
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Distributed Coordination and Computation Synthesis

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Farzin Houshmand

March 2023

Dissertation Committee:

Dr. Mohsen Lesani, Chairperson
Dr. Rajiv Gupta
Dr. Evangelos Christidis
Dr. Vassilis Tsotras

Copyright by
Farzin Houshmand

2023

The Dissertation of Farzin Houshmand is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am indebted to many people who have helped and encouraged me in this undertaking.

Thanks to my wife and family for being supportive every step of the way. I would like to

thank my family, my parents, Shadi and Sadegh, and my sister, Azin, for always supporting

me and giving me the courage whenever I needed it the most. I owe everything to them. Also,

I would like to thank my wife and best friend, Aida, who loved, supported, and helped me

throughout my studies. Aida, I couldn’t have done it without you! Last but not least, thanks

to my advisor Mohsen Lesani. I owe a massive debt of gratitude to him for his guidance

through the years, and I do not think I could have made it to this point without such an

exceptional mentor.

Chapter 2 was originally published as “Hamsaz: Replication Coordination Analysis

and Synthesis” in the POPL’19 and the reviewers found it as “well-poised to make a substantial

impact in the design and implementation of distributed systems going forward”. In regard

to this paper, I would like to thank my advisor for his valuable assistance and ideas and

the anonymous POPL reviewers for insightful feedback. This work was partially supported

by the National Science Foundation grant, CRII: SHF: Certified Byzantine Fault-tolerant

Systems (1657204).

Chapter 3 was originally published as “Hamband: RDMA Replicated Data Types”

in PLDI’22. This work was partially supported by the National Science Foundation grant

1942711. I would like to thank my co-first author, Javad for his contributions.

Chapter 4 was originally published as “GraFS: Declarative Graph Analytics” in

ICFP’21 and is supported by the National Science Foundation grants 1942711, 1718997, and

iv

1910878. I’d like to express my gratitude to my co-authors, Keval Vora, and my advisor.

Without your help, I wouldn’t be able to do this project.

Finally, chapter 5 was an ongoing collaboration with Google Brain at the time of my

defense. The majority of the work was done during my student research internship at Google.

I would like to especially thank Ras Bodik for the tremendous amount of help and support.

His valuable contributions made the paper stronger. Also, I’d like to thank Charith Mendis,

Amit Sabne, Karthik Krishnamurthy, Mangpo Phothilimthana, and Praveen Narayana for

their work.

v

To shadi and sadegh.

vi

ABSTRACT OF THE DISSERTATION

Distributed Coordination and Computation Synthesis

by

Farzin Houshmand

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2023

Dr. Mohsen Lesani, Chairperson

Ensuring that our increasingly complicated distributed systems are simultaneously

reliable and efficient is challenging. Rigorous formal analyses can help make the design and

implementation of complex systems both more reliable and efficient and safeguard businesses

from unwanted incidents. As a result, program synthesis has always been an area of interest

for computer scientists. Traditionally, program synthesis has only been applied to limited

domains and has not been studied at the scale of distributed systems. This thesis investigates

the application of program synthesis in the domain of distributed systems, a domain that

can benefit from program synthesis because of its complexities and nuances. We show that

the synthesized systems generally provide better performance and significantly reduce the

programmer’s efforts to write code. In particular, we apply program synthesis to replication

coordination, graph analytics, and tensor computation:

In our first work, Hamsaz, we present a novel sufficient condition for the correctness

of the replicated data types called well-coordination, which requires total order between

conflicting and causal order between dependent operations. Given the sequential specification

vii

and integrity properties of an object, Hamsaz uses solvers for the theory of sets and relations

to automatically find the conflicting and dependent pairs of operations. Furthermore, it

minimizes the required coordination between replicas and automatically synthesizes correct-

by-construction message-passing protocols that simultaneously guarantee integrity and

convergence. Our results show that well-coordinated replicated data types are significantly

more responsive than the strongly consistent baseline.

Compared to traditional data centers built with message-passing network adaptors,

modern RDMA networks significantly reduce the response time. In our second work, Hamband

presents coordination synthesis for RDMA network model. Concretely, it presents RDMA

well-coordinated replicated data types, the first hybrid replicated data types for the RDMA

network model as well as operational semantics for these data types that capture their required

coordination. The semantics divides methods of a given object into three categories, reducible,

irreducible conflict-free, and conflicting. Hamband is backed by formal proof of correctness

that the replicated objects preserve the convergence and integrity properties. The empirical

evaluation shows that Hamband outperforms the throughput of existing message-based and

strongly consistent implementations by more than 17x and 2.7x respectively.

Graph analytics elicits insights from large graphs to inform critical decisions for

business, safety, and security. However, implementation and especially optimization of graph

analytics are error-prone and time-consuming tasks. In our next work, GraFS focuses on

the synthesis of graph analytics. GraFS is a high-level declarative specification language

for graph analytics and a synthesizer that automatically generates efficient code for various

high-performance graph processing frameworks. It features novel semantics-preserving fusion

viii

transformations that optimize the specifications and reduce them to three primitives of graph

analytics, namely, reduction over paths, mapping over vertices, and reduction over vertices.

Reductions over paths are commonly calculated based on push or pull models that iteratively

apply kernel functions at the vertices. This project presents parametric conditions for the

correctness and termination of the iterative models and uses these conditions as specifications

to synthesize the kernel functions. Experimental results show that the synthesized code

matches or outperforms handwritten code, and fusion accelerates execution.

Finally, in collaboration with Google Brain, we took the first step towards synthe-

sizing tensor computation rewrites. Rewriting the computational graph of a tensor program

is an important optimization employed by machine learning frameworks and compilers. In

this work, we present TensorRight, a verified tensor graph rewrite system consisting of a

formal tensor language and its denotational semantics for proving tensor optimization rewrite

rules. TensorRight uses symbolic execution based on the semantics of tensor operations

and novel dimension definitions to generate verification conditions sufficient to prove the

equivalence of rewrites on input tensors with unbounded rank and dimension sizes. We show

that TensorRight can represent and prove a comprehensive set of the XLA rewrite rules

already existing in its rewrite engine.

ix

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Overview of Contributions . 2

1.1.1 Replication Coordination Synthesis . 2
1.1.2 Graph Analytics Computation Synthesis 4
1.1.3 Tensor Computation Optimization Synthesis 5

2 Hamsaz: Replication Coordination Analysis and Synthesis 8
2.1 Introduction . 8
2.2 Overview . 11
2.3 Well-Coordination . 23
2.4 Static Analysis . 35
2.5 Use-cases . 40
2.6 Protocols . 43

2.6.1 Non-blocking Synchronization Protocol 44
2.6.2 Blocking Synchronization Protocol . 52
2.6.3 Dependency-Tacking Protocol . 56

2.7 Implementation . 57
2.8 Evaluation . 58
2.9 Related Works . 65

3 RDMA-Enabled Well-Coordination 70
3.1 Introduction . 70
3.2 Overview . 74
3.3 Replicated Data Types . 81

3.3.1 Object Data Types . 82
3.3.2 Semantics of Well-Coordinated Replicated Data Types 83
3.3.3 RDMA Replicated Data Types . 88

3.4 Implementation . 96

x

3.5 Experimental Results . 99
3.6 Related Works . 105

4 Graph Analytics Fusion and Synthesis 108
4.1 Introduction . 108
4.2 Overview . 111
4.3 Declarative Graph Analytics . 121
4.4 Iterative Models . 125
4.5 Specification and Fusion . 130

4.5.1 Core Specification Language . 132
4.5.2 Fusion . 136
4.5.3 Extensions . 140

4.6 Mapping Specification to Iteration-Map-Reduce 143
4.6.1 The Correctness of Iterative Path-Based Reduction 144
4.6.2 Synthesis of Iterative Reduction . 151

4.7 Experimental Results . 153
4.8 Related Work . 163

5 Verified Tensor Graph Rewrite 167
5.1 Introduction . 167
5.2 Motivation . 170

5.2.1 Example Rewrite Rule . 171
5.2.2 Representation and Proof . 172

5.3 Overview . 175
5.3.1 TensorRight Rewrite Rules . 176
5.3.2 TensorRight Language Constructs 176
5.3.3 Proving Correctness . 177

5.4 TensorRight DSL & Semantics . 178
5.4.1 Core Syntax . 178
5.4.2 Denotational Semantics . 180

5.5 Verification of Rewrite Rules . 189
5.5.1 Symbolic Dimension Types . 189
5.5.2 The Verification Approach . 191
5.5.3 Verifying expressions with reduction operators 193

5.6 Implementation . 194
5.6.1 Rosette based Verification . 195

5.7 Evaluation . 198
5.7.1 Expressiveness . 199
5.7.2 TensorRight Deployment . 204
5.7.3 Generalizing XLA Rewrite Rules . 207

5.8 Related Work . 208

6 Conclusion and Future Work 211

Bibliography 214

xi

List of Figures

2.1 Courseware Use-case. 12
2.2 Incorrect Executions and Coordination Avoidance Conditions. Square and

circle around method calls in (b) , (d) and (f) are just visual aids to see the
movements. 16

2.3 (a) Non-blocking Synchronization Protocol. The symbols ↓ and ↑ show requests
to and responses from the protocols. Events to the main protocol are shown
above and events to the sub-protocols are shown below the horizontal time
line. The symbols ¬ and represent events of the first and second TOB
sub-protocols respectively. Blocks show the execution of method calls. (b)
Blocking Synchronization Protocol. The symbols ↓ and ↑ show requests to
and responses from the protocols. Diagonal arrows show message transmission. 20

2.4 Correctness of well-coordinated replicated executions 32
2.5 Static analysis to calculate the conflict and dependency relations. The object

〈Σ, I,M〉 is given. 36
2.6 Auction and Two Phase Set Use-cases. The conflict graph in (d) is obtained

from (b) and (c). 41
2.7 Non-blocking Synchronization Protocol. C and V are call and return value

respectively . 48
2.8 Multi-Total-Order Broadcast Protocol. M and C are message and class types

respectively. 50
2.9 Blocking Synchronization Protocol . 53
2.10 Relational Integrity Constrains . 59
2.11 Analysis time . 61
2.12 (a) Response time for Courseware with the Non-Blocking and SC protocols. (b)

Response time for Courseware with the Blocking protocol. (c) Response time
for BankAccount. (d) The effect of workload on response time for Courseware. 63

3.1 Bank Account. (a) The user specification, (b) The conflict graph, and (c) The
dependency graph . 75

3.2 RDMA Replicated Bank Account . 77
3.3 Basic Syntax . 82
3.4 WRDT State . 84

xii

3.5 WRDTs Semantics . 86
3.6 WRDT RDMA State . 91
3.7 RDMA WRDTs Semantics . 93
3.8 More RDMA WRDTs Semantics . 94
3.9 The effect of synchronization groups . 102
3.10 Project management use-case . 102
3.11 Effect of failure on the Counter and ORSet use-cases. 103
3.12 The effect of failure on the courseware use-case. 104

4.1 Workflow of GraFS (Graph Analytics Fusion and Synthesis) 112
4.2 Fusion of the Radius Use-case. 115
4.3 Pull Iterative Reduction. 116
4.4 Unfused and fused implementations of Radius as iteration-map-reduce rounds.119
4.5 The Correctness of the Pull Model. The path p · e denotes the extension of

path p with edge e. 121
4.6 A Subset of Use-cases in GraFS . 122
4.7 (a) Grammar for Kernel Functions (b) Example Kernel Functions. (min and

+ filter none values ⊥.) . 127
4.8 Four Iterative Reduction Methods. CPredsk(v): The predecessors of the vertex

v that changed in the iteration k . 129
4.9 Core Specification Language . 131
4.10 Denotational Semantics of the Specification Language 134
4.11 Fusion Rules . 137
4.12 More Fusion Rules . 138
4.13 Triple-let Form . 143
4.14 Correctness and Termination Conditions . 148
4.15 (a) Synthesis of the Propagation Function P . (b) Context assertions Example. 151
4.16 Edge-work Ratio: Normalized # of edges processed by the fused over the

unfused version. Missing bars correspond to programs not successfully running
on input graphs. 155

4.17 Edge-work ratio: # of edges processed by the fused over the unfused version.
Missing bars correspond to programs not successfully running on inputs. . . 156

4.18 (a): Synthesis time and the number of lines of code, (b): Scalability on Ligra.
X-axis: # of cores. Y-axis: time is logarithmic scale. H: Handwritten. S:
Synthesized. 160

5.1 Motivating examples . 173
5.2 TensorRight overview and workflow . 175
5.3 Core Specification Language . 179
5.4 Denotational semantics of the core language. 182
5.5 Illustration of the (a)expand, (b)transpose, and (c)dot operations. 184
5.6 Reduction . 186
5.7 Normalization lemmas for reduction operator. 194
5.8 Reorder transpose and slice. 196
5.9 Fold input pad into convolution. 208

xiii

List of Tables

4.1 Execution times (in seconds). H: Handwritten, S: Synthesized, R: the ratio
H/S. 155

4.2 Execution Times (in seconds). H: Handwritten, S: Synthesized, R: the ratio
H/S, ER: edge-work ratio. Missing cells are due to either missing handwritten
use-cases (PR) or not successfully running on an input 161

4.3 Metrics for Comparing Handwritten and Synthesized Code. H: Handwritten,
S: Synthesized. (PowerGraph does not require the user to write atomic
operations.) . 162

5.1 Number of supported rules per disjoint category. The numbers in parentheses
indicate rules that have been implemented and verified (and we continue to
implement more); some of the not-yet-implemented rules require defining new
operations and/or new lemmas. 205

5.2 Number of unsupported rules per each reason. There may be overlaps be-
tween reasons. The first reason is not a fundamental limitation because new
operations can be added. 205

5.3 Table shows the number of instances a TensorRightverified rule was instan-
tiated for 114 XLA regression benchmarks compiled for multiple generations
of TPUs. 206

5.4 Table shows the number of instances a TensorRightgenerated-C++ rule
was instantiated for the MLPerf suite of benchmarks compiled for multiple
generations of TPUs. 206

xiv

Chapter 1

Introduction

Program synthesis [334, 201, 441] is a critical research area in computer science

that involves generating programs automatically from high-level specifications. It is one

of the greatest, longest-standing pursuits of computer science [332]. Program synthesis is

a powerful technique that can significantly reduce the time and effort required to develop

software applications, making it an essential tool for computer scientists. At its core, program

synthesis is the problem of automatically finding the correct computer program given the

high-level specification of a problem which often involves searching within a possibly infinite

space of candidate programs. The specification allows us to pick out particular programs of

interest that we find during the search. This high-level specification can take many forms,

such as logical statements[135], input/output examples [196], and partial programs [175].

Different techniques in program synthesis include inductive synthesis [384, 260], deductive

synthesis [253, 333], syntax-guided synthesis [429, 21, 228], and counter-example guided

synthesis [385, 192, 216]. Moreover, Works such as Sketch [435] and Rosette [449] introduce

1

solver-aided languages, where one specifies a synthesis problem using a domain-specific

language, which is translated into an SMT problem.

There have been many prior works on applications of program synthesis. Tradi-

tionally, synthesis has been applied to different domains, such as databases, where it can be

used to automatically generate SQL queries [468, 483], compiler and optimization [416, 379],

synthesizing structured programs [198, 388, 196], and many more. However, regardless of

the recent advancements, there has been little to no work on utilizing program synthesis for

distributed systems. Distributed systems are known to be notoriously hard to program. In a

distributed system, the execution of a program may consist of interleavings that can affect

the correctness of the execution. The situation gets more complicated when network delays,

clock drift, and faulty nodes are considered. On the bright side, the complexity of large

systems is usually encapsulated in a small piece of code or function. This makes program

synthesis for such complex systems effective.

1.1 Overview of Contributions

In this thesis, we outline promising applications of program synthesis in the dis-

tributed domain. More concretely, we apply program synthesis to replication coordination,

graph analytics, and tensor optimization computations.

1.1.1 Replication Coordination Synthesis

Distribution and replication are an often-used mechanism to achieve fault tolerance

and scalability. Embedded control systems replicate controllers to tolerate faults, online

2

services rely on geo-replicated data stores to manage the ever-growing amount of data and

hand-held devices replicate data for offline use. There has been a known dilemma between

strong and weak consistency of replicated objects. Strongly consistent replication guarantees

the same total order of operations across all replicas and simplifies reasoning about the

correctness of such applications. However, synchronization protocols that provide strong

consistency need consensus between replicas and, hence, may not be responsive and even

available during network failures or offline use. On the other hand, weak consistency notions

can be provided with availability and responsiveness but without the same total order of

operations across replicas. Unfortunately, the absence of the total order can lead to violation

of integrity properties.

In chapter two, our goal is to automatically synthesize a correct-by-construction

replicated object that guarantees integrity and convergence and avoids unnecessary coordina-

tion. Further, our approach supports notions weaker than causal consistency; it builds upon

eventual, causal, and strong notions. We present a static analysis and protocol co-design.

The core of our approach is a novel sufficient condition called well-coordination for integrity

and convergence of replicated objects. We define notions of conflicting and dependent pairs

of methods. Well-coordination requires synchronization between conflicting and causality

between dependent operations. We statically analyze the given sequential object and its

integrity property, and infer the pairs of conflicting methods (represented as the conflict

graph) and dependent methods. We present two novel distributed protocols that provide the

well-coordination requirements. The protocols are parametric for the analysis results. We

present a non-blocking synchronization protocol based on a novel variant of the total-order-

3

broadcast protocol. The protocol parameters are decided by a reduction of the minimum

synchronization problem to the maximal clique problem on the conflict graph. We also

present a synchronization protocol that is blocking but allows some of the conflicting methods

to execute without synchronization. The protocol parameters are decided by a reduction of

the minimum synchronization problem to the vertex cover problem on the conflict graph.

The distributed system model that was considered for chapter two was the traditional

message-passing network model. In chapter three we consider the RDMA network adaptors.

RDMA offers two classes of communication primitives: two-sided and one-sided. One-sided

communication has similar semantics to the traditional shared memory model. A node

directly performs a write or read operation on the memory of another node. The access is

performed without involving the CPU of the other node. This class tends to deliver lower

response time since it bypasses the network and operating system stack and does not interrupt

the CPU of the other node Chapter three presents a novel operational semantics for RDMA

replicated data-types and leverages a single one-sided write operation that can be executed

in parallel on the replicas to execute a certain category of method calls. This results in even

faster coordination in RDMA systems. Further, it defines abstract operational semantics for

WRDTs that captures well-coordination conditions. It proves that the concrete semantics of

RDMA WRDTs refines the abstract semantics of WRDTs. Therefore, any execution of an

RDMA WRDT is well-coordinated.

1.1.2 Graph Analytics Computation Synthesis

Today, graph analytics is used in a wide range of systems and applications, from

fraud detection to recommendation engines. It is a critical tool for businesses and organiza-

4

tions looking to gain insights from complex, interconnected data. High-performance graph

processing frameworks are designed to efficiently process and analyze large-scale graphs.

These frameworks are becoming increasingly important in today’s data-driven world, where

large graphs are used to represent complex systems such as social networks, supply chains, and

financial transactions. Graph processing frameworks provide a range of features, including

distributed computing capabilities that enable parallel processing of large datasets across

multiple machines, and optimized graph algorithms for faster processing. Unfortunately,

instead of providing high-level abstraction, these frameworks offer low-level APIs for writing

custom computation kernels to analyze large-scale graphs. Furthermore, manual optimiza-

tions of graph analytics can be time-consuming and error-prone. In particular, showing

correctness and termination properties requires reasoning about the flow of values between

vertices.

In chapter four, we propose the interface of the graph processing frameworks as

the instruction set for graph analytics and introduce Grafs, a graph analytics language,

and synthesizer. The Grafs language is a high-level declarative specification language that

provides features for common graph processing idioms such as reduction over paths. We show

that declarative language can easily and concisely capture common graph analysis problems.

Given a specification, the Grafs synthesizer automatically synthesizes code for five graph

processing frameworks.

1.1.3 Tensor Computation Optimization Synthesis

The tensor rewrite engine crucial for developing efficient machine-learning ap-

plications and is a key component of any machine-learning compiler. It is responsible for

5

transforming the computation graph of the input program into an optimized form. Developing

the tensor rewrite engine by hand is a complex and error-prone process that must be carefully

verified to ensure correctness. The large number of rewrite rules and the complexity of the

operations they perform make it difficult for developers to manually verify the correctness of

the generated code. Even small errors in the implementation of the rewrite rules can lead to

incorrect results or even crashes during execution. Furthermore, as hardware and software

platforms continue to evolve, the number and complexity of the rewrite rules required to

optimize code will only increase. As a result, the development of the tensor rewrite engine

must rely on formal methods and formal verification to ensure that the generated code is

correct and performs optimally. The use of formal methods and formal verification can help

identify errors early in the development process and ensure that the tensor rewrite engine

produces efficient and reliable code for a wide range of hardware platforms.

In chapter five, we offer a framework to formally prove the correctness of tensor

rewrite rules that are present in a production quality compiler for machine-learning applica-

tions such as XLA. We presentTensorRight, a verified tensor rewrite system that is able to

both represent and prove the majority of the XLA tensor rewrite rules with unbounded tensor

ranks and dimension sizes.TensorRight provides the first formalism of XLA tensor operators

in a purely functional manner using denotational semantics. We introduce TensorRightDSL

for implementing rewrite rules. The DSL consists of a core language specification for the XLA

tensor operators and additional constructs to specify operations on dimensions, which aid in

verifying the rewrites. We use the denotational semantics of operators to generate correctness

verification conditions for the rewrite rules in a rank and dimension size polymorphic manner.

6

To achieve this, we embed the semantics of each operator as an executable specification in

TensorRightDSL. We generate a verification condition of a rule by symbolically executing

the LHS and RHS expressions and asserting their equality.

7

Chapter 2

Hamsaz: Replication Coordination

Analysis and Synthesis

2.1 Introduction

Distributed system replication [65, 273, 375, 57] is an often-used mechanism to

achieve fault-tolerance and scalability. Embedded control systems replicate controllers [327]

to tolerate faults, online services rely on geo-replicated data stores [121, 123, 134, 301, 313,

314, 440] to manage the ever-growing amount of data and hand-held devices replicate data

for off-line use. There has been a known dilemma [164, 182, 183, 9] between strong and weak

consistency of replicated objects. Strongly consistent replication (via Viewstamp [362], Paxos

[279] and Raft [364] protocols) guarantees the same total order of operations across all replicas.

Therefore, if an operation is checked to preserve the integrity properties [36] at a replica, it

will certainly preserve them in the other replicas as well. Further, replicas converge as a result

8

of the same sequence of operations. Therefore, the correctness of replicated execution simply

reduces to the correctness of sequential execution. However, synchronisation protocols that

provide strong consistency need consensus between replicas and, hence, may not be responsive

and even available during network failures or offline use. Although optimized protocols can

emerge [123, 237], the strong semantics prevents their availability for offline use. On the other

hand, weak consistency notions can be provided with availability and responsiveness but

without the same total order of operations across replicas. Many consistency weak notions

dubbed eventual consistency [459, 424, 78, 89, 148, 114] simply broadcast the operations

that may be arbitrarily reordered. Likewise, causal consistency [277, 18, 65] preserves only

the causal order between operations. Unfortunately, the absence of the total order can lead

to violation of integrity properties.

However, weak notions can be enough for certain operations to preserve the integrity

properties. For example, consider a bank account object with the integrity property that its

balance is non-negative. The deposit operation can be executed without any coordination

as it cannot make the balance negative. However, a withdraw operation has to synchronize

with other withdraw operations to avoid overdrafts. In addition, consistent execution of a

withdraw operation may be dependent on the preceding deposit operations in the originating

replica. Therefore, the withdraw operation needs both a total order with respect to other

withdraw operations and a causal order with respect to preceding deposit operations. We

observe that operations have distinct coordination requirements with respect to each other.

It is unintuitive for end-users to specify the right consistency requirement for each operation.

Requesting too much may degrade performance, and requesting too little may compromise

9

correctness. Thus, users either resort to the blanket strong consistency for all operations or

ignore the problem and use a default notion of weak consistency.

Previous work recognized the problem, proposed hybrid models and took significant

steps towards helping the user with consistency choices [446, 299, 300, 45, 431, 189] to

avoid coordination [35, 409]. They proposed proof techniques to verify the sufficiency of

user-specified consistency choices [189], or require user annotations to identify consistency

choices and do not guarantee convergence [45]. Further, many approaches [189, 45, 299]

are crucially dependent on causal consistency as the weakest possible notion while others

have established the scalability limitations of causal consistency [38]. We will further survey

related works in § 2.9. Given a sequential object with its integrity properties, our goal

is to automatically synthesize a correct-by-construction replicated object that guarantees

integrity and convergence and avoids unnecessary coordination: synchronization and tracking

dependency between operations. Further, our approach supports notions weaker than causal

consistency; it builds upon eventual, causal and strong notions.

We present a static analysis and protocol co-design. The core of our approach is a

novel sufficient condition called well-coordination for integrity and convergence of replicated

objects. We define notions of conflicting and dependent pairs of methods. Well-coordination

requires synchronization between conflicting and causality between dependent operations.

We statically analyze the given sequential object and its integrity property, and infer the

pairs of conflicting methods (represented as the conflict graph) and dependent methods. We

present two novel distributed protocols that provide the well-coordination requirements. The

protocols are parametric for the analysis results. We present a non-blocking synchronization

10

protocol based on a novel variant of the total-order-broadcast protocol. The protocol

parameters are decided by a reduction of the minimum synchronization problem to the

maximal clique problem on the conflict graph. We also present a synchronization protocol

that is blocking but allows some of the conflicting methods to execute without synchronization.

The protocol parameters are decided by a reduction of the minimum synchronization problem

to the vertex cover problem on the conflict graph.

We present a tool called Hamsaz that given an object definition, uses off-the-shelf

SMT solvers to decide the pairs of conflicting and dependent methods. It then uses the

analysis results to avoid coordination and instantiate the protocols to synthesize replicated

objects. We successfully synthesized replicated objects for a suite of use-cases that we

have adopted from the previous works including CRDTs, bank account, auction, courseware,

payroll and tournament. Experiments show that compared to the strongly consistent baseline,

the synthesized replicated objects are significantly more responsive.

In the rest of the paper, we first present an overview in § 5.3. We define the

well-coordination condition and prove its sufficiency for correctness in § 2.3. We present the

static analysis and apply it to use-cases in § 2.4 and § 2.5. We then, present the protocols in

§ 2.6. The implementation and evaluation are presented in § 4.7 and 2.8 before we conclude

with related works.

2.2 Overview

In this section, we illustrate the coordination analysis and synthesis with examples.

11

Class Courseware

let Student := Set 〈sid : SId〉 in

let Course := Set 〈cid : CId〉 in

let Enrolment :=

Set 〈esid : SId, ecid : CId〉 in

Σ := Student× Course× Enrolment

I := λ 〈ss, cs, es〉.

refIntegrity(es, esid, ss, sid) ∧

refIntegrity(es, ecid, cs, cid)

register(s) := λ 〈ss, cs, es〉.

〈T, 〈ss ∪ {s}, cs, es〉, ⊥〉

addCourse(c) := λ 〈ss, cs, es〉.

〈T, 〈ss, cs ∪ {c}, es〉, ⊥〉

enroll(s, c) := λ 〈ss, cs, es〉.

〈T, 〈ss, cs, es ∪ {(s, c)}〉, ⊥〉

deleteCourse(c) := λ 〈ss, cs, es〉.

〈T, 〈ss, cs \ {c}, es〉, ⊥〉

query := λ σ. 〈T, σ, σ〉

(a) User Specification

r a e d q

r X X X X X

a X X X × X

e X X X X X

d X × X X X

q X X X X X

(b) S-commute

r a e d q

r X X X X X

a X X X X X

e X X X × X

d X X × X X

q X X X X X

(c) P-concur

r a e d q

r X X X X X

a X X X × X

e X X X × X

d X × × X X

q X X X X X

(d) Concur

(e) Conflict Graph G./

r a e d q

r X X X X X

a X X X X X

e × × X X X

d X X X X X

q X X X X X

(f) Independent

(g) Dependency Graph

Figure 2.1: Courseware Use-case.

12

Object Replication. We define an object as a record 〈Σ, I,M〉 that includes the state

type Σ, an invariant I that is a predicate on the state, and a set of methodsM. Fig. 2.1.(a)

represents the courseware object that we have adopted from [189]. The state type Σ is

the tuple of three relations for students ss, courses cs and enrolments es of students in

courses. A relation is a set of records of fields. The student and course relations ss and

cs are simply a set of records of one field, student identifiers sid and course identifiers cid

respectively. The enrolment relation es is a set of records of two fields: the student identifier

esid and the course identifier ecid, that are foreign keys from the other two relations. The

desired invariant I for the courseware object is the referential integrity of the two foreign

keys of the enrolment relation es. Every student identifier esid in the enrolment relation es

must refer to an existing student identifier sid in the student relation ss. The condition for

course identifiers is similar. We represent referential integrity properties using the refIntegrity

predicate that is refIntegrity(R, f,R′, f ′) := ∀r. r ∈ R → ∃r′. r′ ∈ R′ ∧ f(r) = f ′(r′).

For example, refIntegrity(es, esid, ss, sid) states that for every record r in the relation es,

there exists a record r′ in the relation ss such that esid of r is equal to sid of r′ that is

esid(r) = sid(r′) where the field names esid and sid are used as functions on the corresponding

records. Methods represent transactions on the object state. A method is a function m from

the method parameter(s) and the pre-state σ to a record of 〈guard, update, retv〉, where guard

is the boolean precondition of the method, update is the post-state, and retv is the return

value. The courseware object has five methods: register to register a student, addCourse to

add a course, enroll to enroll a student in a course, deleteCourse to delete a course and query

to obtain the current state of the object. The guard of a method captures the semantic

13

preconditions of the method and not the conditions that preserve the invariant. (We present

the conditions that preserve the invariant in § 2.3.) For simplicity, the guards in this example

are all T. (A guard for the deleteCourse method could be that the input course should exist

in the course relation to be deleted.) All but the query method return no value ⊥. A method

call c is the application of a method to its arguments i.e. a function from the pre-state to a

record of 〈guard, update, retv〉.

Given the definition of a sequential object, the goal is to automatically synthesize

a replicated object. The state of the object is replicated across replicas. Clients can call

methods at every replica and the calls are communicated between replicas. The replicated

object is expected to satisfy both consistency and convergence. Consistency is the safety

property that every method call is executed only when the guard of the method and the

invariant are satisfied. Convergence is the safety property that when no call is in transit, all

replicas converge to the same state. We want to perform coordination only when necessary

to preserve these properties. We say that a method call c is permissible in a state σ, written

as P(σ, c), if the guard of c is satisfied in σ and c results in a post-state σ′ that satisfies

the invariant I that is I(σ′). The post-state of a method call is the pre-state of the next

in a replica. The initial state is assumed to satisfy the invariant. Therefore, if every call is

permissible in its pre-state, then every call is consistent. To execute a method call, we check

that it is permissible in its originating replica. Thus, we say that each method call is locally

permissible. Otherwise, the call is aborted. Still, if the call is simply broadcast, it is not

necessarily permissible when it arrives at other replicas. Some calls need coordination. We

14

now present representative incorrect executions to showcase the conditions that necessitate

coordination.

Well-coordination. Method calls such as adding a course and enrolling a student

result in the same state if their order of execution is swapped. However, the resulting state

of some pairs of methods calls is dependent on their execution order. Fig. 2.2.(a) shows

an execution where a course c is added and deleted concurrently at two replicas. The two

method calls are executed without coordination and are broadcast to other replicas and

executed on arrival. Thus, the two replicas execute the two method calls in two different

orders and their final states diverge. Reordering the execution of adding and removing a

value from a set does not result in the same state. (As we will see in § 2.5, particular CRDT

sets can converge even when their operations reorder [424].) As Fig. 2.2.(b) shows, we say

that two method calls S-commute (state-commute) written as c1 �S c2, iff starting from

the same pre-state, executing them in either of the two orders results in the same post-state.

Otherwise, we say that they S-conflict (state-conflict) and need synchronization; they should

be executed one at a time so that they have the same order across replicas.

A method call such as registering a student always preserves the invariant. It adds

a student and cannot result in a missing student or course in the enrolment relation. Thus,

if it is broadcast and executed on a replica whose state satisfies the invariant, it preserves

the invariant. We call such method calls invariant-sufficient. However, not all method calls

are invariant-sufficient. Fig. 2.2.(c) shows an execution where the enrolment of a student

s in a course c is executed in the first replica. This method call preserves the invariant as

both the student s and the course c belong to the corresponding relations. A method call

15

(a) S-conflict

(c) P-conflict

(e) Dependence

(b) c1 �S c2 (d) c1 →P c2 (f) c2 ←P c1

State-Commutativity P-R-Commutativity P-L-Commutativity

Figure 2.2: Incorrect Executions and Coordination Avoidance Conditions. Square and circle

around method calls in (b) , (d) and (f) are just visual aids to see the movements.

16

that deletes the course c is executed concurrently in the second replica. The enroll call is

broadcast and received at the second replica after the delete call. It does not preserve the

invariant at the second replica as it is enrolling in a missing course. These two method calls

should synchronize to preserve the invariant. Nonetheless, some pairs of method calls such

as enrolling in a course and adding the course do not need synchronization. We say that the

call c1 P-R-commutes (permissible-right-commutes) with the call c2 written as c1 →P c2, iff

c1 stays permissible if it is moved right after c2. More precisely, as Fig. 2.2.(d) shows, for

every state σ, if c1 is permissible in σ, then it is permissible after applying c2 to σ as well.

We say that a method call c1 P-concurs (permissible-concurs) with another call c2 iff either

c1 is invariant-sufficient or c1 P-R-commutes with c2. Otherwise, we say that c1 P-conflicts

(permissible-conflict) with c2 and they need synchronization. Enrolling in a course P-concurs

with adding the course; however, enrolling in a course P-conflicts with deleting the course,

therefore; they should synchronize.

We say that two method calls concur iff they both S-commute and P-concur with

each other. Otherwise, we say they conflict and need synchronization. We statically analyze

methods of the object and determine whether they satisfy these properties. Fig. 2.1.(b)

and (c) show the result of the analysis for S-commute and P-concur on the courseware

use-case and based on them, Fig. 2.1.(d) shows the concur relation. The conflict relation is

the complement of the concur relation. Fig. 2.1.(e) shows the conflict graph where edges

connect pairs of conflicting methods. In our running example, deleting a course conflicts

with adding a course and enrolment.

17

As explained above, invariant-sufficient method calls always preserve the invariant.

However, there are calls whose preservation of the invariant is dependent on the calls that

have executed before them at that replica. Fig. 2.2.(e) shows an execution where a student is

registered and subsequently enrolled in a course. The method calls are broadcast, reordered

during transmission and executed in the opposite order in the second replica. The invariant

holds after the enrolment in the first replica as it enrolls an existing student in a course. The

student has been just registered. However, the enrolment violates the invariant in the second

replica. As the student is enrolled before she is registered, a missing student is enrolled which

violates the referential integrity of the enrolment relation. Nonetheless, an enrolment is

independent of other enrolments. We say that a method call c2 P-L-commutes (permissible-

left-commutes) with a method call c1 written as c2 ←P c1, iff c2 remains permissible if

it is moved left before c1. More precisely, as Fig. 2.2.(f) shows, for every state σ, if c2

is permissible in the state resulted from executing c1 on σ, then c2 is permissible in σ as

well. We say that a method call c2 is independent of c1 iff c2 is either invariant-sufficient or

P-L-commutes with c1. The dependencies of a method call is the set of method calls that it is

dependent on. If c2 is dependent on c1 and c1 is executed before c2 in the originating replica

of c2, then c2 should be applied to other replicas only if c1 is already applied. In Fig. 2.2.(e),

the enrolment is not invariant-sufficient and does not P-L-commute with the registration

of the student; thus, the enrolment is dependent on the registration. The enrolment in

the second replica should be postponed to after the student is registered. Nonetheless, an

enrolment P-L-commutes with other enrolments. Fig. 2.1.(f) shows the result of static

analysis for the independence relation on the courseware use-case. The dependence relation is

18

the complement of the independence relation. The dependence graph is shown in Fig. 2.1.(g).

Enrolment is dependent on registration and adding a course.

We say that an execution is conflict-synchronizing if the same order is enforced

for conflicting method calls across all replicas. We say that an execution is dependency-

preserving if every method call is executed only after its dependencies from its originating

replica are already executed. We define well-coordinated executions as locally permissible,

conflict-synchronizing and dependency-preserving executions. In § 2.3, we formally define

well-coordination and prove that it is sufficient for consistency and convergence of replicas.

Protocols. We now outline our protocols that provide well-coordination and are

used to synthesize replicated objects. For the given object, a static analysis finds the conflict

and dependency relations that we saw above. The analysis results are used to instantiate

the protocols. In this overview, we assume that methods are independent and focus on

synchronization of conflicting methods. We outline two protocols. The first protocol is

non-blocking and makes progress even if some replicas crash. The second protocol is blocking

but can execute calls on one method of a conflicting pair without synchronization.

Non-Blocking Protocol. The high-level idea is to find sets of conflicting calls and

synchronize calls in each set. We remember that a clique is a subset of the vertices of a graph

such that any of its distinct pair of vertices are adjacent. We find the maximal cliques of the

conflict graph and synchronize the methods of each maximal clique with each other. For

example, in the conflict graph of the courseware use-case shown in Fig. 2.1.(e), the maximal

cliques are cl1 = {d, a} and cl2 = {d, e} where d is deletion, a is addition and e is enrolment.

Deletion d and addition a and also deletion d and enrolment e should synchronize with each

19

(a)

(b)

Figure 2.3: (a) Non-blocking Synchronization Protocol. The symbols ↓ and ↑ show requests

to and responses from the protocols. Events to the main protocol are shown above and

events to the sub-protocols are shown below the horizontal time line. The symbols ¬ and

represent events of the first and second TOB sub-protocols respectively. Blocks show the

execution of method calls. (b) Blocking Synchronization Protocol. The symbols ↓ and ↑ show

requests to and responses from the protocols. Diagonal arrows show message transmission.

20

other. Deletion d is a member of two cliques and should synchronize in both. We use a

variant of the classical total-order broadcast (TOB) protocol to deliver method calls in the

same order at all replicas. We use a TOB instance for each maximal clique. In our example,

we use the TOB instances tob1 and tob2 for the cliques cl1 and cl2. A call on a method such

as d that is a member of multiple maximal cliques should be totally ordered with respect

to methods of each of those cliques. The call is broadcast to each TOB instance and is

executed only when it is ordered and delivered by all of them. The non-blocking property of

the protocol is derived from the termination property of TOB when a majority of nodes are

correct.

As an example, Fig. 2.3.(a) shows an execution of the protocol on the courseware

use-case. Three methods are called at three replicas: adding a a course c, enrolling e a

student s in the course c and deleting d the course c. The call a is broadcast using tob1, and

the call e is broadcast using tob2. The call d has to be broadcast to both tob1 and tob2. It is

first broadcast to tob1. The sub-protocol tob1 decides to order and deliver a before d. Thus,

a is delivered first and executed at the three replicas. The sub-protocol tob2 independently

delivers e. It is notable that the execution order of e and a that belong to distinct cliques

and are broadcast to distinct TOB instances are different in the first and the second replica.

Once d is delivered by tob1, it is broadcast to tob2. It is finally delivered by tob2 as well and

executed. Thus, the call d is finally executed after both a and e at all replicas.

In the above execution, when the call d is delivered by tob1, it is implicitly assigned

a particular place in the total order of calls in the first clique. However, it cannot execute

on delivery from tob1 and should be broadcast by tob2. To keep the place of d, other calls

21

delivered by tob1 should wait for d to finish its synchronization in the second clique. Therefore,

we use a queue per TOB. Method calls that are delivered by a TOB are enqueued to its

corresponding queue. A call should wait and can be executed only when it appears at the

head of the queues of all TOBs that it is broadcast to. Unfortunately naive implementation

of waiting can potentially make mutual waiting and deadlocks. For example, two calls on d

can be ordered differently by tob1 and tob2 and wait for each other in a deadlock. In § 2.6.1,

we revisit this problem and present and use a novel variant of TOB called multi-total-order

broadcast (MTOB) that prevents deadlocks.

Blocking Protocol. If two method calls conflict, the previous protocol requires both

to go through synchronization. We now present an overview of a protocol that pushes

synchronization to only one of the two. Consider that there are two conflicting methods m

and m′ and we want to let calls on m execute without synchronization. The idea is that calls

on m′ reach out to other replicas, block the execution of calls on m (so that new calls on m

are not accepted) and then replicas exchange updates on preceding calls on m. Once the

replicas apply the updates, they have the same set of executed calls on m. Then, the call on

m′ is executed at all replicas and calls on m are unblocked.

We remember that a minimum vertex cover of a graph is a smallest subset of the

vertices such that every edge has at least one endpoint in the cover. To avoid synchronization,

we find a minimum vertex cover of the conflict graph and synchronize only when methods in

the cover are called. For example, in the conflict graph of the courseware use-case, shown in

Fig. 2.1.(e), the minimum vertex cover is the singleton set of the delete method {d}. Only

deletion d performs synchronization and addition a and enrolment e can execute without

22

synchronization. Further, methods can be assigned weights inversely proportional to their

call frequency and weighted minimum vertex cover can optimize the average responsiveness

of the replicated object.

As an example, Fig. 2.3.(b) shows an execution of the protocol on the courseware

use-case. The first and the third replicas call synchronization-free methods a and e. They are

simply broadcast and executed on arrival. In this execution, the delivery of these messages

are delayed. The second replica calls method d. The call d is broadcast and on its delivery,

all replicas block the conflicting methods a and e. To update other replicas, each replica

subsequently broadcasts the set of conflicting method calls that it has executed. The first

and third replicas broadcast their calls on a and e respectively. These updates are applied

on arrival. After all the updates are applied, every replica has executed the same set of calls

that conflict with d although possibly in different orders. Then, the call on d is executed

and the conflicting methods are unblocked. This protocol makes replicas wait for each other;

thus, crash of a replica can prevent progress of others. Following fundamental impossibility

results [164, 182], this protocol has a trade-off between availability and consistency. We will

revisit this trade-off in § 2.6.2.

2.3 Well-Coordination

In this section, we define the well-coordination condition and prove that it is sufficient

for state integrity and convergence. We first define replicated executions and their correctness.

Then, we present the well-coordination conditions and prove that well-coordinated executions

are correct.

23

An object is a record 〈Σ, I,M〉 that includes a state type Σ, an invariant I on the

state, and a set of methods M. A method is a function m from the parameters and the

pre-state to a record of 〈guard, update, retv〉, where guard is a boolean expression that defines

when the method can be called, and update and retv are expressions for the post-state and

the return value. We use guard, update and retv as functions that extract elements of the

record. A method call c is a method applied to its argument i.e. a function from the current

state to a record of 〈guard, update, retv〉.

Execution. We first define the context c for a replicated execution. The state of

each replica is initialized to the same state σ0 that satisfies the invariant I. The user can

request a call on a method at every replica that is called the originating replica of the call.

The call is then propagated from the originating replica and executed at other replicas. We

uniquely identify requests by identifiers.

Definition 1 (Execution Context) An execution context c is the record 〈σ0c,Rc, callc, origc〉

where σ0c is an initial state that satisfies the invariant i.e. I(σ0c), Rc is a set of request

identifiers, callc is a function from Rc to method calls, and origc is a function from Rc to

replicas N .

We model an execution at a replica as a permutation of a set of request identifiers.

Definition 2 (Execution) In a context c, an execution x of a set of requests R ⊆ Rc is a

bijective from positions [0..|R| − 1] to R.

We denote the range of x as R(x). An execution x of R defines the total order

≺x on R. A request r precedes another request r′ in an execution x written as r ≺x r
′ iff

x−1(r) < x−1(r′).

24

In a replicated execution, calls are propagated and eventually executed at every

replica. Convergence is a condition on the state of the replicas after all calls are applied at all

replicas. Therefore, a replicated execution is a mapping from replicas to permutations of the

same set of calls. For example, Fig. 2.4.(a) shows a replicated execution where nine requests

are executed. Propagation of calls from the originating replicas to other replicas creates a

visibility relation between calls across replicas. For example, in Fig. 2.4.(a), arrows show the

visibility relation. Consequently, the happens-before relation is the transitive closure of the

visibility relation and the execution order of each replica. The happens-before relation is

acyclic. In Fig. 2.4.(a), as the direction of all arrows is forward, the happens-before relation

is acyclic.

Definition 3 (Replicated Execution) In a context c, a replicated execution xs is a func-

tion from replicas N to executions of Rc such that (1) let the execution order ≺xs on N × Rc

be defined as: for every replica n and pair of requests r and r′, (n, r) ≺xs (n, r′) iff r ≺xs(n) r
′,

(2) let the visibility relation xs on N × Rc be defined as: for every request r, for every

replica n, (origc(r), r) xs (n, r) iff n 6= origc(r), (3) let the happens-before relation hbxs be

(≺xs ∪ xs)
∗ then, hbxs is acyclic.

The post-state of each call at a replica is the result of applying the call to its

pre-state. Thus, a sequence of calls result in a sequence of states.

Definition 4 (State) In a context c, the state function s of an execution x is a function

from positions [0..|R(x)|] to states Σ such that s(0) = σ0c and for every 0 ≤ i < |R(x)|,

s(i+ 1) = update(callc(x(i)))(s(i)). The state function is lifted to replicated executions. The

25

state function ss of a replicated execution xs is a function from replicas n in N to the state

function of the execution xs(n).

Correctness. We now define correctness as convergence and integrity.

A replicated execution is convergent if it leads to the same final state for all replicas.

Definition 5 (Convergent) A replicated execution xs of a context c is convergent iff for

every pair of replicas n and n′, ss(n)(|Rc|) = ss(n′)(|Rc|) where ss is the state function of xs.

In the definition of methods of an object, the user relies on the invariant in the

pre-state. Further, methods have explicit guards that define the subset of states that they

are applicable to. We say that a method call is consistent at a state if the invariant and the

guard of the method hold in that state. Method calls should be executed only on states that

they are consistent in.

Definition 6 (Consistent Call) A method call c is consistent in a state σ, written as

cons(σ, c), iff guard(c)(σ) and I(σ).

The consistency condition is simply lifted to executions and replicated executions.

Definition 7 (Consistent Execution) In a context c, a request r is consistent in an

execution x written as cons(c, x, r) iff cons(s(i), callc(r)) where s is the state function of x,

and i is x−1(r). In a context c, an execution x is consistent written as cons(c, x) iff every

request r in R(x) is consistent in x. A replicated execution xs of a context c is consistent

written as cons(c, xs) iff for every replica n, the execution xs(n) is consistent.

Consistency of a replicated execution requires invariant preservation (that is state

integrity) at all replicas. We define correctness as both consistency and convergence.

26

Definition 8 (Correct) A replicated execution is correct iff it is consistent and convergent.

Well-coordination. Now, we define the well-coordination conditions. We say that

a call is permissible in a state iff its guard holds in that state and the invariant holds after

the call is applied.

Definition 9 (Permissible Call) A method call c is permissible in a state σ, written as

P(σ, c), iff guard(c)(σ) and I(update(c)(σ)).

Note that in contrast to the definition of consistency above that requires the

invariant to hold in the pre-state, permissibility requires it to hold in the post-state. By

induction, permissibility leads to consistency. The initial state satisfies the invariant; thus,

for every call, if all the previous calls have maintained the invariant, the call is applied to a

state that satisfies the invariant as well. Permissibility implies that the call preserves the

invariant. Similar to consistency, permissibility is simply lifted to executions and replicated

executions.

Well-coordination requires each call to be permissible in its originating replica. If a

call is requested at a replica but is not permissible in its current state, the call should be

aborted (and maybe retried later).

Definition 10 (Locally permissible) A replicated execution xs of a context c is locally

permissible iff every request r is permissible in the execution of its originating replica origc(r).

Although permissibility is directly checked only locally at the originating replicas,

we will show that well-coordination conditions ensure the global permissibility of calls at

every replica.

27

As we saw in Fig. 2.2.(b), we say that two method calls S-commute (state-commute)

if starting from every pre-state, the post-state is the same if the calls are reordered.

Definition 11 (State-Commutativity and State-Conflict) Two method calls c1 and

c2 S-commute, written as c1 �S c2 iff for every state σ, update(c2)(update(c1)(σ)) =

update(c1)(update(c2)(σ)). Otherwise, they S-conflict, written as c1 ./S c2.

S-conflicting calls need synchronization since we saw in Fig. 2.2.(a) that they cause

state divergence.

We note that S-commutativity and the following properties are defined on (dynamic)

method calls; however, they are simply lifted to (static) methods. For instance, we say that

two methods S-commute iff all calls on the two S-commute. In § 2.4, we consider these

properties on methods.

There are calls such as deposit on a bank account that are always permissible as far as

they are applied to a state that satisfies the invariant. We call these calls invariant-sufficient.

Definition 12 (Invariant-Sufficient) A call c is invariant-sufficient iff for every state σ

if I(σ) then P(σ, c).

Every call is checked to be permissible in its originating replica. However, as we

saw in Fig. 2.2.(c), if a call is simply broadcast, when it arrives at other replicas, other calls

may have been executed at the destination replicas that were not executed at the originating

replica. These extra calls may make the arrived call impermissible. As we saw in Fig. 2.2.(d),

we say that a method call P-R-commutes (permissible-right-commutes) another if starting

from any state where the former is permissible, moving it right after the latter does not

violate permissibility.

28

Definition 13 (Permissible-Right-Commutativity) The call c1 P-R-commutes with

the call c2 written as c1 →P c2 iff for every state σ, if P(σ, c1) then P(update(c2)(σ), c1).

If a call is invariant-sufficient or P-R-commutes another call, we say that the

former P-concurs (permissible-concurs) with the latter. Otherwise, we say that the former

P-conflicts (permissible-conflicts) with the latter.

Definition 14 (Permissible-Concur and Permissible-Conflict) A call c1 P-concurs

with a call c2 iff c1 is invariant-sufficient or c1 →P c2. Otherwise, c1 P-conflicts with c2.

A pair of calls can avoid synchronization only if they both S-commute and P-concur

with respect to each other.

Definition 15 (Concur and Conflict) A pair of calls c1 and c2 concur iff they state-

commute and permissible-concur with each other. Otherwise, they conflict written as c1 ./ c2.

Concur and conflict relations are symmetric. The conflict relation on methods can

be represented as the conflict graph G./: an undirected graph where the vertices are the set

of methods and the edges are the pairs of conflicting methods. A replicated execution is

conflict-synchronizing if every pair of conflicting calls have the same order across replicas.

Definition 16 (Conflict-synchronizing) A replicated execution xs of a context c is conflict-

synchronizing iff for every pair of requests r and r′ in rcc such that callc(r) ./ callc(r′), for

every pair of replicas n and n′, if r ≺xs(n) r
′ then r ≺xs(n′) r

′.

