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Abstract

Path integration, the ability to maintain an estimate of one’s
location by continuously integrating self-motion cues, is a vi-
tal component of the brain’s navigation system. We present
a spiking neural network model of path integration derived
from a starting assumption that the brain represents continuous
variables, such as spatial coordinates, using Spatial Semantic
Pointers (SSPs). SSPs are a new kind of representation for en-
coding continuous variables as high-dimensional vectors, and
can also be used to create structured, hierarchical represen-
tations for neural cognitive modelling. Path integration can
be performed by a recurrently-connected neural network us-
ing SSP representations. Unlike past work, we show that our
model can be used to continuously update variables of any di-
mensionality. Finally, we demonstrate that symbol-like object
representations can be bound to continuous SSP representa-
tions. Specifically, we incorporate a simple model of working
memory to remember environment maps with such symbol-
like representations situated in 2D space.

Keywords: path integration; spiking neural network; recur-
rent neural networks; vector symbolic architecture; grid cells;
neural engineering framework; cognitive maps

Introduction
Path integration is the process of integrating idiothetic cues,
obtained from a variety of sensory systems, to maintain an
estimate of one’s position in space (relative to some start-
ing position). Animals can perform this computation while
navigating environments in the absence of allocentric spatial
cues (Mittelstaedt & Mittelstaedt, 1982). Path integration is
an essential component of biological spatial navigation sys-
tems and is the foundation of both vector-based and map-
based navigational strategies. Maintaining homing vectors
to important locations (e.g., shelter or food) while moving
through an environment requires updating those vectors us-
ing self-motion information. Building a cognitive map of an
environment also requires tracking one’s position relative to
landmarks.

Beyond navigation, path integration (PI) is an important
component of larger systems capable of advanced reason-
ing, planning, and cognition. The results of PI are known
to be used in downstream tasks, like creating maps, associ-
ating memories with locations, and planning trajectories for
exploration (Savelli & Knierim, 2019; Buzsáki, 2005). Fur-
thermore, there is evidence that the same neural systems in-
volved in PI and spatial representation may be involved in
integration and mapping of non-spatial continuous features

(Garvert et al., 2017). Even episodic memory can be thought
of as mapping events in space and time (Schiller et al., 2015).

Significant advances have been made in understanding the
neural substrates of spatial representation. The hippocam-
pal formation is generally believed to be the site of PI in
mammals due to the presence of spatially-sensitive neurons,
namely place and grid cells. A place cell will fire at a con-
sistent location in an environment, even without external sen-
sory information (Quirk et al., 1990). Grid cells, which fire
at hexagonally tiled locations in space, appear to represent a
spatial coordinate system and are considered instrumental in
PI. In the entorhinal cortex, they live alongside neurons sensi-
tive to head-direction and speed (Sargolini et al., 2006), both
required for PI. It has been suggested that the function of grid
cells may be to encode a representation of space robust to
noise and to help error-correct integration (Sreenivasan & Fi-
ete, 2011). Grid cells have also been linked to navigation of
non-spatial variables, including visual and auditory features
(Aronov et al., 2017; Constantinescu et al., 2016). This sug-
gests that the neural mechanisms behind creating and navi-
gating spatial cognitive maps may be used more generally for
internal maps of continuous variables – even ones that may
be conceptual and high-dimensional.

While much work has been done on computational mod-
elling of PI, there is still a gap in understanding how the out-
put of a neural PI model can be used for cognitive mapping,
involving symbol-like representations of objects, landmarks,
and other discrete features. We approach the problem of PI
using a framework for symbol-like representation in the brain,
the Semantic Pointer Architecture (SPA; Eliasmith (2013)).
The SPA is a Vector-Symbolic Architecture (VSA) that can
represent information in a vector space, and uses vector op-
erations to perform symbolic computations. In particular, it
offers methods for implementing such representation and op-
erations using spiking neural networks.

Recently, these methods have been extended to include
Spatial Semantic Pointers (SSPs; Komer et al. (2019)), an en-
coding for continuous variables, such as spatial coordinates
(of any dimension), time, size, value, etc. SSPs naturally pro-
duce oscillators, and can be encoded by the collective activity
of grid cells with patterns of varying orientation and scale
(Dumont & Eliasmith, 2020). In this work, we derive and
model the dynamics of SSPs and discover configurations that
result in an oscillator-interference model of PI. Furthermore,
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we demonstrate how SSPs can be coupled with more symbol-
like representations via the methods of SPA to build spatial
cognitive maps.

