ (PO
EG(ϕ), Q

O
EG(ϕ)) is a bijection from Incr∞(R+

inv(z)) to
the set of pairs (P,Q) of shifted tableaux of the same shape in which P is increasing with no
primes on the main diagonal, Q is semistandard, and row(P ) ∈ R+

inv(z).

Proof. Let T be a standard shifted tableau whose shape is a strict partition of m and let α =
(α1, α2, . . . ) be a weak composition ofm such that I(α) := {α1+α2+ · · ·+αi : i ⩾ 1} \ {m}
contains Des(T ).

We claim that such pairs (T, α) are in bijection with semistandard shifted tableaux via the
map that replaces j (respectively, j′) in T by i (respectively, i′) where i > 0 is minimal
with j ⩽ α1+α2+ · · ·+αi. The shifted tableau U obtained from (T, α) in this way is semistan-
dard because i /∈ Des(T ) implies that i and i+ 1 do not appear in the same column of T , that i′
and i′ + 1 do not appear in the same row of T , and that T does not contain both i and i′ + 1.
In the reverse direction, one can recover α from U as the sequence whose ith entry is the num-
ber of boxes containing i or i′, and one can recover T from U by the standardization process
that replaces each vertical strip of boxes containing i′ by consecutive primed numbers and each
horizontal strip of boxes containing i by consecutive unprimed numbers.

By Proposition 3.13, if ϕ = (a1, a2, . . . ) ∈ Incr∞(R+
inv(z)), then QO

EG(ϕ) is obtained by
applying this bijection to (T, α) for T = QO

EG(a
1a2 · · · an) and α = (ℓ(a1), ℓ(a2), . . . ). Given

this observation, we deduce that ϕ 7→ (PO
EG(ϕ), Q

O
EG(ϕ)) is injective and surjective from Theo-

rem 3.11.
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3.3. Application to multiplying Schur Q-functions

In this section, we explain an application of Theorem 3.15 mentioned in the introduction. Let xi
for i ∈ Z be commuting indeterminates. Given a shifted tableau T , let xT :=

∏
i∈Z x

ci
i where ci

is the number of entries in T equal to i or i′. The Schur Q-function of a strict partition λ is
the formal power series Qλ :=

∑
T x

T ∈ Z[[x1, x2, . . . ]] where T ranges over all semistandard
shifted tableaux of shape λ. The SchurQ-functions are symmetric in the xi variables and linearly
independent [Ste89]. We present a new proof that they span a ring with nonnegative integer
structure coefficients.

For z ∈ IZ, let Qz :=
∑

ϕ∈Incr∞(R+
inv(z))

xϕ where xϕ := x
ℓ(a1)
1 x

ℓ(a2)
2 · · · if ϕ = (a1, a2, . . . ).

These power series are denoted Ĝz in [HMP19, §4.5]. The following is immediate from Theo-
rem 3.15.

Corollary 3.16 ([HMP19, Cor. 4.62]). We have Qz =
∑

T∈{PO
EG(a):a∈R

+
inv(z)}

Qshape(T ).

Suppose λ is a strict partition and Tλ is the increasing shifted tableau of shape λwhose entry
in box (i, j) is i+ j − 1. There exists a unique element z ∈ IZ (called the dominant involution
of shape λ) whose involution Rothe diagram

D̂(z) := {(i, j) ∈ Z× Z : z(i) > j ⩽ i < z(j)}

coincides with the transpose of SDλ [HMP22, Prop. 4.16]. If we denote this element by zλ ∈ IZ,
then row(Tλ) and col(Tλ) are both in Rinv(zλ) by [HMP22, Thm. 3.9 and Prop. 4.15].8 For
example, if λ = (4, 2, 1) then

5

3 4

1 2 3 4

and zλ = (s4s3s4ŝ5s2ŝ3ŝ1)(s1s3s2s5s4s3s4) = (1, 5)(2, 4)(3, 6)

where ŝi indicates the omission of that factor.
We need one more definition. Given any z ∈ IZ, let ci be the number of positions in row i

of D̂(z). Then the involution shape of z [HMP19, Def. 4.38] is the transpose of the parti-
tion that sorts the sequence (. . . , c1, c2, c3, . . . ). When z = z(4,2,1) the nonzero values of ci
are (c1, c2, c3, c4) = (1, 2, 3, 1) so the involution shape is (3, 2, 1, 1)⊤ = (4, 2, 1). This coinci-
dence is a general phenomenon.

Lemma 3.17. Suppose λ is a strict partition. Then the following properties hold:

(a) The involution shape of zλ is λ.

(b) It holds that Qzλ = Qλ.

(c) We have PO
EG(a) = Tλ for all a ∈ R+

inv(zλ).
8In the terminology of [HMP22], col(Tλ) is the standard reading word of the unique involution pipe dream

for zλ described in [HMP22, Prop. 4.15], while row(Tλ) is an alternate reading word in the sense of [HMP22,
Def. 3.4].
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Proof. For part (a), observe that since D̂(zλ) is the transpose of SDλ, the relevant value of ci is
just height of column i of SDλ. We claim that these numbers are a permutation of the heights of
the columns of the unshifted diagram Dλ. As the latters heights are the parts of λ⊤, our claim
implies that (. . . , c1, c2, c3, . . . ) sorts to λ⊤ so the involution shape of zλ is λ as desired.

To justify our claim, note that SDλ can be formed by rearranging the columns of Dλ in the
following way. Since λ is strict,Dλ has a column of height k for each k = 1, 2, . . . , ℓ(λ). Remove
these columns from Dλ and then place them in ascending order on the left side of what remains.
The result is SDλ.

One can compute that PO
EG(col(Tλ)) = Tλ directly from the definition of PO

EG. Given this
observation and Corollary 3.16, to prove parts (b) and (c) it suffices to show that Qzλ = Qλ.
We do this by appealing to results in [HMP19]. The permutation zλ is 132-avoiding by [Man01,
Ex. 2.2.2] and so also 2143-avoiding (i.e., vexillary). By [HMP19, Thm. 4.67], the symmetric
function Qy is equal to a single Schur Q-function whenever y ∈ IZ is vexillary, and so in
particular when y = zλ.

Finally, [HMP19, Cor 4.42] identifies the top term in the Schur Q-expansion of Qy for any
involution y: this is precisely the Schur Q-function indexed by the involution shape of y. Since
this term is the only term when y = zλ, we conclude from part (a) thatQzλ = Qλ as needed.

As in the introduction, given elements v ∈ Sm and w ∈ Sn, let v × w ∈ Sm+n be the
permutation mapping i 7→ v(i) for i ∈ [m] and m+ j 7→ m+ w(j) for j ∈ [n].

Corollary 3.18. If λ and µ are strict partitions then QλQµ =
∑

ν g
ν
λµQν where the sum is over

strict partitions ν and gνλµ is the number of elements in
{
PO
EG(a) : a ∈ R+

inv(zλ × zµ)
}

of shape ν.

Proof. Let y ∈ IZ∩Sm and z ∈ IZ∩Sn. It follows from Proposition 2.5 that Incr∞(R+
inv(y×z))

is in bijection with the product Incr∞(R+
inv(y))× Incr∞(R+

inv(z)) via the map

((a1, a2, . . . ), (b1, b2, . . . )) 7→ (a1c1, a2c2, . . . )

where ci is formed by adding m to each letter of bi. This implies that QyQz = Qy×z, and so the
result follows from Corollary 3.16.

3.4. Orthogonal Coxeter–Knuth equivalence

An essential property of orthogonal Edelman–Greene insertion is that the fibers ofPO
EG are equiv-

alence classes for a simple relation on primed words, which we define in this section. Let ock
denote the operator that acts on 1- and 2-letter primed words by interchanging

X ↔ X ′, XY ↔ Y X, XY ′ ↔ Y X ′, X ′Y ↔ Y ′X, and X ′Y ′ ↔ Y ′X ′ (3.1)

for allX, Y ∈ Z. In addition, let ock act on 3-letter primed words as the involution interchanging

XYX ↔ Y XY, X ′Y X ↔ Y XY ′, ACB ↔ CAB, and BCA↔ BAC (3.2)

for all X, Y ∈ Z with |X − Y | = 1 and all A,B,C ∈ Z ⊔ Z′ with ⌈A⌉ < ⌈B⌉ < ⌈C⌉,
while fixing any 3-letter words not of these forms. Given a primed word a = a1a2a3 · · · an
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and i ∈ [n− 2], we define

ock−1(a) := ock(a1)a2a3 · · · an,
ock0(a) := ock(a1a2)a3 · · · an,
ocki(a) := a1 · · · ai−1ock(aiai+1ai+2)ai+3 · · · an,

while setting ocki(a) := a for i ∈ Z with i+ 2 /∈ [ℓ(a)]. For example, if a = 45′7121′ then

ock−1(a) = 4′5′7121′, ock0(a) = 54′7121′, ock1(a) = 45′7121′,
ock2(a) = 45′1721′, ock3(a) = 45′1721′, ock4(a) = 45′72′12.

The abbreviation “ock” is for orthogonal Coxeter–Knuth operator.

Lemma 3.19. If i ⩾ 0 and a is a primed involution word then

unprime(ocki(a)) = ocki(unprime(a)).

Proof. This is clear unless i ∈ [ℓ(a) − 2] and ⌈ai⌉ = ⌈ai+2⌉, but if this happens then Proposi-
tion 2.4 tells us that ai+1 ∈ Z and at most one of ai or ai+2 is primed, so the result still holds.

The transitive closure of the relation on unprimed words with a ∼ ocki(a) for all i > 0 is of-
ten called Coxeter–Knuth equivalence [EG87, Def. 6.19]. We define orthogonal Coxeter–Knuth
equivalence O∼ to be the transitive closure of the relation on primed words with a O∼ ocki(a) for
all i ∈ Z.

Lemma 3.20. If a ∈ R+
inv(z) for some z ∈ IZ and a O∼ b, then b ∈ R+

inv(z).

Proof. The first two relations in (3.1) applied to the beginning of a are special cases of ≡̂, while
the last two relations in (3.1) are compositions of the first three. The word a ∈ R+

inv(z) can only
begin as a=XY ′ · · · forX, Y ∈Z if |X−Y |>1, in which case applying the third relation in (3.1)
corresponds to the ≡̂-equivalence a = XY ′ · · · ≡̂X ′Y ′ · · · ≡̂Y ′X ′ · · · ≡̂Y X ′ · · · = ock0(a).
The relations in (3.2) are all special cases of ≡̂, so ocki(a) ∈ R+

inv(z) for all i by Proposi-
tion 2.5.

With the following result, we begin to see the close relationship between O∼ and the map PO
EG.

Proposition 3.21. Let T be an increasing shifted tableau. Fix z ∈ IZ and suppose u ∈ Z ⊔ Z′

has row(T )u∈R+
inv(z). Then row(T )u

O∼ row(T
O←− u), so if a∈R+

inv(z) then a O∼ row(PO
EG(a)).

Proof. Let T = T0, T1, T2, . . . , TN = T
O←− u be the shifted tableaux formed by successive

iterations of the algorithm in Definition 3.1, and let u = u0, u1, u2, . . . , uN−1 be the numbers
such that ui−1 is inserted into row or column i of Ti−1 on iteration i. Let R(j)

i be the word
formed by reading the jth row of Ti from left to right and let C(j)

i be the word formed by reading
the jth column of Ti from top to bottom. Finally, let T̃N := TN = T

O←− u and construct T̃i
from Ti for i < N by adding ui to the end of row (respectively, column) i + 1 if the insertion
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(a) If T =
5 6

1 3′ 4
and u = 2 then p = 2 < N = 3, u0 = 2 < u1 = 3′ < u2 = 5′, and

T̃0 =
5 6

1 3′ 4 2
, T̃1 =

5 6 3′

1 2 4
, T̃2 =

5′

3 6

1 2 4

, T̃3 =
3 5′

1 2 4 6
.

(b) If T =
7

5 6

1 3′ 5

and u = 4 then p = 2 < N = 3, u0 = 4 < u1 = 5 < u2 = 6, and

T̃0 =
7

5 6

1 3′ 5 4

, T̃1 =
7

5 6 5

1 3′ 4

, T̃2 =

6

7

5 6

1 3′ 4

, T̃3 =
7

5 6

1 3′ 4 7

.

Figure 3.1: Examples for the proof of Proposition 3.21.

on iteration i + 1 is into a row (respectively, column). Figure 3.1 shows two examples of these
definitions.

Suppose there are exactly p ∈ [N ] iterations involving row insertion. We will show that if
there are no iterations involving column insertion (so that p = N ) then

row(T )u = row(T̃0)
O∼ row(T̃1)

O∼ . . .
O∼ row(T̃N), (3.3)

and if there is at least one iteration involving column insertion then

row(T )u = row(T̃0)
O∼ row(T̃1)

O∼ . . .
O∼ row(T̃p−1)

O∼ col(T̃p)
O∼ col(T̃p+1)

O∼ . . .
O∼ col(T̃N).

(3.4)

The first case is precisely the desired identity as T O←− u = T̃N . In the second case, it follows
that R+

inv(z) contains col(T
O←− u), so by Lemma 2.7 we have row(T )u

O∼ col(T
O←− u)

O∼
row(T

O←− u) as desired.
We argue by induction on i. Assume the first i − 1 equivalences hold in (3.3) or (3.4).

ThenR+
inv(z) contains the relevant reading word row(T̃i−1) or col(T̃i−1), so the assertions in (d)

of Remark 3.7 hold up to iteration i. From these and the other properties in Remark 3.7, we see
that if iteration i involves row (respectively, column) insertion and the next iteration does not
change the insertion direction, then R(i)

i−1ui−1
O∼ uiR

(i)
i (respectively, ui−1C

(i)
i−1

O∼ C
(i)
i ui). In

example (a) in Figure 3.1,

R
(1)
0 u0 = 13′42

O∼ 13′24
O∼ 3′124 = u1R

(1)
1 and u2C

(3)
2 = 5′64

O∼ 5′46 = C
(3)
3 u2.
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It follows that if i < p− 1 then row(T̃i−1)
O∼ row(T̃i) and if i ⩾ p then col(T̃i−1)

O∼ col(T̃i).
Suppose p < N so that the insertion direction changes from rows to columns after iteration p.

It remains to show that row(T̃p−1)
O∼ col(T̃p). In this situation it must hold that

⌈up−1⌉ ⩽ min(R
(p)
p−1) = Tpp,

so there are two cases to consider according to whether ⌈up−1⌉ < Tpp or ⌈up−1⌉ = Tpp.
First assume that ⌈up−1⌉ < Tpp. To show that row(T̃p−1)

O∼ col(T̃p), we describe two enlarged
“tableaux” with the same row and column reading words as T̃p−1 and T̃p, respectively, that have
certain diagonal reading words that are easily related. Let D = {(2i, 2j) : (i, j) ∈ T}. Then
define V : D ⊔ {(2p− 1, 2p− 1)} → Z ⊔ Z′ to be the map with

V2i,2j = (T̃p−1)ij and V2p−1,2p−1 = up−1,

and define W : D ⊔ {(2p+ 1, 2p+ 1)} → Z ⊔ Z′ to be the map with

W2i,2j = (T̃p)ij and W2p+1,2p+1 = up.

For example (a) in Figure 3.1, we have p = 2, up−1 = 3′, and up = 5′, along with

V =

· · · · · ·
· · · 5 · 6
· · 3′ · · ·
· 1 · 2 · 4
· · · · · ·

and W =

· · · · 5′ ·
· · · 3 · 6
· · · · · ·
· 1 · 2 · 4
· · · · · ·

.

Since row(T̃p−1) = row(V ) and col(T̃p) = col(W ), it suffices to show that row(V )
O∼ col(W ).

Form the northeast (respectively, southwest) diagonal reading words of V (and similarly forW )
by reading the main diagonals of V from left to right, going in the northeast (respectively, south-
west) direction. In our example, these words for V are 13′5264 and 53′1624, respectively. Fi-
nally define Ṽ and W̃ by removing the main diagonals from V and W . Observe that Ṽ = W̃ .

Recall the definition of K∼ from Lemma 2.7; this is a subrelation of O∼. First, we claim
that row(V ) is equivalent under K∼ to the southwest diagonal reading word of V . To see this,
start with row(V ) and consider the diagonals of V from left to right. If a1a2 · · · aq is the first
diagonal in increasing order, then we can use K∼ to commute a1 backwards in row(V ) until it
is just after a2, and then we can use K∼ to commute first a2 and then a1 backwards until they
after both just after a3, and so on, until we are left with aq · · · a2a1 followed by the row reading
word of V with its first diagonal omitted. We then proceed in the same way over the remaining
diagonals, eventually reaching the southwest diagonal reading word of V via K∼-equivalences.

It follows similarly that col(W ) is equivalent under K∼ to the northeast diagonal reading word
of W . One can repeat the argument in the previous paragraph, after replacing row by col and
redefining a1a2 · · · aq to be the first diagonal in decreasing order.

The arguments above also show that the southwest (respectively, northeast) diagonal reading
word of Ṽ = W̃ is equivalent under K∼ to its row (respectively, column) reading word. But the
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row and column reading words of Ṽ = W̃ are equivalent under K∼ by Lemma 2.7, since this
tableau is increasing when all primes are removed from its entries by (a) of Remark 3.7. Thus
all four reading words for Ṽ = W̃ are equivalent under K∼.

The diagonal reading words of V and W are given by adding the first diagonal (in one of
two orders) to the start of the corresponding diagonal reading words of Ṽ = W̃ . Thus, to show
that row(V )

O∼ col(W ), we are reduced to checking the simpler property that the main diagonal
of V in the southwest reading order is equivalent under O∼ to the main diagonal of W in the
northeast reading order. This is straightforward since both words have at most one primed letter;
for example, 53′1 O∼ 35′1

O∼ 315′
O∼ 135′. It is only in this last step that we need to use the

relation O∼ instead of only K∼. We conclude that row(T̃p−1)
O∼ col(T̃p) when ⌈up−1⌉ < Tpp.

We are left to consider the case when ⌈up−1⌉ = Tpp. By Remark 3.7 this can only occur
when Tpp = Tp,p+1 − 1 = Tp+1,p+1 − 2 ∈ Z. Let i be the index of v := Tpp in row(T̃p−1).
This index must be a commutation since all letters preceding v are at least Tp+1,p+1 = v + 2,
so truncating row(T̃p−1) just before i gives a primed involution word for an element of IZ that
fixes v and v + 1. By moving up−1 across row p of T̃p−1, we see that row(T̃p−1) is equivalent
under K∼ to a word with letters v(v + 1)up−1 in positions i, i+ 1, and i+ 2. As ⌈up−1⌉ = v and
the index of v is a commutation, Proposition 2.4 implies that up−1 = v is unprimed.

Finally define V : D ⊔ {(2p+ 1, 2p+ 1)} → Z ⊔ Z′ to have

V2i,2j = (Tp−1)ij = (Tp)ij and V2p+1,2p+1 = up−1 + 1 = up.

For example (b) in Figure 3.1, this gives

V =

· · · · · ·
· · · · · 7
· · · · 6 ·
· · · 5 · 6
· · · · · ·
· 1 · 3′ · 4
· · · · · ·

Then row(T̃p−1)
O∼ row(V ) and col(T̃p) = col(V ), so it suffices to show that row(V )

O∼ col(V ).
This follows by repeating the argument in the case when ⌈up−1⌉ < Tpp but with W := V (and
with Ṽ = W̃ again formed from V by omitting the main diagonal). That is, we first show that
the row and southwest diagonal reading words of V are equivalent under K∼, as are the column
and northeast diagonal reading words. Then we observe that the row, column, and both diagonal
reading words of Ṽ = W̃ also equivalent under K∼. This reduces things to checking that reading
the main diagonal of V in increasing or decreasing order gives equivalent words under O∼. This
is straightforward as the main diagonal of V has no primed entries.

3.5. Dual equivalence operators for shifted tableaux

Proposition 3.21 implies that if a and b are primed involution words with PO
EG(a) = PO

EG(b)

then a O∼ b. We will eventually prove the converse statement, that if a O∼ b thenPO
EG(a) = PO

EG(b).
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The proof of this fact is more difficult, and requires us to understand how the operators ocki
interact with PO

EG and QO
EG. The results in this section precisely explain this interaction.

Assume T is a standard shifted tableau. Choose q > 0 such that the domain of T fits in-
side [q]× [q]. Let Ci be the increasing sequence of primed entries in column i of T , and let Ri

be the increasing sequence of unprimed entries in row i of T . The shifted reading word of T is

shword(T ) := unprime(CqRq · · ·C2R2C1R1). (3.5)

For example, if T is the standard shifted tableau

T =
3 5′ 7

1′ 2′ 4′ 6
(3.6)

then the nonempty sequences CiRi are C1R1 = 1′6, C2R2 = 2′37, C3R3 = 4′5′, so the shifted
reading word is shword(T ) = 4523716.

A useful feature of this way of defining the shifted reading word is that it automatically
holds that shword(T ) = shword(unprimediag(T )), where as above unprimediag is the operation
removing all primes from the main diagonal. As noted in the proof of Proposition 3.12, we
have i ∈ Des(T ) if and only if i + 1 appears before i in shword(T ) when reading from left to
right.

Let n be the number of boxes in T . For each i ∈ [n], write □i for the unique position of T
containing i or i′. Then define si(T ) to be the shifted tableau formed from T as follows:

(a) If □i and □i+1 are not in the same row or column, then swap i with i+1 and i′ with i+1′.

(b) If □i and □i+1 are in the same row or column and neither box is on the main diagonal,
then reverse the primes on the entries in both boxes.

(c) If □i and □i+1 are in the same row or column but one box is on the main diagonal, then
reverse the prime on the entry in the non-diagonal box; then, if both □i−1 and □i+1 are
on the main diagonal when i− 1 ∈ [n] (respectively, if both □i and □i+2 are on the main
diagonal when i+ 2 ∈ [n]), switch the primes on the entries in these diagonal boxes.

Case (c) of this definition is illustrated by

s1

(
3 5′ 7

1′ 2′ 4′ 6

)
=

3′ 5′ 7

1 2 4′ 6
and s2

(
3′ 5′ 7

1′ 2′ 4′ 6

)
=

3′ 5′ 7

1′ 2 4′ 6
.

Cases (a) and (b) are respectively illustrated by

s3

(
3 5′ 7

1′ 2′ 4′ 6

)
=

4 5′ 7

1′ 2′ 3′ 6
and s4

(
3 5′ 7

1′ 2′ 4′ 6

)
=

3 5 7

1′ 2′ 4 6
.

