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ABSTRACT OF THE DISSERTATION

Electronic and Photonic Transfer in DNA Nano construct

by
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A significant amount of work has been done to improve design and fabrication of DNA
constructs with photonic and electronic transfer properties. In this thesis, we evaluated the prior
work for both electronic and photonic transfer. While DNA constructs with first-order

fluorescent resonant energy transfer (FRET) properties have proven useful, incorporation of
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higher-order FRET and electronic properties into DNA has not yet led to any viable
applications. In this thesis, we generated 35 base pairs long double-stranded (ds) DNA
structures with different arrangements of five TAMRA donor dyes and a single TexasRed
acceptor. In these constructs the distance of the distal donor dyes to the acceptor is greater than
1.7 nm or five base pairs (which is beyond the optimal FRET distance). The average FRET
efficiency of these double stranded systems based on the donor intensity change and the
acceptor-to-donor ratio of intensity change was 66% and 26%, respectively. Addition of
surfactants and metal cations reduced quenching and enhanced the FRET efficiency of these
DNA structures. After adding the surfactant and metal cations, the average FRET efficiency of
these ds-systems based on the donor intensity change and the acceptor-to-donor ratio of
intensity change was 89% and 75%, respectively.

We also reviewed the conductivity properties of DNA and how it is influenced by
temperature, UV illumination and GC content. Results from literature indicate that temperature
significantly changes DNA conductivity. Moreover, the UV exposure experiments indicate a
decrease in DNA conductivity due to damage of GC base pairs and the phosphate group. We
also investigated the effect of nucleotide content on DNA conductivity and we showed that the

higher GC content results in higher conductivity.
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Chapter 1

Introduction

DNA-based applications are useful in molecular computing, sensing, electronic,
photonic, biosynthetic, drug delivery, top-down photolithographic, and bottom-up self-
assembly nanofabrication [1]. The small size of DNA (diameter of 2nm, with 0.34nm separation
between bases) and its unique self-assembly and self-replicating properties make it a strong
candidate for nano electronic and photonic devices. An important drive of DNA nanotechnology
research has been the development of DNA-based photonic and electronic wires and switches
[2]. Photonic wires function through Forster resonance energy transfer (FRET) forces; FRET is
a prevailing technique used to study the structure of biomolecules. The way in which FRET
transfer is harnessed to turn DNA strands into photonic conductors is by the sequential transfer
of a fluorescent signal from one site created on the DNA strand, a “donor”, to another modified
DNA base, an “acceptor”. The schematic of the DNA molecule with fluorophores as one donor
and one acceptor are shown in Figure 1.1.a. In some cases, the chemiluminescent group is used
as a donor, as shown in Figure 1.1.b. Figure 1.2 is a schematic of photonic wires which shows
extended energy transfer from donor to acceptor, where five donors are linked to a

polynucleotide by linker arms and one acceptor is linked to the polynucleotide [3] .



In FRET, the donor absorbs photonic energy at one wavelength. Through a non-radiative
dipole coupling process, the donor transfers energy to an acceptor which reemits the photonic
energy in longer wavelength [4][5][6] as shown in Figure 1.3. Critical factors for energy transfer
are (i) distance between donor and acceptor, (ii) florescence wavelength, which includes the
excitation and emission peak of donor and acceptor, (iii) orientation of transition dipole, and

(iv) life time of fluorophores in the excited state.

Figure 1.1: Chemiluminescent and florescent probes in DNA structure.[7]
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Figure 1.3: Relative absorption or emission with respect to wavelength [7]

DNA applications, including molecular sensors and clinical diagnostics, use DNA
modified with either dyes, nanoparticles, or functional groups. In molecular sensors, the
florescence signals of the dyes change due to DNA probe hybridization. However, if two dyes
are in proximity, they will interact, resulting in dye dimerization. This causes significant
guenching of fluorescent emissions, and thus will significantly lower the FRET efficiency [8].
To overcome this limitation, Heller et al showed that decoration of DNA with surfactants and
divalent metal ions caused insulation of DNA structure, which reduces dimerization and

quenching [8] .



