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Abstract

Metabolic fluxes, the number of metabolites traversing each biochemical reaction in a cell

per unit time, are crucial for assessing and understanding cell function. 13C Metabolic Flux

Analysis (13C MFA) is considered to be the gold standard for measuring metabolic fluxes.
13C MFA typically works by leveraging extracellular exchange fluxes as well as data from
13C labeling experiments to calculate the flux profile which best fit the data for a small, cen-

tral carbon, metabolic model. However, the nonlinear nature of the 13C MFA fitting proce-

dure means that several flux profiles fit the experimental data within the experimental error,

and traditional optimization methods offer only a partial or skewed picture, especially in

“non-gaussian” situations where multiple very distinct flux regions fit the data equally well.

Here, we present a method for flux space sampling through Bayesian inference (BayFlux),

that identifies the full distribution of fluxes compatible with experimental data for a compre-

hensive genome-scale model. This Bayesian approach allows us to accurately quantify

uncertainty in calculated fluxes. We also find that, surprisingly, the genome-scale model of

metabolism produces narrower flux distributions (reduced uncertainty) than the small core

metabolic models traditionally used in 13C MFA. The different results for some reactions

when using genome-scale models vs core metabolic models advise caution in assuming

strong inferences from 13C MFA since the results may depend significantly on the complete-

ness of the model used. Based on BayFlux, we developed and evaluated novel methods

(P-13C MOMA and P-13C ROOM) to predict the biological results of a gene knockout, that

improve on the traditional MOMA and ROOM methods by quantifying prediction uncertainty.
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Author summary

13C MFA practitioners know that modeling results can be sensitive to minor modifica-

tions of the metabolic model. Certain parts of the metabolic model that are not well

mapped to a molecular mechanism (e.g. drains to biomass or ATP maintenance) can have

an inordinate impact on the final fluxes. The only way to ascertain the validity of the

model is by checking that the result does not significantly differ from previously observed

flux profiles. However, that approach diminishes the possibility of discovering truly novel

flux profiles. Because of this strong dependence on metabolic model details, it would be

very useful to have a systematic and repeatable way to produce these metabolic models.

And indeed there is one: genome-scale metabolic models can be systematically obtained

from genomic sequences, and represent all the known genomically encoded metabolic

information. However, these models are much larger than the traditionally used central

carbon metabolism models. Hence, the number of degrees of freedom of the model

(fluxes) significantly exceeds the number of measurements (metabolite labeling profiles

and exchange fluxes). As a result, one expects many flux profiles compatible with the

experimental data. The best way to represent these is by identifying all fluxes compatible

with the experimental data. Our novel method BayFlux, based on Bayesian inference and

Markov Chain Monte Carlo sampling, provides this capability. Interestingly, this

approach leads to the observation that some traditional optimization approaches can sig-

nificantly overestimate flux uncertainty, and that genome-scale models of metabolism

produce narrower flux distributions than the small core metabolic models that are tradi-

tionally used in 13C MFA. Furthermore, we show that the extra information provided by

this approach allows us to improve knockout predictions, compared to traditional meth-

ods. Although the method scales well with more reactions, improvements will be needed

to tackle the large metabolic models found in microbiomes and human metabolism.

Introduction

Synthetic biology enables us to bioengineer cells for synthesis of novel valuable molecules such

as renewable biofuels or medical drugs [1–5], but its full potential is hindered by our inability

to predict biological behavior [6, 7]. We can engineer DNA changes faster than ever, and we

can measure the impact of these genetic changes in more detail than ever through an increas-

ing amount of functional genomics data. But the availability of all these advances does not nec-

essarily translate into better predictive capabilities for biological systems: converting the

collected data into actionable insights to achieve a given goal (e.g., higher bioproduct yields) is

far from trivial or routine.

Metabolic fluxes (i.e., the number of metabolites traversing each biochemical reaction per

unit time per a given amount of biomass) are crucial to predict and understand biological sys-

tems because they map how carbon and electrons flow through metabolism to enable cell func-

tion. Flux analysis, for example, has been used to improve biofuel production [8],

contextualize multiomics data [9], and provide insights into multi-species relationships [10].

Although there are several popular methods for studying metabolic fluxes [11–13]13C MFA

is considered to be the gold standard to measure metabolic fluxes. Metabolic Flux Analysis

(MFA [11], as opposed to 13C MFA) works by using measurements of the exchange fluxes

(fluxes coming in and out of the cell) to fully constrain a small core metabolic network (with

less degrees of freedom than measurements). Flux Balance Analysis (FBA [12]) uses a
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extensive documentation, as well as automated
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repository also contains Jupyter notebooks with all

of the analysis presented in this paper, which can
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models pre-processed through the Limit Flux To

Core (lftc) software library provided at https://

github.com/JBEI/limitfluxtocore. This enables

BayFlux to perform 2S-13C MFA, a simplifying

assumption that reduces compute requirements,

and makes model curation easier by only requiring

atom transitions for central carbon metabolism. All

data used in this manuscript was previously

published, and is also packaged together with the

BayFlux software provided at the GitHub url listed

above, to allow readers to easily reproduce these

results.
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comprehensive metabolic network (a genome-scale metaboic model, or GSMM) that encom-

passes all reactions encoded in the genome, constrains it using the exchange fluxes, and then

finds the fluxes corresponding to the highest growth rates. Traditional 13C MFA [13] works by

using exchange fluxes as well as data from 13C labeling experiments to find which flux profile

(i.e., set of fluxes for every reaction in the model) best describes the data for a small metabolic

model. Genome-scale 13C MFA uses the same data types but finds the flux profile for a (much

larger) genome-scale metabolic model, often containing thousands of reactions [14, 15]. FBA

can produce good results when the cells are under selection for maximum growth [16] but is

less useful when that is not the case (e.g. human cells or engineered bacterial strains). 13C MFA

is considered the most accurate approach to measure metabolic fluxes but relies on expensive

and time consuming 13C experiments which are nontrivial to do in a high-throughput fashion.

Both methods have been used successfully to guide bioengineering processes [17, 18].

The optimization approach used to date in 13C MFA to determine fluxes [19–22] shows

several limitations, particularly in characterizing the full distribution of fluxes compatible

with the data. For example, the results from small core metabolic models can be very sensi-

tive to the modification of apparently innocuous components of the model. Also, if genome-

scale models are being used, the system shows more degrees of freedom (fluxes) than experi-

mental data and we expect many flux profiles to be compatible with the experimental data.

Furthermore, errors in determining 13C labeling for a single metabolite can completely derail

flux calculation. This optimization approach also often depends on expensive commercial

solvers, and is hard to parallelize. Finally and most importantly, uncertainty quantification

relies on confidence intervals estimated with help of frequentist statistics. Such intervals

depend on a given experimental outcome and may result in misinterpretation of the flux

uncertainty, as has been noted by others before us [23]. For example, the solution space may

have an area of poor fit to the data between two distinct regions of excellent fit (e.g. non-

gaussian fitness distribution), such that a single point does not meaningfully represent the

experimental data.

Here, we present a method (BayFlux) that rigorously identifies the full distribution of flux

profiles compatible with experimental data for a genome-scale model (Fig 1). The result pro-

vided to the end user is a “probability distribution” of possible fluxes, which faithfully reports

the full uncertainty due to experimental error, and any potential model data incompatibilities.

To achieve this, we combine both Bayesian inference and Markov Chain Monte Carlo

(MCMC) methods to sample flux space, as informed by 13C labeling and flux exchange data.