Background
Modelling of path integration
Many computational models of grid cells and their role in
path integration have been proposed since their discovery.
Models generally to fall into one of two categories: oscillator-
interference (OI) models (O’Keefe & Burgess, 2005) and
continuous attractor neural network (CANN) models (Sam-
sonovich & McNaughton, 1997). In CANN models, path
integration is performed by a recurrently connected neural
sheet whose dynamics sustain a single Gaussian-like activ-
ity bump that represents self-position. Particular connectivity
is used to achieve this – excitation from nearby neurons to
maintain the bump and inhibition from faraway neurons to
prevent multiple bumps forming. The activity bump moves
across the sheet in response to velocity signals. Grid cell pat-
terns emerge when the sheet is given the boundary conditions
of a twisted torus (Conklin & Eliasmith, 2005).

In OI models, grid cell firing patterns are the result of in-
terference between velocity-controlled oscillators (VCOs), an
oscillator whose frequency is modulated by a velocity signal.
In this setup, a position estimate is encoded in the phase dif-
ferences between oscillators. The biological basis of such
oscillators can differ between OI models, from intrinsic os-
cillation of membrane potentials (Burgess et al., 2007), to the
more widely accepted recurrently-connected oscillator net-
works (Blair et al., 2008; Orchard et al., 2013). It should be
noted that VCOs can also create other spatial patterns, such
as bands and pseudo-periodic patterns (Krupic et al., 2012).
Fig. 1 illustrates a VCO, and its corresponding spatial map.
Attractor dynamics can also be added to OI models to limit
phase drift and error accumulation (Bush & Burgess, 2014).

However, all path integration models suffer from error ac-
cumulation. Without external cues or corrections, position
estimates can only worsen over time. Animals have access
to a plethora of external sensory information, such as vi-
sual landmarks and odour trails, which can be used to cor-
rect the errors that would collect when using PI alone. Such
multi-sensory information can be used in conjugation with PI
to create cognitive maps of environments. Simultaneous lo-
calization and mapping (SLAM), a well-studied problem in
robotics, is exactly the problem of path integrating while si-
multaneously constructing internal spatial maps. A biological
inspired SLAM mode, RatSLAM, uses an CANN consisting
of “pose cells” (combining place & head direction-like cells)
to maintain an estimate of self-position and orientation (Mil-
ford et al., 2004).

Semantic Pointer Architecture
The Semantic Pointer Architecture (SPA) posits that high di-
mensional vectors (called semantic pointers) are the build-
ing blocks of cognition (Eliasmith, 2013). The SPA in-

Figure 1: (a) A single component of the Fourier transform
of an SSP, F {S} j, is a unit-modulus complex number. As
the animal moves, the phase changes, making it a VCO. (b)
The phase of F {S} j over space is plotted via a heat map over
space. The inner-product between the animal’s velocity and
the preferred heading direction A j,: (see Eq. (2)) determines
how quickly the phase changes.

cludes a form of Vector Symbolic Architecture (VSA). A
VSA represents symbols and structured compositions of sym-
bols as high-dimensional vectors, and operations on those
vectors perform symbolic operations, such as bundling, bind-
ing, comparison, and inversion. The specification of these op-
erations differentiates particular VSAs. The SPA uses Holo-
graphic Reduced Representations (HHRs; Plate (1995)), im-
plemented in spiking neural networks.

A similarity measure between two vectors indicates the se-
mantic similarity of the symbols they represent. For example,
the vector representation of a ‘rose’ might have a higher simi-
larity measure with a ‘lily’ vector compared to a ‘toad’ vector.
In HHRs, this is given by the cosine similarity.

A bundling operation maps a set of vectors to a single vec-
tor, such that the resulting vector is similar to all from the set.
Vector addition is the bundling operation in HRRs. A bind-
ing operation maps a pair of vectors to a single vector that is
dissimilar to both. For example, ‘colour’ and ‘red’ could be
bound together to represent that something is red in colour.
Using an HRR, binding can be done by circular convolution,

A⊛B = F −1{F {A}⊙F {B}} , (1)

where F is the Fourier transform, and ⊙ is the Hadamard
product. The inverse operation takes a single input vector and
produces a single output vector that approximately reverses
the effect of binding with the input vector, (A⊛B)⊛B−1 ≈ A,
where B−1 = [B1,Bd ,Bd−1, . . . ,B2].

