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In situ grazing-incidence X-ray scattering shows that a monolayer
of artificial rod-shaped dipolar molecular rotors produced on the
surface of an aqueous subphase in a Langmuir trough has a
structure conducive to a 2D ferroelectric phase. The axes of the
rotors stand an average of 0.83 nm apart in a triangular grid,
perpendicular to the surface within experimental error. They carry
2,3-dichlorophenylene rotators near rod centers, between two
decks of interlocked triptycenes installed axially on the rotor axle.
The analysis is based first on simultaneous fitting of observed
Bragg rods and second on fitting the reflectivity curve with only
three adjustable parameters and the calculated rotor electron
density, which also revealed the presence of about seven mole-
cules of water near each rotator. Dependent on preparation
conditions, a minor and variable amount of a different crystal
phase may also be present in the monolayer.

grazing-incidence X-ray scattering | X-ray reflectivity | molecular rotors |
aqueous-surface monolayer | synchrotron radiation

We have been examining 2D assemblies of dipolar molecu-
lar rotors in an effort to detect collective behavior (1).

Ultimately, we hope to produce an artificial 2D ferroelectric
phase of dipolar azimuthal molecular rotors located on a flat
electrical insulator, both for fundamental investigations and for
its possible applications in nanoscience.
To meet this goal, theory (2) suggests that the rotors should be

assembled in a trigonal lattice. The surface assembly is expected
to be ferroelectric between the Debye temperature TD, below
which rotational barriers prevent the rotors from turning, and
the Curie temperature TC, above which thermal disorder domi-
nates. The former condition calls for small rotational barriers, no
higher than 1–2 kcal/mol [in 3D assemblies, rotational barriers as
low as 0.7 kcal/mol have been achieved (3)]. The latter condition
requires large rotatable dipoles μ spaced a small distance a apart,
since TC is expected to be proportional to μ2/a3.
After dealing with surface inclusions, in which molecular rotors

were contained on the surface of a host crystal, and detecting
ferroelectric interactions but no ferroelectric phase in bulk in-
clusions (4), we are now also exploring monolayers produced on
aqueous surfaces using a Langmuir–Blodgett (LB) trough (5) and
molecular rotors designed to assemble into a trigonal lattice (6).
The hope is that the rotor axes will be perpendicular to the surface
and separated by a small lattice constant (a < 1 nm) and that large
monocrystalline domains can be produced. Ultimately, a mono-
layer of a suitable structure is to be transferred from the aqueous
surface to a solid substrate for further study, possibly only after
cross-linking for increased sturdiness.
Many organic materials pack closely at the air–water interface.

Their unit cells tend to be tilted and distorted (7–19), but some
nearly perfectly straight structures have also been observed (20).
We were inspired by close-packed LB films of fatty acids, which
have trigonal lattices and preserve them upon transfer to solid
substrates (20–23).

To encourage trigonal packing (24–34) and perpendicular
orientation on an aqueous surface while keeping dipole rotation
nearly unhindered we prepared (6) the rod-shaped molecular
rotor 1 (Fig. 1). It carries a terminal carboxylic acid group and
a dipolar rotator (2,3-dichloro-1,4-phenylene) between two
Y-shaped axial triptycene units, designed to form two decks of
interlocked triptycenes. We now report grazing-incidence X-ray
diffraction (GIXD) (14, 35) evidence that a monolayer of 1
indeed forms and has the desired structure.

Results
GIXD for a Monolayer of 1 on an Aqueous Subphase. Langmuir
isotherms indicate that upon compression 1 has an extrapolated
mean molecular area (mmA) of 63 ± 3 Å2, compatible with the
hoped-for packing (Fig. S1).
Table 1 summarizes the information obtained by GIXD, an-

alyzed as explained in Analysis of GIXD Data. Scattering in-
tensity (Fig. S2) is mapped against the xy component of the
reciprocal scattering vector Q and is related to the azimuthal
scattering angle 2θ by Qxy = (4π/λ) sinθ, where λ is the wavelength.
Fig. 2 shows the integrated intensity cut. The broad underlying
baseline structure that grows in intensity for Qxy = 1.2–2.5 and then
slowly falls is scattering from bulk water (36). Intensities listed in
Table 1 are measured locally with the background scattering from
water removed. The size of the crystalline domains can be estimated
from the formula (11) for the coherence or correlation length,
ℓ = 0.9 × 2π/Qxy (FWHM), and since in most cases FWHM is
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resolution-limited a value of ∼43 nm as a lower limit to the domain
size is obtained.