Similar to conflict-synchronizing, state-conflict-synchronizing and permissible-conflict-

synchronizing are similarly defined with respect to state-conflict and permissible-conflict.

29

As we saw in Fig. 2.2.(e), when a call arrives at other replicas, other calls that were

executed at the originating replica may have not arrived and executed at destination replicas.

However, permissibility of the call may be dependent on the missing calls. As we saw in

Fig. 2.2.(f), we say that a method call P-L-commutes (permissible-left-commutes) with

another if moving the former left before the latter does not render the former impermissible.

Definition 17 (Permissible-Left-Commutative) A call c2 P-L-commutes a call c1, writ-

ten as c2 ←P c1 iff for every state σ, if P(update(c1)(σ), c2) then P(σ, c2).

A call can avoid tracking dependencies to another call if the former is invariant-

sufficient or P-L-commutes with the latter.

Definition 18 (Independent and Dependent) A call c2 is independent of c1, written

as c2 ⊥⊥ c1, iff either c2 is invariant-sufficient or c2 ←P c1. Otherwise, c2 is dependent on

c1, written as c2 6⊥⊥ c1.

The dependency relation between methods can be represented as a directed graph

that we call the dependency graph. A replicated execution is dependency-preserving if for

every call, its preceding dependencies in its originating replica precede it in the other replicas

as well.

Definition 19 (Dependency-Preserving) A replicated execution xs of a context c is

dependency-preserving iff for every pair of requests r and r′ in Rc, such that callc(r′) 6⊥⊥

callc(r), if r ≺xs(origc(r′)) r
′, then for every replica n, r ≺xs(n) r

′.

30

We note that in Theorem 16, call orders in any replica necessitates the same orders

in other replicas. In contrast, in Theorem 19, only orders between a call and its preceding

calls in its originating replica necessitates the same order in other replicas.

A replicated execution is well-coordinated if the permissibility of calls are checked at

the originating replicas, conflicting calls are synchronized and the dependencies are preserved.

Well-coordination is a sufficient condition for the correctness of replicated executions.

Definition 20 (Well-coordination) A replicated execution is well-coordinated iff it is

locally permissible, conflict-synchronizing, and dependency-preserving.

Theorem 21 () Every well-coordinated replicated execution is correct.

The proof follows from the definition of well-coordination and correct (Theorem 20

and Theorem 8) and the following two lemmas. We present the high-level ideas.

Lemma 22 () Every S-conflict-synchronizing replicated execution is convergent.

Consider two executions x and x′ from the replicated execution (with the same set

of requests possibly in different orders). Assume that x and x′ are S-conflict-synchronizing

with respect to each other. We prove that these two executions result in the same post-state.

By induction, x′ can be incrementally converted to x from left to right without changing its

final post-state. Assume that the requests until location i are the same in x and x′. Consider

the request r at position i in x. If r appears later at position j in x′ where j > i, then

we show that r can be moved left in x′ to position i. The requests between i and j in n′

precede r in x′ but succeed r in x. Therefore, by the S-conflict-synchronization condition, r

31

(a) (b)

Figure 2.4: Correctness of well-coordinated replicated executions

S-commutes with requests between i and j in x′. Thus, r can be moved left to location i in

x′ without any change to the post-state.

Lemma 23 () Every well-coordinated replicated execution is consistent.

We illustrate the crucial part of the proof by a figure. Let xs be a coordinated

replicated execution. To prove consistency of xs, we need to prove consistency of every

request at the execution of every replica. We will prove that every request at every replica

is permissible. This implies that (1) the guard of every request is satisfied. and (2) the

post-state of every request satisfies the invariant. Based on [2] and the fact that the initial

state is defined to satisfy the invariant, we have that (3) the pre-state of every request satisfies

the invariant. From the facts [1] and [3] above, we have that xs is consistent. We now show

the permissibility of every request r∗. The proof is by induction on a linear extension of hbxs.

Let the request r∗ at the replica n be the current request. If n is the originating replica of

r∗, then r∗ is trivially permissible by the locally permissible condition; it states that every

replica only originates permissible requests. Otherwise, let n′ be the originating replica of

r∗. If r∗ is invariant-sufficient, we only need to show that the pre-state of r∗ in n satisfies

the invariant. The pre-state of r∗ is either the initial state that by definition satisfies the

32

invariant or is the post-state of the preceding request in n. By the induction hypothesis, the

preceding request is permissible that implies that its post-state satisfies the invariant.

Now we consider that r∗ is not invariant-sufficient. We illustrate the proof of

permissibility of r∗ in Fig. 2.4. Let σ be the pre-state of r∗ in xs(n). We want to show that

r∗ is permissible in σ. Let σ′ be the pre-state of r∗ in xs(n′) (the execution of the originating

replica). Let R be the requests that precede r∗ in both xs(n) and xs(n′). In Fig. 2.4.(a),

R is the set of shaded requests {r1, r2, r3, r4}. Let R′ be the requests that precede r∗ in

xs(n′) but do not precede r∗ in xs(n). In Fig. 2.4.(a), R′ is {r′1, r′2}. Consider a request r

in R and a request r′ in R′ such that r′ precedes r in xs(n′). In Fig. 2.4.(a), r can be r4

and r′ can be r′2. The request r′ precedes r in xs(n′) but succeeds it in xs(n). Therefore, by

the S-conflict-synchronization condition, r′ and r S-commute. In Fig. 2.4.(a), we commute

r′2 with r4. Then, we commute r′1 with r3 and r4. Thus, by induction, each request in R′

from the rightmost to the leftmost in xs(n′) can be moved right to form a block of requests

before r∗ in xs(n′) without changing the pre-state σ′ of r∗. Let x′ denote the result of the

commute. Fig. 2.4.(b) shows x′ where the pre-state of r∗ is still σ′. In Fig. 2.4.(a), the requests

R′ precede r∗ in xs(n′) but succeed it in xs(n). Therefore, by the dependency-preserving

condition, r∗ is independent of the requests in R′. In Fig. 2.4.(a), r∗ is independent of r′1

and r′2. By the locally permissible condition and that n′ is the originating replica of r∗, the

request r∗ is permissible at its pre-state σ′ in xs(n′). By induction from right to left in x′,

using the independence condition, r∗ is permissible at the pre-state of each request r′ in R′.

Thus, r∗ is permissible at the pre-state of R′ that is the post-state of R in x′. In Fig. 2.4.(b),

r∗ is permissible at the states σ′1 and σ′2.

33

The argument above for moving requests in xs(n′) can be applied to xs(n) as well.

Let R′′ be the requests that precede r∗ in xs(n) but do not precede it in xs(n′). In Fig. 2.4.(a),

R′′ is {r′′1 , r′′2}. S-commutativity allows moving R′′ right in xs(n). The requests R′′ can be

moved to form a block immediately before r∗ without changing the pre-state of r∗. Let

x denote the result of the commute. Fig. 2.4.(b) shows x. The requests {r′′1 , r′′2} moved

right immediately before r∗. The set of requests R appear on the left side of both x and

x′ although possibly in different orders. By the argument presented above for Theorem 22

using S-commutativity, it is proved that the post-state of the set of requests R in x and x′

is the same. We showed above that r∗ is permissible in the post-state of R in x′. Thus, r∗

is permissible in the post-state of R in x as well. In other words, r∗ is permissible at the

pre-state of the set of requests R′′ in x. In Fig. 2.4.(b), r∗ is permissible in σ′2, the post-state

of r4 in x.

The requests R′′ precede r∗ in xs(n) but succeed it in xs(n′). Therefore, by the P-

conflict-synchronization condition, each request in R′′ P-R-commutes with r∗. In Fig. 2.4.(a),

r∗ P-R-commute with r′′1 and r′′2 . We proved above that the request r∗ is permissible at the

pre-state of R′′ in x. By induction from left to right in x, using the P-R-commutativity, r∗

is permissible at the post-state of each request r′′ in R′′. Therefore, r∗ is permissible at its

pre-state σ in x. In Fig. 2.4.(b), r∗ is permissible at the states σ1 and σ. Therefore, r∗ is

permissible at its pre-state in xs(n).

We note that conflict-synchronization is stronger than dependency-preservation. If

a request r both conflicts with and depends on r′, it is sufficient to synchronize r with r′

and its dependencies to r′ do not need to be tracked.

34

2.4 Static Analysis

In the previous section, we defined conflict and dependency relations between

methods. In this section, we recast the definitions as a static analysis that calculates these

relations. The user specifies an object 〈Σ, I,M〉 where Σ is the state type, I is the invariant

andM is the set of methods. Given the object, Fig. 2.5 presents two functions ConflictRel()

and DepRel() that calculate the two relations. We consider each one in turn and apply them

to our running example.

The function ConflictRel() returns the conflict relation as a mapping from pairs

of methodsM×M to boolean B. It first calculates the S-commutativity relation in the

variable SCom (at lines C6-C7). Following Theorem 11, for every pair of methods m1 and m2,

SCom(m1,m2) is true iff the following assertion is valid: for every pre-state σ, argument a1

of m1 and argument a2 for m2, the post-states of applying the two calls m1(a1) and m2(a2)

on σ in the two different orders are equal. We use the notation ` A to represent whether the

assertion A is valid. To check the validity of an assertion, we use SMT solvers to check the

satisfiability of its negation.

For example, Fig. 2.1.(b) shows that the two methods addCourse and enroll S-

commute. Let us see how this is calculated. To calculate the value of SCom(addCourse, enroll),

the assertion in line C7 is instantiated to the following assertion. (The pre-state σ is expanded

to 〈ss, cs, es〉, the argument of addCourse is c and the arguments of enroll are s and c′.)

` ∀ss, cs, es, c, s, c′. update(enroll(s, c′))(update(addCourse(c))(〈ss, cs, es〉)) =

update(addCourse(c))(update(enroll(s, c′))(〈ss, cs, es〉))
(2.1)

35

fun ConflictRel() : M×M→ B {

C1 var SCom : M×M→ B

C2 var ISuff : M→ B

C3 var PRCom,PConcur : M×M→ B

C4 var Concur,Conflict : M×M→ B

C5 let P := λσ, c. guard(c)(σ) ∧ I(update(c)(σ))

C6 foreach (m1 ∈M,m2 ∈M)

C7 SCom(m1,m2) :=

` ∀σ, a1, a2

update(m2(a2))(update(m1(a1))(σ)) =

update(m1(a1))(update(m2(a2))(σ))

C8 foreach (m ∈M)

C9 ISuff(m) :=

` ∀σ, a. I(σ)→ P(σ,m(a))

C10 foreach (m1 ∈M,m2 ∈M)

C11 PRCom(m1,m2) :=

` ∀σ, a1, a2.

P(σ,m1(a1))→

P(update(m2(a2))(σ),m1(a1))

C12 PConcur(m1,m2) := ISuff(m1) or

PRCom(m1,m2)

C13 foreach (m1 ∈M,m2 ∈M)

C14 Concur(m1,m2) := SCom(m1,m2) and

PConcur(m1,m2) and

PConcur(m2,m1)

C15 Conflict(m1,m2) := not Concur(m1,m2)

C16 return Conflict }

fun DepRel() : M×M→ B {

D1 var ISuff : M→ B

D2 var LRCom : M×M→ B

D3 var Dep, Indep : M×M→ B

D4 let P := λσ, c. guard(c)(σ) ∧ I(update(c)(σ))

D5 foreach (m ∈M)

D6 ISuff(m) :=

` ∀σ, a. I(σ)→ P(σ,m(a))

D7 foreach (m2 ∈M,m1 ∈M)

D8 PLCom(m2,m1) :=

` ∀σ, a1, a2.

P(update(m1(a1))(σ),m2(a2))→

P(σ,m2(a2))

D9 Indep(m2,m1) := ISuff(m2) or

D10 PLCom(m2,m1)

D11 Dep(m2,m1) := not Indep(m2,m1)

D12 return Dep }

Figure 2.5: Static analysis to calculate the conflict and dependency relations. The object

〈Σ, I,M〉 is given.

36

Based on the object definition in Fig. 2.1.(a), the two expressions can be simplified as follows:

Left exp: update(enroll(s, c′))(update(addCourse(c))(〈ss, cs, es〉)) =

update(enroll(s, c′))(〈ss, cs ∪ {c}, es〉) = 〈ss, cs ∪ {c}, es ∪ {〈s, c′〉}〉

Right exp: update(addCourse(c))(update(enroll(s, c′))(〈ss, cs, es〉)) =

update(addCourse(c))(〈ss, cs, es ∪ {〈s, c′〉}〉) = 〈ss, cs ∪ {c}, es ∪ {〈s, c′〉}〉
(2.2)

The two expressions are equal; thus, the assertion is valid and the two methods S-commute.

Similar to S-commutativity, the other relations are calculated by a validity check for

their definitions. In summary, the ConflictRel() function calculates the invariant-sufficiency

relation (Theorem 12) in the variable ISuff (at C8-C9) and the P-R-commutativity relation

(Theorem 13) in the variable PRCom (at C10-C11). They are used to calculate the P-concur

relation (Theorem 14) in the variable PConcur (at line C12). Then, the concur relation

(Theorem 15) for a pair of methods is calculated in the variable Concur as the conjunct of

S-commutativity and P-concur of the method pair with respect to each other (at C13-C14).

(We note that S-commutativity is symmetric.) Finally, the conflict relation (Theorem 15) is

calculated as the negation of the concur relation in the variable Conflict and returned (at

C15-C16). These steps calculate the sub-figures (b) to (e) of Fig. 2.1 in order.

The function DepRel() calculates the dependency relation. It first calculates

invariant-sufficiency (Theorem 12) in the variable ISuff (at linesD5-D6) and P-L-commutativity

(Theorem 17) in the variable PLCom (at D7-D8). They are used to calculate the independence

relation (Theorem 18) in the variable Indep (at D9-D10). Finally, the dependence relation

(Theorem 18) is calculated as the negation of the independence relation in the variable Dep

and returned (at D11-C12).

37

Fig. 2.1.(f) and (g) show that enroll is dependent on addCourse. Let us see how this

is calculated. We show that enroll is not invariant-sufficient and does not P-L-commute with

addCourse either. First, we show that the method enroll is not invariant-sufficient. Intuitively,

even if the invariant holds in the pre-state of enroll, it does not trivially hold in its post-state.

The invariant-sufficiency assertion that is checked at D6 is instantiated to the following

assertion: (The pre-state σ is expanded to 〈ss, cs, es〉 and the arguments of enroll are s and

c.)

` ∀ss, cs, es, s, c. I(〈ss, cs, es〉)→ P(〈ss, cs, es〉, enroll(s, c)) (2.3)

After unrolling P, the conclusion of the implication includes the following conjunct

I(update(enroll(s, c))(〈ss, cs, es〉)) = I(〈ss, cs, es ∪ {〈s, c〉}〉) =

refIntegrity(es ∪ {〈s, c〉}, esid, ss, sid) ∧ refIntegrity(es ∪ {〈s, c〉}, ecid, cs, cid)

(2.4)

According to the definition of referential integrity in the caption of Fig. 2.1, the first conjunct

is expanded to the following assertion:

∀r. r ∈ es ∪ {〈s, c〉} → ∃r′. r′ ∈ ss ∧ esid(r) = sid(r′) (2.5)

We note that s is an unconstrained universally quantified variable in Eq. 2.3, the original

invariant-sufficiency assertion. Therefore, to falsify that assertion, the variable s can be

instantiated with any student value. Enrolling any student s that is not already in ss violates

the above referential integrity property and leads to a counter-example for validity for Eq. 2.3.

Intuitively, enrolling a student that is not already in the students relation violates integrity.

Hence, the method enroll is not invariant-sufficient.

Next, we show that enroll does not P-L-commute with addCourse. Intuitively, the

enroll method does not preserve its permissibility if it is moved left before a preceding

38

addCourse. The assertion in line D8 is instantiated to the following assertion. (The pre-state

σ is expanded to 〈ss, cs, es〉, the argument of addCourse is c and the arguments of enroll are

s and c′.)

` ∀ss, cs, es, c, s, c′.

P(update(addCourse(c))(〈ss, cs, es〉), enroll(s, c′))→ P(〈ss, cs, es〉, enroll(s, c′))
(2.6)

The counter-example is when c = c′, that is the same course is added and enrolled, and

c 6∈ cs, that is c is not already an existing course. After expansion and removing the trivially

valid guard assertions, we have

I(〈ss, cs ∪ {c}, es ∪ {s, c}〉)→ I(〈ss, cs, es ∪ {s, c}〉) (2.7)

Expanding the conclusion of the implication results in the following conjunct:

∀r. r ∈ es ∪ {〈s, c〉} → ∃r′. r′ ∈ cs ∧ ecid(r) = cid(r′) (2.8)

This assertion is invalid. For r = 〈s, c〉, the conclusion never holds as c 6∈ cs. This makes a

counter-example for the P-L-commutativity assertion. Thus, enroll does not P-L-commute

with addCourse. A call on enroll is dependent on the preceding addCourse call.

We note that the premise of the implication in Eq. 2.7 does not refute the choice

that c 6∈ cs. In the premise of Eq. 2.7, the integrity of the enrolment relation es ∪ {〈s, c〉}

for the course c may hold only because c was just added and resulted in the course relation

cs ∪ {c} and not because it already existed in cs.

We note that since local permissibility is a condition of a well-coordinated replicated

execution, every call is permissible in its originating node. Therefore, every call in all the

conditions above can be additionally assumed to be permissible in a fresh state (unrelated to

39

the other state variables in the condition). We elided this permissibility condition for brevity.

Permissibility even in an unrelated state can provide useful information. In particular, the

validity of the guard of the call can provide conditions on the arguments of the call that are

independent of the state.

2.5 Use-cases

We now present two use-cases. Fig. 2.6.(a) represents the Auction use-case that we

have adopted from CISE [189]. Users can place bids and then the auction can be closed

to declare the winner. The state Σ of the object is the record of the set of current bids

bs, and the option value w that is either some winning bid or none ⊥ when the auction is

still open. The integrity invariant I is that if the auction is closed, then the winning bid is

the maximum of the non-empty set of bids. Auction offers three methods: place, close and

query. While the auction is open, the method place can place a bid b. The method close

closes the bid by picking the maximum bid. The method query returns the current state of

the auction. It is notable that in the guard of close, we do not need to repeat the condition

that the bid set should be non-empty. This condition is declared in the invariant. If a call

on close violates the invariant, the call is not permissible and is aborted. In general, the

user does not need to restate the invariant as guards. The guard needs to only specify the

semantic preconditions of the method. Thus, our specifications are simpler than previous

work [189]. As an example of semantic preconditions, the execution of a close call on an

auction is meaningful only if the auction is not already closed although it does not violate

the invariant. Similarly, placing a bid is meaningful only when the auction is not closed even

40

Class Auction

Σ := 〈bs : Set Int, w : Option Int〉

I := λ 〈bs, w〉.

w 6= ⊥ → (bs 6= ∅ ∧ w = some(max(bs)))

place(b) := λ 〈bs, w〉.

〈w = ⊥, 〈bs ∪ {b}, w〉, ⊥〉

close := λ 〈bs, w〉.

〈w = ⊥, 〈bs, some(max(bs))〉, ⊥〉

query := λ σ. 〈T, σ, σ〉

(a) User Specification

p c q

p X × X

c × X X

q X X X

(b) S-commute

p c q

p X × X

c X × X

q X X X

(c) P-concur

(d) Conflict graph

p c q

p X X X

c × X X

q X X X

(e) Independent

Class 2PSet

Σ := 〈Set, Set〉

I := T

add(e) := λ 〈A,R〉.

〈T, 〈A ∪ {e}, R〉, ⊥〉

remove(e) := λ 〈A,R〉.

〈T, 〈A,R ∪ {e}〉, ⊥〉

contains(e) := λ 〈A,R〉.

〈T, 〈A,R〉, e ∈ A \R〉

(f) User Specification

a r c

a X X X

r X X X

c X X X

(g) S-commute

a r c

a X X X

r X X X

c X X X

(h) P-concur

(i) Conflict graph

a r c

a X X X

r X X X

c X X X

(j) Independent

Figure 2.6: Auction and Two Phase Set Use-cases. The conflict graph in (d) is obtained

from (b) and (c).

41

if the bid is less than the already decided winner which does not violate the integrity of the

auction.

Fig. 2.6.(b) shows that the place and close methods S-conflict. a call on place can

execute either before or after a call on close. In the former, the close method gets to see the

new bid that might be the largest. However, in the latter, the new bid is missed. Therefore,

the two executions can diverge. As Fig. 2.6.(c) shows, the place and close methods P-conflict

with the close method. The methods place and close are not invariant-sufficient. Their guards

require the auction to be open that is not implied by the invariant. If a call on place is

pushed after a call on close, the call on place can violate the invariant as it can place a bid

larger than the already decided winner. If a call on close is pushed after another call on close,

its guard does not hold after the move. As Fig. 2.6.(e) shows, a call on close is dependent on

a preceding call on place. The preceding place call can be placing the only bid and if it is

removed, the close call gets an empty auction to close that violates the invariant.

Fig. 2.6.(f) shows the 2PSet (two-phase set) use-case that we have adopted from

CRDTs [424]. Classical sets S-conflict on adding and removing elements. The two orders

do not agree on the final set. However, this is only when the two calls are on the same

element. A set with a known finite domain can avoid conflicts and synchronization for

unequal elements. In contrast, 2PSet avoids conflicts by changing the set semantics: once an

element is removed, it cannot be added again. As Fig. 2.6.(f) shows, it uses two sets to store

added and removed elements and the abstract state of the set is the added set minus the

removed set. Therefore, the two orders of adding and removing an element result in the same

42

set: the element is considered to be removed. As Fig. 2.6.(g)-(j) shows, the methods of 2PSet

concur and are independent. Thus, 2PSet methods can execute without any coordination.

2.6 Protocols

In the previous sections, we presented how the conflict and dependency relations of

a given object are calculated. In this section, we present two concrete protocols that use

these relations and implement the well-coordination conditions. The protocols are parametric

and instantiated with the object and its conflict and dependency relations. The first protocol

is non-blocking. Crash of a replica does not prevent other replicas from making progress.

The second protocol is blocking. In return, it can further avoid synchronization. For a pair

of conflicting methods, the protocol can push synchronization to only one of them and the

other method can execute without synchronization.

In the next two subsections, we focus on synchronization of conflicting methods (and

assume that methods are independent). We consider dependencies in the third subsection.

Each protocol declares the request events that it inputs and the response events

that it outputs. It also declares the state that it stores at every node. It may include an

initialization method that is called once at the beginning of the execution at each node. A

protocol may declare and use other protocols. It defines methods for requests from the client

and responses from the used protocols. A method may be guarded by a condition. Such a

method accepts events only when the condition is satisfied; otherwise, the processing of the

event is postponed. In the body the methods, a protocol may issue responses to its client or

issue requests to the used protocols.

43

2.6.1 Non-blocking Synchronization Protocol

In this subsection, we present a non-blocking protocol for synchronization.

Protocol Idea. A subset of the vertices of a graph is a clique iff any of its distinct

pair of vertices are adjacent. A clique is maximal if it is not a subset of a larger clique. There

are known algorithms [82, 451] that list the set of maximal cliques of a graph.

The methods of a clique of the conflict graph have to all synchronize with each

other. The idea is to synchronize only the methods of each maximal clique with each other

to minimize synchronization. We use the total-order broadcast (TOB) protocol that employs

consensus to deliver messages in the same total order to all nodes [92]. Let Cl denote the set

of maximal cliques of the conflict graph. For each maximal clique cl ∈ Cl, we use a TOB

instance tob(cl). Calls on conflicting methods in a maximal clique are broadcast to a TOB

instance and delivered with the same total order to all nodes. (A single node (without a

loop) is considered a clique but does not need synchronization. Thus, before calculating

the maximal cliques, we remove all the single nodes without loops from the conflict graph.)

As we saw in Fig. 2.3.(a) for the delete call d, a call c of a method m that is a member of

multiple maximal cliques cls should be totally ordered with respect to calls of each of those

cliques. We broadcast the call c to every tob(cl) where cl ∈ cls and execute c only when it is

ordered and delivered by all of them. To execute calls in the delivery order from TOBs, we

maintain a queue q(cl) for each TOB instance tob(cl). Method calls that are delivered by

a TOB instance tob(cl) are enqueued to its corresponding queue q(cl). If cls is the set of

maximal cliques containing a method m, a call on m can be executed once it appears at the

head of the queues q(cl) for each cl ∈ cls. The call is then dequeued from the queues and

44

executed. Thus, the execution order of calls at every replica is an extension of the delivery

order of each of the TOBs. Therefore, calls to conflicting methods have the same execution

order across replicas.

However, deadlocks can happen if the TOB instances are not properly coordinated.

Consider two method calls c and c′ of a method m that is a member of two cliques cl and cl ′.

If c and c′ are simply broadcast to tob(cl) and tob(cl ′), c may precede c′ in the total order

of tob(cl) and succeed it in the total order of tob(cl ′). Thus, c′ cannot appear at the head of

the queue q(cl) and waits for c and symmetrically c cannot appear at the head of the queue

q(cl ′) and waits for c′. As a result, c and c′ and all later calls in q(cl) and q(cl ′) will be

blocked at all replicas. To prevent deadlocks, firstly, we statically order the maximal cliques

Cl and always send a message to TOB instances tob(cl) in the order of their corresponding

cliques cl . Secondly, we ensure that if a message is ordered before another by a TOB instance

then the next TOB instance respects this order. To this end, we present and use a particular

kind of total-order broadcast that respects given total orders on subsets of messages. We call

it the multi-total-order broadcast (MTOB) protocol.

In the multi-total-order broadcast (MTOB) protocol, the messages are divided to

multiple disjoint subsets called message classes. Each class is associated with a total order.

The user broadcasts each message together with its class identifier. She should also broadcast

messages of a class in the total order of that class. The protocol delivers messages in a total

order that respects (i.e. is an extension of) the order of each message class.

We use MTOB as follows. We define a class as the set of calls of the methods of a

clique. As mentioned above, a call is sent to the MTOB instances in a statically-determined

45

order. For example, in the example above, we assume that mtob(cl) is before mtob(cl ′) in

the static order. Assume that c is delivered before c′ by mtob(cl). We broadcast c and c′

in order to mtob(cl ′) with class cl . As the order of messages in class cl is preserved in the

delivery order of mtob(cl ′), c will be delivered before c′ by mtob(cl ′) as well and the deadlock

mentioned above cannot happen.

We first present the main protocol and then the multi-total-order-broadcast protocol.

They use the classical reliable broadcast and consensus protocols [92].

Main Protocol. The non-blocking protocol is presented in Fig. 2.7. The requests

to the protocol are call(c) to execute a method call c on the replicated object. In response,

the protocol issues the response ret(c, v) to return the value v as the result of the call c or

aborted(c) to indicate that the call c could not be executed without the violation of the

invariant and is aborted. The parameter to the protocol is the map cliques. It maps each

method in the set of methods M to a list of maximal cliques Cl that the method belongs to.

As explained earlier, the set of maximal cliques is calculated and statically sorted to a total

order. To prevent deadlocks, every list in the range of cliques is consistent with this total

order. A call on a method m is sent to the TOB instances of the cliques cliques(m) in order.

The protocol uses two protocols: reliable broadcast rb and a multi-total-order broadcast per

clique mtob. Among other properties, the reliable broadcast guarantees that if a message is

delivered by a correct node, then it is eventually delivered by every correct node. In addition

to this guarantee, as previously mentioned, MTOB protocol guarantees that messages are

delivered in a total order that is an extension of the order of each message class. Each replica

46

stores the following state: the state σ of the user-defined object, and the queues q, one per

maximal clique.

On the invocation of the request call(c) to execute the call c (at R0), the protocol

finds the method m of c (at R1) and the set of cliques cls that m belongs to (at R2). If

the set of cliques is empty, no synchronization is needed and the request is sent using the

reliable broadcast rb (at R3-R4). Otherwise, the request is sent using the MTOB instance

mtob(cl) of the first clique cl in cls . As this is the first broadcast, the call can be arbitrarily

ordered and no class (⊥) is passed as the class (at R5-R7). When a call c is delivered by the

reliable broadcast rb (at N0), as no further synchronization is required, it is executed (at

N1). When a call c is delivered by an MTOB instance mtob(cl) (at I1), we enqueue it to the

corresponding queue q(cl) (at I2), and get the list of cliques cls of the method (at I3-I4).

If the current clique is the last one in the list (at I5), we check if the call can be executed

(at I6). Otherwise, we send c to the next MTOB instance mtob(cl ′). The call is broadcast

together with the previous clique cl as the class (at I7-I9). A call is ready to be executed if

it appears at the head of all the queues of the cliques that the method belongs to (at C0-C3).

A call c that is ready is dequeued from the queues (at C4) and executed (at C5). Then,

the queues are checked for next calls that might be ready to execute (at C6). To check the

queues (at Q1), the call at the head of every queue is checked. Checking is repeated if a call

is executed (at Q2-Q4 and C5-C9). To execute a call (at E1), it is checked that it is locally

permissible i.e. its guard is satisfied and applying it does not violate the invariant (at E2). If

the check is passed, the updated state is stored, the return value v is calculated (at E3-E4),

and a return response is issued with v (at E5). Otherwise, an abort response is issued (at

47

NonBlockingRepObject

request : call(C)

response : ret(C,V) | aborted(C)

Params : cliques : M→ List[Cl]

Using :

rb : ReliableBroadcast

mtob : Cl→ MultiTotalOrderBroadcast

State :

σ : Σ = σ0

q : Cl→ Queue[C] = Cl 7→ ∅

R0 request (call(c))

R1 m← method(c)

R2 cls ← cliques(m)

R3 if (cls = ∅)

R4 issue request (rb, broadcast(c))

R5 else

R6 cl ← head(cls)

R7 issue request (mtob(cl), broadcast(c,⊥))

N0 response (rb, deliver(c)) exec(c)

I1 response (mtob(cl), deliver(c))

I2 enq(q(cl), c)

I3 m← method(c)

I4 cls ← cliques(m)

I5 if (cl = last(cls)) check(c)

I7 else

I8 cl ′ ← (cls, cl)

I9 issue request (mtob(cl ′), broadcast(c, cl))

C0 fun check(c)

C1 m← method(c)

C2 cls ← cliques(m)

C3 if (forall cl ∈ cls. head(q(cl)) = c)

C4 foreach(cl ∈ cls) q(cl).deq()

C5 exec(c)

C6 checkQs()

C7 return true

C8 else return false

Q1 fun checkQs()

Q2 foreach(cl ∈ Cl, q(cl) 6= ∅)

Q3 c← head(q(cl))

Q4 if (check(c)) return

E1 fun exec(c)

E2 if (guard(c)(σ) ∧ I(update(c)(σ)))

E3 σ ← update(c)(σ)

E4 v ← retv(c)(σ)

E5 issue response ret(c, v)

E6 else issue response aborted(c)

Figure 2.7: Non-blocking Synchronization Protocol. C and V are call and return value

respectively

48

E6-E7). As pairs of conflicting methods are synchronized and methods are independent, a

call is permissible in one replica if and only if it is permissible in another.

The protocol is non-blocking: if a quorum (majority) of nodes are correct (not

faulty), every request for a call with eventually get a response. The call is first broadcast

to the rb or an mtob. Both will eventually deliver the call. (We will show this property

for MTOB with a quorum of correct nodes.) In the former case, the call is executed on

arrival. In the latter case, it is put in the corresponding queue and may be broadcast to the

next mtob. As we explained above, each MTOB preserves the delivery order of the previous

MTOBs; thus, two calls can appear in two queues only in the same order and cannot cause a

deadlock. Calls eventually arrive at the head of the queues, are dequeued and executed.

Multi-Total-Order Broadcast. The multi-total-order broadcast (MTOB) proto-

col is presented in Fig. 2.8. The protocol accepts requests to broadcast a message m given

its class c. (A message can belong to no class ⊥. These messages are assumed to be unique.)

MTOB delivers messages to every node with the same order and this order respects the order

of all message classes. The idea is to have rounds of consensus to agree on the messages

to deliver. In each round, nodes propose their current messages for consensus. When the

consensus protocol issues the decision response with a set of messages, they are locally sorted

using a deterministic sort algorithm and delivered. To respect the order of message classes,

a message is proposed only if all the messages before it in the class are already delivered.

Starvation of a node and its messages in the case that its proposal is repeatedly not chosen

is prevented as follows. MTOB uses a reliable broadcast protocol. Upon a broadcast request

49

MultiTotalOrderBroadcast

request : broadcast(M,C)

response : deliver(M)

Using :

rb : ReliableBroadcast

cs : R→ Consensus

State :

p : Set[M× C× Int] = ∅ Pending

d : Set[M× C× Int] = ∅ Delivered

r : Int = 0 Round

rank : C → Int = C 7→ 0 Rank

I0 init()

I1 issue request (cs(0), propose(∅))

R0 request (broadcast(m, c))

R1 if (c 6= ⊥)

R2 rank(c)← rank(c) + 1

R3 issue request (rb, broadcast(m, c, rank(c)))

R4 else

R5 issue request (rb, broadcast(m,⊥, 0))

D0 response (rb, deliver(m, c, i))

D1 if ((m, c, i) 6∈ d)

D2 p← p ∪ {(m, c, i)}

C0 response (cs(r′), decide(d′)) if (r′ = r)

C1 foreach((m, c, i) ∈ sort(d′))

C2 issue response deliver(m)

C3 d← d ∪ d′

C4 p← p \ d′

C5 r ← r + 1

C6 issue request (cs(r), propose(proposal()))

P0 fun proposal()

P1 {(m, c, i) | (m, c, i) ∈ p ∧

P2 ∀i′. 0 < i′ < i→ ∃m′. (m′, c, i′) ∈ d}

Figure 2.8: Multi-Total-Order Broadcast Protocol. M and C are message and class types

respectively.

for a message, it is first broadcast with the reliable broadcast protocol to other nodes. Thus,

the message will be in the proposal of other nodes and will be eventually chosen.

MTOB uses the reliable broadcast protocol rb and an instance sequence of the

consensus protocol cs. MTOB proceeds in rounds R and uses an instance of consensus in

each round. It stores the set of pending messages p, the set of delivered messages d, the

50

number of the current round r, and the rank of the last delivered message for each class

rank .

The rounds of consensus are kick-started in the initialization function (at I0-I1).

Upon an MTOB request to broadcast a message, if it belongs to a class (at R1), the rank for

the class is incremented (at R2) and it is broadcast using the reliable broadcast rb (at R3).

Otherwise, the message is broadcast with no class and zero rank (at R4). When rb delivers

a message (at D0), if it is not already delivered (at D1), it is added to the pending set (at

D2). Once the decision of the current round is received (at C0), its messages are sorted and

delivered (at C1-C2) and added to the delivered set and removed from the pending set (at

C3-C4). Then, the node enters the next round and proposes in it (at C5-C6). The proposal

is the largest subset of the pending messages m such that all the messages before m in its

class are already delivered (at P0-P2). This condition ensures that the order of each class is

preserved. It is notable that as the messages with no class are added to the pending set with

rank 0, they always satisfy the proposal condition.

It is assumed that a quorum (majority) of nodes are correct. Let us explain why

a message broadcast by a correct node is eventually delivered to every correct node. We

consider a message of a class and by induction assume that previous messages of the class

are eventually delivered. If the message has been and will be in the decided set of a round, it

is or will be eventually delivered by all correct nodes. Otherwise, we assume that it is never

in a decided set and thus never in a delivered set. The message is first broadcast using rb.

Thus, it is eventually delivered by rb and as it is not in the delivered sets, it will be added to

the pending set of all correct nodes. As the previous messages in the class are eventually

51

delivered, the message will eventually be in the proposed set of all correct nodes. With a

quorum of correct nodes, the consensus protocol guarantees eventual decision. Thus, the

message will eventually be in the decided set and delivered.

2.6.2 Blocking Synchronization Protocol

The previous protocol requires both calls of a conflicting pair to participate in

synchronization. In this section, we introduce a blocking protocol. As we saw in Fig. 2.3.(b)

for the add a and enroll e calls, this protocol can make one of the two calls execute without

synchronization.

Protocol Idea. Consider two conflicting methods m and m′, and two calls c on m

and c′ on m′. To let the call c execute without synchronization, the other call c′ needs to

reach out to other nodes, block the execution of calls on m at those nodes and then propagate

previous calls on m from every node to other nodes. Then, c′ can be executed at all nodes.

At the end, the execution of calls on m is unblocked at all nodes. Therefore, the set of calls

on m before each call on m′ is the same across nodes. This means that the order of every

pair of calls on m and m′ is the same across nodes.

A vertex cover V ′ of a graph 〈V,E〉 is a subset of the vertices V such that every

edge in E has at least one endpoint in V ′. A minimum vertex cover of a graph is a vertex

cover of the smallest size. In a graph with weighted vertices, the weighted minimum vertex

cover is a vertex cover of the smallest weight sum. Finding the (weighted) minimum vertex

cover is a classical graph problem.

52

BlockingRepObject

request : call(C)

response : ret(C,V) | aborted(C)

Params :

conflict : M→ Set[M]

cover : Set[M]

Using :

rb : ReliableBroadcast

tob : M→ TotalOrderBroadcast

State :

σ : Σ = σ0

b : M→ Int = M 7→ 0

xed : M→ Set[C] = M 7→ ∅

act : M→ B = M 7→ false

cnt : C→ Int = C 7→ 0

R0 request (call(c))

R1 m← method(c)

R2 if (m 6∈ cover)

R3 issue request (rb, broadcast(nsync(c)))

R4 else

R5 if (m ∈ conflict(m))

R6 issue request (tob(m), broadcast(sync(c)))

R7 else issue request (rb, broadcast(sync(c)))

N0 response (rb, deliver(nsync(c))) if b(method(c)) = 0

N1 exec(c)

C0 response (tob(m), deliver(sync(c))) if ¬act(m)

C1 act(m)← true

C2 blockAndUpdate(c)

C3 response (rb, deliver(sync(c)))

C4 blockAndUpdate(c)

B1 fun blockAndUpdate(c)

B2 foreach(m′ ∈ conflict(m))

B3 b(m′)← b(m′) + 1

B4 cs ← xed | conflict(m)

B5 issue request (rb, broadcast(update(c, cs)))

U0 response (rb, deliver(update(c, cs)))

U1 foreach(c′ ∈ cs) exec(c′)

U2 cnt(c)← cnt(c) + 1

U3 if (cnt(c) = N)

U4 exec(c)

U5 foreach(m′ ∈ conflict(m))

U6 b(m′)← b(m′)− 1

U7 act(m)← false

E0 fun exec(c)

E1 if (guard(c)(σ) ∧ I(update(c)(σ)))

E2 σ ← update(c)(σ)

E3 v ← retv(c)(σ)

E4 issue response ret(c, v)

E5 add(xed(m), c)

E6 else issue response aborted(c)

Figure 2.9: Blocking Synchronization Protocol

53

In the interest of avoiding synchronization, we find the minimum vertex cover of the

conflict graph. Only the methods in the cover synchronize and the rest can execute without

synchronization. To execute a method in the cover, the requesting node has to reach out

to all nodes and block and solicit the conflicting methods. If the user calls a method more

often than others or favors its responsiveness, she can assign a lower weight to that method

and apply the weighted minimum vertex cover. Methods can be assigned weights inversely

proportional to their call frequency. To enforce that a method becomes synchronization-free,

its weight can be assigned to infinity.

Protocol. The blocking synchronisation protocol is presented in Fig. 2.9. It accepts

requests to execute calls and in return issues responses with the return value or that the call

is aborted. The parameters to the protocol are the map conflict that maps every method to

its set of conflicting methods and a vertex cover of the conflict graph cover. The protocol

uses two classical protocols: the reliable broadcast rb and a total-order broadcast per method

tob. The protocol stores the following state at each node: the user-defined state of the object

σ, a mapping b from each method to the number of times that it is blocked, a mapping xed

from each method to the set of executed calls on that method, a mapping act from each

method to whether there is an active execution of a call on the method, a mapping cnt from

each call to the number of messages received for it.

Upon a request to execute a method call c (at R0), if its method m is not a member

of the cover (at R1-R2), it can be executed without synchronization. So, it is broadcast

using rb as a non-synchronizing nsync call (at R3). Otherwise, the call should synchronize

with conflicting methods (at R4) and it is broadcast as a synchronizing sync call. If m has a

54

self-loop in the conflict graph, then c should synchronize with other calls on m. To order

calls on m, they are broadcast using the total-order-broadcast tob(m) (at R5-R6). If m does

not have a self-loop, c only needs to synchronize with calls on other methods. Thus, c is

broadcast using the reliable broadcast rb.

Upon receiving a non-synchronizing call that is not blocked (at N0), it is executed

(at N1). A call on a blocked method should wait until it is unblocked. When a synchronizing

call c on a method m is received from a total-order broadcast tob(m), if the execution of

another call on m is not active (at C0), it is recorded that the execution of a call on m is

active (at C1). On the other hand, when a synchronizing call is received from the reliable

broadcast rb (at C3), it does not need to prevent other calls on m as m does not conflict

with itself. In both cases (at C2 and C4), each method that conflicts with m is blocked (at

B2), and the calls on the conflicting methods that this node has executed are broadcast as

an update to other nodes (at B3-B5). When an update arrives (at U0), its calls are executed

(at U1) and the number of received updates for the call is incremented (at U2). When an

update from all nodes is received (at U3), the call is executed (at U4), the previously blocked

methods for c are unblocked (at U5andU6), and it is recorded that the execution of a call on

m is no longer active (at U7). The execution of a call (at E0-E7) is similar to the previous

protocol.

As mentioned earlier, this protocol brings more synchronization-freedom. However,

either progress or consistency and convergence of nodes may be affected by crashes. Blocked

operations are only unblocked when update messages are received from all the other nodes.

If the update message from a node is not received, calls on the blocked methods cannot be

55

executed. Either the network is slow or that node has crashed. If other nodes assume the

former, the latter may be the case and they can never execute the blocked methods. On

the other hand, if other nodes assume that the node has crashed, the network may be just

slow. In particular, if a correct node n is mistakenly suspected while a synchronizing call c is

being executed, consider that other nodes refrain from waiting for n, execute c and unblock

conflicting methods before n blocks conflicting methods. Then, a node n′ can execute a

call c′ on a conflicting method. The call c′ can reach and execute at the suspected node n

before it executes c. Thus, c′ is after c at n′ but before it at n. Therefore, the two conflicting

method calls have different orders in different nodes. Further, c can become impermissible

after c′. Thus, this can cause divergence and violation of integrity at node n.

2.6.3 Dependency-Tacking Protocol

In the presented synchronization protocols, we assumed that method calls were

independent. However, as we saw in Fig. 2.2.(e), permissibility of a call at a node may be

dependent on the preceding calls at that node; the call may not be permissible at other

nodes.

We saw that method calls may or may not need to synchronize before execution. If

a call did not need synchronization, it was simply broadcast and was immediately executed

on arrival. For both the non-blocking protocol (Fig. 2.7) and the blocking protocol (Fig. 2.9)

this was at N1. However, if it has dependencies, they should be tracked at the originating

node and broadcast together with the call. The receiving nodes should apply the call only

after its dependencies are applied. On the other hand, some calls go through synchronization

before execution. When synchronization is finished for a call c, it may or may not be

56

permissible in different nodes. For the non-blocking protocol (Fig. 2.7), this is at C5 and for

the blocking protocol (Fig. 2.9), this is at U4. If there is a node n that finds c permissible,

every node can become permissible for c after n propagates the dependencies. The call c is

aborted only if it is impermissible at every node. We use a protocol that is the inverse of

the classical atomic commit protocol. The decision is abort if every replica votes for abort

and is commit otherwise. Every node that finds c permissible votes for commit together

with the dependencies of c and every node that finds it impermissible votes for abort. If a

node receives the abort decision, it aborts the execution of c. If a node receives the commit

decision, it waits for the dependencies. After the dependencies are applied, the call c is

permissible and is executed.

2.7 Implementation

In this section, we describe the implementation of our synthesis tool, Hamsaz. The

input to Hamsaz is the definition of an object that includes the state type and invariants

on the state along with methods. Hamsaz synthesizes non-blocking and blocking replicated

objects. It also outputs the baseline sequentially consistent replicated object. Hamsaz consists

of two main parts: (1) determining the conflicts and dependencies and (2) instantiating the

protocols.

Conflict and Dependency Analysis. We use the CVC4 [52] SMT solver [53] to

decide the validity of concur and independence relations for pairs of methods. In particular,

we use the theory of linear arithmetic, inductive datatypes, and more importantly, the theory

57

of finite sets [48] and the follow-up theory of finite relations [343] that is recently added to

CVC4. Decidable fragments of set theory [95] is an active area of research [96, 272, 443].

To decide the validity of a condition, Hamsaz may decompose the invariant to

conjuncts. As an example, consider whether enroll(s1, c1) P-concurs with enroll(s2, c2) in the

Courseware use-case presented in Fig. 2.1. We focus on the invariant refIntegrity(es, esid, ss, sid);

the other invariant is similar. The invariant is unrolled to ∀e. e ∈ es→ ∃s. s ∈ ss∧ esid(e) =

sid(s). We decompose it to the following two conjuncts based on whether the referential

integrity involves the enrolled student s1: (1) ∀e. e ∈ es∧esid(e) = s1 → ∃s. s ∈ ss∧esid(e) =

sid(s), (2) ∀e. e ∈ es ∧ esid(e) 6= s1 → ∃s. s ∈ ss ∧ esid(e) = sid(s). For the first one, the

call enroll(s1, c1) P-R-commutes with the call enroll(s2, c2). For the second one, the call

enroll(s1, c1) is invariant-sufficient.

Protocols. We implemented the parametric protocols presented in § 2.6. Given

the analysis results, we apply the graph optimizations and then instantiate the protocols

with the optimization results. We implemented our protocols on top of APPIA [97], the

accompanying toolkit of [92]. It is a Java library of basic communication abstractions. We

implemented our protocols on top of the basic broadcast, total-order broadcast and consensus

protocols. We also implemented the sequentially consistent baseline. It uses a total-order

broadcast instance to deliver calls to all nodes in the same order.

2.8 Evaluation

We applied Hamsaz to a suite of use-cases to synthesize non-blocking and blocking

replicated objects and compared their performance with the sequentially consistent baseline.

58

Use-cases. The use-cases are the following: Counter: It can increment and

decrement an integer value. NNCounter: The non-negative counter has the invariant that

the counter value should be non-negative. Register: A register stores a value and provides

methods to read and write it. BankAccount: The invariant is a non-negative balance. CSet:

The classical set provides add, remove and contains methods. GSet: The grow-only set

(adopted from [424]) provides adding (but not removing) an element contains methods. Both

methods can execute without coordination. FDSet: A finite-domain set provides the classical

set operations on a predefined finite set of elements. Thus, it can avoid coordination between

calls on different elements. 2PSet (two-phase set) (adopted from [424]) and Auction (adopted

from [189]) that we saw in Fig. 2.6. The suite includes relational use-cases as well. Relational

unique(R, f) := ∀r, r′. r ∈ R ∧ r′ ∈ R ∧ f(r) = f(r′)→ r = r′

refIntegrity(R, f,R′, f ′) := ∀r. r ∈ R→ ∃r′. r′ ∈ R′ ∧ f(r) = f ′(r′)

rowIntegrity(R, p) := ∀r. r ∈ R→ p(r)

Figure 2.10: Relational Integrity Constrains

integrity properties are specified using three predicates that we present in Fig. 2.10. The

property unique(R, f) states that the values of the field f in the records of the relation R

are unique. The property refIntegrity(R, f,R′, f ′) states that for every record r in R, there

exists a record r′ in R′ such that the field f of r is equal to the field f ′ of r′. The property

rowIntegrity(R, p) states that every record of the relation R satisfies the predicate p. The

relational uses cases are the following. Courseware: We saw the courseware use-case (adopted

from [189]) in Fig. 2.1. It requires referential integrity for the student and course identifiers.

59

2PCourseware: It uses 2PSet to reduce conflicts in Courseware. Payroll: The payroll use-case

(adopted from [35]) stores employee and department relations. It requires uniqueness of

employee identifiers, referential integrity for the department identifiers of employees, non-null

values for employee names and non-negative salaries. It supports adding and removing

employees and departments, and increasing and decreasing employee salaries. Tournament:

The tournament use-case (adopted from [45]) stores players, tournaments, and enrolments.

It requires uniqueness of player and tournament identifiers, referential integrity of player

and tournament identifiers in enrolments, and that each player has a positive budget, each

tournament has a size within a cap, and each active tournament has at least one player. It

supports adding and removing players and tournaments, adding funds for a player, enrolling

and disenrolling a player in a tournament, and beginning and ending a tournament.

Platform. The experiments are done on a cluster with 4 computing nodes. Each

node has 2 AMD Opteron 6272 CPUs with a total 8 cores with 64GB ECC protected memory

of RAM and a 40Gbps high-bandwidth low-latency InfiniBand network. The OS running on

the cluster is CentOS 7.4 Linux x86_64 with the kernel version 3.10.0-862.3.2.el7. JDK is

openjdk version 1.8.0_171 (OpenJDK 64-Bit Server VM build 25.171-b10, mixed mode). All

nodes are connected to a Mellanox 18 port InfiniBand switch. Reported numbers are the

arithmetic means of results from five repetitions.

Conflict and Dependency Analysis. The concur and independence conditions

for Counter, NNCounter, Register and BankAccount use-cases all fall in the quantifier-free

fragment of the theory of linear arithmetic. The conditions for CSet, GSet, FDSet and

2PSet all fall in the quantifier-free fragment of the theory of sets. However, the Auction

60

Usecase #M1 #I2 P3 S4 Indep Total

Bank 3 1 284 695 595 1574

Auction 3 2 405 921 571 1897

Courseware 5 4 950 3256 2597 6803

NNCounter 3 1 283 598 470 1351

Tournament 9 5 3482 25615 24146 53603

1 The number of methods

2 The number of invariants

3 P-concure time (ms)

4 S-commute time (ms)

Figure 2.11: Analysis time

use-case uses the max function. We specified the following two axioms for max and CVC4

could use them to decide the validity of the conditions. A1 : ∀s, i. i ∈ s → max(s) ≥ i

and A2 : ∀s. s 6= ∅ → max(s) ∈ s. The integrity properties of the relational uses-cases

are encoded using quantifiers as presented in Fig. 2.10. The reason is that the current

theory of sets in CVC4 does not support a complete set of relational operators. A set

of operators is called complete if any relational algebra expression can be expressed by a

combination of them. Selection (σ), projection (π), renaming (ρ), union (∪), difference

(\) and product (×) are a complete set of operators. For example, a referential integrity

refIntegrity(R, a,R′, a′) can be written as πaR \πa′R′ = ∅ using projection and difference and

as Car(R ./a=a′ R
′) ≥ Car(R) using join and cardinality. CVC4 supports difference and join

but not projection and cardinality is a planned feature [343]. Despite using quantifiers, CVC4

can decide the validity of all conditions in our relational use-cases in less than a minute. We

61

measured the time that Hamsaz takes to calculate the conditions and represent the results in

Fig. 2.11. For each use-case, the table lists the number of methods, the number of invariants,

the time to calculate P-concur and S-commute for the conflict relation, the time to calculate

the independence relation and the total time.