To see how these operations can be used to encode and ma-
nipulate symbolic representations, consider the example of an
ordered list. Vector representations of each object (fillers) can
be bound with vector representations of indices (slots) and
the results summed to represent their collection in a single
ordered list. The final representation can be queried to, for
example, retrieve the position of a given object in the list, by
binding the total vector with the inverse of that object’s vec-
tor. The result of such a binding will be approximately equal
to the vector that represents that object’s index.

While VSAs prescribe these operations for manipulating
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symbols in some vector space, they do not prescribe how the
mapping from symbols to vectors is done. For some tasks,
the corpus of symbols are distinct and so it is sufficient that
all vector representations are dissimilar from one another. In
this case, random vectors with high enough dimensionality
will do. For other tasks, vectors can be chosen to have desired
similarity relations, or machine learning techniques can be
used to obtain vector representations (Mitrokhin et al., 2020).

Spatial Semantic Pointers (SSPs) extend VSAs to support
representation of continuous features (Komer et al., 2019).
An d-dimensional SSP representing an n-dimensional vari-
able x is given by

S(x) = F −1{eiAx} (2)

where A ∈ Rd×n is the encoding matrix of the representation.
A useful property of SSPs is that binding in the SSP space
is equivalent to addition in the variable space, S(x)⊛S(x′) =
S(x+ x′). SSPs can be used in tandem with symbolic-like
representations from standard VSAs. For example, an object
represented by vector B, located at a position encoded by an
SSP S, can be represented by B⊛S. Similarly, a set of objects
at different locations can be represented by ∑i Bi⊛S(xi). This
vector is a compressed representation associating features and
locations – a spatial map. The vector could be stored in mem-
ory and later accessed and queried for object locations using
the inverse operation. By ‘unbinding’ the object vector B j
from the map, an approximation of its location as an SSP can
be recovered, M⊛B−1

j ≈ S(x j).

Neural Engineering Framework To create biologically
realistic neural networks that make use of SSPs, we require
methods to represent vectors by the activity of spiking neu-
rons, and to be able to perform computation on said vectors
via projections between neural populations.

The principle of representation explains how the collective
neural activity of a population can encode a vector, S ∈ Rd .
A single neuron’s activity is given by,

ai(t) = Gi [αiei ·S+βi] , (3)

where ai(t) is the activity of neuron i (a spike train), αi > 0
is its gain, βi is its bias, Gi is a nonlinear function (in this
work, the leaky-integrate-and-fire function), and ei is the en-
coder of the neuron. Gains and biases are parameters that
are randomly selected for different neurons and relate to their
maximum firing rates. Encoders define what sort of input a
particular neuron is sensitive to, hence capturing the ‘recep-
tive field’ of a neuron. In the case where neurons are a part of
a population representing SSPs, it would be natural to set en-
coders to be SSPs that represent random points across space.
This would result in a population whose neurons are sensitive
to particular spatial locations – e.g., place cells. However,
encoders can also be set to obtain grid cells (Dumont & Elia-
smith, 2020).

The representation principle also explains how to decode
the vector represented by the activity of a population of N

neurons:

Ŝ =
N

∑
i=1

ai(t)∗h(t)di, (4)

where ∗ is convolution and di ∈ Rd are the decoders of the
population. The decoders are solved for via least-squares op-
timization. The function h(t) is a post-synaptic filter and is
parameterized by τ, the post-synaptic time constant.

The transformation principle of the NEF provides the
method for setting weights between two neural populations to
compute a desired function. Assume a population of N neu-
rons representing a vector, S, is fully connected to a different
population of N′ neurons. We would like the second popu-
lation to represent some function of the vector, f (S). This
function can be decoded out of the first population’s activity,

f̂ (S) =
N

∑
i=1

ai(t)∗h(t)d( f )
i . (5)

These function-specified decoders can be solved for using
least-squares optimization and samples of the desired func-
tion output. The second population’s neurons will receive
this as input. Decoding the output of the first population and
encoding it in the activity of the second population is equiva-
lent to multiplying the filtered activities of the first population
with a weight matrix and feeding that current into the second
population, which will have activities given by

b j(t) = Gi

[
N

∑
i=1

wi jai(t)+β j

]
, wi j = α je j ×d( f )

i . (6)

This is a standard neural network, with populations connected
via weighted synapses – only here, the weight matrices are set
as the outer product between the decoders of the first popu-
lation (which are optimally solved for) and the encoders of
the second (which are pre-set, randomly or to match biolog-
ical tuning curves). The last principle of the NEF is dynam-
ics. Dynamical systems can be encoded in a recurrently con-
nected population of spiking neurons.