Next, for each i ∈ Z, we construct a shifted tableau di(T ) of the same shape from T as
follows. If i + 2 /∈ [n] then we set di(T ) := T . We form d−1(T ) (respectively, d0(T )) from T
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by reversing the prime on the entry in the first (respectively, second) box in the first row, which
is always the unique position containing 1 or 1′ (respectively, 2 or 2′). For example

d−1

(
3 5′ 7

1′ 2′ 4′ 6

)
=

3 5′ 7

1 2′ 4′ 6
and d0

(
3 5′ 7

1′ 2′ 4′ 6

)
=

3 5′ 7

1′ 2 4′ 6
.

Finally, if i ∈ [n− 2] then we set

di(T ) :=


si(T ) if i+ 2 is between i and i+ 1 in shword(T )

si+1(T ) if i is between i+ 1 and i+ 2 in shword(T )

T if i+ 1 is between i and i+ 2 in shword(T ).

We refer to di as a dual equivalence operator on standard shifted tableaux.
Remark 3.22. If □i−1 and □i+1 are on the main diagonal, then these boxes must be (q−1, q−1)
and (q, q) for some q and □i = (q − 1, q), in which case □i+2 cannot occur in row q, so i + 2
is not between i and i + 1 in shword(T ). Similarly, if □i+1 and □i+3 are on the main diagonal,
then these boxes must be (q, q) and (q + 1, q + 1) for some q and □i+2 = (q, q + 1), in which
case □i cannot occur in column q, so i is not between i+1 and i+2 in shword(T ). Comparing
these facts with the definition of si, we see that di(T ) can only differ from T in positions □i,
□i+1, and □i+2.

For the tableau T in (3.6), our definition of di gives

d1

(
3 5′ 7

1′ 2′ 4′ 6

)
=

3′ 5′ 7

1 2 4′ 6
= s1(T ),

d2

(
3 5′ 7

1′ 2′ 4′ 6

)
= d3

(
3 5′ 7

1′ 2′ 4′ 6

)
=

4 5′ 7

1′ 2′ 3′ 6
= s3(T ),

d4

(
3 5′ 7

1′ 2′ 4′ 6

)
=

3 5′ 7

1′ 2′ 4′ 6
= T,

d5

(
3 5′ 7

1′ 2′ 4′ 6

)
=

3 6′ 7

1′ 2′ 4′ 5
= s5(T ).

Given a shifted tableau T , let #primes(T ) be the total number of boxes in T with primed
entries and let #primesdiag(T ) be the number of such boxes that are on the main diagonal. Since
we always have shword(T ) = shword(unprimediag(T )), it holds by definition that if i ̸= −1 then

unprimediag(di(T )) = di(unprimediag(T )) and
#primesdiag(T ) = #primesdiag(di(T )).

(3.7)

It is also obvious that d−1 and d0 are involutions. We note a few other properties of di:

Proposition 3.23. Suppose T is a standard shifted tableau with n boxes. Let □j for j ∈ [n]
denote the unique box of T containing j or j′. Finally choose i ∈ [n− 1]. Then:
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(a) The operator di is an involution which only changes the values of T in □i, □i+1, and □i+2.

(b) If □i and □i+2 are not both on the main diagonal, then #primes(T ) = #primes(di(T ))
and the main diagonal positions with primed entries in di(T ) are the same as those in T .

(c) If □i and □i+2 are both on the main diagonal, then #primes(T ) = #primes(di(T ))± 1.

Proof. Part (a) is clear if i+ 1 is between i and i+ 2 in shword(T ). Suppose instead that i+ 2
is between i and i + 1 in shword(T ). If □i and □i+1 are not in the same row or column,
then shword(si(T )) is formed from shword(T ) by swapping the positions of i and i+1, so i+2
is also between i and i + 1 in shword(si(T )) and we have di(di(T )) = si(si(T )) = T . If □i

and □i+1 are in the same row or column but at least one of the boxes is on the main diagonal,
then our assumption that i+2 is between i and i+1 in shword(T ) forces □i, □i+1, and □i+2 to
be arranged in T as

i+ 2

i i+ 1′
,

i+ 2′

i i+ 1′
,

i+ 2

i′ i+ 1′
, or

i+ 2′

i′ i+ 1′
.

In each of these cases we have di(di(T )) = si+1(si(T )) = T .
Finally, suppose □i and □i+1 are in the same row or column but neither box is on the main

diagonal. Then the entry in one box must be primed and the other must be unprimed for i + 2
to be between i and i+ 1 in shword(T ). If □i and □i+1 are in the same column, then they must
be some adjacent positions (j, k) and (j + 1, k), and di acts as si by reversing the primes on
both positions. In this case, consider the sequence of unprimed boxes to the right of □i+1 in
row j + 1, followed by the primed boxes in column j, and then the unprimed boxes to the left
of □i in row j. For example, if □i and □i+1 are the boxes containing ∗ in

∗ 1 2 3

6 7 8 ∗
5

4

then the relevant sequence is a subsequence of the positions labeled 1, 2, . . . , 8. It is impossible
for□i+2 to occur in this sequence, and if we ignore the entries it contributes to the shifted reading
word then shword(si(T )) is obtained from shword(T ) by swapping i and i+ 1.

Thus if □i and □i+1 are in the same column, then i + 2 still appears between i and i + 1 in
the shifted reading word of di(T ) = si(T ) so di(di(T )) = si(si(T )) = T . The same conclusion
follows when □i and □i+1 are the adjacent positions (j, k) and (j, k+1), if we instead consider
the sequence of primed boxes above □i+1 in column k + 1, followed by the unprimed boxes in
row k + 1, and then the primed boxes below □i in column k.

The argument to show that di(di(T )) = T when i is between i + 1 and i + 2 in shword(T )
is similar. This concludes the proof of part (a) by Remark 3.22.

For part (b), suppose □i and □i+2 are not both on the main diagonal. Then at most one of the
three boxes □i, □i+1, □i+2 that could change in di(T ) compared to T is on the main diagonal.
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Since the operator sj changes the primes on either zero or two main diagonal boxes, it follows
that the main diagonal positions with primed entries in di(T ) are the same as those in T

Additionally, if i + 2 is between i and i + 1 in shword(T ) and □i and □i+1 are in the same
row or column, then neither box can be on the main diagonal and exactly one must have a primed
entry, so #primes(T ) = #primes(si(T )). Likewise, if i is between i+1 and i+2 in shword(T )
and □i+1 and □i+2 are in the same row or column, then neither box can be on the main diag-
onal and exactly one must have a primed entry, so #primes(T ) = #primes(si+1(T )). There-
fore #primes(T ) = #primes(di(T )). This proves part (b).

Finally, for part (c), observe that if □i and □i+2 are both on the main diagonal, then we must
have □i = (q − 1, q − 1), □i+1 = (q − 1, q), and □i+2 = (q, q) for some q. No matter how
the entries in these boxes are primed, we have di(T ) = si(T ) = si+1(T ) so #primes(T ) =
#primes(di(T ))± 1.

Our proof of the following theorem occupies all of Section 4.

Theorem 3.24. Suppose i ∈ Z and a is a primed involution word for an element of IZ. Then it
holds that PO

EG(ocki(a)) = PO
EG(a) and QO

EG(ocki(a)) = di(Q
O
EG(a)).

When a has no primed letters, this theorem is equivalent to results in [Mar22]; see Propo-
sition 4.1. Extending these identities to primed involution words is surprisingly involved. The
proof of the unprimed version of Theorem 3.24 in [Mar22] relies heavily on the involution Lit-
tle map, which gives a family of bijections

⊔
z∈X Rinv(z) ↔

⊔
z∈Y Rinv(z) for certain finite

subsets X, Y ⊂ IZ. Describing a “primed involution Little map” does not appear to be straight-
forward; one difficulty is that with primes allowed, the unions

⊔
z∈X R

+
inv(z) and

⊔
z∈Y R

+
inv(z)

often have different sizes. As such, proving Theorem 3.24 requires a quite different strategy
compared to [Mar22].

Corollary 3.25. Two primed involution words satisfy a O∼ b if and only if PO
EG(a) = PO

EG(b).

Proof. Let a and b be two primed involution words. If PO
EG(a) = PO

EG(b) then

a
O∼ row(PO

EG(a)) = row(PO
EG(b))

O∼ b

by Proposition 3.21. Conversely, if a O∼ b then b = ocki1ocki2 · · · ockik(a) for some indi-
ces i1, i2, . . . , ik ∈ Z, so PO

EG(b)=P
O
EG(ocki1ocki2 · · · ockik(a))=PO

EG(a) by Theorem 3.24.

Recall the definition of the relation K∼ from Lemma 2.7.

Corollary 3.26. Suppose T is an increasing shifted tableau with row(T ) ∈ R+
inv(z) for

some z∈IZ. Then row(T ) K∼col(T )∈R+
inv(z) andPO

EG(row(T ))=P
O
EG(col(T ))=unprimediag(T ).

Proof. We have row(T )
K∼ col(T ) ∈ R+

inv(z) by Lemma 2.7 so PO
EG(row(T )) = PO

EG(col(T )).
When we compute PO

EG(col(T )) from Definition 3.1, each column of T contributes the same
column to the output but with primes removed from the diagonal, giving unprimediag(T ).
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3.6. Properties of marked cycles

On standard shifted tableaux with no primes on the main diagonal, the operators di for i > 0
coincide with the maps ψi+1 in [Ass18, §6]. The definitions of di and ψi+1 diverge when there
are primed entries on the main diagonal, as ψi+1 never changes the locations of these entries.
However, [Ass18, Thm. 6.3] (stating that {ψi}1<i<n is a dual equivalence for standard shifted
tableaux) is still true if one replaces ψi by di−1, as we explain in this section. The results here
will also be of use in Section 4.

Let cyc(z) = {{i, j} : i < j = z(i)} denote the set of 2-cycles in z. Then for each
(unprimed) involution word a = a1a2 · · · an ∈ Rinv(z) and i ∈ [n], let

γi(a) :=

{
san · · · sai+2

sai+1
({ai, 1 + ai}) if i is a commutation in a

∅ otherwise.
(3.8)

If z = 654321 ∈ IZ, then cyc(z) = {{1, 6}, {2, 5}, {3, 4}} and for a = 513243541 ∈ Rinv(z),
we have γ1(a) = {3, 4}, γ2(a) = {2, 5}, γ3(a) = {1, 6}, and γi(a) = ∅ for i ∈ {4, 5, 6, 7, 8, 9}.

Proposition 3.27. The map i 7→ γi(a) is a bijection from the set of commutations in a to cyc(z).

Proof. We prove this by induction on the length n of a. The base case when n = 0 holds trivially.
Assume n > 0, define b = a1a2 · · · an−1, and let y ∈ IZ be such that b ∈ Rinv(y). Suppose the
result holds when a and z are replaced by b and y.

If n is a commutation in a then an and 1 + an are fixed points of y, and the commutations
in a are just the commutations of b plus n. In this case we have z = ysan and cyc(z) = cyc(y)⊔
{{an, 1 + an}}, along with γi(a) = san(γi(b)) = γi(b) for each commutation i ∈ [n − 1]
(since γi(b) ∈ cyc(y) by induction) and γn(a) = {an, 1 + an}. As i 7→ γi(b) is a bijection from
commutations in b to cyc(y), it follows that i 7→ γi(a) is a bijection from commutations in a
to cyc(z).

If n is not a commutation in a then z = sanysan so cyc(z) = san(cyc(y)), and the commu-
tations in a are the same as in b. As γi(a) = san(γi(b)) for i ∈ [n − 1], the desired property
clear.

The following lemma lets us relate γi(a) and γi(b)when a ≡ b in the sense of Proposition 2.2.

Lemma 3.28. Suppose a ∈ Rinv(z) is an unprimed involution and n = ℓ(a). Fix i ∈ [n].

(a) If j ∈ [n− 1] and |aj − aj+1| > 1 then

γi(a1 · · · aj−1aj+1ajaj+2 · · · an) =


γj+1(a) if i = j

γj(a) if i = j + 1

γi(a) otherwise.
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(b) If j ∈ [n− 2] and aj = aj+2 = aj+1 ± 1 then

γi(a1 · · · aj−1aj+1ajaj+1aj+3 · · · an) =


γj+2(a) if i = j

γj(a) if i = j + 2

γi(a) otherwise.

(c) If n ⩾ 2 and |a1 − a2| = 1 then γi(a2a1a3 · · · an) = γi(a) for all values of i.

Proof. Suppose j ∈ [n− 1] and |aj − aj+1| > 1. Let

b = a1 · · · aj−1aj+1ajaj+2 · · · an ≡ a.

Since saj and saj+1
commute, we have γi(a) = γi(b) for i /∈ {j, j + 1}. In addition, the in-

dex j (respectively, j + 1) is a commutation in a if and only if j + 1 (respectively, j) is a
commutation in b, and the permutations saj and saj+1

each preserve both of the sets {aj, 1+ aj}
and {aj+1, 1 + aj+1}. It follows from (3.8) in this case that γj(b) = γj+1(a) and γj+1(b) = γj(a).

Next, suppose j ∈ [n− 2] and aj = aj+2 = aj+1 ± 1. Let

b = a1 · · · aj−1aj+1ajaj+1aj+3 · · · an ≡ a.

Then i (respectively, i + 2) is a commutation in a if and only if i + 2 (respectively, i) is a
commutation on ocki(a), while i + 1 is not a commutation in either word, by Propositions 2.4
and 2.5. The permutation sai+2

sai+1
= saisai+1

transforms {ai, 1+ ai} to {ai+1, 1+ ai+1} while
sai+1

sai transforms {ai+1, 1+ ai+1} to {ai, 1+ ai}, so it follows from (3.8) that γi(b) = γi+2(a)
and γi+2(b) = γi(a).

For part (c) we may assume that n = 2, and then the desired result is clear from (3.8).

For a primed involution word â = â1â2 · · · ân ∈ R+
inv(z) with a = unprime(â), let

marked(â) := {γi(a) : i ∈ [n] with âi ∈ Z′}. (3.9)

Proposition 3.29. Suppose â ∈ R+
inv(z) for z ∈ IZ and a = unprime(â). Let i ∈ Z.

(a) If i = −1 then marked(ocki(â)) = marked(â) △ {γ1(a)}, where △ is symmetric set
difference.

(b) Suppose i = 0 and â has at least two letters. If |a1 − a2| > 1 and exactly one of â1
or â2 is primed, then exactly one of γ1(a) or γ2(a) belongs to marked(â) and it holds
that marked(ocki(â)) = marked(â)△ {γ1(a), γ2(a)}.

(c) In all other cases marked(ocki(â)) = marked(â).

Proof. Parts (a) and (b) hold as∅ ̸= γ1(a) ∈ cyc(z). Part (c) follows directly from Lemma 3.28.
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Fix a strict partition λ and define zλ as in Lemma 3.17. For each S ⊆ cyc(zλ), letAλ
S be the

set of standard shifted tableaux QO
EG(a) for a ∈ R+

inv(zλ) with marked(a) = S. Proposition 3.8
implies thatAλ

∅ is set of all standard shifted tableaux of shape λwith no primed diagonal entries.

Corollary 3.30. Fix S ⊆ cyc(zλ) and 1 ⩽ i ⩽ |λ| − 2. Then di restricts to an involution of Aλ
S

and unprimediag defines a descent-preserving bijection Aλ
S → Aλ

∅ that commutes with di.

Proof. We have di(Aλ
S) = Aλ

S by Proposition 3.29. The map unprimediag is a bijection since
|Aλ

S| = |Aλ
∅| = |Rinv(zλ)|. It is descent-preserving by Proposition 3.12 and commutes with di

by (3.7).

Assaf’s result [Ass18, Thm. 6.3] asserts that the maps {di−1 : 1 < i < |λ|} give a dual
equivalence for Aλ

∅. The preceding corollary shows that these maps define isomorphic dual
equivalences for eachAλ

S , and therefore give a dual equivalence for all standard shifted tableaux
of shape λ.

4. Proofs of the two main theorems

This section is devoted to proving Theorem 3.24. We will also end up deriving Theorem 3.11
as a corollary of our methods; the proofs of these theorems are in Section 4.7.

Remark. Many of the results leading up to these proofs only apply to unprimed words. Accord-
ingly, just for this section, we adopt the convention of writing all primed words with ˆ symbols
(that is, as â, b̂, etc.) to distinguish them from unprimed words (which we write as a, b, etc.).

An outline of our proof strategy is as follows. Underpinning everything is the following
result, which says that Theorem 3.24 holds for unprimed words.

Proposition 4.1 ([Mar22]). Suppose i ⩾ 0 and a = unprime(a) ∈ Rinv(z) for z ∈ IZ. Then

PO
EG(ocki(a)) = PO

EG(a) and QO
EG(ocki(a)) = di(Q

O
EG(a)).

Proof. The assertion that PO
EG(ocki(a)) = PO

EG(a) follows from [Mar22, Thm. 3.31]. The asser-
tion that QO

EG(ocki(a)) = di(Q
O
EG(a)) follows from [Mar22, Thm. 5.11].

Let â be a primed involution word with unprimed form a = unprime(â). In view of Proposi-
tion 4.1, to prove Theorem 3.24 we just need to understand the relationship between the indices of
the primed letters in â and the locations of the primed entries in PO

EG(â) and on the main diagonal
of QO

EG(â). Sections 4.1, 4.2, and 4.3 are devoted to proving a result that expresses the positions
of the relevant primes in terms of the set marked(â) and a permutation τ(a) that can be read off
from the successive tableaux PO

EG(a1a2 · · · ai) for i ∈ [ℓ(a)]. Then, in Sections 4.4, 4.5 and 4.6,
we will prove a series of lemmas clarifying the relationship between τ(a) and τ(ocki(a)).



32 Eric Marberg

4.1. Properties of bumping paths

We start by listing some properties of the bumping paths in Definition 3.1. In this subsection,
let T be an increasing shifted tableau with no primes on the main diagonal and let u ∈ Z ⊔ Z′

be such that row(T )u is a primed involution word for an element of IZ. We will only apply the
results here when T = unprime(T ) and u ∈ Z, but we will allow primes in our initial statements
since the proofs are identical to the unprimed case. Write

path⩽(T, u) := ((xi, yi) : i = 1, 2, . . . , N) ,

path<(T, u) := ((x̃i, ỹi) : i = 1, 2, . . . , N) ,
(4.1)

for the weak and strict bumping paths specified in Definition 3.1.
The algorithm in Definition 3.1 starts by inserting entries into successive rows, and at some

point may switch to inserting into successive columns. Each iteration contributes one position
to the weak and strict bumping paths, and the switch from row to column insertion takes place
at most once, directly after the weak bumping path meets the main diagonal. It follows that
both path⩽(T, u) and path<(T, u) contain at most one position on the main diagonal. Let p be
the unique index of the diagonal position in path⩽(T, u) (which will have xp = yp = p), or
set p := N if no such index exists.

The following additional observations are straightforward to derive from the definitions and
Remark 3.7. We omit a detailed proof. For (x, y) ∈ Z× Z, let

(x, y) := {(i, j) ∈ Z×Z : x ⩾ i, y ⩾ j} and (x, y) := {(i, j) ∈ Z×Z : x ⩽ i, y ⩽ j}.

Define (T, u) :=
⋃

1⩽i⩽p (x̃i, ỹi) and (T, u) :=
⋃

p<k⩽N (xi, yi).

Proposition 4.2. The following properties hold:

(a) If 1 ⩽ i ⩽ p then xi = x̃i = i and ỹi ∈ {yi, yi + 1}, while

y1 ⩾ y2 ⩾ . . . ⩾ yp and ỹ1 ⩾ ỹ2 ⩾ . . . ⩾ ỹp.

(b) If p < k ⩽ N then yk = ỹk = k and x̃k ∈ {xk, xk + 1}, while

p ⩾ xp+1 ⩾ xp+2 ⩾ . . . ⩾ xN and p+ 1 ⩾ x̃p+1 ⩾ x̃p+2 ⩾ . . . ⩾ x̃N .

(c) If (xp, yp) ̸= (x̃p, ỹp), then p < N and (T, u) ∩ (T, u) = {(p, p+ 1)} and

(p, p) = (xp, yp),

(p, p+ 1) = (x̃p, ỹp) = (xp+1, yp+1),

(p+ 1, p+ 1) = (x̃p+1, ỹp+1).

If instead (xp, yp) = (x̃p, ỹp), then (T, u) ∩ (T, u) = ∅.
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We sometimes treat the sequences path⩽(T, u) and path<(T, u) as sets. This practice is
justified as Proposition 4.2 shows that the positions in each path are all distinct and their order
is uniquely determined.

With p as above, write

rpath⩽(T, u) := ((xi, yi) : i = 1, 2, . . . , p) ,

rpath<(T, u) := ((x̃i, ỹi) : i = 1, 2, . . . , p)
(4.2)

for the first p terms of path⩽(T, u) and path<(T, u), and let

cpath⩽(T, u) := ((xi, yi) : i = p+ 1, p+ 2, . . . , N) ,

cpath<(T, u) := ((x̃i, ỹi) : i = p+ 1, p+ 2, . . . , N) .
(4.3)

We think of these subsequences as the “row-bumping paths” and “column-bumping paths” from
inserting u into T .

Finally, if â is a primed involution word with n = ℓ(â) and i ∈ [n], then we let

path⩽i (â) := path⩽(T, âi) and path<i (â) := path<(T, âi) for T := PO
EG(â1â2 · · · âi−1).

We define the sequences rpath⩽i (â), cpath
⩽
i (â), rpath

<
i (â), and cpath<i (â) analogously.

Proposition 4.3. Let â = â1â2 · · · ân be a primed involution word and choose i ∈ [n− 1].

(a) Suppose âi+1 < âi. In each row where rpath⩽i (â) and rpath⩽i+1(â) both have positions, the
position in rpath⩽i (â) is weakly to the right of the position in rpath⩽i+1(â). Consequently, if
path⩽i (â) has a diagonal position, then path⩽i+1(â) has a non-terminal diagonal position.

(b) Suppose âi < âi+1. In each row where rpath⩽i (â) and rpath⩽i+1(â) both have positions, the
position in rpath⩽i (â) is strictly to the left of the position in rpath⩽i+1(â). Consequently, if
path⩽i+1(â) has a diagonal position, then path⩽i (â) has a non-terminal diagonal position.

Proof. Both parts can be checked directly, using Remark 3.7 and Proposition 4.2, together with
the general principle that in a given row, after inserting a number which bumps some box (and
then possibly increasing entries to the right of this box as a result of subsequent column inser-
tions), inserting a smaller number will always bump a box that is weakly farther to the left, while
inserting a larger number will always bump a box that is strictly farther to the right.

