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en the Assumption of CC~nsenration of Parity. 

Charles Jo Goebel 

July 17, 1956 

If a system of two particles is in an eigenstate of parity1 its 

internal wave function satisfies 'f'(=1..) :::; Y (x) · atld therefo1•e 

Jt<.=x>} 2 
= ~~(x) f 2

s i.eo.~ the angular di.stribution of the state is 

invarfJion-symmetrice Thus lack of inversion synmetry, ("asynmetry" for 

sh:trt) can result only from a state that is not a parity eigenstate. Sueh 

a state is not in general an eigenstate of energy, because in general energy 

is nondagenerate with respect-to oarity. Thus the state is a superposition 

or energy eigensta.test i.eo, ~:: C(. ro -r~ ~e ,mere To,e are eigenst.atea 

of both parity and energy. The phase between the two states rotates with a 

frequency E0 - E8(~ = 1), thus the asymmetry averages to zero over a time 

long compared to (E
0 

= Ee) -1.; a condition then on the ~servabilitz of an 

asymmetry is that the energy difference between the parity eigenstates be 
=1 

small compared with the (time of observation) (i.eo, for a dec~~ the 

decay width J 
Lee and Yang have suggest.ed, as a solJJ.tion to the '{'" - e difficulty, 

that 11the K meson" (and therefore a.ll particles with strangeness :tl) is 

really a parity doublet, ioe .. ~ it. consists of two states with opposite 

parity 9 l-thioh are degenerate with res-pect t.o the strong and electromagnetic 

interactions. They areJ hawHver,.. split by the weak decay intera@tion: the 

two parity=states decay into ~fferent states of ordinary particles, and 

these different states, when sex~ing as virtual intermediate states, produce 

different self~·energy· shifts. One expects, then, that the energy difference 

bct.we~m the par·ity states is of t.he same order as t.heir lif'etime; thus it io 

possible that asyT.:n::t.dc dec:>.y from strange particles would be observable. 
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for observable asymmetr.y, let us look in detail at a particular process: 

K ... e. p ~ 1f'+l;t • 

Choose the axis of quantization, the 11 z .. axis," to be along· the line 

ot night or the .L ; then we have m.t = o <ror u m.~ * o, the I: could. 
m;#- 0 

. not be going along the z-axis: p f (. Cos a = ± 1) = 0) • Therefore 

mj = m
8 

: ± ~~ if for simplicity we take sl: = io Write, when mj = is the 

Z state function as '\V ~ ~ "0 1f:, i: +he'/: ! ( Jh I 
2 + tbe/ 

2 
: lL Jr . S:o . ~e o 

i o eo 1 q ( ) is the amplitude for a ~ ( ) to be going along the z axis o o e o e . 

To conserve parity, the L::= decays to 7r N in an S state, with wave 
0 . 

function S:, (~)'Where ~0 is proportional to the matrix element for 

decay (this is discussed in more detail below); the S decays to :n- N in 
e 

a P state, with wave function 

Thus the state 'JI:. i decays into 

'/{.N! · = 'II~ ca., (l) +-he ~e (cos e ) g(~+ W8 :o• a j 
. 0 sin 9 e -} w. sin e. ¢ J 

where Lo~ \\~ • The angular distribution therefore. is 

I }'~}~ 2 

= I"' ol 
2 

+ jw. \ ~ 2 Re(l>(,* W8)~os e , 

which exhibits the asymmetry. The question now is, will this asymmetry 

perSist when we average over initial spin mj = ± ~? 'fo answer this~ we 

must filld 1 =!, if' 1{-1 ~ is given. Lee and Yang constructed f =i by a 

reflection, say 

and thus turns mj ::: ! into. mj :: ~~ but leaves a and therefore the 

angular distribution /'f/ 2 unchanged. 
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However. we have made an implicit nssumnt:l.on, that the amplitude:.; 

lh did not ehanga under the refle~tion, ioe,, that they transform like 
'l o,e 

scalars; a pseudosealar would change sign under the reflection (whieh is 

inversion times a proper rotaticn)o As an example of the latter situation, 

consider the following model for the production or the ~ I ThE: '!<·-capture 

reaction goes through a single orbital channel9 so that B
0 

comes only frem 

the capture of a 1<0 , and a L
8 

comes from a K
8 

(or vice ve~sa) ·J Now, 

~er reflection, the wave functions of the initial states change eign relative 

t~ each othe~, since they are of opposite parity; thus the wave fUnetiona 

of the Y""t: states must ehange sign relative to one another, Leo~ the 
o,e 

coefficients h . Thus in this case the asymmetry reverses under the 
· oJe . 

reflection, eo that averaging over initial snin destroys the asymmetry. In 

general, inter•f'erenee between states of different parity does not yield an 

asymmetric E -· decay o 

Thus we consider the ~ to come from the same state (or at 
o 8 e 

least from stat,es of the same parity); this of course requ:J.res that the L 
0 

and ~e come out in different orbital states~ to conserve parityo 

Note: this 3mplie~ that the scheme of coupling the K mesons to 

other particles is not the most economical possible o The 

latter would be the coupling of K. to baryon in a single orbital 

state; ioeo» {taking as above s:c : ~' oK :: 0) 