Results. In this section, we compare the response time of our protocols with each

other and the sequentially consistent (SC) baseline. The response time for a call is the

time spent between the request and the response of the call. We conduct two experiments

on the courseware use-case that we saw in Fig. 2.1 and the bank account use-case. In the

bank account use-case, the withdraw method conflicts with itself and is dependent on deposit.

The deposit and balance methods are conflict-free and independent. In the first experiment,

we compare the response time of methods using different protocols. In the second one, we

measure the effect of increasing the workload on the response time. In both experiments, we

execute 500 calls evenly distributed on the methods.

In the first experiment, we issue one call per millisecond and measure the average

response time of the calls on each method. The results for the non-blocking and the SC

protocols are shown in Fig. 2.12.(a) and for the blocking protocol are shown in Fig. 2.12.(b).

We make this separation because the latter is two orders of magnitude more responsive than

the former. The response time for SC is the same across methods as all methods use the

same TOB instance. In the non-blocking protocol, the response time of the register and query

methods is around a millisecond. The response time of these two methods is significantly less

than that of the other methods because they can execute without coordination. The response

time of the deleteCourse method is about two times that of addCourse and enroll methods

62

register query addCourse enrol deleteCourse

0

2

4

6

·103

Operations

R
es
p
on

se
T
im

e
(m

s)

SC
Non-Blocking

(a)

register query addCourse enrol deleteCourse

0

20

40

60

80

100

120

Operations

R
es
p
on

se
T
im

e
(m

s)

Blocking

(b)

deposit withdraw getBalance

0

1

2

3

4

5
·103

Operations

R
es
p
on

se
T
im

e
(m

s)

Non-Blocking
Blocking

SC

(c)

0 200 400 600 800

2

3

4

5

·103

Workload (ops/s)

R
es
p
on

se
T
im

e
(m

s)

SC
Non-Blocking

(d)

Figure 2.12: (a) Response time for Courseware with the Non-Blocking and SC protocols. (b)

Response time for Courseware with the Blocking protocol. (c) Response time for BankAccount.

(d) The effect of workload on response time for Courseware.

because a deleteCourse call has to be ordered by two TOB instances while an addCourse or

enroll call needs to be ordered by only one TOB instance. The enroll method is less responsive

than the addCourse method because enroll has dependencies and needs to wait for them and

addCourse does not. Both the SC and non-blocking protocols synchronize by TOB instances

that rely on consensus. On the other hand, the blocking protocol avoids using TOB for

63

the courseware use-case. Fig. 2.12.(b) shows that this avoidance significantly improves the

response time. The two methods register and query execute without coordination. Calls

on the deleteCourse method coordinate to block addCourse and enroll methods. Therefore,

deleteCourse is less responsive than the other methods. Calls on addCourse and enroll methods

may be blocked but when they are not, they execute without coordination.

We applied the first experiment to the bank account use-case as well. The results

are shown in Fig. 2.12.(c). Similar to the courseware use-case, the SC protocol is the least

responsive and uniform across all methods. In the other two protocols, the deposit and

balance methods can execute without coordination in around a millisecond response time.

Interestedly, the withdraw method exhibits almost the same response time in the blocking and

non-blocking protocols. The reason is that withdraw conflicts with itself, and the blocking

protocol uses a TOB to order withdraw calls (at R6 in Fig. 2.9). Thus, both the blocking

and non-blocking protocols use TOB for the bank account use-case and the synchronization

by the TOB dominates the execution time.

In the second experiment, we increase the workload from 10 to 800 calls per second

and measure the average response time over all the calls. The results for the non-blocking

and the SC protocols on the courseware use-case are shown in Fig. 2.12.(d). Similar to

the first experiment, we make this separation because the latter is orders of magnitude

more responsive than the former. As we increase the workload, the network transmits more

messages and the protocol states grow that in turn affect the responsiveness. All the protocols

get less responsive as the workload increases. The response time of the SC protocol grows

faster as every operation goes through synchronization.

64

We observe that coordination specially synchronization can adversely affect the

response time. The experiments suggest that our protocols can effectively avoid coordination

to reduce the response time. They exhibit considerable improvement over the SC protocol.

In particular, the blocking protocol is more responsive than the other protocols especially

when no method conflicts with itself. However, as mentioned before, the blocking protocol

may not progress in case of node crashes. On the other hand, the non-blocking protocol is

less responsive but maintains progress.

2.9 Related Works

I-confluence [35] is a sufficient condition for invariant preservation of state-based

replicated objects [424]. It states that if user operations and the merge operation are invariant

preserving, then every execution is invariant preserving. In contrast to I-confluence, well-

coordination is a correctness condition for operation-based replicated objects [424]. Further,

in addition to coordination-avoiding operations, it supports and reduces coordination for

conflicting operations. A follow-up work, Blazes [24], applies a technique called sealing

to replicated stream processing. It calculates deterministic results in the presence of non-

deterministic reordering of messages. The idea is to split messages to windows and apply

aggregate operations on them. Both the technique and its applications are distinct from

ours.

Warranties [309] delay update operations for a limited time to preserve a state

assertion on the distributed state. Thus, local computations can count on the assertion

without coordination. However, in contrast to our approach, warranties are not automatically

65

inferred and specifically improve the efficiency of read-dominated applications. Further,

they preserve strong consistency rather than exploiting weak consistency. Homeostasis [409]

targets invariants that span nodes of partially-replicated distributed stores. Each node

maintains a condition called treaty on its local state and relies on the validity of other node

treaties. The idea is that a change in the state of a node may preserve its treaty and not

observationally change the execution of transactions in other nodes. Thus, coordination

can be avoided. However, if a node violates its treaty, it synchronizes with other nodes

and a new set of treaties are calculated and installed. In contrast, well-coordination targets

fully-replicated stores, exploits weak consistency and guarantees convergence. Further, the

analysis is static and the protocols do not calculate conditions at runtime.

Sieve [301, 299] defines a consistency model called RedBlue and applies static and

dynamic analysis to determine whether an operation can be executed under causal consistency

(blue) or needs strong consistency (red) to preserve the invariant. However, the analysis

does not check that the result will indeed validate the invariant. In contrast, we prove the

sufficiency of well-coordination. Further, causal consistency is the weakest possible notion in

the RedBlue model while our model allows operations to execute with no synchronization

and dependency.

Quelea [431] lets the programmer declare consistency contracts for operations

of a replicated object using primitive consistency relations such as visibility and session

orders. It defines axiomatic semantics for consistency notions using the same primitives.

It then automatically maps a contract to the weakest consistency notion that satisfies the

contract. However, these contracts are lower-level than integrity invariants and translating

66

invariants to contracts is non-trivial. Inspired by weak memory models, a similar work

[103, 59] presented a framework for specification of weak consistency models that have

atomic visibility and defined dynamic and static checks for serializability of applications that

choose to use weak consistency. Later, [84] defined a generalization of conflict serializability

to be used together with weak consistency notions. It presented a dynamic checker to

determine whether an execution of an application that uses weak consistency is serializable.

In contrast, our approach requires applications to specify only higher-level integrity properties

and automatically finds the coordination needed to preserve them.

Indigo [45, 46] lets the user introduce application-specific predicates and define

invariants and method post-conditions in terms of those predicates. It identifies operations

that violate the invariant if executed concurrently and either prevents or repairs their

concurrent execution. For the former, it applies reservation techniques to enhance coordination

efficiency and for the latter, it provides a library of restoring operations. In contrast, well-

coordination does not require user-defined predicates and annotations. In addition, the

well-coordination conditions are formally defined and their sufficiency is proved. Further,

well-coordination guarantees convergence in addition to invariant preservation. Besides, the

implementation of Indigo is dependent on causal consistency of a lower-level store while we

defined and implemented standalone protocols.

CISE [189, 356] lets the user specify the invariant of the object, associate each

method with tags and define conflicts between tags. It presents a rely-guarantee style proof

technique for invariant preservation. The proof technique allows conditions to be associated

with tags and requires that each operation guarantees the conditions of its tags relying on

67

the conditions of non-conflicting tags. In contrast to well-coordination, the proof rule is

fundamentally dependent on causal consistency and hence causal consistency is the weakest

possible notion in the model. Further, our approach does not require the user to provide

the conflict relation and automatically calculates it. In addition, we present protocols that

provide the required coordination.

For database transactions, [323] presented correctness conditions of different isolation

levels and an algorithm to find the lowest isolation level for transactions of an application to be

semantically correct. Later, [159, 160] presented an algorithm to determine whether executions

of a transaction are serializable under snapshot isolation. Recently, AloneTogether [247]

presented a program logic that enables compositional verification of invariant preservation

for weakly isolated transactions. These works consider isolation levels on shared memory

[367, 241, 27, 361, 358, 223, 274] databases. For instance, in the AloneTogether model, all

updates of a transaction become visible to all threads in an indivisible step. In contrast, we

consider weak consistency for replicated state.

IPA [224] presents a type system ensuring that values from weakly consistent

operations cannot flow into strongly consistency operations without explicit user endorsement.

IPA stores adapt consistency to system load within the user-specified bound. Similarly,

MixT [344] is a language that allows transactions to access different stores with varying

consistency guarantees and applies information flow analysis to prevent less-consistent data

from influencing more-consistent data. In contrast to our approach that infers the required

synchronization and dependency, IPA and MixT require the user to explicitly associate

68

consistency conditions with objects and stores. Further, they are concerned with consistency

flow rather than integrity preservation.

Epsilon-serializability [396] and TACT [489] reduce coordination by bounding the

staleness of replicated state. PBS [41] reduces coordination to a partial rather than a

complete quorum and statistically bounds staleness. In contrast to bounding staleness, we

focus on preserving invariants efficiently. Rationing [266] and Pileus [446] dynamically adjust

consistency based on temporal load statistics and Correctables [193] incrementally makes the

result more consistent to enhance responsiveness. In contrast, we presented a static approach

to avoid coordination.

We note that our commutativity definitions are similar to Lipton’s [306] moverness

in nature. However, they are defined for replicated rather than shared state. In addition,

they are weaker conditions. In particular, P-commutativity does not require the same final

state and return value after the move as far as the guard and the invariant continue to hold.

69

Chapter 3

RDMA-Enabled Well-Coordination

3.1 Introduction

Data centers equipped with RDMA network interfaces are pervasive. These network

interfaces support Remote Direct Memory Access (RDMA) [5, 250] from one node to another

without going through the network and operating system stack or requiring CPU cycles

from the other node. RDMAs mark the advent of a new model for distributed computing

that combines the traditionally separate models of shared memory and message-passing, and

have motivated new protocol designs [410, 16, 15]. This technology has been used to enable

microsecond-scale [54] replicated services whose availability and low-latency are critical in

applications such as finance and control.

RDMAs have been utilized to accelerate key-value stores [141, 249] and transactions

[251, 474, 473]. In particular, they have been used to implement State Machine Replication

(SMR) [420]. At its core, an SMR is a consensus or atomic broadcast protocol that executes

requests in the same total order across replicas, and provides strong consistency. From the

70

long-lasting class of SMR protocols and systems, RDMA-accelerated SMRs have gained

recent attention in projects such as DARE [382], APUS [467], Derecho [233], HovercRaft

[262], Mu [17], Hermes [255] and Kite [179]. In contrast to traditional message-passing SMRs

whose latencies are hundreds of microseconds, RDMA SMRs exhibit latencies that are less

than a dozen microseconds. To maintain the low latency, it is crucial to avoid overloading

the system. Therefore, the throughput of RDMA replicated systems is an important factor

for their responsiveness as well [178].

In the message-passing model, SMR protocols such as Viewstamp [362], Paxos [279],

Raft [364] and Spanner [123] provide strong consistency and have been the de facto standard

for replication. However, practitioners [459, 370, 275, 122, 6] soon realized that SMR does

not provide enough throughput, responsiveness and availability [9, 80, 81] for industrial

applications, and opted for relaxed notations of consistency. In fact, deployments of SMR

are often limited to small cluster sizes [123, 91, 229]. The large class of relaxed consistency

notions [423] can be more efficiently provided [374, 280]. However, these notions forgo the

total order of operations across replicas. Therefore, an immediate question is the safety of

these notions for replication. Convergent and Commutative Replicated Data Types (CRDTs)

[425, 424] and similar notions [25, 406] formally define replicated data types that converge

under relaxed consistency. In addition to convergence, RA-linearizability [466] and ACC

[304] define specifications for the functional correctness of these types. The definition of these

types and their specifications led to projects on their composition [114, 342, 475, 475], and

verification [78, 89, 148, 353, 498, 312, 187]. They were later followed by more expressive

convergent types such as cloud, mergeable and reactive types [88, 248, 87, 348]. Convergence

71

might be enough for simple objects such as counters. However, relaxed consistency can

further violate the integrity [37] of objects (such as maintaining a non-negative balance for a

bank account). Thus, replicated data types that preserve integrity under relaxed consistency

[35, 476, 355] followed.

However, not all operations can preserve convergence and integrity under relaxed

consistency. Some operations do need strong consistency. Therefore, several projects

considered hybrid models where each operation is executed under either relaxed or strong

consistency based on its semantics. These projects include IPA [44], Sieve [301, 299, 300],

Indigo [45, 46], CISE [189], Quelea [431], Carol [298] Hamsaz [226] and ECRO [133]. Hamsaz

analyzes the given object to find the conflicting and dependent pairs of methods. It then

synthesizes well-coordinated replicated objects that synchronize for conflicting, and preserve

dependencies for dependent method calls. Well-coordinated replicated data types (WRDTs)

guarantee convergence and integrity. Hampa [303] later added recency guarantees. Other

projects tested and verified [246, 392, 354, 85, 56, 69], and repaired [393] replicated objects

in hybrid models. Yet, others [224, 344, 263] considered the flow between relaxed and strong

consistency.

However, the distributed system model that was considered for CRDTs and WRDTs

was always the traditional message-passing network model. What is the semantics of CRDTs

and WRDTs in the RDMA network model? What are the efficient coordination protocols

that can leverage RDMAs to implement CRDTs and WRDTs?

RDMA offers two classes of communication primitives: two-sided and one-sided.

Two-sided communication has similar semantics to the traditional message-passing model. A

72

node can execute a send operation to communicate a message to another node. The other

node should execute an explicit receive operation to deliver and process the message. On

the other hand, one-sided communication has similar semantics to the traditional shared

memory model. A node directly performs a write or read operation on the memory of another

node. The access is performed without involving the CPU of the other node. The new class,

one-sided communication, tends to deliver lower response time since it bypasses the network

and operating system stack and does not interrupt the CPU of the other node. How can

well-coordination be efficiently implemented by one-sided communication?

This paper presents a novel operational semantics for RDMA WRDTs. The seman-

tics divides methods of a given object into three categories, reducible, irreducible conflict-free,

and conflicting, and declares distinct coordination requirements for each. The semantics does

not perform any message-passing. In particular, reducible method calls can be performed

with a single one-sided write operation that can be executed in parallel on the replicas.

Similarly, the coordination for the other two categories is a sequence of local operations

followed by one-sided remote operations. Further, we define an abstract operational semantics

for WRDTs that captures well-coordination conditions. We prove that the concrete semantics

of RDMA WRDTs refines the abstract semantics of WRDTs. Therefore, any execution of

an RDMA WRDT is well-coordinated. Since (op-based) CRDTs are a special instance of

WRDTs, each of the above two WRDT semantics subsume the semantics of CRDTs.

The operational semantics of RDMA WRDTs serves as a specification for their

implementation and runtime system. We implement RDMA WRDT on top of consensus and

reliable broadcast abstractions for the RDMA network model. We adopted and implemented

73

several CRDTs, and WRDTs. We evaluated our implementations by comparing them to

both message-based and SMR-based implementations. The results show that on average,

WRDTs exhibit more than 17x and 2.7x higher throughput respectively with almost the

same response time. In summary, we make the following contributions:

• It introduces RDMA WRDTs, the first hybrid replicated data types for the RDMA

network model.

• It presents novel operational semantics for RDMA WRDTs that is based solely on

one-sided communication. It divides methods to three categories and defines the

required coordination for each.

• It captures the notion of well-coordination as the abstract WRDT operational semantics,

and formally proves that the RDMA WRDT semantics refine the abstract WRDT

semantics, and preserve integrity and convergence.

• It efficiently implements the coordination protocols for RDMA WRDTs using only

one-sided communication.

• It empirically shows that the RDMA WRDTs outperform the throughput of the existing

message-based and SMR-based implementations.

3.2 Overview

We now illustrate RDMA replication with the familiar bank account example.

Example. As Fig. 3.1.(a) shows, an object of the Account class stores the

balance state b, with the integrity property (or invariant) I that requires the balance to stay

74

class Account

b : Int

I := λb. b ≥ 0

update deposit (a) = b+ a

update withdraw (a) = b− a

query balance () = b

(a)

(b)

(c)

Figure 3.1: Bank Account. (a) The user specification, (b) The conflict graph, and (c) The

dependency graph

non-negative. The class exposes the two update methods deposit and withdraw, which return

the updated balance state, and the query method balance that returns the current balance.

The goal is to replicate an object on the given set of host processes such that the

processes can issue requests to call update and query methods on the object. The processes

should coordinate the calls so that the integrity property is always preserved, and the states

of the processes eventually converge.

Well-coordination. A withdraw call issued at a process should be locally

permissible: it should not overdraft the account, i.e., not violate the invariant. Further,

preserving integrity and convergence requires enforcing certain orders between calls across

processes. For example, consider two withdraw calls, that each zeros the balance, are

concurrently executed at two processes, and are propagated and applied to the other process

in the opposite order. The second withdraw call in each process overdrafts the account and

75

violates the integrity property. Although it was locally permissible in its issuing process,

it becomes impermissible in the other process. We say that two withdraw calls permissible-

conflict. Further, consider a withdraw call that zeros the balance is executed right after a

deposit call in a process. If the withdraw call is propagated and applied to other processes

before the deposit call, then the withdraw call overdraft the account in the other processes.

We say that the withdraw call is dependent on the deposit call. Similarly, for a set object, if

an add and a remove call on the same element concurrently execute on two processes, and

are applied to the other process in the opposite order, the state of the set object diverges.

We say that the two calls add and remove state-conflict.

A replicated execution is well-coordinated if it is (1) locally permissible: every call

should be permissible in the issuing process, (2) conflict-synchronizing: any pair of conflicting

calls should have the same order across processes, and (3) dependency-preserving: a received

call should be applied locally only if all the calls that it succeeded in the issuing process and

is dependent on are already applied.

RDMA Coordination. RDMA allows a process to directly access the memory

of other processes. Direct reads and writes are considerably faster than reading and writing

by message-passing through the network stack. How can RDMA-enabled processes provide

well-coordinated replicated objects? How can direct memory accesses accelerate the required

coordination? Coordination mechanisms that can be captured as local accesses and then a

sequence of independent remote accesses can execute efficiently. In these mechanisms, an

access does not need to wait for a round-trip to receive the result of the previous access. In

Fig. 5.2, we showcase the coordination of RDMA replicated objects for our account example

76

Figure 3.2: RDMA Replicated Bank Account

with three processes. Each process stores the state σ of the object: in our example, the

balance for the account. It further stores other pieces of state that we visit in turn.

Conflicting methods. The conflict relation between the methods of an object

induces the conflict graph. As Fig. 3.1.(b) shows, in our account example, the conflict graph

has a loop on the withdraw method, and the deposit method is conflict-free. Every pair of calls

on adjacent methods of the conflict graph need to be synchronized to have the same order in

all the processes. We call a connected component of the conflict graph a synchronization

group. Each synchronization group will have a leader process. Every other process in the

group is a follower. Each follower process stores a buffer L for each synchronization group

that stores pending calls on the methods of that group. In the account example, there is a

group for withdraw method calls. In Fig. 5.2, the leader for this group is p1 and each follower

process keeps a buffer L for the withdraw calls. The leader checks local permissibility, orders

and locally applies calls on the methods of the group, and remotely appends the ordered

77

calls to the buffers of the followers. A follower process periodically traverses its buffer and

applies the pending calls to the state σ.

Follower processes receive updates without actively listening for and receiving

messages through the network stack. The buffer for a group at each follower process is

written by only the leader of the group and is read by only that local process. Therefore, the

leader itself maintains the tail pointer of the buffer, and the coordination operation of the

leader is locally reading and updating the tail pointer, and then remotely writing the call.

We will see more details about how the buffers are managed in § 3.4.

Dependencies. As we saw above, the dependencies of calls should be respected.

Therefore, each process keeps a mapping A from each process p and method u to the number

of calls on u from p that are locally applied. When a call is shipped to be appended to

a remote buffer, it is shipped with an account of its dependencies. The dependency map

D of a call on a method u is the projection of the applied map A of the issuing process

over the methods that u is dependent on. To respect the dependencies, when a process

traverses a buffer, it applies a call only if the local applied map A is point-wise greater than

the dependency map D that accompanies the call. When a call is applied, the local applied

map A is advanced for the issuing process. As Fig. 3.1.(c) shows, in our account example, the

dependencies of the withdraw method is the singleton set containing the deposit method. On

the other hand, the deposit method is dependence-free. Thus, the applied and dependency

maps are reduced to arrays indexed by process identifiers that store the number of deposit

calls issued by each process.

78

Conflict-free methods. Calls to conflict-free methods such as the deposit

method can avoid synchronization. Each process can autonomously propagate its conflict-free

methods to other processes. Each process stores a buffer F for conflict-free calls from each

other process. A process p that issues a conflict-free call checks that it is locally permissible,

applies it locally, and remotely appends it to the buffers that other processes store for p. For

example, in Fig. 5.2, the buffer F2 in process p1 stores the deposit calls issued by the process

p2. Similarly, the process p3 stores a buffer F2 for deposit calls issued by p2. Similar to a

conflicting call, a conflict-free call is accompanied by its dependency map D and is applied

only if the local applied map A is ahead of its dependency map.

A process stores a buffer of conflict-free calls for each other process. The other

process is the only writer of the buffer and the local process is the only reader. Therefore,

the other process can perform the update by locally reading and writing the buffer tail,

and then remotely writing the call (and its dependencies). Sharing buffers would require

synchronization across processes. RDMA does provide compare-and-swap operations; however,

they are more expensive than reads and writes and we avoid them with a single-writer design.

Reducible methods. We saw that conflict-free calls can avoid synchronization.

The issuing process can simply propagate them to other processes by remote writes. An

important observation is that for some conflict-free calls, even processing the calls can be

done at the issuing process, and the other processes can receive the updates with no effort.

In our account example, two deposit calls can be summarized to a single deposit with an

amount equal to the sum of the two amounts. Therefore, the issuing process can summarize

its deposit calls into a single deposit call, and remotely write only that call. As Fig. 5.2

79

shows, each buffer of conflict-free calls F can be replaced with a single summary call S. Each

process stores a summary call for itself and each other process. When a process issues a

new deposit call, it first calculates the summary of its current summary and the new call. It

then overwrites the summary locally for itself and remotely for each other process. It further

advances the applied map for the current process both locally and remotely. In contrast to

buffers, each process keeps its own summary since the process needs its own summary to

recalculate it.

Up to this point, the query method balance would simply return the stored state σ.

However, in the presence of summarized calls, it should apply all the locally stored summary

calls to σ to calculate the current state. In our example, it should apply the calls S1, S2 and

S3 to σ. Since the summary calls are conflict-free, they can be applied in any order. In a

more elaborate object, it might be possible to summarize only separate subsets of methods

which we call summarization groups. Each process stores a summary call from each process

per summarization group.

Method categories. Summarization can accelerate the propagation and

processing of calls. The summary is locally recalculated and is propagated by a single remote

write. The caveat is that not all summarizable methods can be propagated as above. The

method needs to be not only conflict-free but also dependence-free. If a method call has

dependencies and it is summarized and remotely written for another process, the other

process might not have applied the dependencies yet. Therefore, we consider three categories

of methods. We say that a method is reducible as described above only if it is conflict-free,

dependence-free and summarizable. We call a method irreducible conflict-free if it is

80

conflict-free but either not summarizable or not dependence-free. For example, in a grow-only

set that has a contains and an add method (to add an element but not a set), the method

add is conflict-free but is not summarizable. On the other hand, if the set object has an add

method to add a set, then the add method is summarizable. As another example, consider a

bank that is represented as a map that associates accounts to their balances, and in addition

to deposit and withdraw, exposes the open method to open accounts. The deposit method is

conflict-free but is dependent on the open method. Irreducible conflict-free methods use the

conflict-free buffers that we saw above. Finally, conflicting calls use the conflicting buffers.

We will consider these categories in more detail and the semantics of RDMA replicated

objects in the next section.

3.3 Replicated Data Types

In this section, we first present how the high-level specifications of object data

types can be captured. We then present a core operational semantics for well-coordinated

replicated data types (WRDTs), and prove that it guarantees integrity and convergence.

This abstract semantics will serve as the specification for replicated data types. We then

present the semantics of RDMA replicated data types. It divides the methods of an object

into three categories, and declares separate coordination requirements for each. We prove

that this concrete semantics refines the earlier abstract semantics of WRDTs, and therefore,

guarantees integrity and convergence.

81

3.3.1 Object Data Types

σ : Σ State

I Invariant

v : V Value

u : U Update Method

q : Q Query Method

d : λx, σ. e Definition

e Expression

o := 〈Σ, I, u := d, q := d〉 Object

p : P Process

r : R Request Identifier

c : C := u(v)p,r Update Call

a := q(v) Query Call

` := (p, u(v)r) | (p, q(v)) Label

τ := `∗ Trace

Figure 3.3: Basic Syntax

As Fig. 3.3 shows, a class of

objects is a tuple 〈Σ, I, u := d, q := d〉

that defines the state type Σ, the in-

variant (or integrity property) I on

the state, and the definitions of up-

date methods u and query methods q.

The invariant (or integrity) I is a pred-

icate on the state. The definition of an

update method is a function from the

parameter and the pre-state σ to the

post-state. Similarly, the definition of

a query method is a function from the

parameter and the pre-state σ to the

return value. The object is replicated

on the set of processes P . Any process

p can accept and issue update calls u(v)

or query calls q(v). The calls have unique request identifiers r. An update call is decorated

with the issuing process p and the request identifier r. We elide these decorations when they

are not needed or are evident from the context.

82

Clients can request method calls at every process, and the processes coordinate

these calls. A label for a call request is the pair of the issuing process and a call, and a trace

is a sequence of labels.

3.3.2 Semantics of Well-Coordinated Replicated Data Types

We now present the operational semantics for well-coordinated replicated data

types (WRDTs). We first see the replicated state and the coordination conditions that the

transition rules use.

Replicated State. The state of the given object is replicated across processes.

The replicated state ss is a mapping from each process p to its states σ. The execution

history x of a process is modeled as a permutation of a set of calls. Since query calls do not

mutate the state, an execution history only keeps update calls. We write c ∈ x to denote

that the call c is in the history x. An execution history x defines a total order on its calls:

we write c ≺x c
′ iff the call c precedes the call c′ in the execution history x. A replicated

execution xs is a function from each process to its execution history. The state W of our

operational semantics is the pair of the replicated state ss and the replicated execution xs. In

the initial state W0, the state of each process is the same state σ0 that satisfies the invariant

I, and the history of each process is an empty list.

Coordination Conditions. We now define the coordination conditions in steps.

For the sake of brevity, we elide separate definition environments.

State-conflict. A replicated execution is convergent if the state of the processes is

the same after all the calls are propagated to all processes. Out of order delivery of calls at

83

ss : P 7→ Σ Replicated State

xs : P 7→ List(C) Replicated Execution

W := 〈ss, xs〉 World

W0 := 〈[p 7→ σ0]p∈P , [p 7→ ∅]p∈P 〉 Initial World

Figure 3.4: WRDT State

different processes can lead to divergence of their states. For example, for the set data type,

according to the execution order of the two calls add and remove of the same element, there

are two possible resulting states. Therefore, they should synchronize. Two method calls c1

and c2 S-commute, written as c1 �S c2, iff c ◦ c′ = c′ ◦ c (where ◦ is function composition).

Otherwise, they S-conflict, written as c1 ./S c2.

Integrity and Permissibility. In the execution history of a process, the post-state

of a call is the pre-state of the next call. The body of each method can assume and rely on

the invariant in the pre-state; it should then preserve it in the post-state for the next call.

The notion of permissibility requires the invariant to hold in the post-state. A method call

c is permissible in a state σ, written as P(σ, c), iff I(c(σ)). The initial state is assumed to

satisfy the invariant. Therefore, if it is ensured that every call is permissible in its pre-state,

then by induction, every call enjoys integrity in its pre-state. Permissibility leads to integrity.

Invariant-sufficiency. There are calls (e.g., deposit on a bank account) that are

always permissible (i.e., a deposit never overdrafts) as far as they are applied to a state that

has integrity. Thus, when they are broadcast and executed on another process, in order to

84

be permissible, they only need the pre-state to have integrity. A call c is invariant-sufficient

iff for every state σ, if I(σ) then P(σ, c).

Permissible-Right-Commutativity. However, not all calls are invariant-sufficient.

For example, a withdraw call may be permissible in a process but may become impermissible

in another where it is executed after a racing withdraw call. A call c1 P-R-commutes with

another c2, written as c1 →P c2, iff for every state σ, if P(σ, c1) then P(c2(σ), c1). i.e.,

permissibility holds even after c1 is pushed right after c2.

Permissible-conflict. We say that c1 P-concurs with a call c2, if c1 is invariant-

sufficient or c1 →P c2. Otherwise, c1 P-conflicts with c2 and needs to synchronize with

it.

Conflict. We say that two calls c1 and c2 concur iff they both S-commute and

P-concur with each other. Otherwise, we say they conflict written as c1 ./ c2. Conflicting

calls need synchronization. A call is conflict-free if it does not conflict with any other call.

Permissible-Left-Commutativity. We saw above that

invariant-sufficient calls always preserve the invariant. However, there are calls whose

preservation of the invariant is dependent on the calls that precede them. For example, a

withdraw call may be dependent on the money deposited by a preceding deposit call in the

issuing process; after propagation to another process, if the withdraw moves to the left of

the deposit, the withdraw call can overdraft. A call c2 P-L-commutes a call c1, written as

c2 ←P c1 iff for every state σ, if c2 is permissible in the post-state of the call c1 on σ, i.e.,

P(c1(σ), c2), then c2 is permissible in σ, i.e., P(σ, c2), as well.

85

Call

c = u(v)p,r P(σ, c)

CallConfSync(xs, p, c)

xs′ = xs [p 7→ (xs(p) ::: c)]

σ′ = u(v)(σ)

〈ss[p 7→ σ], xs〉 p, u(v)r−−−−−→

〈ss[p 7→ σ′], xs′〉

Prop

c = u(v)p′,r c ∈ xs(p′) \ xs(p)

PropConfSync(xs, p, c)

PropDepPres(xs, p′, p, c)

xs′ = xs [p 7→ (xs(p) ::: c)]

σ′ = u(v)(σ)

〈ss[p 7→ σ], xs〉 −→

〈ss[p 7→ σ′], xs′〉

Query

v′ = q(v)(σ)

〈ss[p 7→ σ],_〉 p, q(v):v′−−−−−−→

〈ss[p 7→ σ],_〉

CallConfSync (xs, p, c) := ∀c′, p′. c′ ∈ xs(p′) ∧ c ./ c′ → c′ ∈ xs(p)

PropConfSync (xs, p, c) := ∀c′, p′. c′ ≺xs(p′) c ∧ c ./ c′ → c′ ∈ xs(p)

PropDepPres (xs, p′, p, c) := ∀c′. c′ ≺xs(p′) c ∧ c 6⊥⊥ c′ → c′ ∈ xs(p)

Figure 3.5: WRDTs Semantics

Dependency. A call c2 is independent of c1, written as c2 ⊥⊥ c1, if c2 is invariant-

sufficient or c2 ←P c1. Otherwise, c2 is dependent on c1, written as c2 6⊥⊥ c1. If c1 is executed

before c2 in the issuing process of c2, and c2 6⊥⊥ c1, then c2 can be applied to another process

only if c1 is already applied.

Given the integrity properties, the representation and automated checking and

inference of conflict and dependency relations [189, 226, 45, 355] is a topic of active research.

Transitions Rules. The transition rules of the operational semantics are

presented in Fig. 3.5. The rule Call accepts and executes an update method call c at the

process p. It first checks that the call is locally permissible P(σ, c). It then checks that if

86

the new call c conflicts with a call c′ that another process p′ has executed, then c′ should

have been already executed at the current process p. Thus, executing the call keeps the

execution conflict-synchronizing. A replicated execution is conflict-synchronizing if every

pair of conflicting calls have the same order across processes.

The rule Prop propagates a call c from another process p′ to the current process

p. Similar to the previous rule, this rule makes sure that executing c keeps the execution

conflict-synchronizing. It checks that if a call c′ that conflicts with the new call c is executed

before c in any other process, then c′ is already executed at the current process p. The rule

also makes sure that executing c keeps the execution dependency-preserving. A replicated

execution is dependency-preserving if for every call, its preceding dependencies in its issuing

process precede it in the other processes as well. The rule checks that if a call c′ is executed

before c in p′, and c is dependent on c′, then c′ is already executed at the current process p.

The rule Query executes a query call q(v) at a process p. The return value v′ is

the result of applying the call to the current state σ of p.

We note that (op-based) CRDTs (Convergent and Commutative Replicated Data

Types) [424] are a special case of WRDTs where it is assumed that all method calls state-

commute with each other, and the integrity predicate is simply the assertion true. The

conflict-synchronization and dependency-preservation conditions in the above transition rules

are trivially satisfied. Therefore, the rules are always enabled and calls can propagate without

coordination.

We also note that linearizable data types are a special case of WRDTs where the

conflict relation is complete. The executions of WRDTs are conflict-synchronizing. Therefore,

87

all the calls are totally ordered across processes. The execution histories xs(p) of processes p

are the prefixes of the total order. Further, the real-time preservation property is maintained

by the Call rule as (1) a call c in process p returns only after adding c to xs(p), and (2) the

condition CallConfSync ensures that a process p′ executes a call c′ only after every call c that

is in xs(p) is also in xs(p′).

Guarantees. Every well-coordinated execution enjoys integrity and convergence.

Integrity is the safety property that the invariant predicate holds for all reachable

states of a process.

Lemma 24 (Integrity) For all ss and p, if W0 →∗ 〈ss,_〉 then I(ss(p)).

Convergence is the safety property that states that processes which have applied

the same set of calls have the same state. We say that two histories x and x′ are equivalent

x ∼ x′ if they have the same set of calls.

Lemma 25 (Convergence) For all ss, xs, p and p′, if W0 →∗ 〈ss, xs〉 and xs(p) ∼ xs(p′)

then ss(p) = ss(p′).

3.3.3 RDMA Replicated Data Types

We now present the operational semantics of RDMA replicated data types. The

semantics divides methods into three categories, reducible, irreducible conflict-free, and

conflicting, and presents dedicated coordination requirements for each. We prove that this

concrete semantics refines the abstract semantics of WRDTs that we saw in the previous

subsection. This concrete semantics captures the core of our runtime system that we will see

in § 3.4.

88

Method Categories. A pair of methods u and u′ conflict if there are arguments

v and v′ such that the calls u(v) and u′(v′) conflict. We say that a method is conflicting if

there is a method that it conflicts with, and say that it is conflict-free otherwise. Similarly a

method is dependent on another method if there is a call on the former that is dependent on

a call on the latter. We write the set of methods that a method u is dependent on as Dep(u).

We say that a method is dependence-free if its set of dependencies is empty.

As we saw in the semantics of WRDTs, calls to a pair of conflicting methods should

preserve the same order across processes. The conflict relation on methods induces an

undirected graph that we call the conflict graph. The synchronization group SyncGroup(u)

of a method u is the connected component of the method in the conflict graph. Methods of

a synchronization group synchronize with each other.

The summary of two calls c and c′, written as Summarize(c, c′), is a call c′′ iff for

all states σ, c ◦ c′(σ) = c′′(σ). For example, the summary of deposit(3) and deposit(4) is

deposit(7). We say that a set of methods g are a summarization group if calls on g are closed

under summarization. A sequence of calls from a summarization group can be successively

summarized into a single call. We say that a method u is summarizable if it is a member of

a summarization group, that we write as SumGroup(u). Otherwise, it is not summarizable,

that we write as SumGroup(u) = ⊥. We say that a method is reducible if it is conflict-free,

dependence-free and summarizable. Otherwise, we say that it is irreducible.

The semantics utilizes the remote write feature of RDMAs to directly communicate

updates from one process to another. In order to tolerate faults and also have low latency for

query methods, each process keeps a local replica of the state, and performs remote writes

89

but no remote reads. The semantics distinguishes between three categories of methods: (1)

conflicting methods, (2) irreducible conflict-free methods, i.e., methods that are conflict-free

but are either not dependence-free or not summarizable, and (3) reducible methods. We

consider the coordination for each category in turn.

For conflicting methods, each synchronization group is assigned a leader process,

and each process replicates a buffer of calls for each group. As we will see in the transition

rules, the leader process of the group orders the calls on the group and then remotely appends

them to the buffer of each other process. The other processes periodically traverse their own

buffers and locally apply the calls. The leader is the single remote writer of all buffers, and

each process is the single reader of its own local buffer.

Conflict-free methods do not need synchronization and processes autonomously

issue and propagate them. Each process replicates a buffer of calls for all the irreducible

conflict-free calls of each other process. When a process p issues an irreducible conflict-free

call, it remotely appends it to the buffers that each other process stores for p. The other

processes periodically traverse their buffer, locally apply the calls and then discard them.

The process p is the single remote writer of these buffers, and each process is the single

reader of its own local buffer.

Reducible methods are remarkable: the issuing process can reduce them together

locally and then remotely write them for other processes (i.e., using RDMA one-sided

communication). Therefore, for each pair of a summarization group of methods and a process,

each process replicates a single call rather than a buffer of calls. This not only saves space

but also time as it eliminates the buffer traversals by the target processes. Thanks to direct

90

g : G = Set(U) Method Group

A : A = P → U → N Applied calls

D : D = P → U → N Dependencies

S : S = G→ P → C Summarized calls

F : F = P → List (C ×D) Conflict-free buffers

L : L = G→ List (C ×D) Conflicting buffers

K : K = P → Σ×A× S × F × L Configuration

Figure 3.6: WRDT RDMA State

RDMA writes, other processes obliviously receive updates without receiving and traversing

messages. Similar to the above buffers, each summarization call is written by only a single

remote process and is only read by the local process.

Replicated State. Fig. 3.6 shows the state of the operational semantics. A

configuration K is a mapping from processes p to tuples 〈σ,A, S, F, L〉. The stored state

σ represents the result of applying calls at process p. These calls are either conflicting or

irreducible conflict-free. The applied calls A is a mapping that maps a process p′ and an

update method u to the number of calls on u from p′ that are applied in the current process.

The summarized calls S is a mapping that maps a summarization group g of update methods

and a process p′ to a call c that summarizes calls on methods in g from p′. The conflict-free

calls F is a mapping that maps a process p′ to the list of irreducible conflict-free calls received

from p′; each call c is coupled with its dependencies D. The conflicting calls L is a mapping

91

that maps a synchronization group g of update methods to the list of calls on methods of g;

as before, each call c comes with its dependencies D.

Given a summarized map of calls S, the state Apply(S)(σ) is the result of applying

the calls in the range of S to σ. Since the calls in the summarized map are conflict-free, they

can be applied in any order. An applied map A satisfies a dependency map D, written as

D ≤ A, iff for all p and u, D(p, u) ≤ A(p, u).

We note that the semantics explicitly models the leader of each synchronization

group that orders the calls on that group. The map L stores a copy of the total order at each

process. The leader updates the orders stored at other processes by remote writes. Since

these orders are the same, this model is a refinement of an abstract leaderless model where a

configuration stores a single copy of the order.

Transition rules. Transition rules are presented in Fig. 3.7 and Fig. 3.8. The

rule Reduce presents the transition for a reducible method call u(v) by a process pj . If

u is conflict-free (i.e., SyncGroup(u) = ⊥), is dependence-free (i.e., Dep(u) = ∅), and is

summarizable (i.e., SumGroup(u) = g), then the call u(v) can be reduced. The rule first

checks that the call is locally permissible. The current state σ of this process pj is calculated

by applying the summarized calls that it has received Sj to its stored state σj . The post-state

that results from applying u(v) to σ should preserve the integrity property I. The current

summarizing call u′(v′) for the group g and the new call u(v) are summarized as the call

u′′(v′′). The new summary call is stored at all the processes pi, both locally at the current

process pj and remotely at other processes. Consequently, the number of applied calls on

92

Reduce

SyncGroup(u) = ⊥ Dep(u) = ∅ SumGroup(u) = g

σ = Apply(Sj)(σj) I(u(v)(σ)) Sj(g, pj) = u′(v′) Summarize(u′(v′), u(v)) = u′′(v′′)

S′i = Si[(g, pi) 7→ u′′(v′′)]i∈{1..|P |} n = Aj(pj , u) + 1 A′i = Ai[(pi, u) 7→ n]i∈{1..|P |}

[pi 7→ σi, Ai, Si,_,_]i∈{1..|P |}
pj , u(v)−−−−−→

[pi 7→ σi, A′i, S
′
i,_,_]i∈{1..|P |}

Free

SyncGroup(u) = ⊥

Dep(u) 6= ∅ ∨ SumGroup(u) = ⊥ σ′j = u(v)(σj) σ′ = Apply(Sj)(σ
′
j) I(σ′)

A′j = Aj [(pj , u) 7→ Aj(pj , u) + 1]

Dep(u) = {u′} F ′i = Fi[pj 7→ Fi(pj) ::: 〈u(v), Aj |{u′}〉]i∈{1..|P |}\{j}

[pj 7→ σj , Aj ,_,_,_][pi 7→ _,_,_, Fi,_]i∈{1..|P |}\{j}
pj , u(v)−−−−−→

[pj 7→ σ′j , A
′
j ,_,_,_][pi 7→ _,_,_, F ′i ,_]i∈{1..|P |}\{j}

Conf

SyncGroup(u) = g Leader(g) = pj

σ′j = u(v)(σj) σ′ = Apply(Sj)(σ
′
j) I(σ′)

A′j = Aj [(pj , u) 7→ Aj(pj , u) + 1]

Dep(u) = {u′} L′i = Li[g 7→ Li(g) ::: 〈u(v), Aj |{u′}〉]i∈{1..|P |}\{j}

[pj 7→ σj , Aj ,_,_,_][pi 7→ _,_,_,_, Li]i∈{1..|P |}\{j}
pj , u(v)−−−−−→

[pj 7→ σ′j , A
′
j ,_,_,_][pi 7→ _,_,_,_, L′i]i∈{1..|P |}\{j}

Free-App

D ≤ A σ′ = u(v)(σ) A′ = A[(p′, u) 7→ A(p′, u) + 1]

K[p 7→ σ,A,_, F [p′ 7→ 〈u(v), D〉 :: l],_] −→

K[p 7→ σ′, A′,_, F [p′ 7→ l],_]

Figure 3.7: RDMA WRDTs Semantics

93

Conf-App

D ≤ A σ′ = u(v)(σ) Leader(g) = p′ A′ = A[(p′, u) 7→ A(p′, u) + 1]

K[p 7→ σ,A,_,_, L[g 7→ 〈u(v), D〉 :: l]] −→

K[p 7→ σ′, A′,_,_, L[g 7→ l]]

Query

σ′ = Apply(S)(σ) v′ = q(v)(σ′)

K[p 7→ σ,_, S,_,_]
p, q(v):v′

−−−−−−→ K[p 7→ σ,_, S,_,_]

Figure 3.8: More RDMA WRDTs Semantics

method u from pj is incremented locally and stored both locally and remotely. The two

remote writes are independent and can be issued concurrently.

The rule Free presents the transition for a conflict-free but irreducible (i.e.,

dependent or not summarizable) method call u(v) by a process pj . If u is conflict-free (i.e,

SyncGroup(u) = ⊥), but either dependent (i.e., Dep(u) 6= ∅) or not summarizable (i.e.,

SumGroup(u) = ⊥), then the call u(v) cannot be reduced but can avoid synchronization. As

before, the call is first checked to be locally permissible. Then, the call is locally applied and

the number of applied calls on u is incremented. It is then remotely written for each other

process pi: it is appended to the list Fi(pj) that stores at pi the conflict-free calls issued

from pj . Let the dependencies Dep(u) of u be the set of methods {u′}. The call u(v) is

accompanied with a record of applied calls that u(v) is dependent on, i.e., Aj |{u′}.

The rule Conf presents the transition for a conflicting method call u(v) by a

process pj . The process pj is the leader for the method u. As before, the call is first checked

to be locally permissible. Then, the call is locally applied and the number of applied calls

94

is advanced. Let the synchronization group of u be g (i.e., SyncGroup(u) = g). The call is

remotely written for each other process pi: the call is appended to the list Li(g) that stores

at pi the calls from the synchronization group g. As before, the call is accompanied with a

record of its dependencies. The function Leader uniquely maps each synchronization group

to a process. As we will see in the next section, changing the leader of a synchronization

group from one process to another preserves this uniqueness.

The rule Free-App presents an internal transition by a process p to apply a call

from its conflict-free buffers F . A call from the buffer can be applied only if the record of

the already applied calls A at p is ahead of the dependencies D of the call. The stored state

σ is updated and the record of applied calls A is advanced. The rule Conf-App is similar

except that it applies a call from the conflicting buffers L.

Finally, the rule Query presents the transition of a query q(v) by a process p. The

return value v′ results from applying q(v) to the current state σ′, which is calculated by

applying the summarized calls S to the stored state σ.

We will see an implementation of this semantics in the next section.

Correctness. The RDMA WRDT semantics (Fig. 3.7 and Fig. 3.8) refines the

WRDT semantics (Fig. 3.5): any trace that is observed from the former can be observed

from the latter.

Lemma 26 (Refinement) For all K and τ , if K0
τ−→ K, then there exists W , such that

W0
τ−→W .

The refinement relation and the proof are available in the supplemental material.

95

The immediate corollaries are that executions of RDMA WRDTs enjoy integrity

and convergence.

All the reachable states of each process satisfy the integrity property. The state of

a process is the result of applying the summarized calls S to the stored state σ.

Corollary 27 (Integrity) For all i ∈ {1..|P |},

if K0 →∗ [pi 7→ σi,_, Si,_,_]i∈{1..|P |} then I(Apply(Si)(σi)).

When all the buffers F and L are applied, the states of the processes converge.

Corollary 28 (Convergence) For all i, j ∈ {1..|P |},

if K0 →∗ [pi 7→ σi,_, Si, Fi, Li]i∈{1..|P |} and Fi = Fj = ∅ and Li = Lj = ∅ then

Apply(Si)(σi) = Apply(Sj)(σj).

3.4 Implementation

Hamband1 is implemented on top of RDMA’s Reliable Connection (RC) model

using ibverbs library over Infiniband [3] in 1430 lines of code. First, we briefly explain

the metadata stored at each node and then describe how Hamband propagates calls. In

particular, we describe the reliable broadcast protocol that we use to broadcast conflict-free

calls.

Meta-data. As we saw in the semantics, each node stores a location S for

each reduction group, and two separate set of buffers: conflicting calls L, and irreducible

conflict-free calls F . Each buffer has a head that is locally stored at the host node and a tail
1https://github.com/fhoushmand/Hamband.git

96

that is remotely stored at the single writer node. The buffers store pairs of calls c and their

dependencies D. The dependency map that we saw in the semantics is efficiently represented

as an array per node where each cell represents the number of calls on a method. Since the

number of dependencies of methods is not necessarily the same, the dependency arrays are

variable-sized. When the pairs of a buffer are traversed, the size of dependency arrays in the

second element is decided based on the identifier of the method in the first element. Each

node also keeps the number of applied calls A from each node as an integer array that is

indexed by method identifiers. Further, each node keeps the following coordination analysis

results: the list of synchronization groups, and a mapping from each method to the set of

methods that it is dependent on.

Processing requests. Upon receiving a call request from the client, there are

four possibilities based on the category of the method. First, if the call is a query, it is

executed locally and the result is returned back to the client. Second, if the call is reducible,

it is reduced with the local summary, and the result is remotely overwritten to the remote

summary locations. Third, if the call is irreducible conflict-free, it is executed locally and

written to the remote buffers F . To guarantee convergence, the above two propagations

are done using the reliable broadcast abstraction. Before propagation, a call is assigned a

unique id, paired with its dependency arrays and is serialized into a byte stream. Fourth, we

instantiate a Mu [17] consensus instance for each synchronization group. If the call belongs

to a synchronization group, it is sent to the corresponding consensus instance to be ordered

in the L buffers.

97

In each node, two threads traverse and process the calls of F and L buffers if their

dependencies are already satisfied. Each buffer has a head that is locally stored at the

receiver node, and a tail that is remotely stored at the single writer node. Each call in the

buffer contains a canary bit as the last bit. To check whether the buffer is not empty and

the call is not concurrently being written, the receiver checks the canary bit. If the check

fails, then the periodical traversal of the buffer will retry later. Even if a call is missed in a

traversal, it will be processed in the next one. After a successful read, the head pointer is

advanced to the next location. The calls at locations before the head are already executed.

To avoid memory overflow, these locations are reused.

RDMA Reliable Broadcast. The reliable broadcast abstraction guarantees

the following agreement property: if a message m is delivered by some correct node, then

m is eventually delivered by every correct node. The best-effort broadcast abstraction on

RDMAs can simply write the message remotely for all nodes. However, the source node may

crash in the middle of the remote writes and violate the agreement property. To provide

agreement, the source node keeps a shared memory location, and gives other nodes read

access to the location. The source locally writes in the shared location before remotely

writing it for others. It clears the location afterwards. The shared location acts as a backup.

Each node has a heartbeat thread that periodically updates a local counter. This counter is

periodically read by other nodes to determine whether that node is still alive or not. If other

nodes detect that the source has failed, they remotely read the shared location, obtain any

pending message, and check if they have received it. If not, they deliver the message.

98

Synchronization. We adopt Mu consensus protocol [17] to serialize calls in the

L buffers. Under normal execution, only a designated leader has the permission to write to

the follower buffers. As we described above, nodes have a heartbeat mechanism to let others

detect when they fail. If a follower suspects that the leader has failed, it requests others

to accept it as the leader and waits for a majority of them to acknowledge. At any time,

each node recognizes only one node as the leader and grants it the write permission. A node

revokes permission from the previous leader before granting it to the next. Therefore, only

one node can be recognized as the leader by a majority and write to L buffers.

3.5 Experimental Results

We now evaluate the RDMA WRDTs of Hamband; we compare them with message-

passing CRDTs and RDMA-enabled SMRs. We observe that Hamband outperforms message-

passing CRDTs by 17.7× and 23× in terms of throughput and response time respectively.

