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ABSTRACT OF THE THESIS

Curiosity-Driven Multi-Criteria Hindsight Experience Replay

By

John Banister Lanier

Master of Science in Computer Science

University of California, Irvine, 2019

Professor Pierre Baldi, Chair

Dealing with sparse rewards is a longstanding challenge in reinforcement learning. The recent

use of hindsight methods have achieved success on a variety of sparse-reward tasks, but

they fail on complex tasks such as stacking multiple blocks with a robot arm in simulation.

Curiosity-driven exploration using the prediction error of a learned dynamics model as an

intrinsic reward has been shown to be effective for exploring a number of sparse-reward

environments. We present a method that combines hindsight with curiosity-driven exploration

and curriculum learning in order to solve the challenging sparse-reward block stacking task.

We are the first to stack more than two blocks using only sparse reward without human

demonstrations.

vii



Chapter 1

Introduction

Goal-based reinforcement learning has become an important framework for formulating and

solving goal-based sequential decision making tasks. In goal-based reinforcement learning, the

agent’s rewards are usually dependent on achieving a goal, and it chooses its actions using a

goal-conditioned policy. Goal-conditioned policies can enable a reinforcement learning agent

to generalize to new goals after training on a many different goals in the same environment

[36].

Goal-based reinforcement learning environments can be given a binary and sparse reward that

is encountered only when the goal is reached. Defining reward in this way ensures that if the

agent maximizes reward then it also reaches the user’s intended goal, which is not necessarily

true of manually-shaped dense rewards [41]. However, sparse rewards are also difficult to

learn from. As the length of a sparse-reward task increases, it becomes less likely that an

agent will discover how to reach its goal through random exploration [37]. This problem is

exacerbated when a sparse reward depends on the fulfillment of multiple goals or criteria.

Recently, hindsight methods have served as a popular solution to sparse-reward goal-oriented

learning by training an agent on the goals that it actually reached in addition to those
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Figure 1.1: The simulated robotic block stacking environment. A goal consists of target
positions where the blocks need to be placed, shown here as colored spheres. In the incremental
reward environment, the agent receives a reward for each block being in its target position.
In the sparse reward environment, the agent receives a reward only when every block is in its
target position.

which were intended [1]. This is done in the hope that knowledge of how to reach randomly

discovered goals will allow an agent to generalize well enough to find its assigned goals.

However, in many environments, an agent can be asked to reach goals that are very different

from those it may discover by chance, causing such generalization to be difficult. In these

cases, the same sparse reward issues remain, making it challenging for an agent to learn how

to accomplish its given objectives.

Stacking multiple blocks in a simulated robotics environment is a sparse-reward, goal-based

task that highlights shortcomings of hindsight learning. Multiple-block stacking is too difficult

for established hindsight methods like Deep Deterministic Policy Gradients with Hindsight

Experience Replay (DDPG+HER) to reliably solve without access to human demonstrations

[29]. Satisfying all criteria of a block stacking goal requires learning multiple skills to correctly

place each block, and the end goals are very different from those that the agent may discover

with random exploration. Achieving reward by correctly placing all blocks is precarious and

requires long chains of specific actions. Therefore, under a sparse reward, even with hindsight,

it is highly unlikely that an agent will discover the complex sequences of actions required to
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place every block in its correct position on the stack. Our method is the first method that is

able to solve sparse-reward block stacking for more than two blocks without access to human

demonstrations.

To solve sparse-reward multi-block stacking without help from demonstration, we use

DDPG+HER combined with curiosity-driven exploration and curriculum learning. In order to

balance improved exploration with exploitation during training, we introduce a new method

of combining data from both curiosity-based and standard policies in an off-policy fashion.

Additionally, we introduce a form of hindsight experience replay that is more sample efficient

for multi-criteria goal-based environments. We show that the advantages introduced by each

of these methods complement the others, and that the combination of all of them is necessary

to solve the hardest stacking tasks.

1.1 Related Work

1.1.1 Curiosity-Driven Exploration

We refer to curiosity-driven exploration as any method that attempts to drive an agent to

explore trajectories which it has not visited frequently before, usually by making the agent

pursue some form of exploration related objective or reward.

