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Synopsis 

Quantum-based refinement software is being developed to refine bio-macromolecules against 

crystallographic or cryo-electron microscopy data. 

 

Abstract 

Quantum-based refinement utilizes chemical restraints derived from quantum chemical 

methods, instead of the standard parameterized library-based restraints used in refinement 

packages. The motivation is two fold: firstly, the restraints have the potential to be more 

accurate and secondly, the restraints can be more easily applied to new molecules such as 

drugs or novel co-factors. Here we introduce a new project called Q|R aimed at developing a 

quantum-based refinement of bio-macromolecules. The central focus of this long-term 

project is to develop software that is built on top of open source components. A development 

version of Q|R was used to compare quantum-based refinements to standard refinement using 

a small model system.  
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1. Introduction 

Crystallography accounts for about 90% of all structures in Protein Data Bank (PDB; 

Bernstein et al., 1977; Berman et al., 2000), and is therefore the leading tool for obtaining 

three-dimensional structures of bio-macromolecules. Cryo-electron microscopy (cryo-EM) is 

rapidly becoming its major competitor (Bai et al., 2015; Cheng, 2015). These two methods 

are rather different from a technological and conceptual perspective (Frank, 2006; Rupp, 

2010), however they both yield a map that is used to build an initial atomic model into. 

Model refinement against experimental data is the next common step in the process for both 

of these two structure solution techniques. For cryo-EM, the experimental data is used to 

construct a map, and that map normally does not change during the refinement procedure. 

For crystallography, the experimental data are the measured intensities of structure factors, 

and, since phases are lost in diffraction experiment, the map is typically calculated using 

model phases. This implies that the map is constantly changing, since it depends on the 

model that changes during refinement. It turns out that despite these technical and 

methodological nuances, the computational refinement tools are very similar if not identical 

for both techniques. Therefore we now refer to crystallographic or cryo-EM experimental 

data as experimental data or simply data.  

 A general refinement protocol is shown schematically in Figure 1. Given an atomic 

model and experimental data, the refinement engine calculates a refinement target and its 

derivatives with respect to atomic parameters, which are then sent to an optimizer (typically, 

a minimizer). The minimizer updates the model parameters, and then sends them back to the 

refinement engine that then calculates a new target value and set of derivatives and returns 

them back to the minimizer. This process is carried out iteratively until convergence is 

achieved. Finer details and specific implementation depend on particular software and 

experimental data (X-ray, neutron or cryo-EM, for example). Model refinement against 

experimental data is an optimization process of changing parameters that describe the model 

to satisfy a goal (or target) function. A target function relates model parameters to 

experimental data and, if needed, a priori knowledge (for reviews, see Tronrud, 2004; 

Watkin, 2008; Afonine et al., 2015). In the case of bio-macromolecules the data are almost 

always of insufficient quality to be used alone in refinement, and thus using a priori 

knowledge is almost always needed, with the exception being ultra-high resolution data that 

constitute less than 0.5% of all entries in the PDB. 
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 A priori knowledge is typically introduced as constraints or as a weighted term to the 

refinement target function 

T = Tdata + w * Trestraints (1) 

and is hereafter called restraints. Here Tdata is typically referred to as experimental or the data 

term, the term that scores model to data fit, Trestraints represents restraints and w is the relative 

weight. 

 Most popular refinement packages such as Refmac (Murshudov et al., 2011), Shelxl 

(Sheldrick, 2008), CNS (Brunger et al., 1998), BUSTER-TNT (Bricogne et al., 2016) or 

phenix.refine (Afonine et al., 2012) use a sum of potentials (e.g. harmonic) to restrain 

specific features of atomic model, such as bond lengths or angles, or planes of planar groups. 

Typically it is a sum of six terms 

Trestraints = Tbond + Tangle + Tplanarity + Tchirality + Ttorsion + Tnonbonded_repulsion  (2)  

where each term is responsible for a particular feature: covalent bonds and angles, planes, 

chiral volumes, torsion angles and preventing nonsensical steric clashes. 