The Two Lattices. The observations suggest the presence of two
types of crystalline domains. Two groups of peaks are present,
indexed in red and in blue in Fig. 2 and listed separately in Table 1.
The relative intensity of peaks within each group is always similar,
but the relative intensity of the two groups varies with details of
monolayer preparation, such as surface pressure, compression rate,

and choice of the spreading solvent and counter ions. The two
groups can be separately indexed with two distinct unit cells de-
fining two different incommensurate lattices.
The group of two strong broad peaks and three weaker peaks

that dominates at high surface pressures defines the major lat-
tice. The remaining nine weak peaks are assigned to the minor
lattice. There probably are other peaks in the latter group that
are difficult to discern from noise.

Major Lattice. The peaks in Fig. 2 indexed in red are assigned to a
hexagonal lattice system (Table 1). The unit cell parameters were
initially estimated by indexing the two strongest peaks and re-
fined by recognizing that the peaks centered at Qxy = 0.88 and
1.51 are too broad to be a single peak given the 0.013-Å−1 res-
olution but may each be fitted with three Gaussians using a single
constraint (FWHM = 0.013 Å−1; Fig. 3 E and F). Indexing peaks
near Qxy = 0.88 as {0,1},{1,0}, {−1,1} and those near Qxy =
1.50 as {1,1}, {−1,2}, {−2,1} leads to the assignment {0,2},
{2,0}, {−2,2} for the band near Qxy = 1.72. Unit cell parameters
were finally optimized by a least-squares fit to the resulting ex-
panded and complete set of 14 observable Bragg peaks, yielding
a triangular lattice with a rhombic primitive unit cell of dimen-
sions 8.13 ± 0.01 Å × 8.40 ± 0.02 Å, an angle of 119.7 ± 0.2°, and
an area per rotor A = 59.4 Å2.
Using the form factor F(Q), where ρ(r) = ρ0[1 − cos(3θ)] is the

electron density for r < r0, and zero elsewhere, r0 is the rotor
radius, and L is the rotor length (Supporting Information),

FðQÞ=FðQhk,QzÞ=
Z r0

0

Z 2π

0
ρ0f1− cos½3ðθ+ θhkÞ�g

× expðiQhk   r   cos  θÞrdrd θ
Z L

0
expðiQz   zÞ  dz,

[1]

a fit to Eq. 1 of the Bragg rod profiles for the two strongest peaks
of the major lattice (Fig. 3) yielded the twist (α), tilt (t), and tilt

0
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20

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

bulk water Cs+
Cs-1

Fig. 1. (Right) Chemical structure of the dipolar molecular rotor 1. (Left)
Electron density profiles normal to the water surface for the rotor unhy-
drated (red) and hydrated by seven water molecules (black) with optimized
positions between the triptycene layers.

Table 1. Diffraction peaks observed for a monolayer of 1 on 10 mM aqueous CsCl

Lattice h k Qhk (observed) Qhk (observed/fit) Qhk (calculated) Ihk (observed) Ihk (calculated)

Major lattice 0 1 0.867 ± 0.003* 0.861 556 ± 8%† 744 ± 14%†

1 −1 0.876‡ 0.881 0.880 8,387 760
1 0 0.890 0.890 771 723
1 −2 1.499 1.500 1,400 1,156
1 1 1.51§ 1.510 1.514 2,200 2,412
2 −1 1.530 1.546 1,767 1,542
0 2 1.72 1.722 429 340
2 −2 1.75 1.760 336 214
2 0 1.77 1.779 122 220
1 −3 2.277 0 14
2 −3 2.24 2.299 55 2.5
2 1 2.329 0 27
3 −2 2.35 2.352 121 15
3 −1 2.36 2.364 121 3.4

Minor lattice 1 0 0.47 ± 0.01* 0.467 190 ± 8%†

1 −1 0.68 0.703 162
0 1 0.77 0.759 298
2 −1 0.92 0.921
2 0 0.94 0.933 443
1 1 1.05 1.046 316
3 0 1.40 1.400 400
2 1 1.46 1.430 494
4 −1 1.63 1.692 340