Methods
Dynamics of Spatial Semantic Pointers
Despite the fact that SSPs are defined in terms of a high-
dimensional vector space, we can show that they naturally
implement velocity controlled oscillators (VCOs). Consider
how S(x) changes if x is a function of time. We can relate the
rate of change of S to ẋ(t), the rate of change of x(t) (Voelker
et al., 2021). In the case of an SSP representing an animal’s
position, ẋ(t) is the animal’s velocity.

The derivative of an SSP representing the coordinates
x(t) ∈ Rn is

Ṡ(x(t)) = F −1{eiAx(t)⊙ iAẋ(t)}, (7)
= S(x(t))⊛ lnS(ẋ(t)), (8)

where ⊙ is element-wise multiplication, and the logarithm of
an SSP is defined as the element-wise logarithm in the Fourier
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domain, lnS ≡ F −1{lnF {S}}. Now let us consider the dy-
namics of an SSP in the Fourier domain. Taking the Fourier
transform of (7), we get,

F {Ṡ(x(t))}= (iAẋ)⊙F {S(x(t))} . (9)

Note that the dynamics of the Fourier components of an
SSP are independent of each other. The dynamics of the jth

Fourier component of the SSP can be written as

d
dt

[
ReF {S} j
ImF {S} j

]
=

[
0 −ω j

ω j 0

][
ReF {S} j
ImF {S} j

]
, (10)

where ω j ≡ A j,: · ẋ(t) =−i lnF {S( ˙x(t))} j. (11)

Each Fourier component of the SSP is thus the state of a sim-
ple harmonic oscillator whose frequency is given by ω j. The
oscillators’ frequencies are modulated by the velocity ẋ; in
other words, they are velocity controlled oscillators (VCOs).

Attractor dynamics
Path integration can be accomplished by integrating velocity.
To do so with SSPs, we may construct a neural network that
integrates (8) or (10). The advantage of integrating (10) is that
each Fourier component is an independent VCO. This means
that many sets of small neural populations, each recurrently
connected only to itself, can realize these dynamics.

However, a well-known issue with the VCO method is that
noise causes drift in the oscillators and their accuracy quickly
deteriorates (Zilli et al., 2009). This noise drift becomes even
more acute when using spiking neurons. However, the VCO
approach can be modified to improve the stability of the os-
cillators. VCOs can either be coupled together (Zilli & Has-
selmo, 2010; Burgess & Burgess, 2014) or attractor dynam-
ics can be used to make the dynamics more robust (Bush &
Burgess, 2014). We use the latter approach here. Cyclic at-
tractors have been previously modelled with the NEF to de-
scribe the head-direction system (Eliasmith, 2005). Here, in-
stead of using the dynamics of a simple harmonic oscillator,
we use a nonlinear oscillator with a stable limit cycle,

d
dt

[
ReF {S} j
ImF {S} j

]
=

[
−ω jImF {S} j +

1−r2

r ReF {S} j

ω jReF {S} j +
1−r2

r ImF {S} j

]
, (12)

where r ≡ |F {S} j|.

This ensures that the SSP remains unitary as it evolves. Con-
sidering the set of VCOs as a whole, the system has a toroidal
attractor (Komer, 2020), making this a hybrid of oscillator-
interference and continuous attractor models of PI.

Path integration model
To represent a spatial location, x(t), we define an SSP in a
higher-dimensional space, S(x(t)) ∈ Rd . To implement this
representation in spiking neurons using the NEF, we use ⌊ d

2 ⌋
VCOs, each of which consists of N neurons (see Fig. 2). The
jth neural population represents the real and imaginary parts
of the Fourier components of the SSP. Only ⌊ d

2 ⌋ oscillator

Figure 2: A diagram of the path integration model.

populations are needed since the Fourier transform of the SSP
will have conjugate symmetry (half of its Fourier components
can be computed from the other half).