Just Monte Carlo sampling by itself provides all fluxes compatible with experimental data

instead of just the fluxes that best fit the available data [24–27]. However, while this approach

offers much needed flux uncertainty quantification [28], it fails when the data used is inconsis-

tent (e.g. fluxes coming in and out of the cell are not mass balanced). Bayesian inference can

address this complication because it is based on a probabilistic interpretation that ensures a

systematic approach to manage data inconsistencies and update flux probability distributions

as more data becomes available [29–32]. Combining Monte Carlo flux sampling with Bayesian

statistics hence provides reliable flux uncertainty quantification in a way that scales efficiently

as more data become available [23]. Unlike previous approaches [23, 30, 33], our approach

enables flux uncertainty quantification for genome-scale models rather than only for small

central carbon metabolism models [23], and helps trace the origin of flux uncertainty directly

to the physical measurements of metabolite labeling. Using genome-scale models for modeling

metabolism provides a comprehensive understanding of all metabolic fluxes in a cell [14, 15],

and standardizes the application of 13C MFA. Furthermore, MCMC Bayesian inference is eas-

ier to parallelize, use with large datasets, and integrate with heterogenous data sources (e.g.,

multiomics data [31]).
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We showcase BayFlux by performing the first flux sampling for a genome-scale model as

constrained by 13C data, and demonstrating more informative flux profiles than can be

achieved with non-Bayesian, optimization-based approaches. Using an E. coli model and data

set [34], we show that BayFlux produces results that are compatible with optimization results,

and also offer valuable uncertainty quantification information. This uncertainty quantification

allows us to show that optimization approaches can overestimate flux uncertainty by repre-

senting it through only two numbers: the upper and lower confidence intervals. We find that

genome-scale models of metabolism result in narrower flux distributions than the small core

metabolic models that are traditionally used in 13C MFA. Based on BayFlux, we develop and

evaluate novel methods (P-13C MOMA and ROOM) to predict the biological results of a gene

knockout, that improve on FBA-based MOMA and ROOM methods by quantifying predic-

tion uncertainty. Finally, we find that BayFlux scales well as more reactions are added, but effi-

ciency improvements will be needed to sample the very large metabolic models required for

microbiomes or human metabolism. We also discuss ideas for future improvement.

Results and discussion

A Bayesian approach to sampling fluxes

BayFlux uses Bayesian rather than frequentist statistics to determine fluxes through 13C MFA.

Bayesian and frequentist statistics represent two different paradigms to deal with probability

and inference.

Frequentist statistics, by far the most often used approach in 13C MFA, assume the existence

of a true vector of fluxes v, use Maximum Likelihood Estimators (MLE) to find such a vector,

Fig 1. A new approach to calculating metabolic fluxes. The state of the art in measuring metabolic fluxes (13C MFA)

involves using extracellular metabolite concentration data (top left) and 13C experimental data (bottom left) to find the

fluxes that best fit the data (optimization approach) for a core metabolic model. The extracellular metabolite

concentration data is converted into exchange fluxes, and the 13C experimental data involves the metabolite labeling

patterns or Mass Distribution Vector, MDV, or Mass Isotopomer Distribution, MID (e.g., for cytosolic ribose-

5-phosphate, r5p_c, among others) after labeled glucose is metabolically transformed. However, core metabolite

models only represent a small fraction of all possible reactions and involve simplifications that can have an inordinate

impact on the calculated fluxes. Genome-scale models can be systematically derived from the organism genome and

represent a comprehensive description of metabolism, but also display more degrees of freedom (reactions) than

measurements. This mismatch results in several flux profiles being compatible with the experimental data, which are

badly represented by a single flux solution, even if coupled with a confidence interval. Whereas the optimization

approach (top right, where each point in the x axis is a different flux, and the y axis its value and confidence interval)

only provides a best estimate for the flux profile (e.g., vCS for citrate synthase, cs) and a confidence interval, BayFlux

uses Bayesian Inference and Monte Carlo sampling to provide the full distribution of fluxes compatible with the

experimental data (bottom right, where the x axis is the flux value, and the y axis represents P(vCS): the probability of

the flux being vCS).

https://doi.org/10.1371/journal.pcbi.1011111.g001
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and rely on confidence intervals to reflect uncertainties in flux estimates. The MLE determines

v as the most likely to produce the measured experimental data: i.e., it is a point estimator that

generates a single result even when many fluxes produce the same experimental data. The

uncertainty in the result is reflected through a confidence interval, which can be computed in

different ways that do not necessarily lead to the same outcome [23]. This approach struggles

to deal with situations where many fluxes can equally best represent the experimental data,

particularly if they are not adjacent.

Bayesian inference assumes a hypotheses-driven point of view, where the goal is to estimate

the posterior p(v|y) representing the probability that a certain value of v is realized, given a cer-

tain prior knowledge and experimental data y available to the observer. Providing full proba-

bility distributions allows for a more accurate description in the case where many fluxes can

equally best represent the experimental data. Bayesian inference calculates the posterior p(v|y)

through the Bayes formula [35]:

pðvjyÞ ¼
pðyjvÞpðvÞ

pðyÞ
ð1Þ

where p(v|y) is the probability of obtaining experimental data y given fluxes v, p(y) is the prob-

ability of observing data y, and p(v) is the probability of observing v (representing prior knowl-

edge). Monte Carlo sampling is used to calculate the posterior p(v|y) by “jumping” from point

to point in the phase spaces of fluxes v with a probability given by the numerator p(y|v)p(v)

(since the denominator is the same for all v) [36]. This process is very different from the

Monte Carlo approach used in the past in, e.g., Antoniewicz et al [37] to calculate confidence

intervals. This latter Monte Carlo process is still a frequentist approach to provide a single best

flux estimate and a confidence interval by means of repeatedly adding noise to the Mass Isoto-

pomer Distribution (MID) and recalculating the fluxes anew.

Our novel algorithm, Artificial centering Metropolis sampling (AcMet, Fig 2, algorithm 1),

forms the basis of BayFlux by allowing us to sample from the posterior probability distribution,

and is based on the commonly used Artificial Centering Hit-and-Run (ACHR) algorithm [33].

The ACHR algorithm is widely used to sample the genome scale metabolic models (GSMMs)

flux space (a polytope) as constrained by stoichiometry only (i.e., the approach that forms the

basis of FBA). The ACHR algorithm works by randomly jumping around the flux polytope,

and keeping a running average of all samples called the “center.” Jumps always move in direc-

tion vectors from the center to known edges of the polytope, allowing the sampler to efficiently

move around the polytope, even in directions with unusually squished or elongated dimen-

sions. This method of sampling works well to collect uniform samples for the case where the

only constraints are stochiometric, since all points inside the polytope are equally valid. We

modify the ACHR algorithm and combine it with the Metropolis algorithm to produce a Mar-

kov Chain Monte Carlo (MCMC) sampler that can also take into account 13C experimental

data. We achieve this by sampling in two phases: an initial ACHR phase which finds the center

of the flux polytope, and a second Bayesian inference phase in which the center is locked, and

samples are accepted or rejected based on how well they fit the available 13C experimental

data. Briefly, for each flux point proposed in the Bayesian inference phase, the corresponding

mass isotopomer distributions (MIDs) can be calculated using Elementary Metabolite Units

(EMUs, [38]). The flux point is then more likely to be accepted as a sample the closer the calcu-

lated MIDs are to the measured MIDs. Locking the center is necessary to make the proposed

jumps reversible- a necessary condition to guarantee that the sampler converges to the correct

probability distribution. In order to make this approach work, we also need to add the
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capability to sample from cyclic fluxes (which are irrelevant in FBA, since it only considers net

fluxes).