Further, it provides 2.7× higher throughput than the state-of-the-art SMR system, Mu, with

almost the same response time.

Mu [17] is a low-latency leader-based SMR system, such as ZAB [229] that is used

in the industry. However, we note that RDMA WRTDs are independent of any leader-based

SMR protocol. They modularly use an SMR system (i.e., consensus) for the conflicting

category of methods. On the other hand, for the two conflict-free categories of methods,

they avoid the synchronization cost and use more efficient broadcast protocols or just single

RDMA writes. Therefore, they improve performance over the SMR baseline.

99

Questions. In our experiments, we aim to answer the following question in terms

of both throughput and response time: How do RDMA WRDTs compare to RDMA-based

SMRs? We further investigate the following more detailed questions for RDMA WRDTs. (1)

What is the effect of separate synchronization groups for conflicting methods? (2) What is

the impact of failures?

Platform and setup. We performed the experiments on a 7-node cluster, each

with 8 AMD opteron 6376 cores and 50GB memory. The nodes are connected via 40Gbps

Infiniband network, and run CentOS 7.4 Linux x86_64 kernel version 3.10. All programs are

compiled with gcc-7.4.0.

All the experiments are done with 4M operations unless stated otherwise. We

randomly generate method calls and uniformly distribute update calls between updated

methods. The calls on conflicting methods are automatically redirected to the corresponding

leader node(s). All the other calls including conflict-free and query calls are divided equally

between the nodes.

The throughput is calculated by dividing the total number of calls by the time

that it takes for all the update calls to be replicated on all the nodes. The response time

is calculated as the average response time over all the calls. We repeat each experiment 3

times and report the average.

Experiments and findings. We perform experiment on the RDMA WRDT of a

database schema that has all three categories of methods, reducible, irreducible conflict-free,

and conflicting. The results indicate that synchronization avoidance and remote buffering

improve the throughput of the database schema by up to 21% compared to the Mu SMR.

100

Further, we inject failures into the RDMA WRDT of a database schema. The experiment

shows that it is able to tolerate leader or follower failure with minimum overhead for both

throughput and response time of conflict-free operations.

Use-cases and benchmarks. We adopted [226, 368] three relational schemata:

project management, courseware, and movie. The project management class has five methods,

namely, addProject, deleteProject, worksOn, addEmployee, and query. The methods addProject,

deleteProject, and worksOn belong to a synchronization group and the worksOn method

depends on addProject and addEmployee due to the foreign-key constraint. The movie class

has four methods addCustomer, deleteCustomer, addMovie, and deleteMovie operating on two

separate relations; therefore, forming two synchronization groups. There is no dependency

in this class. The Courseware class has five methods, namely, addCourse, deleteCourse,

enroll, registerStudent, and query. Conflict analysis shows that there is one synchronization

group that includes addCourse, deleteCourse and enroll. The enroll method depends on both

addCourse and registerStudent.

Effect of synchronization groups. To study the effect of synchronization groups,

we compared Hamband and Mu on the movie use-case whose methods form two distinct

synchronization groups. We perform experiments that execute 2, 4, and 8M update operations

on four nodes. Fig. 3.9(a) and (b) show the throughput and response time respectively. We

observe that the Hamband exhibits 1.4× to 1.8× higher throughput than Mu. This is due

to the fact that Hamband is able to utilize two separate leaders to order requests while

Mu uses a single leader. Hamband’s throughput gain is close to the theoretical limit of 2×.

101

2M 4M 8M
0

100

200

300

400

500

#Updates
O
ps
/𝑚

𝑠

Movie

BAND MU

2M 4M 8M
2
3
4
5
6
7
8

#Updates

Re
sp
on

se
tim

e(
`
)

Movie

BAND MU

(a) Throughput (b) Response time

Figure 3.9: The effect of synchronization groups

50% 25% 10%
0

0.4

0.8

1.2
·103

Update

O
ps
/𝑚

𝑠

Project

BAND

MU

ad
dP

ro
je
ct

de
le
te
Pr
oj
ec
t

w
or
ks
O
n

ad
dE

m
pl
oy
ee

qu
er
y

ad
dP

ro
je
ct

de
le
te
Pr
oj
ec
t

w
or
ks
O
n

ad
dE

m
pl
oy
ee

qu
er
y

ad
dP

ro
je
ct

de
le
te
Pr
oj
ec
t

w
or
ks
O
n

ad
dE

m
pl
oy
ee

qu
er
y0

2
4
6
8
10

50% 25% 10%

Re
sp
on

se
tim

e(
`
)

Project

Method

Update%

(a) Throughput (b) Response time

Figure 3.10: Project management use-case

The difference in the response times is statistically negligible because the synchronization

operations that a leader performs for a call is independent of the number of leaders.

Mix of categories. In this subsection we experiment with the project manage-

ment database scheme that has methods in all the three categories. Fig. 3.10(a) compares

the throughput of Hamband and Mu with 50%, 25%, and 10% update calls on four nodes.

Hamband provides up to 21% higher throughput than Mu. Fig. 3.10(b) compares the

102

25% 15% 5%
0

5

10

15

20

Update%

O
ps
/`
𝑠

Counter

No Failure
Failure

25% 15% 5%
0

5

10

15

20

Update%

ORSet

No Failure
Failure

25% 15% 5%
0

1

2

Update%

Re
sp
on

se
tim

e(
`
)

Counter

No Failure
Failure

25% 15% 5%
0

1

2

Update%

ORSet

No Failure
Failure

(a) Throughput (b) Response time

Figure 3.11: Effect of failure on the Counter and ORSet use-cases.

response times for each method. The response times for all methods except WorksOn stay

almost the same. The response time for WorksOn calls is higher since they are dependent on

addProject and addEmployee calls and have to wait for them to be delivered.

Fault tolerance. We now study the effect of failure on throughput and response

time. All the failure experiments are done on 4 nodes. We first experiment on two CRDTs

in Fig. 3.11 to study the effect of failure where there is no conflicting method. The methods

of these use-cases are all in the two conflict-free categories. Therefore they use the reliable

broadcast protocol or the single RDMA writes and do not use Mu. Moreover, we report

results for the more elaborate courseware WRDT that has methods in all the three categories

in Fig. 3.12. We inject failures into a node by suspending its heartbeat thread which make

other nodes suspect that node. After a failure, all the requests of the failed node are redirected

to the next available node. In the case of leader failure, the conflicting calls have to wait

until the leader-change protocol elects the new leader.

Fig. 3.11(a) and (b) show the throughput and the response time of the Counter

and ORSet respectively with different update ratios. We observe that the throughput of the

103

No
Fa
ilu
re

Fo
llo
we
r F
ail
ure

Le
ad
er
Fa
ilu
re

0
0.2
0.4
0.6
0.8
1

1.2
1.4 ·103

O
ps
/𝑚

𝑠

Courseware

ad
dC
ou
rse

de
let
eC
ou
rse

en
ro
ll

reg
ist
erS
tu
de
nt

qu
er
y

0
2
4
6
8
10
12
14

Re
sp
on

se
tim

e(
`
)

Courseware

No Failure
Follower Failure
Leader Failure

(a) Throughput (b) Response time

Figure 3.12: The effect of failure on the courseware use-case.

Counter and ORSet decrease by only an average of 5% and 5%, while the average response

time increases by 15% and 5% respectively. Therefore, Hamband can smoothly withstand

failures for conflict-free use-cases.

Fig. 3.12(a) and (b) show the throughput and average response time of the course-

ware use-case for three scenarios: the normal execution without failures as the baseline,

failure of a follower, and finally, failure of the leader. Fig. 3.12(a) shows that Hamband

can gracefully tolerate follower failure with only 6% impact on the throughput. However,

since the leader change protocol is involved, when the leader of the synchronization group

fails, the decrease in throughput is 53%. Fig. 3.12(b) shows the response time per method.

The response time of the conflict-free registerStudent method experiences little to no change

even in the leader failure scenario. This is because calls on this method do not need to be

synchronized by the leader; therefore, they can be easily redirected to follower nodes without

much impact on their response time. However, the response time of the conflicting methods

such as addCourse, deleteCourse, and enroll almost doubles when the leader fails. They need

to wait for the leader-change protocol to install the next leader.

104

3.6 Related Works

RDMA and hardware-aided replication. A few replication systems have

been recently designed for RDMA [382, 467, 233, 17, 255] but they all implement an SMR

and provide strong consistency. In contrast, this paper considers the semantics of methods,

and avoids synchronization when possible.

DARE [382], the first RDMA-based SMR, presented a wait-free protocol that uses

RDMA direct accesses and permissions, and applies it to implement a strongly consistent

key-value store. Subsequently, APUS [467] improved the throughput of the SMR protocol.

However, it showed higher response times, since the protocol requires the followers assist

the leader during replication. Derecho [233], supports both an in-memory and a persistent

SMR with high throughput. It uses an RDMA multicast protocol (RDMC) to move the

data in high-rate flows, and uses a distributed shared memory (SST) to exchange control

messages that determine when it is safe to deliver the data. Mu [17] reaches consensus

with a single one-sided RDMA operation in the common case. It uses remote reads to

detect failures and uses permissions to prevent concurrent leaders in the case of failure. Our

synchronization mechanism for conflicting methods is similar. Hermes [255] uses logical

timestamps to decentralize write operations, and locally establish a total order for a key-value

store. Therefore, it is similar to the last-write-wins register CRDT that we implemented as

well. In contrast, this paper offers general semantics and protocols for WRDTs that subsume

CRDTs. Odyssey [178] presents a taxonomy and a comparison of these replicated systems.

Kite [179] adopts the release consistency (RC) model from shared-memory con-

currency where threads use release and acquire synchronization primitives, and offers these

105

primitives in a high throughput key-value store abstraction (similar to a distributed shared

memory). The key value store is implemented on top of eventually and strongly consistent

protocols that benefit from RDMA acceleration, and provides the well-understood SC for

DRF guarantee. On the other hand, GraFStakes a high-level data type with no distribution

details together with integrity properties. The convergence and integrity requirements lead

to the inference of conflict and dependency relations between methods. According to these

relations, GraFScategorizes methods into three classes based on their coordination require-

ments that are separately and efficiently implemented on top of reliable and total-order

broadcast protocols on RDMA. In particular, conflict-free methods calls can be executed

under eventual instead of sequential consistency. Further, the reducible class of method calls

can be implemented as single RDMA remote writes.

NetChain [238] uses programmable switches to store data and process queries in

the network data plane. This eliminates the query processing at coordination servers and

reduces the response time. HovercRaft [262] extends the Raft protocol to separate request

replication from ordering, and integrates it with a transport protocol on a P4 [138] ASIC

that supports load-balancing by updating the destination IP of RPC requests.

Hybrid replication models. Several projects have recently considered hybrid

consistency models. However, all of them assumed the traditional message-passing net-

work model; none addressed replication on the RDMA network model and its one-sided

communication mechanism.

IPA [44] presents a static analysis the identifies the conflicting operations that can

violate the integrity properties, and modifies them such that the invariants are maintained.

106

Sieve [301, 299, 300] applies static and dynamic analysis to determine whether an operation

can be executed under causal consistency (blue class) or needs strong consistency (red class) in

order to preserve the invariants. Quelea [431] and similarly the follow-up works [103, 59] define

axiomatic semantics for consistency notions based on primitive consistency relations such as

visibility and session orders. They capture user-defined consistency contracts for methods

using the same primitives. They then automatically map a contract to the weakest consistency

notion that satisfies the contract. Indigo [45, 46] captures invariants and post-conditions of

methods in terms of user-defined predicates. It then identifies conflicting methods and either

prevents or repairs their concurrent executions. CISE [189, 356] allows the user associate

tags with methods and define conflicts between tags, and presents a rely-guarantee style

proof technique for invariant preservation. Hamsaz [226] presents an axiomatic definition

of well-coordination; in contrast, this paper presents an abstract operational semantics for

general WRDTs, and further a concrete operational semantics for RDMA WRDTs, and

proves a refinement between them. Carol [298] lets users declare required guard predicates on

the current and remote view of the data, and automatically infers the required coordination.

In order to reduce coordination, ECRO [133] reorders conflicting operations locally when

possible.

107

Chapter 4

Graph Analytics Fusion and Synthesis

4.1 Introduction

Large-scale graph analytics has recently gained popularity due to its growing

applicability across various important domains including social networks, market influencer

analysis, bioinformatics, criminology, and machine learning and data mining. Several large-

scale graph processing systems [188, 428, 508, 509, 330, 408, 505, 339, 462, 338] have been

developed to enable efficient graph analysis across shared memory and distributed platforms.

Their programming models often require graph analysis problems to be expressed in terms

of low-level kernel functions over vertices and edges. However, analyses over graphs are best

expressed using higher-level abstractions such as reduction over paths in the graph. For

instance, shortest path, reachability and connected component problems are fundamentally

formulated in terms of paths. Further, elaborate graph analysis problems that involve

multiple reductions over paths or vertices are difficult to correctly implement using the

offered low-level programming models. More importantly, manual optimizations such as

108

merging multiple iterations can be time-consuming and error-prone. In particular, showing

correctness and termination properties requires reasoning about the flow of values between

vertices across multiple iterations that emulate values for paths.

This project regards the interface of the graph processing frameworks as the

instruction set for graph analytics, and introduces GraFS, a graph analytics language and

synthesizer. The GraFS language is a high-level declarative specification language that

provides features for common graph processing idioms such as reduction over paths. We

show that the declarative language can easily and concisely capture the common graph

analysis problems. Given a specification, the GraFS synthesizer automatically synthesizes

code for five graph processing frameworks: Ligra [428], GridGraph [509], PowerGraph [188],

Gemini [508], and GraphIt [505].

To synthesize efficient implementations, GraFS optimizes specifications by syntactic

fusion transformations that fuse similar operations to be executed together. We formalize the

syntax and the semantics of the GraFS language and the fusion rules, and prove that the

fusion transformations are semantics-preserving. Effectively, fusion reduces specifications to

the sequence of three primitives: reduction over paths, mapping over vertices and reduction

over vertices.

Graph analytics frameworks offer iterative programming models to calculate reduc-

tion over paths. The values for vertices or edges are calculated iteratively based on the

values of neighbors. Influenced by their runtime systems, these frameworks differ on how

values are propagated between iterations. Some allow computations to both pull and push

values to neighbors [188] whereas others only allow push [509] and others support a hybrid

109

[508, 428, 505]. Not only the propagation methods, but also system-specific nuances of the

frameworks make their implementation of the same analysis problem subtly different. For

example, they follow different protocols for atomicity of updates.

We formalize a comprehensive set of iterative models that given certain kernel

functions, calculate path-based reductions. For each model, we present correctness and

termination conditions on candidate kernel functions. Given a path-based reduction, the

GraFS synthesizer enumerates candidate kernel functions and uses the correctness conditions

as specifications to automatically synthesize the kernel functions. After fusion reduces

specifications to the three primitives, reduction over paths, mapping over vertices and

reduction over vertices, the synthesizer reduces reductions over paths to iterative calculations.

Thus, graph analysis is reduced to iteration-map-reduce primitives. GraFS translates each

of these primitives to implementations in each of the five target frameworks.

We apply GraFS to common graph analysis use-cases and generate code for each

of the five frameworks. We note that graph processing frameworks often offer a more flexible

and expressive API. However, we show that GraFS can express a large collection of common

use-cases. The experimental results show that GraFS concisely captures use-cases, efficiently

analyzes and synthesizes code, and its fusion brings up to 4× and in average 2.4× speedup.

In summary, this paper makes the following contributions. It provides the high-level

declarative language GraFS and its semantics for large-scale graph analytics. It captures

the iteration-map-reduce graph processing primitives that implement graph computations

as structured let terms. GraFS presents semantics-preserving fusion transformations that

are aware of these primitives: they fuse computation into and maintain this structure. This

110

paper formally models and proves the formal correctness and termination conditions for

a comprehensive set of iterative models. Further, it combines type-directed enumerative

synthesis and constrained-based synthesis to automatically synthesize the iterative kernel

functions. The resulting tool can target five different graph processing frameworks and is

evaluated on multiple standard benchmarks. The experiments show that fusion can accelerate

execution. GraFS showcases that declarative languages and fusion transformations are

effective for large-scale analytics.

In the following sections will present (1) Graph analytics specification language

GraFS and its semantics (§ 4.3 and § 4.5.1), (2) Semantics-preserving and platform-

independent fusion transformations (§ 4.5.2), (3) The formalization of iterative graph compu-

tation models (§ 4.4), their correctness and termination conditions (§ 4.6.1), and synthesis of

their kernel functions (§ 4.6.2), and (4) The synthesis tool that generates code for five graph

processing frameworks and its experimental results (§ 4.7).

4.2 Overview

Fig. 4.1 shows the overview of GraFS. The user writes her graph analytics as a

declarative specification. Then, the fusion transformations optimize the input specification

and translates it to iteration-map-reduce primitives. Subsequently, the synthesis process gen-

erates iterative kernel functions for the optimized specification. Finally, the code generation

backend translates the kernels to five target graph processing frameworks. In this section,

we present an example use-case in the GraFS specification language, and then show how

that specification can be fused into an equivalent more efficient and canonical specification.

111

Graph
analytics

specification

SMT solver

Synthesis
Semantics-preserving

fusion
transformation

Fused specification
as

iteration-map-reduce Candidate

Kernel
functions

Code
generation

Ligra

GridGraph

Gemini

PowerGraph

GraphIt

Figure 4.1: Workflow of GraFS (Graph Analytics Fusion and Synthesis)

Then, we illustrate iterative reduction models (i.e., algorithms). Next, we consider the

iteration-map-reduce primitives, and see both fused and unfused implementations of our

use-case based on them. Finally, we see a glimpse of the correctness conditions of iterative

reductions and how a synthesizer can use the conditions to generate the iterative kernel

functions.

Specification. The GraFS language allows declarative and concise specification

of graph analysis computations. For example, Fig. 4.2, Eq. 4.1 represents the specification of

the Radius use-case. The radius of a graph is the minimum eccentricity over its vertices.

The eccentricity of a source vertex s is the longest of the shortest paths from s to any other

vertex. The inner-most reduction of the Radius use-case is a path-based reduction that

calculates the shortest path from a source vertex s to a destination vertex v. It applies the

minimum reduction function min to the result of applying the weight function weight to all

paths p in Paths(s, v), that is the set of paths from s to v. Then, it specifies the eccentricity

of s as a nesting vertex-based reduction with the reduction function max to find the longest

112

of the shortest paths over all destination vertices v. Finally, it specifies the radius as the

minimum of the eccentricity of the sample sources s1 and s2.

Fusion. A naive execution of specifications may execute path-based and vertex-

based reductions multiple times. We show that multiple such reductions can be fused into

a single reduction, and specifications can be represented as a common triple-let form with

separate terms for path-based reduction, mapping over vertices and vertex-based reduction.

For example, the Radius use-case includes multiple path-based reductions one

per source that can be fused together. Further, the path-based reductions are enclosed

by vertex-based reductions that can be fused together as well. We illustrate this fusion in

Fig. 4.2. We consider the fusion steps in turn. The specification of Radius is represented in

Eq. 4.1. In Eq. 4.2, the outer min function over the two sources is unrolled. In Eq. 4.3, we

restate each of the two reductions in a triple-let form. GraFS features a triple-let term that

separates path-based reductions, mapping over vertices and vertex-based reductions, and

thus, facilitates fusion. The term max
v∈V

min
p∈Paths(s1,v)

length(p) is rewritten as the following three

lets. The first let, ilet x := min
s1

length, calculates a path-based reduction. For each vertex,

it calculates the shortest length over the paths from the source s1, and binds the result to

x. The second let applies a map function in each vertex on the results of the path-based

reduction. In this case, there is only one path-based reduction; therefore, the map function

in the second let, mlet x′ := x, is simply the identity function, and the result is bound to x′.

(In use-cases with an expression on multiple path-based reductions, the map in the second

let captures the expression.) The third let calculates a reduction over all vertices. In this

example, the third let, rlet x′′ := max x′, calculates the maximum value over all vertices and

113

binds the result to x′′. In Eq. 4.3, a similar transformation is applied for the other source s2

as well.

Next, in Eq. 4.4, the two triple-let terms are fused into one by pairing the operations

of the corresponding lets, and the outer min is applied to the two final results x′′ and y′′. In

the next two steps, the paired path-based and vertex-based reductions are fused. In Eq. 4.5,

the two path-based reductions of the first let, ilet , are fused into one. The fused reduction

calculates the pair of the two values simultaneously. (The two sources s1 and s2 are used to

initialize the first and second elements of the pairs respectively.) The fused path function

F returns the pair of the results of the two path functions. Similarly, the fused reduction

function R applies the two reduction functions to the first and second elements of the input

pairs respectively. Finally, in Eq. 4.6, the pair of vertex-based reductions of the third let, rlet ,

are fused into one. The fused reduction function R′ applies the two reduction functions to the

first and second elements of the input pairs respectively. The original Radius specification

executes two rounds of path-based and vertex-based reductions; however, the fused version

computes one path-based and one vertex-based reduction on tuples of two elements at the

same time. We will see the formal fusion rules including rules for more elaborate terms such

as nested path-based reductions (§ 4.5.2 and § 4.5.3).

The final term represents the specification of Radius as an equivalent sequence of

one path-based reduction, one map in each vertex, and one reduction over all vertices. We will

next see that path-based reductions are calculated iteratively. Thus, fusion reduces GraFS

specifications to three primitives: Iteration-Map-Reduce: iteration for iterative path-based

reduction, map for mapping over vertices and reduce for reduction over vertices. Map and

114

Radius = min
s∈{s1,s2}

max
v∈V

min
p∈Paths(s,v)

length(p) (4.1)

= min

(
max
v∈V

min
p∈Paths(s1,v)

length(p), max
v∈V

min
p∈Paths(s2,v)

length(p)

)
(4.2)

= min

ilet x := min
s1

length in

mlet x′ := x in

rlet x′′ := max x′ in

x′′

,

ilet y := min
s2

length in

mlet y′ := y in

rlet y′′ := max y′ in

y′′

(4.3)

=

ilet 〈x, y〉 := 〈min
s1

length, min
s2

length〉 in

mlet 〈x′, y′〉 := 〈x, y〉 in

rlet 〈x′′, y′′〉 := 〈max x′, max y′〉 in

min(x′′, y′′)

(4.4)

=

ilet 〈x, y〉 := R
〈s1,s2〉

F in

mlet 〈x′, y′〉 := 〈x, y〉 in

rlet 〈x′′, y′′〉 := 〈max x′, max y′〉 in

min(x′′, y′′)

where

F := λp. 〈length(p), length(p)〉

R (〈a, b〉, 〈a′, b′〉) :=

〈min(a, a′),min(b, b′)〉

(4.5)

=

ilet 〈x, y〉 := R
〈s1,s2〉

F in

mlet 〈x′, y′〉 := 〈x, y〉 in

rlet 〈x′′, y′′〉 := R′ 〈x′, y′〉 in

min(x′′, y′′)

where

R′ (〈a, b〉, 〈a′, b′〉) :=

〈max(a, a′),max(b, b′)〉
(4.6)

Figure 4.2: Fusion of the Radius Use-case.

115

def Iteration-Pull (I,P,R)

foreach (v ∈ V)

S(v)← I(v)

if (S(v) 6= ⊥) A← A ∪ {v}

while (A 6= ∅)

foreach (v ∈ A)

gv ← ⊥

foreach (〈u, v〉 ∈ in-edges(v))

gv ← R(gv, P(S(u), 〈u, v〉)

nv ← R(S(v), gv)

if (nv 6= S(v))

S(v)← nv

foreach (〈v, u′〉 ∈ out-edges(v))

A′ ← A′ ∪ {u′}

A,A′ ← A′, ∅

(a)

(b)

def Map (f)

foreach (v ∈ V)

S(v)← f(S(v)))

def Reduce (R)

val← ⊥

foreach (v ∈ V)

val← R(val,S(v))

return val

(c)

Figure 4.3: Pull Iterative Reduction.

reduce over vertices can be directly implemented; next, we consider iterative path-based

reductions.

Iterative Path-based Reduction. Calculating path-based reductions by

explicit enumeration of paths is prohibitively inefficient. Instead, path-based reductions are

calculated iteratively by local updates on the value of vertices based on the values of their

neighbors. As an example, we consider the pull iterative model for idempotent reduction

116

functions. Let us consider the shortest path use-case SSSP(s)(v) = min
p∈Paths(s,v)

weight(p). It

specifies a path-based reduction from the source s where the reduction function R is min

and the path function F is weight. (We saw a similar reduction, the shortest length, as the

innermost reduction of Radius.)

The pull-based iterative reduction is presented in Fig. 4.3a and illustrated in

Fig. 4.3b. Each vertex stores a value S(v); we denote the value of a vertex v in the iteration k

as Sk(v). The iterative calculation is based on three kernel function: the initialization function

I, the propagation function P and the reduction function R. The function I is a function

from vertices to their initial value. For the SSSP use-case, I is λv. if (v = s) 0 else ⊥ that

initializes the value of the source s to zero (the some value of zero to be more precise) and

the other vertices to none ⊥. In each iteration, if the value of a vertex changes, its successors

are added to the active set A for the next iteration. Fig. 4.3b shows the calculations for the

active vertex v that is shown in black. In an iteration k + 1, an active vertex v pulls the

value Sk(u) of each of its predecessors u. For each predecessor u, it applies the propagation

function P to the value Sk(u) and the edge 〈u, v〉. For the SSSP use-case, the function P is

λn, e. n+ weight(e) that adds the value of the predecessor to the weight of the edge from

it. It then applies R (that is min in SSSP) to reduce the propagated values together and

with the current value Sk(v) of v. The result is the new value Sk+1(v) of v. If the value of v

changes, the successors of v that are marked as gray are active in the next iteration. The

calculation stops when the values of vertices stay unchanged in two consecutive iterations.

We will formalize a comprehensive set of iterative models (§ 4.4).

117

Iteration-Map-Reduce. After the fusion transformation, the specification

reduces to iteration-map-reduce primitives: reduction over paths, mapping over vertices

and reduction over vertices. We saw in Fig. 4.3a and b that reductions over paths can be

computed using the iterative models. A sketch of both Map and Reduce operations is shown

in Fig. 4.3c. The Map operation simply goes over all the vertices in the graph and applies the

input function f to the value of each vertex. Similarly, the Reduce operation reduces vertex

values with the input reduction function R. Fig. 4.4 shows sketches for both unfused and

fused implementation of the Radius use-case. Fig. 4.4a shows the translation of the original

unfused specification of the Radius use-case that we saw in Fig. 4.2, Eq. 4.1. In contrast,

Fig. 4.4b shows the translation of the final fused specification of the Radius use-case that we

saw in Fig. 4.2, Eq. 4.6. (We note that since the map is the identity function for the Radius

use-case, it is elided in these implementations.) The unfused version in Fig. 4.4a executes

two rounds of iteration-map-reduce. The first and the second rounds perform calculations

for the first source s1 and the second source s2 respectively. Each round first performs an

iteration to calculate the shortest path from the source to each vertex. Then, it calculates

the eccentricity of the source by applying the max reduction function on the values of all

vertices. Finally, the radius of the graph is minimum of the two eccentricity values. The

fused version in Fig. 4.4b performs one round of iteration-map-reduce. The fused iteration

stores and performs operations on a pair of values: shortest paths to each of the two sources.

The initialization function initializes the values of the two sources, and the propagation

and reduce functions propagate and reduce the shortest path values to them at the same

time. Similarly, the subsequent reduction over all vertices calculates the eccentricity of the

118

Radius (Unfused) :

Iteration(λv. if (v = s1) 0 else ⊥,

λn, e. n+ 1,

min)

ecc1 ← Reduce(max)

Iteration(λv. if (v = s2) 0 else ⊥,

λn, e. n+ 1,

min)

ecc2 ← Reduce(max)

radius ← min(ecc1, ecc2)

(a)

Radius (Fused) :

Iteration(λv. 〈if (v = s1) 0 else ⊥,

if (v = s2) 0 else ⊥〉,

λn, e. 〈n+ 1, n+ 1〉,

λ〈a, b〉, 〈a′, b′〉.

〈min(a, a), min(b, b′)〉)

〈ecc1, ecc2〉 ← Reduce(λ〈a, b〉, 〈a′, b′〉.

〈max(a, a′), max(b, b′)〉)

radius ← min(ecc1, ecc2)

(b)

Figure 4.4: Unfused and fused implementations of Radius as iteration-map-reduce rounds.

two sources at the same time. As we will see in the experiments (§ 4.7), this reduces the

computation load by a factor of two.

Correctness and Synthesis. We formalize correctness and termination

conditions for calculation of path-based reductions based on the iterative models. The

conditions are parametric in terms of the kernel initialization and propagation functions and

are used to automatically synthesize the kernel functions (§ 4.6.1 and § 4.6.2).

We present and prove sufficient conditions for a comprehensive set of iterative

models (§ 4.6.1). As an example, we consider the pull model and illustrate one of the

correctness conditions on the propagation function P in Fig. 4.5a and Fig. 4.5b. Consider

a vertex v and a predecessor u of v. Consider calculating the reduction over all the paths

119

to v that go through u. Fig. 4.5a shows the direct calculation where the value of the path

function for each path to v is separately calculated, and then the results are reduced. On

the other hand, Fig. 4.5b shows a calculation using the propagation function P where first,

the values of the path function for the paths to the predecessor u are calculated and reduced,

and then, the result is propagated by P to v. In order to correctly calculate path-based

reductions by local updates, the result of the above two calculations should be the same.

Intuitively, local propagations from predecessors should be equivalent to global reductions

over paths. Further, to reason about termination, we formalize the termination conditions for

iterative models. Iterations incrementally consider longer paths. Cycles of a graph generate

an infinite number of paths and can cause divergence. However, under certain conditions on

the reduction and path functions R and F , adding longer paths has no effect on the vertex

values. For example, for the shortest path use-case SSSP (with non-negative edges), after a

certain number of iterations, all the simple paths of the graph are already considered, and

longer cyclic paths cannot improve the shortest path. Therefore, the calculation eventually

terminates. We will see a formal definition of this condition and prove that it is sufficient for

termination.

We use the correctness conditions to synthesize correct kernel functions (§ 4.6.2).

In particular, we apply type-guided enumerative synthesis to find candidates, and automatic

solvers to check the validity of the correctness conditions for each candidate. The result is

correct-by-construction kernel functions that can iteratively calculate path-based reductions.

We translate the synthesized functions to code in five high-performance graph processing

frameworks (§ 4.7).

120

4.3 Declarative Graph Analytics

(a) Separate calculation for paths and then

reduction

(b) Reduction at predecessor and then propa-

gation

Figure 4.5: The Correctness of the Pull Model.

The path p · e denotes the extension of path p

with edge e.

The GraFS language declaratively

and concisely captures mathematical specifi-

cations of graph analysis computations. The

language design is guided by common idioms

in graph processing use-cases. It supports

reduction over values of paths to a vertex,

and mapping and reduction over those values.

Fig. 4.6 presents example use-cases.

Path-based Reductions. The

use-case SSSP specifies the weight of the

shortest path from the source vertex s to

each vertex v. The set of paths from a source vertex s to a destination vertex v is denoted

by Paths(s, v). The specification applies the minimum reduction function min to the result

of applying the weight function weight to all paths p in Paths(s, v). The specification of

connected component (for undirected graphs) CC takes the smallest identifier of the vertices

in a component as the representative identifier of that component. The set of all paths (from

any source vertex) to a destination vertex v is denoted by Paths(v). The specification CC

defines the connected component of each vertex v as the minimum identifier of the head

vertices of the paths Paths(v). The above two specifications apply a reduction function R

to the result of a path function F for a set of paths. We call these reductions path-based

reductions. Similarly, the breadth-first-search use-case BFS calculates the parent for each

121

SSSP(s)(v) = min
p∈Paths(s,v)

weight(p) Single Source Shortest Path

CC(v) = min
p∈Paths(v)

head(p) Connected Components

BFS(s)(v) = penultimate(arg min
p∈Paths(s,v)

length(p)) Breadth-First Search

WSP(s)(v) = let P := args min
p∈Paths(s,v)

length(p) in Widest Shortest Paths

max
p∈P

capacity(p)

NSP(s)(v) =

∣∣∣∣∣ args min
p∈Paths(s,v)

weight(p)

∣∣∣∣∣ Number of Shortest Paths

NWR(s)(v) =

min
p∈Paths(s,v)

capacity(p)

max
p∈Paths(s,v)

capacity(p)
Narrowest to Widest Path Ratio

Trust(v) = max
s∈s

 max
p∈Paths(s,v)

capacity(p)

min
p∈Paths(s,v)

length(p)

 Trust from users {s}

Radius = min
s∈{s}

max
v∈V

min
p∈Paths(s,v)

length(p) Radius Sampled on vertices {s}

DRR =

max
s∈{v}

max
v∈V

min
p∈Paths(s,v)

length(p)

min
s∈{v}

max
v∈V

min
p∈Paths(s,v)

length(p)
Diameter to Radius Ratio

DS(s) =
⋃

v∈V∧

(
min

p∈Paths(s,v)
weight(p)

)
> 7

{v} Vertices with minimum distance of 7

LTrust(s) = let SSSP := λs, v. min
p∈Paths(s,v)

weight(p) in

let WP := λs, v. max
p∈Paths(s,v)

capacity(p) in

min
v∈V∧ SSSP(s, v) < Radius

WP(s, v) Least trust in the radius

Figure 4.6: A Subset of Use-cases in GraFS

122

vertex in the BFS tree rooted at a source vertex s. For each vertex v, it specifies a path-based

reduction to find the shortest-length path from s to v, and returns the penultimate of that

path. The penultimate of a path is the vertex before the last in the path. The specification

uses the reduction function arg min to get the path with the minimum length rather than

the minimum length itself, and then applies the penultimate function to the path. (A simpler

specification can simply apply min instead of arg min and return the minimum path length,

i.e., the depth of the vertex in the breadth-first-search tree.)

Nested Path-based Reductions. Path-based reductions can be nested. The

use-case WSP specifies the widest shortest path from a source s to each vertex v. We use the

let syntactic sugar to enhance readability. WSP has a nested reduction (with the reduction

function args min) to find the shortest paths, and then a nesting reduction to find the widest

capacity in those paths. WSP is used as a metric of the trust of a user to other users in

social networks where the capacity of each edge is the local trust rating of the source user to

the sink user [186]. Intuitively, users with wider (stronger trust ratings) and shorter (closer)

paths are more trustworthy sources of information. Similarly, the use-case NSP specifies the

number of shortest paths from a source s to each vertex v. It uses a nested reduction to find

the shortest paths and then applies the cardinality operator to the resulting set. (We will

see in § 4.5.3 that cardinality is a syntactic sugar for a path-based reduction with the sum∑
function.)

Mapping over Vertices. Mathematical operators can be applied to path-based

reductions. The use-case NWR specifies the narrowest to widest path ratio from a source to

each vertex. At each vertex, it divides the result of two path-based reductions. Similarly,

123

the use-case Trust is the result of division and maximum operations between path-based

reductions. It specifies the trust from a set of users {s} to each other user v. As before,

wider and shorter paths are favored.

Vertex-based Reductions. The values of vertices calculated by a path-

based reduction can be subsequently reduced by a vertex-based reduction. For example, the

eccentricity of a source vertex s is the longest of the shortest paths from s to any other

vertex. The radius of a graph is the minimum eccentricity over its vertices. The Radius

use-case specifies eccentricity as a vertex-based reduction with the reduction function max

to find the longest of the shortest paths over all vertices. It then specifies the radius as the

minimum of the eccentricity of a set of sample sources {s}. Similar to path-based reductions,

mathematical operators can be applied to vertex-based reductions. As the set of sampled

sources {s} is finite, the outer min function can be unrolled to an infix operator between

vertex-based reductions. Similarly, the use-case DRR, that is the ratio of the diameter

over the radius of the graph, is specified as maximum and minimum operations between

vertex-based reductions, and a subsequent division.

The use-case DS specifies the set of vertices with the distance of at least 7 from

the source s. The union ∪ vertex-based reduction is used to calculate the set. The set of

vertices that it is applied to are constrained by a nested path-based reduction to specify the

distance. (In § 4.5.3, we show that constrained vertex-based reductions can be desugared

to standard vertex-based reductions that are applied to path-based reductions on pairs of

values.) The next use-case, LTrust, represents a measure of the least amount of trust from

a user to her neighbourhood in a social network. Similar to DS, the use-case LTrust is

124

specified as a constrained vertex-based reduction. Given a source s, it calculates the widest

path to each vertex within the radius of s (i.e., k-hop neighbourhood of s where k is the

radius of the graph), and then returns the narrowest of those.

4.4 Iterative Models

We formalize four canonical models for iterative graph computations: the pull

and push models with idempotent and non-idempotent reduction. Graph computation

frameworks [188, 428, 508, 509, 330, 408] implement variants of these models. Later in

§ 4.6, we use these models to implement path-based reductions and present their correctness

conditions.

In these models, each vertex is first initialized. Then, the value of each vertex is

iteratively updated based on the values of its predecessors. In each iteration, the vertex pulls

the values of its predecessors or each predecessor pushes its value to the vertex. Then, the

values of the predecessors and the current value of the vertex are reduced to calculate the new

value of the vertex. Before assigning the reduced value to the vertex, a final function may

be applied to it. The iteration stops when the value of no vertex changes. The models are

parametrized by four kernel functions: I, P, R and E . The initialization function I defines

the initial value for each vertex. The propagation function P, given a value n and an edge

〈u, v〉 where n is the value of u, defines the value that is propagated to v. The commutative

and associative reduction function R defines how the propagated values are aggregated. The

epilogue function E defines the final update.

125

We present a high-level language to specify the kernel functions. We compile

kernels specified in this language to executable programs in five graph processing frameworks.

The grammar for the bodies of the kernel functions is presented in Fig. 4.7a. (Later in

§ 4.6.2, the same grammar is used by the synthesis process; given higher-level specifications,

it automatically generates the kernel functions in this language.) Fig. 4.7b shows the

iterative kernel functions for two example use-cases: the shortest path SSSP and the page-

rank PageRank (PR). For the shortest path SSSP use-case, the initialization function I

initializes the source vertex s to (some value of) 0 and the other vertices to none ⊥. The

propagation function P adds the value v of the predecessor to the weight of the edge e. The

reduction function R is the minimum (that is idempotent) and the epilogue function E is the

identity function. For the page-rank use-case PR, I divides the value 1 between the number

of vertices |V |. The function P divides the value v of the predecessor between its successors.

The function R is sum (that is non-idempotent). The function E multiplies the sum with the

damping factor γ and adds a constant.

Pull Model. The characteristic of the pull model is that vertices pull the values

of their predecessors to calculate their new values. We consider the pull model for idempotent

and non-idempotent reduction functions in turn.

Pull model with idempotent reduction (pull+). The pull model for idempotent

reduction is represented in Fig. 4.8, Theorem 29. The value of the vertex v in the iteration

k is represented as Skpull+(v). In the beginning when k = 0, vertices have no value ⊥. In

the first iteration k = 1, they are initialized by the initialization function I. In subsequent

iterations k+ 1, k ≥ 1, each vertex v pulls values of its predecessors. For each predecessor u,

126

e ::= n | v Body Exp

| e+ e | e− e | − e | 〈e, e〉

| e× e | e / e | e = e | e < e

| min(e, e) | max(e, e)

| if (e) then e else e

| weight(e) | capacity(e)

| indeg(e) | outdeg(e)

| src(e) | dst(e)

| |V | Graph Order

n ::= 0 | 1 | .. | T | False Literal

v Variable

(a) Grammar

SSSP

I := λv. if (v = s) 0 else ⊥

P := λv, e. v + weight(e)

R := λv, v′. min(v, v′)

E := λv. v

PageRank (PR)

I := λv. 1 / |V |

P := λv, e. v / outdeg(src(e))

R := λv, v′. v + v′

E := λv. γ × v + (1− γ) / |V |

(b) Examples

Figure 4.7: (a) Grammar for Kernel Functions (b) Example Kernel Functions. (min and +

filter none values ⊥.)

the propagation function P is applied to the value Skpull+(u) of u (from the previous iteration

k) and the connecting edge 〈u, v〉. Then, as illustrated in Fig. 4.3b, all the propagated values

are reduced by R with each other and then with the previous value Skpull+(v) of v. Finally,

applying the epilogue function to the reduced value results in the new value Sk+1
pull+(v) of v.

As an optimization, the above update is performed only if the set of predecessors of v whose

value have changed in the previous iteration CPredsk(v) is non-empty.

Pull model with non-idempotent reduction (pull−). The pull model for non-

idempotent reduction is represented in Fig. 4.8, Theorem 30. The value of the vertex v

in the iteration k is represented as Skpull−(v). Similar to the previous model, the values

127

from predecessors are propagated and reduced. The difference is that after reducing the

propagated values, the result is not reduced with the previous value of the vertex. The

reason is to avoid duplicate reduction with the non-idempotent reduction function. Consider

a vertex v and a predecessor u of v. Assume that the value of u represents the reduction of

a set S of values. After the value of u is propagated to v, the value of v includes the reduced

and propagated values of S. Assume that the value of u is updated again to represent the

reduction of more values. If the new value of u is propagated to v and reduced with the

current value of v, then the set S is included in the value of v twice.

Push Model. In the pull model above, each vertex itself pulls values from its

predecessors. In contrast, in the push model, the predecessors push values to the vertex

when they are updated. We consider the push model for idempotent and non-idempotent

reduction functions in turn.

Push model with idempotent reduction (push+). The push model for idempotent

reduction is represented in Fig. 4.8, Theorem 31. The value of the vertex v in the iteration k

is represented as Skpush+(v). The iterations 0 and 1 are similar to the previous models. In

subsequent iterations k + 1, k ≥ 1, for each vertex v, the predecessors {u0, .., un−1} that

have been changed in the previous iteration independently propagate their values and reduce

it with the current value of v. Since the reduction function is commutative and associative,

the predecessors can apply their updates in any order. In each iteration, the initial value S0

of v is its value in the previous iteration k. For each changed predecessor ui, the propagation

function P is applied to the value Skpush+(ui) of ui (from the previous iteration k) and the

connecting edge 〈ui, v〉. The result is then reduced with the current value Si of v to calculate

128

CPredsk(v) =
{
u | u ∈ preds(v) ∧ Sk(u) 6= Sk−1(u)

}
Definition 29 (Pull (idempotent))

S0pull+(v) := ⊥

S1pull+(v) := I(v)

Sk+1
pull+(v) :=

Skpull+(v) if CPredsk(v) = ∅

E
[
R
(
Skpull+(v), Ru∈preds(v) P

(
Skpull+(u), 〈u, v〉

))]
else

k ≥ 1

Definition 30 (Pull (non-idempotent))

S0pull−(v) := ⊥

S1pull−(v) := I(v)

Sk+1
pull−(v) :=

Skpull−(v) if CPredsk(v) = ∅

E
[
Ru∈preds(v) P

(
Skpull−(u), 〈u, v〉

)]
else

k ≥ 1

Definition 31 (Push (idempotent))

S0push+(v) := ⊥

S1push+(v) := I(v)

Sk+1
push+(v) := E(Sn), k ≥ 1 where

let {u0, .., un−1} := CPredsk(v) in

S0 := Skpush+(v)

Si+1 := R
(
Si, P

(
Skpush+(ui), 〈ui, v〉

))

Definition 32 (Push (non-idempotent))

S0push−(v) := ⊥

S1push−(v) := I(v)

Sk+1
push−(v) := E(Sn), k ≥ 1 where

let {u0, .., un−1} := preds(v) in

S0 := ⊥

Si+1 := R
(
Si, P

(
Skpush−(ui), 〈ui, v〉

))

Figure 4.8: Four Iterative Reduction Methods. CPredsk(v): The predecessors of the vertex v

that changed in the iteration k

129

its new value Si+1. Propagation and reduction by the last changed predecessor un−1 results

in the value Sn. The final value of v is the result of applying the epilogue E to Sn.

Push model with non-idempotent reduction (push−). This model works for

non-idempotent (in addition to idempotent) reduction functions. The iterative model is

represented in Fig. 4.8, Theorem 32. Let the value of the vertex v in the iteration k be

represented as Skpush−(v). Since the reduction function may not be idempotent, in contrast

to the previous model, vertices start from the none value S0 = ⊥, and all the predecessors ui

propagate their values in each iteration. For each predecessor ui, the propagate function P is

applied to the latest value Skpush−(ui) of ui and the connecting edge 〈ui, v〉. The resulting value

is reduced with the current value Si of v. We note that this variant makes all vertices active

during an iteration; GraFS also incorporates another variant where only the vertices whose

values change are active and propagate their values. In this variant, an active predecessor ui

first rollbacks its previous update before applying its new update.

The iterative models that we saw here are synchronous. In the synchronous model,

vertices store their previous in addition to their new value to propagate their previous value.

In the asynchronous model, however, each vertex stores one value, and vertices can propagate

intermediate values.

4.5 Specification and Fusion

In this section, we define the core specification language, its denotational semantics,

and the semantics-preserving fusion transformations.

130

r := R
V
m | Vertex-based Red.

r ⊕ r | x

ilet X := M in

mlet X := E in

rlet X := R in e

m := R
p∈P
F(p) | Path-based Red.

m⊕m | x |

ilet X := M in e

P := Paths | argsR
p∈P

F(p) Paths

R := min | max | Reduction Fun.

∨ | ∧ | ∑
F := length | weight | Path Fun.

capacity

⊕ := min | max | Operation

∧ | ∨ |

+ | − | × | / |

= | < | >

p Path Variable

x Variable

e := e⊕ e | x

X := 〈X,X〉 | x

M := 〈M,M〉 | R F

R := 〈R,R〉 | R 〈x〉 | R 〈d〉

E := 〈E,E〉 | e

R := [] | R⊕ r | r ⊕ R r Context

M := [] | R
V
M | m Context

M⊕m | m⊕M

Ms := [] | 〈Ms,M〉 | 〈M,Ms〉 | M Context

ilet X := Ms in e |

ilet X := Ms in

mlet X := E in

rlet X := R in e

Rs := [] | 〈Rs, R〉 | 〈R,Rs〉 | R Context

ilet X := M in

mlet X := E in

rlet X := Rs in e

n Value

v Vertex Value

d : Dm := (V(g) 7→ N) ∪ {⊥} m Sem. Dom.

n⊥ : Dr := N ∪ {⊥} r Sem. Dom.

Figure 4.9: Core Specification Language

131

4.5.1 Core Specification Language

To present the crux of the fusion transformations, we define a core specification

language in Fig. 5.3. It features both reduction over paths and reduction over vertices. A

computation can be specified as a reduction r over the values of vertices. The value of

vertices, in turn, can be specified as a nested reduction m over the paths to each vertex. More

elaborate computations can be specified by nested path-based computations, and applying

operations between multiple path-based and vertex-based computations. We will visit each

term type in turn.

Vertex-based and path-based reductions. A vertex-based reduction R
V
m applies

a reduction function R to the result of path-based reductions m over all vertices V. The

function R is a commutative and associative function such as min, max, ∨, ∧ and
∑

. Larger

vertex-based reductions r ⊕ r′ can be constructed using the operators ⊕. A path-based

reduction R
p∈P
F(p) applies a reduction function R to the results of applying the function

F to each path p in set of paths P . Similar to vertex-based reductions, larger path-based

reductions m⊕m′ can be constructed using the operators ⊕. The path function F is the

length, weight, or capacity of the path. The set of paths P can be either Paths that denotes

all the paths to each vertex, or the restricted paths argsR
p∈P

F(p) where R ∈ {min,max} that

denotes the paths in P whose F value is the extremum. (The r and m terms can be also

variables x that can be substituted with a value n or a map value d from vertices to values.)

Let forms. Let terms factor different reductions. Factored reductions are

conducive to fusion. As shown in Fig. 5.3, the terms m and r both have let forms. The

m term constructor ilet X := M in e binds variables X to factored path-based reductions

132

M for the expression e. The expression e can apply operators ⊕ to the variables X. Both

the variables X and reductions M can be inductively constructed as pairs. A single path-

based reduction M is simply represented as RF where R is the reduction function and F is

the path function. Similarly, the triple-let r constructor ilet X := M in mlet X ′ := E in

rlet X ′′ := R in e binds variables X to factored path-based reductions M , binds variables X ′

to expressions E (on X), and binds variables X ′′ to factored vertex-based reductions R (on

X ′). A triple-let term represents an r term as a sequence: path-based reductions, mappings

on the results, and finally vertex-based reductions on the results. We will see that this form

enables fusion (§ 4.5.2) and can be directly implemented (§ 4.7). Similar to M , the factored

vertex-based reductions R can be inductively constructed as pairs. A single vertex-based

reduction R is R 〈x〉 that is a reduction over tuples of variables 〈x〉 (or is R 〈d〉 after the

variables are substituted with map values d from vertices to values). To concisely represent

the fusion rules, we define the context R to abstract the surrounding term where a term r

appears. Similarly, we define the contexts M, Ms, and Rs for the terms m, M and R.

Semantics and Compositionality. We define the denotational semantics of the

specification language (presented in Fig. 5.3). For brevity, we showcase the semantics J K

of a subset of the term constructors in Fig. 4.10. The semantics of an undefined or stuck

computation is represented as ⊥. In each rule, it is assumed that the semantics of subterms

are not undefined; otherwise, the semantics of the whole term is undefined as well. The

domain Dm of a path-based computation m on a graph g is a finite map from each vertex of

g to natural numbers V(g) 7→ N, and ⊥ (for undefined computation). The domain Dr of a

133

SPRed s
R

p∈P
F(p)

{
(g) =

[v 7→ R {F(p) | p ∈ JP K (g)(v)}]v∈V(g)

SMBin

Jm⊕m′ K (g) =

Jm K (g) ⊕ Jm′ K (g)

SVReds
R
V
m

{
(g) =

R
{

Jm K(g)(v) v∈V(g)

}
SRLet u

wwwwwwwwww
v

ilet X := M in

mlet X ′ := E in

rlet X ′′ := R in

e

}

����������
~

(g) =

J e [X ′′ := JR [X ′ := JE [X := JM K (g)] K] K(g)] K

SMPair

J 〈M, M ′〉 K (g) = 〈JM K(g), JM ′ K(g)〉

SRPair

J 〈R, R′〉 K (g) = 〈JR K(g), JR′ K(g)〉

SMM

J R F K =

s
R

p∈Paths
F(p)

{

SRR
r

R
〈

[v 7→ nv]v∈V(g), .., [v 7→ n′v]v∈V(g)

〉z
=

s
R
V

(
[v 7→ 〈nv, .., n′v〉]v∈V(g)

){

Figure 4.10: Denotational Semantics of the Specification Language

vertex-based computation r is the natural numbers N and ⊥. We use the notation [ki 7→ vi]i

for a finite map that maps each key ki to value vi over the range i.