Curiosity-driven exploration has been approached by training agents to maximize information

gain [26, 20], pursue less visited areas using state pseudo-counts [2, 30], and maximize state

empowerment [18, 28, 23].

We focus on exploration by performing actions that both challenge and improve an agent’s

ability to model the world [21, 17, 38, 39]. We approach this by training a dynamics model on

the state transitions that our agent visits and encouraging the agent to maximize the model’s
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per-sample error on those transitions. Assuming a dynamics model is more accurate on

transitions that it has seen frequently before, such an agent seeking to challenge the dynamics

model should be inclined to visit new, rarely before seen state transitions. Choosing actions

to directly challenge an online trained dynamics model has been shown to result in complex

emergent behaviors [19]. Using a dynamics model’s error as an RL exploration reward can

motivate an agent to seek out novel states, sometimes solving an environment’s objective

without extrinsic rewards, and combining environmental rewards with a bonus exploration

reward has the potential to increase an agent’s learning speed and end-performance [31, 4].

On the same note, training a model to predict the output of a random function from state

features and choosing actions to maximize its error helped achieve state-of-the art performance

on the Montezuma’s Revenge Atari domain [5].

1.1.2 Curriculum Learning in Goal-Based Tasks

Previous applications of curriculum learning [3] to goal based environments include training

on a variety of tolerances for considering goals achieved [16], masking certain goal dimensions

to allow all such values on an axis to be sufficient for success [13], and generating curricula

that walk backwards from a predefined success state [14, 27].

Intrinsically motivated goal exploration processes (IMGEPs) have also been used to automat-

ically generate goals which maximize learning progress across one [15, 32, 24] or multiple [6]

tasks.
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1.1.3 Hindsight methods

Our work builds on Hindsight Experience Replay (HER) [1] as a way to effectively augment

goal oriented transition samples for a replay buffer. Hindsight has also been adapted to policy

gradient settings [36].

Efforts have been made to increase the efficiency of HER by prioritizing the sampling of more

relevant transitions. This has been done by attributing higher importance to transitions

and trajectories in which more physical work is done by the agent [43], rare goal states are

achieved [42], or higher temporal difference error is measured [9].

1.1.4 Block Stacking

Stacking multiple blocks with sparse rewards has been solved before using expert demonstra-

tion in [11] and [29]. Our work is a direct followup to the latter, as we solve a similar set of

environments without demonstration.

Stacking only 2-blocks with sparse rewards has been solved without demonstration by training

on an automatic curriculum which selects tasks from a small collection, prioritizing tasks

with higher changes in learning progress [6] and by collecting data from multiple policies

following auxiliary objectives to accomplish predefined interesting actions [37]. Dense reward

robotic block stacking tasks have been solved before using both a model-based approach,

PILCO, [8, 7] and by initializing the environment at intermediate stages of the task [35].
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1.2 Background

1.2.1 Reinforcement Learning

We consider the standard reinforcement learning formalism in which an agent interacts with

an environment E. The environment is fully observable, and consists of a set of states S,

a set of actions A, a reward function r : S × A→ R, an initial state distribution p(s0) and

transition dynamics p(st+1|st, at). At each timestep t, the agent observes a state st, takes an

action at, and receives a reward rt. The agent chooses these actions using a policy π, which is

a conditional distribution over actions given states. In this paper, we consider deterministic

policies which map directly from states to actions π : S → A.

The discounted sum of future rewards is defined as the return Rt =
∑T

i=t γ
(i−t)ri over some

time horizon T and with a discounting factor γ ∈ [0, 1]. We define ρπ as the state visitation

distribution when taking actions according to π. The goal in reinforcement learning is to

learn a policy π to maximize the expected return J = Esi∼ρπ ,ai∼π,ri∼E [R0|s0].