4.2. Controlling cycle migration

Fix z ∈ IZ and recall the definition of γi(a) ∈ {∅} ⊔ cyc(z) for a ∈ Rinv(z) from (3.8).
Suppose T is a shifted tableau and b is a word such that row(T )b ∈ Rinv(z). For (i, j) ∈ Z×Z,
let

γij(T, b) :=

{
∅ if (i, j) is not in the domain of T
γk(row(T )b) if (i, j) is in the domain of T ,

(4.4)

where k is the index of the letter in row(T ) contributed by box (i, j). We also
let γij(T ) := γij(T,∅).
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The main result of this section is a lemma that precisely describes how the values of (4.4)
evolve when we insert the first letter of b into T via Definition 3.1. In Section 4.3, we will use
this lemma to explain how to compute PO

EG(â) and QO
EG(â) from PO

EG(a), QO
EG(a), and the set

marked(â) when â is primed involution word with a = unprime(â).

Example 4.4. If T = PO
EG(51324) =

3 5
1 2 4

and b = 3154 then we have

γ22(T, b) γ23(T, b)

γ11(T, b) γ12(T, b) γ13(T, b)

=

{1, 6} {3, 4}

{2, 5} ∅ ∅

.

Below, we assume the shifted tableau T is increasing and the unprimed word b is nonempty
with first letter u ∈ Z. Let c be the subword of b formed by removing its first letter. Denote
the weak and strict bumping paths resulting from inserting u into T as in (4.1), so that N is the
length of both paths. Set u0 = u and write ui for the entry of T in position (x̃i, ỹi) for i ∈ [N−1].
Then define θ0 := γ|T |+1(row(T )b) where |T | is the number of boxes in T and let

θi :=

{
γxiyi(T, b) if (xi, yi) = (x̃i, ỹi) and either xi ̸= yi or ui−1 + 1 < ui

θi−1 otherwise
(4.5)

for i ∈ [N − 1]. For each 0 ⩽ i < N we have θi ∈ {∅} ⊔ cyc(z).

Example 4.5. Let T = PO
EG(51324) and b = 3154 as in Example 4.4. Then u = 3 and

path⩽(T, u) = ((xi, yi) : i = 1, 2, 3) = ((1, 3), (2, 3), (3, 3)) ,

path<(T, u) = ((x̃i, ỹi) : i = 1, 2, 3) = ((1, 3), (2, 3), (3, 3)) ,

so u0 = 3, u1 = 4, and u2 = 5, while θ0 = ∅, θ1 = ∅, and θ2 = {3, 4}.

Lemma 4.6. For each position (x, y) in the domain of U := T
O←− u, the following holds:

(a) If (x, y) = (xi, yi) = (x̃i, ỹi) for some i ∈ [N ], then

Uxy = ui−1 and γxy(U, c) =

{
γxy(T, b) if x = y and i < N and ui−1 + 1 = ui

θi−1 otherwise.

(b) If (x, y) ∈ {(xi, yi) ̸= (x̃i, ỹi)} for some i ∈ [N ] with xi ̸= yi and x̃i ̸= ỹi, then

Uxy = Txy and γxy(U, c) =

{
γx̃iỹi(T, b) if (x, y) = (xi, yi)

γxiyi(T, b) if (x, y) = (x̃i, ỹi).
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(c) If (x, y) ∈ {(i, i), (i, i+ 1), (i+ 1, i+ 1)} for some i ∈ [N ] with xi = yi ̸= ỹi, then

Uxy = Txy and γxy(U, c) =


γi+1,i+1(T, b) ̸= ∅ if (x, y) = (i, i)

γi,i+1(T, b) = ∅ if (x, y) = (i, i+ 1)

γii(T, b) ̸= ∅ if (x, y) = (i+ 1, i+ 1).

In this case (xi, yi) = (i, i), (x̃i, ỹi) = (xi+1, yi+1) = (i, i + 1), and (x̃i+1, ỹi+1) =
(i+ 1, i+ 1).

(d) Otherwise, (x, y) /∈ path⩽(T, u) ∪ path<(T, u), Uxy = Txy, and γxy(U, c) = γxy(T, b).

Proof. Suppose V is a shifted tableau with all entries in Z. If we are given a total order-
ing (i1, j1) < (i2, j2) < (i3, j3) < . . . of the boxes of V such that the entries read in this order
form an involution word a, then we can define a tableau Γ of the same shape as V whose entry in
box (ik, jk) is the value of γk(a). Let Γrow(V ), Γcol(V ), Γsw(V ), and Γne(V ) denote the tableaux
constructed in this way relative to the row, column, southwest diagonal, and northeast diago-
nal reading orders, respectively. These tableaux are only well-defined when the corresponding
reading words are involution words.

If V is an increasing shifted tableau with row(V ) ∈ Rinv(z), then col(V ) is also inRinv(z) by
Lemma 2.7, so Γrow(V ) and Γcol(V ) are both defined. In this case, since row(V ) is transformed
by col(V ) by a sequence of swaps involving non-consecutive letters in adjacent positions (which
we will refer to as “commutations” for the rest of this proof, slightly abusing our previous ter-
minology), it follows from part (a) of Lemma 3.28 that we actually have Γrow(V ) = Γcol(V ).

We now turn to the claims in lemma. The assertions about the values of Uxy are straightfor-
ward from Definition 3.1 since there are no repeated positions in the relevant bumping paths. It
remains to justify the formulas for γxy(U, c). Define T = T0, T1, T2, . . . , TN = T

O←− u = U
and T̃i as in the proof of Proposition 3.21, and suppose there are exactly p ∈ [N ] iterations
involving row insertion in the process to construct T O←− u. Because all of these tableaux have
only unprimed entries, the numbers ui defined in the proof of Proposition 3.21 coincide with the
numbers ui defined above in this section.

Now consider the tableaux Γrow(T̃i) for i < p and Γcol(T̃i) for i ⩾ p, which are all well-
defined by (3.3) and (3.4). Figure 4.1 shows two examples of this sequence. We may assume
without loss of generality that b has length one so that c is empty. Then the first tableau Γrow(T̃0)
has value γxy(T, b) for all (x, y) ∈ T and its last box in the first row (containing u = u0 in T̃0) has
value θ0. On the other hand, we have Γcol(T̃N) = Γrow(T̃N) = Γrow(U) as TN = T

O←− u = U
is increasing with row reading word in Rinv(z). Thus, each box (x, y) in Γrow(T̃N) = Γcol(T̃N)
has entry γxy(U, c) and our goal is to show that this value is as described by the given formulas.

For each i let φi be the entry of Γrow(T̃i) in the unique box that is not in T , so that φ0 = θ0.
First choose i ∈ [p − 1] so that (xi, yi) is not on the main diagonal. If (xi, yi) = (x̃i, ỹi), then
we can transform row(T̃i−1) to row(T̃i) using only commutations, so it follows from part (a)
of Proposition 3.21 that Γrow(T̃i) is formed from Γrow(T̃i−1) by moving box (xi, yi) to the end
of row i + 1 and then moving φi−1 from the end of row i to replace box (xi, yi). Likewise,
if (xi, yi) ̸= (x̃1, ỹ1), then transforming row(T̃i−1) to row(T̃i) will involve one braid relation as
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(
T =

5 6

1 3 4

)
O←− (u = 2) ;



Γrow(T̃0) = Γrow

(
5 6

1 3 4 2

)
=

{4, 7} ∅

{1, 3}{2, 5} ∅ ∅
,

Γrow(T̃1) = Γrow

(
5 6 3

1 2 4

)
=

{4, 7} ∅ {2, 5}

{1, 3} ∅ ∅
,

Γcol(T̃2) = Γcol

 5

3 6

1 2 4

 =

{4, 7}

{2, 5} ∅

{1, 3} ∅ ∅

,

Γcol(T̃3) = Γcol

(
3 5

1 2 4 6

)
=

{2, 5}{4, 7}

{1, 3} ∅ ∅ ∅
.

Figure 4.1: Example for the proof of Lemma 4.6; compare with Figure 3.1(a).

we must have (x̃i, ỹi) = (xi, yi + 1) and ui−1 = Txiyi = Tx̃iỹi − 1. In this case it follows using
parts (a) and (b) of Proposition 3.21 that Γrow(T̃i) is formed from Γrow(T̃i−1) by moving φi−1

from the end of row i to the end of row i+1 and switching the entries in the adjacent boxes (xi, yi)
and (x̃i, ỹi).

It follows by induction that φi = θi for all i ∈ [p − 1]. When p = N , these observations
describe a precise sequence of transitions that take us from Γrow(T̃0) to Γrow(T̃N). Comparing
this process with the definition of θi shows that the desired formulas for γxy(U, c) all hold.

Assume instead that p < N . It follows by similar reasoning that if p < i ⩽ N , then Γcol(T̃i)
is formed from Γcol(T̃i−1) in one of two ways. If (xi, yi) = (x̃i, ỹi), then we move box (xi, yi)
to the end of column i+ 1 and then move φi−1 from the end of column i to replace box (xi, yi).
If (xi, yi) ̸= (x̃i, ỹi), then we move φi−1 from the end of column i to the end of column i + 1
and switch the entries in boxes (xi, yi) and (x̃i, ỹi).

It remains to compare Γrow(T̃p−1) with Γcol(T̃p). We wish to justify the following claims:

(1) If (xp, yp) = (x̃p, ỹp) = (p, p) and up−1+1 < up, then Γcol(T̃p) is formed from Γrow(T̃p−1)
by moving box (p, p) to the end of column p+1 and then movingφp−1 to replace box (p, p).

(2) If (xp, yp) = (x̃p, ỹp) = (p, p) and up−1+1 = up, then Γcol(T̃p) is formed from Γrow(T̃p−1)
by moving φp−1 from the end of row p to the end of column p+ 1.

(3) If (xp, yp) = (p, p) and (x̃p, ỹp) = (p, p + 1), then φp−1 and box (p, p + 1) of Γrow(T̃p−1)
are both the null element ∅, while boxes (p, p) and (p + 1, p + 1) are both present with
respective non-null elements α and β. In this case, Γcol(T̃p) is formed from Γrow(T̃p−1) by
removing φp−1 and placing ∅ in boxes (p+1, p+1) and (p+2, p+1), α in box (p, p+1),
and β in box (p, p).
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T =
7

5 6

1 3 5

 O←− (u = 4) ;



Γrow(T̃0) = Γrow

 7

5 6

1 3 5 4

 =

{4, 8}

{6, 7} ∅

{1, 2}{3, 5} ∅ ∅

,

Γrow(T̃1) = Γrow

 7

5 6 5

1 3 4

 =

{4, 8}

{6, 7} ∅ ∅

{1, 2}{3, 5} ∅

,

Γcol(T̃2) = Γcol


6

7

5 6

1 3 4

 =

∅

∅

{4, 8}{6, 7}

{1, 2}{3, 5} ∅

,

Γcol(T̃3) = Γcol

 7

5 6

1 3 4 7

 =

{6, 7}

{4, 8} ∅

{1, 2}{3, 5} ∅ ∅

.

Figure 4.2: Example for the proof of Lemma 4.6; compare with Figure 3.1(b).

(4) Together, (2) and (3) imply that if (xp, yp) = (p, p) and (x̃p, ỹp) = (p, p+ 1), then p < N
and Γcol(T̃p+1) is formed from Γrow(T̃p−1) by moving φp−1 = ∅ from the end of row p to
the end of column p+ 2 and then swapping the entries in boxes (p, p) and (p+ 1, p+ 1);
moreover, both tableaux have ∅ in position (p, p+ 1).

Putting together these claims with our observations about Γrow(T̃i) for i < p and Γcol(T̃i)
for i > p completely describes how Γrow(T̃0) evolves into Γcol(T̃N) = Γrow(T̃N) during the
bumping process that defines T O←− u. Once again, comparing this process with the definition
of θi shows that the desired formulas for γxy(U, c) all hold.

It remains to prove claims (1), (2), and (3). The first two claims correspond to the case
when up−1 < Tpp. For this situation, define V and W as in the ⌈up−1⌉ < Tpp case of the proof
of Proposition 3.21. Since row(T̃p−1) = row(V ), it follows that Γrow(V ) has the same entry
in box (2i, 2j) (respectively, box (2p − 1, 2p − 1)) as Γrow(T̃p−1) does in each box (i, j) ∈ T
(respectively, the unique box not in T ). Likewise, as col(T̃p) = col(W ), it follows that Γcol(W )
has the same entry in each box (2i, 2j) (respectively, box (2p + 1, 2p + 1)) as Γcol(T̃p) does
in each box (i, j) ∈ T (respectively, the unique box not in T ). Finally, since the row reading
word of V (respectively, the column reading word of W ) can be transformed to its southwest
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(respectively, northeast) diagonal reading word by a sequence of commutations as described in
the proof of Proposition 3.21, we deduce from part (a) of Lemma 3.28 that Γrow(V ) = Γsw(V )
and Γcol(W ) = Γne(W ). One can observe these properties for the example in Figure 4.1, where
we have

Γrow(V ) = Γsw(V ) = Γsw


· · · · · ·
· · · 5 · 6
· · 3 · · ·
· 1 · 2 · 4
· · · · · ·

 =

· · · · · ·

· · · {4, 7} · ∅

· · {2, 5} · · ·

· {1, 3} · ∅ · ∅

· · · · · ·

and

Γcol(W ) = Γne(W ) = Γne


· · · · 5 ·
· · · 3 · 6
· · · · · ·
· 1 · 2 · 4
· · · · · ·

 =

· · · · {4, 7} ·

· · · {2, 5} · ∅

· · · · · ·

· {1, 3} · ∅ · ∅

· · · · · ·

.

Given the observations in the preceding paragraph, to prove claims (1) and (2), we just
need to check that Γne(W ) is formed from Γsw(V ) either by shifting boxes (2p − 1, 2p − 1)
and (2p, 2p) up one row and one column when up−1+1 < up, or by moving box (2p−1, 2p−1)
to (2p+ 1, 2p+ 1) when up−1 + 1 = up. This is equivalent to showing that Γne(V ) = Γsw(V )
when up−1 + 1 < up and that Γne(V ) is formed from Γsw(V ) by swapping boxes (2p−1, 2p−1)
and (2p, 2p)when up−1+1 = up. In the first case, the diagonals of V have no consecutive entries
and so can be reordered using only commutations, so the identity Γne(V ) = Γsw(V ) follows from
part (a) of Lemma 3.28. When up−1+1 = up, we can also reverse all diagonals in V using only
commutations to go from the southwest diagonal reading word to northeast diagonal reading
word, except for one step that exchanges the consecutive numbers in boxes (2p − 1, 2p − 1)
and (2p, 2p) when these have been pulled to the start of the relevant word. By part (c) of
Lemma 3.28, this has the effect of swapping boxes (2p − 1, 2p − 1) and (2p, 2p) in Γsw(V )
to form Γne(V ), as desired. We conclude that our first two claims (1) and (2) both hold.

Suppose instead that we are in the situation of claim (3), so that up−1 = Tpp. It follows
from (d) of Remark 3.7 that φp−1 and box (p, p + 1) of Γrow(T̃p−1) are both null. Define V as
in the ⌈up−1⌉ = Tpp case of the proof of Proposition 3.21. Since we can transform row(T̃p−1)
to row(V ) by a sequence of commutations followed by one braid relation, it follows from
Lemma 3.28 that

• box (2p+ 1, 2p+ 1) of Γrow(V ) has the same entry as the box of Γrow(T̃p−1) not in T ;

• box (2p, 2p) of Γrow(V ) has the same entry as box (p, p+ 1) of Γrow(T̃p−1);
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• box (2p, 2p+ 2) of Γrow(V ) has the same entry as box (p, p) of Γrow(T̃p−1);

• any other box (2i, 2j) of Γrow(V ) has the same entry as box (i, j) of Γrow(T̃p−1).

Alternatively, as col(T̃p) = col(V ), it follows that Γcol(V ) has the same entry in each box (2i, 2j)
(respectively, box (2p + 1, 2p + 1)) as Γcol(T̃p) does in each box (i, j) ∈ T (respectively, the
unique box not in T ). Finally, since the row reading word of V (respectively, the column reading
word of V ) can be transformed to its southwest (respectively, northeast) diagonal reading word
by a sequence of commutations, we have Γrow(V ) = Γsw(V ) and Γcol(V ) = Γne(V ). One can
observe these properties in the example in Figure 4.2, where we have

Γrow(V ) = Γsw(V ) = Γsw



· · · · · ·
· · · · · 7
· · · · 6 ·
· · · 5 · 6
· · · · · ·
· 1 · 3 · 4
· · · · · ·


=

· · · · · ·

· · · · · {4, 8}

· · · · ∅ ·

· · · ∅ · {6, 7}

· · · · · ·

· {1, 2} · {3, 5} · ∅

· · · · · ·

.

and

Γcol(V ) = Γne(V ) = Γne



· · · · · ·
· · · · · 7
· · · · 6 ·
· · · 5 · 6
· · · · · ·
· 1 · 3 · 4
· · · · · ·


=

· · · · · ·

· · · · · ∅

· · · · ∅ ·

· · · {4, 8} · {6, 7}

· · · · · ·

· {1, 2} · {3, 5} · ∅

· · · · · ·

.

By the facts just listed, to prove claim (3), it suffices to check that Γne(V ) is formed
from Γsw(V ) by swapping boxes (2p, 2p) and (2p + 2, 2p + 2). For this, observe that we can
reverse the diagonals of V to go from the southwest diagonal reading word to the northeast di-
agonal reading word using only commutations, except when we need to reorder the consecutive
entries in boxes (2p, 2p), (2p+1, 2p+1), and (2p+2, 2p+2) after these have been brought to
the start of the relevant word. Since this reordering is accomplished by the sequence of swaps
(up+2)(up+1)up · · ·→(up+1)(up+2)up · · ·→(up+1)up(up+2) · · ·→up(up+1)(up+2) · · · ,
it follows from parts (a) and (c) of Lemma 3.28 that exchanging boxes (2p, 2p) and (2p+2, 2p+2)
in Γsw(V ) produces Γne(V ), as needed. The completes the proof of claim (3), which also finishes
the proof of the lemma.
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4.3. A formula to compute primed boxes from marked cycles

Suppose â is a primed involution word with unprimed form a = unprime(â). In this section
we will develop some notation to express a formula for PO

EG(â) and QO
EG(â) in terms

of PO
EG(a), QO

EG(a), and the set of marked cycles marked(â).
In more detail, if a = a1a2 · · · an ∈ Rinv(z) for some z ∈ IZ and T = ∅ O←− a1

O←− . . .
O←− ai

for some i ∈ [n], then the entries of T on the main diagonal form a strictly increasing sequence
and the indices of these entries in row(T )ai+1ai+2 · · · an are a sequence of commutations that
each contribute one 2-cycle of z. Arranging these sequences into a two-line array gives what we
call the cycle sequence cseqi(a). The successive values of cseqi(a) for i = 1, 2, . . . , n can only
change in a small of number of ways. Our main formula will involve a permutation of cyc(z)
defined by these changes.

As in Section 4.2, suppose T is an increasing shifted tableau and b is a word
with row(T )b ∈ Rinv(z). If T has exactly q rows, then the cycle sequence cseq(T, b) is the
two-line array

cseq(T, b) :=

[
γ11(T, b) γ22(T, b) . . . γqq(T, b)
T11 T22 . . . Tqq

]
. (4.6)

If T = PO
EG(51324) and b = 3154 as in Example 4.4 then

cseq(T, b) =

[
{2, 5} {1, 6}
1 3

]
= cseq5(513243154).

The second row of cseq(T, b) is strictly increasing and the elements in the first row are distinct
2-cycles of z, since the index of Tii in row(T )b is a commutation for all diagonal positions (i, i)
in T . For involution words a = a1a2 · · · an and 0 ⩽ i ⩽ n, we define cseqi(a) := cseq(T, b)
where T = PO

EG(a1a2 · · · ai) and b = ai+1ai+2 · · · an.
We introduce some auxiliary notation to help compare cseqi(a)with cseqi−1(a). Assume b is

nonempty and let u = u0 be its first letter. Denote the weak and strict bumping
paths resulting from inserting u into T as in (4.1). Set ui := Tx̃iỹi for i ∈ [N − 1] and
define θ0 := γ|T |+1(row(T )b) and θi for i ∈ [N − 1] by (4.5). Finally, define the sequence

∆bump(T, b) := ((yi, ỹi, ui−1, θi−1) : i = 1, 2, . . . , p) (4.7)

where p is the index of the unique diagonal position in path⩽(T, u) or else p = N .
Continuing from Example 4.5, we see that if T = PO

EG(51324)
and b = 3154 then p = 3 and ∆bump(T, b) = ((1, 1, 3,∅), (2, 2, 4,∅), (3, 3, 5, {3, 4})). We

think of ∆bump(T, b) as a record of the change between T O←− u and T , and we can use it to
compute successive values of θi by the formula

θi =

{
γi,yi(T, b) if yi = ỹi and either i ̸= yi or ui−1 + 1 < ui

θi−1 otherwise
for i ∈ [p− 1]. (4.8)

For any involution word a = a1a2 · · · an ∈ Rinv(z) and j ∈ [n], define ∆bump
j (a) := ∆bump(T, b)

where T = PO
EG(a1a2 · · · aj−1) and b = ajaj+1 · · · an. The following result shows that cseqj(a)

is completely determined by cseqj−1(a) and ∆bump
j (a).
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Lemma 4.7. Let a be an (unprimed) involution word and choose j ∈ [ℓ(a)]. Suppose

cseqj−1(a) =

[
γ1 γ2 . . . γq
c1 c2 . . . cq

]
and ∆bump

j (a) = {(yi, ỹi, ui−1, θi−1)}i∈[p].

Exactly one of the following cases applies:

(a) The sequence path⩽j (a) ends before reaching the main diagonal if and only if p < yp. In
this case i appears in QO

EG(a) in an off-diagonal position and cseqj(a) = cseqj−1(a).

(b) The sequence path⩽j (a) terminates on the main diagonal if and only if p = yp = ỹp = q+1.
In this case i appears in QO

EG(a) in position (q + 1, q + 1) and

cseqj(a) =

[
γ1 γ2 . . . γq θq
c1 c2 . . . cq uq

]
.

(c) The sequences path⩽j (a) and path<j (a) reach (but do not terminate on) the main diagonal
in the same row if and only if p = yp = ỹp ⩽ q. In this case i′ appears in QO

EG(a) and we
have

up−1 + 1 ⩽ cp and cseqj(a) =

[
γ1 . . . γp−1 η γp+1 . . . γq
c1 . . . cp−1 up−1 cp+1 . . . cq

]
,

where η := γp if up−1 + 1 = cp and η := θp−1 if up−1 + 1 < cp.

(d) The sequences path⩽j (a) and path<j (a) reach the main diagonal in different rows if and
only if p = yp < ỹp = p+ 1 ⩽ q. In this case i′ appears in QO

EG(a) and we have

up−1 = cp and cseqj(a) =

[
γ1 . . . γp−1 γp+1 γp γp+2 . . . γq
c1 . . . cp−1 cp cp+1 cp+2 . . . cq

]
.