BayFlux Monte Carlo sampling results are compatible with optimization

results

We obtain compatible results when calculating fluxes through the sampling and optimization

approaches for the same core metabolic model (Figs 3 and 4, A in S1 Text, B in S1 Text, and C

in S1 Text). We compare our new BayFlux sampling approach with the optimization approach

via a classical 13C MFA tool: 13CFLUX2 [34], which leverages the IPOPT (www.coin-or.org/

ipopt) and NAG C (www.nag.co.uk) mathematical optimization libraries. For this comparison,

we use the E. coli data and core metabolic model employed in the demonstration of

Fig 2. Graphical illustration of Artificial centering Metropolis sampling (AcMet) behind the BayFlux software package. The AcMet algorithm is

used to sample the phase space and find the probability for each flux profile (see Eq (1), and Algorithm 1). Each frame illustrates a step in the

AcMet algorithm, shown in only two dimensions for simplicity. The black outline represents the feasible flux phase space (a polytope), as determined by

the genome scale model stoichiometric matrix. 1. Center identification. Initial ‘edge points’ are identified on the edges of the flux space by minimizing

and maximizing each reaction. A running average of all samples is maintained as the ‘center’ and a series of samples are taken, always moving the

current point in a direction determined by the current center and one of the edge points. Once a direction is determined, a sample is chosen from the

uniform distribution within the allowable bounds, and all samples are accepted. Sufficient samples are collected to obtain a stable center. 2. Metropolis

sampling. Once a stable center is identified, the center is locked, and all previous samples are discarded. New proposed samples are collected in the

same manner as step 1., but without updating the center. 3. Reject low probability samples. Samples are accepted or rejected probabilistically based on

the ratio of the likelihood of the data given the new sample, divided by the likelihood of the data given the current sample, L(data|new sample)/L(data|

current sample). All higher likelihood samples are accepted. 4. If a sample is rejected, back up a step. If a sample is rejected, it is discarded, and the

sampler is moved back to the previous sample location, and records an additional sample at the previous location. 5. If a sample is accepted, continue.

If a sample is accepted, it is recorded and more samples are collected, just as in step 1, but without updating the center. 6. Halt and report posterior

probability. After a sufficient number of samples are collected, they are used to describe the posterior probability distribution. See Materials and

methods for further details.

https://doi.org/10.1371/journal.pcbi.1011111.g002
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13CFLUX2: measurements of glucose uptake, growth rate, and the labeling of eleven central

carbon intracellular metabolites for an E. coli MG1655 strain grown in glucose-limited contin-

uous culture, and a model comprised of 66 reactions and 37 metabolites describing central car-

bon metabolism (see Core Metabolic Model 1 below). Flux profiles for the best fit and best

sample (i.e. highest likelihood) from both methods are very similar (Fig 3), and the 13CFLUX2

fluxes are always enclosed by the BayFlux probability distributions and close to the BayFlux

best sample (Fig 4). These results hold for fifteen instances of flux profiles that were obtained

through both methods (Figs B in S1 Text and C in S1 Text). Furthermore, the corresponding

metabolite labeling patterns (mass distribution vectors or MDVs) are virtually identical

between 13CFLUX2 and BayFlux (Fig A in S1 Text). BayFlux, however, provides more infor-

mation on flux uncertainty, since it reports the full flux probability distribution, which is rarely

uniform over the optimization confidence interval (Fig 4). BayFlux is best used as a probabilis-

tic tool, and while it can report a single “best sample” (e.g. highest likelihood) point solution,

we recommend considering the entire distribution when interpreting results.

Fig 3. Flux profiles for core metabolic models obtained through BayFlux (sampling, in blue) and 13CFLUX2

(optimization, in red) are similar. The best sample (e.g. highest posterior probability) from BayFlux (for ten million

samples) is here compared with the best fit obtained from 13CFLUX2. Results for best fits and samples are similar:

while there are differences for some TCA cycle fluxes (e.g. tca3, tca4), the credible intervals for these fluxes overlap

with the 13CFLUX2 best fit and its confidence interval (Fig 4 and C in S1 Text), indicating that the difference is not

significant given the current data. In general, BayFlux credible intervals overlap with the 13CFLUX2 best fit and its

confidence interval for all different inputs (Figs B in S1 Text and C in S1 Text). All the fluxes are in units of mmol/

gDW/h. Reaction names correspond to Core Metabolic Model 1 (see Materials and methods).

https://doi.org/10.1371/journal.pcbi.1011111.g003
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Fig 4. Fluxes obtained from BayFlux using a flux sampling approach are compatible with the optimization results

from 13CFLUX2, but offer more information. Whereas the optimization approach only provides the best fit and

confidence intervals, BayFlux supplies the probability distribution of all fluxes compatible with the experimental 13C

data (Fig 1). Probability densities (blue), best sample (vertical magenta line), and mean (vertical green line) from

BayFlux for ten million flux samples are shown vs. 13CFLUX2 best fit with confidence intervals (in orange) for 5 out of

66 fluxes (see Fig 3 for best fits and best samples for a greater number of reactions). Reaction names correspond to

Core Metabolic Model 1 (see Materials and methods). The credible intervals for, e.g., fluxes tca3 and tca4 (see Fig 3)

overlap with the 13CFLUX2 best fit and confidence intervals. This shows that the difference is not significant, given the

current data, and highlights the importance of quantifying flux uncertainty.

https://doi.org/10.1371/journal.pcbi.1011111.g004
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The rigorous uncertainty quantification provided by BayFlux shows that the 13CFLUX2

confidence intervals often grossly overestimate flux uncertainty (Fig 4). For example, fluxes

‘upt’ and ‘emp3’ show a probability density that extends over a range that is an order of magni-

tude smaller than the corresponding confidence interval. Hence, these fluxes can be deter-

mined more accurately through BayFlux than the optimization approach used in 13CFLUX2.

The linearized statistics used as a default in 13CFLUX2 to identify confidence intervals have

been shown in the past to provide only approximate confidence intervals, which can be highly

inaccurate [37].

Genome-scale models produce narrower flux distributions than core

metabolic models

Flux sampling (via BayFlux) for the genome-scale model of metabolism generally produces

narrower distributions of fluxes compatible with the experimental data than the small core

metabolic models that are traditionally used in 13C MFA (Fig 5). This means that fluxes are

more accurately determined by using genome-scale models than small core models. For this

comparison, we use the E. coli data and core metabolic model previously published by Toya

et al. [39] (63 reactions and 47 metabolites describing central carbon metabolism, see Core

Metabolic Model 2 below), and as the genome scale model we use the E. coli genome-scale

model combining iAF1260 [40] and imEco726 [14] models (see genome-scale E. coli atom

mapping model below). This finding is surprising because one would expect that the extra

degrees of freedom provided by the several thousand reactions in the genome-scale model (as

compared to the*60 in the core model) would allow for many more distinct flux profiles to

meet stoichiometric constraints and labeling data. However, it seems that central metabolic

fluxes are well constrained by metabolite labeling, and the addition of several hundreds of

extra reactions only add draws of cofactors that further constrain core fluxes. This is consistent

with the known bow tie structure of metabolism [41]. Exceptions to this observation involve

reactions F6PA (fructose 6-phosphate aldolase), DHAPT (dihydroxyacetone phosphotransfer-

ase), and PYK (Pyruvate kinase), which show greater uncertainty (e.g. broader probability dis-

trbution peaks) for the genome-scale model than the core model (Fig 5).

To systematically quantify the uncertainty in the posterior probability distributions between

the genome scale and core metabolic models, we computed the absolute value of the coefficient

of variation for each of the 27 reactions which were present in both models, and which show

convergence across 4 repeated BayFlux runs (r̂ < 1:10, Gelman-Rubin statistic [42]). The pos-

terior flux distributions for the core model showed a mean coefficient of variation of 0.359,

whereas the genome scale model showed a mean coefficient of variation of 0.302. Overall, this

shows a trend of greater information, and reduced uncertainty in the flux results for the

genome scale metabolic model vs the core model.

Interestingly, whereas flux distributions for both genome-scale models and core models are

mostly concordant in their means, there are a few instances in which flux measurements pres-

ent very different averages (Fig 5). For example, PPCK (phosphoenolpyruvate carboxykinase),

PPC (phosphoenolpyruvate carboxylase), and GLUDY (Glutamate dehydrogenase) offer very

different flux estimates depending on which model we use (lower values for the genome-scale

model). Among those are PPC and PPCK, that catalyze opposite reactions, forming a cycle/

cyclic flux, so it is only the net flux that is biologically meaningful, and the net flux is approxi-

mately the same (Fig 5). GLUDY, however, catalyzes the conversion of 2-oxoglutarate into glu-

tamate and is negative for the genome-scale model, but hovers around zero for the core model.