The rule SPRed defines the semantics of the path-based reduction R
p∈P
F(p). It

uses the (elided) semantics of paths P that is a map from each vertex v to the set of paths

to v. For each vertex v, the rule SPRed applies the function F to each path to v, and then

applies the reduction function R to the resulting values. (Since the reduction functions R

are commutative and associative, they can be applied to the values in any order.) The rule

SMBin defines the semantics of m⊕m′ as the result of the operator ⊕ on the semantics of

m and m′. The operators R and ⊕ are in the syntactic and semantic domains when they are

134

on the left- and right-hand side of the rules respectively. The operator ⊕ is simply lifted to

maps by pointwise application to the values of each key.

The rule SVRed defines the semantics of the vertex-based reduction R
V
m using

the map resulted from the semantics of m; it reduces the values of the map for all vertices.

The rule SRLet defines the semantics of triple-let terms by three subsequent substitutions:

the substitution of the variables X with the semantics of M in E, the substitution of X ′

with the semantics of E in R, and finally the substitution of X ′′ with the semantics of R in

e. (The semantics of e and E are elided.)

The rules SMPair and SRPair define the semantics of pairs of factored reductions

M and R inductively. The two rules SMM and SRR reduce the semantics of single factored

reductions to expanded reductions. The rule SMM defines the semantics of the factored

path-based reduction R F as a path-based reduction on the paths Paths. The rule SRR

defines the semantics of a factored vertex-based reduction. It merges the tuple of the factored

maps [v 7→ nv]v∈V(g), .., [v 7→ n′v]v∈V(g) into a map from vertices v to tuples 〈nv, .., n′v〉, and

then applies the vertex-based reduction.

We prove that the semantics is compositional. If two terms are semantically equiva-

lent, replacing one with the other in any context is semantics-preserving. Compositionality

of the semantics is used to prove that the fusion transformations are semantic-preserving.

The following theorem states the compositionality for r.

Lemma 33 (Compositionality) For all r, r′ and R, if J r K = J r′ K then JR[r] K = JR[r′] K.

135

4.5.2 Fusion

We now present the fusion transformations. Fusion reduces computation time by

combining separate reductions into a single reduction. The transformations have three main

forms: fusion of nested path-based reductions, fusion of pairs of path-based reductions, and

fusion of pairs of vertex-based reductions. The result of fusion is an equivalent specification

in the triple-let form with separate terms for path-based reduction, mapping over vertices

and vertex-based reduction.

The fusion rules are presented in Fig. 4.11 and Fig. 4.12. The top-level fusion

relation⇒r is called r-fusion and transforms an r term to another. The other fusion relations

⇒m, ⇒M , and ⇒R which transform m, M and R terms are called m-fusion, M -fusion and

R-fusion. We consider m-fusions first. The rule FMInR states that m-fusions can be applied

to m terms that appear in the context of r terms. (Both M[m1] and M[m2] in this rule are r

terms.) The rule FMInM states that m-fusions can be applied to m terms in the context of

other m terms.

Fusing nested path-based reductions. The rule FPNest m-fuses nested path-based

reductions to flat reductions. Consider the nested path-based reduction R
p′ ∈P ′

F(p) where the

set of paths P ′ is another path-based reduction argsR′
p∈P

F ′(p) where R′ is min or max. Let us

assume that R′ is min. A straightforward calculation computes F ′ on the paths P and finds

the subset of paths P ′ with the minimum value, and then computes F on the paths P ′ and

reduces them by R. An optimized calculation can compute both F ′ and F on the paths P

simultaneously and only consider the pairs with the minimum first element to calculate the

reduction R over the second elements. To calculate the values of the path functions F and

136

F ′, this approach enumerates paths only once instead of twice. Therefore, the two reductions

can be fused into one reduction as ilet 〈x, x′〉 := R′′
p′∈P
F ′′(p′) in x′. The new path function F ′′

returns the pair of values F ′(p′) and F(p′) for an input path p′. The new reduction function

R′′ considers the first element of the two input pairs and if the first element of one input is

(strictly) smaller than the other, that input is returned. That input takes over because the

set of paths for the reduction R are only those with the minimum value for F ′. On the other

FMInR

m1 ⇒m m2

M[m1] ⇒r M[m2]

FMInM

m1 ⇒m m2

M[m1] ⇒m M[m2]

FPNest

R
p′ ∈ argsR′

p∈P
F ′(p)
F(p′) ⇒m ilet 〈x, x′〉 := R′′

p∈P
F ′′(p) in x′

where R′ ∈ {min,max}

F ′′ := λp. 〈F ′(p),F(p)〉

R′′(〈a, b〉, 〈a′, b′〉) :=

if (a = a′) then 〈a,R(b, b′)〉

else if (R′(a, a′) = a) then 〈a, b〉 else 〈a′, b′〉
FPRed

R
p∈Paths

F(p)

⇒m

ilet x := R F in x

FILetBin

(ilet X1 := M1 in e1) ⊕ (ilet X2 := M2 in e2)

⇒m

ilet 〈X1, X2〉 := 〈M1,M2〉 in e1 ⊕ e2

if
free(e1) ∩ X2 = ∅

free(e2) ∩ X1 = ∅

FMInILet

M1 ⇒M M2

ilet X := Ms[M1] in e

⇒m

ilet X := Ms[M2] in e

FMPair〈
R F ,R′ F ′

〉
⇒M R′′ F ′′

where F ′′ := λp. 〈F(p),F ′(p)〉

R′′(〈a, b〉, 〈a′, b′〉) :=〈
R(a, a′),R′(b, b′)

〉

FVRed

R
V

(ilet X := R′ F in e)

⇒r

ilet X := R′ F in

mlet x := e in

rlet x′ := R x in x′

Figure 4.11: Fusion Rules

137

FLetsBin

ilet X1 := M1 in

mlet X ′1 := E1 in

rlet X ′′1 := R1 in

e1

⊕

ilet X2 := M2 in

mlet X ′2 := E2 in

rlet X ′′2 := R2 in

e2

⇒r

ilet 〈X1, X2〉 := 〈M1,M2〉 in

mlet 〈X ′1, X ′2〉 := 〈E1, E2〉 in

rlet 〈X ′′1 , X ′′2 〉 := 〈R1, R2〉 in

e1 ⊕ e2

if

free(E1) ∩ X2 = free(E2) ∩ X1 = free(R1) ∩ X ′2 =

free(R2) ∩ X ′1 = free(e1) ∩ X ′′2 = free(e2) ∩ X ′′1 = ∅

FMInLets

M1 ⇒M M2
ilet X := Ms[M1] in

mlet X ′ := E in

rlet X ′′ := R in e

 ⇒r

ilet X := Ms[M2] in

mlet X ′ := E in

rlet X ′′ := R in e

FRPair

〈R1 x1,R2 x2〉 ⇒R R3 〈x1, x2〉

where R3(〈a, b〉, 〈a′, b′〉) :=

〈R1(a, a′),R2(b, b′)〉

FRinLets

R1 ⇒R R2
ilet X := M in

mlet X ′ := E in

rlet X ′′ := Rs[R1] in e

 ⇒r

ilet X := M in

mlet X ′ := E in

rlet X ′′ := Rs[R2] in e

Figure 4.12: More Fusion Rules

hand, if the first elements of the inputs are equal, their second elements are reduced by R to

make the second element of the output pair. The rule FPNest can be repeatedly applied to

a deeply nested path-based reduction to flatten it to a reduction over the basic paths term

Paths.

138

Factoring, pairing and fusing path-based reductions. The rule FPRed factors out

a flat reduction to an equivalent let form. The rule FILetBin fuses an operation between

two let terms to a single let term. It pairs the factored reductions M1 and M2 of the two

let terms. The condition of the rule prevents the free variables of the expression of one

term from clashing with the bound variables of another. The rule FMInILet allows the

factored reductions M in the context of a let term to be fused. The rule FMPair M -fuses a

pair of factored reductions
〈
R F ,R′ F ′

〉
to a single reduction R′′ F ′′ that calculates the two

reductions simultaneously. The path function F ′′ returns the pair of the results of F and F ′.

Similarly, the reduction function R′′ returns a pair: the reduction of the first elements by R

and the second elements by R′.

Factoring into, pairing and fusing triple-let terms. The rules above can factor all

path-based reductions m to the let form, and fuse factored reductions to a single one. The

next rule FVRed transforms vertex-based reductions that are applied to these path-based

reductions to an equivalent triple-let form. The triple-let form factors path-based and

vertex-based reductions in separate let parts. The rule FLetsBin fuses an operation between

two triple-let terms to a single triple-let term. It pairs the factored path-based reductions

M , expression E, and vertex-based reduction R of the two terms. The rules FMInLets and

FRinLets allow the factored reductions M and R in the context of a triple-let term to be

fused.

Fusing vertex-based reductions. The rule FRPair presents R-fusions. It fuses

a pair of factored vertex-based reductions 〈R1 x1,R2 x2〉 to a single reduction R3 〈x1, x2〉.

139

Given two pairs, R3 returns a pair: the reduction of the first elements by R1 and the second

elements by R2.

We saw an example fusion in Fig. 4.2. The fusion transformation presented above

is semantic-preserving: terms are only fused into other terms with the same semantics. The

following theorem states the semantics-preservation property of fusion.

Theorem 34 (Semantics-preserving Fusion) For all r1 and r2, if r1 ⇒r r2 then J r1 K =

J r2 K.

4.5.3 Extensions

We now consider extensions to the core syntax and the fusion rules.

Common Operation Elimination. Fusion factors path-based reductions, vertex-

based map operations and vertex-based reductions into the triple-let form. This form

facilitates common operation elimination. For example, if a path-based reduction appears

twice in the first let and assigned to two sets of variables, one can be eliminated and the

result of the other can be assigned to both sets of variables.

Domain. The scalar semantic domain of the core language was confined to the

natural numbers. The domain are simply extended to booleans, vertex identifiers and also

sets of values. Thus, the reduction operations are extended with union ∪ and intersection

∩ , and the path functions are extended with head and penultimate. The function head

returns the identifier of the head vertex of the path, and the function penultimate returns

the identifier of the penultimate (that is the vertex before the last) of the path.

140

Unary operations and Literals. The path-based reductions m and vertex-based

reductions r and their fusion rules can be simply extended with unary operations and literals.

Vertex Variables. We extend the core syntax with path terms Paths(v, v′) and

Paths(v) that can specify vertex variables as source and destination. The term Paths(v, v′)

specifies the set of paths from the source v to the destination v′, and the term Paths(v)

specifies the set of paths from any source to the destination v. Thus, the source s of a

path-based reduction can be either a vertex v or none ⊥. A factored path-based reduction

R
c
F carries its configuration c, that is either a source, or a pair of other configurations. We

also extend the syntax with vertex-based reductions R
v∈V

m that can bind the vertex variable

v.

Syntactic Sugar. Syntactic sugar enables concise specifications. For example,

the term F(argR
p∈P

F ′(p)) where R is either min or max first finds a path p in P with the

minimum or maximum value for the function F ′, and then returns the result of applying

F to p. It is used to specify the BFS use-case. The following rule expands this term to a

path-based reduction in the let form. The path function F ′′ returns the pair of the results of

F ′ and F . The reduction function R′ returns the input pair with the minimum or maximum

first element.

FMRed

F (arg R
p∈P

F ′(p)) := ilet 〈x, x′〉 := R′
p∈P
F ′′(p) in x′ where R ∈ {min,max}

F ′′ := λp. 〈F ′(p),F(p)〉 R′(〈a, b〉, 〈a′, b′〉) := if (R(a, a′) = a) then 〈a, b〉 else 〈a′, b′〉
(4.7)

As an example DS is fused as follows:

141

DS(s) =
⋃

v∈V∧

(
min

p∈Paths(s,v)
weight(p)

)
> 7

{v}

= R
v∈V

〈(
min

p∈Paths(s,v)
weight(p)

)
> 7, {v}

〉
where

R(〈a, b〉, 〈a′, b′〉) :=

if (a ∧ a′) then 〈a, b ∪ b′〉

else (a) then 〈a, b〉

else 〈a′, b′〉

= R
v∈V
〈
(

ilet x := min
s

weight in x
)
> ilet x′ := ⊥ in 7, ilet x′′ := ⊥ in {v}〉

= R
v∈V

(
ilet 〈〈x, x′〉, x′′〉 := 〈〈min

s
weight,⊥〉,⊥〉 in 〈x > 7, {v}〉

)
= R

v∈V

(
ilet x := min

s
weight in 〈x > 7, {v}〉

)

=

ilet x := min
s

weight in

mlet x′ := 〈x > 7, {v}〉 in

rlet x′′ := R x′ in

x′′

Nested Triple-lets. The core syntax supports expressions that can be fused to a

single iteration-map-reduce triple-let term. We extend the core syntax to support nested

vertex-based reductions, and extend the fusion rules to fuse them. For example, the use-case

LTrust that we saw in Fig. 4.6 uses the vertex-based reduction Radius as a nested term.

Nested triple-let terms can be translated to a sequence of iteration-map-reduce rounds on

the graph.

142

4.6 Mapping Specification to Iteration-Map-Reduce

ilet X := R
c
F in

mlet X ′ := E in

rlet X ′′ := R′ 〈x′〉 in e

Figure 4.13: Triple-let Form

As we saw in the final term of Fig. 4.2, fusion results

in the triple-let form shown in Fig. 4.13. The three let parts can

be directly mapped to three computation primitives: iteration,

map and reduce. Each vertex stores the variables X and X ′.

The first let is mapped to an iterative calculation for the path-

based reduction R
c
F that results in values for the variables X

in each vertex. The second let is mapped to a map operation over vertices: given the values

of the variables X in each vertex, the map operation calculates the values of the expressions

E, and stores the results in the variables X ′ for the vertex. The third let is mapped to a

reduction operation over vertices: given the values of the variables x′ in X ′ in each vertex,

the reduction operation R′ 〈x′〉 reduces the values of 〈x′〉 for all vertices, and stores the

results in the global variables X ′′. Finally, the single expression e is calculated based on the

values of X ′′.

The two latter primitives, vertex-based mapping and reduction, can be implemented

by a traversal over vertices. Since the mapping and the reduction both traverse the vertices,

a simple optimization is to perform them in the same pass. Now, we consider how path-based

reductions can be implemented. We saw the iterative computation models in § 4.4. In

the next subsections, we present how they can be instantiated to implement path-based

reductions. We first present the correctness conditions of the iterative models to calculate

path-based reductions (§ 4.6.1), and then present the synthesis of iteration kernel functions

based on the correctness conditions (§ 4.6.2).

143

4.6.1 The Correctness of Iterative Path-Based Reduction

This subsection presents the iterative calculation of path-based reductions. We

consider both the pull and push models with both idempotent and non-idempotent reduction.

For each model, we present correctness and termination conditions.

Specification. Factored path-based reductions in the triple-let specifications have

the form R
c
F . Considering a general single reduction, c is either none ⊥ or a source vertex s.

The factored reduction for the former (with no source) is simply unrolled to Rp∈Paths(v) F(p)

and the latter (with the source s) is unrolled to Rp∈{p | p∈Paths(v) ∧ head(p)=s} F(p). Both of

these reductions can be captured as the following general specification where the condition

C(p) is T for the former and is head(p) = s for the latter.

Definition 35 (Specification) Spec(v) = Rp∈{p | p∈Paths(v) ∧ C(p)} F(p)

The reduction function R is associative and commutative. It returns ⊥ on an empty set, and

returns the single element on a singleton set.

Model Instantiation. The iterative models (we saw in § 4.4) are parametric

in terms of the kernel functions I, P, R, and E . We consider the correctness conditions

on the kernel functions such that the iterative models calculate the specified path-based

reduction. We will see in § 4.6.2 that these conditions will guide automatic synthesis of the

kernel functions I, P, and R for a given path-based reduction.

Correctness. The iterative models calculate the value Sk(v) of each vertex v in

iterations k by propagating the values of its neighbor vertices. The iteration stops when the

value of no vertex changes. The values of the vertices Sk(v) are expected to converge to the

specification Spec(v). We show the correctness in two steps. (1) First, we show that under

144

certain conditions, at the end of each iteration k, the value Sk(v) of each vertex v is equal to

the iteration specification Speck(v) for the iteration k. The specification Speck(v) is defined

as the result of reduction over paths of length less than k.

Definition 36 Speck(v) = Rp∈{p | p∈Paths(v) ∧ C(p) ∧ length(p)<k} F(p)

(2) Second, we show that under certain conditions, there is an index k where Speck(v) and

Speck+1(v) are equal with each other and Spec(v) as well. These two steps together show

that the values of vertices Sk(v) eventually converge to Spec(v). We now consider the four

variants of the iterative models.

Pull Model. We consider the correctness of the pull model to calculate

path-based reductions. We look at idempotent and non-idempotent reduction functions in

turn.

The correctness of the pull models is dependent on the conditions C1 - C9 presented

in Fig. 4.14. (A) The conditions C1 and C2 require the correctness of initialization function I.

If the path condition C holds on the simple initial path 〈v, v〉, the value of the initialization

function I should be F(〈v, v〉); otherwise, it should be none ⊥. (B) The conditions C3 - C5

state the requirements for the propagation function P. The condition C3: It simply states

that if the value of the vertex is none ⊥, its propagated value should be none ⊥ as well. The

condition C4: We saw an illustration for C4 in Fig. 4.5a and Fig. 4.5b. For a path p, we call

the value of F on p, the path value of p. The path p · e denotes the extension of the path p

at the end with the edge e. Consider two paths p1 and p2 that end in a vertex u and there is

an edge 〈u, v〉 from u to another vertex v. Reducing the path values of the two extended

paths p1 · 〈u, v〉 and p2 · 〈u, v〉. should be the same as reducing the path values of p1 and

145

p2, and then propagating the result with P through 〈u, v〉. Intuitively, this condition states

that the local reduction and propagation effectively calculate reduction over paths. The

condition C5: Vertices that have only a single incoming path do not receive multiple values

to be reduced. For such vertices, C5 states that the propagation of the path value of p over

an outgoing edge e is equal to the path value of the extended path p · e. (C) The conditions

C6 - C9 state the required properties of the reduction function R. The none value ⊥ should

be the identity element, and R should be commutative, associative and idempotent. (The

epilogue function E is instantiated to identity.) For example, given the factored path-based

reduction min
s

length for the shortest path use-case SSSP, the kernel functions that we saw

in Fig. 4.7 satisfy the conditions above.

Pull model with idempotent reduction. The following theorem states that if the

conditions above hold, then the value Skpull+(v) that the pull model with idempotent reduction

(Theorem 29) calculates complies with the specification Speck(v).

Theorem 37 (Correctness of Pull (idempotent reduction)) For all R, F , C, I, P,

and k ≥ 1, if the conditions C1 - C9 hold, then Skpull+(v) = Speck(v).

The proof is by induction on the iteration k. At the iteration k = 1, the specification

Spec1(v) requires reduction on only the paths of length zero to each vertex. Therefore, by

the conditions C1 - C2, the initialization function I properly initializes each vertex v to

Spec1(v). In each iteration k + 1, if there is any predecessor of the vertex v whose value is

changed in the previous iteration k, then their new values are propagated by P and reduced

together by R, and then reduced with the current value of v. By the conditions C7 and

C8, the reduction function R is commutative and associative, and can be applied to the

146

propagated values in any order. By the induction hypothesis, the value of each predecessor

u is the reduction of the paths to u of length l, 0 ≤ l < k. The predecessors that have no

paths and store ⊥ are ignored by the conditions C3 and C6. By the conditions C4 and C5,

the propagation of the value of a predecessor u of the vertex v is equal to the reduction over

the paths to v that pass through u. Since these paths include the edge (from u to v), their

length l is 0 < l < k + 1. The previous value of v itself is the reduction over paths to v of

length l, 0 ≤ l < k. Since, the reduction function R is idempotent, reducing these two values

absorbs the values of the repeated paths, and results in the reduction over all paths of length

l, 0 ≤ l < k + 1 that the specification requires.

Pull model with non-idempotent reduction. The pull model with non-idempotent

reduction Skpull−(v) is defined in Theorem 30. We show that it can correctly calculate path-

based reductions with non-idempotent (in addition to idempotent) reduction functions. For

instance, consider the factored path-based reduction
∑
s

1 that counts the number of paths from

the source s; the reduction function sum
∑

is non-idempotent. The initialization function is

instantiated to I = λv. 1 and the propagation function is instantiated to P = λn, e. n that

simply propagates the value of the predecessor.

The following theorem states that if the conditions above except idempotency hold

and the source vertex is not on any cycle then the pull model with non-idempotent reduction

Skpull−(v) complies with the specification Speck(v).

Theorem 38 (Correctness of Pull (non-idempotent reduction)) For all R, F , I, P,

k ≥ 1, and s, let C(p) = (head(p) = s), if C1 - C8 hold, and s is not on any cycle,

Skpull−(v) = Speck(v).

147

A. Initialization:

C1 (Init1) : ∀v. C(〈v, v〉)→ I(v) = F(〈v, v〉)

C2 (Init2) : ∀v. ¬C(〈v, v〉)→ I(v) = ⊥

B. Propagation:

C3 (None Propagation) : ∀e. P(⊥, e) = ⊥

C4 (Aggregate Propagation) :

∀p1, p2, v.

tail(p1) = tail(p2)→

let u := tail(p1) in

P [R(F(p1),F(p2)), 〈u, v〉] = R [F(p1 · 〈u, v〉), F(p2 · 〈u, v〉)]

C5 (Single Path) : ∀p, e. P(F(p), e) = F(p · e)

C. Reduction:

C6 (Identity) : ∀n. R(n,⊥) = n

C7 (Commutativity) : ∀n, n′. R(n, n′) = R(n′, n)

C8 (Associativity) : ∀n, n′, n′′. R(R(n, n′), n′′) = R(n,R(n′, n′′))

C9 (Idempotency) : ∀n. R(n, n) = n

Termination:

C10 (Simple Path) : ∀p. R(F(p),F(simple(p))) = F(simple(p))

Figure 4.14: Correctness and Termination Conditions

Compared to the previous model, the reduction with the current value is avoided.

However, no path is missed. The difference is only the paths of length 0. The vertices other

than the source s do not have a path of length 0 from s. The source s itself is also correctly

148

initialized to the value of F on the zero-length path 〈s, s〉, and since s is not on any cycle,

its correct value is never overwritten.

Push Model. We now consider the correctness of the push model to calculate

path-based reductions.

Push model with idempotent reduction. The following theorem states that if the

conditions C1 - C9 hold, the value Skpush+(v) calculated by the push model with idempotent

reduction, (Theorem 31) complies with the specification Speck(v).

Theorem 39 (Correctness of push (idempotent reduction)) For all R, F , C, I, P,

and k ≥ 1, if the conditions C1 - C9 hold, Skpush+(v) = Speck(v).

Push model with non-idempotent reduction. Similarly, the following theorem states

the correctness of the push model with non-idempotent reduction (Theorem 32).

Theorem 40 (Correctness of Push (non-idempotent reduction)) For all R, F , I,

P, k ≥ 1, and s, let C(p) = (head(p) = s), if C1 - C8 hold, and s is not on any cycle,

Skpush−(v) = Speck(v)

Termination. We show that under certain conditions, there exists an iteration

k where Speck(v) (Theorem 36) stays unchanged and converges to the original specification

Spec(v) (Theorem 35). Iterations incrementally consider longer paths; however, longer paths

do not necessarily yield new information. For example, in the shortest path use-case SSSP,

after considering all the simple paths, the longer paths (that are cyclic) cannot lead to shorter

paths (in graphs with non-negative edges). Given a path p, we call the path that results from

removing its cycles the simplification simple(p) of p. In the shortest path use-case SSSP, the

149

reduction function R is min and the path function F is weight. Reducing the F value of

simple(p) with the F value of p results in the former. Therefore, simplified paths are enough

to arrive at the same result for the reduction, and longer paths do not change the result. We

capture this property as the condition C10 in Fig. 4.14 and prove convergence.

Theorem 41 (Termination) For all R, F , and C, if the graph is acyclic or the condition

C10 holds, then there exists k such that for every k′ ≥ k, Speck′(v) = Spec(v).

Let l be the length of the longest simple path to the vertex v. After the iteration

k = l + 1, the value of Speck(v) stays unchanged. This is because the reduction with the

paths of length greater than l does not change the value of Speck(v). If a path p that is

longer than l exists, then p is not simple, i.e., it includes a cycle. This is refuted if the graph

is acyclic. Otherwise, the simplification of p, simple(p), is already in the set of paths of length

less than l + 1 and by the condition C10, reducing the path value of p with the path value of

simple(p) results in the path value of simple(p).

An immediate corollary of the above two theorems is that iteration eventually

terminates and converges to the specification Spec(v) (if the corresponding conditions in

Theorem 37 to Theorem 40 hold). The final iteration is simply the maximum value of k from

Theorem 41 for all vertices. For example, the corollary for the pull model for idempotent

reduction functions is the following.

Corollary 42 (Termination for pull model with idempotent reduction) For all R,

F , C, I, and P, if the conditions C1 - C9 hold, and the graph is acyclic or the condition C10

holds, then there exists an iteration k such that Skpull+(v) = Spec(v).

We state the correctness conditions and prove similar theorems for all the models.

150

def SynthP (F ,R)

Let T be the return type of F .

memoize variable v for type T and size 1

memoize variable l for type Edge and size 1

foreach (literal li with type Ti)

memoize li for Ti and size 1

size ← 1

while (true)

E ← Candidates (T, size)

foreach (e ∈ E)

if F ; R; Γ ` (C4 ∧ C5)[P := (λv, l. e)]

return (λv, l. e)

size ← size + 1

(a)

P := List[V],

eweight : 〈V,V〉 → N

weight : P→ N

∀p. if (p = ⊥)

weight(p) = 0

else

let v := head(p), p′ := tail(p) in

if (p′ = ⊥) weight(p) = 0

else

let v′ := head(p′) in

weight(p) = weight(p′) + eweight(〈v′, v〉)

(b)

Figure 4.15: (a) Synthesis of the Propagation Function P. (b) Context assertions Example.

4.6.2 Synthesis of Iterative Reduction

Given a path-based reduction R
c
F , we now use the correctness conditions pre-

sented in the previous subsection to automatically synthesize correct-by-construction kernel

functions.

For example, consider the push iterative model with idempotent reduction that we

saw in Fig. 4.8, Theorem 31. By Theorem 39, we need to find the functions I, P ′ and R′

such that the conditions C1 - C10 (presented in Fig. 4.14) hold. We use these conditions to

151

synthesize the functions I, P ′ and R′. In particular, (1) we use the initialization conditions

C1 - C2 to synthesize I, (2) we use the propagation conditions C4 and C5 to synthesize

P and then wrap it in the following function P ′ to handle none ⊥ values and satisfy the

condition C3. The some value of v is denoted as [v].

P ′ := λn, e. if (n = ⊥) return ⊥ else return [P(n, e)]

and (3) we check the conditions C7 - C9 for the reduction function R, and then wrap R in the

following reduction function R′ to handle none ⊥ values so that the condition C6 is satisfied.

If the conditions C7 - C9 hold for R, they hold for R′ as well.

R′ := λa, b. if (a = ⊥) return b else if (b = ⊥) return a

else return [R(a, b)]

To find candidate expressions for the body of I and P, we apply a type-guided

enumerative search. It enumerates expressions from the grammar that we saw in Fig. 4.7a in

the order of increasing size. To support overloaded operators, the expression constructors

have union types. To synthesize an expression of the given type, the search only considers

expression constructors that return that type. Given the parameter types of the constructor,

it then recursively searches for the arguments, and uses memoization to avoid redundant

enumeration.

The procedure SynthP that synthesizes P is shown in Fig. 4.15a. (The synthesis of

the other kernel functions is similar.) It starts by memoizing expressions of size one, literals

and variables, to make them available for the synthesis of the body of P . Let T be the return

type of F ; thus, vertices store values of type T . The propagation function P takes a value

stored at a vertex (of type of T) and an edge (of type Edge) and returns a vertex value (of

152

type T). Thus, the two input parameters of type T and Edge are memoized as available

expressions. Then, candidate bodies for P (of type T) of increasing sizes are obtained.

A candidate is correct if the condition C4 and C5 are valid when P is replaced with

the candidate. To check the validity of an assertion, we use off-the-shelf SMT solvers to check

the satisfiability of its negation. The context of the validity check F ;R; Γ is the definition of

the functions F and R from the given path-based reduction, and a set of assertions Γ that

define basic graph functions and relations. We model paths P as lists of vertices V, and

define graph functions and relations including the path functions length, weight, punultimate

and capacity in the combination of the quantified uninterpreted functions and list theories.

Fig. 4.15b showcases the axiomatization of the weight function in Γ. The edge-weight eweight

is a function on pairs of vertices 〈V,V〉, and the path weight weight is a function on paths P

to natural numbers N. If the list for the path is empty or has a single vertex, the weight

of the path is trivially zero; otherwise, the weight of the path is recursively the sum of the

weight of the path without the last edge, and the edge-weight of the last edge.

For termination, we check a stronger condition than C10. We remove an edge

instead of a cycle: for every path p and edge e, if reducing the F value of p with the F value

of p · e results in the former, then the reduction is terminating.

4.7 Experimental Results

Implementation. We implemented the GraFS synthesis tool in three parts:

fusion, synthesis and backends. The fusion phase closely follows the fusion rules (of § 4.5.2)

using the visitor pattern. The synthesis phase uses the Z3 SMT solver to check the validity

153

of the correctness conditions. GraFS incorporates a dedicated backend for each frame-

work. Each backend generates a framework-specific C++ file containing the initialization I,

propagation P, (if needed rollback B) and reduction function R.

Platform and Benchmarks. We performed the experiments on a 4-node

cluster, each with 32 cores and 64GB memory. The experiments for frameworks that are

exclusively for shared memory are performed on one of these nodes. The nodes are connected

via 40Gbps InfiniBand network, and they run CentOS 7.4 Linux x86_64 kernel version

3.10. All programs are compiled with gcc-5.1.0 (for Ligra, GridGraph and GraphIt) and

mpich-3.2.1 and openmpi-3.0 (for PowerGraph and Gemini, respectively). We used social

network graphs of various sizes: LiveJournal (LJ, 1.1GB), Twitter (TW, 23GB), TwitterMPI

(TM, 28GB), and Friendster (FR, 31GB). We report the average of 5 executions.

Results Summary. To evaluate the GraFS synthesis tool, we study the effect

of fusion on performance. Then, we study the effect of different fusion types separately.

The experiments show that fusion can lead up to 4× and in average 2.4× faster execution

time compared to the unfused codes. We then report the number of lines of code for the

specifications and their synthesis time. Compared to existing frameworks, GraFS allows

significantly more concise specifications, and can efficiently generate code in less than two

minutes. Finally, we compare the synthesized code with handwritten versions for use-cases

available in the frameworks. Experimental results show that the synthesized code either

matches or outperforms handwritten code. We then show that synthesized programs scale

similar to handwritten programs.

154

Table 4.1: Execution times (in seconds). H: Handwritten, S: Synthesized, R: the ratio H/S.

Prog. Input
Ligra GridGraph Gemini PowerGraph (Push) PowerGraph (Pull) GraphIt (Push)

H S R H S R H S R H S R H S R H S R

DRR

LJ 1.03 0.33 3.1 15.3 3.8 4 1.2 0.4 3 20.4 6.4 3.2 36 10 3.6 0.63 0.21 3

TW - - - 82 23 3.6 7.2 3.7 2 120 48 2.5 292 81 3.6 16.3 5.4 3

TM - - - 141 44 3.3 8.9 3.8 2.3 166 50 3.3 462 86 2.9 19 6 3.1

FR - - - 265 73 3.6 13 4.9 2.6 247 86 2.9 522 154 3.4 30 9.3 3.2

Trust

LJ 1 0.36 2.7 14.1 4.4 3.2 1.18 0.62 1.9 20.5 7.5 2.7 37 10 3.7 0.61 0.29 2.1

TW - - - 85 28 3.1 6.2 5 1.2 122 50 2.4 293 99 2.9 16.1 8.3 1.9

TM - - - 122 40 3 7.5 5.6 1.3 157 71 2.2 455 129 3.5 17.2 6.9 2.5

FR - - - 218 117 2 10.1 6.7 1.5 252 98 2.6 526 173 3 28 13 2.1

LTrust

LJ 1.02 0.63 1.6 11.5 6 1.9 1.13 0.86 1.3 23 15.1 1.5 41 28 1.4 0.59 0.39 1.5

TW - - - 74 47 1.6 6.1 4.9 1.2 130 108 1.2 - - - 16 11.4 1.4

TM - - - 142 82 1.7 7.3 6 1.2 200 134 1.5 - - - 10 20.1 2

FR - - - 210 175 1.2 10.2 8.8 1.1 286 198 1.5 - - - 34 24.9 1.3

0
20
40
60
80

100

N
o
rm

a
li
ze
d
#

o
f
o
p
s
(%

)

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(DRR)

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(Trust)

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(LTrust)

Figure 4.16: Edge-work Ratio: Normalized # of edges processed by the fused over the

unfused version. Missing bars correspond to programs not successfully running on input

graphs.

155

LJ
TW
TM
FR

20
40
60
80
100

N
or
m
al
iz
ed

#
of

op
s(
%)

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(a):WSP-un

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(b):NWR-un

Ligra Grid
Graph

Gemini PG
Push

PG
Pull

GraphIt

(c):Radius-un

20
40
60
80
100

N
or
m
al
iz
ed

#
of

op
s(
%)

(d):WSP-w (e):NWR-w (f):Radius-w

Figure 4.17: Edge-work ratio: # of edges processed by the fused over the unfused version.

Missing bars correspond to programs not successfully running on inputs.

The Effect of Fusion. We study the performance benefits of fusion on

the more elaborate use-cases: Trust, DRR, and LTrust (presented in Fig. 4.6). The

absolute execution times and edge-work ratio are presented in Table 4.1 and Fig. 4.16

respectively. The goal of these measurement is to compare handwritten and synthesized

programs. Therefore, for each pair, we fix the framework, its configuration and the iterative

model. These measurements are not meant to compare frameworks with each other, as fine-

tuning configurations is framework-specific and orthogonal to the goal of these experiments.

The number of edges processed by a program indicates the number of times that propagation

happens across edges; thus, it represents the amount of computation performed throughout

the execution. The edge-work ratio is the number of edges processed by the synthesized

(fused) programs normalized w.r.t. that by the unfused versions. The experimental results

show that fusion reduces the edge-work ratio up to a quarter and leads to up to 4× speedup.

These use-cases benefit from fusion rules for path-based and vertex-based reductions, common

operation elimination and factoring of nested vertex-based reductions.

156

DRR. DRR calculates the ratio of the diameter over radius sampled over two

sources. In addition to the rules FMPair, FRPair and FLetsBin which fuse path-based

and vertex-based reductions, common operation elimination factors redundant path-based

computations in diameter and radius. Therefore, instead of 4 reductions, GraFS fuses and

calculates 1 reduction. In Fig. 4.16, we observe that the edge-work ratio is 25-40%. This

translates to 2-4× speedup in Table 4.1.

Trust. Trust specifies the trust from a given set of sources to other vertices.

It applies division and maximum operator between path-based reductions: the widest and

shortest paths. The rules FILetBin and FMPair fuse the 4 path-based reductions to 1.

As Fig. 4.16 shows, the edge-work ratio is 25-40%, and as Table 4.1 shows, the speedup is

1.2-3.7×. We note that the theoretical bound on the edge-work ratio for both DRR and

Trust is 25%, which happens when the path-based computations for the two sources fully

overlap.

LTrust. Given a source s, LTrust calculates the narrowest of the widest paths

to vertices within the distance Radius from s. LTrust has a nested reduction for Radius

that is factored and then fused. Moreover, the two path-based reductions, the narrowest and

shortest paths, are fused by the rules FILetBin and FMPair. This results in a sequence

of two iteration-map-reduce rounds. The unfused and fused programs perform four and

two sequences of iteration-map-reduce rounds respectively. The theoretical bound for the

edge-work ratio is 50% . Fig. 4.16 shows that the edge-work ratio is 57-85% which translates

to 1.1-2× speedup in Table 4.1.

157

Fusion Types. In order to study the performance benefits of different types of

fusion rules, we compare the unfused and the fused implementations of three representative

use-cases: WSP, NWR and Radius (presented in Fig. 4.6). Fig. 4.17 shows the edge-work

ratio. We visit the use-cases and the applied fusion rules in turn.

WSP. The unfused program for WSP consists of two computation phases over

the edges of the input graph, one after the other. The first calculates the shortest paths from

the given source to all the vertices, and the second computes the capacity of the widest path

across the shortest paths. WSP is fused by the rule FPNest that fuses nested path-based

reductions. The fused program executes the two computations above in one pass over a pair

of values.

Assessment. Fig. 4.17a and Fig. 4.17d show the edge-work ratio of WSP for

unweighted and weighted graphs respectively. In unweighted graphs, the fused program

processes half the number of edges processed by the unfused program (50% ratio). The ratio

is 50-70% for the weighted graphs. When graphs are unweighted, each edge represents a unit

cost (either weight or capacity). In each iteration, the set of edges that contribute to the

weight and capacity values of a vertex are the same. The fused program exploits this overlap

by simultaneously propagating the two values across each edge. However, for weighted graphs,

the two values can be propagated to the vertex in different iterations resulting in different

shortest and widest paths. Hence, the fused program exploits the partial overlap between

the processed edges.

NWR. The unfused version of NWR calculates the narrowest and the widest

paths separately. The two are fused by the rule FMPair that fuses multiple path-based

158

reductions into one. It fuses the two reduction functions to one reduction function that

operates on pairs. The fused propagation function passes the narrowest and widest values

over an edge at the same time.

Assessment. Fig. 4.17b and Fig. 4.17e show the edge-work ratio for NWR for

unweighted and weighted graphs respectively. Similar to WSP, the fused program reduces

the number of processed edges to 50% for unweighted graphs and to 51-73% for weighted

graphs.

Radius. Radius computes eccentricity (i.e. the maximum shortest distance) by

sampling over two sources. The unfused version computes eccentricity separately for each

source. However, Radius is fused by the rule FMPair (that we considered above) and the

rule FRPair which fuses multiple vertex-based reductions into a single reduction.

Assessment. Fig. 4.17c and Fig. 4.17f show the edge-work ratio for Radius for

unweighted and weighted graphs respectively. We observe that on unweighted graphs, the

edge-work ratio is 52-78%. This ratio is 53-74% on weighted graphs. Even though fusion

enables computation of multiple eccentricity values at the same time, contrary to WSP and

NWR, we do not observe the 50% reduction. This is because eccentricity computations

across different sources can occur via non-overlaping paths. The fused version exploits the

partial overlaps.

We observe that the reduction in edge computations is different across different

frameworks as well. For example, the edge-work ratio is 52-68% in GridGraph, whereas

54-78% in PowerGraph. This is because of the difference in the scheduling strategies across

these different frameworks, that lead to different overlaps in edge computations.

159

Usecase #PBR1 T2 GF 3 L4 GG5 G6 PG7 GI8

BFS 1 25 1 32 100 185 280 130

CC 1 1 1 47 60 117 210 130

SSSP 1 24 1 66 73 117 280 133

WP 1 29 1 66 73 117 280 133

WSP 2 44 2 85 95 197 294 40

NWR 2 58 2 80 95 222 294 40

Radius 2 49 2 38 65 222 294 40

DRR 4 50 3 65 110 213 561 111

Trust 4 105 3 105 145 300 481 96

LTrust 4 102 4 115 148 302 481 107

1 # of path-based reductions 2 Synthesis time (s) 3 GF: LoC in

GraFS 4 L: LoC in Ligra 5 GG: LoC in GridGraph 6 G: LoC

in Gemini 7 PG: LoC in PowerGraph 8 GI: LoC in GraphIt

(a)

1 2 4 8 16 32

10

5

3
2

1

0.5

2.6
2.4

2.4

2.4

2.3
2.7

E
x
ec
u
ti
on

ti
m
e
(s
)

Trust-H
Trust-S

1 2 4 8 16 32

10

5

3
2

1

0.5

3.6
3.1

3

3

3.1
3.1

DRR-H
DRR-S

1 2 4 8 16 32

10

5

3

2

1

0.5

1.6
1.5

1.6

1.5

1.5
1.6

of cores

E
x
ec
u
ti
on

ti
m
e
(s
)

LTrust-H
LTrust-S

1 2 4 8 16 32

5

3

2

1

0.5

1.5

1.5

1.5

1.6

1.6
1.8

of cores

WSP-H
WSP-S

(b)

Figure 4.18: (a): Synthesis time and the number of lines of code, (b): Scalability on Ligra.

X-axis: # of cores. Y-axis: time is logarithmic scale. H: Handwritten. S: Synthesized.

Synthesis Time and LoC. Fig. 4.18a presents the synthesis time for the

use-cases. Synthesis is done in less than 2 minutes and often less. It also compares the

lines of code (LoC) that user should write in GraFS and the other five frameworks. For

each use-case, it reports the number of lines of code of the functions or struct definitions

where a change is needed for that use-case. We observe that the GraFS specifications are

significantly smaller.

Synthesized Matching Handwritten. We compared the performance of the

synthesized programs and their equivalent handwritten programs on five use-cases BFS, CC,

SSSP, WP (widest path) and PR. We adopted the handwritten implementations of BFS,

CC, SSSP and PR that are available in the frameworks, and developed WP based on SSSP

160

Table 4.2: Execution Times (in seconds). H: Handwritten, S: Synthesized, R: the ratio H/S,

ER: edge-work ratio. Missing cells are due to either missing handwritten use-cases (PR) or

not successfully running on an input

Prog. Input
Ligra GridGraph Gemini PowerGraph (Push) PowerGraph (Pull) GraphIt (Push)

H S R ER H S R ER H S R ER H S R ER H S R ER H S R ER

BFS

LJ 0.38 0.37 1.02 1 1.56 1.56 1 1 0.38 0.39 0.99 1 5.9 5.6 1.04 1 10.1 9.3 1.09 1 0.16 0.15 1.06 1

TW 8.6 8.7 0.98 1 210 195 1.07 1 2.9 2.9 1 1 33.7 30.8 1.1 1 69.6 64.2 1.08 1 4.6 3.8 1.2 1

TM 7.1 7 1.01 1 487 472 1.03 1 3.1 3.2 0.96 1 48.8 43.4 1.12 1 108.9 106.3 1.02 1 4.1 4.1 1 1

FR - - - - 521 532 0.97 1 3.7 3.9 0.96 1 69.9 64.8 1.07 1 131 118 1.11 1 7.8 8.2 0.95 1

CC

LJ 0.36 0.38 0.94 1 2.21 2.22 0.99 1 0.77 0.77 1 1 13 10 1.3 0.45 19.6 18.9 1.03 1 0.18 0.19 0.94 1

TW 21 20 1.05 1 230 214 1.07 1 4.8 4.9 0.98 1 84.4 69.6 1.21 0.33 122.6 119.1 1.02 1 6.3 7.5 0.84 1

TM 13 15 0.86 1 432 423 1.02 1 7.5 7.6 0.98 1 160.3 129.7 1.23 0.45 262.7 241.4 1.08 1 6.1 6.1 1 1

FR - - - - 606 599 1.01 1 14 14.3 0.98 1 259.1 200.7 1.3 0.43 292.3 293 0.99 1 12.2 11.7 1.04 1

SSSP

LJ 0.54 0.57 0.94 1 2.42 2.1 1.15 1 0.45 0.49 0.9 1 7.3 7.3 1 1 13.3 13.1 1.01 1 0.2 0.22 0.9 1

TW - - - - 201 205 0.98 1 2.8 2.8 1 1 36.1 35 1.03 1 87.6 84.6 1.03 1 4.4 4.7 0.93 1

TM - - - - 490 487 1 1 2.8 3 0.94 1 47.5 48.8 0.97 1 137.4 125.3 1.09 1 5 5.3 0.94 1

FR - - - - 572 570 1 1 5 5.4 0.92 1 96.1 90.9 1.05 1 176.9 182.9 0.96 1 12.6 14 0.9 1

WP

LJ 0.61 0.64 1.04 1 3.46 3.2 1.08 1 0.45 0.47 0.97 1 7.8 7.9 0.98 1 15.1 14.7 1.02 1 0.25 0.2 1.25 1

TW - - - - 245 242 1.01 1 3 3 1 1 36.4 36.4 1 1 93.2 91.68 1.01 1 5.5 5 1.1 1

TM - - - - 479 498 0.96 1 3.2 3.2 1 1 57.6 54 1.06 1 175.7 160.5 1.09 1 8.2 7.5 1.09 1

FR - - - - 551 545 1.01 1 5.5 5.8 0.95 1 86.3 97.2 0.88 1 198.4 225.8 0.87 1 10.9 9.6 1.13 1

PR

LJ 19.5 19 1.01 1 44 37 1.1 1 21 21 1 1 - - - - 80 80 1 1 11.8 11.4 1.03 1

TW 673 664 1 1 1000 908 1.1 1 282 400 0.7 1 - - - - 1128 1041 1.08 1 319 331 0.96 1

TM 597 646 0.92 1 1399 1441 0.97 1 880 860 1.02 1 - - - - 1157 1078 1.07 1 596 613 0.97 1

FR - - - - 1023 995 1.02 1 590 577 1.02 1 - - - - 601 548 1.09 1 260 280 0.93 1

by updating the path function. Table 4.2 shows the execution times of the handwritten

programs (H) and synthesized programs (S), and their relative ratio (R), i.e., former divided

by the latter. It also reports the edge-work ratio (ER) that is the number of edges processed

by the synthesized programs divided by that processed by the handwritten versions. (The PR

use-case was run until convergence.) Although the execution time is primarily dependent on

the number of processed edges, it is also dependent on the efficiency of the kernel functions,

161

which is influenced by the number of vertex and edge variables and atomic operations. To

have a more precise comparison, in Table 4.3, we further compare the number of atomic

operations per edge computation, and the state maintained per vertex and edge, which are

two key factors for efficiency of graph computations.

Assessment. We observe in Table 4.2 that the synthesized programs process the

same number of edges compared to handwritten programs in Ligra, GridGraph and Gemini.

On PowerGraph (for the use-case CC in the push model), the synthesized program process

fewer edges. This is due to unnecessary processing of all the edges in the first iteration

in the handwritten program which the synthesized version avoids. We also observe that

the execution time is closely related to the number of processed edges. The performance

of the handwritten and synthesized code is similar in most cases. The synthesized CC for

PowerGraph in the push model performs 28% faster. We observe in Table 4.3 that the number

of atomic operations per edge is exactly the same as that in the handwritten programs, and

the size of the state per vertex and edge is minimal.

Table 4.3: Metrics for Comparing Handwritten and Synthesized Code. H: Handwritten, S:

Synthesized. (PowerGraph does not require the user to write atomic operations.)

Prog.

Vertex Data Size (bytes) :: Edge Data Size (bytes) # Atomics Per Edge

Ligra GridGraph Gemini PowerGraph GraphIt Ligra GridGraph Gemini PowerGraph GraphIt

H S H S H S H S H S H S H S H S H S H S

BFS 8::0 8::0 8::0 8::0 8::0 8::0 12::0 12::0 4::0 8::0 1 1 1 1 1 1 0 0 1 1

CC 4::0 4::0 4::0 4::0 4::0 4::0 8::0 8::0 4::0 4::0 1 1 1 1 1 1 0 0 1 1

SSSP 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 1 1 1 1 1 1 0 0 1 1

WP 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 4::4 1 1 1 1 1 1 0 0 1 1

PR 4::0 4::0 4::0 4::0 8::0 8::0 8::0 8::0 4::0 4::0 1 1 1 1 1 1 0 0 0 0

162

Scalability. Fig. 4.18b shows the scalability of both the handwritten and

synthesized code on the Ligra framework and LJ input graph for four use-cases: Trust,

DRR, LTrust, and WSP. The speedup remains steady around 2.5×, 3.1×, 1.5× and 1.5×

respectively. As we saw in § 4.5, fusion preserves, and furthermore increases, the parallelism of

specifications. Moreover, the synthesized codes retain the edge- and vertex-level parallelism

offered by the frameworks. They never rely on major synchronization bottlenecks (e.g.,

locking multiple edges or vertices at the same time). Thus, synthesized programs scale similar

to handwritten programs.

4.8 Related Work

Graph Processing Frameworks. Graph processing systems provide interfaces

to hide the implementation details such as parallelism, synchronization and communication

in scalable runtimes. At the heart of graph computations are operations over vertex and

edge values and scheduling policies to determine the order in which operations are performed.

Parallelism is often extracted at the vertex and edge level, and hence, most interfaces allow

computations to be directly expressed as vertex-level and edge-level operations [330, 320, 319,

188, 428, 508, 190, 509, 408, 505, 360, 220, 130, 463, 339, 462, 338]. Certain DSLs raise the

abstraction level by expressing the operation in the form of sequential programs or datalog

queries, in order to simplify development of graph algorithms [505, 225, 12, 405, 454, 421].

Others [110, 426, 185] focus on generating implementations of graph algorithms for different

architectures such as GPUs. Unlike our synthesis process that generates codes for multiple

163

graph processing frameworks, these systems generate implementations that are tied to their

runtime specifics. Moreover, name synthesizes the kernel functions.

Declarative Graph Processing DSLs. Fregel [151] is a domain-specific

language that allows graph computations to be expressed as a higher-order function that

is applied at every vertex. Its latest version compiles code to the Giraph and Pregel+.

Similar to name, Fregel is declarative, models termination conditions, and applies optimizing

transformations (such as tupling). Following Fregel, Palgol [504] extends Fregel’s functional

interface with remote data access. Similarly, s6graph [118] is a graph processing framework

with a functional interface and dedicated runtime. In addition to a vertex-centric inter-

mediate language, name presents a higher-level language for path-based computations and

its semantics, formally models a comprehensive set of the common iterative models and

proves the formal correctness and termination conditions for them, captures the canonical

iteration-map-reduce primitives as a let form and presents several fusion optimization types

that transform specifications into these primitives, combines type-directed enumerative

and constrained-based synthesis to generate the iterative kernel functions, and generates

implementations in five graph processing frameworks.

Elixir [386, 387] captures a graph computation as an operator on a graph neigh-

borhood that is iteratively applied to the graph non-deterministically. It allows declarative

constraints for scheduling, implementation selection, and synchronization insertion into the

operators and applies automated planning to find multiple implementations. LM [126] and

CLM [125] present a logic programming language for programming over graph structures

and algorithms. Similar to Elixir, CLM supports declarative specification of scheduling

164

and partitioning policies that allows programmers to add logical rules for optimization. In

contrast, name offers a more high-level specification language for path-based computations,

applies fusion optimizations, formalizes correctness and termination conditions for iterative

computations, and uses them to automatically synthesize the iterative kernel functions.

To simplify constructing and reasoning about programs, declarative programming

[404] is applied to many domains such as compiler optimization [305], parallel programming

[126] and configuration generation [219].