*SE.
†SE×100/I.
‡Found by fitting the broad peak at Q = 0.88 with three Gaussian peaks constrained to FWHM of 0.013 Å−1.
§Found by fitting the broad peak at Q = 1.51 with three Gaussian peaks constrained to FWHM of 0.013 Å−1 (Fig. 3 E and F).
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direction (ψ) of the rotor (Fig. S3). Their variation with Qz con-
tains information about the magnitude and direction of t, and the
profile for each {h,k} follows F(Qhk) and is sensitive to α and ψ .
We noted that the latter pair of angles is strongly determined by
the relative intensity of the 0.88 group to the 1.51 group. For
perfectly vertical rotors the Bragg rod profile would be given
by the interfacial-surface electric-field correction factor defined
(37) as V(Qz) = 2x/[x + (x2 − 1)1/2] for x > 1 and V(Qz) = 2x for
0 < x ≤ 1, where x = Qz/Qc and Qc = 0.021764 Å−1 for neat water
(38) at λ = 1.23984 Å, increasing slightly and directly with the
electron density of the subphase. Their relative intensity at
different Qhk is still modulated through F(Q). The Bragg rod
profiles for the overlapping peaks at Qz = 0.88 {1,0},{0,1},{1,−1}
were not separable and were fitted as a 1:1.2:1 weighted sum
that follows from the approximate ratio of Gaussian peaks
heights used to fit the band (Fig. 3F). A global fit (Fig. 3 A–
D) of the four resultant Bragg profiles of the six peaks allowed
us to estimate (7, 21, 38) the tilt t to be less than 8°and the twist
α to be 47° (Fig. 3). The tilt direction ψ is 30° away from the
nearest neighbor.
After fitting the Bragg rods, the complete set of Bragg in-

tensities in Table 1 was fitted using Eq. 1 integrated over Qz to
find α, t, and ψ again in a way more sensitive to α and ψ. This
resulted in two fitted minima for (α, t, ψ) at (47.9°, 2.0°, 32.9°)
and (20.9°, 2.0°, 59.2°). This is due to the 2D nature of the GIXD
measurement at the interface which makes a unique de-
termination of the orientation of the rotors in the unit cell im-
possible. We can rule out the latter set of angles as unphysical,
because they lead to overlapping triptycene groups.

X-Ray Reflectivity.X-ray specular reflectivity R(Qz), normalized to
RF(Qz), provides information about ρ(z), where z is the distance
from the surface (the top of the monolayer):

RðQzÞ=RFðQzÞ
����ρ−1∞

Z
dρðzÞ=dz expðiQzzÞdz

����
2

, [2]

where ρ∞ is the electron density of bulk water (0.3334 e−/Å3)
(39). Surface roughness σ arises from thermal surface capillary
waves and is treated by smoothing the electron density gradient
at the slab boundary from a delta function to a Gaussian with
FWHM proportional to σ. R(Qz) was fitted in several ways (Fig.
4). The required electron density ρ(r) for an isolated molecule of
the Cs salt of 1 on a water surface was calculated by the BP86-D3
(40, 41, 42)/def2-TZVP (43, 44) method (Fig. 5).
Model A. A very simple three-slab model (He - head - tail - sub-
phase) and the kinematic modeling method (38) give a reason-
able three-parameter fit with a uniform ρ = 0.384 e−/Å3 and
length L = 29.7 ± 2.8 Å (Fig. 4). The surface roughness σ is 5.24 ±

0.10 Å. The length L agrees well with that obtained from the
calculated electron density map, but the electron density dis-
agrees with the value estimated from ne/(L × mmA) = 473 e−