This example advises caution in assuming strong inferences from 13C MFA since the results

may depend significantly on the model used. Whereas all mathematical models require
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validation, sensitivity analysis, and statistical testing in order to be applied effectively, the tradi-

tional use of small scale 13C MFA is particularly fraught with modeler’s choices that can have

an inordinate impact on the final fluxes, (see, e.g., the biomass fluxes in the 13CFLUX2 E. coli
core model [19]). Genome-scale models, on the other hand, can be produced in a more sys-

tematic manner [12, 43, 44], so we suggest that the most consistent and repeatable way to pro-

ceed is to derive metabolic models systematically from the genome.

In any case, we can see that the idea of narrowly constraining all fluxes is, often, misleading.

For example, for the cases of F6PA, DHAPT and PYK, the genome-scale model shows very flat

probability distributions over large ranges of flux values (Fig 5).

Monte Carlo sampling enables probabilistic knockout predictions

By leveraging the full probability distribution provided by BayFlux, we develop and evaluate

two novel methods to predict fluxes after a knockout (Figs 6 and 7, and E in S1 Text): Probabi-

listic 13C Minimum of Metabolic Adjustment (P-13C MOMA), and Probabilistic 13C Regula-

tory On/Off Minimization (P-13C ROOM). Unlike traditional (FBA-based) MOMA [45] and

ROOM [46] (or their 13C versions [15]), this approach yields a predicted distribution of flux

profiles after a knockout that aims to capture the uncertainty inherent in the initial wild type

(WT) flux distribution, and represent that in the prediction. Traditional MOMA and ROOM

work by first computing a base (wild type, WT) flux profile through FBA and then applying

MOMA or ROOM to that FBA-derived flux profile, generating an single predicted flux profile.

Fig 5. Using genome-scale models produces more biologically meaningful solutions. The results obtained from BayFlux with a core metabolic model

(blue) are compared with those obtained from a genome-scale model (orange). Using a genome-scale model produces a narrower flux distribution

(higher certainty posterior probability distributions), as informed by a greater amount of biological knowledge encoded in the genome-scale model.

Notice too, that certain reactions display very different averages. For example, GLUDY shows very different averages for the genome-scale and core

metabolic models, advising caution in assuming strong inferences from 13C MFA since the results may depend significantly on the model used.

Additionally, several of the probability distributions are non-Gaussian, which can only be meaningfully represented as a full distribution rather than a

point or interval. We show here only reactions which occur in both models, and which show convergence across 4 repeated BayFlux runs (r̂ < 1:10,

Gelman-Rubin statistic [42], see main text). Reaction names correspond to Core Metabolic Model 2 (see Materials and methods).

https://doi.org/10.1371/journal.pcbi.1011111.g005
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P-13C MOMA and P-13C ROOM, on the other hand, work by computing the base flux profile

distribution using BayFlux, then choosing a representative set of flux profiles through subsam-

pling, and finally computing the MOMA [45] and ROOM [46] knockout prediction for each

of the flux profiles in this set (Fig D in S1 Text).

We compare the predictions of P-13C MOMA and P-13C ROOM and those of traditional

MOMA and ROOM, with flux profiles measured through 13C MFA (which we will take as

ground truth) using data previously published in Toya et al. [39] for wild type and two gene

knockouts (pyk and pgi). Flux profile distributions for P-13C MOMA and P-13C ROOM are

obtained by using the Toya et al. [39] WT 13C labeling data to calculate a base flux profile dis-

tribution through BayFlux and use it (Fig D in S1 Text) to yield P-13C MOMA and P-13C

ROOM predictions for the pyk and pgi KOs. Flux profiles for traditional MOMA and ROOM

are obtained through FBA using the same genome scale model used with BayFlux to obtain the

base flux profile (maximizing growth after removing the growth rate constraint, but keeping

extracellular exchange constraints). We then apply MOMA and ROOM to the resulting flux

profiles to predict the knockout flux profiles for pyk5h and pgi16h knockouts. We compare

this four predicted genome-scale flux profiles and distributions (for P-13C MOMA, P-13C

ROOM, MOMA and ROOM) to the flux profile for the corresponding knockout calculated in

two different ways: the original result through 13C MFA using a core metabolic model by Toya

et al., and through BayFlux. The comparison to the original flux profile from Toya et al. is

meant to provide a comparison to a ground truth that is not influenced by BayFlux, and the

Fig 6. Comparison P-13C MOMA and P-13C ROOM predictions with traditional MOMA and ROOM flux predictions for the core metabolic

model reactions. The x axis represent the Euclidean distances for the flux profiles predicted by MOMA, ROOM, P-13C MOMA and P-13C ROOM to

the original fluxes calculated by Toya et al. [39] using a core metabolic model (ground truth fluxes, the smaller the Euclidean distance the better the

prediction). Since P-13C MOMA and P-13C ROOM yield distributions of predicted flux profiles, the y axis represents the density of distances for these

methods. MOMA and ROOM yield a single predicted flux profile, so we plot a single line to represent them. A. Distribution of euclidean distances to

Toya et al. pyk5h flux predictions. 23.5% of the P-13C MOMA and 36.5% of the P-13C ROOM prediction distribution were more accurate than the

traditional (FBA-based) MOMA and ROOM results, respectively. B. Distribution of euclidean distances to Toya et al. pgi16h flux predictions. 18.5% of

the P-13C MOMA and 38.5% of the P-13C ROOM predicted distribution flux profiles were more accurate than the traditional MOMA and ROOM

results, respectively.

https://doi.org/10.1371/journal.pcbi.1011111.g006
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comparison to a BayFlux profile is meant to provide a comparison to a more comprehensive

genome-scale flux profile.

The comparison of predicted fluxes to the original fluxes calculated by Toya et al. using a

core model shows how P-13C MOMA and P-13C ROOM provide uncertainty quantification

for MOMA and ROOM predictions, and yield some solutions that improve on MOMA and

ROOM results (Fig 6). The comparison is made by calculating the Euclidean distances of the

predicted flux profiles to the ground truth fluxes for the 21 or 22 reactions (for pyk and pgi
respectively) included in the core metabolic model, and that converged to a stable final result

across 4 repeated BayFlux runs (r̂ < 1:10, Gelman-Rubin statistic [42]). This approach results

in a single distance for MOMA and ROOM, and a distribution for P-13C MOMA and P-13C

ROOM. The distributions yielded by P-13C MOMA and P-13C ROOM provide a quantifica-

tion of the predicted flux profiles, and shows that a large portion (18.5% to 38.5%) of the flux

profiles predicted by P-13C MOMA and P-13C ROOM prediction are closer to the ground

truth fluxes than traditional MOMA and ROOM predictions (Fig 6).

The comparison of predicted fluxes to the genome-scale fluxes obtained through BayFlux

suggest that knockout predictions for a full set of genome-scale reactions improve by leverag-

ing BayFlux flux probability distributions as the base flux distribution for MOMA and ROOM

(Fig 7, and E in S1 Text). For both knockouts, P-13C MOMA outperforms MOMA and P-13C

Fig 7. Knockout predictions for genome-scale fluxes improve by leveraging BayFlux flux probability

distributions. Here we show the knockout prediction performance for four methods as judged by the distance of the

prediction to the experimentally measured flux profile distribution (computed with BayFlux from 13C experimental

data). Rather than using single fluxes to determine which method performs better (Fig E in S1 Text), distances between

full flux profile distributions comprising all fluxes are calculated through a classical measure of how two probability

distributions differ from each other: the multivariate Kullback-Leibler divergence [47] (higher value! worse

prediction, lower value! better prediction). The distance between the WT base profile distribution and the KO

experimentally observed flux profile distribution is provided for reference. Notice how P-13C MOMA and P-13C

ROOM produce smaller distances to the experimental results as compared with MOMA and ROOM, indicating

improved predictions. The improvement is particularly pronounced for P-13C MOMA, whereas it is marginal for

P-13C ROOM. All distances are shown as relative to the knockout strains (on the left) but flux profiles inhabit a

multidimensional space, so similar distances do not mean the distance among them is small (e.g., the fact that the wild

type and the P-13C MOMA have a similar distance to the pyk5h knockout does not mean that these two flux

distributions are similar to one another).

https://doi.org/10.1371/journal.pcbi.1011111.g007
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ROOM outperforms ROOM. The best predictions for all methods are provided by P-13C

MOMA, in terms of minimal distance from experimentally measured fluxes (Fig 7).