N --)~K@, N ~~Ke 
in an S state 2r in a P stat.e, 

but l'!_@t. both. As we see 9 an e.synmetlry in the ~ decay would 

imply the existence of hoth couplings (and the1•efore of a K
0

Kefl., 

coupling, as rec,omruem:led by Schwinger,) 

For ex&mple 1 if t.he reactiem K-P ~ rr;l]; goes through a. j ~~ state ;mere 

j 1 s eve·1 t i13 
\-· 

Iti!'3\. be in an odd {eYen) orbital state" i of! •' 2 --· c ( D I 
~:):' ' tJ .J ' -·! ~ . - "- ' .:~~ . . r~ ,• ·!S . ~.c n..l (. ~ r al· · i ;,· t ~ -~ ';y derr::i ng 



from 
1/rti r , not by reflection~ but by application of the standard loijwe:rirtg 

operator Jx = iJy~ The essential point is that the coefficients f{o(e) are 

prcport.icna.l to the Clebsch-Gordan coefficients CJ __ ..!. .!.. () ..;_ ; .;) .:.. ). -
l-#J "-< ,., J I ;:t, 1 

under the lowering operation, the ~ olle become r( Opep proportional t..o 

C (. ) )J,;,.l. +l.-i c ) 
J .! ~ 0 t _. (-- ~ 4 ~ ( . I I 

J ...... .L .!.. ' ~i J -'i. - -::.=.:: .... J.-..!.. J.. • j ~; 0 "i 
(+J :a.J :a. -;:. "''""· ... 

so that the relative sign or the }\' is opposite to the relatiwe sign 
Ove 

of the l"t o Since under the l.©wering operation we have '\ o9e 

the asymmetr.y is the same for both initial soin states, 

As we said above8 ~ is proportional to the mat.rix element for 
o,e . · 

decay; in the somewhat symbolic wa:y we have been writing things, we have 

""~R~ + imot 
e (similarl;y for e),. so that 

The matrlx element for decay is real8 except for the phase shift due to 

fihal~state interaction between the 7F' and N. just as in photo­

produ~tion (see Takeda, Physo Revo !Q!, 1547 (1956~; we here ignore the 

phases -r::> considering them to be lumped in with the \1 , which are ~o9e '\o~e 

unknown anyway o The time dependence of the ~ would be lrrelewant if 
o»e 

·~ ~ the lifetimes and masses of the ~ 
0 

and .L~ 8 were equaL The 

qualitative effect of their inequality is clear: if one decays quj.ckly and 

the other slowly, there wonl!t be much interference between the two; :J.f the 

mass difference is large compared with the decay width~ the nhase between 

the 2~ and 
~ 

L.;. states avaraJ?;eS to zero~ as discussed above, 
e 
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If the angular distribution is written as A+ 2B cos e, the 

asymmetry, defined by 

B • 
T 

We have 

wheN 

Writing 

- = arg he ~ arg lt\ 0 , we have 

-
B(t) = f t\0 he I cos(gf +At) ~ 

-lt 
8 0 

These are fluxes; integrating over time gives us 

A = I not 2 -f- l t\ e '2 = 1~ 
\J Ao ).~ 

-
B Jl\o he l 

( A cos 91 - .6 sin ¢) ct "" = ~ 
~ -

-2 1::} A ~ 
~ a is a maximum when tlo = t\.e~ Ao = Ae' and ~ = 0: a~.~~ 
this is consistent with the intuitive discussion above, and with the tact 

that the asymmetry results from the interference between the reaction going 

through t.he two channelso 

The I!- decays into 7T-ft ; if we take the angle between the 

lines of flight of the 7F- and the B to define the asynmetry, the 

question :!irises H'hat choice of the angle for and 
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t(.;,t_--,> 1 

will yield the same asymmetry? This question &~ounts to askin~ for the 

relative s:l.gns of the decay matrix eler.tents; in terms of i~suin eigenstates 

we have 

1;;- ......... ~ ~~ 1-11 

Y;? ...:p 1{2' b;- ~ t. bl +\'2' ~ Y:~n ltop + 
3 3 

If the spin of the ~ is not l, the analysis is the same as abo~e, 

except that. in addition to the average over f'nj : :tl mj/ {which, as 

above, is trivial: ~~ mj J 
2 

: It =mj/ 2 
) we must average over 

JmjJ : ls ~•os j. For example, if s~ : 3/2, then we have 

Eo( e)....._., (tr N)B state 
(P state). 

For 

3/2 Y-l 3 - r 'll W 
- '--!. 0 2 

/
,.J; 3/2, 2 2 ~/ 3} 2 I .3/2 :;~ :'i . r · I = t stn e L''1t -1- w. . - ae< ~A;: ~ )cos e 

For 

3 
T 

2 cos 9 - l 
3 

sin e cos e e 
1¢ + 

cos 9 

-sine e 
2 

0 

i!IJ 