The expected return when taking actions according to a specific policy π is called the

Q-function or action-value function, and is defined as:

Qπ(st, at) = Esi>t∼ρπ ,ri≥t∼E [Rt|st, at] (1.1)

which can be recursively stated as the Bellman equation:

Qπ(st, at) = Ert,st+1∼E [rt + γQπ(st+1, π(st, at))] (1.2)

Because π is deterministic, the expectation in equation 1.2 depends only on the environment,

allowing off-policy methods to learn Qπ while using transitions generated with some other

stochastic policy β.
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1.2.2 DDPG

Our work uses the Deep Deterministic Policy Gradients algorithm (DDPG) [25], which is

an off-policy, model-free reinforcement learning algorithm designed for use with deep neural

networks in continuous action spaces. DDPG uses an actor-critic methodology. Two neural

networks are trained: a critic Q : S × A→ R parameterized by θQ, and an actor serving as

the policy π : S → A, which is updated using the policy gradient to directly maximize Qπ

with respect to the policy’s parameters θπ:

∇θπJ = Est∼ρβ [∇θπQ(st, a|θQ)|a=π(st|θπ)] (1.3)

This quantity can be estimated with the following:

∇θπJ ≈
1

N

∑
i

∇aQ(si, a|θQ)|a=π(si)∇θππ(si|θπ) (1.4)

The critic’s parameters θQ are updated to minimize the loss:

Lcrit =
1

N

∑
i

(yi −Q(si, ai|θQ))2 (1.5)

where

yt = rt + γQ′(st+1, π
′(st+1)) (1.6)

For stability, slower moving target networks π′ and Q′ are used to calculate yt. These

network’s parameters are exponential moving averages of θπ and θQ respectively.

DDPG maintains a replay bufferR containing transition samples, which are tuples (st, at, rt, st+1),

and alternates between two stages. The first stage is to gather experience for R by performing

rollouts on the environment, choosing actions from a new policy β = π+ ε where ε is random.
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The second stage is to train π and Q on batches of transition samples from R.

To efficiently gather experience, we run DDPG in parallel using multiple workers with

synchronized copies of each network, averaging parameters across workers after each update.

1.2.3 DDPG with Goals

In our work, we follow a goal based-framework. A goal g ∈ G is sampled each episode, and π

and Q are conditioned on these goals, making them π : S ×G→ A and Q : S ×A×G→ R.

Furthermore, the replay buffer instead stores transition samples as (st||g, at, rt, st+1||g),

where the states are each concatenated with a goal. The environments’ reward functions

rt = renv(st+1, g) are also parameterized on whether a new state meets these goals.

1.2.4 Hindsight Experience Replay

In goal-based scenarios, hindsight experience replay increases the sample efficiency of replay

buffer based algorithms like DDPG by adding additional augmented samples to the replay

buffer. In doing so, HER allows the agent to evaluate its progress not only towards the goals

that it was given by the environment, but also towards those that it actually reached in

experience gathering rollouts, thus giving the agent hindsight.

HER acts by duplicating transition samples before placing them in the replay buffer, and in

those duplicates, augmenting them by replacing the environment-provided goals with goals

that were actually reached later in the same episode. HER requires the learning algorithm to

have access to the reward function, and the rewards in the augmented samples are updated

according to the newly replaced goals.

HER can also be implemented by expressly storing unmodified transition samples in the

8



replay buffer and, with a certain probability, augmenting them when they are sampled from

it. We use this method in our work.

1.3 Environments

The block stacking environments that we consider in this work are based on the Fetch robot

environments from the OpenAI Gym API [33] and are similar those used in [29]. We test

on separate environments for n = 2 to 4 blocks. Each episode, target block locations are

initialized in a stack somewhere on the surface of a table. The n blocks are initialized at

random locations on the table away from the target stack location. The blocks are uniquely

labeled, and each block always goes to the same vertical position in the stack. The agent

has 25n timesteps before the environment resets. These environments are fully observable,

and observations include the claw state and full position, rotation, and velocity for both the

robot’s gripper and each block. These environments’ goals specify the target positions of each

block, and a block is considered correctly placed if its position is within an error tolerance e

from its target position. Actions are continuous and control the robot gripper’s movement in

3 dimensions as well as the state of the claw.

Similar to [29], we consider two sparse reward formulations with these environments: binary

and incremental. We can provide a single binary reward when the goal is fully achieved upon

correctly placing all blocks:

rbinaryt =


0 all blocks in place

−1 otherwise

(1.7)

9



We also consider incremental rewards for each block correctly placed:

rincrementalt = no. of blocks in place− no. of blocks (1.8)

In both cases, we also add 1 to the reward for moving the gripper away from the blocks once

they are all correctly placed, but this does not affect whether any goal is considered achieved.
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Chapter 2

Methods

To solve multi-block stacking with both incremental and binary rewards, we use three methods

to improve the performance of a standard multi-worker DDPG+HER learner: curiosity-driven

exploration, multi-criteria HER, and curriculum learning.