Evaluation of convergence and scaling performance shows that faster or

more efficient sampling will be required for very large systems

The number of required samples to reach convergence using BayFlux seems to scale linearly

with the number of reactions in the model (Fig 8). Convergence, i.e. a stable distribution for

the flux probabilities, is here defined as at least 80% of fluxes achieving a net flux Gelman-

Rubin statistic r̂ < 1:10 [42] (the difference between estimated variance within the same chain

and between different chains), across 4 independently run sampler chains. We test three mod-

els: the toy model from Antoniewicz et al. [38] (5 reactions), the example E. coli core metabo-

lism model from 13CFLUX2 [19] (66 reactions), and the imEco726 genome scale model used

throughout this paper [14] (487 reactions with statistical variability, e.g. not fixed by stoichi-

ometry). This last, genome-scale, model requires 5.86 days to reach convergence after� 33M
samples using two Intel Xeon Gold 6154 (3 to 3.7 Ghz) cpu cores per sampler, for a sampler

performance of approximately 65.4 samples per second. In contrast, the 13CFLUX2 optimiza-

tion approach takes 2–5 minutes for the E. coli core metabolism model using two Intel(R)

Fig 8. The number of samples needed for BayFlux convergence scales approximately linearly with number of

reactions in the model. Shown are the number of samples required to reach convergence across four parallel chains,

for three different size models and the fit to a linear model. We define convergence as having at least 80% of reactions

with a net flux Gelman-Rubin statistic r̂ < 1:10 across 4 parallel chains, and exclude reactions with no sampling

variance, e.g. reactions that are fully constrained and have only a single possible flux value (allowing for small amounts

of numerical error) [42]. The data used here for the two largest models are the wild type 5 hour data from Toya et. al.
[39].

https://doi.org/10.1371/journal.pcbi.1011111.g008
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Xeon(R) CPUs E7–8870 v3 (2.10GHz), whereas BayFlux takes 8–9 hours using two Intel Xeon

Gold 6154 (3 to 3.7 Ghz) cpu cores.

Novel, faster, sampling algorithms will be required to apply BayFlux to the large metabolic

models involved in microbial communities and human metabolism. A quick back-of-the-enve-

lope calculation shows that a community of� 200 species (3000 � 200 = 600, 000 reactions)

would require over 19 years to achieve convergence based on the linear slope (65, 881) and

intercept (1, 174, 530) shown in Fig 8, assuming the time per sample were roughly the same

65.4 samples per second as in our genome-scale E. coli model (a reasonable approximation

because larger sparser matrices present in larger models are fundamentally better suited to par-

allelization, making the per-core runtime similar despite increased computing demands):

65; 881 ∗ 600; 000 reactionsþ 1; 174; 530 ¼ 39; 529; 774; 530 samples

39; 529; 774; 530 samples=65:44945
samples

s
¼ 603; 974; 129 s � 19:15 yrs

Similarly the recent human metabolic model by Thiele et al [48] (� 80, 000 reactions)

would require over 2.5 years to converge:

65; 881 ∗ 80; 000 reactionsþ 1; 174; 530 ¼ 5; 271; 654; 530 samples

5; 271; 654; 530 samples=65:44945
samples

s
¼ 80; 545; 437 s � 2:55 yrs

Hence, if we are to tackle these problems in a reasonable amount of time, parallelization or

more efficient sampling algorithms are required. BayFlux may be particularly informative for

these applications since the large number of reactions for microbial communities and human

metabolism (* 80, 000) is likely to produce many flux profiles compatible with the experi-

mental data. For this reason, we believe that a probabilistic approach such as Bayflux would

yield flux distributions that are flat and extended rather than peaked and concentrated, for

which a single flux profile would be a poor representation of all the possible flux profiles.

Preliminary tests show that we can get approximately an order of magnitude speedup just

by using sparse matrix solvers. We find that we can get a� 8.10x speedup by using the popular

sparse matrix solver algorithm SuperLU in place of the Numpy dense matrix solver from the

Intel Distribution for Python that we are currently using, based on the mean of seven repeated

matrix solving steps in our E. coli genome scale model [49]. We intend to support this alterna-

tive solver in future versions of BayFlux, after incorporating sparse matrix representations into

the software.

Conclusion

We have presented here a method (BayFlux) that provides all fluxes compatible with 13C

experimental data for a genome-scale metabolic model (Fig 1). BayFlux works by combining

Bayesian inference and Markov Chain Monte Carlo (MCMC) sampling (Figs 1, and 2), and

produces results compatible with the traditional optimization approach to estimating fluxes

through 13C MFA (Fig 3). However, BayFlux results provide extra information in the form of

the full flux probability distribution, which allows for a more nuanced understanding of which

flux values are possible given the current experimental data set (Fig 4). Moreover, BayFlux’s

rigorous quantification of uncertainty shows that optimization models can overestimate flux

uncertainty by representing it through only two numbers: the upper and lower confidence
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intervals. This is certainly the case for the local linearized estimates of uncertainty that are the

default in 13CFLUX2 (Fig 4).

Surprisingly, the genome-scale model of metabolism produces narrower flux distributions

than the small core metabolic models that are traditionally used in 13C MFA (Fig 5). We

hypothesize that the cause of this increased precision in flux determination for more complex

models despite the apparent increase in degrees of freedom is due to the bow tie structure of

metabolism [41]. Due to this structure, central metabolic fluxes are well constrained by metab-

olite labeling, and the inclusion of several hundreds of extra reactions only adds draws of

cofactors that further constrain core fluxes. An additional surprising finding is that whereas

flux distributions for both genome-scale models and core models are mostly concordant in

their means, there are a few instances in which flux measurements present very different aver-

ages (Fig 5). This finding advises caution in assuming strong inferences from 13C MFA since

the results may depend significantly on the model used. We believe that the most systematic

way to obtain a model for 13C MFA is to derive it methodically from the genome annotation,

as we have done here, by creating a genome-scale model from the genome annotation and aug-

menting it with the corresponding atom transitions for each reaction. However, this assumes

that reactions and atom transitions for a genome-scale model can be obtained accurately.

Because of its larger size, errors are more likely to be made when assembling a genome-scale

set of reactions and atom transitions than a core metabolic model. While this problem can be

partially offset by using automated annotation of GSMs (e.g. model SEED [50], EcoCyc [51],

or CarveMe [44]), it will be complicated to completely eliminate. The question then arises:

which is more accurate? a GSM with possible errors in annotation or a well-known core model

that does not consider all known reactions and metabolites? We believe the answer can only be

obtained by testing predictions using both approaches, in a similar way as shown in Figs 6 and

7. However, a final conclusion can only be achieved by comparing a statistically significant set

of predictions (* 100 knockouts).

Based on BayFlux, we developed and evaluated novel methods (P-13C MOMA and ROOM)

to predict the biological results of a gene knockout, that improve on traditional FBA-based

MOMA and ROOM methods (Fig E in S1 Text). P-13C MOMA and P-13C ROOM leverage the

full flux probability distributions measured through BayFlux to provide probability distribu-

tions of fluxes after a gene knockout in a way that captures the uncertainty inherent in the ini-

tial flux. These probability distributions provide uncertainty quantification for these predictive

methods (Fig 6).