 This kind of restraint is sufficient most of the time at data resolutions of 2.5-3Å or 

better. However, for lower resolutions that account for about 20% of crystallographic data in 

PDB, or for resolutions typically found in cryo-EM, these restraints are insufficient. Indeed, 

at a typical macromolecular resolution (around 2Å) there is insufficient information to 

determine the atomic level of detail, but it does contain information about secondary and 

higher order structural organization. Restraints such as those in (2) are needed to compensate 

for this lack of information. Lower resolution data may not only lack atomic details but also 

higher-order details. The impact of poorly performing restraints (2) during a low-resolution 

refinement is at least two-fold. Firstly, the geometry of a refined model may not be sound; for 

example, alpha-helices and beta-strands may be distorted while still fitting the map and 

satisfying the restraints (2). Secondly, the data over-fitting may be significant because the 

amount of data (experimental plus restraints) may be severely outweighed by the amount of 

model parameters.  

 To address these problems, additional restraints have been used to augment (2) (see, 

for example, Oldfield, 2000; Echols et al., 2010; Headd et al., 2012; Sobolev et al., 2015) 

Trestraints_plus = Trestraints + TSS + TRamachandran + Trotamer + Treference  (3). 
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Here TSS is secondary structure restraints, which are essentially restraints on hydrogen bond 

distances and angles, TRamachandran restrain torsion angles of protein main chain against 

Ramachandran plot (Ramachandran et al. 1963), Trotamer restrain amino-acid side-chains to 

valid rotameric states and Treference restraints a model being refined against low-resolution 

data to a known better quality model solved against higher resolution data. Other, similar 

restraints may be envisaged. 

 Restraints for a standard refinement target are functions of (2) and possibly (3), while 

these additional restraints are clearly an improvement, they are not without problems. For 

example, they require manual annotation (a user needs to tell the program what the secondary 

structure is) and they are still simple potentials. These potentials are fitted to reproduce some 

average value taken from a compiled library, and do not take into account finer details such 

as local environment and nearby charges.  

Quantum chemical methods have the potential to play a transformational role in 

refinement by delivering restraints in much less ad hoc way, and this can potentially lead to 

more chemically meaningful structures (Carlsen 2015). In quantum-based refinement the 

restraints are derived from a quantum chemical calculation. Performing an accurate and 

efficient quantum chemical calculation for macromolecules remains a challenge in 

computational chemistry (Borbulevych et al., 2014; Borbulevych et al., 2016; Goerigk et al., 

2014).  However, several attempts at using quantum chemical calculations as a source of 

restraints for crystallographic refinement have been reported before and can be categorized as 

follows: 

Hybrid QM/MM. A refinement procedure can be focused on an “active” region of a 

protein. The advantage is obviously that one does not waste computational resources trying 

to better describe the (potentially uninteresting) environment region. The QM/MM-based 

refinement method advocated by Ryde and co-workers (Ryde, 2003; Ryde & Nilsson 2003; 

Ryde & Nilsson 2003; Ryde, 2003; Nilsson et al., 2004) was pioneering in this area. The 

ComQum (Ryde, 1996) software package was developed for this task. The challenge of 

hybrid QM/MM based methods is that one needs to carefully select the active QM region, 

ensuring that a sufficiently large enough region is taken. This can be time-consuming and 

labor intensive to carry out convergence studies, and furthermore, finding a balanced force-

fields and ab initio combination remains an open area for QM/MM modelling. 
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Semi-empirical. Seminal work by Merz and co-workers have managed to address a lot 

of issues in quantum refinement (Yu et al., 2005; Yu, Li et al., 2006; Yu, Hayik et al., 2006; 

Li et al., 2012; Fu et al., 2013; Fu et al., 2013; Borbulevych et al., 2014). Using semi-

empirical calculations more-or-less alleviates the issue of computational scaling. The DivCon 

(Dixon & Merz, 1996) software was used for this purpose and has been interfaced with 

Phenix (Adams et al., 2010). Employing semi-empirical methods is attractive due to their 

inherent computationally more efficient scaling. However, the accuracy and robustness (e.g. 

metalloenzymes) issues may prove to be too much of a drawback in the long run (Korth & 

Thiel 2011). 