First, we incorporate curiosity-driven exploration by training a forward dynamics model on

state transitions visited by the agent and treating the dynamics model’s prediction error on

these transitions as an exploration reward. In order to have a certain portion of workers

explore while others exploit, we train three separate policies to maximize exploration rewards,

environmental rewards, and a weighted combination of both. Experience from rollouts is

shared among each network regardless of which policy collected it. By doing so, we can use

different policies at training time than at test time.

Second, we introduce a form of hindsight experience replay better suited for multi-criteria

goal-based environments, where a criteria in our environment is defined as the position of

a specific block. Our method randomly performs the goal replacement operation on each

independent criteria in a goal rather than on an entire goal at once, decoupling the individual

effects of each criteria on the reward function and providing higher sample efficiency.
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Third, we use curriculum learning by training the agent on two easier skill-building environ-

ments before training on the target multi-block stacking task.

2.1 Curiosity Driven Exploration with

Multiple Policies

We use curiosity-driven exploration to encourage an agent to visit transitions which are novel

and surprising to it. We define an auxiliary exploration reward in addition to environmental

reward, and we train separate critics for each. The explore critic Qe predicts the action-value

function for exploration rewards, and the exploit critic Qr predicts the action-value function

for environmental rewards. We train three actor policies πe, πr, πc which respectively maximize

exploration rewards, environmental rewards, and a weighted combination of both. By training

separate polices, we can make our agent pursue multiple and various objectives at training

time and maximize only environmental rewards at test time.

We maintain a forward dynamics neural network D : S × A → S parameterized by θd to

predict the next observation given the current observation and action, and we train it on

the same transition samples from the replay buffer as our agent at each DDPG update step.

For each transition sample trained on, an exploration reward for the sample is defined as the

squared error between the predicted next state D(st, at|θd) and the actual next state st+1.

The minibatch loss function for D and the exploration reward is formulated as:

Ld =
1

N

∑
i

rexplorei =
1

N

∑
i

(si+1 −D(si, ai|θd))2 (2.1)

By passing this error rexplorei to our agent as an exploration reward to maximize, we encourage

our agent to pursue transitions that are difficult to predict and unlike transitions currently in

the replay buffer.
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Figure 2.1: Forward Network Connections for DDPG+HER Learner with Curiosity-Driven
Exploration. During testing, actions are taken by the exploit actor to maximize return on
environmental rewards. During training, actions can be taken by any actor depending on
which objectives we wish to emphasize.

With two separate reward sources, we group our multiple actors and critics into two DDPG

actor-critic pairs. On exploration reward, we train Qe and πe as our explore actor-critic pair.

On environmental reward, we train Qr and πr as our exploit actor-critic pair. In addition to

these actor-critic pairs, we also train πc as our combined actor. πc pursues both exploration

and environmental reward by maximizing a weighted average of both critics’ action-value

functions.

We train multiple actors towards different objectives so that we can assign a portion of our

workers to follow an exploration related policy πe or πc while the rest follow the exploit policy

πr. Doing so allows us to diversify the experience gathered and make less sacrifices toward

either exploration or exploitation objectives than if we were to only ever choose actions

which maximize a weighted combination of the two. With multiple actors, we can specialize

our workers and maximize both environmental and exploration rewards when gathering

experience and then use πr at test time to solely maximize environmental rewards. Below we

describe these networks in more detail.

13



2.1.1 Exploit Actor and Critic

πr : S × G → A and Qr : S × G × A → R together form the exploit actor-critic pair,

which is trained on the normal DDPG+HER goal-based RL objective for maximizing return

on environmental rewards conditioned on goals. This actor-critic pair follows the same

configuration and update rules as what would be used in vanilla DDPG+HER. The loss

function for Qr to minimize with respect to its parameters θQr is:

Lcritr = Est∼ρβ ,at∼β,rt∼E(yrt −Qr(st, at, g|θQr ))2 (2.2)

where yrt is calculated using the target exploit actor and critic π′r and Q′r:

yrt = renvt + γQ′r(st+1, π
′
r(st+1, g), g) (2.3)

πr is updated using the standard goal-based DDPG policy gradient to maximize Qr with

respect to πr’s parameters θπr .