/(29.7 Å × 59.8 Å2) = 0.27 e−/Å.
Model B. The calculated electron density map is represented by a
stack of eight slabs [He + six rotor slabs + subphase (Table 2)].
The fitted curve (Fig. 4) also agrees with the data and shows a
better fit to the calculated electron density. This model does,
however, require an unusually large value for the surface
roughness (σ = 14.0 ± 0.89 Å−1, ρ = 0.334 e−/Å3) in the slab that
includes the dipole rotator.
Model C. The calculated electron density of Fig. 1 was directly
used with Eq. 1. Surprisingly, only poor fits were obtained from
this more rigorous method (Fig. 4). All attempted fits with this
model produced a reflectivity decreasing immediately with Qz

instead of rising first. An investigation revealed that this was
caused by the sharp drop in e− density in the inner portion of the
film above and below the dipolar rotator at the acetylene groups,
and the artificial introduction of extra electron density anywhere
between the decks leads to the qualitatively correct behavior of
the reflectivity but not necessarily a good fit.
Model D. Electron density was augmented by placing water mol-
ecules near the rotator. The fitted curve (Fig. 4) now fits the data

Table 2. X-ray reflectivity: Parameters for model B

Subunit L (calculated)/Å L(fit)/Å* ne
† ne (fit) ρ e−/Å3 σ(fit)/Å

He 0 0 3.87 ± 0.014†

C20H13 5 5.09 ± 0.10‡ 133 133 0.437 7.90 ± 0.085
C4 5 3.00 ± 0.08 24 18 0.100 4.72 ± 0.047
C6H2Cl2 4 5.35 ± 0.07 72 106 0.334 14.0 ± 0.21
C4 4 2.72 ± 0.07 24 16 0.100 7.4 ± 0.061
C20H12 5 4.53 ± 0.11 132 114 0.39 9.90 ± 0.040
C3O2Cs 4.8 3.84 ± 0.05 89 86 0.494 8.85 ± 0.039
Subphase ∞ 0.334
Total 27.8 24.53 474 473

*The software for the reflectivity calculations was provided by the ChemMAT/CARS facility at the
Advanced Photon Source, Argonne National Laboratory.
†Number of electrons.
‡SE.
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Fig. 2. GIXD of 1 on 10 mM aqueous CsCl at 30 mN/m. Red indices: major
lattice. Blue indices: minor lattice. Cf. Fig. S5 for GIXD of 1 on neat H2O at
30 mN/m, demonstrating the reproducibility of the minor lattice scattering
peak positions and their variable intensity relative to the major lattice.
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well with the correct initial behavior of the reflectivity, and re-
quires just three adjustable parameters: σ, t, and a scaling factor.
The best fit was obtained for the addition of seven H2O mole-
cules (discussed below).

Molecular Modeling. An effort was made to reproduce the ob-
served major lattice computationally. A grid of four molecules of
the Cs salt of 1 on 120 molecules of water was used to model an
infinite 2D lattice using cyclic boundary conditions. The size of
the unit cell was 57.5 Å2, chosen to reproduce the mmA de-
termined from Langmuir isotherms. The lattice constants were
α = β = 90°, γ = 120°, a = 16.0 Å, b = 16.6 Å, and c = 60.0 Å.
After structure optimization [PM6 (45) in the quickstep module
(46) of the CP2K 4.1 (47) program package; correction for dis-
persion is not available], the monolayer maintained the trigonal
arrangement. The average tilt angle of all four LB molecules was
∼4° and the distance between the nearest rotors was ∼8.0 Å (Fig.
5). A projection of the electron density into the surface normal
was first calculated with 0, 6, 12, and 24 equilibrated molecules

of water present between the two triptycene decks (Fig. S4). The
equilibration spread the water quite evenly below and above the
rotator; most of it was at the C–Cl dipoles (Fig. S4). Then, equil-
ibration was done for five to eight water molecules and the best
fit was found for seven. Numerous alternative arrangements of
the water molecules around the rotator are possible, but all seem
to yield fits of the same quality.