Major advantages of the FRET approach are: (i) extremely high sensitivity, (ii) excellent
selectivity and (iii) wide dynamic range of fluorescence measurements[9]. FRET has been
recognized as powerful tool to study G-quadruplexes due to its high sensitivity and
multidimensionality. Different aspects of the molecular structure can be obtained as well as
information on the concentration, binding events, and inter strand motion. With FRET technique,
1 x 101° M strand concentration could be detected. The FRET approach also identifies ligands
which target G-quadruplex DNA. G-quadruplex have shown anticancer activity because G-rich
sequences which are found in genome are linked to mechanism relate to cancer, HIV, and other
disease. FRET approach studies the ligand binding affinity in the presence of competitor and it
could detect labeled strand in the presence of large excess of unlabeled oligonucleotide due to its
selectivity. Juskowiak et al. also reported a FRET sensor based on quadruplex formation that was
suggested for potassium detection. As an oligonucleotide probe, they used fluorescein as an
acceptor and cationic conjugated polymer (CCP) as an external energy donor which has many
fluorophores and it could measure wide range of florescence. In the absence of K+ the probe
exhibited inefficient FRET, whereas adding KCL results in the formation of a G quadruplex which
caused an increase in FRET signal (about 16-times) of the acceptor. FRET is also advantageous
for transmitting the information because it is not diffraction-limited, happening through-space

over nanometer distances, and on the time scale of nanoseconds or less.

With regard to the electronic properties of DNA, the most widely used DNA-based
nanotechnology is molecular wires[10][11][12][13][14][15]. For example, the latest reported
transistor feature size in the semiconductor industry is IBM’s 7nm FinFET logic chip. This uses

silicon-germanium as the channel material, which is still at least two or three generations away



from 2nm feature size of potential DNA-based nanoelectronics. However, commercial
transistors with IBM’s 7nm sizes are still several years away with current feature sizes limited
to 14nm. Therefore, the search continues for potential nanoelectronics-enabling materials and

nano-fabrication techniques.

While DNA molecules continue to carry great promise for nanoelectronic devices, there
are still many conceptual and technical challenges. These include conclusions about
conductivity ranges, based on both experimental and theoretical research findings, that are
contradictory and diametrically opposed [16]. Also, the electrical conductivity and charge
transfer mechanisms of DNA-based molecular wires is still not well-understood, and the lack
of DNA construct stability under various extreme environmental conditions are preventing

significant progress in their viability.

In the first case, with respect to conductivity, theoretical models generally predict
conductive behavior that is several orders of magnitude higher than what is shown by
experimental results [17]. Typical theoretical models idealize DNA as a simplified 1D
disordered system where disorderliness arises from base pair randomness[18]. This
disorderliness leads to localization of charge carriers inside potential wells both in the lowest
unoccupied and highest occupied molecular orbits (LUMO and HOMO) which affects
drastically the electrical conduction through the molecule. Furthermore, while experimental
research findings have suggested that conductivity is also a function of the type of base pairs
involved, theoretical models have made no distinction between the various base-pair contents
in nucleotides. In addition, in some of the theoretical and experimental models, critical

parameters such as alternating and direct source of electrical current (AC & DC) are not



decoupled. Therefore, the lack of clarity in the electrical properties of DNA molecular wires

continues.

Secondly, regarding charge transfer mechanisms, widespread experimental and
theoretical studies over the past decade have presented different descriptions of charge transport
mechanisms in DNA. In general, there has been progress in classifying these mechanisms under
two main categories, the short-range electron tunneling from donor to acceptor through
DNAJ[19][20][21][22][23] and the long range charge-hopping between discrete base
orbitals[24][10][11]. Nonetheless, there still is significant disagreement on mechanisms that
rule over short distance and medium-range transport mechanisms, due to the failure to
incorporate effects such as DNA structure, thermal motion of charges, cations in solution, inter-
molecular and intra-molecular attraction and repulsion, and influence of contacting conductors

[25].

Thirdly, long-term stability has been a major concern in organic and molecular
electronics where the stability is affected by such external factors like humidity, temperature

and UV illumination.