The scaling properties for BayFlux with respect to model size (Fig 8) indicate that signifi-

cant efforts in improving sampling and parallelization will be required to apply this method to

large models such as microbiome or human metabolism models (displaying 80,000–200,000

reactions). However, preliminary results suggest that upgrades, such as a sparse solver, can

increase speed by orders of magnitude.

In summary, BayFlux provides a rigorous way to find all flux profiles compatible with a

given set of 13C experimental data, opening the door to an improved understanding of metab-

olism and more effective predictions for strain metabolic engineering.

Materials and methods

Overview of physical problem

The overarching goal of this work is to leverage diverse and noisy experimental data to infer

the metabolic fluxes in a cell: e.g. the number of chemical species per unit time through every

chemical reaction in a living organism. A single cell can encompass thousands to tens of thou-

sands of chemical reactions. We divide these reactions into internal, and external (i.e.
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exchange) reactions, where at least one product or reactant is extracellular. Exchange reactions

can be observed directly, by measuring the rate of change in extracellular concentration for a

given chemical species: e.g. the exchange flux for glucose will match the rate at which the glu-

cose concentration falls in the culture media. Internal or intracellular fluxes can only be

inferred indirectly from other types of experimental data, as the chemical species they con-

sume and produce are immediately also consumed and produced by other reactions. For

example, a reaction ‘A’ may have a very high flux, but its chemical product can still be almost

absent from a cell if reaction ‘B’ consumes its product at the same or a higher rate.

Metabolic flux is a coarse-grained concept, comprising a large number of heterogeneous

chemical reactions in a living cell. For very simple systems, it is possible to treat individual

models, atoms, and enzymes as distinct events, e.g. using stochastic chemical kinetics [52].

However, these types of kinetic simulations are infeasible for a full cell. When a large number

of cells are growing exponentially under stable environmental conditions (e.g. constant cellular

doubling time) the random effects of individual chemical reaction events are cancelled out,

allowing us to apply a steady state approximation. This assumes that the quantity of each

chemical species has reached a quasi-stable equilibrium, and therefore one can regard each

reaction as having a specific flux, where the total flux of reactions generating a chemical species

always equals the sum of fluxes consuming it. In addition, applying the simplifying approxima-

tion that each cellular compartment or organelle is ‘well mixed,’ allows a single flux value to

represent each reaction in each compartment.

Key challenges

An important challenge involves integrating together diverse data sources with fundamentally

different types of error, and underlying relationships to metabolic flux. Most common among

these data types are exchange fluxes and mass isotopomer distributions (MIDs). Extracellular

exchange fluxes account for mass entering and exiting the cell, and include measurements

such as nutrient consumption and metabolic byproduct production rate, as estimated by a

time series of extracellular concentration measurements and biomass or growth rate measure-

ments. Exchange fluxes are represented directly as metabolic fluxes for specific reactions, and

can be either applied as stoichiometric constraints to specific reactions, or as probablistic con-

straints on those fluxes. Mass isotopomer distributions (MIDs) are the result of feeding the

organism with defined isotopomer nutrient substrates: e.g. glucose with extra neutrons on spe-

cific atoms. Since different metabolic flux vectors result in shuffling of atoms in different man-

ners, they produce distinct MIDs. Using the Elementary Metabolic Unit (EMU) method [38],

we can calculate the MID for any given flux vector, and compare this to the experimental data.

Perhaps the most important challenge is that, given the incredible complexity of metabo-

lism and the paucity of (noisy) experimental data, the metabolic flux system is severely under-

determined, with substantial uncertainty about the true metabolic flux profile. As shown in the

examples below, the number of fluxes for a genome-scale model is typically on the order

of * 3000, whereas the available data to constrain is usually on the order of 1–5 exchange

fluxes and* 60 metabolite measurements. Traditional 13C MFA tackles this issue by consider-

ing only the reactions in central carbon metabolism and ignoring the rest. This approach con-

veniently, and artificially, reduces the number of degrees of freedom of the system below the

number of measurements. This simplification can be justified by the “bow tie” structure of

metabolism [41] (i.e., that metabolic flux from peripheral metabolism into central “core” car-

bon metabolism is minimal) and works well in the sense that good fits to experimental data

can be obtained. However, it is still a simplification: just because we decide to ignore all reac-

tions outside of central metabolism, that does not mean that they do not exist.
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Mathematical problem formulation

Mathematically, we represent metabolism as a directed bipartite graph, with m metabolites

and n reaction vertices (See notation in Table 1). Metabolites represent unique chemical spe-

cies in distinct compartments or areas of the organism. They participate as reactants in chemi-

cal reactions, and produce new chemical species, e.g. products, as a result. Reactants are

represented as directed edges from the metabolite vertices to a reaction vertex, and products

are represented as directed edges from the reaction vertices, to new metabolite vertices. This is

the standard method used for genome scale models, as it encodes the chemical stoichiometry

information for each reaction.

We represent the metabolic flux through this system with the unknown vector of fluxes v 2
Rn associated to each reaction, with units of molecules per cell biomass unit per time. For

example, the flux vPDH = 0.16 mmol/gDW/h represents that the pyruvate dehydrogenase reac-

tion is converting 0.16 mM of pyruvate per gram of cell dry weight per hour into Acetyl-CoA.

Our system is constrained by conservation of mass, as described by the stoichiometric matrix

S where:

Sv ¼ 0 ð2Þ

at steady state [53], enforcing that the mass consumed by each reaction matches the mass

produced.

Our goal is to characterize fluxes probabilistically, i.e. find the joint distribution of fluxes

given data:

pðvjyÞ ð3Þ

where y represents the experimental data:

yk ¼MðvÞ þ εk; εk � N ð0; s2
kÞ ð4Þ

Table 1. Notation.

Variable Description

n Number of reactions

m Number of metabolites

v n-dimensional vector of fluxes

c The center of the flux polytope (e.g. a running average of uniform samples)

q The number of quasi-uniform samples collected before locking the center

Uð�Þ Uniform probability distribution

W The set of “edge points”

k Flux sample counter

x The set of all valid proposals within the flux polytope from the current sample in a given direction

u A random sample collected from the uniform distribution

dk The proposal direction for a new sample

S Stoichiometric matrix representing the products and reactants for each chemical reaction

y A vector representing all experimental data used to infer metabolic flux

yk Experimental data for observation k

σk Standard deviation of error for observation k

εk Experimental error for observation k

E The convex polytope representing valid fluxes, based on measurement of extracellular exchange fluxes

S The convex polytope representing valid fluxes

https://doi.org/10.1371/journal.pcbi.1011111.t001
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MðvÞ is the function of the simulated MIDs (details in the “Software Implementation” section

below), and (optionally) any other relevant experimental data. For the MID data, we assume a

Gaussian error model with a zero mean and standard deviation σk for each measurement k in

the likelihood function.

For the purpose of finding the joint distribution, we use a Bayesian inference approach

(Eq 1). The likelihood function follows from Eq (4), assuming that measurements are i.i.d,

and normally distributed:

pðyjvÞ ¼
Y

k

pðykjvÞ ¼
Y

k

1

sk

ffiffiffiffiffiffi
2p
p exp �

ðyk � MðvÞÞ2

2s2
k

� �

/ exp �
X

k

ðyk � MðvÞÞ2

s2
k

( )

ð5Þ

For simplicity, we use a uniform prior p(v) (i.e. a priori probability that the flux vector is v)

on the polytope S defined by Sv = 0: i.e. v � UðSÞ. The assumption that the MID measure-

ments are statistically independent is not strictly true (e.g. for metabolites coming from the

same pathway). However, the covariances are not explicitly known, and are left for future

refinements of the technique. It is straightforward to modify this approach to incorporate

any additional prior knowledge. When extracellular exchange fluxes are measured with high

accuracy they can be added directly as stoichiometric constraints such that the prior is a uni-

form probability distribution on the set S \ E, where E is defined by experimentally mea-

sured exchange fluxes, and zero probability outside. Alternatively, if there is substantial

experimental uncertainty, the extracellular exchange fluxes could be added to the likelihood

function.