2.1.2 Explore Actor and Critic

πe : S → A and Qe : S × A→ R together form the explore actor-critic pair, which is trained

on the objective of maximizing return on exploration reward. Goals do not affect exploration

rewards and are not factored in these calculations. The loss function for Qe to minimize with

respect to its parameters θQe is:

Lcrite = Est∼ρβ ,at∼β,rt∼E(yet −Qe(st, at|θQe ))2 (2.4)

14



where yet is calculated using the target explore actor and critic π′e and Q′e:

yet = rexploret + γQ′e(st+1, π
′
e(st+1)) (2.5)

Likewise, πe is updated using the standard DDPG policy gradient to maximize Qe with

respect to πe’s parameters θπe .

2.1.3 Combined Actor and POP-ART

Once our agent has an idea of how to find environmental rewards, it is usually more

advantageous to explore trajectories close to what actually results in those rewards. Towards

this end, we train our combined actor πc : S ×G→ A to choose actions that maximize both

the exploration and exploitation objectives simultaneously. πc outputs actions that maximize

the weighted combination of both Qe and Qr’s action-value functions.

We intend to maintain a normalized scale at which to compare the return estimates from Qe

and Qr so that we can intuitively weight their relative importance to πc. We also need to

account for the fact that the magnitude of both action-value functions may change drastically

over the course of training. This is especially true of Qe which predicts the return from the

moving exploration reward function. To accomplish both of these goals, each of the targets

ye and yr for Qe and Qr are adaptively normalized such that we also maintain normalized

versions nQe and nQr of both action-value functions with the same relative scale at all times.

We can then intuitively weight the relative importance of nQe and nQr for πc to maximize. In

our case, we weight them equally.

To do this, we use PopArt normalization [40], which allows us to adaptively normalize our

critics’ targets without hurting the accuracy of our predictions. Here we only sketch PopArt

informally. See [40] for more details. For each critic target ye and yr we keep an online

15



Algorithm 1: DDPG+HER with Curiosity

Given: Worker policies π0, π1, ..., πw|πi ∈ {πe, πr, πc}
Randomly initialize networks D,nQe , n

Q
r , πe, πr, πc

Initialize target networks nQe
′
, nQr

′
, π′e, π

′
r, π
′
c

(Execute for each parallel worker i):
Initialize replay buffer R
for Epoch = 1, ..., E do

for Cycle = 1, C do
for Episode = 1,M do

Sample ε and set β ← πi + ε
Receive initial state s0 and goal g
for t = 0, T do

Select action at = β(st, g) with noise
Take action at, receive rt, st+1

Store (st||g, at, rt, st+1||g) in R

end

end
for Batch = 1, ..., K do

Sample batch B from R with HER augmentations
Train D on B
foreach transition sample j in B do

Set rexplorej and add it to sample

end
Train nQe , n

Q
r , πe, πr, πc on B

Update target networks
Average network parameters over workers

end

end
Test performance on episodes using πr

end

Figure 2.2: DDPG+HER with Curiosity Algorithm

16



estimate of its mean and standard deviation σe, µe and σr, µr. We then parameterize Qe and

Qr as linear transformations of the suitably normalized action-value functions nQe and nQr :

Qe(s, a|θQe ) = σen
Q
e (s, a|θQe ) + µe

Qr(s, a, g|θQr ) = σrn
Q
r (s, a, g|θQr ) + µr

(2.6)

nQe and nQr are the actual networks that we train parameterized by θQe and θQr , and when

the statistics σe, µe and σr, µr are updated, the top layers of nQe and nQr are also adjusted to

preserve equation 2.6. Similarly, our target critics Q′e, Q
′
r are equivalent linear transformations

of target normalized critic networks nQe
′
, nQr

′
.