Directly incorporated electronic and photonic functional properties allow connections
to be formed within large organized structures which are created by self-assembly. The
combination of the properties allows the creation of useful photonic and photovoltaic devices,
amplification mechanisms, antenna arrays, DNA biosensors, and DNA diagnostic assay

systems.



1.1 Dissertation Structure

This dissertation is mainly focused on electronic and photonic transfer in DNA
nanoconstruct. Consequently, Chapter 1 is devoted to introduction on electronic and photonic
transfer in DNA nanoconstruct.

In chapter 2, we have reviewed the electronic and photonic transfer in DNA nanoconstruct.
In this chapter, we reviewed a significant amount of work which has been done to improve design
and fabrication of DNA constructs with photonic and electron transfer properties. While DNA
constructs with first-order fluorescent resonant energy transfer (FRET) properties have proven
useful, however, incorporation of higher-order FRET and electronic properties into DNA has not
yet led to any viable applications. The goal of this review is to evaluate the prior work and
determine which approach might lead to successful application. By considering the advantages
and disadvantages of each approach, we will evaluate whether technical or fundamental design
issues are what limits successful applications for DNA photonic and electronic transfer.

Chapter 3 is on efficient long-range energy transfer in multiple donors and single acceptor
insulated nanostructures. In this chapter, we showed that the long-range FRET efficiency in
35mer ds-DNA structures with different arrangements of five TAMRA donor dyes and a single
TexasRed acceptor where the distance of the distal donor dyes to the acceptor dye becomes
greater than 1.7 or five base pairs (which is beyond the optimal FRET distance) is highly
efficiently. The average FRET efficiency of these ds-systems based on the change of donor
intensity and based on ratio of intensity change of acceptor to donor are 66% and 26%
respectively. Addition of surfactants and metal cations reduced quenching and enhanced the

FRET efficiency of these DNA structures. Negatively charged SDS surfactant does not reduce



dimerization and emission quenching, addition of magnesium cations (Mg?*) or sodium cations
(Na*) lead to a significant reduction in dimerization and emission quenching and produce higher
FRET efficiency. After adding the surfactant and metal cations, the average FRET efficiency
of these ds-systems based on the change of donor intensity and based on ratio of intensity
change of acceptor to donor are 89% and 75% respectively. Antenna effect for all different
arrangements of five donors and a single acceptor has been calculated and compared with the
control sequences. We also investigated the short-range energy transfer in DNA Nano construct

for 2 TAMRA donors and a single TexasRed acceptor.

In the next chapter, chapter 4, we studied the effect of temperature, UV illumination and
DNA GC content on charge transport mechanisms in DNA. Research into the use of DNA
molecules as building blocks for nanoelectronics as well as nanosystems continues. The
conductivity of DNA molecules depends on many factors including not only the structure and the
surrounding chemical environment, but also the interaction with the substrate surface. Based on
the literature, the data from temperature results indicates significant change in DNA
conductivity and the UV exposure experiments indicates decreased conductivity of A-DNA
molecular wires after UV exposure. We also reviewed the effect of nucleotide content on the
conductivity of DNA molecular wires which shows that the higher GC DNA content shows
higher conductivity.

Finally, the dissertation is concluded with the summary of the presented work in the chapter
6 along with the brief future works that one may consider as an extension to this dissertation

research pathway.
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Chapter 2

Review on Electronic and Photonic Transfer in DNA

Nano Construct

2.1 Introduction

DNA-based applications are useful in molecular computing, sensing, electronic,
photonic, biosynthetic, drug delivery, top-down photolithographic, and bottom-up self-
assembly nanofabrication [1]. An important drive of DNA nanotechnology research has been
the development of DNA-based photonic and electronic wires and switches [2]. Photonic wires
function through FRET forces; FRET is a prevailing technique used to study the structure of
biomolecules. The way in which FRET transfer is harnessed to turn DNA strands into photonic
conductors is by the sequential transfer of a fluorescent signal from one site created on the DNA

strand, a “donor”, to another modified DNA base, an “acceptor”.
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In FRET, the donor absorbs photonic energy at one wavelength. Through a non-radiative
dipole coupling process, the donor transfers energy to an acceptor which reemits the photonic
energy in longer wavelength[3][4][5][6][7].