Proof. The assertion that exactly one of these cases applies follows from Proposition 4.2. The
claims about up−1 in cases (c) and (d) are clear from how PO

EG(a1a2 · · · aj1)
O←− aj is defined.

The description of cseqj(a) is immediate from the formulas in Lemma 4.6.

Putting all of this together, we associate a permutation of
(Z
2

)
:= {{i, j} : i, j ∈ Z, i < j} to

each involution word. Let a = a1a2 . . . an be an (unprimed) involution word for some z∈IZ. For
each i ∈ [n], let τi(a) be the following permutation of

(Z
2

)
with support in cyc(z). If cseqi−1(a)

and cseqi(a) are equal or have different lengths then τi(a) := 1. Otherwise, writing

cseqi−1(a) =

[
γ1 γ2 . . . γq
c1 c2 . . . cq

]
and cseqi(a) =

[
η1 η2 . . . ηq
d1 d2 . . . dq

]
,

there is either a unique index j ∈ [q] with dj < cj , or a unique index j ∈ [q − 1]
with γj+1 = ηj ̸= γj = ηj+1, and in both cases we define τi(a) to be the transposition of

(Z
2

)
that swaps ηj and γj while fixing all other elements. We then let τ(a) := τ1(a)τ2(a) · · · τn(a).



42 Eric Marberg

Example 4.8. Suppose a = 513243154. This word is inRinv(z) for z = (1, 6)(2, 5)(3, 4) ∈ IZ.
The successive values of PO

EG(a1a2 · · · ai) are

5 1 5
5

1 3
3

1 2 5
3 5

1 2 4

5
3 4

1 2 3

5
3 4

1 2 3 4

5
3 4

1 2 3 4 5

5
3 4 5

1 2 3 4 5

and the successive values of γxy(T, b) for T = PO
EG(a1a2 · · · ai) and b = ai+1ai+2 · · · a9 are

{3, 4} {2, 5} {3, 4}
{3, 4}

{2, 5} {1, 6}

{1, 6}

{2, 5} ∅ {3, 4}

{1, 6} {3, 4}

{2, 5} ∅ ∅

{3, 4}

{1, 6} ∅

{2, 5} ∅ ∅

{3, 4}

{2, 5} ∅

{1, 6} ∅ ∅ ∅

{3, 4}

{2, 5} ∅

{1, 6} ∅ ∅ ∅ ∅

{3, 4}

{2, 5} ∅ ∅

{1, 6} ∅ ∅ ∅ ∅

.

Thus, we have

cseq1(a) =

[
{3, 4}
5

]
, cseq4(a) = cseq5(a) =

[
{2, 5} {1, 6}
1 3

]
,

cseq2(a) =

[
{2, 5}
1

]
, cseq6(a) =

[
{2, 5} {1, 6} {3, 4}
1 3 5

]
,

cseq3(a) =

[
{2, 5} {3, 4}
1 5

]
, cseq7(a) = cseq8(a) = cseq9(a) =

[
{1, 6} {2, 5} {3, 4}
1 3 5

]
,

which means that τ1(a) = τ3(a) = τ5(a) = τ6(a) = τ8(a) = τ9(a) = 1 while

τ2(a) = ({2, 5} ↔ {3, 4}), τ4(a) = ({1, 6} ↔ {3, 4}), and τ7(a) = ({1, 6} ↔ {2, 5}),

so we have τ(a) = ({1, 6} ↔ {3, 4}).

Suppose â is a primed involution word with a = unprime(â). Recall the definition of the
set marked(â) from (3.9). The following result is complementary to Proposition 4.1 and gives
the second key ingredient in our proof of Theorem 3.24. This proposition reduces the task of
locating the (diagonal) primes in PO

EG(â) and QO
EG(â) to understanding τ(a) and marked(â).

Proposition 4.9. Suppose â ∈ R+
inv(z) and a = unprime(â). Let (i, j) ∈ Z × Z

and θ=γij(PO
EG(a)). If i ̸=j (respectively, i=j), then the entry of PO

EG(â) (respectively QO
EG(â))

in position (i, j) is primed if and only if θ ̸= ∅ and τ(a)(θ) ∈ marked(â).

Proof. One can define orthogonal Edelman–Greene insertion by a slightly different bumping
process, in which an insertion tableau P̃O

EG(â) is built up with diagonal primes along with a
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recording tableau Q̃O
EG(â) having no diagonal primes, and then at the final stage PO

EG(â)

andQO
EG(â) are formed by moving any diagonal primes in P̃O

EG(â) to Q̃O
EG(â). From this perspec-

tive the proposition is just locating the primes in P̃O
EG(â). The following argument is organized

around this observation.
Let n = ℓ(â) = ℓ(a) and form P̃O

EG(â) from PO
EG(â) by adding primes to the main diag-

onal positions that are primed in QO
EG(â). Note that we have P̃O

EG(a) = unprime(P̃O
EG(â)) by

Proposition 3.8. We will show that the entry in position (x, y) of P̃O
EG(â) is primed if and only

if θ := γxy(P̃
O
EG(a)) has ∅ ̸= θ ∈ cyc(z) and τ(a)(θ) ∈ marked(â). Define

T j := P̃O
EG(â1â2 · · · âj) and bj := âj+1âj+2 · · · ân for 0 ⩽ j ⩽ n,

and abbreviate by writing marked(T j, bj) := marked(row(T j)bj). It suffices to check that

marked(T j, bj) =
{
τj(a)(θ) : θ ∈ marked(T j−1, bj−1)

}
for all j ∈ [n],

since this will imply that marked(row(P̃O
EG(â))) = {θ : τ(a)(θ) ∈ marked(â)}.

Let ∼ be the transitive closure of the relation on primed involution words that
has ŵ ∼ ocki(ŵ) for all i ∈ Z such that marked(ŵ) = marked(ocki(ŵ)). In Lemma 4.7, if we
are in case (a), case (b), or case (c) with η = γp, then τj(a) = 1 and it follows by tracing through
the proof of Proposition 3.21 and using Proposition 3.29 that row(T j−1)bj−1 ∼ row(T j)bj as
needed.

If we are in case (c) of Lemma 4.7 with η ̸= γp, then τj(a) is the transposition of cyc(z)
interchanging η ↔ γp, and it follows similarly that marked(T j, bj) is formed by applying this
transposition to all elements of marked(T j−1, bj−1).

Finally, suppose we are in case (d) of Lemma 4.7, so that τj(a) = (γp ↔ γp+1). Form U j

from T j by switching the primes on the entries in positions (p, p) and (p + 1, p + 1). Then,
again following the proof of Proposition 3.21 and using Proposition 3.29, one checks
that row(T j−1)bj−1 ∼ row(U j)bj . Thus

marked(T j−1, bj−1) = marked(U j, bj) =
{
τj(a)(θ) : θ ∈ marked(T j−1, bj−1)

}
as desired.

As an application, we explain how to deduce Theorem 3.24 in the case when inserting three
consecutive letters in â contributes two diagonal positions to PO

EG(â).

Lemma 4.10. Suppose â is a primed involution word and n = ℓ(â). Write □j for j ∈ [n] to
denote the unique box of QO

EG(â) containing j or j′. Assume that i ∈ [n − 2] and □i and □i+2

are both on the main diagonal. Then PO
EG(ocki(â)) = PO

EG(â) and QO
EG(ocki(â)) = di(Q

O
EG(â)).

Proof. Write □i = (q − 1, q − 1) and Q = QO
EG(â). Then we must have □i+1 = (q − 1, q)

and □i+2 = (q, q), and consequently di(Q) = si(Q) = si+1(Q) is formed from Q by swap-
ping i+1 and i′+1, and then reversing the primes on the entries in the diagonal boxes (q−1, q−1)
and (q, q) if these entries are not both primed or both unprimed.
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After possibly invoking Proposition 3.23 to interchange Q with di(Q), we may assume that
the entry in position (q − 1, q) of Q is i + 1 rather than i′ + 1. Let b̂ = ocki(â) and de-
fine a = unprime(â) and b = unprime(b̂). Then b = ocki(a) by Lemma 3.19. It is evident
from Lemma 4.7 that τi(a) = τi+1(a) = τi+2(a) = 1. Since we know from Proposition 4.1
that QO

EG(b) is formed by applying di to QO
EG(a) = unprimediag(Q), which adds a prime to posi-

tion (q − 1, q), it is also clear from Lemma 4.7 that τi(b) = τi+2(b) = 1.
To compute τi+1(b), consider the weak bumping paths path⩽i (b), path

⩽
i+1(b), and path⩽i+2(b)

that result from inserting bi, bi+1, and bi+2 successively into

PO
EG(a1a2 · · · ai−1) = PO

EG(b1b2 · · · bi−1).

In view of Proposition 4.2, the first path must terminate at position (q − 1, q − 1), the last two
positions of the second path must be (q − 1, q − 1) followed by (q − 1, q), and the last two
positions of the third path must be (q − 1, q) followed by (q, q).

If the first row of cseqi+2(a) is
[
γ1 . . . γq

]
, then since cseqi+2(a) = cseqi+2(b) by Propo-

sition 4.1, we deduce from Lemma 4.6 that the first rows of cseqi−1(a) = cseqi−1(b), cseqi(b),
and cseqi+1(b) are

[
γ1 . . . γq−2

]
,
[
γ1 . . . γq−2 γq

]
, and

[
γ1 . . . γq−2 γq−1

]
,

respectively. Thus τi+1(b) is the permutation of cyc(z) that swaps γq−1 and γq. Multi-
plying τ1(a)τ2(a) · · · τi+2(a) on the right by this permutation gives τ1(b)τ2(b) · · · τi+2(b) and
vice versa.

As we know that PO
EG(a) = PO

EG(b) and QO
EG(b) = di(Q

O
EG(a)) by Proposition 4.1, it follows

from Proposition 4.9 that PO
EG(â) = PO

EG(b̂) and QO
EG(b̂) = di(Q

O
EG(â)).

4.4. Constraints on cycle sequences and the 213↔ 231 case of Theorem 3.24

The next few sections prove a series of technical results constraining the values of cseqi(a)
and τi(a) for an (unprimed) involution word a.

In the following lemma, let entries(T ) ⊂ Z⊔Z′ denote the set of entries in a shifted tableauT .
Also let diag(T ) denote the subset of entries appearing on the main diagonal of T .

Lemma 4.11. Suppose a and b are (unprimed) involution words for elements of IZ.
Fix 0 ⩽ i ⩽ ℓ(a)− 2 with ai+1 < ai+2 and suppose 0 ⩽ j ⩽ ℓ(b)− 2 is an index such that:

(a) cseqi(a) = cseqj(b) and cseqi+2(a) = cseqj+2(b),

(b) |diag(QO
EG(a)) ∩ {i+ 1, i+ 2}| = |diag(QO

EG(b)) ∩ {j + 1, j + 2}|, and

(c) |entries(QO
EG(a)) ∩ {i+ 1, i+ 2}| = |entries(QO

EG(b)) ∩ {j + 1, j + 2}|.

Then τi+1(a)τi+2(a) = τj+1(b)τj+2(b) as permutations of
(Z
2

)
.

Proof. Let s(a) := |diag(QO
EG(a)) ∩ {i+ 1, i+ 2}| ∈ {0, 1} be the number of diagonal entries

inQO
EG(a) equal to i+1 or i+2 and let r(a) := 2−|entries(QO

EG(a))∩{i+1, i+2}| ∈ {0, 1, 2}
be the number of (necessarily off-diagonal) entries in QO

EG(a) equal to i′ +1 or i′ +2. Similarly
let s(b) ∈ {0, 1} be the number of diagonal entries in QO

EG(b) equal to j + 1 or j + 2 and
let r(b) ∈ {0, 1, 2} be the number of entries in QO

EG(a) equal to j′ + 1 or j′ + 2.



combinatorial theory 3 (3) (2023), #14 45

Conditions (b) and (c) imply that r(a) = r(b) and s(a) = s(b). The key idea in the proof
of this lemma is to observe how this fact combined with Lemma 4.7 limits the possible values
of cseqi+1(a) and cseqj+1(b) once cseqi(a) = cseqj(b) and cseqi+2(a) = cseqj+2(b) are given.
We will then deduce that τi+1(a)τi+2(a) = τj+1(b)τj+2(b) from these constraints.

From now on set r := r(a) = r(b) and s := s(a) = s(b). The desired equality holds
when r = 0 since then τi+1(a) = τi+2(a) = τj+1(b) = τj+2(b) = 1 by (a) of Lemma 4.7.

Assume r = 1. Then, by (a) of Lemma 4.7, at least one of τi+1(a) or τi+2(a) is trivial,
and likewise for τj+1(b) or τj+2(b). Suppose further that s = 0. Then cseqi(a) = cseqj(b)
and cseqi+2(a)=cseqj+2(b) have the same number of columns, so we have cseqi(a)=cseqi+1(a)
or cseqi+1(a)=cseqi+2(a) (or both), as well as cseqj(b)=cseqj+1(b) or cseqj+1(b)=cseqj+2(b)
(or both). Write

cseqi(a) = cseqj(b) =

[
γ1 γ2 . . . γq
c1 c2 . . . cq

]
(4.9)

and suppose the first row of cseqi+2(a) = cseqj+2(b) is
[
η1 η2 . . . ηq

]
. If this is equal to

the first row of cseqi(a) = cseqj(b), then we must be in the “or both” case when

cseqi(a) = cseqi+1(a) = cseqi+2(a) and cseqj(b) = cseqj+1(b) = cseqj+2(b),

and then τi+1(a) = τi+2(a) = τj+1(b) = τj+2(b) = 1. Otherwise, it follows by examining
cases (c) and (d) in Lemma 4.7 that there is either a unique index p ∈ [q] with γp ̸= ηp, or a uni-
que p ∈ [q− 1] with γp+1 = ηp ̸= γp = ηp+1, and in either case τi+1(a)τi+2(a) = τj+1(b)τj+2(b)
is the permutation of

(Z
2

)
swapping γp and ηp.

Next suppose r = s = 1. Consider the weak bumping paths path⩽i+1(a) and path⩽i+2(a)
that result from inserting ai+1 and ai+2 successively into PO

EG(a1a2 · · · ai). Since ai+1 < ai+2,
it follows from Proposition 4.3 that path⩽i+2(a) terminates at a diagonal position (q + 1, q + 1)
and path⩽i+1(a) contains a unique non-terminal diagonal position (p, p) for some p ∈ [q]. Denote
cseqi(a) = cseqi(b) as in (4.9). There are four possibilities for cseqi+2(a) = cseqj+2(b), namely:[

γ1 . . . γp . . . γq ηq+1

c1 . . . cp − 1 . . . cq cq+1

]
,

[
γ1 . . . ηp . . . γq ηq+1

c1 . . . dp . . . cq cq+1

]
,[

γ1 . . . γp+1 γp . . . γq ηq+1

c1 . . . cp cp+1 . . . cq cq+1

]
, or

[
γ1 . . . ηp . . . γq γp
c1 . . . dp . . . cq cq+1

]
,

(4.10)

where ηp, ηq+1 /∈ {γ1, γ2, . . . , γq} and dp < cp − 1. In each case, one can work out the unique
possibility for cseqi+1(a) by examining cases (b), (c), and (d) in Lemma 4.7.

As we pass from cseqj(b) to cseqj+1(b) to cseqj+2(b), it follows from Lemma 4.7 that one
step must add an extra column and the other must alter the first q columns either by chang-
ing a single column or swapping adjacent entries in the first row. From this observation, we
deduce that if cseqi+2(a) = cseqj+2(b) has one of the first three forms in (4.10), then there
are two possibilities for cseqj+1(b), but in either case the factors τj+1(b) and τj+2(b) commute
and τi+1(a)τi+2(a) = τj+1(b)τj+2(b) is respectively either the identity permutation, the trans-
position (γp, ηp), or the transposition (γp, γp+1). If cseqi+2(a) = cseqj+2(b) has the last form
in (4.10) then

cseqi+1(a) = cseqj+1(b) =

[
γ1 . . . ηp . . . γq
c1 . . . dp . . . cq

]
(4.11)



46 Eric Marberg

so τi+1(a) = τj+1(b) and τi+2(a) = τj+2(b).9
Finally suppose r = 2 so that s = 0. Then cseqi(a) = cseqj(b) and cseqi+2(a) = cseqj+2(b)

have the same number of columns but cseqi(a) ̸= cseqi+1(a) ̸= cseqi+2(a) and cseqj(b) ̸=
cseqj+1(b) ̸= cseqj+2(b). Denote cseqi(a) = cseqj(b) as in (4.9) and consider the weak bumping
paths path⩽i+1(a) and path⩽i+2(a) that result from inserting ai+1 and ai+2 successively
into PO

EG(a1a2 · · · ai). Both paths now must contain unique non-terminal diagonal posi-
tions (k, k) and (l, l), and it follows from Proposition 4.3 that k < l since we assume ai+1 < ai+2.
We may thus list the possibilities for cseqi+2(a) = cseqj+2(b) as follows. To start, this array
could be

(1)
[
γ1 . . . ηk . . . ηl . . . γq
c1 . . . dk . . . dl . . . cq

]
or

[
γ1 . . . ηk . . . γl+1 γl . . . γq
c1 . . . dk . . . cl cl+1 . . . cq

]
,

where in these cases for each p ∈ {k, l} either dp = cp − 1 and ηp = γp or dp < cp − 1
and ηp /∈ {γ1, γ2, . . . , γq}. When k + 1 < l, the array could also be

(2)
[

γ1 . . . γk+1 γk . . . ηl . . . γq
c1 . . . ck ck+1 . . . dl . . . cq

]
or[

γ1 . . . γk+1 γk . . . γl+1 γl . . . γq
c1 . . . ck ck+1 . . . cl cl+1 . . . cq

]
,

where again either dl = cl − 1 and ηl = γl or dl < cl − 1 and ηl /∈ {γ1, γ2, . . . , γq}. Finally,
if k + 1 = l then cseqi+2(a) = cseqj+2(b) could also be either

(3)
[
γ1 . . . γk+1 γk . . . γq
c1 . . . ck ck+1 − 1 . . . cq

]
, or

(4)
[
γ1 . . . γk+1 γk+2 γk . . . γq
c1 . . . ck ck+1 ck+2 . . . cq

]
, or

(5)
[
γ1 . . . γk+1 ηk . . . γq
c1 . . . ck dk+1 . . . cq

]
,

where dk+1 < ck+1 − 1 and ηk /∈ {γ1, γ2, . . . , γq}, or the array could be

(6)
[
γ1 . . . ηk γk . . . γq
c1 . . . dk dk+1 . . . cq

]
,

where dk < ck − 1 and ηk /∈ {γ1, γ2, . . . , γq} and dk+1 < ck+1 − 1. In each case, one can again
work out the unique possibility for cseqi+1(a) by examining cases (c) and (d) in Lemma 4.7.

The values for cseqj+1(b) are constrained by Lemma 4.7 and the fact that

cseqi(a) = cseqj(b) ̸= cseqj+1(b) ̸= cseqj+2(b) = cseqi+2(a).

9If p = q, then Lemma 4.7 with our assumptions that cseqi(a) = cseqj(b) and cseqi+2(a) = cseqj+2(b) does
not uniquely determine the first row of cseqj+1(b). But considering the arrays’ second rows shows that (4.11) must
hold.
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In cases (1)-(3) there are two possibilities for cseqj+1(b) but for either one τj+1(b) and τj+2(b)
commute and τi+1(a)τi+2(a) = τj+1(b)τj+2(b). In case (4), we must have

cseqi+1(a) = cseqj+1(b) =

[
γ1 . . . γk+1 γk γk+2 . . . γq
c1 . . . ck ck+1 ck+2 . . . cq

]
.

In case (5), we must have

cseqi+1(a) = cseqj+1(b) =

[
γ1 . . . γk+1 γk . . . γq
c1 . . . ck ck+1 . . . cq

]
.

In case (6), we must have

cseqi+1(a) = cseqj+1(b) =

[
γ1 . . . ηk γk+1 . . . γq
c1 . . . dk ck+1 . . . cq

]
.

In each case τi+1(a) = τj+1(b) and τi+2(a) = τj+2(b), so τi+1(a)τi+2(a) = τj+1(b)τj+2(b).

The action of ocki comes in three different forms: either ocki transforms a “213-pattern” to
a “231-pattern”, a “121-pattern” to a “212-pattern”, or a “132-pattern” to a “312-pattern”. We
can use the lemmas in this section to derive the following result. This lemma, combined with
Proposition 4.9, will be used to prove Theorem 3.24 when ocki acts a 213↔ 231 transformation.

Lemma 4.12. Suppose a = a1a2 · · · an is an (unprimed) involution word for an element of IZ.
Assume i ∈ [n− 2] and ai+1 < ai < ai+2. Then τ(ocki(a)) = τ(a).

Proof. Let b := ocki(a) = a1 · · · aiai+2ai+1 · · · an. We wish to prove that τ(a) = τ(b).
Write □j for j ∈ [n] to denote the box of QO

EG(a) containing j or j′. We first check that □i

and □i+2 are not both on the main diagonal. Arguing by contradiction, we observe that these
positions could only both be on the diagonal if the weak bumping paths path⩽i (a), path

⩽
i+1(a),

and path⩽i+2(a) that result from inserting ai, ai+1, and ai+2 successively into PO
EG(a1a2 · · · ai−1)

respectively terminate at (q− 1, q− 1), (q− 1, q), and (q, q) for some q > 0. Assume this is the
case, so that we have path⩽i (a) = rpath⩽i (a) and path⩽i+1(a) = rpath⩽i+2(a).

Since ai > ai+1, Proposition 4.3 implies that the positions in rpath⩽i+1(a) are all weakly to
the left of the corresponding positions in rpath⩽i (a). The second to last position in path⩽i+1(a)
must therefore be (q − 1, q − 1), so the entry in position (q − 1, q) of PO

EG(a1a2 · · · ai+1) is the
same as the entry in position (q−1, q−1) of PO

EG(a1a2 · · · ai). Since ai+1 < ai < ai+2, it is easy
to check that the first q − 1 positions in path⩽i+2(a) are strictly to the right of the corresponding
positions in path⩽i (a), and that if path⩽i+2(a) reaches row q then its position in that row must
be strictly to the right of (q − 1, q). But this makes it impossible for path⩽i+2(a) to terminate
at (q, q).