Program Synthesis. Program synthesis has always been an area of interest

for computer scientists. Previous works have employed enumeration [452, 231], variants

of syntax-guided synthesis [22] and type-guided synthesis [366, 383] to synthesize protocol

snippets [452] and Excel macros [195, 197]. name’s synthesis process enumerates graph

processing kernel functions based on a syntax grammar for local computations.

Previous works have also used constraint solving to fill holes in program sketches

[438, 437] including architectural kernel functions [481], and to synthesize control structures,

imperative programs [441, 161] and program templates [51], and to compose APIs [234, 427].

The name synthesis tool applies SMT solvers to check that the candidate kernel functions

satisfy the correctness conditions of the iterative models. Built on top of Fregel, [350] uses

SMT solvers to optimize kernel functions. In contrast, name automatically synthesizes the

kernel functions.

Superoptimization is another thread of synthesis which applies stochastic search

methods to synthesize programs [340, 242, 243, 49, 419]. Moreover, Souper [416] took a step

further by synthesizing superoptimizers. In contrary to superoptimization which focuses

165

on optimizing machine-level code, name fusion rules optimize high-level graph processing

specifications.

Distributed and concurrent program synthesis. Bigλ [433] synthesizes map-

reduce-style distributed programs and SCYTHE [468] synthesizes SQL queries based on the

programming-by-example approach. Hamsaz [227] minimizes and synthesizes coordination

between replicas in a distributed system. Transit [452] describes a distributed protocol as

both symbolic and concrete execution fragments called concolic snippets, and applies solvers

and user feedback to interactively generate the implementation. All three works above have

different synthesis domains than name.

Previous works have synthesized concurrent programs either by inferring atomic

sections and inserting synchronization primitives [72, 111, 127, 208, 456, 457], or by following

semantic preserving rules to transform sequential to concurrent programs [101, 102, 100].

Fusion. Fusion is a versatile optimization technique. Loop fusion [129, 256,

390, 76] merges the bodies of loops on regular structures such as arrays and hence reduces

the number of memory accesses and improves locality. Fusion also has been applied to

tree structures [395, 394, 414, 415] to combine multiple phases of traversal or fuse different

stages of data processing pipelines [412] to enhance data locality. Deforestation of functional

programs [465, 184, 112, 239] combines a sequence of function applications into a single

application and eliminates intermediate values. However, deforestation is oblivious to the

primitives of graph computation. Graph computations use three fundamental primitives;

thus, name structures these primitives as the triple-let term. The fusion rules transform

computations to this structure and maintain it during fusion.

166

Chapter 5

Verified Tensor Graph Rewrite

5.1 Introduction

Deep learning (DL) is pervasive in modern day machine learning (ML) workloads.

Researchers and practitioners use different topologies of neural networks such as convolutional

neural networks [268], graph neural networks [258] and transformers [455] to perform various

prediction tasks such as image classification [215], language modeling [136], etc. They

usually express these ML computations using a tensor language, such as TensorFlow [10],

PyTorch [372], and JAX [173].

Programmers usually express these computations using tensor operations (e.g.,

convolution, matrix multiplication, non-linear activation, etc) that are supported by modern

ML frameworks. These ML frameworks then optimize the tensor computation graphs

specified from the users’ programs. One of the important optimizations is graph rewrite.

XLA [444] is a production tensor compiler used by TesnsorFlow and JAX to generate code

for different hardware backend, such as CPUs, GPUs, and TPUs [245, 244]. In the XLA

167

compiler, the graph rewrite optimization is known as the algebraic simplification pass1. It

rewrites parts of the tensor computation expressed as a computation graph into an equivalent

but potentially faster tensor computation. For example, under a certain precondition, an

expensive dot operation may be decomposed into a simpler composition of element-wise

multiplication and broadcast operations. Usually, these rewrites are algebraic in nature, and

production compilers include hundreds of such rewrite patterns. For instance, in XLA’s

algebraic simplifier, there are more than 130 tensor rewrite rules spanning more than 7,000

lines of C++ code. XLA always executes this pass when compiling any program regardless

of the backend target. Thus, it is important that we have confidence that the rewrite rules

are correct.

The goal of this work is to formally prove the correctness of tensor rewrite rules

that are present in a production quality compiler such as XLA. There has been multiple

works on verifying tensor rewrite rules. However, they fall short in realizing our goal due

to multiple reasons. TASO [235] proves that certain tensor rewrite rules are correct, but

due to its axiomatic proof technique, it requires new manually-written axioms to verify the

majority of the XLA tensor rewrite rules. PET [469] can represent and prove expressive tensor

rewrites without relying on axioms, but its proof methodology works on only linear operations.

Equally importantly, these existing systems cannot fully support verifying rules for tensors

with unbounded dimension sizes and ranks. The ability to verify unbounded tensors is crucial

because most algebraic simplification rules in XLA are applicable to unbounded tensors.
1https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/service/

algebraic_simplifier.cc

168

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/service/algebraic_simplifier.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/service/algebraic_simplifier.cc

We present TensorRight a verified tensor rewrite system that is able to both

represent and prove the majority of the XLA tensor rewrite rules with unbounded tensor ranks

and dimension sizes. TensorRight provides the first formalism of XLA tensor operators in

a purely functional manner using the denotational semantics (Section 5.4). We introduce

TensorRight DSL for implementing rewrite rules. The DSL consists of a core language

specification for the XLA tensor operators and additional constructs to specify operations

on dimensions, which aid in verifying the rewrites. We use the denotational semantics of

operators to generate correctness verification conditions for the rewrite rules in a rank and

dimension size polymorphic manner. To achieve this, we embed the semantics of each operator

as an executable specification in TensorRight DSL. We generate a verification condition of

a rule by symbolically executing the LHS and RHS expressions and asserting their equality.

We introduce new dimension type constructs to handle unbounded dimension sizes and ranks.

Overall, TensorRight is the first system to both formally specify a production compiler’s

tensor operators and prove rewrite rules for unbounded tensors.

We show that TensorRight is able to specify and prove the majority of the

XLA rewrite rules containing complicated preconditions and tensor operator combinations

(Section 5.7). Further, we generalize some of the existing rules in XLA by relaxing some

of their preconditions. Note that most of these preconditions were put in by the compiler

developers to simplify some of the intricate index and dimension size calculations necessary

to make the rule correct in a general case. With the aid of TensorRight we believe in the

future, compiler engineers can quickly iterate through complicated rules to get feedback on

169

their correctness leading to productivity increases and more complicated rewrite rules inside

the compiler.

In summary, this paper makes the following contributions.

• We present TensorRight DSL that consists of XLA operators and other constructs

on dimensions and accesses that allows users to write complex tensor rewrite rules with

preconditions.

• We provide the first formal semantics of tensor operators used in the production XLA

compiler.

• We introduce the first verification methodology to verify tensor rewrite rules on tensors

with unbounded ranks and dimension sizes.

• We show that our tensor rewrite system can represent and prove 104 out of 123 rules

of interest in the XLA’s algebraic simplifier. Additionally, we show evidence on how

TensorRight can be used for generalizing overly constrained XLA rewrite rules.

5.2 Motivation

The algebraic simplifer of the XLA compiler, contains hundreds of rewrite rules

that get executed during compilation of programs. Currently, neither the rewrite rules nor

the rewrite engine is verified. The compiler developers check the correctness of those rules

via unit tests and often limit the generality of the rules to alleviate concerns of introducing

compiler bugs.

170

Tensor rewrite rules deployed inside the XLA compiler (1) support rules that involve

complex XLA operations, and (2) work with tensors of arbitrary ranks and dimension sizes.

The first property is intrinsic, while the second property is important since the compiler

should not miscompile on some dimension sizes. Existing verified tensor rewrite systems

either cannot express or prove the tensor rewrites satisfying the above properties. We present

TensorRight a verified rewrite system that can both represent and prove the rewrites

used in a production compiler such as XLA for tensors with unbounded ranks and dimension

sizes.

5.2.1 Example Rewrite Rule

To illustrate how TensorRight achieves its goals, let’s consider the following

simple rewrite rule extracted from XLA’s algebraic simplifier that uses the dot (einsum)

operation. Note that we have omitted some operands and details of shapes for simplicity.

dot(A,B) =⇒ binary(broadcast(A), broadcast(B),*) (5.1)

The dot operation performs a sum reduction along the contracting dimensions

of element-wise multiplied tensor values across tensors A and B. The output tensor has

union of all non-contracting dimensions from both A and B. For the 2-dimensional case

with one contracting dimension, it simply becomes the general matrix multiplication. The

general N-dimensional case can have any number of contracting dimensions. The above

DotToMultiply rewrite replaces an expensive dot operation with a composition of element-

wise binary multiplication and broadcast operations. This rewrite is generally not correct,

171

unless A and B have no contracting dimensions. Fig. 5.1a illustrate this computation on

2-dimensional input tensors. Since there are no contracting dimensions, there is no need for

reduction, so this RHS tensor expression is equivalent to the LHS expression.

5.2.2 Representation and Proof

Here, we illustrate the challenges in representing and proving the DotToMultiply

rewrite rule in Eq. 5.1 — to be correct for tensors A and B of unbounded dimension sizes

and ranks — and show how our design of TensorRight overcomes these challenges.

Challenges in Representation First, the rewrite system should allow specifying the

rule with arbitrary dimension sizes and ranks for tensors A and B. Second, it should allow

specifying operations on dimensions themselves (e.g., computing the output dimensions of dot).

Third, it should model tensor operations covering the expressivity and parameterizations in

XLA. Last, it should allow defining a precondition of a rule (e.g., no contracting dimension).

TensorRight Representation TensorRight DSL models XLA operations and allows

the developers to specify the DotToMultiply rule with the parametric form shown in

Fig. 5.1b. Instead of storing dimension sizes as an array or a list, we use dimension maps.

This allows us to perform operations supported by maps to operate on dimensions (key) and

their sizes (value). If the map is left uninterpreted and represented using meta variables, the

rule representation becomes both rank and dimension size polymorphic. In Fig. 5.1b, s, s′, s′′

are shapes of tensors A, B, and the output of the dot operator respectively, while d, d′, d′′

denote their dimension maps. The rule uses Dims function to retrieve the dimension maps

172

(a) Illustration of the DotToMultiply rule

DotToMultiply :

let d′′ = Dims(s′′) in

dots′′ (As, Bs′ , ∅, ∅) =⇒ binary(broadcast(A, Id, d′′), broadcast(B, Id, d′′), *)

FoldConvInputPad :

let mol = ml +mlp in

let moh = mh +mhp in

convolution(pad(t, 0,mlp,mhp,mip), t′, ib, iif , iof ,ml,mh,mi,m
′
i)

=⇒mip=0∧mi=1

convolution(t, t′, ib, iif , iof ,mol,moh,moi,m
′
i)

(b) Example Rewrite Rules in TensorRight DSL

Figure 5.1: Motivating examples

173

from their corresponding shapes. The rule’s RHS broadcasts both tensors A and B with

d′′ to have the same shape as the output of the dot. Note that we supply the empty set of

dimensions as the final two arguments to dot in the LHS, indicating the precondition that

there must be no contracting dimensions.

TensorRight supports much richer rewrites with complex preconditions. Consider

the FoldConvInputPad shown in Fig. 5.1b. The idea behind the rule is simple: to fold

the padding operator into the convolution operator. However, computing how this external

padding composes with existing padding in the convolution operator is non-trivial. Since

TensorRight DSL uses dimension maps, we can express these padding sizes (mol,moh)

using a series of map operations. Further, we can represent and prove even a more general

version of this rule with interior padding (Section 5.7).

Challenges in Proving Soundness A desired verified tensor rewrite system should be

able to prove all or at least a large proportion of rules. Most widely adopted approach in

tensor graph rewrite proofs is an axiomatic approach, where the rewrite language designer

comes up with a sufficient set of lemmas about the tensor operators, which are then used to

prove increasingly complex rules. However, this approach requires the designer to update

the core set of lemmas when new rules are introduced and can quickly become cumbersome.

TensorRight Proof Strategy We introduce a new approach based on denotational

semantics of tensor operators to prove rules with unbounded rank and dimension sizes

for input tensors, which we describe briefly in Section 5.5 before diving into details later.

Typically, the number of tensor operators is much fewer than the number rewrite rules,

174

making our approach more scalable than a purely axiomatic approach. As shown in § 5.7,

we can prove a majority of the rules in XLA’s algebraic simplification pass for unbounded

ranks and dimension sizes.

5.3 Overview

Figure 5.2: TensorRight overview and workflow

Fig. 5.2 shows the overview of TensorRight components. The denotational

semantics of operators (§ 5.4) are implemented as executable specifications, embeded in

TensorRight DSL. Rewrite rules written in TensorRight DSL are programs that symbol-

ically execute the operators’ specifications and generates symbolic representations of the LHS

and RHS expressions. The verification condition of a rule is simply the assertion of equality

between the LHS and RHS expressions (§ 5.5). The dimension types in TensorRight DSL

allow the proof system to support unbounded tensor dimension sizes and ranks.

Our system design provides additional compelling features. First, the user can

use TensorRight to concretely execute tensor expressions to intuitively understand what

preconditions may be needed to prove a rule. This increases user productivity. Second, since

the rules are represented in a declarative form, we can automatically generate imperative C++

175

code that matches and rewrites patterns in computational graphs using this rule specification.

We have built a prototype C++ code generator to showcase this functionality. This allows

TensorRight to automatically translate new rewrite rules written in TensorRight DSL

to C++ code, which can be integrated (literally copied) into the XLA compiler itself.

5.3.1 TensorRight Rewrite Rules

Similar to many other tensor rewrite systems, TensorRight rewrites are modeled

as rewriting a LHS tensor expression to a RHS tensor expression, subject to certain precon-

ditions, which the LHS expression should satisfy. The users use the constructs provided by

TensorRight DSL to write both tensor expressions and the preconditions. Preconditions are

predicates that operate on the LHS tensor expression. We use the notation tLHS ⇒C tRHS

to represent a generic tensor rewrite, where tLHS and tRHS are the LHS and RHS tensor

expressions respectively, and C are the set of preconditions under which the rewrite rule is

supposedly correct, which is verified by our system.

5.3.2 TensorRight Language Constructs

The TensorRight DSL provides constructs to define input tensors, dimensions,

accesses and perform operations on them. Here, we look at some of the constructs briefly

before we present more thorough definitions in Section 5.5.

Dimensions. TensorRight represents dimensions as mapping from dimension

names (shown with i) to their sizes. For example, consider a 3-dimensional tensor t with three

dimensions i0, i1 and i2 with sizes of 3, 4, and 5, respectively. We represent dimension map

of t as {i0 7→ 3, i1 7→ 4, i2 7→ 5}. Dimension maps remain uninterpreted during our definition

176

of denotational semantics. During symbolic execution, we introduce the concept of aggregate

dimensions (Section 5.5.1) to reason about a collection of dimensions simultaneously and use

symbolic variables to represent dimension sizes. This way we support verification of rewrites

on unbounded tensor rank and dimension sizes.

Accesses. Accesses allow us to retrieve an element from a tensor at a particular

location. We model accesses as a map a from dimension names to access value in each

dimension. For example, let’s consider the same 3-dimensional tensor t with dimension map

{i0 7→ 3, i1 7→ 4, i2 7→ 5}. An access map of a = {i0 7→ 2, i1 7→ 3, i2 7→ 4} retrieves the

element at the second location in i0, third location in i1, and forth location in i2.

Tensors and Operations. We model tensors as a mapping a 7→ v from accesses a

to values v of type integer or real. We then model tensor operations in the core TensorRight

DSL langauge and define the denotational semantics for the language in § 5.4.

5.3.3 Proving Correctness

We define the denotational semantics of TensorRight DSL in § 5.4. Given the

semantic rules, TensorRight generates the verification conditions required to prove the

correctness of the rewrite rule. Given the rule tLHS ⇒C tRHS , our proof obligation states

that if the precondition C is satisfied, the semantics of tLHS and tRHS must be equal. More

specifically, TensorRight symbolic execution engine generates the verification conditions

by interpreting the LHS and RHS tensor expressions under a general access with symbolic

indices chosen from the domain of accesses of the two expressions. Then, TensorRight

asserts the equality of the interpreted results from LHS and RHS as a verification condition.

For some rules that require reasoning about reductions, we develop proof extensions via a

177

few lemmas to make the verification feasible as detailed in Section 5.5. Note that, a vast

majority of rules are proven without using these lemmas.

5.4 TensorRight DSL & Semantics

This section first presents the core syntax of TensorRight DSL — which closely

models the core syntax of XLA operators — and then the denotational semantics of the

language.

5.4.1 Core Syntax

We capture the core syntax of TensorRight DSL in Fig. 5.3. Values that tensors

store can be of either Integer, Real, or Boolean types τ . We denote primitive literals as n

and we use the bold font to represent literals of different types. An integer term n can be an

integer literal, or an application of a binary operator to two integers. We use i to represent

dimension indices or names. The indices are merely labels for dimensions, and they don’t

enforce particular ordering of dimensions. We note that this representation of dimension

differs from that of XLA, where the dimensions of the tensors are represented as an ordered

list.

Maps m are an essential part of the language. A dimension map d maps a dimension

index i to the size of the dimension. An access map a specifies access values for each dimension

inside a tensor. We represent maps m (also denoted as d for dimension maps and a for access

maps) as a set of finite mappings i 7→ e of indices i to expressions e. The map m[i 7→ e]

updates the value of m at index i to the new value e. Other operations on maps include

178

τ := Int | Real | Bool Type

n : N Primitive Lit

n := n | n⊕ n Integer

i Index

m :M = {i .. i} → N Map Lit

m, d, a := m Map

| i 7→ e | m[i 7→ e]

| �m | m|i | m−1

| m ◦m

| m⊕m | m⊕ n

| m ∪m | m m

| Dims(s)

s := 〈d, τ〉 Shape Lit

s := 〈d, τ〉 Shape

ts := Consts(n) Tensor Lit

ts := ts | o Tensor Expr

f = a→ a Access

Transformer

e := ts Expr

| n | i | m(i)

| e | ts[a]

| dom(m) | range(m)

o := binary-op(ts, ts,⊕) Operation

| transposes(ts,m)

| expand(ts, d)

| broadcast(ts,m, d)

| slices(ts,m,m,m)

| dy-slices(ts,m,m)

| dy-up-slice(ts, ts,m)

| pads(ts, e,m,m,m)

| iota(d, i)

| reduces(ts, i, e,⊕)

| reshape(ts, d, f)

| concat(ts, ts, i)

| conv(ts, ts, i, i)

| dot(ts, ts, i, i)

Figure 5.3: Core Specification Language

unary and point-wise binary operation on values of indices. A map m can also be the result

of applying an binary operation to a map and an integer term. The two operations inverse

(m−1) and composition (m ◦m) can be applied to maps whose values are indices as well.

As an example, the composition of m with its inverse m−1 is simply the identity Id map.

The projection m|i restricts the domain of m to the set of indices i. Adding new elements

to a map is simply done by getting the union of the two maps. We note that for a union

179

operation to be valid, our semantics require that the added keys must be fresh indices that

are not already present in the map. Removing from a map is done with the set minus ()

operator. Finally, Dims(s) retrieves the dimension map from the shape s. We define the

shape of a tensor s to be the pair of its dimension map d and the type elements that it stores.

We decorate language terms with their shapes s as a subscript.

A tensor expression t is either a constant tensor replicating value n, or the result

of an operation o. We will describe operations and their semantics in the next subsection.

Finally, an expression e is either a tensor t, a number n, an index i, an indexing m(i) of a

map m at an index i, an accessing t[a] of a tensor t with access map a, a set of expressions

e, or the domain dom(m) or range range(m) of a map m. Finally, we define f as an access

transformer function which defines how an input access map is transformed to another access

map. This transformer function is used in the reshape operator which we will visit later.

5.4.2 Denotational Semantics

We define the denotational semantics of the specification language in Fig. 5.4. A

map i 7→ v maps indices i to values v (that can be integers or indices). Indices can be general

names that include integers. A tensor a 7→ v with dimension map d, is an unbounded finite

map from accesses a of d to values v (that can be integers, reals or booleans). A dimension

map is a mapping from a set of indices, called dimensions, to their sizes. The rank of a

tensor is the size of its dimension map. Given a dimension map d, an access is a map from

each dimension in d to a number less than the size of that dimension. For a dimension map

d, we denote the set of accesses as A(d). The dimension map of a tensor t is denoted as

180

BinOp

t = J e K t′ = J e′ K

D(t) = D(t′) d = D(t)

J binary(e, e′,⊕) K =

{a 7→ t[a]⊕ t′[a] | a ∈ A(d)}

Trans

t = J e K d = D(t)

d′ = d ◦m−1

J transpose(e,m) K =

{a 7→ t[a ◦m] | a ∈ A(d′)}

Expand

t = J e K d = D(t)

i = dom(d′) dom(d)

d ⊆ d′

J expand(e, d′) K =

{a′ 7→ t[a′ a′|i] | a′ ∈ A(d′)}

Slice

t = J e K d = D(t) ms ≥ 0

me < d do =

⌈
me −ms

mp

⌉
J slice(e,ms,me,mp) K =

{a 7→ t[ms + a×mp] | a ∈ A(do)}

Reduce

t = J e K

q
reduce(e, i,⊕)

y
=

Reduction(t, i,⊕)

Iota

J iota(d, i) K =

{a 7→ a(i) | a ∈ A(d)}

Pad

t = J e K d = D(t) n = J ev K

di = d+ (mi × (d− 1)) dl = di +ml do = dl +mh

int-pad = λa.
∨

j∈dom(a)

(a|j −ml|j) % (mi|j + 1) ∧ mi|j 6= 0

J pad(e, ev,ml,mi,mh) K =

{a 7→ n | a ∈ A(do) ∧
∨

i∈dom(d)

a|i < ml|i} ∪

{a 7→ t[
a−ml

mi + 1
] | a ∈ A(do) ∧ ¬int-pad(a)} ∪

{a 7→ n | a ∈ A(do) ∧ int-pad(a)} ∪

{a 7→ n | a ∈ A(do) ∧
∨

i∈dom(d)

a|i ≥ dl|i}

Reshape

t = J e K d = D(t)

k = |d| k′ = |d′|

Πk−1
i=0 d(i) = Πk′−1

i=0 d′(i)

J reshape(e, d′, f) K =

{a 7→ t[f(a)] | a ∈ A(d′)}

D(t). Finally, given a tensor t, its dimension map D(t) can be calculated as follows. Each

dimension i is mapped to the largest value for i in all accesses of t.

181

Concat

t = J e K t′ = J e′ K

d = D(t) d′ = D(t′)

d d|i = d′ d′|i i′ = dom(d′) i

do = (d d|i) ∪ (d|i + d′|i)

J concatenate(e, e′, i) K =

{a 7→ t[a] | a ∈ A(do) ∧ a|i < d|i} ∪

{a 7→ t′[a− (d|i ∪ i′ 7→ 0)] | a ∈ A(do) ∧ a|i ≥ d|i}

DyUpdateSlice

t = J e K t′ = J e′ K

d = D(t) d′ = D(t′) ms ≥ 0

J dy-up-slice(e, e′,ms) K =

{a 7→ t[a] | a ∈ A(d) ∧ a < ms} ∪

{a 7→ t′[a−ms] | a ∈ A(d) ∧ms ≤ a < d′} ∪

{a 7→ t[a] | a ∈ A(d) ∧ms + d′ ≤ a}

Dot

t1 = J e1 K d1 = D(t1) t2 = J e2 K d2 = D(t2)

d1|i = d2|i d′1 = d1 d1|i d′2 = d2 d′|i do = d′1 ∪ d′2 ∪ d1|i

t′1 = J broadcast(t1, Id, do) K t′2 = J broadcast(t2, Id, do) K

q
dot(e1, e2, i)

y
= Reduction(J binary(t′1, t

′
2,×) K , i,+)

Conv

t1 = J pad(e1, 0,mh,ml,mi) K t2 =
q

pad(e2, 0,_ 7→ 0,_ 7→ 0,m′i)
y

d1 = D(t1) d′1 = d1 d1|{ib,iif} d2 = D(t′1) d′2 = d2 d2|{iif ,iof}

do = {ib 7→ d1(ib), iif 7→ d2(iif), iof 7→ d2(iof)} ∪ (d′1 − d′2 + 1)

t′1 = J broadcast(t1, Id, d1 ∪ {iof 7→ d2(iof)}) K t′2 = J broadcast(t2, Id, d2 ∪ {ib 7→ d1(ib)}) K

window = λa. J slice(t′1, a, a+ t′2) K mul = λa. J binary(window(a), t′2,×) K

reduced = {a 7→ Reduction(mul(a), dom(d′2),+) | a ∈ A(do)}

J convolution(e1, e2, ib, iif , iof ,mh,ml,mi,m
′
i) K = Reduction(reduced, iif ,+)

Figure 5.4: Denotational semantics of the core language.

182

The semantics of maps and numbers are standard. The operator ⊕ is simply lifted

to two maps by point-wise application. The operation m⊕ n on the map m and an integer

n, first lifts n into a map of the same domain as m, before point-wise application of ⊕.

Tensor Operations. Next, we explain the semantics of each operation:

• BinOp. The semantics of the binary operator ⊕ applied to t and t′ is straight-

forward and is valid only if the operands have the same dimension maps. For each accesses

a, the result is the pair-wise application of ⊕ to the value of t and t′ at a. As evident in this

rule, our semantics is rank and size polymorphic.

• Trans. The transpose operation is a general multi-dimensional version of

the matrix transpose operation. The argument to this operation is a permutation map m

which specifies the mapping from the input dimensions d to the output dimensions. More

specifically, m maps every dimension i in the input to some index in the output. Therefore,

to calculate the output dimension map d′, the rule composes d with the inverse of the

permutation map, namely, m−1. The rationale is that, for every index of d′, the size is found

by looking up that index in d. Similarly, an access a of the output tensor is mapped to

the value in t at the access a ◦m, which composes a with m. We note that for a transpose

operation to be valid, the composition operation d◦m−1 must be well-defined, i.e, the domain

of m must match the domain of d. To understand the transpose operation, let’s consider

the example tensor t with dimension map d = {i0 7→ 100, i1 7→ 200, i2 7→ 300}. Assume

dimensions i0, i1, and i2 are depth, height, and width of t, in order. Fig. 5.5a shows the

result of transpose(t, {i0 7→ i0, i1 7→ i2, i2 7→ i1}).

183

• Expand. Given the new dimension map d′, the expand operation adds the

dimensions with indices i to the existing dimension map d such that the dimensions i contain

a copy of the data in the input tensor. For the expanded output tensor, an access a takes

the value of the input tensor t at the access a a|i which is the result of removing the added

mappings with domain i from a. Fig. 5.5b depicts an example of the expand operation

expand(t, {i0}, {i0 7→ 2, i1 7→ 5, i2 7→ 8}) on the 2D input tensor t with the dimension map

d = {i1 7→ 5, i2 7→ 8}. For the sake of presentation, assume that indices i1 and i2 represent

the row and column of t respectively. We note that in general, dimensions may not be not

be a complete range of numbers, and may not be ordered. Also, assume that the new index

i0 will be the depth of the output tensor. As shown in Fig. 5.5b, the output is a 3D tensor

constructed by copying the 2D input tensor t across the depth.

(a) Transpose operation

(b) Expand operation (c) Dot operation

Figure 5.5: Illustration of the (a)expand, (b)transpose, and (c)dot operations.

• Broadcast. The core operations introduced above allow us to capture the

broadcast operation broadcast(t,m, d′) as a syntactic sugar: transpose(expand(t, d′),m), a

184

transpose applied to an expand operation. It first expands the given tensor to the new

dimension mapping d′. Then, it transposes the dimensions based on the given permutation

map m.

• Slice. The slice operation slice(e,ms,me,mp) extracts a sub-tensor from the

input tensor t. The sub-tensor is of the same rank as t and contains the values inside a

bounding box within t. The start indices of the bounding box is given by the map ms.

Similarly, the end indices are given by the map me. Finally, the stride map, mp, specifies

which elements to pick within the bounding box. For example, if the value of the stride

map is 1 for a dimension, no element is skipped in that dimension; if the value is 2, every

other element is skipped in that dimension. Therefore, each access a of the output tensor, is

mapped to the access ms + a×mp in the input tensor t.

• DySlice. The slice operation introduced above allow us to capture the dynamic

slice operation dy-slice(t,m,m′) as a syntactic sugar: slice(ts,m,m+m′, dom(d) 7→ 1) where

d = dom(Dims(s)). It performs a slice operation with m as start indices, m+m′ as the end

indices, and the stride 1 for all the dimensions.

• Iota. The iota operation creates a tensor with the given dimension map d as

the output dimension. The values of the output tensor along the dimension i start at zero

and increment by one, which is given by a(i), the value of the access a at dimension i.

• Pad. The pad operation increases individual dimension sizes of the given tensor.

Consider a tensor t with dimension map d. To specify the amount of padding for each

dimension, this operation takes three maps ml, mh, and mi representing the amount of low

padding, high padding and interior padding, respectively. We note that the interior padding

185

logically occurs before low and high padding. The total number of elements after the interior

padding is performed, namely di is equal to d+mi × (d− 1). Similarly, dl and d′ calculate

the dimension maps after the low and high padding are performed. Given an access a in

the output tensor, int-pad function checks if the accessed element is part of the interior

padded elements. For an access a in the output dimension map do, there are the following

possibilities: If a is less than ml or greater than or equal to dl, the result is the pad value n.

If a falls within ml and dl (ml ≤ a < dl) and is part of the interior padding, the output is

the pad value n. Otherwise, the output is the element at a−ml
mi+1 in t.

Reduction

d = D(t) do = d d|i i = {i1, . . . , ik}

elem = λa, n. a ∪ i 7→ n

Reduction(t, i,⊕) =

{a 7→
d(i1)−1⊕
j1=0

· · ·
d(ik)−1⊕
jk=0

t[elem(a, j1 . . . jk)] | a ∈ A(do)}

Figure 5.6: Reduction

• Reshape. The reshape op-

eration reshape(t, d′, f) reshapes the in-

put tensor t to the given dimension map

d′. The operation gets an access trans-

former function f which transforms ac-

cesses of the output tensor to their cor-

responding accesses in the input tensor t.

• Concat. The concatenate operation constructs the output tensor by con-

catenating its operands t and t′ along the dimension i. The operation is valid only if the

rank of the operands are the same and all the dimensions except i have the same sizes,

i.e., d d|i = d′ d′|i. The output dimension map do is the union of the non-concatenating

dimensions d d|i, with the new concatenated dimension, d|i + d′|i. Therefore, accesses a of

the output are mapped to t or t′ based on the value of the a at i.

186

• DyUpdateSlice. The dynamic update slice operation dy-up-slice(t, t′,ms)

updates a slice of the input tensor t with the update tensor t′ where ms specifies the starting

point of the slice to be updated. This operation is valid only if ms is greater than or equal to

zero. Accesses of the output tensor that fall outside t′, i.e, accesses less than ms or beyond

t′ boundaries, are mapped to the same elements in t. Otherwise, accesses are mapped to

elements of t′.

• Reduce. The semantics of the reduce(t, i,⊕) operation is represented as the

Reduction function defined in Fig. 5.6. It applies the reduction function ⊕ to all the elements

of the tensor t along the reduction dimensions i. Therefore, the dimension map of the output

do will not contain the reduced dimensions i. Concretely, every access a in do is mapped to

the result of applying ⊕ operations to elements of t that are accessed by all extensions of a.

• Dot. The dot operation dot(t1, t2, i) performs a sum reduction of the point-wise

multiplication of tensors t1 and t2 over the specified contracting dimensions i. (We note that

the XLA’s implementation of the dot operation accepts two sets of contracting dimensions

for t1 and t2. For simplicity, we assume that the dimension names representing contracting

dimensions in t1 and t2 are the same. This assumption can be easily lifted.) Let d1 and d2

be the dimension maps of t1 and t2. The condition d1|i = d2|i checks that the contracting

dimensions have the same sizes. The spatial dimensions, i.e. the dimensions that are left

unchanged, of t1 and t2 are represented as the dimension maps d′1 and d′2 respectively. The

output dimension map do is the union of d′1 and d′2, and the contracting dimension map d|i.

In order to make the sizes of the two tensors compatible, the tensors t′1 and t′2 are calculated

as the broadcast of t1 and t2 with the output dimension map do (and simply, the identity

187

function Id as the permutation map). Finally, the result of the dot operation is calculated as

first, the binary multiplication of t′1 and t′2, and then reduction over the dimensions i.

• Conv. We now consider a convolution operation

convolution(t1, t2, ib, iif , iof ,mh,ml,mi,m
′
i). A convolution can be thought as a ker-

nel tensor that is moved across and applied to an activation tensor. The activation tensor t1

has multiple batches of input at the dimension ib. For each batch, the values for the input

features to be processed are at dimension iif . The kernel tensor t2 contains the window

tensor at dimension iif . It further includes output features at dimension iof that we explain

below. A point-wise computation is performed on the overlapping parts of t1 and t2, followed

by a reduction. Finally, the resulting tensor is reduced over the input feature dimension iif .

The maps ml, mh, and mi specify the amount of low padding, high padding and

interior padding to be applied to t1 respectively, while m′i specifies the amount of interior

padding for t2. Note that the kernel t2 does not need low and high padding. The pad value

is always zero. The rule applies the pad operation with the given arguments to t1 and t2 to

obtain the padded tensors.

Next, the spatial dimension map of t1 and t2, namely, d′1 and d′2, are calculated by

removing ib and iif from d1, and removing iif and iof from d2, respectively. The output

tensor has a spatial dimension map of d′1 − d′2 + 1, which is calculated by sliding the kernel

over the activation. (We note that the XLA’s convolution operation accepts a stride map for

the kernel, which specifies the gap while sliding the kernel). The complete dimension map

of the output do is calculated by inserting ib, iif , and iof into the spatial dimension map.

Similar to the dot operation, the broadcast is performed to make operands compatible. For

188

every access a in do, we first calculate mul , the binary multiplication of the broadcast kernel

t′2, and a window of t′1 starting at a, over the spatial dimensions of the kernel dom(d′). We

then calculate the reduced tensor as the result of the sum reduction of mul over the domain

of d′2. The final result is calculated by applying a sum reduction to the reduced tensor over

iif .

5.5 Verification of Rewrite Rules

This section describes how TensorRight verifies equivalence of tensor expressions.

We specify the rules to be verified in a solver-aided DSL that we implemented in Rosette

[448, 450]. The DSL implements the tensor semantics as well as normalization lemmas for

tensor expressions containing reduction operators. Symbolic execution of the rule proves

some properties directly during symbolic execution, and generates the verification condition

of remaining properties to be solved by an SMT solver.

We first describe the DSL, focusing on dimension types which model tensors with

unbounded ranks. Next, we describe the steps of the verification condition generation process

driven by symbolic execution. Finally, we describe how we prove the normalization lemmas

for expressions with reduction operators.

5.5.1 Symbolic Dimension Types

To model tensors of unknown and unbounded ranks, our tensor semantics in § 5.4

relies on maps of unbounded sizes. In principle, we could implement the unbounded rank

using a theory of maps in SMT. For practical reasons, we implement custom maps tailored

189

to symbolic execution in order to reason about the unbounded nature of these maps entirely

during the symbolic execution, instead of deferring the reasoning to the SML solver. These

maps are presented to rule authors as symbolic dimension types, described below. In order

to simplify explanation, we use Rosette s-expression notations.

Dimension Types. We use two types of dimensions to represent tensors with

unknown ranks. SDim is a single dimension of a tensor, whereas ADim is an aggregate

dimension that contains a set of SDims. The composition of dimensions in an ADim can be left

unspecified, in which case the ADim stands for an unspecified number of dimensions. Tensors

with such dimensions are rank-polymorphic, and proofs involving such tensors are valid for

all possible instantiations of the ADim. Dimensions are uniquely named (e.g., (SDim "d1"),

(ADim "d2")) and tensor operations check that argument tensors have valid dimensions. For

example, the element-wise binary operation (* t1 t2) will check that t1 and t2 include the

same set of dimensions.

Accesses. To prove that two tensors are equivalent, we verify that all possible

accesses to the tensors produce the same value. An access structure maps a dimension to a

symbolic variable. For example, to index into the dimension (SDim "d1") using symbolic

index i, we create the access structure (Acc (SDim "d1") i). During the symbolic access

to the tensor, we assert the index to be within the range of its dimension size.

Tensors. We model tensors as uninterpreted functions from symbolic accesses to

symbolic integer or real values (T : Acc 7→ Int/Real/Bool). We use a custom implementation

of uninterpreted functions, instantiating new values lazily for each symbolically different

access to the tensor.

190

Tensor Operators. We implement TensorRight DSL operators as Rosette

functions that accept symbolic tensors and output a new symbolic tensor that represents the

result of the operation. We compose tensor operators by composing functions.

5.5.2 The Verification Approach

During the symbolic execution of the LHS and RHS expressions of a rule, Tensor-

Right decomposes the verification into three kinds of checks.

Checks performed during symbolic execution Each tensor operator constructs the

dimension map of the output tensor from the dimension maps of the input tensor(s). Ten-

sorRight then checks that the final LHS and RHS tensors have the same dimensions. This

check is performed entirely by the symbolic execution engine rather than by the solver.

Normalization of reduction expressions The reduction operator is uninterpreted in

our denotational semantics to avoid delegating reduction proofs to the SMT solver, which is

infeasible when dimension sizes are unbounded. When proving equivalence of expressions

involving reductions, TensorRight attempts to rewrite the LHS and RHS expressions into

the same syntactic form. The strategy is to move binary multiplications to the inside of

sum reductions and binary additions to the outside of sum reductions. We established a few

lemmas for this purpose, shown in Figure 5.7.

Checks delegated to the SMT solver During symbolic execution, TensorRight

collects assertions which are then sent to the SMT as a verification condition. These

assertions check that accesses fall within dimension sizes; that the dimensions sizes for

191

LHS and RHS are the same; and that the values stored in tensor expressions are the same.

The following are types of assertions emitted by TensorRight illustrated with simplified

examples.

• Assertions related to dimension sizes: e.g. (= (dim-size lhs dim) (+ end (-

start)) and (= (dim-size rhs dim) (+ end (- start)))); solver can now reason

about the relationship between dimension sizes of operations in LHS and RHS.

• Assertions related to access ranges: These assertions are needed to establish that LHS

and RHS should fail or succeed at the same time (e.g. (&& (<= 0 i) (< i (dims rhs

init-dims))). Also, for complex operations such as pad only certain expressions are

valid for certain ranges, and by qualifying these ranges, the solver can do case analysis

to prove that the final symbolic expressions are equivalent for all ranges.

• Assertions related to final tensor expressions: These are assertions on the final symbolic

tensor expressions. In general, there can be arithmetic expressions that needs SMT

reasoning. A simple example rule for this case is (= (+ A B) (+ B A)), where A and

B are symbolic values of two tensors obtained from uninterpreted functions that model

these tensors.

• Assumptions for rules with preconditions: Consider a rule with two input tensors

(A and B) and the precondition stating that they should be of the same size. This

condition is asserted by the rewrite rule writer.

If both the syntactic checks and the SMT based checks succeed, we deem that the rule is

verified.

192

5.5.3 Verifying expressions with reduction operators

As mentioned in 5.5.1, TensorRight verifies expressions with reduction operators

by normalizing lemmas described in Fig. 5.7. Here we describe how these lemmas are verified

with a proof approach tailored to reductions. The proof approach described here is also

useful for proving expressions where our normalization did not succeed to transform the LHS

and RHS into the same syntactic form.

Automatically verifying expressions with reduction operators is challenging for the

following reasons.

• The sizes of reduced dimensions are unbounded.

• A reduction of a tensor may be performed in several steps, e.g., due to blocking of the ten-

sor into smaller tiles or distributing reduction over concatenation. For instance, we may

want to prove reduce(concat(A,B)) = reduce(concat(reduce(A),reduce(B))).

• The equivalence of two expressions may rely on tensor-level distributivity property, as

shown in the lemma CanonBinRed2 in Figure 5.7.

The key idea of verifying expressions with reductions is to make the proof specific

to values typically produced by reductions. In particular, we assume that reductions produce

tensors whose elements are scalar values of the form v =
∑
xiyj where xi, yj are symbolic

scalar values originating in the input tensors. Proving the equivalence of two scalar values

v =
∑
xiyj and v′ =

∑
xi′yj′ boils down to showing that for each term xiyj from v, there

exists i′ and j′ such that xi′yj′ from v′ can be proven to be equivalent to xiyj . We also

need to prove this property in the opposite direction. To show that values v and v′ sum

193

CanonNestRed

Reduction(Reduction(t, i′,⊕), i,⊕))⇒

Reduction(t, i ∪ i′,⊕)

CanonBinRed

Reduction(binary(t, t′,+), i,+))⇒

binary(Reduction(t, i,+),Reduction(t′, i,+),+)

CanonNoRed

Reduction(t, ∅,⊕))⇒ t

CanonBinRed2

d = D(t) d′ = D(t′) d|i′ = ∅ d′|i = ∅

do = d ∪ d′

binary(Reduction(t, i,+),Reduction(t′, i′,+),×) ⇒

Reduction(binary(broadcast(t, Id, do), broadcast(t′, Id, do),×), i ∪ i′,+)

Figure 5.7: Normalization lemmas for reduction operator.

the same set of terms, it remains to show that the set of terms in v and v′ do not contain

duplicates; i.e., that no term xiyj is added to the result more than once. This is guaranteed

by construction of our expressions; this property does not hold, for example, in the expression

reduce(X * concat(Y,Y)) which duplicates Y, allowing scalar values yj to appear in the

result multiple times. To prove equivalence of tensors, we prove equivalence of scalar values

in each element of the tensors.

5.6 Implementation

We have implemented a verification backend to prove the TensorRight rewrite

rules are correct and a C++ code generator to convert the declarative rewrite rules written

in TensorRight DSL to imperative C++ code that can be integrated inside the XLA

compiler. The C++ code generator is a tool that we built to showcase the versatility of

having verified declarative tensor rewrite rules.

194

5.6.1 Rosette based Verification

We implemented the operator defintions in the solver-aided programming language

Rosette to leverage its symbolic execution capabilities. Given a tensor rewrite rule written in

Rosette and a dimension map, we use symbolic execution to generate verification conditions

according to Section 5.5. Here, we show an example operator definition and a rewrite rule to

illustrate our implementation.

Operator Definition Example

We present how we encode the semantics of a transpose operator. Listing 5.1 shows

the implementation of the transpose operator where the function transpose takes a tensor

and returns tensor. This tensor can then be accessed using a well-formed access (Acc). Line

6 checks whether the provided access is valid according to the dimensions that were defined.

Lines 8-9 asserts that the tensor symbolic value is defined only when the access indices are

within bounds. In our implementation, we modeled the permutation maps as two ordered

lists (in-dims and out-dims) that we use to compute the in-accs for the input tensor in line

3. Lines 12-19 establishes the relationship between the input and output tensor dimension

sizes, where we assert they should remain unchanged. These internal assertions become part

of the verification condition for any rule that uses transpose operator.

Rewrite Rule Example

We describe the anatomy of a rewrite rule specification in Rosette taking Re-

orderTransposeOfSlice rule (Figure 5.8) as an example. Listing 5.2 shows the complete

implementation with simplifications for brevity. We instantiate the dimension maps with

195

symbolic dimension sizes and symbolically execute the tensors under symbolic indices.

(setup-tensor ..) in Line 4 sets the dimension map keys to init-dims and instantiates

the sizes to be symbolic variables. Arguments to the transpose operator signifies that

init-dims is replaced by trans-dims (Line 13). We implement the permutation map as a

list permutation as discussed during transpose operator implementation. The start and end

indices to the slice operators are represented as Acc for ease of implementation (Lines 6-10).

As shown in the semantics, we use the start and end indices to calculate both the dimension

ReorderTransposeOfSlice :

let m′s = ms ◦m−1 in

let m′l = ml ◦m−1 in

let m′p = mp ◦m−1 in

slice(transpose(t,m),ms,ml,mp) =⇒ transpose(slice(t,m′s,m
′
l,m

′
p),m)

Figure 5.8: Reorder transpose and slice.

map sizes and access index values. Finally, we create a general access with symbolic index i

(Line 20) and evaluate both LHS and RHS tensor expressions. The implementation checks

for composition of the dimensions of the output tensors, while creating verification conditions

for the dimension sizes. Then, we use Rosette’s verify construct to feed the generated

verification conditions regarding both the dimension sizes and tensor values to the SMT solver

to check for satisfiability. If the SMT solver, returns that there are no counter examples, we

deem that the rewrite rule is correct. In this case, indeed the SMT solver returns (unsat)

proving that the ReorderTransposeOfSlice rule is correct.

196

Listing 5.1: Transpose Operator Implementation in Rosette

1 (define (transpose in -tensor in-dims out -dims)

2 (define (out -transpose accs)

3 (let ([in-accs (..# code to compute accs for input)])

4 (assert (is-access -valid? out -transpose accs))

5 (assert (full -range out -transpose accs))

6 (assert (full -range in -tensor in-accs))

7 (in -tensor in-accs)))

8 (for/list ([in-dim in -dims])

9 (let ([out -dim (..# find corresponding dim)])

10 (assert (equal? (dims out -transpose out -dim)

11 (dims in -tensor in-dim)))))

12 out -transpose)

Generated Verification Conditions

We present few examples of assertions emitted during symbolic execution that

becomes part of the verification conditions.

• Assertions related to dimension sizes: e.g. (= (dims slice_rhs init-dims) (+ end

(- start)) and (= (dims slice_lhs) (+ end (- start))))

• Assertions related to accesses with in bound: e.g. (&& (<= 0 i) (< i (dims

transpose_rhs init-dims))).

• Assertions related to final tensor expressions: In the example, Rosette can itself deduce

that the tensor expressions are the same syntactically without going to the solver.

197

Listing 5.2: Specification of the rule ReorderTransposeOfSlice

1 (define -tensor A)

2 (define init -dims (ADim "Root" (list)))

3 (setup -tensor A (list init -dims))

4 (define trans -dims (ADim "Trans" (list)))

5 (define -symbolic start end str integer ?)

6 (define start -lhs (list (Acc trans -dims start)))

7 (define end -lhs (list (Acc trans -dims end)))

8 (define str -lhs (list (Acc trans -dims str)))

9 (define start -rhs (list (Acc init -dims start)))

10 # similar definition for end -rhs , str -rhs

11 (define rhs -expr

12 (slice (transpose A (list init -dims) (list trans -dims))

13 start -lhs end -lhs str -lhs))

14 (define lhs -expr

15 (transpose (slice A start -rhs end -rhs str -rhs)

16 (list init -dims) (list trans -dims)))

17 (define -symbolic i integer ?)

18 (define access (list (Acc trans -dims i)))

19 (define lhs -value (rhs -expr access))

20 (define rhs -value (lhs -expr access))

21 (verify (assert (equal? lhs -value rhs -value)))

5.7 Evaluation

This section evaluates the TensorRight verification framework on the following

aspects:

198

• Q1: How expressive is TensorRight compared to a production rewrite engine and

existing verified rewrite engines? (Section 5.7.1)

• Q2: Is TensorRight a useful tool for compiler developers? (Section 5.7.2)

• Q3: Can TensorRight be used to generalize complicated rules? (Section 5.7.3)

To answer these questions, we select a set of existing rules in the XLA compiler

to study. We consider XLA’s algebraic simplifier (AS) pass for our evaluation. The AS

rewrite pass replaces the expressions of certain form with their equivalent expressions. The

decision of what rewrite rules to add depends on number of factors. Certain rewrite rules

are present to speedup execution. Other rules allow further optimizations such as fusion

in other passes of the compiler. Hence, we evaluate TensorRight on all the rules from

XLA’s target-independent AS pass. We filter out rules that are rarely or never applied by

considering only rules that are fired when compiling programs from XLA benchmark suite

and MLPerf workloads. In total, there are 123 such rules, which we study in details.

5.7.1 Expressiveness

We show that TensorRight can support a wide variety of rewrite rules present in

the XLA compiler. Next, we compare expressivity of TensorRight with popular tensor

rewrite tools, TASO [235] and PET [469], on both representation and proof capabilities. We

compare both on the implemented rules as well as rules that can be easily supported in these

systems just requiring engineering effort.

199

Coverage. Table 5.1 categorizes the 123 XLA rules into five disjoint classes and summarizes

how many rules TensorRight supports. Among 123 rules, 50 rules are arithmetic operations

lifted to element-wise tensor expressions. We categorize these operations into simple (39 rules)

and advanced (11 rules) classes. The simple element-wise class consists of operations that

easily expressible in SMT such as add, subtract, multiplication, division, max, min and modulo.

The advanced class either requires additional theory such as IEEE floating point or include

operations that cannot be easily modeled via SMT, such as sqrt and log. TensorRight

can easily verify 9 simple element-wise rules in less than a second. TensorRight can

also support the rest of the rules in the simple element-wise class but they have not been

implemented and verified at the time of the submission. In the advanced element-wise class,

TensorRight has capability to support a few by unrolling an advanced operation to simple

operations. More can be supported but require more development effort and may increase

the verification time significantly.

On more interesting rules that involve non-element-wise operations, we categorize

them into three classes: requiring operations on dimensions, requiring physical dimension

order reasoning, and basic (the rest). 22 rules requires expressing operations on tensor

dimensions. For example, the rule in Eq. 5.1 requires a computing d′′ to use in the RHS.

TensorRight is capable of expressing and proving all of the rules in this category, in which

we have implemented and verified 8 of them so far. The rules that we can already support

in this category are very important; as shown in Table 5.3, the first two rules, which get

fired very often, requires operations on dimensions. The next category contains 40 basic

non-element-wise rules. These rules involve similar operations as in the previous category,

200

but the rules are simpler because they do not require expressing operations on dimensions.

TensorRight is also capable of expressing and proving all the rules in this category, in

which we have verified 10 of them. The last category, consisting of the remaining 11 rules,

requires reasoning about the physical order of dimensions, which is not supported by any of

the prior systems and ours. In total, TensorRight is capable of expressing and proving

104 out of 123 rules (85%).

Limitations. Next, we investigate the rules that we have not yet implemented, some of

which can be easily supported, but some cannot because of TensorRightś limitations.

Table 5.2 summarizes the different reasons. Note that a rule may fall into multiple reasons

as they are not completely disjointed. Among the rules we study, we have not yet supported

16 of them because we have not implemented the semantics of the involving operations

(e.g., convert, select, iota, gather, and scatter); and 4 of them because they require additional

canonocalization lemmas for reduction operations. We cannot support some of the rules

due to more fundamental limitations. TensorRight cannot model 7 rules in SMT via

Rosette using boolean, integer, and real number theory. For example, Rosette does not

support power, exp, log, and sqrt operations. We also cannot reason about the precision of

floating point expressions. For example, binary(binary(A,const, ∗), binary(B,const, ∗),+)⇒

binary(binary(A, B,+), const, ∗) is only valid for floating point operands when const is 1
2

k

where k ∈ Z. To prove this rule, we will have to use SMT’s IEEE float point theory, which is

not currently supported by Rosette.