Minor Lattice. The remaining scattering peaks (Table 1) fit a
different indexing scheme (blue in Fig. 2) with unit cell dimen-
sions of 14.9 ± 0.1 Å × 9.13 ± 0.1 Å, with an angle of 115.0 ±
0.8°, and a total area of 122.9 Å2 (i.e., two rotors at 61.5 Å2 per
rotor). Most peak intensities were too weak for the global Bragg
rod fitting approach and the exact number and positions of the
rotors in the unit cell could not be assigned with certainty. The
out-of-plane scattering intensity in two Bragg rod profiles (Q1−1
and Q1−2) suggests t = ∼57° from a simple geometric argument,
t = tan−1 (Qz/Qhk), and rules out the assignment of these peaks to
a superlattice of Cs+ cations just below the interface (16).
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Fig. 3. (A–D) Simultaneous fits to the Bragg rod profiles for the six most intense peaks indexed for the major lattice. (E and F) Decomposition of the overlapping
peaks. A rotor lattice schematic is shown as an inset. The displacement of the upper rod (blue) relative to the lower rod (red) due to the tilt is also shown.
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Discussion
Synchrotron GIXD has been often used on fatty acid monolayers
but to our knowledge never for a detailed analysis of an assembly of
molecules as complex as 1. It is a pleasant surprise that the method is
so useful for establishing the monolayer structure of 1, especially in
the simultaneous presence of two crystalline phases. It even allowed
the detection of extraneous water molecules in the monolayer.
The results are encouraging for the potential development of

2D ferroelectrics, in that under the right conditions rotor 1 forms
a monolayer with a lattice that appears perfect for ferroelectric
behavior. In addition to ideal symmetry and upright orientation
of rotational axes it offers significantly shorter interrotor dis-
tances and an order-of-magnitude larger domains than the sur-
face inclusion compounds with which we have also been working.
According to approximate theory (48), the dipole-to-dipole dis-
tance of 8.3 Å and a dipole of ∼2.5 Debye (49) promise a Curie
temperature TC = ∼120 K in the absence of defects. The use of a
larger dipole would raise it further; for pyridazine (4) [μ = ∼4
Debye (50)] the expectation is TC = ∼300 K.
Still, formidable obstacles remain, since it is not obvious that

the structure can be transferred to a solid substrate unperturbed.
Even if it can, it may collapse after evaporation of the water,
whose presence in the monolayer reduces the dipole moment
and possibly hinders the rotation. It may be necessary to examine
the assembly of 1 directly on a solid surface (33), giving up the
surface pressure degree of freedom and easy annealing offered
by a Langmuir trough during monolayer preparation. It may also
be necessary to modify the structure of the molecular rotor in ways
that will make the monolayer sturdier (e.g., by cross-linking).
The performance of the PM6 method without dispersion

correction in simulating the experimental results is reasonable
and the structure of the lattice of 1 is reproduced well, including
the twist of the rotor.
The large albeit inaccurately known average tilt angle in the

minor lattice suggests that it probably has a structure in which
the top layer is not interlocked, and this is compatible with the
observation that its fraction is larger at very low surface pressures
(very large mmA). It may be possible to eliminate it entirely from
the film by annealing before transfer is attempted.

Materials and Methods
GIXD and reflectivity were measured at the ChemMatCARS facility at the
Advanced Photon Source at Argonne National Laboratory. The equipment
and experimental methods have been previously described (51). The best
GIXD results were obtained by sonicating 1 in a THF solution for a least
10 min, applying a known amount to an aqueous surface, and compressing
the film to 30 mN/m at a compression rate of 1 mm/min. All measurements
were done at room temperature under a He purge with O2 levels less than
1%. The energy of the beam was 10 keV (λ = 1.23984 Å) with a resolution-
limited diffraction peak FWHM of 0.0134 Å−1 for the slit combination along
the detector beam. Fresh spreading solutions of 1 in tetrahydrofuran (∼100
μM) were sometimes sonicated for 10 min before use. “Burn” tests, per-
formed to assess the stability of the monolayers to degradation under a
continuously purged He atmosphere, indicated that 1 had a ∼90-min half-
life in the beam. A step and collect procedure was used to minimize the
cumulative damage in each beam spot: The trough was translated under the

Fig. 5. Top (A) and side (B) view of PM6-optimized structure of the major
phase of Cs salt of 1 on water.

Fig. 4. Fits of X-ray reflectivity. Black circles: Normalized reflectivity curve
for 1 on 10 mM CsCl at 30 mN/m. The diameter of the circles approximates
the experimental error. Fits: green, four-slab model A; purple, eight-slab
model B; red, calculated e− density for 1, model C; blue, calculated e− density
including contribution from seven H2O molecules near the rotator, model D.
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beam by a few millimeters to ensure a fresh spot at the start of each dif-
fraction or reflectivity scan.
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