Thus □i and □i+2 are not both on the main diagonal. By Proposition 4.1 PO
EG(a1a2 · · · aj) =

PO
EG(b1b2 · · · bj) for all j ∈ [n] \ {i + 1} along with QO

EG(b) = di(Q
O
EG(a)), so τj(a) = τj(b)

for all j ∈ [n] \ {i + 1, i + 2}. It remains to show that τi+1(a)τi+2(a) = τi+1(b)τi+2(b).
Evidently cseqi(a) = cseqi(b) and cseqi+2(a) = cseqi+2(b) and ai+1 < ai+2.
Since QO

EG(b) = di(Q
O
EG(a)) and □i and □i+2 are not both on the main diagonal, it follows

from Proposition 3.23 that conditions (b) and (c) in Lemma 4.11 also hold, so that result implies
that τi+1(a)τi+2(a) = τi+1(b)τi+2(b).
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4.5. Constrains from intersecting and non-intersecting bumping paths

This section contains two technical lemmas that constrain how cseqi(a) and QO
EG(a) can change

when adjacent letters are swapped and the successive bumping paths associated to these letters
either intersect or remain disjoint.

Lemma 4.13. Let a, b, c be unprimed words with n := ℓ(a). Suppose X, Y ∈ Z are such that

(a) XY b and Y Xc are reduced words for the same permutation in SZ, and

(b) aXY b and aY Xc are involution words (necessarily for the same element in IZ).

Let T := PO
EG(a). If rpath<(T,X) ∩ rpath<(T, Y ) is nonempty then its first position is also

in rpath⩽(T,X) ∩ rpath⩽(T, Y ). If rpath<(T,X) ∩ rpath<(T, Y ) has an off-diagonal position
then

• cseqn+1(aXY b) = cseqn+1(aY Xc);

• n+1 is on the diagonal inQO
EG(aXY b) if and only if it is on the diagonal inQO

EG(aY Xc);

• n′ + 1 is in QO
EG(aXY b) if and only if n′ + 1 is in QO

EG(aY Xc).

Proof. Suppose rpath<(T,X)∩rpath<(T, Y ) is nonempty and the first position in this intersec-
tion is (j, k). To show that (j, k) also belongs to rpath⩽(T,X) ∩ rpath⩽(T, Y ),
writeX0 :=X<Y0 :=Y and letXi and Yi be the entries of T in the ith positions of path<(T,X)
and path<(T, Y ) respectively. Then Xj−1 < Yj−1 and the smallest entry of T in row j that
is greater than both of these numbers is Xj = Yj by definition. This means that row j of T
cannot contain any entry w with Xj−1 < w ⩽ Yj−1, so by Remark 3.7, row j of T also cannot
contain Xj−1. Hence (j, k) ∈ rpath⩽(T,X) ∩ rpath⩽(T, Y ) as desired.

It is clear from Definition 3.1 that rpath<(T,X) and rpath<(T, Y ) coincide after their
first j − 1 positions, and it follows by our claim that rpath⩽(T,X) and rpath⩽(T, Y ) also co-
incide after their first j − 1 positions. If j ̸= k, then all of these paths continue after row j,
and we have γxy(T,XY b) = γxy(T, Y Xc) for all positions (x, y) since XY b and Y Xc are
reduced words for the same permutation. Given these observations, the result follows from
Lemma 4.7.

The next lemma gives us precise control over cycle sequences and diagonal entries when
swapping adjacent letters in an involution word that are “far apart” and have disjoint bumping
paths.

Lemma 4.14. Suppose a, b are unprimed words and X, Y ∈ Z are such that X + 1 < Y
and aXY b is an involution word for an element of IZ. Let T = PO

EG(a) and n = ℓ(a), and
assume rpath⩽(T,X) and rpath⩽(T, Y ) are disjoint. Then cseqn+2(aXY b) = cseqn+2(aY Xb),
and for each ϵ ∈ {0, 1}, the number n + 1 + ϵ is on the main diagonal in QO

EG(aXY b) if and
only if n+ 2− ϵ is on the main diagonal in QO

EG(aY Xb), while n′ + 1 + ϵ is in QO
EG(aXY b) if

and only if n′ + 2− ϵ is in QO
EG(aY Xb).
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Proof. Again writeX0 := X < Y0 := Y and letXi and Yi be the entries of T in the ith positions
of path<(T,X) and path<(T, Y ) respectively. Suppose rpath⩽(T,X) and rpath⩽(T, Y ) are dis-
joint. Lemma 4.13 with b = c implies that rpath<(T,X) and rpath<(T, Y )must also be disjoint.
We argue that sinceX+1 < Y , it must further hold that rpath<(T,X) and rpath⩽(T, Y ) are dis-
joint. To see this, note that ifXi = Yi−1 in some row i > 0 of T occupied by both rpath<(T,X)
and rpath<(T, Y ), then this row of T must also containXi−1 and we must haveXi−1 = Xi−1
and Yi−1 = Xi, since otherwise rpath⩽(T,X) and rpath⩽(T, Y ) would intersect in the posi-
tion of Xi in row i. But this means that if Xi = Yi − 1 for any row i > 0 then we also
have X0 = X0 − 1, which is a contradiction since X0 = X and Y0 = Y .

From these properties, we deduce that in any given row occupied by all four paths, the po-
sition in rpath⩽(T,X) is weakly to the left of the position in rpath<(T,X), which is strictly
to the left of the position in rpath⩽(T, Y ), which finally is weakly to the left of the
position in rpath<(T, Y ). It follows that if (i, i) ∈ rpath⩽(T,X) ∩ rpath<(T,X) then any
diagonal position (j, j) ∈ rpath⩽(T, Y ) must have i < j, while if (i, i) ∈ rpath⩽(T,X)
and (i, i + 1) ∈ rpath<(T,X) then any diagonal position (j, j) ∈ rpath⩽(T, Y ) must
have i+ 1 < j.

In addition, Txy and γxy(T ) only differ from (T
O←− w)xy and γxy(T

O←− w) at posi-
tions (x, y) ∈ path⩽(T,w) ∪ path<(T,w) by Lemma 4.6. Since γn+1(aXY b) = γn+2(aY Xb)
and γn+1(aY Xb) = γn+2(aXY b) as X + 1 < Y , it follows in view of Proposition 4.2 that

∆bump
n+1 (aXY b) = ∆bump

n+2 (aY Xb). (4.12)

To prove the lemma, it suffices to show that∆bump
n+1 (aY Xb) and∆bump

n+2 (aXY b) end with the same
tuple, or that rpath⩽(T, Y ) and rpath⩽(T

O←− u, Y ) both never reach the main diagonal. In the
former situation Lemma 4.7 implies the desired result. In the latter situation Lemma 4.7 implies

cseqn(aXY b) = cseqn(aY Xb) = cseqn+1(aY Xb),

which means that cseqn+1(aXY b) = cseqn+2(aY Xb) in view of (4.12), along with

cseqn+1(aXY b) = cseqn+2(aXY b),

so cseqn+2(aXY b) = cseqn+2(aY Xb) holds. The other assertions about the locations of n+1,
n+ 2, n′ + 1, and n′ + 2 in QO

EG(aXY b) and QO
EG(aY Xb) are easy to deduce from Lemma 4.7.

To this end, recall the definitions of cpath⩽(T,X) and cpath<(T,X) from (4.3). If the
positions in cpath⩽(T,X) ∪ cpath<(T,X) are disjoint from rpath⩽(T, Y ) ∪ rpath<(T, Y ),
then the latter union is disjoint from path⩽(T,X) ∪ path<(T,X), and so the stronger prop-
erty ∆bump

n+1 (aY Xb) = ∆bump
n+2 (aXY b) holds in view of Lemma 4.6.

Instead suppose cpath⩽(T,X) ∪ cpath<(T,X) and rpath⩽(T, Y ) ∪ rpath<(T, Y ) are not
disjoint. For each i > 0, let cpath<(T,X, i) be the set of positions in cpath<(T,X) in row i,
and let

cpath⩽(T,X, i) := {(i− 1, j) ∈ cpath⩽(T,X) : (i, j) ∈ cpath<(T,X)}.

Then each position in cpath⩽(T,X)∪ cpath<(T,X) is in cpath⩽(T,X, i)∪ cpath<(T,X, i) for
a unique value of i, and every position in cpath⩽(T,X, i)∪ cpath<(T,X, i) occurs in a column
strictly to the left of every position in cpath⩽(T,X, i+1)∪cpath<(T,X, i+1) by Proposition 4.2.
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Let i be minimal such that the unions cpath⩽(T,X, i)∪ cpath<(T,X, i) and rpath⩽(T, Y )∪
rpath<(T, Y ) intersect. Assume the leftmost position in cpath⩽(T,X, i)∪ cpath<(T,X, i) is in
column j + 1 while

|cpath⩽(T,X, i)| = l and |cpath<(T,X, i)| = k + l

for some integers k, l ⩾ 0 with k + l > 0. If i = 1 then we must have l = 0 and j + k − 1 must
be the length of the first row of T . If i > 1 then we must have Yj+k+t = Yj+k + t for t ∈ [l].
Finally, all positions in cpath⩽(T,X, i) ∪ cpath<(T,X, i) must be occupied in T , except that
when l = 0 the single position (i, j + k) may be outside the domain of T .

First assume all positions in cpath⩽(T,X, i) ∪ cpath<(T,X, i) are occupied in T . Then we
must have i > 1, so the entries of T in positions {i− 1, i} × {j + 1, j + 2, . . . , j + k + l} are

Xj+1 Xj+2 · · · Xj+k Xj+k + 1 Xj+k + 2 · · · Xj+k + l

Ti−1,j+1 Ti−1,j+2 · · · Ti−1,j+k Xj+k Xj+k + 1 · · · Xj+k + l − 1

while the corresponding entries of T O←− u are10

Xj Xj+1 · · · Xj+k−1 Xj+k + 1 Xj+k + 2 · · · Xj+k + l

? ? · · · ? Xj+k Xj+k + 1 · · · Xj+k + l − 1

.

In this case one of the following holds:

(1) i = j and Tii = Xj ,

(2) i = j + 1 and k = 0 and Ti−1,i−1 + 1 = Ti−1,i = Tii − 1 = Xj , or

(3) i < j and Xj appears in column j of T above row i.

Position (i−1, j+k+l+1) in T must be unoccupied or contain an entry greater thanXj+k+l, so
position (i, j+k+ l+1) in T is unoccupied or contains an entry greater thanXj+k+ l+1. This
implies that neither (i−1, j+k+ l) nor (i, j+k+ l) can belong to rpath⩽(T, Y )\rpath<(T, Y ).
Therefore if (x, y) is in the intersection of rpath⩽(T, Y ) and cpath⩽(T,X, i) ∪ cpath<(T,X, i)

10Most of the boxes labeled by question marks in T O←− X contain the same entries as the corresponding positions
of T . Such an entry could be different if its position belongs to rpath⩽(T,X)∩ rpath<(T,X). A given row has at
most one such position, which must be strictly to the left of any terms of rpath⩽(T, Y ) in the same row.
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then (x, y) or (x, y + 1) must be in the intersection of rpath<(T, Y ) and
cpath⩽(T,X, i)∪ cpath<(T,X, i). Furthermore, if (i−1, y) ∈ rpath<(T, Y )∩ cpath⩽(T,X, i)
then (i, y) ∈ rpath<(T, Y ) ∩ cpath<(T,X, i).

So we may assume that (i, j + δ) ∈ rpath<(T, Y ) ∩ cpath<(T,X, i) for some δ ∈ [k + l].
If k < δ ⩽ l then we also have (i − 1, j + δ) ∈ rpath<(T, Y ) ∩ cpath⩽(T,X, i). In view of
the minimality of i, apart from these one or two positions there are no other elements in the
intersection of rpath<(T, Y ) and cpath⩽(T,X)∪ cpath<(T,X), since rpath<(T, Y ) contains at
most one position in each row, and since all positions of rpath<(T, Y ) above row i contain entries
of T that are greater than Xj+δ while all positions cpath⩽(T,X) ∪ cpath<(T,X) above row i
contain entries of T that are at most Xj . To proceed, we divide our analysis into six subcases:

(a) If k+1 < δ ⩽ l then Lemma 4.6 implies ∆bump
n+1 (aY Xb) = ∆bump

n+2 (aXY b) which suffices.

(b) Suppose k > 0 and δ = k + 1, so that l > 0 while (i − 1, j + k + 1) and (i, j + k + 1)
are both in rpath<(T, Y ). We cannot have Ti−1,j+k = Xj+k − 1, since then (i− 1, j + k)
would be in rpath⩽(T, Y ) and not rpath<(T,X), meaning that (i− 1, j + k) would have
to belong to cpath⩽(T,X, i). Therefore (i − 1, j + k + 1) is also in rpath⩽(T, Y ). This
means that terms i and i+ 1 of ∆bump

n+1 (aY Xb) are

(j + k, j + k + 1, Xj+k, θ) and (y, ỹ, Xj+k + 1, θ)

for the 2-cycle θ := γi−1,j+k+1(T,XY b) = γi−1,j+k+1(T, Y Xb) and some columns
y ⩽ ỹ ⩽ j + k + 1. By Lemma 4.6, terms i and i+ 1 of ∆bump

n+2 (aXY b) are

(j + k + 1, j + k + 1, Xj+k, η) and (y, ỹ, Xj+k + 1, θ)

for η := γi,j+k+1(T,XY b) = γi,j+k+1(T, Y Xb) and the same values of θ, y, ỹ.
Thus ∆bump

n+1 (aY Xb) and ∆bump
n+2 (aXY b) only differ in their ith terms, so their final terms

coincide as needed.

(c) Suppose k = 0 and δ = k + 1 = 1, so that again l > 0. Then cases (1) and (2) would
each lead to a contradiction of our assumption that rpath⩽(T,X)∩rpath⩽(T, Y ) is empty:
case (1) would imply that this intersection contains (i, i) while case (2) could imply that it
contains (i−1, i−1). Therefore we are in case (3) so position (i, j) in T contains an entry
that is at most Xj − 1 while position (i+ 1, j) in T contains an entry that is at most Xj .

It follows that terms i and i+ 1 of ∆bump
n+1 (aY Xb) have the form

(j + 1, j + 1, Xj, θ) and (j + 1, j + 1, Xj + 1, η)

while terms i and i+ 1 of ∆bump
n+2 (aXY b) have the form

(j + 1, j + 1, Xj, η) and (j + 1, j + 1, Xj + 1, θ)

for
θ := γi−1,j+1(T,XY b) = γi−1,j+1(T, Y Xb)
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and
η := γi,j+1(T,XY b) = γi,j+1(T, Y Xb).

As in the previous paragraph, it follows that ∆bump
n+1 (aY Xb) and ∆bump

n+2 (aXY b) do not dif-
fer outside these two terms, so either both sequences end in the same tuple in
view of (4.8) or rpath⩽(T, Y ) and rpath⩽(T

O←− X, Y ) never reach the main diagonal
since (i+ 1, j + 1) is not a diagonal position. This is again sufficient to conclude that the
lemma holds.

(d) The case δ=k>1 cannot occur, as in this event, it would follow in view of Proposition 4.2
that (i−1, j+k) and (i, j+k) are both in rpath<(T, Y ) withXj+k−1 ⩽ Ti−1,j+k < Xj+k,
which contradicts the fact that Ti−1,j+k < Xj+k−1 as (i− 1, j + k) /∈ rpath<(T,X).

(e) If k > 0 and 1 < δ < k, then it follows from Lemma 4.6 that ∆bump
n+1 (aY Xb)

and ∆bump
n+2 (aXY b) differ only in their ith term, and if this term of ∆bump

n+1 (aY Xb)

is (y, ỹ, d, η) then the corresponding term of ∆bump
n+2 (aXY b) is (1 + y, 1 + ỹ, d, η). Both

sequences then have more than i terms so they end with the same tuple as needed.

(f) Next suppose k > 0 and δ = 1. IfXj < Yi−1 then the argument in subcase (e) still applies.
Assume Yi−1 ⩽ Xj . Then we cannot be in cases (1) or (2) without contradicting

rpath⩽(T,X) ∩ rpath⩽(T, Y ) = ∅,

so Xj appears in column j of T above row i and position (i + 1, j) in T contains an
entry that is at most Xj . The entry in position (i, j) of T cannot be greater than Yi−1

since (i, j + 1) ∈ rpath<(T, Y ), and this entry must also not be equal to Yi−1 since then
we would haveXj+1 = Yi−1+1which can only hold ifXj = Yi−1, in which case column j
of T would have two equal entries, contradicting the fact that all columns of T are strictly
increasing. Thus position (i, j) in T contains an entry that is less than Yj−1.

It follows that ∆bump
n+1 (aY Xb) and ∆bump

n+2 (aXY b) only differ in terms i and i + 1:
while these terms in ∆bump

n+1 (aY Xb) must have the form (j + 1, j + 1, Yi−1, θ)
and (j + 1, j + 1, Xj+1, η) for some 2-cycles θ and η, the corresponding terms
of ∆bump

n+2 (aXY b) are

(j + 1, j + 2, Yi−1, θ) and (j + 1, j + 1, Xj+1, θ)

when Yi−1 = Xj , or

(j + 1, j + 1, Yi−1, θ) and (j + 1, j + 1, Xj, ϕ)

when Yi−1 < Xj , where we may have ϕ ̸= η. As in our earlier cases, we conclude that
either both sequences end in the same tuple in view of (4.8), or we observe that (i+1, j+1)

is not a diagonal position so rpath⩽(T, Y ) and rpath⩽(T
O←− X, Y ) never reach the main

diagonal.
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This completes our argument if all positions in cpath⩽(T,X, i) ∪ cpath<(T,X, i) are occupied
in T .

When this does not occur, we must have l = 0 and (i, j + k) /∈ T . In this case row i of T is

Ti1 Ti2 · · · Tij Xj+1 Xj+2 · · · Xj+k−1

while row i of T O←− X is

Ti1 Ti2 · · · Tij Xj Xj+1 · · · Xj+k−2 Xj+k−1 .

Here, cases (1) or (3) from above must apply. We cannot have (i, j + k) ∈ rpath⩽(T, Y ) \
rpath<(T, Y ) if (i, j + k) /∈ T , so again (i, j + δ) ∈ rpath<(T, Y ) ∩ cpath<(T,X, i) for
some δ ∈ [k]. By the minimality of i, this position is the unique element in both rpath<(T, Y )
and cpath⩽(T,X) ∪ cpath<(T,X), since rpath<(T, Y ) contains at most one position in each
row, and since all positions of rpath<(T, Y ) above row i contain entries greater thanXj+δ while
all positions of rpath⩽(T, Y ) ∪ rpath<(T, Y ) above row i contain entries that are at most Xj .
We are left with two further subcases:

(g) If Xj < Yi−1, then it follows from Lemma 4.6 as in subcase (e) that ∆bump
n+1 (aY Xb)

and ∆bump
n+2 (aXY b) differ only in their ith term, where if this term of ∆bump

n+1 (aY Xb)

is (y, ỹ, d, η) then the corresponding term of ∆bump
n+2 (aXY b) is (1 + y, 1 + ỹ, d, η). In

this event, both sequences have more than i terms unless y = ỹ = j + k. Since (j, j + k)
is not a diagonal position, we conclude that the lemma holds holds either way.

(h) Assume Yi−1 ⩽ Xj . Then we cannot be in case (1) without contradicting
rpath⩽(T,X)∩rpath⩽(T, Y ) = ∅, so i < j andXj appears in column j of T above row i.
If δ < k then we can repeat the argument given in subcase (f) to deduce our result. If δ = k
then we must have k = 1 and Yi−1 < Xj . In this situation, ∆bump

n+1 (aY Xb) has only i terms
and ends with a term of the form (j + 1, j + 1, Yi−1, θ) for some
2-cycle θ, and ∆bump

n+2 (aXY b) is formed from ∆bump
n+1 (aY Xb) by appending the

tuple (j + 1, j + 1, Xj, ϕ) for some 2-cycle ϕ. Since neither (i, j + 1) nor (i + 1, j + 1)

is a diagonal position, this shows that rpath⩽(T, Y ) and rpath⩽(T
O←− X, Y ) never reach

the main diagonal so the lemma again holds.

This completes our proof of the lemma.

4.6. The 121↔ 212 and 132↔ 312 cases of Theorem 3.24

In this section we prove one final lemma to help prove Theorem 3.24 in the case when ocki acts
by transforming a “121-pattern” to a “212-pattern” or a “132-pattern” to a “312-pattern”. This
is our most technical result; it is the main application of the lemmas in the previous section.
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Lemma 4.15. Suppose a = a1a2 · · · an is an (unprimed) involution word for an element of IZ.
Write □j for j ∈ [n] to denote the box of QO

EG(a) containing j or j′. Suppose i ∈ [n − 2]
is such that ai ⩽ ai+2 < ai+1, but □i and □i+1 are not both on the main diagonal.
Then τ(ocki(a)) = τ(a).

Proof. Define b = ocki(a). Our goal is to show that that τ(a) = τ(b). We have either

ai < ai+2 < ai+1 and b = a1 · · · ai+1aiai+2 · · · an,

or
ai = ai+2 < ai+1 and b = a1 · · · ai+1aiai+1 · · · an.

In either case, Proposition 4.1 implies that PO
EG(a1a2 · · · aj) = PO

EG(b1b2 · · · bj) for j ∈ [n] \
{i, i + 1} so we have cseqj(a) = cseqj(b) for j ∈ [n] \ {i, i + 1}. Thus τj(a) = τj(b) for
j ∈ [n]\{i, i+1, i+2} and it is enough to show that τi(a)τi+1(a)τi+2(a) = τi(b)τi+1(b)τi+2(b).

Let s(a) be the number of diagonal entries in QO
EG(a) equal to i, i + 1, or i + 2. We must

have s(a) ∈ {0, 1} since i and i+2 are not both on the main diagonal. Let r(a) ∈ {0, 1, 2} be the
number of (off-diagonal) entries inQO

EG(a) equal to i′, i′+1, or i′+2. SinceQO
EG(b) = di(Q

O
EG(a))

by Proposition 4.1, we deduce from Proposition 3.23 that s(a) = s(b) and r(a) = r(b).

Claim 4.16. If rpath<i (a) and rpath<i (b) intersect off the main diagonal then τ(a) = τ(b).

Proof of the claim. In case, Lemma 4.13 implies that cseqi(a) = cseqi(b) so τi(a) = τi(b).
As s(a) = s(b) and r(a) = r(b), we can use Lemma 4.11 to deduce that τi+1(a)τi+2(a) =
τi+1(b)τi+2(b).

Claim 4.17. If ai < ai+2 and the paths rpath⩽i (a) and rpath⩽i (b) are disjoint then τ(a) = τ(b).

Proof of the claim. In this case Lemma 4.14 implies that cseqi+1(a) = cseqi+1(b) so τi+2(a) =
τi+2(b). As s(a) = s(b) and r(a) = r(b), Lemma 4.11 again implies τi(a)τi+1(a) = τi(b)τi+1(b).

Thus, we may assume that rpath<i (a) and rpath<i (b) intersect in at most one position, which
is on the main diagonal, and that if ai < ai+2 then rpath⩽i (a) and rpath⩽i (b) intersect in at least
one position. For the next part of our argument, we will assume that if ai < ai+2 then the first
position in the (nonempty) intersection of rpath⩽i (a) and rpath⩽i (b) is off the main diagonal.