The marginal likelihood (normalizing constant in Eq (1)) pðyÞ ¼
R

vpðyjvÞpðvÞdv is difficult

to compute, is only known for a small class of distributions, and becomes intractable with a

high number of dimensions [54]. Therefore, we can only compute p(v|y) up to a normalizing

constant, i.e. p(v|y)/ p(y|v)p(v), for which we use Markov Chain Monte Carlo (MCMC).

MCMC allows us to draw samples from p(v|y) by creating a Markov chain that converges to

the target distribution p(v|y) [54]. Our proposals are generated by choosing a random direc-

tion, and jumping along that direction to a uniformly distributed sample within the stoichio-

metric bounds on S (Fig 2). A generated proposal v0 is accepted according to the Metropolis

probability [54, 55]:

a ¼ min 1;
pðv0jyÞ
pðvjyÞ

� �

¼ min 1;
pðyjv0Þ
pðyjvÞ

� �

ð6Þ

The normalizing constant cancels out, and so does the prior, since it is uniform. In the

current implementation we use the AcMet algorithm, described below to compute the

proposal.

Sampling

We created a new algorithm (Artificial centering Metropolis sampling, or AcMet, algorithm 1,

Fig 2) for sampling from the posterior probability distribution, based on the commonly used

Artificial Centering Hit-and-Run (ACHR) algorithm [33]. The ACHR algorithm is widely

used to collect pseudo-uniform samples from the stoichiometrically feasible flux polytope of

genome scale metabolic models (GSMMs). We modified the ACHR algorithm and combined

it with the Metropolis algorithm, to produce a Markov Chain Monte Carlo (MCMC) sampler

for Bayesian inference of metabolic fluxes (AcMet). AcMet can sample from the posterior

probability distribution obtained by updating priors with an array of experimental evidence

that includes 13C isotopomer mass distribution vectors for metabolites, as well as extracellular
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exchange fluxes computed from time series measurements of extracellular metabolite concen-

trations. Other experimental data can be added in a similar fashion, facilitating integration of

diverse omics data into a single coherent model.

The ACHR algorithm presented two characteristics that made it unsuitable for Bayesian

inference with 13C experimental data: center updates and the need to sample from net

fluxes rather than both directional components of reversible reactions. Center updates

involve finding the center of the accessible flux volume, which is used to direct the next

sampling point [33]. These center updates happen in every step of the ACHR algorithm,

and are not a problem in practice when doing uniform sampling of genome scale models.

However, this ‘moving center’ makes the sampler non-reversible, eliminating the ability of

the MCMC process to sample from the posterior. Moreover, it is critical for efficient sam-

pling that the ‘center’ remains in the true center of the flux polytope. However, when sam-

pling a non-uniform distribution, e.g. for Bayesian inference, samples no longer average

around the center of the flux polytope, which would make using these samples to compute

the center impossible. Therefore, maintaining a fixed center is critical to enable Markov-

Chain Monte Carlo sampling. Sampling from net fluxes only is a problem because of cyclic

reaction fluxes, which involve simultaneous forward and backwards fluxes for the same

reaction [56]. While cyclic reaction fluxes play no role in the stoichiometric FBA simula-

tions that originated the ACHR algorithm, they are critical for determining metabolite

labeling in 13C MFA [56].

AcMet overcomes the center updates problem by sampling in two phases. First we collect a

large number of uniform samples from the genome scale model using the ACHR algorithm,

until the center converges into a stable position. Next, we lock the center while collecting sam-

ples with the Metropolis algorithm, which accepts or rejects samples taking into account the

likelihood function derived from experimental data. By keeping the center locked, the chain

becomes reversible, permitting Metropolis sampling. The ACHR algorithm begins with find-

ing ‘edge points’ (see Glossary of terms in S1 Text) that are coordinates on the most extreme

bounds of the feasible flux space, which are points the sampler can move towards, and are used

to navigate around the unusual shape of the flux polytope. Typically these represent the highest

and lowest points in each dimension (e.g. reaction flux), as identified by linear optimization.

Here, we use the term ‘edge points’ instead of the more commonly used term ‘warm-up points’

to avoid confusion with the Markov Chain Monte Carlo (MCMC) concept of warm-up sam-

ples. These ‘edge points’ are coordinates in the feasible flux space, and should not be confused

with the concept of edges in a mathematical graph.

In order to effectively sample within-reaction cyclic fluxes, we added extra edge points to

the sampler, allowing the sampler to explore along these dimensions, in addition to explor-

ing net fluxes. For each reversible reaction, two additional edge points were added: one

which maximizes forward flux and minimizes reverse flux, and another which minimizes

forward flux and maximizes reverse flux, as computed from the allowable bounds of each

reaction.

To conserve memory and data storage resources, the AcMet sampler provides the

option of “thinning” where only a fraction of samples are retained, and saved. For all Bay-

Flux results in this paper we set the thinning parameter such that only 100,000 samples

were retained. For example, all runs with our genome-scale E. coli atom mapping model

described below were continued for 120M samples, with a thinning parameter of 1,200,

for a total of 100,000 samples saved. We recommend to users to limit final samples for all

runs to 100,000 to prevent subsequent plotting and analysis steps from becoming

overloaded.
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Algorithm 1 Artificial centering Metropolis sampling (AcMet, see Fig 2 and Table 1).
1: Create a set of “edge points” W = {w1, . . ., w2n} by maximizing and

minimizing each dimension
2: Initialize v0 � UðWÞ
3: Set k = 0 and c = v0

4: Draw a sample wj � UðWÞ, and set direction dk = (wj − c)/kwj − ck
5: Select a step size lk;x � Uð½lmin;lmax�Þ, such that S(vk + λk,xd

k) = 0, x 2
{min, max}

6: Generate a candidate v0 = vk + λk,xd
k

7: Calculate acceptance ratio α = L(v0)/L(vk) where L is the likelihood
p(y|v).

8: Draw u � Uð0; 1Þ
9: If u � α or if k < q (warmup phase) accept the candidate by setting

vk+1 = vk + λk,xd
k

10: If u > α and k � q reject the candidate by setting vk+1 = vk

11: Set k = k + 1
12: If k < q (warmup phase) set c = (kc + vk)/(k + 1) to update the

center running average as per ACHR [33]
13: Go to Step 4

The likelihood L is computed for each step according to the normally distributed likelihood

function (Eq (5)). A uniform prior is implicitly included when calculating the acceptance ratio

(Eq (6)).

Models for generating metabolite labeling

Core metabolic model 1. To compare our method with existing 13C MFA software, we

use the E. coli data and core metabolic model employed in the demonstration of 13CFLUX2

(the slightly adapted version of [57] used in [34]). The experimental data involve measure-

ments of glucose uptake, growth rate, and the labeling of eleven central carbon intracellular

metabolites for an E. coli MG1655 strain grown in glucose-limited continuous culture. The

model comprises 66 reactions and 37 metabolites describing central carbon metabolism

(selected reactions are shown in Fig 3). In order to provide enough instances for a comparison,

we randomize the exchange fluxes fifteen times and determine fluxes through both 13CFLUX2

and BayFlux (Fig B in S1 Text).

Core metabolic model 2. To compare genome scale and core metabolic models, we use

the previously published Toya et al. wild type 5 hour (wt5h) data, which includes measure-

ments of glucose uptake, acetate excretion, growth rate, and the labeling of nine central carbon

intracellular metabolites for an E. coli BW25113 strain [39]. As the core metabolic model, we

use a simplified E. coli core model with 63 reactions taken from previous literature [15], and as

the genome scale model the E. coli genome scale model described in this paper which com-

bines iAF1260 and imEco726 models. Note that both models have a built in biomass composi-

tion, which we leave intact as originally described in each model, and are not directly

comparable because they merge and separate different metabolites.