To compute the nonlinear dynamics in (12), we need to
represent both real and imaginary parts of F {S} j, as well as
ω j, all in the same population of neurons (as is standard in the
NEF). The vector being represented by the collective activity
of the jth VCO population is, thus,[

ω j ReF {S} j ImF {S} j
]T

. (13)

The VCO frequency, ω j, is computed by a set of connections
from a population that encodes velocity. This population is
connected to the jth VCO by connection weights A j,:, and
hence computes A j,: · ẋ(t). Within each VCO, the neuron pop-
ulation is recurrently connected using weights optimized by
least squares to implement the dynamics of (12). This model
performs PI of continuous variables of any dimensionality, as
long as they are represented by SSPs of the same dimension;
the only difference for higher-dimensional vectors is the cal-
culation of the frequency input.

We have not yet addressed how this model can be used to
generate grid cells. Each oscillator is a population represent-
ing a frequency (related to speed and head direction) and a
single Fourier component of the SSP. This results in neurons
with conjunctive sensitivity to head direction, speed, and spa-
tial position (in a periodic fashion, resembling a plane wave).
Their firing patterns are velocity dependent bands or stripes
and not hexagonal patterns. Grid cells do not intrinsically
emerge from PI in this model, although particular choices of
axis vectors do realize grid cells. Furthermore, such a choice
provides an ideal basis for subsequent generation of place
cells (Dumont & Eliasmith, 2020).

Cognitive mapping model
A core value of this model compared to pre-existing PI mod-
els is its position within the broader SPA framework. The out-
put of this PI model can be used in a variety of ways within
the SPA. It can, for example, be bound with other SSPs to
compute vectors between self-position and other locations. It
can also be bound with semantic pointers representing some
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Figure 3: A diagram of the cognitive mapping model.

sort of feature or landmark, and used to create an environment
map. Here, we will demonstrate that the PI model can also be
integrated with a working memory model for cognitive map-
ping.

This mapping model, illustrated in Fig. 3, consists of a PI
module that represents an SSP estimate of current position,
a neural population that represents nearby items as symbol-
like semantic pointers, a gated working memory module that
represents the cognitive map, and a query module to probe
the accuracy of the map. The output of the PI model, S(x(t)),
is bound with the output of the item network, B, by a neural
network that performs circular convolution. The result, B⊛
S(x(t)), is the input of the memory module.

The memory module is a gated neural integrator (a recur-
rently connected population). The activity of the population
stores a spatial map. A gating signal determines whether
the input to the module is allowed through. When no ob-
ject is nearby, the input is gated and the integrator maintains
its encoded values. When objects are observed, the input is
added to the value represented by the integrator. After seeing
m items, the memory would ideally be M = ∑

m
i=1 Bi ⊛ S(xi),

where Bi are the items observed and xi are their locations.

The output of the memory module is given to the query
module, where it is bound with the inverse of each item’s vec-
tor representation. This produces, M ⊛B−1

j = Ŝ(x j), a noisy
recall of the location at which the item was observed. The re-
sult is ‘cleaned-up’ to be a proper SSP, S(x̂ j); it is compared
to an array of SSPs (representing a grid of locations) to find
the SSP with which it has the highest similarity. This simi-
larity, along with the distance between the resulting SSP and
the item’s true location, indicates the accuracy of the map.
The output of the clean-up step is also bound with the inverse
of the vector from the PI model to give an SSP representa-
tion of the displacement between the agent’s current location
and the location of the item, as remembered by the cognitive
map, S(x̂ j)⊛ S(x(t))−1 = S(x̂ j − x(t)) (labelled ∆̂S j in the
diagram).

Figure 4: Path integration results on one-minute-long paths.
In these plots, the true path is plotted as a dashed black line
and a moving average of the path estimate produced by the
PI model is plotted as a solid blue line. The colour gradient
indicates similarity of the estimate to the true SSP.

Results
Path integration results
The PI model was tested on minute-long paths randomly
generated from frequency-bounded white noise signals. The
model was initialized with the SSP representation of the start-
ing point of the path. As input, it received the velocity along
the path (computed using finite differences) over the simula-
tion run time. The model used 151-dimensional SSPs, 75,000
spiking neurons in total for the VCO populations, and 1,000
neurons for the population representing the velocity input.