We define an index j and a number u in the following way. If ai = ai+2 < ai+1, then we
set j := 0 and u := ai. If instead ai < ai+2 < ai+1, then let j > 0 be the row index of the
the first position in the intersection of rpath⩽i (a) and rpath⩽i (b). This position cannot belong
to rpath<i (a) ∩ rpath<i (b), so it must be occupied in T , and we define u to be its entry.

Define k to be the row index of the last position in rpath⩽i (a). Then j < k and the following
observations are consequences of our assumption that rpath<i (a) and rpath<i (b) do not intersect
off the main diagonal:

(A1) Suppose t ∈ {1, 2, . . . , k − j − 1} or t = 0 < j. Then row j + t of T contains
both u + t and u + t + 1, and the positions of u + t and u + t + 1 in row j + t of T are
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in rpath<i (a) ∩ rpath⩽i (b) and rpath<i (b), respectively. Moreover, if row j + t of T con-
tains u + t − 1 then its position is in rpath⩽i (a), and otherwise the position of u + t in
row j+t of T is in rpath⩽i (a). It follows that if j > 0 then row j of T does not contain u−1,
since rpath⩽i (a) and rpath⩽i (b) share a position in this row.

(A2) The position (k, k) is in rpath⩽i (a), since otherwise the last position in rpath⩽i (a) would be
an off-diagonal element of rpath<i (a)∩ rpath<i (b) If occupied, the entry of position (k, k)
in T must be at least u+ k − j − 1.

Suppose x, y ∈ Z are such that row(T )xy is an involution word. The tableau T O←− x differs
from T only in the positions that belong to path<(T, x), which contain successively increasing
entries until the last position which is not in T .

If we know only the first k − 1 positions of path⩽(T, x) and path<(T, x), but we know that
the entry of T in the kth term of path<(T, x) is bounded below by some number N when this
position is present in T , then we can compute the subtableau of T O←− x formed by omitting
all entries greater than N . In this event, we can then also compute the initial subsequences
of path⩽(T O←− x, y) and path<(T

O←− x, y) that consist of positions with entries of T O←− x that
are bounded above by N . These observations let us deduce the following additional properties:

(A3) The first k − 1 terms of rpath<i (a) and rpath<i+1(b) coincide, as do the first k − 1 terms
of rpath<i (b) and rpath<i+1(a), as do the first k − 1 terms of rpath⩽i (a) and rpath⩽i+1(b).

(A4) The first k − 1 terms of rpath⩽i (b) and rpath⩽i+1(a) are the same except in the rows j + t
where T does not contain u+ t− 1, for t ∈ {1, 2, . . . , k − j − 1} or t = 0 < j. In these
rows, rpath⩽i+1(a) contains the position of u+ t+ 1 in T , rather than the position of u+ t
which is in rpath⩽i (b).

(A5) The first j terms of path<i+2(a) and path<i+2(b) coincide, as do the first j terms of path⩽i+2(a)
and path⩽i+2(b). If j > 0 then term j of all four paths is the position of u+1 in row j of T .

(A6) If t ∈ [k − j − 1], then the (j + t)th terms of path⩽i+2(a), path
<
i+2(a), path

⩽
i+2(b),

and path<i+2(b) are either the respective positions in row j+ t of T of u+ t−1, u+ t, u+ t,
and u+ t+1 when row j+ t of T contains the entry u+ t− 1, or the respective positions
of u+ t, u+ t+1, u+ t+1, and u+ t+1 when the same row does not contain u+ t− 1.

Combining the preceding observations, we arrive at the following key claim:

(A7) Let v = u+ k − j − 1 and assume k > 1. Then the entries of the shifted tableaux

T, T
O←− ai, and T

O←− ai
O←− ai+1

in the (k − 1)th positions of rpath<i (a), rpath
<
i+1(a), and rpath<i+2(a) are v, v + 1, and v,

respectively. Likewise, the entries of the shifted tableaux

T, T
O←− bi, and T

O←− bi
O←− bi+1

in the (k−1)th positions of rpath<i (b), rpath
<
i+1(b), and rpath<i+2(b) are v+1, v, and v+1,

respectively.
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This last property still makes sense when j = 0 and k = 1 if we define the entries in the “0th
position” of rpath<m(a) and rpath<m(b) to be am and bm, respectively.

We need just one other observation. Let U be the shifted tableau formed from T by omitting
the first k−1 rows. Using Proposition 3.21 and property (A7), one can check that a is equivalent
under O∼ to a word that begins with row(U)v (v + 1)v. If U were empty or if all entries in U
were greater than v+2 then this word is an involution equivalent under ≡ to v (v+1)v row(U)
which is impossible by Proposition 2.2. Thus:

(A8) The entry of T in position (k, k) is occupied by v, v + 1, or v + 2.

We can now reason precisely about the possibilities for τi(a), τi+1(a), τi+2(a), τi(b), τi+1(b),
and τi+2(b). Below, we will refer to the entries of the shifted tableaux arranged in the diagram

PO
EG(a1 · · · ai−1) PO

EG(a1 · · · ai) PO
EG(a1 · · · ai+1) PO

EG(a1 · · · ai+2)

PO
EG(b1 · · · bi) PO

EG(b1 · · · bi+1)

bi

ai ai+1 ai+2

bi+1

bi+2

(4.13)
where in this picture, an arrow u−→ connects two tableaux if inserting u into the first tableau
according to Definition 3.1 gives the second. We also write

cseqi−1(a) = cseqi−1(b) =

[
γ1 γ2 . . . γq
c1 c2 . . . cq

]
. (4.14)

Claim 4.18. Assume that rpath<i (a) and rpath<i (b) intersect in at most one position, which is
on the main diagonal, and that if ai < ai+2 then the intersection of rpath⩽i (a) and rpath⩽i (b) is
nonempty and its first position is off the main diagonal. Then τ(a) = τ(b).

Proof of the claim. As in earlier claims, it suffices to show

τi(a)τi+1(a)τi+2(a) = τi(b)τi+1(b)τi+2(b).

As noted above, there are three possibilities for the entry of T in position (k, k). First suppose
the entry of T in position (k, k) is v. Then, in view of Remark 3.7, the entries of T in posi-
tions {k, k+1, k+2}×{k, k+1, k+2}must be Tk+i,k+j = v+i+j for all 0 ⩽ i ⩽ j ⩽ 2. Using
Lemma 4.7 and property (A7), one checks that the entries in these positions are the same for all
six tableaux in (4.13), and that τi(a) = (γk, γk+1) = τi+2(b) and τi+1(a) = (γk, γk+2) = τi+1(b)
and τi+2(a) = (γk+1, γk+2) = τi(b). Thus

τi(a)τi+1(a)τi+2(a) = τi(b)τi+1(b)τi+2(b) = (γk, γk+2).

Suppose next that the entry of T in position (k, k) is v + 1. Then, again in view of Re-
mark 3.7, the entries of T in positions {k, k+ 1} × {k, k+ 1} must be Tk+i,k+j = v + i+ j for
all 0 ⩽ i ⩽ j ⩽ 1. Assume k > 1. Then row k − 1 of T contains v and v + 1 in off-diagonal
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positions, so the entry in position (k− 1, k+1) of T is at most v+1. If equality holds, then the
entries of the six tableaux in (4.13) in positions {k − 1, k, k + 1} × {k, k + 1} must be

v + 3

v + 1 v + 2

v v + 1

v + 3

v v + 2

? v + 1

v + 2

v v + 1

? v

v + 2

v v + 1

? ?

v + 3

v + 1 v + 2

v v + 1

v + 3

v v + 2

? v + 1

bi

ai ai+1 ai+2

bi+1

bi+2

.

On the other hand, if the entry in position (k − 1, k + 1) of T is less than v + 1 then posi-
tion (k − 1, k + 2) of T must have an entry less than v + 2. When this happens or when k = 1,
the entries in the six tableaux in (4.13) in positions {k, k+1}×{k, k+1, k+2}must instead be

v + 3 ?

v + 1 v + 2 ?

v + 3 ?

v v + 1 v + 2

v + 2 v + 3

v v + 1 v + 2

v + 2 v + 3

v v + 1 v + 2

v + 3 ?

v + 1 v + 2 ?

v + 3 ?

v v + 1 v + 2

bi

ai ai+1 ai+2

bi+1

bi+2

where ? denotes a position that may be unoccupied. In both cases, it follows using Lemmas 4.6
that the values of γxy applied to the six tableaux in (4.13) in positions {k, k+1}×{k, k+1} are

γk+1

γk ∅

γk+1

γk ∅

γk+1

γk ∅

γk

γk+1 ∅

γk

γk+1 ∅

γk

γk+1 ∅

bi

ai ai+1 ai+2

bi+1

bi+2

.

Thus, it follows by Lemma 4.7 that τi(a) = τi+1(a) = τi+1(b) = τi+2(b) = 1 and τi+2(a) =
τi(b) = (γk, γk+1), so τi(a)τi+1(a)τi+2(a) = τi(b)τi+1(b)τi+2(b) = (γk, γk+1) as needed.

Finally, suppose the entry of T in position (k, k) is v + 2. If k > 1 then row k − 1 of T
contains v and v + 1 off the main diagonal, so the entry in position (k − 1, k + 1) of T must be
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less than v + 2. There are two subcases depending on the entry in position (k − 1, k + 2) of T .
If k > 1 and this position contains a number less than v + 2, or if k = 1, then the entries in the
six tableaux in (4.13) in positions {k, k + 1} × {k, k + 1, k + 2} are

? ?

v + 2 ? ?

? ?

v v + 2 ?

v + 2 ?

v v + 1 ?

v + 2 ?

v v + 1 v + 2

? ?

v + 1 v + 2 ?

? ?

v v + 1 v + 2

bi

ai ai+1 ai+2

bi+1

bi+2

.

If k > 1 and position (k−1, k+2) of T is unoccupied or contains a number greater than or equal
to v+2, then positions (k− 1, k) and (k− 1, k+1) of T must contain the numbers v and v+1.
In this case the entries in the six tableaux in (4.13) in positions {k − 1, k, k + 1} × {k, k + 1}
are

?

v + 2 ?

v v + 1

?

v v + 2

? v + 1

v + 2

v v + 1

? v

v + 2

v v + 1

? ?

?

v + 1 v + 2

v v + 1

?

v v + 2

? v + 1

bi

ai ai+1 ai+2

bi+1

bi+2

.

Write ηk and ηk+1 for the entries in the first row of cseqi+2(a) in columns k and k + 1. The fol-
lowing assertions apply equally to both of the cases above. First, since cseqi−1(a) = cseqi−1(b)
and cseqi+2(a)=cseqi+2(b), one can check using Lemmas 4.6 and 4.7 that γk=ηk. If cseqi−1(a)
has only k columns, then it follows similarly that the values of γxy applied to the six tableaux
in (4.13) in positions {k, k + 1} × {k, k + 1} are

γk ? ηk+1 γk

γk

ηk+1 ∅

ηk+1

γk ∅

γk ∅ γk β

bi

ai ai+1 ai+2

bi+1

bi+2

where we set β := ∅ in the first subcase above and β := ηk+1 in the second. Thus τi(a) =
τi+2(a) = (γk, ηk+1) and τi+1(a) = τi(b) = τi+1(b) = τi+2(b) = 1, giving

τi(a)τi+1(a)τi+2(a) = τi(b)τi+1(b)τi+2(b) = 1
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as desired. If cseqi−1(a) has at least k+1 columns, then it follows likewise that the values of γxy
applied to the six tableaux in (4.13) in positions {k, k + 1} × {k, k + 1} are

γk+1

γk ?

γk+1

ηk+1 γk

γk

ηk+1 ∅

ηk+1

γk ∅

γk+1

γk ∅

γk+1

γk β

bi

ai ai+1 ai+2

bi+1

bi+2

where β has the same definition as before. Thus Lemma 4.7 gives τi(a) = τi+2(a) = (γk, ηk+1)
and τi+1(a) = (γk, γk+1) while τi(b) = τi+1(b) = 1 and τi+2(b) = (γk+1, ηk+1), so

τi(a)τi+1(a)τi+2(a) = τi(b)τi+1(b)τi+2(b) = (γk+1, ηk+1)

as needed. This completes our proof of the claim.

It remains to consider the case when ai < ai+2 and rpath<i (a) and rpath<i (b) do not intersect
off the main diagonal, but rpath⩽i (a) and rpath⩽i (b) intersect in a unique position which is on
the main diagonal. Suppose this position is (k, k). This position must be occupied in T , since
otherwise one can check using Remark 3.7 that both i and i+ 2 would be on the main diagonal
of QO

EG(a). The reasoning we used to justify (A3) lets us similarly derive the following claims:

(B1) The first k − 1 terms of path<i (a) and path<i+1(b) coincide, as do the first k − 1 terms
of path<i+1(a) and path<i (b). Each of the first k − 1 terms of the first two paths is strictly
to the right of the main diagonal and strictly to the left of the corresponding term in the
second two paths. The same statements hold for the corresponding weak bumping paths.

(B2) The first k−1 terms of path<i+2(a) and path<i+2(b) coincide. Each of the first k−1 terms of
these paths is strictly to the right of the corresponding term in path<i (a) or path<i+1(b), and
weakly to the left of corresponding term in path<i+1(a) or path<i (b). The same statements
hold for the corresponding weak bumping paths.

If k = 1 then let u := ai = bi+1 < v := ai+2 = bi+2 < w := ai+1 = bi. If k > 1 then define
u, v, and w to be the entries of T , T O←− ai

O←− ai+1, and T O←− ai, respectively, in position k − 1
of path<i (a), path

<
i+2(a), and path<i+1(a) respectively. It follows from (B1) and (B2) that:

(B3) Assume k > 1. Then u is also the entry of T O←− bi in position k − 1 of path<i+1(b).
Likewise, v is also the entry of T O←− bi

O←− bi+1 in position k− 1 of path<i+2(b). In turn, w
is also the entry of T in position k − 1 of path<i (b), and u < v < w.

(B4) The entry of T in position (k, k) is at least w since (k, k) ∈ rpath⩽i (b).

This leaves us with three possibilities τi(a), τi+1(a), τi+2(a), τi(b), τi+1(b), and τi+2(b), as we
discuss in the proof of our final claim.
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Claim 4.19. Assume ai<ai+2 and rpath<i (a) and rpath<i (b) have no main diagonal intersection,
but rpath⩽i (a) and rpath⩽i (b) intersect in a unique diagonal position (k, k). Then τ(a) = τ(b).

Proof of the claim. Denote cseqi−1(a) = cseqi−1(b) as in (4.14) above. Again write ηk and ηk+1

for the entries in the first row of cseqi+2(a) in columns k and k + 1.
First suppose the entry in position (k, k) of T is w. Then, in view of Remark 3.7, the entries

of T in positions {k, k + 1} × {k, k + 1} must be Tk+i,k+j = w + i + j for all 0 ⩽ i ⩽ j ⩽ 1.
If k > 1, then row k − 1 of T contains both u and w in positions off the main diagonal, so the
entry in position (k− 1, k + 1) of T is at most w. If k > 1 and this entry is equal to w, then the
entries of the six tableaux in (4.13) in positions {k − 1, k, k + 1} × {k, k + 1} are

w + 2

w w + 1

u w

w + 2

u w + 1

? w

w + 1

u w

? v

w

u v

? ?

w + 2

w w + 1

u v

w + 2

u w

? v

ai+1

ai ai+1 ai+2

ai

ai+2
.

Alternatively, if k > 1 and the entry in position (k− 1, k+1) of T is less than w, then the entry
of T in position (k − 1, k + 2) must be occupied by a number less than w + 1. In this case, or
if k = 1, the entries of the six tableaux in (4.13) in positions {k, k+1}×{k, k+1, k+2} are

w + 2 ?

w w + 1 ?

w + 2 ?

u w w + 1

w + 1 w + 2

u w w + 1

w w + 2

u v w + 1

w + 2 ?

w w + 1 w + 2

w + 2 ?

u w w + 1

ai+1

ai ai+1 ai+2

ai

ai+2
.

In both situations, it follows by Lemma 4.6 that the values of γxy applied to the six tableaux
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in (4.13) in positions {k, k + 1} × {k, k + 1} are

γk+1

γk ∅

γk+1

ηk ?

γk+1

ηk ?

γk+1

ηk ?

γk

γk+1 ∅

γk

ηk γk+1

ai+1

ai ai+1 ai+2

ai

ai+2

so by Lemma 4.7 we have τi(a) = (γk, ηk) and τi+1(a) = τi+2(a) = 1 while τi(b) = τi+2(b) =
(γk, γk+1) and τi+1(b) = (ηk, γk+1), so τi(a)τi+1(a)τi+2(a) = τi(b)τi+1(b)τi+2(b) = (γk, ηk) as
desired.

Suppose next that the entry in position (k, k) of T is w + 1. If k > 1 then the entry in
position (k − 1, k + 1) of T is at most w, so the entries of the six tableaux in (4.13) in posi-
tions {k, k + 1} × {k, k + 1} are

?

w + 1 ?

?

u w + 1

w + 1

u w

w

u v

?

w w + 1

?

u w

ai+1

ai ai+1 ai+2

ai

ai+2
.

First assume the array cseqi−1(a) has only k columns. Then it follows by Lemma 4.6 that the
values of γxy applied to the six tableaux in (4.13) in positions {k, k + 1} × {k, k + 1} are

γk ? ηk γk

γk

ηk ∅

γk

ηk ?

γk ∅ ηk γk

ai+1

ai ai+1 ai+2

ai

ai+2

so by Lemma 4.7 we have τi(a)=τi+1(b)=(γk, ηk) and τi+1(a)=τi+2(a)=τi(b)=τi+2(b) = 1,
so τi(a)τi+1(a)τi+2(a) = τi(b)τi+1(b)τi+2(b) = (γk, ηk) as needed. If cseqi−1(a) has at least k+1
columns, then it follows likewise that the values of γxy applied to the six tableaux in (4.13) in
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positions {k, k + 1} × {k, k + 1} are

γk+1

γk ?

γk+1

ηk γk

γk

ηk ∅

γk

ηk ?

γk+1

γk ∅

γk+1

ηk γk

ai+1

ai ai+1 ai+2

ai

ai+2

so by Lemma 4.7 we have τi(a) = τi+1(b) = (γk, ηk) and τi+1(a) = τi+2(b) = (γk, γk+1)
and τi+2(a) = τi(b) = 1, so τi(a)τi+1(a)τi+2(a) = τi(b)τi+1(b)τi+2(b) = (γk, γk+1, ηk) as
desired.

Finally suppose that the entry in position (k, k) of T is x > w + 1. If k > 1 then the entry
in position (k − 1, k + 1) of T is at most w, so the entries of the six tableaux in (4.13) in posi-
tions {k, k + 1} × {k, k + 1} are

?

x ?

?

u x

x

u w

w

u v

?

w x

?

u w

ai+1

ai ai+1 ai+2

ai

ai+2
.

If the array cseqi−1(a) has only k columns, the values of γxy applied to the six tableaux in (4.13)
in positions {k, k + 1} × {k, k + 1} are

γk ? ηk γk

γk

ηk ηk+1

ηk+1

ηk ?

ηk+1 γk ηk ηk+1

ai+1

ai ai+1 ai+2

ai

ai+2

so by Lemma 4.7 we have τi(a) = (γk, ηk) and τi+1(a) = 1 and τi+2(a) = (γk, ηk+1)
while τi(b) = (γk, ηk+1) and τi+1(b) = (ηk, ηk+1) and τi+2(b) = 1, so we have
τi(a)τi+1(a)τi+2(a) = τi(b)τi+1(b)τi+2(b) = (γk, ηk+1, ηk) as needed. If cseqi−1(a) has at
least k + 1 columns, then the values of γxy applied to the six tableaux in (4.13) in posi-
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tions {k, k + 1} × {k, k + 1} are

γk+1

γk ?

γk+1

ηk γk

γk

ηk ηk+1

ηk+1

ηk ?

γk+1

ηk+1 γk

γk+1

ηk ηk+1

ai+1

ai ai+1 ai+2

ai

ai+2

so by Lemma 4.7 we have τi(a) = (γk, ηk) and τi+1(a) = (γk, γk+1) and τi+2(a) = (γk, ηk+1)
while τi(b) = (γk, ηk+1) and τi+1(b) = (ηk, ηk+1) and τi+2(b) = (γk+1, ηk+1), so

τi(a)τi+1(a)τi+2(a) = τi(b)τi+1(b)τi+2(b) = (γk, ηk+1, γk+1, ηk)

as desired. This completes our proof of the claim.

Combining our successive claims also completes the proof of the lemma.

4.7. Proofs of Theorems 3.11 and 3.24

Combining all of the results above now lets us fill in the proofs to Theorems 3.11 and 3.24.

Proof of Theorem 3.11. Remark 3.7 and Proposition 3.21 imply that if â ∈ R+
inv(z) for

some z ∈ IZ, then PO
EG(â) is an increasing shifted tableau with no primes on the main diag-

onal whose row reading word is inR+
inv(z). In this case it follows by definition that QO

EG(â) is a
standard shifted tableau of the same shape.

Let (P,Q) be an arbitrary pair of shifted tableaux of the same shape, such that Q is stan-
dard and P increasing with no primed on the main diagonal and row(P ) ∈ R+

inv(z). The un-
primed form [HMP19, Thm. 5.19] of Theorem 3.11 asserts that there is a unique unprimed
word a ∈ Rinv(z) with PO

EG(a) = unprime(P ) and QO
EG(a) = unprimediag(Q). Since we

have γii(P ) ∈ cyc(z) for all diagonal positions (i, i) in P , Proposition 4.9 implies that there
is a unique way to assign primes to the commutations in a to obtain a primed word â ∈ R+

inv(z)
with PO

EG(â) = P and QO
EG(â) = Q. We conclude that â 7→ (PO

EG(â), Q
O
EG(â)) is a bijection

fromR+
inv(z) to the desired image.

Proof of Theorem 3.24. Let â be a primed involution word with n = ℓ(â) and a = unprime(â).
Choose i ∈ Z with i + 2 ∈ [n] and let b̂ = ocki(â). We wish to show that PO

EG(â) = PO
EG(b̂)

andQO
EG(b̂) = di(Q

O
EG(â)). This holds if i ⩽ 0 by Propositions 3.9 and 3.10. Assume i ∈ [n−2]

and let b = unprime(b̂). Then b = ocki(a) by Lemma 3.19 and we have

unprime(PO
EG(â)) = PO

EG(a) = PO
EG(b) = unprime(PO

EG(b̂)) (4.15)
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by Proposition 3.8 for the first and last equalities and Proposition 4.1 for the second equality.
Likewise, we have

unprimediag(di(Q
O
EG(â))) = di(unprimediag(Q

O
EG(â))) = di(Q

O
EG(a))

= QO
EG(b) = unprimediag(Q

O
EG(b̂))

(4.16)

by (3.7) for the first equality, Proposition 3.8 for the second and last equalities, and Proposi-
tion 4.1 for the third equality.