DNA applications, including molecular sensors and clinical diagnostics, use DNA
modified with either dyes, nanoparticles, or functional groups. In molecular sensors, the
florescence signals of the dyes change due to DNA probe hybridization. However, if two dyes
are in proximity, they will interact, resulting in dye dimerization. This causes significant
quenching of fluorescent emissions, and thus will significantly lower the FRET efficiency [8].
To overcome this limitation, Heller et al showed that decoration of DNA with surfactants and
divalent metal ions caused insulation of DNA structure, which reduces dimerization and
quenching [8].

Major advantages of the FRET approach are: (i) extremely high sensitivity, (ii) excellent
selectivity and (iii) wide dynamic range of fluorescence measurements[9].

With regard to the electronic properties of DNA, the most widely used DNA-based
nanotechnology is molecular wires[10][11][12][13][14][15]. While DNA molecules continue
to carry great promise for nanoelectronic devices, there are still many conceptual and technical
challenges. These include conclusions about conductivity ranges, based on both experimental
and theoretical research findings, that are contradictory and diametrically opposed [16].
theoretical models generally predict conductive behavior that is several orders of magnitude
higher than what is shown by experimental results [17]. Typical theoretical models idealize
DNA as a simplified 1D disordered system where disorderliness arises from base pair
randomness[18]. Furthermore, while experimental research findings have suggested that

conductivity is also a function of the type of base pairs involved, theoretical models have made
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no distinction between the various base-pair contents in nucleotides. Therefore, the lack of
clarity in the electrical properties of DNA molecular wires continues. Also, the electrical
conductivity and charge transfer mechanisms of DNA-based molecular wires is still not well-
understood. The charge transfer mechanisms are mainly classified under two main categories,
the short-range electron tunneling from donor to acceptor through DNA[19][20][21][22][23]
and the long range charge-hopping between discrete base orbitals[24][10][11][25].
Furthermore, the lack of DNA construct stability under various extreme environmental
conditions are preventing significant progress in their viability. long-term stability has been a
major concern in organic and molecular electronics where the stability is affected by such

external factors like humidity, temperature and UV illumination.
2.2 Energy transfer in DNA construct

In this section, we will review (i) energy transfer mechanisms and models, (ii) energy
transfer through one donor and one acceptor, (iii) energy transfer through multiple donors and

one acceptor, and (iv) FRET application with DNA.
2.2.1 Energy transfer mechanism and model

FRET is a technique used for measuring the distance between two molecules conjugated
to different fluorophores. Lee et al. did accurate FRET (independent of instrumental factors,
such as excitation intensity or detector alignment) measurements within single diffusing
biomolecules, using confocal microscopy equipped with alternating-laser excitation for
detection (ALEX) [26]. This device is useful because it uses corrections that account for cross-
talk terms that contaminate the FRET-induced signal, and for differences in the detection
efficiency and quantum yield of the probes. They showed accurate FRET. ALEX could benefit

structural analysis of inaccessible biomolecules do to their heterogeneity or transient nature.
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Gordon et al. used florescence microscopy to obtain quantitative temporal and spatial
information about the binding and interaction of proteins, lipids, DNA, RNA, and enzymes[27].
The method they used is corrected for cross talk terms and for the dependence of FRET on the

concentrations of the donor and acceptor.

In the mechanism of FRET between one donor and one acceptor, the donor initially absorbs
the energy due to excitation of incident light and it transfer its excitation energy to a nearby
acceptor in a non-radiative fashion through long-range dipole-dipole interactions [4]. Energy
transfer manifests itself through decrease in the donor fluorescence followed by an increase in
acceptor fluorescence intensity. In the molecular level, the absorption of a light by a fluorophore
induces a rearrangement of the electronic structure of the molecule and stores some energy at the
excited state. After a short period of time, the electronic structure of the molecule decreases back
to its equilibrium state (the ground state). The relaxation of the excited state to its ground state
happens with the emission of a photon of fluorescent light at a lower energy than the light
originally absorbed. The mechanism behind the energy transfer between multiple donors and one
acceptor starts after excitation, where the first donor absorbs 