Linear-Scaling Density Functional Theory. The work by Reimers and co-workers 

(Canfield et al., 2006) employed a divide and conquer based QM/MM optimization approach 

to study a 150,000-atom photosystem-I trimer. The whole protein is divided into individually 

optimized regions, with each region (and its immediate environment) treated by a density 

functional theory (DFT) and the remaining protein by molecular mechanics. This study used 

the forces coming from the DFT calculation to optimize the structure. This calculation found 

the structural feature that held the trimer together. Serious errors in the coordinates the 

chlorophyll “special pair” were identified. The orientations of 35 residue sidechains were 

optimized to make improved hydrogen bonding networks.  

Quantum methods such as semi-empirical, Hartee-Fock, Quantum Monte Carlo or 

DFT can be used to calculate restraints for co-factors, co-crystals, drugs bound to active sites 

etc. The primary concern with quantum based methods is the tremendous amount of 

computing resources required, however recent progress in developing very efficient code, 

accelerated by general purpose processing units (GPUs), now offers an exciting glimpse into 

a promosing future for quantum-based refinement. 
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2. Methods 

We have developed a refinement package that combines crystallographic and cryo-EM data 

with restraints computed using standard quantum-chemical methods. Our quantum 

refinement code is called Q|R. The source code was written as a lightweight standalone 

Python (for example, v2.7) program and the source code is made freely available at 

https://github.com/qrefine/qr-core. Q|R uses the CCTBX open source library (Grosse-

Kunstleve & Adams, 2002; Grosse-Kunstleve et al., 2002) to construct a standard refinement 

protocol, very much like phenix.refine and most other Phenix tools. CCTBX is used to 

compute the data term in (Eqn. 1) and its derivatives, do scaling and account for bulk-

solvent, and drive refinement using a standard L-BFGS (Liu & Nocedal, 1989; Byrd et al., 

1995) minimizer.  

 CCTBX is also used to compute Trestraints (Eqn. 1) and its derivatives in standard 

refinement. The electronic energy from a quantum chemical method is used to calculate the 

restraints (Trestraints) in quantum refinement. In order to achieve this, Q|R interfaces with ASE 

v3.8.1 (Bahn & Jacobsen, 2002) to enable easy access to many quantum chemical 

calculators. These calculators are thin wrappers around major quantum chemical codes. We 

generated a custom ASE calculator for Terachem v1.5 (Ufimtsev & Martinez, 2009), and 

modified some existing ASE calculators, and they are all available on 

https://github.com/qrefine/qr-plugin-ase. In this study we have chosen to investigate three 

different quantum methods: semi-empirical (PM7; Stewart, 2013) in Mopac v2016 (Stewart, 

2016), ab initio (HF/6-31G-D3; Grimme et al., 2010) using Terachem v1.5, and a Density 

Functional (RI-BP86/SV(P); Von Arnim & Ahlrichs, 1998; Becke, 1988; Schäfer et al., 

1992) from Turbomole v7.0.1 (Ahlrichs, 2015). The choice of individual quantum methods 

was arbitrary at this point, because the goal of this present study was to validate quantum-

based refinement, not to carry out a systematic survey of candidate methods. The three 

different quantum chemical approaches chosen here are vastly different methodologies. 

  The relative weight, denoted as w in Eqn. 1, is initially taken as the ratio of the 

gradient norm of the restraint and data terms. This weight is scaled up or down using a 

heuristic approach based on crystallographic statistics such as Rwork, Rfree and Rfree-Rwork and 

geometric descriptors (Afonine et al. 2011). 

To validate the approach and its implementation, the following test was carried out. A 

short 13 amino acid well-ordered and resolved helix was taken as a reference from the X-ray 

structure of aldose reductase (PDB code 1US0) refined at 0.66Å resolution. A helix was 

extracted from the structure, and then all of the side chains were removed to form a poly 
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glycine reference model, see Figure 2. Since this is a very high quality structure derived from 

high resolution data, the geometry of this helix is likely to be very close to representing the 

reality. This helix was then placed into a 16*18*30Å P1 unit cell box, which should be 

sufficiently large enough to have only minimal intermolecular interactions. A low resolution 

and highly incomplete set of structure factors describing all reflections in the 4-6 Å range 

was calculated from this model. After adding 5% of random noise to the amplitudes of these 

structure factors, we refer to this set as experimental data Fobs.  