In our implementation, the scale-invariant loss functions for each of our two critic networks

nQe and nQr are:

Lcrite =
1

N

∑
i

(
yei − µj
σe

− nQe (s, a|θQe ))2 (2.7)

Lcritr =
1

N

∑
i

(
yri − µj
σr

− nQr (s, a, g|θQr ))2 (2.8)

By training nQe and nQr to predict normalized action-value functions, we can update πc

to jointly maximize the evaluation from both the explore and exploit critics with equal

importance:

∇θπc J = Est∼ρβ [∇θπcQ
norm
c (st, a, g)|a=πc(st,g|θπc )] (2.9)

where

Qnorm
c (st, a, g) =

nQe (st, a|θQe ) + nQr (st, a, g|θQr )

2
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Then for our three actors πc, πe, πr the implemented policy gradient update rules are:

∇θπc J ≈
1

N

∑
i

∇aQ
norm
c (si, a, g)∇θπc a|a=πc(si,g|θπc ) (2.10)

∇θπe J ≈
1

N

∑
i

∇an
Q
e (si, a|θQe )∇θπe a|a=πe(si|θπe ) (2.11)

∇θπr J ≈
1

N

∑
i

∇an
Q
r (si, a, g|θQr )∇θπr a|a=πr(si,g|θπr ) (2.12)

In our experiments, when we used curiosity-driven learning, we chose actions using the

combined policy πc instead of the pure explore policy πe. The pure explore policy πe is still

useful to train the explore critic Qe which is then used to train the combined policy πc.

2.2 Multi-Criteria Hindsight

We define the multiple criteria in a goal as the individual target block positions that the

goal specifies. In general, for other environments, criteria can be elements of a goal that

require learning separate skills to accomplish. To increase the quality of data provided by

hindsight experience replay, we randomly perform the hindsight goal replacement operation

independently on each criteria in a goal that we are augmenting. This is done instead of

replacing the entire goal with one reached later in the same episode.

Our method provides more transition samples to the agent with goals that are only partially

completed later in the same episode. With normal HER, all hindsight augmented samples
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Algorithm 2: Multi-Criteria HER Augmentation Step

Given:

• an augmentation probability z

• a Replay Buffer R

Sample a batch B from R
foreach transition sample (st||g, at, rt, st+1||g) in B do

foreach target block position pi in g do
Sample u ∼ U(0, 1)
if u < z then

Sample a position p′i that block i reached later in the same episode.
else

p′i ← pi
end

end
g′ ← p′0||p′1||...||p′n
r′t ← r(st+1, g

′)
replace transition sample w/ (st||g′, at, r′t, st+1||g′)

end
Pass B with augmented transition samples to neural networks for training

Figure 2.3: Multi-Criteria HER Augmentation Step Algorithm

that the agent receives contain goals in which all criteria were satisfied at a later timestep.

With multi-criteria HER, the agent will still receive a portion of goals that it later satisfied

completely, and it will also receive many goals that it later only satisfied some criteria for.

In our experiments, for both binary and incremental reward formulations, using multi-criteria

HER results in significant, if not critical, improvements to sample efficiency and inter-task

generalization.

2.3 Curriculum

Although multi-criteria hindsight sampling allows for more sample-efficient learning and

curiosity driven exploration assists in reward discovery, it was necessary to employ curriculum

19



learning to successfully solve multi-block stacking with sparse rewards. Training was broken

into three stages, in which reaching a threshold success rate in a previous stage caused the

agent to transition to the next stage. At the beginning of each stage, the DDPG algorithm

was restarted, transferring only the weights of each network from a previous stage and

reinitializing an empty replay buffer.

In stage 1, the agent trains on a non-stacking version of the block environment to help it

learn fundamental skills that are transferable to the target block stacking task. The stage

1 environment is initialized with the same number of randomly placed blocks as the target

stacking task. Each episode, rather than in a stack, the blocks’ target positions are randomly

placed on the surface of the table. A single block’s target position may also be in the air

instead. This stage is designed to provide less challenging tasks in which the agent can more

easily discover the basic block manipulation mechanics necessary for completing the harder

stacking task.

In stage 2, the agent trains on actual block stacking with the environment initialized at

various intermediate stages of completion. At each episode, a random number of the n blocks

between 0 and n− 1 are initialized already in the correct position on the stack. Some targets

may also still be on the table rather than on the stack.