As usual write □j for the box of QO
EG(â) containing j or j′. If □i and □i+2 are both on the

main diagonal, then we have PO
EG(â) = PO

EG(b̂) by Lemma 4.10. Otherwise, we have τ(a) = τ(b)

by Lemmas 4.12 and 4.15, so PO
EG(â) = PO

EG(b̂) follows from Proposition 4.9 and (4.15).
It follows from the definitions of di and QO

EG that di(QO
EG(â)) and QO

EG(b̂) each only differ
fromQO

EG(â) in their entries in positions □i, □i+1, and □i+2. In view of (4.16), the only possible
difference between di(QO

EG(â)) andQO
EG(b̂) is whether there are primes in whichever of□i, □i+1,

or □i+2 are also on the main diagonal.
If all three of □i, □i+1, and □i+2 are off the diagonal then necessarily di(Q

O
EG(â)) = QO

EG(b̂).
If exactly two of these positions are on the main diagonal then the same conclusion holds
by Lemma 4.10. We cannot have all three of □i, □i+1, and □i+2 on the main diagonal, and
if exactly one of these positions is on the main diagonal then we just need to show
that its entry is primed in di(Q

O
EG(â)) if and only if it is primed in QO

EG(b̂), or equivalently
that #primesdiag(di(Q

O
EG(â))) = #primesdiag(Q

O
EG(b̂)). This holds since (3.7) asserts that

#primesdiag(diQ
O
EG(â)) = #primesdiag((Q

O
EG(â))),

and by definition

#primes(PO
EG(â)) + #primesdiag(Q

O
EG(â)) = #primes(â)

= #primes(b̂)

= #primes(PO
EG(b̂)) + #primesdiag(Q

O
EG(b̂)).

But PO
EG(â) = PO

EG(b̂), so #primesdiag(di(Q
O
EG(â))) = #primesdiag(Q

O
EG(b̂)).

5. Other insertion algorithms

In this final section, we discuss some novel “primed” variations of Sagan–Worley insertion (see
[Sag87, §8] or [Wor84, §6.1]) and shifted mixed insertion algorithm (see [Hai89, Def. 6.7]). The
domains of these maps are similar to various super-RSK correspondences (see, e.g., [LSNS06,
Mut19, SW01]). Sections 5.1, 5.3, and 5.2 focus on Sagan–Worley insertion, while Sections 5.4
and 5.5 discuss shifted mixed insertion. This section is mostly independent of the earlier parts
of this paper, with the exception of Proposition 5.4 and Corollary 5.15.
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5.1. Modifying Sagan–Worley insertion

This section presents the definitions of two versions of the Sagan–Worley insertion algorithm,
which sends primed compatible sequences to pairs of shifted tableaux. A compatible sequence
is a two-line array of positive integers

ϕ =

[
i1 i2 . . . in
a1 a2 . . . an

]
(5.1)

where the entries in the top row are weakly increasing and such that if ij = ij+1 then aj ⩽ aj+1.
We call the top row i1i2 · · · in of ϕ its index and we call the bottom row a1a2 · · · an its value. A
primed compatible sequence is a two-line array satisfying the same conditions, except its value

may have entries 0 < aj ∈ Z ⊔ Z′ if no column
[
i
a

]
with a ∈ Z′ is repeated. Thus

[
1 1 1 2 2 3
4 4 5 5 6 1

]
and

[
1 1 1 2 2 3
4′ 4 5′ 5′ 6 1

]
are primed compatible sequences while the following are not:[

1 1 1 2 2 3
4 4′ 5 5 6 1

]
and

[
1 1 1 2 2 3
4′ 4′ 5 5 6 1

]
.

When given as an input to an insertion algorithm, the index of a (primed) compatible sequence
will give the labels of the recording tableau. The condition “if ij = ij+1 then aj ⩽ aj+1” is
designed to ensure that this tableau will be semistandard.

We identify a (primed) word a = a1a2 · · · an with the (primed) compatible sequence whose
value is a and whose index is 1, 2, 3, . . . , n. If we never have ai = ai+1 ∈ Z′, then we can form
a primed compatible sequence ϕ with value a from each increasing factorization in IncrN(a) by
placing i above all letters in the ith factor. The increasing factorization

a = (45′,∅, 2′37′) corresponds to ϕ =

[
1 1 3 3 3
4 5′ 2′ 3 7′

]
in this way. This gives a bijection from IncrN(a) (when a has no adjacent equal primed letters)
to primed compatible sequences with value a and whose index does not exceed N (when N is
finite).

Definition 5.1. Suppose ϕ is a primed compatible sequence written in the form (5.1). We
construct a sequence of increasing shifted tableaux with no primed entries on the main diag-
onal ∅ = P0, P1, . . . , Pn in which Pj is formed from Pj−1 as follows:

(1) On each iteration, an entry u ∈ Z⊔Z′ is inserted into a row or column of a shifted tableau.
The process begins with aj inserted into the first row of Pj−1.

(2) If inserting into a row when u ∈ Z, or into a column when u ∈ Z′, locate the first entry v
in the row or column such that u < v; otherwise, locate the first entry v such that u ⩽ v.
When such an entry exists, we say that u “bumps” v from its position.
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(3) If no such v exists then u is added to the end of the row or column to formPj . If u is primed
and the added position is on the main diagonal, then we change its value to ⌈u⌉ and say that
the insertion process ends in column insertion. Otherwise, we say that the process ends in
column (respectively, row) insertion if we are inserting into a column (respectively, row).

(4) If v is not on the main diagonal, then replace v by u and insert v into either the next row
(if we were inserting into a row) or next column (if we were inserting into a column).

(5) Assume v is on the main diagonal.11 If ⌈u⌉ = ⌈v⌉ then continue by inserting ⌈v⌉ into the
next column. If ⌈u⌉ ≠ ⌈v⌉ then replace v by ũ and insert ṽ into the next column, where ũ
and ṽ are given by switching the primes of u and v.

Now define PO
SW(ϕ) := Pn and let QO

SW(ϕ) be the shifted tableau with the same shape whose
entry in the unique box of Pj that is not in Pj−1 is either ij (when adding aj to Pj−1 ends in row
insertion) or i′j (when adding aj to Pj−1 ends in column insertion).

This slightly modifies the original definition of Sagan–Worley insertion from [Sag87, §8]
or [Wor84, §6.1]. The latter map, which we will denote by ϕ 7→ (P Sp

SW(ϕ), QSp
SW(ϕ)), is given by

repeating Definition 5.1 with two changes:

• first, in step (3) we do not remove the prime from a newly added diagonal entry and we
say that the insertion process ends in column insertion only if the last step inserts into a
column;

• second, in step (5) when ⌈u⌉ ≠ ⌈v⌉, we redefine ũ and ṽ to be ũ := u and ṽ := v.

It is convenient to think of these maps as “orthogonal” and “symplectic” versions of the same
algorithm. Proposition 5.6 will make the basis for this parallelism more precise. Primes may
occur on the main diagonal of P Sp

SW(ϕ) or QO
SW(ϕ) but not on the main diagonal of QSp

SW(ϕ)
or PO

SW(ϕ).

Example 5.2. Suppose ϕ =

[
1 1 2 2 2
4 5′ 2′ 3 7′

]
. Then in the notation of Definition 5.1

P1 = 4 , P2 = 4 5′ , P3 = 2 4′ 5′ , P4 =
4

2 3 5′
, P5 =

4

2 3 5′ 7′
,

so we have
PO
SW(ϕ) =

4

2 3 5′ 7′
and QO

SW(ϕ) =
2′

1 1 2′ 2
.

On the other hand, one can check that

P Sp
SW(ϕ) =

4

2′ 3 5′ 7′
and QSp

SW(ϕ) =
2

1 1 2′ 2
.

11In this setting the diagonal entry v will always be unprimed and therefore equal to ⌈v⌉, but we do not draw
attention to this property as it will not hold in a modified version of this algorithm described below.
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Similarly, if ϕ =

[
1 1 1 1 3 3 3 5 5 5
4 4 5′ 5 2′ 2 3 3 7′ 7

]
then

PO
SW(ϕ) =

4 4 5′

2 2 3 3 5 7′ 7

QO
SW(ϕ) =

3′ 3 5

1 1 1 1 3′ 5 5

and
P Sp
SW(ϕ) =

4 4 5′

2′ 2 3 3 5 7′ 7

QSp
SW(ϕ) =

3 3 5

1 1 1 1 3′ 5 5
.

Finally, comparing with Example 3.4, if c = 41′354′2 then

PO
SW(c) =

3 4

1 2 4′ 5

QO
SW(c) =

3′ 5

1 2′ 4 6′

and
P Sp
SW(c) =

3 4

1′ 2 4′ 5

QSp
SW(c) =

3 5

1 2′ 4 6′
.

The following example illustrates some more differences between these two algorithms.

Example 5.3. For x, y ∈ Z ⊔ Z′ identify the word xy with
[
1 2
x y

]
. If x ∈ Z then

PO
SW(xx) = x x ,

QO
SW(xx) = 1 2 ,

PO
SW(xx′) = x x ,

QO
SW(xx′) = 1 2′ ,

PO
SW(x′x′) = x x ,

QO
SW(x′x′) = 1′ 2′ ,

PO
SW(x′x) = x x ,

QO
SW(x′x) = 1′ 2 ,

while

P Sp
SW(xx) = x x ,

QSp
SW(xx) = 1 2 ,

P Sp
SW(xx′) = x x ,

QSp
SW(xx′) = 1 2′ ,

P Sp
SW(x′x′) = x′ x ,

QSp
SW(x′x′) = 1 2′ ,

P Sp
SW(x′x) = x′ x ,

QSp
SW(x′x) = 1 2 .

Alternatively, if x, y ∈ Z and x < y then

PO
SW(yx) = x y ,

QO
SW(yx) = 1 2′ ,

PO
SW(yx′) = x y′ ,

QO
SW(yx′) = 1 2′ ,

PO
SW(y′x′) = x y′ ,

QO
SW(y′x′) = 1′ 2′ ,

PO
SW(y′x) = x y ,

QO
SW(y′x) = 1′ 2′ ,

while

P Sp
SW(yx) = x y ,

QSp
SW(yx) = 1 2′ ,

P Sp
SW(yx′) = x′ y ,

QSp
SW(yx′) = 1 2′ ,

P Sp
SW(y′x′) = x′ y′ ,

QSp
SW(y′x′) = 1 2′ ,

P Sp
SW(y′x) = x y′ ,

QSp
SW(y′x) = 1 2′ .

We can derive some nontrivial properties of Sagan–Worley insertion by observing that its
bumping mechanics are identical to shifted Edelman–Greene insertion applied to O∼-equivalence
classes of primed involution words involving no braid relations. One can try to convert a primed
word to an element of such a class by “doubling” every letter, so that distinct adjacent letters
always differ by more than one. This is our motivation for the following definition.

Given a primed word a = a1a2 · · · an, form double(a) by applying the map with i 7→ 2i
and i′ 7→ (2i)′ for i ∈ Z to the letters of a. If ϕ is a primed compatible sequence then define
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double(ϕ) by applying double to its value. For a shifted tableau T , construct double(T ) by
applying double to all of its entries.

A primed word a is a partial signed permutation if unprime(a) has all distinct letters.12 De-
fine a primed compatible sequence to be value-strict if its value is a partial signed permutation.

Proposition 5.4. Suppose ϕ is a primed compatible sequence that is value-strict. Then the value
of double(ϕ) is a primed involution word, and it holds that

double ◦ PO
SW(ϕ) = PO

EG ◦ double(ϕ) and QO
SW(ϕ) = QO

EG ◦ double(ϕ).

Proof. Let ϕ be as in (5.1). The first claim holds since unprime(double(a1a2 · · · an)) is an involu-
tion word where every index is a commutation. This ensures that PO

EG ◦ double(ϕ)
and QO

EG ◦ double(ϕ) are defined, and that the first tableau coincides with PO
SW ◦ double(ϕ) =

double ◦ PO
SW(ϕ) while the second coincides with QO

SW ◦ double(ϕ) = QO
SW(ϕ).

Example 5.5. To compute QO
EG ◦ double(ϕ), view double(ϕ) as an element of Incr∞(R+

inv(z))

for some z ∈ IZ. If ϕ =

[
1 1 3 3 3
4 5′ 2′ 3 7′

]
↔ (45′,∅, 2′37′) then

double(ϕ)↔ (8 10′,∅, 4′ 6 14′)

so
PO
EG ◦ double(ϕ) =

8

4 6 10′14′
and QO

EG ◦ double(ϕ) =
3′

1 1 3′ 3
.

5.2. Bijective properties

In this section we derive a formula analogous to Proposition 4.9 which relates our two versions of
Sagan–Worley insertion. Then we use this result to show that orthogonal Sagan–Worley insertion
defines a bijective mapping.

Let a = a1a2 · · · an be a primed word, so that PO
SW(a) := PO

SW

([
1 2 . . . n
a1 a2 . . . an

])
via

our identification of primed words with primed compatible sequences. For each j ∈ [n], consider
the shifted tableaux PO

SW(a1a2 · · · aj−1) and PO
SW(a1a2 · · · aj). If these tableaux have different

numbers of rows or the same entries in all diagonal positions, then define τSWj (a) to be the
identity permutation of Z. Otherwise, there is a unique diagonal position with different entries
in the two tableaux, and we let τSWj (a) be the transposition interchanging these. If a = 45′2′37′

as in Example 5.2, then τSW3 (a) = (2, 4) and τSWj (a) = 1 for j ∈ {1, 2, 4, 5}. Let

τSW(a) := τSW1 (a)τSW2 (a) · · · τSWn (a).

For a primed compatible sequence ϕ whose value is a1a2 · · · an define

τSW(ϕ) := τSW(a1a2 · · · an).
12This terminology is motivated by the fact that if unprime(a) is a permutation of 1, 2, 3, . . . , n then a is the

one-line representation of a signed permutation, that is, an element of the hyperoctahedral group.
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Let T be a semistandard shifted tableau. A position (i, j) in T is free if ⌈Tij⌉ ≠ ⌈Txy⌉
whenever x > i or y < j, which in French notation means that (x, y) lies strictly above or
strictly to the left of (i, j). Every diagonal position in T is free. Adding or removing primes
from free positions does not change whether T is semistandard. If (i − 1, j − 1) and (i, j)
are both positions in T , then we must have ⌈Ti−1,j−1⌉ < ⌈Tij⌉. It follows that if u ∈ Z is
the unprimed form of the entry of T in some position (i, j), then (i, j) is free if and only if it
contributes the first letter equal to u or u′ in the reading word row(T ). Consequently, if u and v
are the entries in distinct free positions in T , then ⌈u⌉ ≠ ⌈v⌉. Let unprimefree(T ) be the tableau
formed from T by removing the primes from all free positions. This is called the canonical form
of T in [GLP20, Def. 2.6].

We say that u ∈ Z is initially primed (respectively, initially unprimed) in a primed word if u′
(respectively, u) appears in the word and is before any other letters equal to u (respectively u′).
Form unprimeinit(a) from a primed word a by unpriming the first appearance of u′ for each ini-
tially primed letter u ∈ Z. This is called the canonical form of a in [GLP20, Def. 2.1]. The
previous paragraph implies that unprimeinit(row(T )) = row(unprimefree(T )) for any semistan-
dard shifted tableau T .

Proposition 5.6. Suppose ϕ is a primed compatible sequence written as in (5.1).

(a) The shifted tableaux PO
SW(ϕ) and P Sp

SW(ϕ) are semistandard with the same free positions,
and it holds that

unprimefree(P
O
SW(ϕ)) = unprimefree(P

Sp
SW(ϕ)),

unprimediag(Q
O
SW(ϕ)) = QSp

SW(ϕ).
(5.2)

(b) Let (i, j) be a free position in P Sp
SW(ϕ) and let u ∈ Z be this position’s value with its prime

removed. The entry of P Sp
SW(ϕ) in position (i, j) is primed if and only if u is initially primed

in the value of ϕ. If i ̸= j (respectively, i = j), then the entry of PO
SW(ϕ) (respectively,

QO
SW(ϕ)) in position (i, j) is primed if and only if τSW(ϕ)(u) is initially primed in the value

of ϕ.

Proof. It is known that P Sp
SW(ϕ) is always a semistandard shifted tableau [Sag87, Thm. 8.1].

Suppose during the insertion process that defines P Sp
SW(ϕ), a free position (x, y) with entry v is

bumped by a number u. The sequence of insertions leading to this point starts with some number
inserted into a semistandard shifted tableau. It follows that we can only have ⌈u⌉ = ⌈v⌉ if u
bumps v when inserted into a row, since otherwise u would have been bumped on the previous
iteration from a position contributing an earlier letter in the row reading word, contradicting our
assumption that the position of v is free. From this observation, it also follows that u would still
bump the position (x, y) if we toggled the prime on its entry v: this is clear if ⌈u⌉ < ⌈v⌉ or if v is
primed, and it holds if ⌈u⌉ = v ∈ Z as then we must be inserting into a row with u = v′. Another
relevant property is that the position which v subsequently bumps on the next iteration (or the
new position added to the tableau if v is placed at the end of a row or column) only depends
on ⌈v⌉. This position is also free unless v is on the main diagonal with ⌈u⌉ = ⌈v⌉, in which case
the free entry is unchanged (as is illustrated in Example 5.3). Finally, if T = P Sp

SW(a1a2 · · · aj−1)
has no entries equal to ⌈aj⌉ or ⌈aj⌉′, then when aj is inserted into T it is placed into the first row
and is automatically free.
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Given these observations, it follows by induction on the number of columns of ϕ that P Sp
SW(ϕ)

contains u′ in a free position for some u ∈ Z if and only if u is initially primed in the value of ϕ.
Moreover, we see in this way that the tableau PO

SW(ϕ) is formed from P Sp
SW(ϕ) by toggling the

primes on certain free positions, and that the identities (5.2) hold. We already know that P Sp
SW(ϕ)

is semistandard, so PO
SW(ϕ) is also a semistandard shifted tableau.

For the last part of the result, consider a semistandard shifted tableau T and let □u for u ∈ Z
denote the free position of T containing u or u′, if this exists. If □u and □v are both defined,
then let (u, v) ∈ SZ act on T by reversing the primes on the entries in these positions if they are
not both primed or both unprimed, and otherwise leaves T unchanged. This operation extends
to an action of the group of permutations of the entries of unprime(T ).

Let a = a1a2 · · · an be the value of ϕ. Form P̃O
SW(a) from PO

SW(a) by adding primes to all
diagonal positions that are primed inQO

SW(a). Then P̃O
SW(a) is constructed by the same insertion

process as the one that defines P Sp
SW(a), except that whenever an inserted number u is about to

bump a diagonal entry v with ⌈u⌉ < ⌈v⌉ and {u, v} ̸⊂ Z and {u, v} ̸⊂ Z′, we reverse the
primes on u and v. In the exceptional case τSWj (a) is the transposition exchanging ⌈u⌉ and ⌈v⌉,
and outside this case τSWj (a) = 1. Thus, with respect to the action defined in the previous
paragraph, it follows that τSW(a) : P̃O

SW(a) 7→ P Sp
SW(a). This implies the rest of the desired

result.

Remark 5.7. Orthogonal and symplectic Sagan–Worley insertion restrict to the same map on all
(unprimed) compatible sequences. Proposition 5.6 shows that we also have PO

SW(a) = P Sp
SW(a)

for all primed words that have a = unprimeinit(a). Therefore both a 7→ PO
SW(a) and a 7→ P Sp

SW(a)
descend to the same map from “equivalence classes” of words to “equivalence classes” of shifted
tableaux in the sense of [GLP20, Defs. 2.1 and 2.6].

We may represent a primed compatible sequence ϕ as the matrix A whose entry in posi-

tion (i, j) is the number of columns equal to
[
i
j′

]
or

[
i
j

]
, and where this number is circled

if the column
[
i
j′

]
appears. This gives a bijection between primed compatible sequences and

N-valued matrices with finitely many nonzero entries, in which nonzero entries be optionally
circled. Following [Sag87], we call the latter circled matrices. For example,

ϕ =

[
1 1 1 2 2 2 3
2′ 2 2 1 1 2′ 1

]
has associated circled matrix A =

 0 3
2 1
1 0

 . (5.3)

This circled matrix A has all entries Aij ∈ {0, 1, 2, 3}; that is, the circles have no effect on
the value Aij . A primed compatible sequence is value-strict if and only if its associated circled
matrix has all entries in {0, 1} and at most nonzero entry in each column.

Theorem 5.8. The map ϕ 7→ (PO
SW(ϕ), QO

SW(ϕ)) is a bijection from primed compatible se-
quences to pairs (P,Q) of semistandard shifted tableaux of the same shape, where P has no
primes on the main diagonal and where the number of times that j or j′ (for any j ∈ Z) appear
in P and in Q. Moreover, if A = [Aij] is the circled matrix of ϕ then each row sum

∑
iAij
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(respectively, column sum
∑

k Ajk) is the number of times that j or j′ appear in PO
SW(ϕ) (re-

spectively, in QO
SW(ϕ)).

Remark 5.9. Theorem 5.8 remains true when the relevant map is replaced by

ϕ 7→ (P Sp
SW(ϕ), QSp

SW(ϕ))

if one requires Q instead of P to have no diagonal primes (see [Sag87, Thm. 8.1] or [Wor84,
Thm. 6.1.1]).

Proof. Let ϕ be a primed compatible sequence. Toggling whether a given number in the value
of ϕ is initially primed or not has no effect on τSW(ϕ) by Proposition 5.6. The result is therefore
clear from the same result and [Sag87, Thm. 8.1] or [Wor84, Thm. 6.1.1].

If ϕ and A are as in (5.3) then A has row sums 1, 2 and column sums 3, 3, 1, while

PO
SW(ϕ) =

2 2

1 1 1 2 2
and QO

SW(ϕ) =
2 2

1′ 1 1 2′ 3′
.