Genome-scale E. coli atom mapping model. To evaluate the method described by this

paper using real world data, with a genome scale model, we merge a genome scale 13C MFA

model with a genome scale stoichiometric model, and use this to evaluate previously published

in vivo13C MFA data.

We utilize atom transitions from the imEco726 genome scale isotope mappings, together

with the latest version of the iAF1260 metabolic reconstruction of Escherichia coli [14, 40]. We

update both the iAF1260 and imEco726 models to account for the experimental conditions

used by Toya et al., and accommodate recent updates to the latest version of iAF1260, includ-

ing new reactions and changes to some reaction and metabolite identifiers [39].
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This process was facilitated by the fact that imEco726 was initially based on iAF1260. Merg-

ing these models and adjusting them to be suitable for a specific experimental context required

numerous refining steps, as described below. The full source code for this model creation and

curation process is included with the BayFlux software package as a Python Jupyter notebook,

such that it can serve as a template for users to repeat the general process for other organisms.

Mapping metabolite and reaction identifiers. The iAF1260 genome scale model con-

tains 2382 reactions, and the imEco726 isotope mapping model contains carbon transitions

for only 686 reactions. We find that 70 of the transitions in imEco726, and all of the metabo-

lites participating in transitions (595 total) can not be mapped to any identical identifiers in

the latest version of iAF1260. To address this issue, we performed a text based alignment using

the Levenshtein distance between the unmapped identifiers in both models, which we then

manually review for correctness [58]. By inspecting the alignment output, we created a set of

regular expressions which correctly map all reaction and metabolite identifiers in imEco726 to

the corresponding identifiers in iAF1260.

For some reactions with the same or similar names we found that the products and reac-

tants are swapped between the two models. For these reactions, we reorient the transitions

from imEco726 to match those of iAF1260. Also, for this analysis, we are assuming steady state

labeling, so we omit the “dil” transitions from imEco726, which account for metabolites which

have not yet reached steady state 13C labeling.

Metabolite symmetry. Some metabolites in the genome scale model (e.g. succinate)

exhibit structural symmetry, such that there is no single unique way of numbering the atoms.

For reactions which act on symmetric metabolites, we duplicate the reactions atom transition

(s) such that equal flux flows through the model with all possible orientations of the symmetric

metabolite. Our software allows for an unlimited number of atom transitions for each reaction,

over which the total flux for the reaction is equally divided.

Setting flux bounds and extracellular exchange fluxes. After incorporating measured

extracellular exchange fluxes for biomass, glucose uptake, and acetate production to iAF1260

we set a maximum absolute value flux for each reaction to 5× the glucose uptake rate, in order

to constrain the search space, and accelerate sampler convergence.

Applying cell culture media constraints. As an initial step to simplify the model, which

contains a large number of infrequently used extracellular exchange reactions, we apply an

automated method to pair down these reactions, which we then manually refine for correct-

ness. After incorporating the experimentally measured extracellular exchange fluxes to

iAF1260, we compute the smallest set of essential media components using Mixed Integer Pro-

gramming (MIP) as implemented in the COBRApy function minimal media with the option

minimize components set to True [59]. This results in 15 essential nutrients that must be

included in the media. We apply this minimal media constraint to the model, by setting the

lower bound of all non-essential exchange reactions to zero.

Next, to manually refine these for correctness, we obtain the actual experimentally used

media composition as published by Toya et al., and identify the set of exchange reactions that

correspond to the molecules in this media formulation. From this, we find that two additional

nutrients (H2O and Na+) were provided in the media that are not identified as essential in the

analysis described above, and we enable the uptake of these.

Model reduction

Pruning non-essential reactions with unknown atom transitions. Next, we utilize Parsi-

monious Flux Balance Analysis (pFBA) to identify non-essential reactions in the iAF1260

model which had also been omitted from imEco726. We find 1655 non-essential intracellular
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reactions, of which 1310 can both carry carbon and do not have provided transitions in

imEco726, so we remove them from the model, along with 499 (now unused) metabolites.

Pruning unused reactions. Next, we remove all reactions in iAF1260 which cannot carry

flux under the experimentally derived extracellular exchange flux conditions, even if they can

carry carbon, or have transitions from imEco726. This removes an additional 380 reactions

and 371 metabolites from the model.

Inferring unknown atom transitions. After removing unused reactions from the

iAF1260 model as described above, we identify 35 reactions which are both essential under

our extracellular exchange flux conditions, do carry carbon, but do not contain transitions in

imEco726. For these reactions, it was necessary to define atom transitions in order to obtain a

complete genome scale isotope mapping model.

As a first approximation for computing atom transitions without using chemical structures,

we identify the number of carbons in each metabolite based on the chemical formula, and sort

the reactants and products by increasing carbon count. For reactions where no two reactants

have the same carbon count, and both the reactants and products have an identical set of car-

bon counts per molecule, we assume direct 1:1 transitions between the identically sized reac-

tants and products.

After applying the assumptions described above to estimate transitions for some reactions,

we still have 8 reactions flagged as ambiguous, with either equal sized reactants, or a different

distribution of sizes between reactants and products suggesting carbon exchange. For these

reactions, we manually look up the corresponding reaction on MetaCyc, and manually write

transitions that match the atom ordering used in imEco726.

After all of the steps described above including removing reactions, removing metabolites,

and adding transitions our final genome scale isotope mapping model contains 692 reactions,

and 798 metabolites. Of these 692 reactions, 633 carry carbon and have one or more atom

transition mapping.

Please refer to the Jupyter Notebook entitled “imEco726_genome_scale” distributed with

our BayFlux software, which outlines the full model curation process described above. All

steps can be automatically reproduced, and used as a template for recreating this process with

other species and/or experimental conditions.

Software implementation

Simulating metabolite labeling. During the process of Bayesian inference from a meta-

bolic model, our software simulates the mass isotopomer distributions (MIDs) for each flux

sample and plugs them into the likelihood equation (Eq (5)). Because this complex simulation

must be performed for each sample, developing a high performance Elementary Metabolic

Unit (EMU) simulation method is an essential technology to make our method feasible.

We have developed a high performance implementation of the Elementary Metabolic Unit

(EMU) method capable of simulating genome scale mass isotopomer distributions for millions

of flux vectors in just a few hours on standard computer hardware [38]. Three main techniques

were utilized to achieve this performance. First, highly repetitive vector and matrix computa-

tions are performed directly via low level Fortran code and calls to the Linear Algebra PACK-

age (LAPACK) and The Netlib Basic Linear Algebra Subprograms (BLAS). Second, we

implement ‘EMU pruning’ where long branch free metabolic pathways are automatically iden-

tified, and collapsed into a single EMU transition without loss of information. Third, we

implement ‘transition merging’ where functionally equivalent atom transitions (e.g. from par-

allel reactions with identical transitions) are automatically identified and merged, also without

loss of information.
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This Elementary Metabolic Unit (EMU) code also provides the option of defining extra

metabolites to simulate beyond those measured experimentally, e.g. to cross validate a model

with experimental data by leaving it out and re-inferring it. Additionally, it opens the possi-

bility of generating simulated 13C experimental data for experimental design purposes. For

example, one can simulate different sets of mass isotopomer distribution (MID) data for a

wide array of labeled substrates, and measured metabolites. Next, one can perform Bayesian

inference on these simulated data with BayFlux to predict the uncertainty surrounding key

reactions of interest, and then select an experimental design that provides maximum infor-

mation on these specific reactions. Additional metabolites to simulate must be defined while

processing a model with BayFlux, because, for performance reasons BayFlux automatically

avoids computing portions of a model unnecessary to simulate a given set of experimental

data.
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