Finally, in stage 3, the agent trains on the target block stacking task, in which all blocks were

consistently initialized on the table, away from their target locations on the stack.

20



Chapter 3

Experiments

In this section, we show our method’s performance on the block stacking tasks using both

binary and incremental rewards. Stacking 2, 3, and 4 blocks were tested. Ablations are also

shown to demonstrate the effectiveness of each our methods. We performed tests using the

following configurations:

All 3 : Multi-criteria HER, curiosity-driven exploration, and curriculum learning are all used

with our DDPG+HER learner.

No Curiosity : Multi-criteria HER and curriculum learning are used, but all actions are chosen

using πr. An explore actor-critic and combined actor are not trained.

No Multi-Criteria: Curiosity-driven exploration and curriculum learning are used, however

HER is done in the original way as defined in [1].

No Curriculum: Multi-criteria HER and curiosity-driven exploration are used, however the

agent only trains on stage 3 of the curriculum, which is the actual target task of multi-block

stacking.
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Vanilla DDPG+HER: None of the three methods introduced in section 2 are used. This is

the original DDPG+HER algorithm as in [1]. All actions are chosen using πr.

We trained our agent using 8 to 32 parallel workers depending on the difficulty of the task.

When curiosity driven-exploration was used, during experience gathering rollouts, we assigned

half of the workers to take actions using πc, and the other half using πr. Also during experience

gathering, we applied parameter-space noise [34] to the actor networks used and gaussian

noise to the actions chosen. Comprehensive hyper-parameter details can be found in the

supplementary materials associated with this paper.

Success rates and per-episode reward were measured during discrete testing phases in every

epoch of training. During testing, actions were always chosen using πr. An episode was

considered successful if its goal g was achieved during the episode’s final state sT .

Success rate and per-episode reward statistics were a moving average over the last 100 episodes

tested on. These two statistics are shown as a function of total environment interaction

timesteps for binary reward tasks in Figure 3.1 and for incremental reward tasks in Figure

3.2.
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Figure 3.1: Success rates and per-episode rewards for block stacking with binary rewards.
Success rates and per-episode reward values shown here are for the respective curriculum
stage’s task in which they are measured.

Figure 3.2: Success rates and per-episode rewards for block stacking with incremental rewards.
Success rates and per-episode reward values shown here are for the respective curriculum
stage’s task in which they are measured.
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Table 3.1: Highest Success Rates with Binary Rewards over 100 Episode Sliding Window

Method Stack-2 Stack-3 Stack-4

All-3 1.00 0.95 0.00
No Curiosity 1.00 0.00 -
No Multi-Criteria 1.00 0.00 -
No Curriculum 0.00 - -
Curriculum Only 0.00 - -
Vanilla DDPG+HER 0.00 - -

Table 3.2: Highest Success Rates with Incremental Rewards over 100 Episode Sliding
Window

Method Stack-2 Stack-3 Stack-4

All-3 1.00 0.98 0.79
No Curiosity 0.99 0.94 -
No Multi-Criteria 0.00 0.00 -
No Curriculum 0.00 0.00 -
Curriculum Only 0.00 - -
Vanilla DDPG+HER 0.00 - -
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Tables 3.1 and 3.2 show the highest success rates for each method on the target bock stacking

tasks with binary and incremental reward formulations. For methods that used a curriculum

but did not reach the target task in the third stage, the final network weights were used to

test performance at the target block stacking task anyways.

Vanilla DDPG+HER was unable to solve block-stacking with any number of blocks and

either reward formulation.

Stacking 2 blocks with either reward formulation was solvable as long as the agent trained

on the curriculum and used multi-criteria HER. Using curiosity-driven exploration without

multi-criteria HER allowed the agent to make progress on stage 1 of the curriculum, but

when incremental rewards were given, it failed to generalize between the stage 1 task and the

stage 2 task well enough to continue learning.

Stacking 3 blocks with incremental rewards required the use of both curriculum learning and

multi-criteria HER to solve. With binary rewards, stacking 3 blocks required the use of all

three methods, as curiosity-driven exploration was necessary to find a reward signal.