As starting coordinates for quantum refinement, five sets of perturbed structures of 

increasing magnitude (range 0.3 – 1.5 Å) were constructed by running molecular dynamics 

simulations, starting from the original model. The simulation used a simplified potential 

(Eqn. 2) from phenix.dynamics. This potential does not include an explicit hydrogen bonding 

term and is therefore cannot maintain the hydrogen bonding interactions during the 

simulation, see Figure 3. This diverse set of structures obtained from the different 

perturbation strengths should provide insight into the behavior of the quantum-based 

refinement. The structures were considered to be within typical convergence radius of 

refinement. To test the robustness of our implementation, each degree of perturbation was 

repeated 10 times using different snapshots sampled from the molecular dynamics 

simulations. The original model (prior to perturbations) is taken as the reference structure in 

all-subsequent analyses. All data presented in this work, including scripts to reproduce 

reported statistics, figures and plots, are available at https://github.com/qrefine/qr-tests-1us0. 

 

 

 

 

 

 

 

 

 

 



 

 

8 

8 

3. Results and Discussion 

In order to validate our approach and exercise the implementation (such as eliminate bugs, 

optimize runtime performance and find about convergence radius) we choose to work with a 

semi-artificial system described in the methods section. The advantage of working with such 

a system is two-fold. First, it is small and therefore allows sampling diverse refinement 

scenarios and parameters in a manageable amount of time (minutes to hours on a typical 

laptop and not days or weeks of computer time). This is extremely important during the 

development stage of a project as this allows a quick turnaround, which in turn promotes a 

continuous development process. Second, since we construct this system (as opposed to 

using real experimental data) we have full control over all its properties, and, most 

importantly, we know what the expected answer is. This development model has been used 

for more than a decade during development of CCTBX and many Phenix tools, including 

writing from scratch its refinement engine phenix.refine and has proven to be very efficient. 

Here we adopt this paradigm for development of our Q|R code.  

These perturbed models described in the methods section above were subjected to 

Q|R refinement or standard CCTBX based refinement using the calculated scattering data. 

Since the starting model is known and data are calculated from it, it is trivial to score the 

refinement outcomes against a known answer and compare the scores between different 

refinement approaches, namely standard and quantum. 

It is clear from Figures 3 that perturbed models become increasingly further removed 

from the reference model as the perturbation strength increases. Figure 3 shows a lengthening 

of the chain owing to a greater loss of critical hydrogen bonds with increasing degree of 

perturbation. At 0.3 Å RMS deviation, most hydrogen bonds are retained whereas by 1.5 Å 

most are lost. Hence, the challenge for refinement becomes greater as the perturbation 

strength increases. This gives a well-controlled set of models that can challenge quantum-

based and standard refinement methods. In the set of smallest perturbations (0.3Å RMSD) 

the majority of hydrogen bonds are retained, while in the set of most heavily perturbed 

structures (1.5Å RMSD) almost all hydrogen bonds are destroyed. Refinement is expected to 

return the structure back to the original reference model, but this task becomes more 

challenging as the perturbation gets stronger.  
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We refined each and every one of the 50 perturbed structures with the quantum-based 

methods semi-empirical (PM7), ab initio (HF/6-31G-D3), density functional theory (RI-

BP86/SV(P)), and standard (CCTBX), and the results are displayed in Figures 4 and 5.  

Figure 4 shows crystallographic R-factors: Rwork and Rfree, and the gap Rfree-Rwork 

respectively. Since we introduced 0.05 error into calculated Fobs, the expected Rwork for 

converged refinement is 0.05, which corresponds to the refined structure perfectly matching 

the structure of the known answer. It is desirable that Rfree stays close to Rwork, indicating less 

overfitting. From Figure 4 we observed CCTBX based refinements using standard restraints 

both Rwork and Rfree-Rwork gap are marginally higher across all perturbation sizes when 

compared to the quantum-based refinements. The lower Rwork and Rfree-Rwork gap the better 

the fit, therefore quantum-based refinements are outperforming standard refinement for this 

model system.  