Besides, TensorRight has not yet supported reasoning about the physical order

of tensor dimensions, i.e., the layout of the tensor in physical memory. Hence, rewrite rules

201

effecting physical ordering changes, e.g., using an XLA copy operation that changes the

physical ordering of the tensor data or an XLA bitcast that requires reasoning that the logical

and physical ordering of the tensor data is unchanged, are not handled by TensorRight .

Comparison to prior work. We compare TensorRight with existing systems that

can verify tensor graph rewrites. The existing systems use two different proof mechanisms.

One is axiomatic proof system, which requires axioms (or called properties or lemmas) to

prove equivalence of tensor expressions. The well-known tensor rewrite engine that uses this

mechanism is TASO. Another approach is using statistical proof mechanism, which purely

relies on testing. This approach is used by PET. Table 5.1 summarizes the number of XLA

rules that TASO and PET can support (and have already implemented). We can see that

TensorRight can support significantly more rules than TASO and PET.

Even for the rules that TASO and PET can support, both systems cannot prove the

correctness of those rules for fully unbounded tensors. While TASO supports verifying rules

involving tensors of arbitrary sizes, its axioms are verified only for tensors of up to 4 elements

in each dimension. Additionally, TASO cannot verify rules with arbitrary ranked tensors

for some operands (e.g., convolution kernel); TASO specializes convolution into conv1d,

conv2d, etc. While PET can verify rules for arbitrary sizes and ranks, some dimension sizes

(e.g., convolution kernel’s) dictates the number of regular boxes, in which the statistical

testing must be performed. As a result, it cannot not verify that a rule is correct for some

unbounded dimensions without enumerating the test on all possible sizes. The ability to

handle unbounded tensors is crucial in a production compiler; most of the 123 rules we study

are implemented in XLA for unbounded tensors.

202

Next, we discuss other limitations of axiomatic and statistical proof techniques

beyond the unboundedness aspect. Table 5.2 breaks down the number of rules and the reasons

different approaches cannot support them. The majority of XLA operations — including

complex ones such as dot and slice — are not implemented in TASO and PET, so most of the

123 rules are not yet supported. The convolution operation supported in TASO and PET is

much simpler that XLA’s as it does not support interior padding and allows only a few sizes

for exterior padding. Additionally, an axiomatic approach like TASO requires new axioms

to support new rules; among the XLA rules we study, 113 rules need new axioms in TASO.

Despite the developmental effort to implement new operations (and axioms), both TASO

and PET do not support rules that require reasoning about the physical order of dimensions,

similar to TensorRightṪhis is because all the systems only check the correctness of the

logical values so far. Note that while TASO’s and PET’s transpose and reshape operations

change physical dimension orders and/or sizes, it is unclear how they will handle a rule such

as reshape(A)⇒ bitcast(A) that requires a certain constraint on the physical dimension order

of A.

Unlike TensorRight TASO and PET cannot express rules that require operations

on dimensions and preconditions. This precludes them from supporting 22 and 52 XLA rules,

respectively. To support these rules, the systems need an expressive language to manipulate

operations on dimensions in a rewrite rule, and specify conditions of an input tensor regarding

its values and shape as well as rule’s parameters. Once these features are expressible, a

statistical approach like PET should be able to prove the rule’s correctness by generating test

203

inputs according to the precondition. However, it is cumbersome for an axiomatic approach

like TASO as it requires adding more axioms with preconditions.

The statistical approach has additional unique benefits and drawbacks. The major

advantage is that it does not need to generate verification conditions to be proven by a

theorem prover such as an SMT solver. This process is complex and difficult to get right.

Furthermore, the capability of the system is not limited by the capability of the solver. For

example, the approach can potentially handle the operations that are not easily modelled in a

theorem prover, such as log and sqrt. However, a statistical approach has a major limitation.

In particular, PET’s approach can verify an equivalence of expressions only if they are linear.

This restriction is in fact more limited than operations supported by a theorem prover like

an SMT solver. We can see that PET cannot verify 38 XLA rules because of the linearity

restriction; whereas, TensorRight and TASO cannot verify 7 rules due to the translation

to SMT formulas.

5.7.2 TensorRight Deployment

This section evaluates the importance of the rewrite rules that TensorRight can

verify for XLA.

Rewrite rules used in XLA benchmark suite Our benchmarks comprise of 114 ML

models (both inference and training) from the XLA regression suite for Google’s Tensor

Processing Units (TPUs). These benchmarks contain computation graphs with 100–56,000

tensor operations. Table 5.3 highlights a few of TensorRight verified-rules that are

204

Category (disjoint)
Number of Supported Rules

XLA TensorRight TASO PET

Elementwise: simple 39 39 (9) 33 (5) 14 (10)

Elementwise: advanced 11 3 (0) 3 (0) 0 (0)

Non-elementwise: basic 40 40 (10) 16 (3) 16 (3)

Non-elementwise: operations on dimensions 22 22 (8) 0 (0) 0 (0)

Non-elementwise: physical dimension order 11 0 (0) 0 (0) 0 (0)

Total 123 104 (27) 52 (8) 30 (13)

Table 5.1: Number of supported rules per disjoint category. The numbers in parentheses

indicate rules that have been implemented and verified (and we continue to implement more);

some of the not-yet-implemented rules require defining new operations and/or new lemmas.

Reason for the Number of Unsupported Rules

lack of support TensorRight TASO PET

Unsupported ops 16 104 104

Need lemmas 4 113 0

Cannot model in SMT 7 7 0

Physical dimension order 12 12 12

Operations on dimensions 0 22 22

Precondition 0 52 52

Non-linear 0 0 38

Table 5.2: Number of unsupported rules per each reason. There may be overlaps between

reasons. The first reason is not a fundamental limitation because new operations can be

added.

exercised heavily for these 114 XLA benchmarks. These rules include sophisticated rewrites

on Dot, e.g., (a) rewrite a Dot as a product of the Broadcast-ed Transpose-ed inputs, and

205

Rule Occurs

1. Rewrite a Dot as a product of the broadcasted transposed variants of the inputs 313

2. Rewrite a Dot as a reduction on the product of broadcasted and transposed inputs. 5317

3. Reverse the ordering of a slice and a broadcast 335

Table 5.3: Table shows the number of instances a TensorRightverified rule was instantiated

for 114 XLA regression benchmarks compiled for multiple generations of TPUs.

Rule Occurs

1. Reverse the ordering of a dynamic-slice and transpose 7626

2. Replace a broadcast with a transpose op 6945

3. Remove a non-permuting transpose operation 28218

Table 5.4: Table shows the number of instances a TensorRightgenerated-C++ rule was

instantiated for the MLPerf suite of benchmarks compiled for multiple generations of TPUs.

(b) rewrite a Dot as a reduction on the product of the Broadcast-ed Transpose-ed inputs.

Such sophisticated rewrites occur thousands of times and hence, are deemed critical to be

verified, which is able to be done by TensorRight .

TensorRight generated C++ code in MLPerf. In ??, we present the details on the

code generator that translates rules written in TensorRight DSL to C++ implementation,

which can be integrated into XLA as part of the algebraic simplification pass. Table 5.4

highlights three rewrite rules that are integrated with XLA and applied extensively when

compiling MLPerf benchmark suite, a benchmark suite consisting of benchmarks jointly

developed by industry and academia [401].

206

5.7.3 Generalizing XLA Rewrite Rules

Using TensorRight we found that some XLA rewrite rules are overly constrained.

This is done for practical reasons, where the compiler engineers intentionally avoid reasoning

in cases where a spurious bug may be introduced. We use TensorRight to generalize the

following rule by relaxing its precondition.

FoldConvInputPad Rule Fig. 5.9 (top) presents the rule as it exists in XLA using

the TensorRight DSL notation. The goal of the rule is to fold the pad operation into

the operand arguments of the convolution itself (XLA convolutions support padding as

operands). The XLA rule2 does not support internal padding in the input tensor and gives

up if this constraint is violated. This is largely because verifying the correctness of internal

padding is a challenging task, and writing code to convert internal padding into dilation is

tedious. TensorRight can generalize this rule by removing this constraint as shown in

Figure 5.9 (bottom). The differences are put in boxes. The key to generalizing the rule is to

calculate the padding arguments that get fed into the convolution operator. This is a function

of the pad operators interior, high and low padding as well as padding that may already

exist in the convolution operator. Figure 5.9 (bottom) shows how to calculate padding

maps mol,moh,moi for the rule to be general. These maps are more complicated than the

non-general version, but this allows the compiler writer to get rid of the precondition of the

rule shown in Figure 5.9 (bottom). It is not clear immediately why this formulation might

be correct. Therefore, we encode it in our Rosette implementation and successfully prove

that the generalized rule with these calculations are sound.
2https://github.com/tensorflow/tensorflow/blob/116adfcc644ed297fe2cfd7c0756e6470dd6a2ba/

tensorflow/compiler/xla/service/algebraic_simplifier.cc#L6653

207

https://github.com/tensorflow/tensorflow/blob/116adfcc644ed297fe2cfd7c0756e6470dd6a2ba/tensorflow/compiler/xla/service/algebraic_simplifier.cc#L6653
https://github.com/tensorflow/tensorflow/blob/116adfcc644ed297fe2cfd7c0756e6470dd6a2ba/tensorflow/compiler/xla/service/algebraic_simplifier.cc#L6653

5.8 Related Work

FoldConvInputPad(XLA) :

let mol = ml +mlp in

let moh = mh +mhp in

convolution(pad(t, 0,mlp,mhp,mip), t′,

(ib, iif , iof ,

ml,mh,mi,m
′
i)

=⇒mip=0∧mi=1

convolution(t, t′, ib, iif , iof ,

mol,moh,moi,m
′
i)

FoldConvInputPad(Generalized) :

let mol = ml + (mi + 1)×mlp in

let moh = mh + (mi + 1)×mhp in

let moi = mi +mpi + (mi ×mpi) in

convolution(pad(t, 0,mlp,mhp,mip), t′,

(ib, iif , iof ,

ml,mh,mi,m
′
i)

=⇒

convolution(t, t′, iib, iob, iif , iof ,

mol,moh,moi,m
′
i)

Figure 5.9: Fold input pad into convolution.

Tensor Graph Rewrite Optimizations

There are multiple existing systems [236, 235,

469, 485, 153, 507] that optimize tensor com-

putation graphs by applying rewrite rules.

Apart from applying only existing rewrite rules,

TASO [235] and PET [469] can synthesize new

rules and provide mechanisms to prove their

correctness. TASO checks the correctness in

two phases: test then verify. First, TASO tests

the LHS and RHS expressions on random in-

puts with a small tensor shape. If the LHS

and RHS expressions have the same output,

TASO then verifies the rule via an SMT solver

by providing axioms, which capture mathe-

matical properties of operators. In contrast,

PET verifies the correctness of a rule via a sta-

tistical approach. PET symbolically infers the

bounding boxes of the output tensor, where

each box contains elements that can be repre-

sented by the same linear expression of its input elements. Leveraging the linear property,

PET statistically verifies the equivalence of the corresponding boxes of the LHS and RHS

208

outputs by checking m+ 1 specific positions in the box, where m is the number of dimensions

of the output tensor. As discussed in § 5.7, both an axiomatic approach like TASO and a

statistical approach like PET cannot prove many algebraic simplification rules present in

XLA.

Many other tensor and stencil compilers [442, 206, 174, 434] not only use rewrite

rules for optimizations but also generate low-level code, where a rule can map from high-level

constructs to low-level ones. However, these compilers assume the correctness of these rewrite

rules and do not attempt to verify them. TensorRight could be useful for providing

correctness guarantees in these systems.

Verified Tensor Program Optimizations. A handful of exiting works support

an end-to-end correctness verification of generated code from high-level tensor programs. ATL

[308] guarantees the correctness of the generated code by applying only manually-verified

rewrite rules via Coq theorem prover. Unlike TensorRight that aims to automate the

correctness checking of rewrite rules, ATL aims to verify the correctness of the final generated

code. Similar to ATL, Halide translation validation [117] verifies the equivalence of the

low-level generated code and the high-level specification. It formalizes both the high-level and

the low-level program representations, and associates the high-level constructs to low-level

code. This technique can be used to validate the correctness of the compiled code for a given

program. Comparatively, TensorRight verifies the correctness of the optimization rules for

any input sizes. Unlike the above two systems, Halide term rewriting synthesis [359] presents

an automatic verification tool for soundness and termination of Halide’s rewriting system,

rather than providing the end-to-end program correctness validation. The term rewriting

209

synthesis generates and verifies rules for expressions on tensor indices’ bounds, so the verified

expressions are on scalar values.

Verified Optimizations in General-Purpose Compilers. There are many

related work on verified compilers for general-purpose programs. The most relevant work

in this area is Alive [317], an automatic verification tool for LLVM’s peephole optimization

rewrite rules. AliveInLean [284] implements Alive using Lean. Alive2 [316], employs trans-

lation validation to prove correctness of generated code from given programs. It defines

and introduces semantics for new previously not formalized constructs in LLVM and is

able to catch subtle bugs. However, it does not verify that the LLVM transformations are

correct. Further, most of these systems work on scalar or vector code and does not formalize

computations on higher dimensional tensors that require reasoning about dimensions.

Formal languages and semantics of Tensor IRs. There are several works on

formalizing Tensor IRs. Lean-MLIR [365] provides a formalism of MLIR [283] that has been

used for defining different tensor dialects. Axon [119] gives a formal language to represent

operations on dimensions. The language is expressive, but unlike TensorRight it does not

provide semantics.

210

Chapter 6

Conclusion and Future Work

This thesis explores the application of program synthesis to construct reliable

and efficient distributed systems within the rapidly expanding technological landscape.

Specifically, our research delves into synthesis of coordination in replicated systems in

both message-passing and RDMA network adaptors. Additionally, we employ program

synthesis to automatically generate computations in the domain of graph analytics, aiming

to aid programmers in the implementation and optimization of complex graph analytics

problems. Lastly, our work examines the use of formal verification in the field of tensor graph

optimization, highlighting the benefits that a verified tensor language can offer to compiler

programmers to specify and develop new rewrite rules.

In particular, Chapter two introduces Hamsaz, a framework for replication coordina-

tion analysis and synthesis. We define the notion of well-coordination, a sufficient condition

for integrity and convergence of the replicated data types. Hamsaz uses off-the-shelf SMT

solvers to determine pairs of conflicting and dependent methods in an object specification.

211

The result of this analysis is then used to instantiate protocols for generating replicated

objects with minimum synchronization. We evaluated Hamsaz on various use-cases such

as bank accounts, auctions, payroll, and tournaments, and the results of the experiments

indicated that the synthesized replicated objects were much more responsive than the strongly

consistent baseline.

In chapter three, We saw well-coordinated replicated data types (WRDTs) for

the RDMA network model. We saw operational semantics for both abstract WRDTs and

concrete RDMA WRDTs. The abstract semantics captures the well-coordination conditions

and serves as a specification for the concrete semantics. The concrete semantics of RDMA

WRDTs divides methods into three categories based on their conflict, dependency, and

summarization properties, and captures their coordination requirements based on one-sided

communication. It is formally proved that concrete semantics refines the abstract semantics

and preserves convergence and integrity. We saw the protocols that efficiently implement the

semantics, and the empirical evaluation that shows their high throughput.

Chapter four presents GraFS, declarative graph analytics language and synthesizer.

The GraFS language provides a high-level declarative specification for graph analytics, along

with a set of semantics-preserving fusion transformations to optimize the specification. The

fusion rules reduce the specification to three primitives of graph analytics, namely, reduction

over paths, mapping over vertices, and reduction over vertices. GraFS formally presents

the correctness and termination conditions of graph analytics iterative models, which allows

for the synthesis of kernel functions based on these conditions. The experimental results

demonstrate that the synthesized code is on par with or outperforms handwritten code,

212

and that fusion accelerates execution. Overall, the GraFS language and synthesizer are

powerful tools that can greatly accelerate the development and deployment of graph analytics

applications, ultimately benefiting a wide range of fields and applications.

In chapter five we presented TensorRight. A verified tensor rewrite system for

specification and verification of the XLA rewrite rules. We formally define the specification

language which closely models the XLA’s tensor operators. The denotational semantics

of TensorRight is then used to generate the verification conditions required to prove the

correctness of the rewrites. TensorRight can help identify errors and potential vulnerabilities

early in development, leading to higher-quality software.

The XLA compiler, as a crucial element of the TensorFlow machine learning

framework, requires continuous improvement to meet the increasing demands of the field.

One area of potential future work is the synthesis of new rewrite rules for the compiler. To

accomplish this, program synthesis can play an important role in the development of the

XLA compiler. Writing preconditions for a rule can be a challenging and time-consuming

task, as it requires the developer to consider all possible scenarios that could arise during

execution. However, synthesis can help alleviate this burden by automatically generating

preconditions that satisfy the desired behavior. This approach can significantly reduce the

development time of new rewrite rules while ensuring their correctness and effectiveness. By

program synthesis, the development of the XLA compiler can continue to progress, leading

to more efficient and effective machine learning systems.

213

Bibliography

[1] The coq proof assistant. https://coq.inria.fr/.

[2] Elc: Spacex lessons learned. https://lwn.net/Articles/540368/.

[3] Infiniband userspace verbs access. https://www.kernel.org/doc/html/latest/
infiniband/user_verbs.html.

[4] LinkedIn’s Voldemort. http://www.project-voldemort.com/.

[5] Mellanox technologies. rdma aware networks programming user man-
ual. https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_
Programming_user_manual.pdf.

[6] Memcached. http://memcached.org/.

[7] Pvs specification and verification system. http://pvs.csl.sri.com/.

[8] grammer-v4. https://github.com/antlr/grammars-v4, 2017.

[9] Daniel Abadi. Consistency tradeoffs in modern distributed database system design.
Computer, 45(2), 2012.

[10] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 2016.

[11] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter,
and Jay J. Wylie. Fault-scalable byzantine fault-tolerant services. In Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles, SOSP ’05, pages 59–74,
New York, NY, USA, 2005. ACM.

[12] Christopher R Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun,
and Christopher Ré. Emptyheaded: A relational engine for graph processing. ACM
Transactions on Database Systems (TODS), 42(4):20, 2017.

214

https://coq.inria.fr/
https://lwn.net/Articles/540368/
https://www.kernel.org/doc/html/latest/infiniband/user_verbs.html
https://www.kernel.org/doc/html/latest/infiniband/user_verbs.html
http://www.project-voldemort.com/
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
http://memcached.org/
http://pvs.csl.sri.com/
https://github.com/antlr/grammars-v4

[13] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,
John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger P. Watten-
hofer. Farsite: Federated, available, and reliable storage for an incompletely trusted
environment. SIGOPS Oper. Syst. Rev., 36(SI):1–14, December 2002.

[14] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

[15] Marcos K Aguilera, Naama Ben-David, Irina Calciu, Rachid Guerraoui, Erez Petrank,
and Sam Toueg. Passing messages while sharing memory. In Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, pages 51–60, 2018.

[16] Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra Marathe, and
Igor Zablotchi. The impact of rdma on agreement. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, pages 409–418, 2019.

[17] Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J Marathe, Athana-
sios Xygkis, and Igor Zablotchi. Microsecond consensus for microsecond applications.
In 14th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 20), pages 599–616, 2020.

[18] Mustaque Ahamad, Gil Neiger, James E Burns, Prince Kohli, and Phillip W Hutto.
Causal memory: Definitions, implementation, and programming. Distributed Comput-
ing, 9(1), 1995.

[19] Ramnatthan Alagappan, Aishwarya Ganesan, Eric Lee, Aws Albarghouthi, Vijay
Chidambaram, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Protocol-
aware recovery for consensus-based distributed storage. ACM Transactions on Storage
(TOS), 14(3):1–30, 2018.

[20] Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the weak
consistency model specification language cat. arXiv preprint arXiv:1608.07531, 2016.

[21] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MKMartin, Mukund Raghothaman,
Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek
Udupa. Syntax-guided synthesis. IEEE, 2013.

[22] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MKMartin, Mukund Raghothaman,
Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek
Udupa. Syntax-guided synthesis. In 2013 Formal Methods in Computer-Aided Design,
pages 1–8. IEEE, 2013.

[23] Peter Alvaro, Tyson Condie, Neil Conway, Joseph M. Hellerstein, and Russell Sears.
I do declare: Consensus in a logic language. SIGOPS Oper. Syst. Rev., 43(4):25–30,
January 2010.

[24] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. Blazes: Coordi-
nation analysis and placement for distributed programs. ACM Trans. Database Syst.,
42(4):23:1–23:31, October 2017.

215

[25] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. Consistency
analysis in bloom: A calm and collected approach. In In Proceedings 5th Biennial
Conference on Innovative Data Systems Research, pages 249–260, 2011.

[26] Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. Optimization
and abstraction: a synergistic approach for analyzing neural network robustness. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 731–744, 2019.

[27] Zachary R. Anderson, David Gay, and Mayur Naik. Lightweight annotations for
controlling sharing in concurrent data structures. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2009, Dublin, Ireland, June 15-21, 2009, pages 98–109, 2009.

[28] Apache. Apache giraph. https://giraph.apache.org/, 2020.

[29] Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J Franklin, and
David A Patterson. Piql: Success-tolerant query processing in the cloud. Proceedings
of the VLDB Endowment, 5(3):181–192, 2011.

[30] Joe Armstrong. The development of erlang. In Proceedings of the Second ACM
SIGPLAN International Conference on Functional Programming, ICFP ’97, pages
196–203, New York, NY, USA, 1997. ACM.

[31] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and Padmanabhan
Pillai. Meld: A declarative approach to programming ensembles. In 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2794–2800, Oct
2007.

[32] Michael P. Ashley-Rollman, Peter Lee, Seth Copen Goldstein, Padmanabhan Pillai,
and Jason D. Campbell. A language for large ensembles of independently executing
nodes. In Proceedings of the 25th International Conference on Logic Programming,
ICLP ’09, pages 265–280, Berlin, Heidelberg, 2009. Springer-Verlag.

[33] Hagit Attiya and Jennifer L. Welch. Sequential consistency versus linearizability. ACM
Trans. Comput. Syst., 12(2), 1994.

[34] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knezevic, Vivien Quema, and Marko
Vukolić. The next 700 bft protocols. ACM Trans. Comput. Syst., 32(4):12:1–12:45,
January 2015.

[35] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. Coordination avoidance in database systems. Proc. VLDB Endow.,
8(3):185–196, November 2014.

[36] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and
Ion Stoica. Feral concurrency control: An empirical investigation of modern application
integrity. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 1327–1342. ACM, 2015.

216

https://giraph.apache.org/

[37] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and
Ion Stoica. Feral concurrency control: An empirical investigation of modern application
integrity. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 1327–1342, 2015.

[38] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. The
potential dangers of causal consistency and an explicit solution. In Proceedings of the
Third ACM Symposium on Cloud Computing, page 22. ACM, 2012.

[39] Peter Bailis and Ali Ghodsi. Eventual consistency today: limitations, extensions, and
beyond. Communications of the ACM, 56(5):55–63, 2013.

[40] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on causal
consistency. In Proc. SIGMOD, 2013.

[41] Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M Hellerstein,
and Ion Stoica. Probabilistically bounded staleness for practical partial quorums.
Proceedings of the VLDB Endowment, 5(8):776–787, 2012.

[42] Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M Hellerstein,
and Ion Stoica. Probabilistically bounded staleness for practical partial quorums.
Proceedings of the VLDB Endowment, 5(8):776–787, 2012.

[43] Alex Bain, John Mitchell, Rahul Sharma, Deian Stefan, and Joe Zimmerman. A
domain-specific language for computing on encrypted data (invited talk). In IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2011). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011.

[44] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, and Nuno Preguica.
Ipa: Invariant-preserving applications for weakly consistent replicated databases. Pro-
ceedings of the VLDB Endowment, 12(4).

[45] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguica,
Mahsa Najafzadeh, and Marc Shapiro. Putting consistency back into eventual consis-
tency. In Proceedings of the Tenth European Conference on Computer Systems, EuroSys
’15, pages 6:1–6:16, New York, NY, USA, 2015. ACM.

[46] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguica,
Mahsa Najafzadeh, and Marc Shapiro. Towards fast invariant preservation in geo-
replicated systems. SIGOPS Oper. Syst. Rev., 49(1):121–125, January 2015.

[47] Valter Balegas, Nuno Preguica, Sérgio Duarte, Carla Ferreira, and Rodrigo Rodrigues.
Ipa: invariant-preserving applications for weakly-consistent replicated databases. arXiv
preprint arXiv:1802.08474, 2018.

[48] Kshitij Bansal, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. A new decision
procedure for finite sets and cardinality constraints in smt. In International Joint
Conference on Automated Reasoning, pages 82–98. Springer, 2016.

217

[49] Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. In
ACM Sigplan Notices, volume 41, pages 394–403. ACM, 2006.

[50] Daniel Barbará-Millá and Hector Garcia-Molina. The demarcation protocol: A tech-
nique for maintaining constraints in distributed database systems. The VLDB Journal,
3(3):325–353, 1994.

[51] Shaon Barman, Rastislav Bodik, Satish Chandra, Emina Torlak, Arka Bhattacharya,
and David Culler. Toward tool support for interactive synthesis. In 2015 ACM Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward!), pages 121–136. ACM, 2015.

[52] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakr-
ishnan and Shaz Qadeer, editors, Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV ’11), volume 6806 of Lecture Notes in Computer
Science, pages 171–177. Springer, July 2011. Snowbird, Utah.

[53] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0.
In A. Gupta and D. Kroening, editors, Proceedings of the 8th International Workshop
on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

[54] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. Attack
of the killer microseconds. Communications of the ACM, 60(4):48–54, 2017.

[55] Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, Cesar Kunz, and Mark Marron.
From relational verification to simd loop synthesis. In ACM SIGPLAN Notices,
volume 48, pages 123–134. ACM, 2013.

[56] Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. Checking robustness
between weak transactional consistency models. Programming Languages and Systems,
12648:87, 2021.

[57] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani, Praveen
Yalagandula, and Jiandan Zheng. PRACTI replication. In Proc. NSDI, 2006.

[58] John Bender, Mohsen Lesani, and Jens Palsberg. Declarative fence insertion. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015, pages 367–385,
New York, NY, USA, 2015. ACM.

[59] Giovanni Bernardi and Alexey Gotsman. Robustness against consistency models with
atomic visibility. In LIPIcs-Leibniz International Proceedings in Informatics, volume 59.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[60] A. Bessani and P. Sousa. Smart — high-performance byzantine-fault-tolerant state
machine replication. http://code.google.com/p/bft-smart/, 2009.

218

http://code.google.com/p/bft-smart/

[61] Alysson Bessani, Marcel Santos, João Felix, Nuno Neves, and Miguel Correia. On the
efficiency of durable state machine replication. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference, USENIX ATC’13, pages 169–180, Berkeley,
CA, USA, 2013. USENIX Association.

[62] Alysson Neves Bessani, Eduardo Pelison Alchieri, Miguel Correia, and Joni Silva Fraga.
Depspace: A byzantine fault-tolerant coordination service. In Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, Eurosys ’08,
pages 163–176, New York, NY, USA, 2008. ACM.

[63] Mark Bickford. Component specification using event classes. In Component-Based
Software Engineering, volume 5582 of Lecture Notes in Computer Science. 2009.

[64] M. Biely, P. Delgado, Z. Milosevic, and A. Schiper. Distal: A framework for im-
plementing fault-tolerant distributed algorithms. In 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 1–8, June
2013.

[65] Kenneth P. Birman. Replication and fault-tolerance in the ISIS system. In Proc. SOSP,
1985.

[66] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence
of failures. ACM Trans. Comput. Syst., 5(1), 1987.

[67] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and
Keith Wansbrough. Engineering with logic: HOL specification and symbolic-evaluation
testing for TCP implementations. In Proc. POPL, 2006.

[68] Ranadeep Biswas, Michael Emmi, and Constantin Enea. On the complexity of checking
consistency for replicated data types. In International Conference on Computer Aided
Verification, pages 324–343. Springer, 2019.

[69] Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash
Lal. Monkeydb: effectively testing correctness under weak isolation levels. Proceedings
of the ACM on Programming Languages, 5(OOPSLA):1–27, 2021.

[70] S. Biswas, J. Huang, Sengupta A., , and Bond M. D. Doublechecker: Efficient sound
and precise atomicity checking. In Proc. PLDI, 2014.

[71] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. The dacapo benchmarks: Java benchmarking development and analysis.
In Proc. OOPSLA, 2006.

[72] Roderick Bloem, Georg Hofferek, Bettina Könighofer, Robert Könighofer, Simon
Ausserlechner, and Raphael Spörk. Synthesis of synchronization using uninterpreted

219

functions. In Proceedings of the 14th Conference on Formal Methods in Computer-Aided
Design, FMCAD ’14, pages 11:35–11:42, Austin, TX, 2014. FMCAD Inc.

[73] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming
reflection: Aiding static analysis in the presence of reflection and custom class loaders.
In Proc. ICSE, 2011.

[74] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters, and
Peng Li. Paxos replicated state machines as the basis of a high-performance data
store. In Proceedings of the 8th USENIX Conference on Networked Systems Design
and Implementation, NSDI’11, pages 141–154, Berkeley, CA, USA, 2011. USENIX
Association.

[75] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph
Sifakis. Automated conflict-free distributed implementation of component-based models.
In International Symposium on Industrial Embedded System (SIES), pages 108–117.
IEEE, 2010.

[76] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical
automatic polyhedral parallelizer and locality optimizer. In Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’08, pages 101–113, New York, NY, USA, 2008. ACM.

[77] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. Optimizing synthesis
with metasketches. In ACM SIGPLAN Notices, volume 51, pages 775–788. ACM, 2016.

[78] A. Bouajjani, C. Enea, and J. Hamza. Verifying eventual consistency of optimistic
replication systems. In Proc. POPL, 2014.

[79] Ahmed Bouajjani, Constantin Enea, Madhavan Mukund, Gautham Shenoy, and
SP Suresh. Formalizing and checking multilevel consistency. In International Conference
on Verification, Model Checking, and Abstract Interpretation, pages 379–400. Springer,
2020.

[80] Eric Brewer. Cap twelve years later: How the" rules" have changed. Computer,
45(2):23–29, 2012.

[81] Eric A Brewer. Towards robust distributed systems. In PODC, volume 7, pages
343477–343502. Portland, OR, 2000.

[82] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an undirected
graph. Commun. ACM, 16(9):575–577, September 1973.

[83] Stephen Brookes and Peter W. O’Hearn. Concurrent separation logic. ACM SIGLOG
News, 3(3):47–65, August 2016.

[84] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. Serializability for
eventual consistency: Criterion, analysis, and applications. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
pages 458–472, New York, NY, USA, 2017. ACM.

220

[85] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. Serializability for
eventual consistency: criterion, analysis, and applications. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, pages 458–472,
2017.

[86] Sebastian Burckhardt. Principles of Eventual Consistency. Foundations and Trends in
Programming Languages. 2014.

[87] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent programming
with revisions and isolation types. In Proceedings of the ACM international conference
on Object oriented programming systems languages and applications, pages 691–707,
2010.

[88] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P Wood. Cloud
types for eventual consistency. In European Conference on Object-Oriented Program-
ming, pages 283–307. Springer, 2012.

[89] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Repli-
cated data types: Specification, verification, optimality. In Proc. POPL, 2014.

[90] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In Proc. ASE,
2008.

[91] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation,
OSDI ’06, pages 335–350, Berkeley, CA, USA, 2006. USENIX Association.

[92] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduction to Reliable and
Secure Distributed Programming. Springer Publishing Company, Incorporated, 2nd
edition, 2011.

[93] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. Exe: Automatically generating inputs of death. In Proc. CCS, 2006.

[94] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
Mckelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Marvin Mcnett, Sriram Sankaran,
Kavitha Manivannan, and Leonidas Rigas. Windows azure storage: a highly available
cloud storage service with strong consistency. In In SOSP ’11, pages 143–157, 2011.

[95] Domenico Cantone, Eugenio Omodeo, and Alberto Policriti. Set theory for computing:
from decision procedures to declarative programming with sets. Springer Science &
Business Media, 2013.

[96] Domenico Cantone and Calogero G Zarba. A new fast tableau-based decision procedure
for an unquantified fragment of set theory. In Automated Deduction in Classical and
Non-Classical Logics, pages 126–136. Springer, 2000.

221

[97] Nuno Carvalho and et. al. Appia framework. http://appia.di.fc.ul.pt/wiki/
index.php?title=Main_Page, 2011. Accessed: 2018-06-23.

[98] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings
of the Third Symposium on Operating Systems Design and Implementation, OSDI ’99,
pages 173–186, Berkeley, CA, USA, 1999. USENIX Association.

[99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst., 20(4):398–461, November 2002.

[100] Pavol Cerny, Edmund M. Clarke, Thomas A. Henzinger, Arjun Radhakrishna, Leonid
Ryzhyk, Roopsha Samanta, and Thorsten Tarrach. From non-preemptive to preemptive
scheduling using synchronization synthesis. Form. Methods Syst. Des., 50(2-3):97–139,
June 2017.

[101] Pavol Cerny, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and Thorsten
Tarrach. Efficient synthesis for concurrency by semantics-preserving transformations.
In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification, pages
951–967, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[102] Pavol Cerny, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and Thorsten
Tarrach. Regression-free synthesis for concurrency. In Armin Biere and Roderick
Bloem, editors, Computer Aided Verification, pages 568–584, Cham, 2014. Springer
International Publishing.

[103] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A framework for transactional
consistency models with atomic visibility. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 42. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[104] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. Journal of the ACM (JACM), 43(4):685–722, 1996.

[105] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

[106] Feng Chen and Grigore Rosu. Parametric and sliced causality. In Proc. CAV, 2007.

[107] Feng Chen, Traian Florin Serbanuta, and Grigore Rosu. jpredictor: A predictive
runtime analysis tool for java. In Proc. ICSE, 2008.

[108] Qichang Chen, Liqiang Wang, Zijiang Yang, and ScottD. Stoller. Have: Detecting
atomicity violations via integrated dynamic and static analysis. In Marsha Chechik and
Martin Wirsing, editors, Fundamental Approaches to Software Engineering, volume
5503 of LNCS, pages 425–439. Springer Berlin Heidelberg, 2009.

[109] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. TVM: An Automated End-to-End Optimizing Compiler for
Deep Learning. In Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’18, page 579–594, USA, 2018. USENIX Association.

222

http://appia.di.fc.ul.pt/wiki/index.php?title=Main_Page
http://appia.di.fc.ul.pt/wiki/index.php?title=Main_Page

[110] Unnikrishnan Cheramangalath, Rupesh Nasre, and Y N. Srikant. Dh-falcon: A language
for large-scale graph processing on distributed heterogeneous systems. pages 439–450,
09 2017.

[111] Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring locks for atomic
sections. ACM SIGPLAN Notices, 43(6):304–315, 2008.

[112] Wei-Ngan Chin. Safe fusion of functional expressions. In ACM SIGPLAN Lisp Pointers,
number 1, pages 11–20. ACM, 1992.

[113] Adam Chlipala. Mostly-automated verification of low-level programs in computational
separation logic. In Proceedings of the 32Nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’11, pages 234–245, New York, NY,
USA, 2011. ACM.

[114] Kevin Clancy and Heather Miller. Monotonicity types for distributed dataflow. In
Proceedings of the Programming Models and Languages for Distributed Computing,
page 2. ACM, 2017.

[115] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike
Dahlin, and Taylor Riche. Upright cluster services. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 277–290, New
York, NY, USA, 2009. ACM.

[116] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti.
Making byzantine fault tolerant systems tolerate byzantine faults. In Proceedings of the
6th USENIX Symposium on Networked Systems Design and Implementation, NSDI’09,
pages 153–168, Berkeley, CA, USA, 2009. USENIX Association.

[117] Basile Clément and Albert Cohen. End-to-end translation validation for the halide
language. 6(OOPSLA1), apr 2022.

[118] Onofre Coll Ruiz, Kiminori Matsuzaki, and Shigeyuki Sato. s6raph: vertex-centric graph
processing framework with functional interface. In Proceedings of the 5th International
Workshop on Functional High-Performance Computing, pages 58–64, 2016.

[119] Alexander Collins and Vinod Grover. Axon: A Language for Dynamic Shapes in Deep
Learning Graphs. arXiv e-prints, page arXiv:2210.02374, October 2022.

[120] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and
S. F. Smith. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

[121] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
PNUTS: Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2), 2008.

223

[122] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
Pnuts: Yahoo!’s hosted data serving platform. Proceedings of the VLDB Endowment,
1(2):1277–1288, 2008.

[123] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,
Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey
Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,
Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally distributed database. ACM Trans. Comput. Syst., 31(3):8:1–
8:22, August 2013.

[124] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira.
Hq replication: A hybrid quorum protocol for byzantine fault tolerance. In Proceedings
of the 7th Symposium on Operating Systems Design and Implementation, OSDI ’06,
pages 177–190, Berkeley, CA, USA, 2006. USENIX Association.

[125] Flavio Cruz, Ricardo Rocha, and Seth Copen Goldstein. Declarative coordination of
graph-based parallel programs. In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 1–12, 2016.

[126] Flavio Cruz, Ricardo Rocha, Seth Copen Goldstein, and Frank Pfenning. A linear logic
programming language for concurrent programming over graph structures. Theory and
Practice of Logic Programming, 14(4-5):493–507, 2014.

[127] Dave Cunningham, Khilan Gudka, and Susan Eisenbach. Keep off the grass: Locking
the right path for atomicity. In International Conference on Compiler Construction,
pages 276–290. Springer, 2008.

[128] Andrei Damian, Cezara Drăgoi, Alexandru Militaru, and Josef Widder. Communication-
closed asynchronous protocols. In International Conference on Computer Aided Verifi-
cation, pages 344–363. Springer, 2019.

[129] Alain Darte. On the complexity of loop fusion. In 1999 International Conference on
Parallel Architectures and Compilation Techniques (Cat. No. PR00425), pages 149–157.
IEEE, 1999.

[130] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks, Nikoli
Dryden, Marc Snir, and Keshav Pingali. Gluon: A communication-optimizing sub-
strate for distributed heterogeneous graph analytics. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2018, pages 752–768, New York, NY, USA, 2018. ACM.

[131] Marc A De Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. Static analysis and
compiler design for idempotent processing. In Proceedings of the 33rd ACM SIGPLAN
conference on Programming Language Design and Implementation, pages 475–486,
2012.

224

[132] Leonardo de Moura and Nikolaj Bjorner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[133] Kevin De Porre, Carla Ferreira, Nuno Preguica, and Elisa Gonzalez Boix. Ecros:
building global scale systems from sequential code. Proceedings of the ACM on
Programming Languages, 5(OOPSLA):1–30, 2021.

[134] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Proc. SOSP,
2007.

[135] Yves Deville and Kung-Kiu Lau. Logic program synthesis. The Journal of Logic
Programming, 19:321–350, 1994.

[136] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[137] Colin Dixon, Hardeep Uppal, Vjekoslav Brajkovic, Dane Brandon, Thomas Anderson,
and Arvind Krishnamurthy. Ettm: A scalable fault tolerant network manager. In
Proceedings of the 8th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI’11, pages 85–98, Berkeley, CA, USA, 2011. USENIX Association.

[138] Ryan Doenges, Mina Tahmasbi Arashloo, Santiago Bautista, Alexander Chang, Newton
Ni, Samwise Parkinson, Rudy Peterson, Alaia Solko-Breslin, Amanda Xu, and Nate
Foster. Petr4: formal foundations for p4 data planes. Proceedings of the ACM on
Programming Languages, 5(POPL):1–32, 2021.

[139] Cezara Dragoi, Thomas A Henzinger, and Damien Zufferey. PSYNC : A partially
synchronous language for fault-tolerant distributed algorithms. Popl, pages 1–16, 2016.

[140] Cezara Drăgoi, Thomas A Henzinger, and Damien Zufferey. Psync: a partially
synchronous language for fault-tolerant distributed algorithms. ACM SIGPLAN
Notices, 51(1):400–415, 2016.

[141] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.
Farm: Fast remote memory. In 11th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 14), pages 401–414, 2014.

[142] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona. The real byzantine
generals. In Digital Avionics Systems Conference, 2004. DASC 04. The 23rd, volume 2,
pages 6.D.4–61–11 Vol.2, Oct 2004.

225

[143] Kevin Driscoll, Brendan Hall, Hrakan Sivencrona, and Phil Zumsteg. Byzantine Fault
Tolerance, from Theory to Reality, pages 235–248. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003.

[144] Kevin R Driscoll. Murphy Was an Optimist, pages 481–482. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[145] Bruno Dutertre. Yices 2.2. In Proc. CAV, 2014.

[146] Venmugil Elango, Norm Rubin, Mahesh Ravishankar, Hariharan Sandanagobalane,
and Vinod Grover. Diesel: Dsl for linear algebra and neural net computations on
gpus. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, pages 42–51, 2018.

[147] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replication using generalized
snapshot isolation. In 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05),
pages 73–84, Oct 2005.

[148] Michael Emmi and Constantin Enea. Monitoring weak consistency. In Proc. CAV,
2018.

[149] Michael Emmi and Constantin Enea. Monitoring weak consistency. In International
Conference on Computer Aided Verification, pages 487–506. Springer, 2018.

[150] Michael Emmi and Constantin Enea. Weak-consistency specification via visibility
relaxation. Proceedings of the ACM on Programming Languages, 3(POPL):1–28, 2019.

[151] Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu, Akimasa Morihata, and Hideya
Iwasaki. Think like a vertex, behave like a function! a functional dsl for vertex-centric
big graph processing. ACM SIGPLAN Notices, 51:200–213, 09 2016.

[152] Mahdi Eslamimehr and Jens Palsberg. Race directed scheduling of concurrent programs.
In Proc. PPoPP, 2014.

[153] Jingzhi Fang, Yanyan Shen, Yue Wang, and Lei Chen. Optimizing DNN Computation
Graph Using Graph Substitutions. Proc. VLDB Endow., 13(12):2734–2746, July 2020.

[154] Azadeh Farzan and P. Madhusudan. Causal atomicity. In Thomas Ball and RobertB.
Jones, editors, Computer Aided Verification, volume 4144 of LNCS, pages 315–328.
Springer Berlin Heidelberg, 2006.

[155] Azadeh Farzan and P. Madhusudan. Monitoring atomicity in concurrent programs. In
Proc. CAV, 2008.

[156] Azadeh Farzan and P. Madhusudan. The complexity of predicting atomicity violations.
In Proc. TACAS, 2009.

[157] Azadeh Farzan, P. Madhusudan, and Francesco Sorrentino. Meta-analysis for atomicity
violations under nested locking. In Proc. CAV, 2009.

226

[158] Grigory Fedyukovich and Rastislav Bodík. Accelerating syntax-guided invariant syn-
thesis. In Tools and Algorithms for the Construction and Analysis of Systems: 24th
International Conference, TACAS 2018, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings, Part I 24, pages 251–269. Springer, 2018.

[159] Alan Fekete. Allocating isolation levels to transactions. In Proceedings of the Twenty-
fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS ’05, pages 206–215, New York, NY, USA, 2005. ACM.

[160] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha.
Making snapshot isolation serializable. ACM Trans. Database Syst., 30(2):492–528,
June 2005.

[161] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W Reps. Component-
based synthesis for complex apis. ACM SIGPLAN Notices, 52(1):599–612, 2017.

[162] C. J. Fidge. Timestamps in message-passing systems that preserve the partial ordering.
Proceedings of the 11th Australian Computer Science Conference, 10(1), 1988.

[163] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Technical report, Massachusetts Inst of Tech
Cambridge lab for Computer Science, 1982.

[164] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

[165] Cormac Flanagan. Verifying commit-atomicity using model-checking. In Susanne Graf
and Laurent Mounier, editors, Model Checking Software, volume 2989 of LNCS, pages
252–266. Springer Berlin Heidelberg, 2004.

[166] Cormac Flanagan and Stephen N Freund. Atomizer: A dynamic atomicity checker for
multithreaded programs. In Proc. POPL, 2004.

[167] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. Types for
atomicity: Static checking and inference for java. ACM Trans. Program. Lang. Syst.,
30(4):20:1–20:53, August 2008.

[168] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. Velodrome: A sound and
complete dynamic atomicity checker for multithreaded programs. In Proc. PLDI, 2008.

[169] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In Proc.
PLDI, 2003.

[170] Mitch Fletcher. Progression of an open architecture: from orion to altair and lss.
Technical Report White paper S65- 5000-20-0, Honeywell International, Glendale, 2009.

[171] Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. Jocaml: A
language for concurrent distributed and mobile programming. In International School
on Advanced Functional Programming, pages 129–158. Springer, 2002.

227

[172] Eddy Fromentin, Michel Raynal, and Frederic Tronel. On classes of problems in
asynchronous distributed systems with process crashes. In Proceedings. 19th IEEE
International Conference on Distributed Computing Systems (Cat. No. 99CB37003),
pages 470–477. IEEE, 1999.

[173] Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning
programs via high-level tracing. In 2nd SysML Conference, 2019.

[174] Rongxiao Fu, Xueying Qin, Ornela Dardha, and Michel Steuwer. Row-polymorphic
types for strategic rewriting. CoRR, abs/2103.13390, 2021.

[175] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik Sen.
Codehint: Dynamic and interactive synthesis of code snippets. In Proceedings of the
36th International Conference on Software Engineering, pages 653–663, 2014.

[176] Rui Garcia, Rodrigo Rodrigues, and Nuno Preguica. Efficient middleware for byzantine
fault tolerant database replication. In Proceedings of the Sixth Conference on Computer
Systems, EuroSys ’11, pages 107–122, New York, NY, USA, 2011. ACM.

[177] Adria Gascón and Ashish Tiwari. Synthesis of a simple self-stabilizing system. In Proc.
3rd Workshop on Synthesis (SYNT), 2014.

[178] Vasilis Gavrielatos, Antonios Katsarakis, and Vijay Nagarajan. Odyssey: The impact
of modern hardware on strongly-consistent replication protocols. In Proceedings of the
Sixteenth European Conference on Computer Systems, pages 245–260, 2021.

[179] Vasilis Gavrielatos, Antonios Katsarakis, Vijay Nagarajan, Boris Grot, and Arpit Joshi.
Kite: Efficient and available release consistency for the datacenter. In Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 1–16, 2020.

[180] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion Stoica.
Friday: Global comprehension for distributed replay. In Proceedings of the 4th USENIX
Conference on Networked Systems Design & Implementation, NSDI’07, pages
21–21, Berkeley, CA, USA, 2007. USENIX Association.

[181] David K Gifford. Weighted voting for replicated data. In Proceedings of the seventh
ACM symposium on Operating systems principles, pages 150–162. ACM, 1979.

[182] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2), June 2002.

[183] Seth Gilbert and Nancy A. Lynch. Perspectives on the CAP theorem. IEEE Computer,
45(2):30–36, 2012.

[184] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to deforestation.
In Proceedings of the Conference on Functional Programming Languages and Computer
Architecture, FPCA ’93, pages 223–232, New York, NY, USA, 1993. ACM.

228

[185] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth, and Keshav Pingali.
Abelian: A compiler for graph analytics on distributed, heterogeneous platforms. In
Marco Aldinucci, Luca Padovani, and Massimo Torquati, editors, Euro-Par 2018:
Parallel Processing, pages 249–264, Cham, 2018. Springer International Publishing.

[186] Jennifer Ann Golbeck. Computing and applying trust in web-based social networks.
PhD thesis, 2005.

[187] Victor BF Gomes, Martin Kleppmann, Dominic P Mulligan, and Alastair R Beresford.
Verifying strong eventual consistency in distributed systems. Proceedings of the ACM
on Programming Languages, 1(OOPSLA):1–28, 2017.

[188] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In Presented
as part of the 10th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 12), pages 17–30, 2012.

[189] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro.
’cause i’m strong enough: Reasoning about consistency choices in distributed systems.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’16, pages 371–384, New York, NY, USA, 2016.
ACM.

[190] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. Making pull-based graph
processing performant. In ACM SIGPLAN Notices, volume 53, pages 246–260. ACM,
2018.

[191] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman)
Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifications and certified
abstraction layers. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, pages 595–608, New
York, NY, USA, 2015. ACM.

[192] Matthias Güdemann, Gwen Salaün, and Meriem Ouederni. Counterexample guided
synthesis of monitors for realizability enforcement. In Automated Technology for Verifi-
cation and Analysis: 10th International Symposium, ATVA 2012, Thiruvananthapuram,
India, October 3-6, 2012. Proceedings 10, pages 238–253. Springer, 2012.

[193] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Incremental consis-
tency guarantees for replicated objects. In OSDI, pages 169–184, 2016.

[194] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Incremental consis-
tency guarantees for replicated objects. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 169–184, 2016.

[195] Sumit Gulwani. Automating string processing in spreadsheets using input-output
examples. In ACM SIGPLAN Notices, volume 46, pages 317–330. ACM, 2011.

229

[196] Sumit Gulwani. Programming by examples. Dependable Software Systems Engineering,
45(137):3–15, 2016.

[197] Sumit Gulwani, William R Harris, and Rishabh Singh. Spreadsheet data manipulation
using examples. Communications of the ACM, 55(8):97–105, 2012.

[198] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis
of loop-free programs. ACM SIGPLAN Notices, 46(6):62–73, 2011.

[199] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis
of loop-free programs. In PLDI, volume 11, pages 62–73, 2011.

[200] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. Synthesizing geometry
constructions. In ACM SIGPLAN Notices, volume 46, pages 50–61. ACM, 2011.

[201] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Founda-
tions and Trends® in Programming Languages, 4(1-2):1–119, 2017.

[202] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou, and Li Zhuang.
Rex: replication at the speed of multi-core. In Proc. Eurosys, 2014.

[203] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Yingwei Luo, Tom
Bergan, Peter Bodik, Madan Musuvathi, Zheng Zhang, and Lidong Zhou. Failure
recovery: When the cure is worse than the disease. In Proceedings of the 14th USENIX
Conference on Hot Topics in Operating Systems, HotOS’13, pages 8–8, Berkeley, CA,
USA, 2013. USENIX Association.

[204] Vassos Hadzilacos and Sam Toueg. Reliable broadcast and related problems. Distributed
Systems, 26:97–145, 1993.

[205] Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav Bodik, and
Vinod Grover. Fireiron: A scheduling language for high-performance linear algebra on
gpus. arXiv preprint arXiv:2003.06324, 2020.

[206] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and Christophe
Dubach. High performance stencil code generation with lift. In Proceedings of the
2018 International Symposium on Code Generation and Optimization, CGO 2018,
Vösendorf / Vienna, Austria, February 24-28, 2018, pages 100–112, 2018.

[207] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-
based programming. Theor. Comput. Sci., 410(2-3):202–220, February 2009.