Due to limits on computational resources, stacking 4 blocks was only tested with all three

methods to measure the best possible performance. No progress was made on the binary

reward environment, and in the incremental reward environment, a max success rate of 0.79

was reached on the target block stacking task.

Multi-criteria HER provided clear improvements to sample efficiency, and was necessary for

stacking three or more blocks.

Agents with curiosity-driven exploration learned to solve tasks with less environment inter-

actions than those without. With incremental rewards, block stacking was easy enough to

be solved without curiosity-driven exploration, however with binary rewards, curiosity was

required to solve stacking 3 blocks.
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Finally, curriculum learning was necessary for any of the stacking tasks, as no method could

progress on the target stacking task without first training on stages 1 and 2.
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Chapter 4

Conclusion

By combining curiosity-based exploration with curriculum learning and multi-criteria HER,

we are the first to solve sparse reward multi-block stacking without demonstrations. This

work shows that even very challenging sparse reward environments can be solved through a

combination of existing techniques. In future work, other methods of intrinsic exploration

such as Go-Explore [12] might prove more effective than curiosity-driven exploration when

combined with HER. In our work, we generate curricula in a hand-designed way based on

domain knowledge. This might not be possible in more complex domains such as real-world

robotics. Because of this, further research in automatically generating curricula is likely to

be a fruitful direction when combined with HER.
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Appendices

A Links

A video showcasing this project is available at

https://youtu.be/stZX4o0H8Ro

Code for our modified DDPG Learner is available at

https://github.com/CDMCH/ddpg-with-curiosity-and-multi-criteria-her

and code for our block stacking environments is available at

https://github.com/CDMCH/gym-fetch-stack

Our DDPG learner uses code modified from the OpenAI baselines repository [10].
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B Experiment Details

Observation and goal network inputs were normalized to have a mean of zero and standard

deviation of one. Once normalized, they were also clipped to the range [-5, 5].

All networks were fully connected with 3 hidden layers and 256 hidden units in each layer.

Hidden layers used ReLU activations, while the output layers of actor networks used tanh.

The action space was re-scaled to the fit the tanh range of [-1, 1], and to prevent vanishing

gradients, the preactivations of the actor output layers were penalized by the square of their

magnitude with a coefficient of 0.001.

The DDPG algorithm was run in parallel using multiple message passing interface (MPI)-

based workers. Network parameters and normalization statistics were averaged across workers

during update steps. The actor policy, πe, πr, or πc that each worker used during experience

gathering was set as a hyperparameter. All workers used πr during performance testing.

Different worker amounts were used depending on the difficulty of the task:

Table B.1: Parallel Worker Amounts by Task

Task Number of MPI Workers

Stack 2, Sparse Rewards 8
Stack 3, Sparse Rewards 32
Stack 4, Sparse Rewards 32
Stack 2, Incremental Rewards 8
Stack 3, Incremental Rewards 8
Stack 4, Incremental Rewards 32

The following hyperparameters were used in our experiments:
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Table B.2: Hyperparameters for Block Stacking Tasks

Hyperparameter Value

Optimizer Adam [22]

nr Learning Rate 0.001

nr L2 Regularization Coefficient 0

πr Learning Rate 0.001

Target Exploit Actor-Critic Polyak-averaging Coefficient 0.001

ne Learning Rate 0.001

ne L2 Regularization Coefficient 0.01

πe Learning Rate 0.001

Target Explore Actor-Critic Polyak-averaging Coefficient: 0.05

πc Learning Rate 0.001

πc Explore vs Exploit Critic Weighting 0.5, 0.5

D Learning Rate 0.007

Episode Time Horizon 50 ∗ num blocks

γ 1− 1/episode time horizon

MPI Worker Replay Buffer Size 106 transitions

Parameter Space Noise σ Target 0.1

Guassian Action Noise σ 0.04

Traditional HER Augmentation Probability (when used) 0.8

Multi-Criteria HER Augmentation Probability (when used) 0.8

Cycles per Epoch 50

Experience Gathering Episodes per Cycle 8 (per MPI worker)

Training Batches per cycle 8

Network Update Batch Size 1024 transitions (per MPI worker)

Test Episode Rollouts Per Epoch 50
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