In addition to R factors, the number of hydrogen bonds recovered from the perturbed 

starting points is also used to check the quality of the refined helix structure. The range of 

valid hydrogen bond lengths was considered to be between 1.7 and 2.2 Å; bonds outside this 

range were considered distorted. Hydrogen bond distances in the helix extracted from 1US0 

model range from 1.8 to 2.1 Å, see Figure 2. We can clearly see in Figure 5 that the 

refinements using the quantum-based restraints are recovering more of the hydrogen bonds 

than the refinements that employed standard restraints. Expectedly, the geometry of the helix 

cannot recover the perturbed hydrogen bonds during refinement with standard restraints, 

because the restraints do not contain relevant information. This can be understood as the 

refinement does not contain any explicit hydrogen bonding term, or even electrostatic 

interactions, which are dominant in hydrogen bonding.  
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4. Conclusions 

The Q|R project is focused on developing software and methods for refining bio-

macromolecules using chemical restraints derived from quantum mechanics. Q|R is currently 

under active development by researchers at Shanghai University together with Phenix 

developers. We have detailed our initial development implementation built on open source 

components, which we consider as a solid starting point. In addition, we have shown a 

validation example where the quantum-based refinement was able to recover more of the 

disrupted hydrogen-bonded network in a model system, providing a glimpse of what 

quantum refinement can provide in the future. 

Previous attempts to develop software for quantum-based refinement have been 

made. A Phenix plugin for their linear-scaling semi-empirical DivCon code was developed 

by QuantumBio (www.quantumbioinc.com). Prior to this, the ComQum code was developed 

to locally improve a crystal structure using hybrid QM/MM methods. The development of 

the Q|R code is different from these two codes for three main reasons. Firstly, we have a 

multi-disciplinary team of developers from bio-crystallography and quantum chemistry 

working together. Secondly, we see Q|R as being a stable bridge between the well-

established large quantum chemical code bases and the open source bio-crystallographic 

refinement tools available, e.g. in the CCTBX library. Therefore, we are strictly adhering to 

best practices in software development for long-term sustainability. Thirdly, we are focused 

on developing a high quality code base using an open source model, and are welcoming new 

contributors.     

It is well known that QM calculations require significant computational resources, 

and therefore issues related to scalability will need to be addressed in future work. Further 

challenges also await us, such as crystallographic symmetry and static disorder to name but a 

few. Solving these challenges will require significant teamwork, sustained over a long period 

of time, to overcome these scientific and technical challenges. Quantum refinement has the 

potential of becoming a standard technique for assisting structural biologists in obtaining 

high-quality structures.  
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Figure 1. A general model refinement workflow. 

 

  



 

 

15 

15 

 
 

 

 
Figure 2. Aldose reductase PDB structure (left) and extracted helix model (right) with 

hydrogen bond distances shown in Å. 
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Figure 3. Perturbed models with RMS deviation from the starting model of 0.3, 0.6, 0.9, 1.2 

and 1.5Å, overlaying 10 models per perturbation. The average percentage of conserved H-

bonds at each perturbation level is shown in brackets.  
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Figure 4. Average Rfree (top, left), Rwork (top, right) and Rfree-Rwork (bottom) as a function of 

perturbation strength (Å) for semi-empirical (PM7), ab initio (HF/6-31G-D3), density 

functional (RI-BP86/SV(P)) and standard refinement (CCTBX). Average (10 trials per 

perturbation) starting Rwork are 0.15, 0.27, 0.35, 0.44 and 0.55 correspondingly for each 

perturbation dose from 0.3 to 1.5 Å.  Random noise (5%) was added to Fobs, therefore R is 

expected to be around 0.05 which would correspond to the ideal structure. 

 

  



 

 

18 

18 

 

 
 

Figure 5. The average percentage of recovered H-bonds as a function of perturbation 

strength (Å) after refinement using either semi-empirical (PM7), ab initio (HF/6-31G-D3), 

density functional (RI-BP86/SV(P)), or standard refinement (CCTBX), and the percentage of 

hydrogen bonds that remained in the perturbed models.  

 

 
 

 

 