5.3. Orthogonal Knuth operators

There is a conjectural analogue of Theorem 3.24 for Sagan–Worley insertion, which we describe
in this section. Let okn denote the operator that acts on 1- and 2-letter primed words by inter-
changing

X ↔ X ′, XX ↔ XX ′, X ′X ′ ↔ X ′X,

XY ↔ Y X, X ′Y ↔ Y ′X, XY ′ ↔ Y X ′, and X ′Y ′ ↔ Y ′X ′,

for all distinct X, Y ∈ Z. Let okn act on 3-letter primed words as the involution interchanging

ACB ↔ CAB and Y XZ ↔ Y ZX

for all A,B,C,X, Y, Z ∈ Z ⊔ Z′ with ⌈A⌉ ⩽ B ⩽ ⌈C⌉ − 1
2

and X + 1
2
⩽ ⌈Y ⌉ ⩽ Z, while

fixing any 3-letter words not of these forms. For a primed word a = a1a2 · · · an and i ∈ [n− 2],
define

okn−1(a) := okn(a1)a2a3 · · · an,
okn0(a) := okn(a1a2)a3 · · · an,
okni(a) := a1 · · · ai−1okn(aiai+1ai+2)ai+3 · · · an,

while setting okni(a) := a for i ∈ Z with i + 2 /∈ [ℓ(a)]. These orthogonal Knuth operators
coincide with ocki on partial signed permutations.

Conjecture 5.10. If i ∈ Z then PO
SW(okni(a)) = PO

SW(a) and QO
SW(okni(a)) = di(Q

O
SW(a)).

It is trivial to verify these identities when i ∈ {−1, 0}. As with Theorem 3.24, the difficulty
lies in the case when 1 ⩽ i ∈ ℓ(a) − 2. Let shK∼ denote the transitive closure of the relation on
primed words with a ∼ okni(a) for all i ∈ Z.
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Proposition 5.11. If a is a primed word then a shK∼ row(PO
SW(a)).

Proof. One can mimick the proof of Proposition 3.21, using the relation shK∼ in place and O∼, after
rewriting Definition 5.1 in a form similar to Definitions 3.1 and 3.3. We omit the details.

Thus, Conjecture 5.10 would imply the following:

Conjecture 5.12. Two primed words satisfy a shK∼ b if and only if PO
SW(a) = PO

SW(b).

A version of this property for the original “symplectic” form of Sagan–Worley insertion is
already known. Modify the definition of okni by setting

spkn−1(a) := a and spkn0(a) := a2a1a3a4 · · · an if ⌈a1⌉ ≠ ⌈a2⌉ and n := ℓ(a) ⩾ 2,

while defining spkni(a) := okni(a) in all other cases. Write∼ for the transitive closure of the re-
lation with a ∼ spkni(a) for all i ∈ Z. Notice that if X ∈ Z then XX ∼ XX ′ ̸∼ X ′X ′ ∼ X ′X

while XX shK∼ XX ′ shK∼ X ′X ′ shK∼ X ′X.
Worley [Wor84, Thm. 6.2.2] shows that two primed words satisfy a ∼ b if and only

if P Sp
SW(a) = P Sp

SW(b), so in particular P Sp
SW(spkni(a)) = P Sp

SW(a) for all i. We do not know
of a reference for this analogue of the second identity in Conjecture 5.10:

Conjecture 5.13. If i > 0 and a is any primed word then QSp
SW(spkni(a)) = di(Q

Sp
SW(a)).

The case i = −1 is excluded from this conjecture becauseQSp
SW(spkn−1(a)) ̸= d−1(Q

Sp
SW(a))

whenever a is nonempty, as then spkn−1(a) = a but QSp
SW(a) ̸= d−1(Q

Sp
SW(a)). The case i = 0

is excluded because one can check directly that QSp
SW(spkn0(a)) = d0(Q

Sp
SW(a)) for all primed

words a.

Proposition 5.14. If i > 0 and

QO
SW(okni(a)) = di(Q

O
SW(a)) and QSp

SW(spkni(a)) = di(Q
Sp
SW(a)).

Proof. In this case

QSp
SW(spkni(a)) = QSp

SW(okni(a)) = unprimediag(Q
O
SW(okni(a)))

by Proposition 5.6, and this is equal to unprimediag(di(Q
O
SW(a))) = di(Q

Sp
SW(a)) via (3.7) and the

same lemma.

If Conjecture 5.13 were known, then one could derive Conjectures 5.10 and 5.12 by (a sim-
plified version of) the strategy we used in Section 4 to prove Theorem 3.24.

In more detail, suppose a is a primed word, i ∈ [ℓ(a) − 2], and b := okni(a). The numbers
that are initially primed in a are the same as in b, so unprimeinit(b) = okni(unprimeinit(a)) and

unprimefree(P
O
SW(a)) = P Sp

SW(unprimeinit(a)) = P Sp
SW(unprimeinit(b)) = unprimefree(P

O
SW(b))

by Proposition 5.6 and [Wor84, Thm. 6.2.2]. To prove that PO
SW(a) = PO

SW(b) it suffices by
Proposition 5.6 to show that τSW(a) = τSW(b). This can be achieved by proving appropriate
versions of the lemmas in Sections 4.4 and 4.7. Then one can deduce QO

SW(b) = di(Q
O
SW(a))

fromQSp
SW(b) = di(Q

Sp
SW(a)) by an argument similar to the proof of Theorem 3.24 in Section 4.7.

For partial signed permutations, all of these conjectural results follow from Section 3.4:
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Corollary 5.15. Suppose a and b are partial signed permutations. Then a shK∼ b if and only
if PO

SW(a) = PO
SW(b). Moreover, QO

SW(okni(a)) = di(Q
O
SW(a)) for all i.

Proof. This follows from Proposition 5.4 given Theorem 3.24 and Corollary 3.25, as the oper-
ators okni and ocki coincide on partial signed permutations, as do the relations shK∼ and O∼.

Our two forms of Sagan–Worley insertion do not coincide on partial signed permutations.
However, because of Proposition 5.14, the previous corollary implies the following:

Corollary 5.16. If a is a partial signed permutation thenQSp
SW(spkni(a)) = di(Q

Sp
SW(a)) for all i.

5.4. Extending shifted mixed insertion

We now discuss two similar “primed” extensions of Haiman’s shifted mixed insertion algo-
rithm [Hai89, Def. 6.7]. These algorithms will turn out to be closely related to the forms of
Sagan–Worley insertion analyzed above. Define a primed compatible sequence to be index-
strict if its index is strictly increasing. A primed compatible sequence is index-strict if and only
if its associated circled matrix has all entries in {0, 1} and at most nonzero entry in each row.

Definition 5.17. Supposeϕ is an index-strict primed compatible sequence written as in (5.1). We
construct a sequence of shifted tableaux ∅ = U0, U1, . . . , Un = U whose entries are pairs (ϵ, u)
where ϵ ∈ {±} and u ∈ Z ⊔ Z′. These tableaux become weakly increasing with no primes on
the main diagonal if every entry (ϵ, u) is replaced by u. The tableau Uj is formed from Uj−1 as
follows:

(1) Define α ∈ {±}×Z to be (+, ⌈aj⌉) if aj ∈ Z or (−, ⌈aj⌉) if aj ∈ Z′. Insert this pair into
the first row of Uj−1 according to the following procedure.

(2) At each stage, a pair β1 = (ϵ1, u1) with u1 ∈ Z ⊔ Z′ is inserted into a row (when u1 ∈ Z)
or a column (when u1 ∈ Z′). If every pair β2 = (ϵ2, u2) in that row or column has u1 ⩾ u2
then β1 is added to the end; the added box can only be on the main diagonal if u1 ∈ Z.13

Otherwise let β2 = (ϵ2, u2) be the leftmost pair in the row or column with u1 < u2.

(3) If β2 is on the main diagonal, then it will always holds that u2 ∈ Z, and we proceed by
replacing β2 with β1 and inserting (ϵ2, u

′
2) into the column to the right of β2.

(4) If β2 is not on the main diagonal, then replace β2 with (ϵ2, u1) and insert (ϵ1, u2) into either
the row after β2 when u2 ∈ Z or the column to the right of β2 when u2 ∈ Z′.

Form PO
HM(ϕ) from U by replacing each main diagonal entry (ϵ, x) with ϵ = − by x′, and all

other entries (ϵ, x) by x. Let QO
HM(ϕ) be the shifted tableau with the same shape whose entry

in the box of Uj that is not in Uj−1 is either ij or i′j , with a primed number occurring precisely
when this box is off the main diagonal and its entry in Uj has the form (ϵ, x) with ϵ = −.

13If u1 ∈ Z′ then the previous iteration must have bumped a position in the preceding column, so as our tableaux
Ui are weakly increasing (when ignoring signs), β1 must be strictly bounded by some β2 is the current column.
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Unlike earlier algorithms, here successive insertions do not always occur in consecutive rows
and columns; also, the orientation of insertion can switch multiple times from rows to columns
and from columns back to rows. As our notation suggests, Definition 5.17 has a “symplectic”
variant.

Definition 5.18. Given an index-strict primed compatible sequence ϕ written as in (5.1), define
shifted tableaux ∅ = U0, U1, . . . , Un = U by repeating Definition 5.17, but modifying step (3)
so that the entry β2 is replaced by (ϵ2, u1) while (ϵ1, u′2) is inserted into the next column. Then:

• Form P Sp
HM(ϕ) from U by replacing all entries (ϵ, x) by x.

• Let QSp
HM(ϕ) be the shifted tableau with the same shape whose entry in the box of Uj that

is not in Uj−1 is either ij or i′j , with a primed number occurring precisely when the entry
of Uj in this box has the form (ϵ, x) with ϵ = −.

Remark 5.19. When the index of ϕ consists of the numbers 1, 2, 3, . . . , n and the value of ϕ has
no primed entries, both ϕ 7→ (PO

HM(ϕ), Q
O
HM(ϕ)) and ϕ 7→ (P Sp

HM(ϕ), Q
Sp
HM(ϕ)) reduce to shifted

mixed insertion [Hai89, Def. 6.7]. Neither extension seems to have appeared in the literature.
We refer to these maps as orthogonal and symplectic mixed insertion. More generally, the two
algorithms restrict to the same map on all index-strict (unprimed) compatible sequences.

Example 5.20. Suppose our index-strict primed compatible sequence is

ϕ =

[
2 3 4 5 7
2′ 2 1 1′ 2′

]
.

Then, writing ±x in place of (±, x), the sequence of shifted tableaux Uj in Definition 5.17 are

U1 = −2 , U2 = −2 +2 , U3 =
−2

+1 +2′
, U4 =

−2
+1 +1 −2′

, U5 =
−2

+1 +1 −2′ −2
,

so PO
HM(ϕ) =

2′

1 1 2′ 2
and QO

HM(ϕ) =
4

2 3 5′ 7′
. The tableaux Uj in Definition 5.18 are

U1 = −2 , U2 = −2 +2 , U3 =
+2

−1 +2′
, U4 =

+2

−1 +1 −2′
, U5 =

+2

−1 +1 −2′ −2
,

so we have P Sp
HM(ϕ) =

2
1 1 2′ 2

and QSp
HM(ϕ) =

4
2′ 3 5′ 7′

.

5.5. Relating shifted mixed insertion to Sagan–Worley insertion

The original forms of shifted mixed insertion and Sagan–Worley insertion take permutations as
inputs. Inverting these inputs exchanges the outputs of the two algorithms by [Hai89, Thm. 6.10].
In this final section we show that this property extends to our primed forms of both insertion
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algorithms, with inversion replaced by a transpose operation ϕ 7→ ϕ⊤ on primed compatible
sequences.

The relevant transpose operation is given as follows. Starting from a primed compatible
sequence ϕ, first move any primes from the value to the entries directly above them, then in-
terchange the two rows and reorder the columns to be lexicographically increasing, and call the
result ϕ⊤. If

ϕ =

[
2 3 4 5 7
2′ 2 1 1′ 2′

]
then ϕ⊤ =

[
1 1 2 2 2
4 5′ 2′ 3 7′

]
, (5.4)

for example. In terms of the associated circled matrices, this operation is just the matrix trans-
pose, so it interchanges index-strict and value-strict compatible sequences.

One can observe the identities in the following theorem by comparing Examples 5.2 and 5.20.

Theorem 5.21. If ϕ is index-strict, then it holds that PO
HM(ϕ) = QO

SW(ϕ⊤)
and QO

HM(ϕ) = PO
SW(ϕ⊤), and it also holds that P Sp

HM(ϕ) = QSp
SW(ϕ⊤) and QSp

HM(ϕ) = P Sp
SW(ϕ⊤).

Proof. The desired identities generalize [Hai89, Thm. 6.10] in the following sense. As noted in
Remarks 5.7 and 5.19, on index-strict (unprimed) compatible sequences, orthogonal and sym-
plectic Sagan–Worley insertion restrict to the same map ϕ 7→ (PSW(ϕ), QSW(ϕ)), while orthog-
onal and symplectic mixed insertion restrict to the same map ϕ 7→ (PHM(ϕ), QHM(ϕ)). [Hai89,
Thm. 6.10] asserts that if the index of ϕ is 1, 2, . . . , n and the value of ϕ is a permutation
of 1, 2, . . . , n, then PHM(ϕ) = QSW(ϕ⊤) and QHM(ϕ) = PSW(ϕ⊤). This property extends to the
case when ϕ is any (unprimed) compatible sequence that is both index- and value-strict, since
then all of the relevant tableaux are obtained from the permutation case by applying appropriate
order-preserving bijections to their entries.

Let ϕ be a primed compatible sequence written as in (5.1). We will only prove
that PO

HM(ϕ) = QO
SW(ϕ⊤) and QO

HM(ϕ) = PO
SW(ϕ⊤), as the argument for the symplectic case

is similar. We first assume ϕ is both index-strict and value-strict. Then we have

unprime(QO
HM(ϕ)) = QO

HM(unprime(ϕ)) = PO
SW(unprime(ϕ⊤)) = unprime(PO

SW(ϕ⊤)),

unprimediag(P
O
HM(ϕ)) = PO

HM(unprime(ϕ)) = QO
SW(unprime(ϕ⊤)) = unprimediag(Q

O
SW(ϕ⊤)),

(5.5)

using the preceding paragraph for the middle equalities, and the definitions of our insertion algo-
rithms for the others. Thus, we already know that if we ignore all primes then the corresponding
entries are equal inQO

HM(ϕ) and PO
SW(ϕ⊤), and also in PO

HM(ϕ) andQO
SW(ϕ⊤). More specifically,

since the outputs of QO
HM and PO

SW never have primed entries on the main diagonal, to prove
that PO

HM(ϕ) = QO
SW(ϕ⊤) and QO

HM(ϕ) = PO
SW(ϕ⊤) we just need to show that each off-diagonal

box is primed inQO
HM(ϕ) if and only if it is primed in PO

SW(ϕ⊤), and each diagonal box is primed
in PO

HM(ϕ) if and only if it is primed in QO
SW(ϕ⊤).

We will demonstrate this by an inductive argument. Let ϕ̂ be the compatible sequence

formed from ϕ by omitting its last column
[
in
an

]
. Then ϕ̂ is still index- and value-strict, so we

may assume by induction that QO
HM(ϕ̂) = PO

SW(ϕ̂⊤) and PO
HM(ϕ̂) = QO

SW(ϕ̂⊤). To deduce that
these identities also hold for ϕ, we must understand how the shifted tableaux PO

HM(ϕ), QO
HM(ϕ),

PO
SW(ϕ⊤), and QO

SW(ϕ⊤) are constructed from PO
HM(ϕ̂), QO

HM(ϕ̂), PO
SW(ϕ̂⊤), and QO

SW(ϕ̂⊤).
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We consider the mixed insertion case first. Define Û from PO
HM(ϕ̂) by replacing each main

diagonal entry x by (ϵ, ⌈x⌉) where ϵ = + (respectively, ϵ = −) if x is unprimed (respec-
tively, primed), and then replacing each off-diagonal entry x by (ϵ, x) where ϵ = + (respec-
tively, ϵ = −) if the entry in the same position of QO

HM(ϕ̂) is unprimed (respectively, primed).
Construct U from PO

HM(ϕ) analogously. Each box in these tableaux contains an entry of the
form (ϵ, x) and we refer to ϵ as the sign of the box. Finally, let α = (ϵ, ⌈an⌉) where ϵ = + (re-
spectively, ϵ = −) if an is unprimed (respectively, primed). Then U is obtained by inserting α
into the first row of Û according to the procedure in Definition 5.17.

The set of boxes in U (respectively, Û ) with negative sign is the union of the sets of primed
positions in QO

HM(ϕ) (respectively, QO
HM(ϕ̂)) and diagonal primed positions in PO

HM(ϕ) (respec-
tively, PO

HM(ϕ̂)). From Definition 5.17, we see that the signs of the boxes in U are the same in Û ,
except that if inserting α successively bumps a sequence of diagonal boxes A1,A2, . . . ,Ap−1

and eventually terminates at a new box Ap, then box A1 adopts the sign of α and box Ai+1

adopts the sign of box Ai in Û for each i ∈ [p − 1]. Notice that boxes A1,A2, . . . ,Ap−1 are
the main diagonal positions where unprimediag(P

O
HM(ϕ̂)) differs from unprimediag(P

O
HM(ϕ)), and

that Ap is the unique box of the second tableau that is not in the first.
We now examine the Sagan–Worley insertion case. For any primed compatible sequence ψ

form P̃O
SW(ψ) from PO

SW(ψ) by adding a prime to each main diagonal box that is primed
in QO

SW(ψ). The set of primed boxes in P̃O
SW(ψ) is the union of the sets of primed positions

in PO
SW(ψ) and diagonal primed positions in QO

SW(ψ). Let ∅ = T0, T1, T2, . . . , Tn be the se-
quence of shifted tableaux formed by successively inserting the entries in the second row ϕ⊤

according to the bumping procedure in Definition 5.1, but modified so that we do not remove
primes from new boxes added to the main diagonal in step (3). Then we have Tn = P̃O

SW(ϕ⊤).
Define ∅ = T̂0, T̂1, T̂2, . . . , T̂n−1 = P̃O

SW(ϕ̂⊤) to be the analogous sequence of shifted tableaux
formed by successively inserting the entries in the second row ϕ̂⊤ by the same modified bumping
procedure.

Suppose b1, b2, . . . , bn are the entries in the second row of ϕ⊤ and bj is the largest entry in
this list. Note that bj is either i′n or in according to whether an is primed or unprimed. Then ϕ̂⊤

is formed from ϕ⊤ by omitting column j, so Ti = T̂i for 0 ⩽ i < j and Tj is formed from T̂j−1

by adding bj to the end of the first row. As we insert the remaining entries bj+1, bj+2, . . . , bn
into Tj to form Tk for j < k ⩽ n, the maximal entry bj may be bumped to a new position but
the remaining entries are almost the same as in T̂k−1. The only difference is that whenever the
unique maximal entry is bumped from a main diagonal position, its prime is switched with the
entry replacing it.

Thus if the maximal entry is successively bumped from a sequence of main diagonal
boxes B1,B2, . . . ,Bq−1 and eventually ends up in some box Bq, then box B1 in P̃O

SW(ϕ⊤) re-
tains the prime of bj (which is the prime of an), while box Bi+1 in P̃O

SW(ϕ⊤) for each i ∈ [q− 1]
retains the prime of whichever number ends up bumping the maximal entry from boxBi. We can
identify these primes as well as the boxes B1,B2, . . . ,Bq by comparing the associated recording
tableaux: the first q− 1 boxes are the main diagonal positions where unprimediag(Q

O
SW(ϕ̂⊤)) dif-

fers from unprimediag(Q
O
SW(ϕ⊤)), as these positions indicate where a smaller entry would arrive

at a later insertion step if the maximal entry bj were never inserted; the primes of the bumping
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entries are the primes of these positions in QO
SW(ϕ̂⊤), or equivalently in P̃O

SW(ϕ̂⊤); and Bq is
the unique box of QO

SW(ϕ⊤) that is not in QO
SW(ϕ̂⊤). We conclude that the primes of the boxes

in P̃O
SW(ϕ⊤) are the same as in P̃O

SW(ϕ̂⊤), except box B1 adopts the prime of an and box Bi+1

adopts the prime of box Bi in P̃O
SW(ϕ̂⊤) for each i ∈ [q − 1].

Our hypothesis that QO
HM(ϕ̂) = PO

SW(ϕ̂⊤) and PO
HM(ϕ̂) = QO

SW(ϕ̂⊤) implies Û = P̃O
SW(ϕ̂⊤).

To show that QO
HM(ϕ) = PO

SW(ϕ⊤) and PO
HM(ϕ) = QO

SW(ϕ⊤) it suffices by (5.5) to check that
the negative boxes in U have the same locations as the primed boxes in P̃O

SW(ϕ⊤). Comparing
our descriptions of these boxes above, we see that it is enough to show that p = q and that the
boxes Ai = Bi coincide for all i, and this also follows by (5.5).

To finish the proof, let ϕ be any index-strict primed compatible sequence with n columns.
Form ψ from ϕ by taking its transpose, then replacing the index by the consecutive
numbers 1 < 2 < · · · < n, and then taking the transpose again. For example, if

ϕ =

[
2 3 4 5 7
2′ 2 1 1′ 2′

]
then ψ =

[
1 2 3 4 5
4 5′ 2′ 3 7′

]⊤
=

[
2 3 4 5 7
3′ 4 1 2′ 5′

]
,

It is clear that PO
SW(ϕ⊤) = PO

SW(ψ⊤) and QO
HM(ϕ) = QO

HM(ψ). Let

F : {1′ < 1 < 2′ < 2 < · · · < n′ < n} → {1′ < 1 < 2′ < 2 < . . . }
be the unique map with F(i) = j and F(i′) = j′ if j is the entry in the index of ϕ⊤ in column i.
Then ϕ is formed by applying F to the value of ψ, and we have F(QO

SW(ψ⊤)) = QO
SW(ϕ⊤) and

F(PO
HM(ψ))=P

O
HM(ϕ). As we already know that QO

HM(ψ)=P
O
SW(ψ⊤) and PO

HM(ψ)=Q
O
SW(ψ⊤),

the theorem follows.

It would interesting to find a way to extend Definitions 5.17 and 5.18 so that Theorem 5.21
holds for all primed compatible sequences, similar to what is done in [SW01, §3.4] for mixed
insertion.

Recall that we identify a = a1a2 · · · an with the compatible sequence
[
1 2 . . . n
a1 a2 . . . an

]
.

Corollary 5.22. The map a 7→ (PO
HM(a), Q

O
HM(a)) (respectively, a 7→ (P Sp

HM(a), Q
Sp
HM(a))) is a

bijection from the set of primed words with all positive letters to the set of pairs (P,Q) of shifted
tableaux of the same shape, in which P is semistandard, Q is standard, and Q (respectively, P )
has no primed entries on the main diagonal.

Proof. Primed words with positive letters correspond to circled matrices with just one nonzero
entry, given by 1 or 1′, in each of the first ℓ(a) rows, and no other nonzero rows. By Theorem 5.8
and Remark 5.9, the maps ϕ 7→ (PO

SW(ϕ), QO
SW(ϕ)) and ϕ 7→ (P Sp

SW(ϕ), QSp
SW(ϕ)) are bijections

from the set of transposes of such compatible sequences to the set of pairs of shifted tableaux with
the desired properties, but in reverse order. The result thus holds by Theorems 5.8 and 5.21.
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