To determine the accuracy of the model, the raw spiking
data was interpreted as a position estimate. The vector rep-
resented by the VCO populations was decoded from neural
activities using a grid of SSPs covering the space. The simi-
larities between these SSPs and the vector decoded from the
PI model were computed at every time step. We use the posi-
tion represented by the SSP with which the vector was most
similar as the position estimate of the PI model. This process
of using a large set of SSPs to decipher the raw output of a
neural network is a type of clean-up method that has been pre-
viously used with SSPs (Voelker et al., 2021). Fig. 4 shows
examples (in both 2D and 3D) of the path estimate of the
model compared to the exact path: the model accurately fol-
lows the true path for the entire trajectory.

Firing patterns
The path integration models were also tested on a one-
minute-long wiggly, spiral path to record the spike trains of
neurons in the models. This path was used because it covers
space well, allowing for firing patterns to be easily discerned.
Examples of neurons in the model populations are shown in
Fig. 5. The VCO neurons have striped or band-like patterns
over space, but some only exhibit these patterns in certain
areas because they are also sensitive to head direction. An
example grid cell from the population representing the output
of the PI model is also shown.
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(a) (b) (c)

Figure 5: Sample neurons from the PI model. In (a) and (b),
the solid grey line is the true path the agent follows. The
dotted black line shows the model’s estimate of the agent’s
location. Red dots are plotted along this line at locations
where a particular neuron fired during the path integration
task. (a) An example grid cell from a population representing
the VCO output. (b) An example neuron from a VCO popula-
tion, which has a banded firing pattern. (c) Number of spikes
binned by heading direction for the VCO neuron in (b).

Mapping results
The working memory model of cognitive mapping was tested
on a 20-second-long elliptical path. Three items appeared
along the path at five-second time intervals. The values of
S(x̂ j) (the item location recalled by the model, post clean-
up operation) and ∆̂S j (the displacement vector between the
current self-position estimate and recalled item locations, see
Fig. 3), were recorded over the course of the simulation for
each of the items. The errors over the course of the simulation
are plotted in Fig. 6, where the error is a measure of dissim-
ilarity between the recalled SSPs and the true SSP vectors.
The error for each recalled location was near one (i.e., the
similarity measure was near zero) until item j was first ob-
served. The error for the recalled circle location went to zero
once it was observed at the five-second mark, and increased
slightly over time as more item-location pairs were added to
the working memory. By the end of the simulation, reason-
able position estimates are obtained. Fig. 6(a) shows these
final estimates compared to their actual locations. Addition-
ally, Fig. 6(c) plots the error in the network’s estimate of the
vector displacement between self-position at time t and each
item’s exact location. The error is low for each item once ob-
served. The result of this neural calculation can be used in
down-stream tasks like vector-based navigation.

Conclusion
We have proposed a novel model of path integration that both
captures neural cell types observed in the brain and allows for
symbol-like representations to be incorporated into cognitive
maps. We believe that coupling low-level neural models with
cognitive architectures in this manner is critical for building
sophisticated models of biological cognition. The activity of
hippocampual neurons has provided valuable insight into how
the brain represents space but does not reveal its underlying
algorithms, such as PI. By constructing a path integrator out
of spiking neurons, we have linked the activity of spatial sen-

Figure 6: The cognitive mapping results. (a) The path and
items along it (marked by coloured shapes). The ‘x’ markers
indicate recalled item locations at the end of the simulation.
(b) The error in recollection of the item locations as SSPs over
time, where the error is equal to the absolute value of the dif-
ference between one and the similarity of the recalled vector
to the true vector. The markers on the time axis show when
the items appeared along the path. (c) Error in the model’s
estimate of the vector between items and self-position.

sitive neurons to a symbolic description of PI using SSPs.
Furthermore by incorporating this PI model into a model that
uses working memory, we showed how such a system can
learn a simple map of objects in a continuous space.

However, still much work remains to cement the value of
this approach. Working memory is only accurate over short
time periods and there are limits to the amount of informa-
tion that can be stored. The model presented here could be
improved by replacing this component with a network that
learns a mapping between object symbols and SSPs. This
long-term memory would be realized with synaptic weight
changes rather than sustained neural activity. Finally, com-
bining our PI model with this more robust memory would
constitute a SLAM model. The memory would act as an en-
vironment map that’s corrects the PI network, minimizing the
drift from error accumulation.

While the model we propose here is simple, it provides
a new, robust, and scalable means of integrating discrete
symbol-like and continuous representations in a neural sub-
strate. Future work will focus on increasing the sophistica-
tion of the maps that are learned, the number of maps that are
learned, and the complexity of spatial reasoning tasks that are
performed using these representations.
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