[208] Richard L Halpert, Christopher JF Pickett, and Clark Verbrugge. Component-based
lock allocation. In Parallel Architecture and Compilation Techniques, 2007. PACT
2007. 16th International Conference on, pages 353–364. IEEE, 2007.

[209] Md. E. Haque, Yong Hun Eom, Yuxiong He, Sameh Elnikety, Ricardo Bianchini, and
Kathryn S. McKinley. Few-to-many: Incremental parallelism for reducing tail latency
in interactive services. In Proc. ASPLOS, 2015.

230

[210] John Hatcliff, Robby, and MatthewB. Dwyer. Verifying atomicity specifications for
concurrent object-oriented software using model-checking. In Bernhard Steffen and
Giorgio Levi, editors, Verification, Model Checking, and Abstract Interpretation, volume
2937 of LNCS, pages 175–190. Springer Berlin Heidelberg, 2004.

[211] Klaus Havelund and Thomas Pressburger. Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer, 2(4):366–
381, 2000.

[212] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving practical dis-
tributed systems correct. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 1–17, New York, NY, USA, 2015. ACM.

[213] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng
Zhang, and Brian Zill. Ironclad apps: End-to-end security via automated full-system
verification. In Proceedings of the 11th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’14, pages 165–181, Berkeley, CA, USA, 2014. USENIX
Association.

[214] Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined. In Proc.
ESOP, 1986.

[215] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[216] Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. Counterexample-guided
control. In Automata, Languages and Programming: 30th International Colloquium,
ICALP 2003 Eindhoven, The Netherlands, June 30–July 4, 2003 Proceedings, pages
886–902. Springer, 2003.

[217] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support
for lock-free data structures. In Proc. ISCA, 1993.

[218] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism
for artificial intelligence. In Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973.
Morgan Kaufmann Publishers Inc.

[219] John A Hewson, Paul Anderson, and Andrew D Gordon. A declarative approach to
automated configuration. In LISA, volume 12, pages 51–66, 2012.

[220] Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder Gill, Bozhi You, Keshav
Pingali, and Vijaya Ramachandran. A round-efficient distributed betweenness centrality
algorithm. In Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming, pages 272–286, 2019.

231

[221] Loc Hoang, Matteo Pontecorvi, Roshan Dathathri, Gurbinder Gill, Bozhi You, Keshav
Pingali, and Vijaya Ramachandran. A round-efficient distributed betweenness centrality
algorithm. In Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming, PPoPP ’19, pages 272–286, New York, NY, USA, 2019. ACM.

[222] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,
August 1978.

[223] Jan Hoffmann, Michael Marmar, and Zhong Shao. Quantitative reasoning for proving
lock-freedom. In Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic
in Computer Science, pages 124–133. IEEE Computer Society, 2013.

[224] Brandon Holt, James Bornholt, Irene Zhang, Dan Ports, Mark Oskin, and Luis Ceze.
Disciplined inconsistency with consistency types. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, SoCC ’16, pages 279–293, New York, NY, USA, 2016.
ACM.

[225] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-marl: a dsl
for easy and efficient graph analysis. ACM SIGARCH Computer Architecture News,
40(1):349–362, 2012.

[226] Farzin Houshmand and Mohsen Lesani. Hamsaz: Replication coordination analysis
and synthesis. In Proceedings of Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’19, New York, NY, USA, 2019. ACM.

[227] Farzin Houshmand and Mohsen Lesani. Hamsaz: replication coordination analysis and
synthesis. Proceedings of the ACM on Programming Languages, 3(POPL):74, 2019.

[228] Qinheping Hu and Loris D’Antoni. Syntax-guided synthesis with quantitative syntactic
objectives. In Computer Aided Verification: 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part I 30, pages 386–403. Springer, 2018.

[229] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference, USENIXATC’10, pages 11–11,
Berkeley, CA, USA, 2010. USENIX Association.

[230] Phillip W. Hutto and Mustaque Ahamad. Slow memory: Weakening consistency to
enchance concurrency in distributed shared memories. In ICDCS, 1990.

[231] Shachar Itzhaky, Sumit Gulwani, Neil Immerman, and Mooly Sagiv. A simple inductive
synthesis methodology and its applications. In ACM Sigplan Notices, volume 45, pages
36–46. ACM, 2010.

[232] Chamikara Jayalath and Patrick Eugster. Efficient geo-distributed data processing
with rout. In Proc. ICDCS, 2013.

232

[233] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano, Weijia Song,
Edward Tremel, Robbert Van Renesse, Sydney Zink, and Kenneth P Birman. Derecho:
Fast state machine replication for cloud services. ACM Transactions on Computer
Systems (TOCS), 36(2):1–49, 2019.

[234] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering-Volume 1, pages 215–224. ACM, 2010.

[235] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex
Aiken. TASO: Optimizing Deep Learning Computation with Automatic Generation
of Graph Substitutions. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 47–62, New York, NY, USA, 2019. Association for
Computing Machinery.

[236] Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, and
Alex Aiken. Optimizing DNN Computation with Relaxed Graph Substitutions. In
Proceedings of MLSys Conference, 2019.

[237] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soule,
Changhoon Kim, and Ion Stoica. Netchain: Scale-free sub-rtt coordination. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, 2018.

[238] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. Netchain: Scale-free sub-rtt coordination. In 15th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
18), pages 35–49, 2018.

[239] Patricia Johann and Eelco Visser. Warm fusion in stratego: A case study in generation
of program transformation systems. Annals of Mathematics and Artificial Intelligence,
29(1):1–34, 2000.

[240] Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder. Parameter-
ized model checking of fault-tolerant distributed algorithms by abstraction. In Proc.
FMCAD, 2013.

[241] Cliff B. Jones. Tentative steps toward a development method for interfering programs.
ACM Transactions on Programming Languages and Systems (TOPLAS), 5(4):596–619,
1983.

[242] Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: a goal-directed superoptimizer,
volume 37. ACM, 2002.

[243] Rajeev Joshi, Greg Nelson, and Yunhong Zhou. Denali: A practical algorithm for
generating optimal code. ACM Transactions on Programming Languages and Systems
(TOPLAS), 28(6):967–989, 2006.

233

[244] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James
Laudon, Cliff Young, and David Patterson. A Domain-Specific Supercomputer for
Training Deep Neural Networks. Commun. ACM, 63(7):67–78, June 2020.

[245] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William
Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit
Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-
Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the
44th Annual International Symposium on Computer Architecture, ISCA ’17, 2017.

[246] Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan. Safe
replication through bounded concurrency verification. Proceedings of the ACM on
Programming Languages, 2(OOPSLA):1–27, 2018.

[247] Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. Alone
together: Compositional reasoning and inference for weak isolation. Proc. ACM
Program. Lang., 2(POPL):27:1–27:34, December 2017.

[248] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagannathan. Merge-
able replicated data types. Proceedings of the ACM on Programming Languages,
3(OOPSLA):1–29, 2019.

[249] Anuj Kalia, Michael Kaminsky, and David G Andersen. Using rdma efficiently for
key-value services. In Proceedings of the 2014 ACM Conference on SIGCOMM, pages
295–306, 2014.

[250] Anuj Kalia, Michael Kaminsky, and David G Andersen. Design guidelines for high
performance {RDMA} systems. In 2016 {USENIX} Annual Technical Conference
({USENIX}{ATC} 16), pages 437–450, 2016.

[251] Anuj Kalia, Michael Kaminsky, and David G Andersen. Fasst: Fast, scalable and
simple distributed transactions with two-sided ({RDMA}) datagram rpcs. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
16), pages 185–201, 2016.

234

[252] Nikolaos D Kallimanis and Eleni Kanellou. Wait-free concurrent graph objects with
dynamic traversals. In 19th International Conference on Principles of Distributed
Systems (OPODIS 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[253] Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and
Sumit Gulwani. Neural-guided deductive search for real-time program synthesis from
examples. arXiv preprint arXiv:1804.01186, 2018.

[254] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle,
Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel. Cheapbft:
Resource-efficient byzantine fault tolerance. In Proceedings of the 7th ACM European
Conference on Computer Systems, EuroSys ’12, pages 295–308, New York, NY, USA,
2012. ACM.

[255] Antonios Katsarakis, Vasilis Gavrielatos, MR Siavash Katebzadeh, Arpit Joshi, Alek-
sandar Dragojevic, Boris Grot, and Vijay Nagarajan. Hermes: A fast, fault-tolerant and
linearizable replication protocol. In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pages 201–217, 2020.

[256] Ken Kennedy and Kathryn S McKinley. Maximizing loop parallelism and improving
data locality via loop fusion and distribution. In International Workshop on Languages
and Compilers for Parallel Computing, pages 301–320. Springer, 1993.

[257] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M.
Vahdat. Mace: Language support for building distributed systems. In Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’07, pages 179–188, New York, NY, USA, 2007. ACM.

[258] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. In International Conference on Learning Representations, 2017.

[259] J. Kirsch, S. Goose, Y. Amir, D. Wei, and P. Skare. Survivable scada via intrusion-
tolerant replication. IEEE Transactions on Smart Grid, 5(1):60–70, Jan 2014.

[260] Emanuel Kitzelmann. Inductive programming: A survey of program synthesis tech-
niques. In Approaches and Applications of Inductive Programming: Third International
Workshop, AAIP 2009, Edinburgh, UK, September 4, 2009. Revised Papers 3, pages
50–73. Springer, 2010.

[261] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. Comprehensive formal verification of an os microkernel.
ACM Trans. Comput. Syst., 32(1):2:1–2:70, February 2014.

[262] Marios Kogias and Edouard Bugnion. Hovercraft: achieving scalability and fault-
tolerance for microsecond-scale datacenter services. In Proceedings of the Fifteenth
European Conference on Computer Systems, pages 1–17, 2020.

235

[263] Mirko Köhler, Nafise Eskandani, Pascal Weisenburger, Alessandro Margara, and Guido
Salvaneschi. Rethinking safe consistency in distributed object-oriented programming.
Proceedings of the ACM on Programming Languages, 4(OOPSLA):1–30, 2020.

[264] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,
Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and
Scott Shenker. Onix: A distributed control platform for large-scale production net-
works. In Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation, OSDI’10, pages 351–364, Berkeley, CA, USA, 2010. USENIX
Association.

[265] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: Speculative byzantine fault tolerance. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 45–58, New
York, NY, USA, 2007. ACM.

[266] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. Consistency
rationing in the cloud: Pay only when it matters. Proc. VLDB Endow., 2(1):253–264,
August 2009.

[267] Sudha Krishnamurthy, William H Sanders, and Michel Cukier. An adaptive quality of
service aware middleware for replicated services. IEEE Transactions on Parallel and
Distributed Systems, 14(11):1112–1125, 2003.

[268] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

[269] Philipp Kufner, Uwe Nestmann, and Christina Rickmann. Formal verification of
distributed algorithms. In Theoretical Computer Science, volume 7604 of LNCS. 2012.

[270] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Software synthesis
procedures. Communications of the ACM, 55(2):103–111, 2012.

[271] Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. Deciding boolean algebra with
presburger arithmetic. Journal of Automated Reasoning, 36(3):213–239, 2006.

[272] Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for boolean
algebra with presburger arithmetic. In International Conference on Automated Deduc-
tion, pages 215–230. Springer, 2007.

[273] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing high
availability using lazy replication. ACM Trans. Comput. Syst., 10(4), 1992.

[274] Ori Lahav and Viktor Vafeiadis. Owicki-gries reasoning for weak memory models. In
International Colloquium on Automata, Languages, and Programming, pages 311–323.
Springer, 2015.

236

[275] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[276] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 44(2), 2010.

[277] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), 1978.

[278] Leslie Lamport. Introduction to TLA. Technical report, 1994.

[279] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2), 1998.

[280] Leslie Lamport. Generalized consensus and paxos. 2004.

[281] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[282] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[283] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Ar-
naud Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr
Zinenko. Mlir: Scaling compiler infrastructure for domain specific computation. In
CGO 2021, 2021.

[284] Juneyoung Lee, Chung-Kil Hur, and Nuno P. Lopes. Aliveinlean: A verified llvm
peephole optimization verifier. In Isil Dillig and Serdar Tasiran, editors, Computer
Aided Verification, pages 445–455, Cham, 2019. Springer International Publishing.

[285] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115,
July 2009.

[286] Mohsen Lesani. Tm testing tool source code. http://people.csail.mit.edu/lesani/
companion/disc13/index.html, 2013.

[287] Mohsen Lesani. Pvs proofs of tl2 transactional memory algorithm based on sol logic.
http://people.csail.mit.edu/lesani/companion/dissertation/, 2014.

[288] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: Certified causally
consistent distributed key-value stores. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16,
pages 357–370, New York, NY, USA, 2016. ACM.

[289] Mohsen Lesani, Victor Luchangco, and Mark Moir. A framework for formally verifying
software transactional memory algorithms. In Proceedings of the 23rd International
Conference on Concurrency Theory, CONCUR’12, pages 516–530, Berlin, Heidelberg,
2012. Springer-Verlag.

[290] Mohsen Lesani, Victor Luchangco, and Mark Moir. Pvs framework for transactional
memory verification. http://people.csail.mit.edu/lesani/companion/concur12/
index.html, 2014.

237

http://people.csail.mit.edu/lesani/companion/disc13/index.html
http://people.csail.mit.edu/lesani/companion/disc13/index.html
http://people.csail.mit.edu/lesani/companion/dissertation/
http://people.csail.mit.edu/lesani/companion/concur12/index.html
http://people.csail.mit.edu/lesani/companion/concur12/index.html

[291] Mohsen Lesani, Todd Millstein, and Jens Palsberg. Chapar verification framework
source code. http://people.csail.mit.edu/lesani/companion/popl16/artifact/
index.html, 2014.

[292] Mohsen Lesani, Todd Millstein, and Jens Palsberg. Snowflake verification tool source
code. http://people.csail.mit.edu/lesani/companion/cav14/, 2014.

[293] Mohsen Lesani, Todd D. Millstein, and Jens Palsberg. Automatic atomicity verification
for clients of concurrent data structures. In Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, pages 550–567, 2014.

[294] Mohsen Lesani and Jens Palsberg. Communicating memory transactions. In Proceedings
of the 16th ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 157–168, New York, NY, USA, 2011. ACM.

[295] Mohsen Lesani and Jens Palsberg. Proving Non-opacity, pages 106–120. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[296] Mohsen Lesani and Jens Palsberg. Decomposing Opacity, pages 391–405. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[297] Nicholas V Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Cerny. Conflict-
aware replicated data types. arXiv preprint arXiv:1802.08733, 2018.

[298] Nicholas V Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Cerny. Sequen-
tial programming for replicated data stores. Proceedings of the ACM on Programming
Languages, 3(ICFP):1–28, 2019.

[299] Cheng Li, João Leitão, Allen Clement, Nuno Preguica, Rodrigo Rodrigues, and Viktor
Vafeiadis. Automating the choice of consistency levels in replicated systems. In
Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference,
USENIX ATC’14, pages 281–292, Berkeley, CA, USA, 2014. USENIX Association.

[300] Cheng Li, João Leitão, Allen Clement, Nuno Preguica, and Rodrigo Rodrigues. Mini-
mizing coordination in replicated systems. In Proceedings of the First Workshop on
Principles and Practice of Consistency for Distributed Data, page 8. ACM, 2015.

[301] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguica, and Rodrigo
Rodrigues. Making geo-replicated systems fast as possible, consistent when neces-
sary. In Proceedings of the 10th USENIX Conference on Operating Systems Design
and Implementation, OSDI’12, pages 265–278, Berkeley, CA, USA, 2012. USENIX
Association.

[302] Jinyuan Li and David Maziéres. Beyond one-third faulty replicas in byzantine fault
tolerant systems. In Proceedings of the 4th USENIX Conference on Networked Systems
Design & Implementation, NSDI’07, pages 10–10, Berkeley, CA, USA, 2007.
USENIX Association.

238

http://people.csail.mit.edu/lesani/companion/popl16/artifact/index.html
http://people.csail.mit.edu/lesani/companion/popl16/artifact/index.html
http://people.csail.mit.edu/lesani/companion/cav14/

[303] Xiao Li, Farzin Houshmand, and Mohsen Lesani. Hampa: Solver-aided recency-aware
replication. In International Conference on Computer Aided Verification, pages 324–349.
Springer, 2020.

[304] Hongjin Liang and Xinyu Feng. Abstraction for conflict-free replicated data types. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, pages 636–650, 2021.

[305] Christian Lindig and Norman Ramsey. Declarative composition of stack frames. In
International Conference on Compiler Construction, pages 298–312. Springer, 2004.

[306] Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, December 1975.

[307] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba Shrira, and
Michael Williams. Replication in the harp file system. In Proceedings of the Thirteenth
ACM Symposium on Operating Systems Principles, SOSP ’91, pages 226–238, New
York, NY, USA, 1991. ACM.

[308] Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley.
Verified tensor-program optimization via high-level scheduling rewrites. Proc. ACM
Program. Lang., 6(POPL), jan 2022.

[309] Jed Liu, Tom Magrino, Owen Arden, Michael D. George, and Andrew C. Myers.
Warranties for faster strong consistency. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation, NSDI’14, pages 503–517, Berkeley,
CA, USA, 2014. USENIX Association.

[310] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang, Ming
Wu, M. Frans Kaashoek, and Zheng Zhang. D3s: Debugging deployed distributed
systems. In Proceedings of the 5th USENIX Symposium on Networked Systems Design
and Implementation, NSDI’08, pages 423–437, Berkeley, CA, USA, 2008. USENIX
Association.

[311] Yanhong A. Liu, Scott D. Stoller, Bo Lin, and Michael Gorbovitski. From clarity
to efficiency for distributed algorithms. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’12, pages 395–410, New York, NY, USA, 2012. ACM.

[312] Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki
Vazou. Verifying replicated data types with typeclass refinements in liquid haskell.
Proceedings of the ACM on Programming Languages, 4(OOPSLA):1–30, 2020.

[313] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t
settle for eventual: Scalable causal consistency for wide-area storage with COPS. In
Proc. SOSP, 2011.

[314] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In Proc. NSDI, 2013.

239

[315] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen. Don’t
settle for eventual consistency. Communications of the ACM, 57(5):61–68, 2014.

[316] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.
Alive2: Bounded translation validation for llvm. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implemen-
tation, PLDI 2021, page 65–79, New York, NY, USA, 2021. Association for Computing
Machinery.

[317] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably
correct peephole optimizations with alive. PLDI ’15, page 22–32, New York, NY, USA,
2015. Association for Computing Machinery.

[318] Jacob R. Lorch, Atul Adya, William J. Bolosky, Ronnie Chaiken, John R. Douceur,
and Jon Howell. The smart way to migrate replicated stateful services. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006,
EuroSys ’06, pages 103–115, New York, NY, USA, 2006. ACM.

[319] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M Hellerstein. Distributed graphlab: a framework for machine learning and
data mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

[320] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. Graphlab: A new framework for parallel machine learning.
arXiv preprint arXiv:1408.2041, 2014.

[321] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics. In Proc. ASPLOS,
2008.

[322] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: Detecting atomicity
violations via access interleaving invariants. In Proc. ASPLOS, 2006.

[323] Shiyong Lu, Arthur Bernstein, and Philip Lewis. Correct execution of transactions
at different isolation levels. IEEE Transactions on Knowledge and Data Engineering,
16(9):1070–1081, 2004.

[324] Thibaut Lutz and Vinod Grover. Lambdajit: a dynamic compiler for heterogeneous
optimizations of stl algorithms. In Proceedings of the 3rd ACM SIGPLAN Workshop
on Functional High-performance Computing, pages 99–108, 2014.

[325] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2, 1989.

[326] P Madhusudan and P Thiagarajan. Distributed controller synthesis for local specifica-
tions. volume 2076, pages 396–407, 07 2001.

240

[327] P. Madhusudan and P.S. Thiagarajan. Distributed controller synthesis for local
specifications. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors,
Automata, Languages and Programming, pages 396–407, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[328] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency, availability, and
convergence. Technical Report UTCS TR-11-22, The University of Texas at Austin,
2011.

[329] Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge King, and Parthasarathy Mad-
husudan. Verifying security invariants in expressos. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 293–304, New York, NY, USA, 2013. ACM.

[330] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, pages 135–146. ACM, 2010.

[331] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, 1998.

[332] Zohar Manna and Richard Waldinger. Synthesis: dreams→ programs. IEEE Transac-
tions on Software Engineering, (4):294–328, 1979.

[333] Zohar Manna and Richard Waldinger. A deductive approach to program synthesis.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1):90–121,
1980.

[334] Zohar Manna and Richard J Waldinger. Toward automatic program synthesis. Com-
munications of the ACM, 14(3):151–165, 1971.

[335] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building efficient
replicated state machines for wans. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI’08, pages 369–384, Berkeley, CA,
USA, 2008. USENIX Association.

[336] Parisa Jalili Marandi, Samuel Benz, Fernando Pedone, and Kenneth P. Birman. The
performance of Paxos in the cloud. In Proc. SRDS, 2014.

[337] Parisa Jalili Marandi, M. Primi, N. Schiper, and F. Pedone. Ring paxos: A high-
throughput atomic broadcast protocol. In 2010 IEEE/IFIP International Conference
on Dependable Systems Networks (DSN), pages 527–536, June 2010.

[338] Mugilan Mariappan, Joanna Che, and Keval Vora. DZiG: Sparsity-Aware Incremental
Processing of Streaming Graphs. In Proceedings of the European Conference on
Computer Systems (EuroSys ’21), pages 1–16, 2021.

241

[339] Mugilan Mariappan and Keval Vora. GraphBolt: Dependency-Driven Synchronous
Processing of Streaming Graphs. In Proceedings of the European Conference on
Computer Systems (EuroSys ’19), pages 1–16, 2019.

[340] Harry Massalin. Superoptimizer – a look at the smallest program. Palo Alto, California,
1987.

[341] Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel
and Distributed Algorithms, 1989.

[342] Christopher Meiklejohn and Peter Van Roy. Lasp: A language for distributed,
coordination-free programming. In Proceedings of the 17th International Symposium
on Principles and Practice of Declarative Programming, pages 184–195, 2015.

[343] Baoluo Meng, Andrew Reynolds, Cesare Tinelli, and Clark Barrett. Relational con-
straint solving in smt. In International Conference on Automated Deduction, pages
148–165. Springer, 2017.

[344] Matthew Milano and Andrew C Myers. Mixt: A language for mixing consistency in
geodistributed transactions. 2018.

[345] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i.
Inf. Comput., 100(1):1–40, September 1992.

[346] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, ii.
Inf. Comput., 100(1):41–77, September 1992.

[347] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using {One-Sided}{RDMA} reads
to build a fast,{CPU-Efficient}{Key-Value} store. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13), pages 103–114, 2013.

[348] Ragnar Mogk, Joscha Drechsler, Guido Salvaneschi, and Mira Mezini. A fault-tolerant
programming model for distributed interactive applications. Proceedings of the ACM
on Programming Languages, (OOPSLA):1–29, 2019.

[349] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus
in egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 358–372, New York, NY, USA, 2013.
ACM.

[350] Akimasa Morihata, Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu, and Hideya
Iwasaki. Optimizing declarative parallel distributed graph processing by using constraint
solvers. In John P. Gallagher and Martin Sulzmann, editors, Functional and Logic
Programming, pages 166–181, Cham, 2018. Springer International Publishing.

[351] Akimasa Morihata, Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu, and Hideya
Iwasaki. Optimizing declarative parallel distributed graph processing by using constraint
solvers. In International Symposium on Functional and Logic Programming, pages
166–181. Springer, 2018.

242

[352] Madanlal Musuvathi and Dawson R. Engler. Model checking large network protocol
implementations. In Proc. NSDI, 2004.

[353] Kartik Nagar and Suresh Jagannathan. Automated parameterized verification of crdts.
In International Conference on Computer Aided Verification, pages 459–477. Springer,
2019.

[354] Kartik Nagar, Prasita Mukherjee, and Suresh Jagannathan. Semantics, specification,
and bounded verification of concurrent libraries in replicated systems. In International
Conference on Computer Aided Verification, pages 251–274. Springer, 2020.

[355] Sreeja Nair, Gustavo Petri, and Marc Shapiro. Proving the safety of highly-available
distributed objects. In ESOP 2020-29th European Symposium on Programming, 2020.

[356] Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc Shapiro.
The cise tool: Proving weakly-consistent applications correct. In Proceedings of the
2Nd Workshop on the Principles and Practice of Consistency for Distributed Data,
PaPoC ’16, pages 2:1–2:3, New York, NY, USA, 2016. ACM.

[357] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.

[358] Francesco Zappa Nardelli, Peter Sewell, Jaroslav Sevcik, Susmit Sarkar, Scott Owens,
Luc Maranget, Mark Batty, and Jade Alglave. Relaxed memory models must be
rigorous. In Exploiting Concurrency Efficiently and Correctly Workshop, 2009.

[359] Julie L. Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik, and Shoaib
Kamil. Verifying and improving halide’s term rewriting system with program synthesis.
Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.

[360] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure for
graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 456–471. ACM, 2013.

[361] Peter W. OHearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007.

[362] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy
method to support highly-available distributed systems. In Proceedings of the Seventh
Annual ACM Symposium on Principles of Distributed Computing, PODC ’88, pages
8–17, New York, NY, USA, 1988. ACM.

[363] Chris Olston and Jennifer Widom. Offering a precision-performance tradeoff for
aggregation queries over replicated data. Technical report, Stanford, 2000.

[364] Diego Ongaro and John Ousterhout. In search of an understandable consensus algo-
rithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC’14, pages 305–320, Berkeley, CA, USA, 2014. USENIX
Association.

243

[365] online url. Lean-mlir, 2022.

[366] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program syn-
thesis. ACM SIGPLAN Notices, 50(6):619–630, 2015.

[367] Susan Owicki and David Gries. An axiomatic proof technique for parallel programs i.
Acta Informatica, 6(4):319–340, 1976.

[368] M Tamer Özsu and Patrick Valduriez. Principles of distributed database systems,
volume 2. Springer, 2020.

[369] Chang-Seo Park and Koushik Sen. Randomized active atomicity violation detection in
concurrent programs. In Proc. FSE, 2008.

[370] Seo Jin Park and John Ousterhout. Exploiting commutativity for practical fast replica-
tion. In 16th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 19), pages 47–64, 2019.

[371] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edition,
2013.

[372] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[373] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Greenberg, David A.
Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon Kim,
and Naveen Karri. Ananta: Cloud scale load balancing. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 207–218, New York,
NY, USA, 2013. ACM.

[374] Fernando Pedone and André Schiper. Handling message semantics with generic
broadcast protocols. Distributed Computing, 15(2):97–107, 2002.

[375] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J.
Demers. Flexible update propagation for weakly consistent replication. In Proc. SOSP,
1997.

[376] James L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, September 1977.

[377] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proc. PLDI, 1988.

[378] Frank Pfenning and Robert J. Simmons. Substructural operational semantics as ordered
logic programming. In Proc. LICS, 2009.

244

[379] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant Totla, Sarah
Chasins, and Rastislav Bodik. Chlorophyll: Synthesis-aided compiler for low-power
spatial architectures. ACM SIGPLAN Notices, 49(6):396–407, 2014.

[380] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar
Dhurjati. Scaling up superoptimization. In ACM SIGARCH Computer Architecture
News, volume 44, pages 297–310. ACM, 2016.

[381] Gordon D. Plotkin. The origins of structural operational semantics. In Proc. Journal
of Logic and Algebraic Programming, pages 60–61, 2004.

[382] Marius Poke and Torsten Hoefler. Dare: High-performance state machine replication
on rdma networks. In Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing, pages 107–118, 2015.

[383] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from
polymorphic refinement types. In ACM SIGPLAN Notices, volume 51, pages 522–538.
ACM, 2016.

[384] Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program
synthesis. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 107–126,
2015.

[385] Mathias Preiner, Aina Niemetz, and Armin Biere. Counterexample-guided model
synthesis. In Tools and Algorithms for the Construction and Analysis of Systems:
23rd International Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings, Part I 23, pages 264–280. Springer, 2017.

[386] Dimitrios Prountzos, Roman Manevich, and Keshav Pingali. Elixir: A system for
synthesizing concurrent graph programs. In ACM SIGPLAN Notices, volume 47, pages
375–394. ACM, 2012.

[387] Dimitrios Prountzos, Roman Manevich, and Keshav Pingali. Synthesizing parallel
graph programs via automated planning. In ACM SIGPLAN Notices, volume 50, pages
533–544. ACM, 2015.

[388] Yewen Pu, Rastislav Bodik, and Saurabh Srivastava. Synthesis of first-order dynamic
programming algorithms. ACM SIGPLAN Notices, 46(10):83–98, 2011.

[389] Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua, Manuela M Veloso,
Bryan W Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, et al.
Spiral: Code generation for dsp transforms. Proceedings of the IEEE, 93(2):232–275,
2005.

[390] Apan Qasem and Ken Kennedy. Profitable loop fusion and tiling using model-driven
empirical search. In Proceedings of the 20th Annual International Conference on
Supercomputing, ICS ’06, pages 249–258, New York, NY, USA, 2006. ACM.

245

[391] Vincent Rahli. Interfacing with proof assistants for domain specific programming using
EventML. 10th International Workshop on User Interfaces for Theorem Provers, 2012.

[392] Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan. Clotho:
directed test generation for weakly consistent database systems. Proceedings of the
ACM on Programming Languages, 3(OOPSLA):1–28, 2019.

[393] Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan. Repairing
serializability bugs in distributed database programs via automated schema refactoring.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, pages 32–47, 2021.

[394] Samyam Rajbhandari, Jinsung Kim, Sriram Krishnamoorthy, Louis-Noel Pouchet,
Fabrice Rastello, Robert J Harrison, and Ponnuswamy Sadayappan. A domain-specific
compiler for a parallel multiresolution adaptive numerical simulation environment.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, page 40. IEEE Press, 2016.

[395] Samyam Rajbhandari, Jinsung Kim, Sriram Krishnamoorthy, Louis-Noël Pouchet,
Fabrice Rastello, Robert J Harrison, and Ponnuswamy Sadayappan. On fusing recursive
traversals of kd trees. In Proceedings of the 25th International Conference on Compiler
Construction, pages 152–162. ACM, 2016.

[396] Krithi Ramamritham and Calton Pu. A formal characterization of epsilon serializability.
IEEE Transactions on Knowledge and Data Engineering, 7(6):997–1007, 1995.

[397] Jun Rao, Eugene J. Shekita, and Sandeep Tata. Using paxos to build a scalable,
consistent, and highly available datastore. Proc. VLDB Endow., 4(4):243–254, January
2011.

[398] Mahesh Ravishankar, Paulius Micikevicius, and Vinod Grover. Fusing convolution
kernels through tiling. In Proceedings of the 2nd ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming, pages 43–48,
2015.

[399] Prashant Singh Rawat, Miheer Vaidya, Aravind Sukumaran-Rajam, Mahesh Rav-
ishankar, Vinod Grover, Atanas Rountev, Louis-Noël Pouchet, and P Sadayappan.
Domain-specific optimization and generation of high-performance gpu code for stencil
computations. Proceedings of the IEEE, 106(11):1902–1920, 2018.

[400] Michel Raynal and André Schiper. From causal consistency to sequential consistency
in shared memory systems. volume 1026 of LNCS. 1995.

[401] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois,
William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos,
Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B.
Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton

246

Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gen-
nady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao,
Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi
Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou.
Mlperf inference benchmark. ISCA ’20, page 446–459. IEEE Press, 2020.

[402] Daniel Ricketts, Valentin Robert, Dongseok Jang, Zachary Tatlock, and Sorin Lerner.
Automating formal proofs for reactive systems. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, pages 452–462, New York, NY, USA, 2014. ACM.

[403] Tom Ridge. Verifying distributed systems: the operational approach. In Proc. POPL,
2009.

[404] Ricardo Rocha and John Launchbury. Practical Aspects of Declarative Languages:
13th International Symposium, PADL 2011, Austin, TX, USA, January 24-25, 2011.
Proceedings, volume 6539. Springer, 2011.

[405] Marko A Rodriguez. The gremlin graph traversal machine and language (invited talk).
In Proceedings of the 15th Symposium on Database Programming Languages, pages
1–10. ACM, 2015.

[406] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated abstract
data types: Building blocks for collaborative applications. Journal of Parallel and
Distributed Computing, 71(3):354–368, 2011.

[407] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated abstract
data types: Building blocks for collaborative applications. J. Parallel Distrib. Comput.,
71(3), 2011.

[408] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric graph
processing using streaming partitions. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 472–488. ACM, 2013.

[409] Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch,
Nate Foster, and Johannes Gehrke. The homeostasis protocol: Avoiding transaction
coordination through program analysis. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, pages 1311–1326,
New York, NY, USA, 2015. ACM.

[410] Signe Rüsch, Ines Messadi, and Rüdiger Kapitza. Towards low-latency byzantine
agreement protocols using rdma. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), pages 146–151.
IEEE, 2018.

[411] John Rushby. Bus Architectures for Safety-Critical Embedded Systems, pages 306–323.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

247

[412] Olli Saarikivi, Margus Veanes, Todd Mytkowicz, and Madan Musuvathi. Fusing effectful
comprehensions. SIGPLAN Not., 52(6):17–32, June 2017.

[413] Caitlin Sadowski, Stephen N. Freund, and Cormac Flanagan. Singletrack: A dynamic
determinism checker for multithreaded programs. In Proc. ESOP, 2009.

[414] Laith Sakka, Kirshanthan Sundararajah, and Milind Kulkarni. Treefuser: a framework
for analyzing and fusing general recursive tree traversals. Proceedings of the ACM on
Programming Languages, 1(OOPSLA):76, 2017.

[415] Laith Sakka, Kirshanthan Sundararajah, Ryan R Newton, and Milind Kulkarni. Sound,
fine-grained traversal fusion for heterogeneous trees. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
830–844. ACM, 2019.

[416] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian Lup,
Jubi Taneja, and John Regehr. Souper: A synthesizing superoptimizer. arXiv preprint
arXiv:1711.04422, 2017.

[417] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Ander-
son. Eraser: A dynamic data race detector for multithreaded programs. ACM Trans.
Comput. Syst., 15(4):391–411, November 1997.

[418] N. Schiper, V. Rahli, R. van Renesse, M. Bickford, and R.L. Constable. Developing
correctly replicated databases using formal tools. In Proc. DSN, 2014.

[419] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In ACM
SIGPLAN Notices, volume 48, pages 305–316. ACM, 2013.

[420] Fred B Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[421] Martin Sevenich, Sungpack Hong, Oskar van Rest, Zhe Wu, Jayanta Banerjee, and
Hassan Chafi. Using domain-specific languages for analytic graph databases. Proceedings
of the VLDB Endowment, 9(13):1257–1268, 2016.

[422] Peter Sewell, James J Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair
Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis. Acute: High-level programming
language design for distributed computation. Journal of Functional Programming,
17(4-5):547–612, 2007.

[423] Marc Shapiro, Masoud Saeida Ardekani, and Gustavo Petri. Consistency in 3D. PhD
thesis, Institut National de la Recherche en Informatique et Automatique (Inria), 2016.

[424] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. A comprehensive
study of Convergent and Commutative Replicated Data Types. Technical Report
RR-7506, INRIA, 2011.

248

[425] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. Conflict-free
replicated data types. In Symposium on Self-Stabilizing Systems, pages 386–400.
Springer, 2011.

[426] G Shashidhar and Rupesh Nasre. Lighthouse: An automatic code generator for graph
algorithms on gpus. In International Workshop on Languages and Compilers for Parallel
Computing, pages 235–249. Springer, 2016.

[427] Kensen Shi, Jacob Steinhardt, and Percy Liang. Frangel: Component-based synthesis
with control structures. Proc. ACM Program. Lang., 3(POPL):73:1–73:29, January
2019.

[428] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework for
shared memory. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’13, pages 135–146, New York, NY,
USA, 2013. ACM.

[429] Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris, and
Mayur Naik. Syntax-guided synthesis of datalog programs. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 515–527, 2018.

[430] A Sinha, S. Malik, Chao Wang, and A Gupta. Predictive analysis for detecting
serializability violations through trace segmentation. In MEMOCODE, 2011.

[431] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative program-
ming over eventually consistent data stores. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’15, pages
413–424, New York, NY, USA, 2015. ACM.

[432] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative program-
ming over eventually consistent data stores. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’15, pages
413–424, New York, NY, USA, 2015. ACM.

[433] Calvin Smith and Aws Albarghouthi. Mapreduce program synthesis. ACM SIGPLAN
Notices, 51(6):326–340, 2016.

[434] Gus Henry Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph McMahan,
Michael Taylor, Luis Ceze, and Zachary Tatlock. Pure tensor program rewriting via
access patterns (representation pearl). In Proceedings of the 5th ACM SIGPLAN
International Symposium on Machine Programming, MAPS 2021, page 21–31, New
York, NY, USA, 2021. Association for Computing Machinery.

[435] Armando Solar-Lezama. Program sketching. International Journal on Software Tools
for Technology Transfer, 15:475–495, 2013.

249

[436] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay Saraswat,
and Sanjit Seshia. Sketching stencils. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 167–178,
2007.

[437] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal Ebcioğlu. Pro-
gramming by sketching for bit-streaming programs. In ACM SIGPLAN Notices,
volume 40, pages 281–294. ACM, 2005.

[438] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. Combinatorial sketching for finite programs. ACM Sigplan Notices,
41(11):404–415, 2006.

[439] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. Penelope: Weaving threads
to expose atomicity violations. In Proc. FSE, 2010.

[440] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage
for geo-replicated systems. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 385–400, New York, NY, USA, 2011.
ACM.

[441] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. From program verification
to program synthesis. In Proceedings of the 37th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 313–326, 2010.

[442] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. Generating
performance portable code using rewrite rules: From high-level functional expressions to
high-performance opencl code. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, page 205–217, New York, NY,
USA, 2015. Association for Computing Machinery.

[443] Philippe Suter, Robin Steiger, and Viktor Kuncak. Sets with cardinality constraints
in satisfiability modulo theories. In International Workshop on Verification, Model
Checking, and Abstract Interpretation, pages 403–418. Springer, 2011.

[444] TensorFlow. XLA: Optimizing Compiler for TensorFlow, 2022. [Online; accessed
10-November-2022].

[445] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in Bayou, a weakly connected replicated storage
system. In Proc. SOSP, 1995.

[446] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,
Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agree-
ments for cloud storage. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 309–324, New York, NY, USA, 2013.
ACM.

250

[447] Robert H Thomas. A majority consensus approach to concurrency control for multiple
copy databases. ACM Transactions on Database Systems (TODS), 4(2):180–209, 1979.

[448] Emina Torlak and Rastislav Bodik. Growing solver-aided languages with rosette.
Onward! 2013, page 135–152, New York, NY, USA, 2013. Association for Computing
Machinery.

[449] Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual machine for solver-
aided host languages. ACM SIGPLAN Notices, 49(6):530–541, 2014.

[450] Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual machine for solver-
aided host languages. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, page 530–541, New
York, NY, USA, 2014. Association for Computing Machinery.

[451] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A New Algorithm
for Generating All the Maximal Independent Sets. SIAM Journal on Computing,
6(3):505–517, 1977.

[452] Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim, Milo MK
Martin, and Rajeev Alur. Transit: specifying protocols with concolic snippets. ACM
SIGPLAN Notices, 48(6):287–296, 2013.

[453] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. Optimizing java bytecode using the soot framework: Is it
feasible? In DavidA. Watt, editor, Compiler Construction, volume 1781 of LNCS,
pages 18–34. Springer Berlin Heidelberg, 2000.

[454] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. Pgql:
a property graph query language. In Proceedings of the Fourth International Workshop
on Graph Data Management Experiences and Systems, page 7. ACM, 2016.

[455] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[456] Martin Vechev and Eran Yahav. Deriving linearizable fine-grained concurrent objects.
ACM SIGPLAN Notices, 43(6):125–135, 2008.

[457] Martin Vechev, Eran Yahav, and Greta Yorsh. Abstraction-guided synthesis of syn-
chronization. In ACM Sigplan Notices, volume 45, pages 327–338. ACM, 2010.

[458] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo. Efficient
byzantine fault-tolerance. IEEE Transactions on Computers, 62(1):16–30, Jan 2013.

[459] Werner Vogels. Eventually consistent. ACM Queue, 6(6), 2008.

251

[460] C. von Praun. Detecting Synchronization Defects in Multi-Threaded Object-Oriented
Programs. PhD thesis, Swiss Federal Institute of Technology, Zurich, 2004.

[461] Keval Vora. Exploiting Asynchrony for Performance and Fault Tolerance in Distributed
Graph Processing. PhD thesis, University of California, Riverside, 2017.

[462] Keval Vora. Lumos: Dependency-Driven Disk-based Graph Processing. In USENIX
Annual Technical Conference (USENIX ATC ’19), pages 429–442, 2019.

[463] Keval Vora, Rajiv Gupta, and Guoqing Xu. KickStarter: Fast and Accurate Computa-
tions on Streaming Graphs via Trimmed Approximations. pages 237–251, 2017.

[464] Keval Vora, Rajiv Gupta, and Guoqing Xu. KickStarter: Fast and Accurate Computa-
tions on Streaming Graphs via Trimmed Approximations. In ASPLOS, pages 237–251,
2017.

[465] Philip Wadler. Deforestation: Transforming programs to eliminate trees. In Proceedings
of the Second European Symposium on Programming, pages 231–248, Amsterdam, The
Netherlands, The Netherlands, 1988. North-Holland Publishing Co.

[466] Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo Petri. Replication-
aware linearizability. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 980–993, 2019.

[467] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui. Apus: Fast and
scalable paxos on rdma. In Proceedings of the 2017 Symposium on Cloud Computing,
pages 94–107, 2017.

[468] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive
sql queries from input-output examples. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 452–466,
2017.

[469] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng, Yuanzhi
Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia. PET: Optimizing tensor programs
with partially equivalent transformations and automated corrections. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 21), pages 37–54.
USENIX Association, July 2021.

[470] Liqiang Wang and Scott D. Stoller. Accurate and efficient runtime detection of atomicity
errors in concurrent programs. In Proc. PPoPP, 2006.

[471] Liqiang Wang and Scott D. Stoller. Runtime analysis of atomicity for multithreaded
programs. IEEE Trans. Softw. Eng., 32(2):93–110, February 2006.

[472] Yang Wang, Lorenzo Alvisi, and Mike Dahlin. Gnothi: Separating data and metadata
for efficient and available storage replication. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX ATC’12, pages 38–38, Berkeley,
CA, USA, 2012. USENIX Association.

252

[473] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. Deconstructing rdma-
enabled distributed transactions: Hybrid is better! In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18), pages 233–251, 2018.

[474] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. Fast in-memory
transaction processing using rdma and htm. In Proceedings of the 25th Symposium on
Operating Systems Principles, pages 87–104, 2015.

[475] Matthew Weidner, Heather Miller, and Christopher Meiklejohn. Composing and
decomposing op-based crdts with semidirect products. Proceedings of the ACM on
Programming Languages, 4(ICFP):1–27, 2020.

[476] Michael Whittaker and Joseph M Hellerstein. Interactive checks for coordination
avoidance. Proceedings of the VLDB Endowment, 12(1):14–27, 2018.

[477] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas Anderson. Verdi: A framework for implementing and formally
verifying distributed system. In Proc. PLDI, 2015.

[478] Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, and Emmanuel
Cecchet. Zz and the art of practical bft execution. In Proceedings of the Sixth Conference
on Computer Systems, EuroSys ’11, pages 123–138, New York, NY, USA, 2011. ACM.

[479] Min Xu, Rastislav Bodík, and Mark D. Hill. A serializability violation detector for
shared-memory server programs. In Proc. PLDI, 2005.

[480] Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Auguste Hirth, Henry
Ma, Jens Palsberg, Alex Aiken, Umut A Acar, et al. Quartz: superoptimization of
quantum circuits. In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, pages 625–640, 2022.

[481] Zhilei Xu, Shoaib Kamil, and Armando Solar-Lezama. Msl: A synthesis enabled
language for distributed implementations. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’14, pages
311–322, Piscataway, NJ, USA, 2014. IEEE Press.

[482] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor Kuncak. CrystalBall:
Predicting and preventing inconsistencies in deployed distributed systems. In Proc.
NSDI, 2009.

[483] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Type-and content-
driven synthesis of sql queries from natural language. arXiv preprint arXiv:1702.01168,
2017.

[484] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin, Mao
Yang, Fan Long, Lintao Zhang, and Lidong Zhou. Modist: Transparent model checking
of unmodified distributed systems. In Proc. NSDI, 2009.

253

[485] Yichen Yang, Mangpo Phitchaya Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip
Roy, and Jacques Pienaar. Equality saturation for tensor graph superoptimization. In
Proceedings of MLSys Conference, 2021.

[486] Y. C. Yeh. Safety critical avionics for the 777 primary flight controls system. In Digital
Avionics Systems, 2001. DASC. 20th Conference, volume 1, pages 1C2/1–1C2/11 vol.1,
Oct 2001.

[487] Jaeheon Yi, Caitlin Sadowski, and Cormac Flanagan. Sidetrack: Generalizing dynamic
atomicity analysis. In Proc. PADTAD, 2009.

[488] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike
Dahlin. Separating agreement from execution for byzantine fault tolerant services.
In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,
SOSP ’03, pages 253–267, New York, NY, USA, 2003. ACM.

[489] Haifeng Yu and Amin Vahdat. Design and evaluation of a continuous consistency
model for replicated services. In Proceedings of the 4th Conference on Symposium on
Operating System Design & Implementation-Volume 4, page 21. USENIX Association,
2000.

[490] Haifeng Yu and Amin Vahdat. Design and evaluation of a continuous consistency
model for replicated services. In Proceedings of the 4th Conference on Symposium on
Operating System Design & Implementation-Volume 4, page 21. USENIX Association,
2000.

[491] Haifeng Yu and Amin Vahdat. Efficient numerical error bounding for replicated network
services. In VLDB, pages 123–133. Citeseer, 2000.

[492] Haifeng Yu and Amin Vahdat. Combining generality and practicality in a conit-
based continuous consistency model for wide-area replication. In Proceedings 21st
International Conference on Distributed Computing Systems, pages 429–438. IEEE,
2001.

[493] Haifeng Yu and Amin Vahdat. The costs and limits of availability for replicated services.
In ACM SIGOPS Operating Systems Review, volume 35, pages 29–42. ACM, 2001.

[494] Haifeng Yu and Amin Vahdat. Minimal replication cost for availability. In Proceedings
of the twenty-first annual symposium on Principles of distributed computing, pages
98–107. ACM, 2002.

[495] Haifeng Yu, Amin Vahdat, et al. Efficient numerical error bounding for replicated
network services. In VLDB, pages 123–133. Citeseer, 2000.

[496] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang,
Pranay U. Jain, and Michael Stumm. Simple testing can prevent most critical failures:
An analysis of production failures in distributed data-intensive systems. In Proc. OSDI,
2014.

254

[497] Pamela Zave. Using lightweight modeling to understand chord. SIGCOMM Comput.
Commun. Rev., 42(2):49–57, March 2012.

[498] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Formal specification and
verification of crdts. In International Conference on Formal Techniques for Distributed
Objects, Components, and Systems, pages 33–48. Springer, 2014.

[499] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Formal specification and
verification of CRDTs. volume 8461 of LNCS. 2014.

[500] Rachid Zennou, Ranadeep Biswas, Ahmed Bouajjani, Constantin Enea, and Mo-
hammed Erradi. Checking causal consistency of distributed databases. In International
Conference on Networked Systems, pages 35–51. Springer, 2019.

[501] Junpeng Zha, Hongjin Liang, and Xinyu Feng. Verifying optimizations of concurrent
programs in the promising semantics. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, pages
903–917, 2022.

[502] Chi Zhang and Zheng Zhang. Trading replication consistency for performance and avail-
ability: an adaptive approach. In Distributed Computing Systems, 2003. Proceedings.
23rd International Conference on, pages 687–695. IEEE, 2003.

[503] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. Accelerate large-scale
iterative computation through asynchronous accumulative updates. In Proceedings of
the 3rd workshop on Scientific Cloud Computing, pages 13–22. ACM, 2012.

[504] Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu. Palgol: A high-level dsl for
vertex-centric graph processing with remote data access. In Asian Symposium on
Programming Languages and Systems, pages 301–320. Springer, 2017.

[505] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and
Saman Amarasinghe. Graphit: A high-performance graph dsl. Proc. ACM Program.
Lang., 2(OOPSLA):121:1–121:30, October 2018.

[506] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-
Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
{High-Performance} tensor programs for deep learning. In 14th USENIX symposium
on operating systems design and implementation (OSDI 20), pages 863–879, 2020.

[507] Liyan Zheng, Haojie Wang, Jidong Zhai, Muyan Hu, Zixuan Ma, Tuowei Wang, Shizhi
Tang, Lei Xie, Kezhao Huang, and Zhihao Jia. Ollie: Derivation-based tensor program
optimizer, 2022.

[508] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A
computation-centric distributed graph processing system. In 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 16), pages 301–316,
2016.

255

[509] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale graph
processing on a single machine using 2-level hierarchical partitioning. In 2015 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 15), pages 375–386, 2015.

256

	List of Figures
	List of Tables
	Introduction
	Overview of Contributions
	Replication Coordination Synthesis
	Graph Analytics Computation Synthesis
	Tensor Computation Optimization Synthesis

	Hamsaz: Replication Coordination Analysis and Synthesis
	Introduction
	Overview
	Well-Coordination
	Static Analysis
	Use-cases
	Protocols
	Non-blocking Synchronization Protocol
	Blocking Synchronization Protocol
	Dependency-Tacking Protocol

	Implementation
	Evaluation
	Related Works

	RDMA-Enabled Well-Coordination
	Introduction
	Overview
	Replicated Data Types
	Object Data Types
	Semantics of Well-Coordinated Replicated Data Types
	RDMA Replicated Data Types

	Implementation
	Experimental Results
	Related Works

	Graph Analytics Fusion and Synthesis
	Introduction
	Overview
	Declarative Graph Analytics
	Iterative Models
	Specification and Fusion
	Core Specification Language
	Fusion
	Extensions

	Mapping Specification to Iteration-Map-Reduce
	The Correctness of Iterative Path-Based Reduction
	Synthesis of Iterative Reduction

	Experimental Results
	Related Work

	Verified Tensor Graph Rewrite
	Introduction
	Motivation
	Example Rewrite Rule
	Representation and Proof

	Overview
	TensorRight Rewrite Rules
	TensorRight Language Constructs
	Proving Correctness

	TensorRight DSL & Semantics
	Core Syntax
	Denotational Semantics

	Verification of Rewrite Rules
	Symbolic Dimension Types
	The Verification Approach
	Verifying expressions with reduction operators

	Implementation
	Rosette based Verification

	Evaluation
	Expressiveness
	TensorRight Deployment
	Generalizing XLA Rewrite Rules

	Related Work

	Conclusion and Future Work
	Bibliography

