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Abstract 

This study investigates whether people represent the 
beginnings and ends of events as fuzzy temporal frames and 
subsequently construct event temporal relations. The study 
adopted Allen’s (1984; 1991) seven logical categories of 
temporal relations. Constructing the seven relations often 
requires the accurate encoding and (or) retrieval of the 
beginnings and ends of events.  We used a recurrent neural 
network to simulate the performance of humans in 
representing event temporal relations.  The network was given 
fuzzy event inputs, generated using Zadeh (1975) fuzzy logic 
functions, and trained to judge the event temporal relations.  
We compared the performance of the recurrent neural 
network to that of humans in a task where they were asked to 
remember and reconstruct everyday temporal relations. The 
simulations showed that the recurrent neural network 
mimicked human judgments in the correct judgments, 
preferences toward particular temporal relations, and 
directions of error. The results support that event temporal 
relations are best thought of as fuzzy analogue representations 
in humans and the simulated network. 

Keywords: temporal representation; events. 
 

Introduction 
Our everyday life consists of various events we experience 
and enact. Consider a few examples: going to work, having 
dinner at a restaurant, and meeting with friends. Each of 
these events has a number of subevents. These subevents are 
related to each other in various dimensions such as by 
causal links. Most of all, events unfold in time and relate to 
each other temporally. In this paper, the term event refers to 
something that happens at a given place with a beginning 
and an end.  

Many researchers suggest that event temporal properties 
provide a basic framework for structured event 
representations (Allen, 1984; Barsalou, 1999; Freyd, 1987; 
Graesser, Kassler, Kreuz, & McLain-Allen, 1998). Events 
have time spans (duration) over which they take place. 
Events also have temporal locations relative to each other 
(temporal relations).  Most studies in psychology tend to 
treat events as following one another within the event 
hierarchy (e.g., no overlapping of events at the same level of 
a hierarchy). However, when two or more events are 
occurring, they can have overlaps in time. In addition, the 
overlap in time can vary. For some events, the beginnings 
are the same. For others, neither the beginnings nor the ends 

are the same. Event representations may have more dynamic 
event nodes linked to each other than the temporal links 
suggested by simple hierarchical structures (Schank, 1999).  

What temporal relations are necessary for constructing 
event representations? In artificial intelligence, Allen (1984; 
1991) proposed a representation that contains seven 
relational primitives. Figure 1 provides an illustration of 
Allen’s seven event temporal relations.  Each double-headed 
arrow in Figure 1 represents an event that occurs over some 
time interval, whereas each arrow-head represents either the 
beginning or the end of an event. The relation between each 
pair of events is described by one of seven predicates. These 
seven primitives have been used as basic temporal operators 
for automated planning and reasoning systems that reason 
with and make logical deductions about event temporal 
relations.  

 
Some events have crisp, clear cut temporal frames. 

Moving a coffee mug is an example, where the beginning, 
the end, and the temporal trajectory are not ambiguous. 
Some events have fuzzy temporal frames. Viewing sunset is 
an example, where the beginning and end are ambiguous, 
and the temporal trajectory may be on and off. The 
psychological frame of an event may or may not deviate 
from its physical frame. Allen’s representation captures 
some intuitive aspects of human temporal reasoning. For 
example, people tend to make relatively good estimations of 
event durations (Golding, Magliano, & Hemphill, 1992; 
Loftus, Schooler, Boone, & Kline, 1987), whereas people 
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Figure 1: Temporal Relations (Allen, 1991, pp.5). 
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tend not to be good at estimating the points of time when 
events take place (Golding et al., 1992; Linton, 1975). Such 
evidence suggests that an interval based representation may 
be a more natural way of relating events and drawing 
inferences about the temporal relations between events.  

When people perceive and remember event temporal 
relations, it appears that the beginnings and ends of the 
event psychological frame may deviate from the physical 
frame (Lu, 2004). Figure 2 depicts a psychological frame of 
event temporal properties. An Event Ei has a psychological 
frame of Ei (bi, ci, ei), where bi is the parameter that controls 
the region where the beginning point of an event Ei is likely 
to have occurred, ci is the (psychological, not objective) 
fuzzy centroid during which Event Ei occurs, and ei is the 
parameter that controls the region where the end point of 
event Ei is likely to have occurred. The perceived properties 
of an event interval may be fuzzy, that is, an approximation 
to the physical frame.  In the figure, probability of 1 
represents areas where there is complete certainty that the 
event occurred.  Probability 0 represents times when there is 
certainty that the event was not occurring.  Intermediate 
values represent fuzzy regions, where recall or perception 
are not completely sure of the occurrence or non-occurrence 
of the event. 

 
How might humans go about constructing event temporal 

relations?  Symbolic approaches in artificial intelligence, 
when representing temporal relations, typically assign 
temporal stamps to the events and build representational 
graphs. There are similar proposals in psychology on how 
event temporal properties are represented (Linton, 1975). 
However, such approaches have been challenged by the 
connectionist and embodiment theorists (Barsalou, 1999; 
Boroditsky, 2000; Elman, 1990; Lakoff & Johonson, 1999; 
Michon, 1993). Elman (1990) showed that temporal 
properties can be modeled in their implicit effects on 
processing rather than explicit spatial representations. 
Boroditsky (2000) showed that time is grounded and built 
up through experiential domains. In this paper, we propose 
that the event psychological temporal frames are fuzzy 
(inexact) and that event temporal relations get constructed 
via the dynamic processing of events and subsequent 

formation of temporal patterns of activity. More 
specifically, based on the proposal in Figure 2, the 
constructed temporal relation between  events will be 
influenced by the fuzzy, analogue nature of event temporal 
properties, where the beginnings and ends of the events are 
represented to be somewhere in the fuzzy regions.  

Elman (1990) showed that simple recurrent neural 
networks (SRNN) are ideal for modeling cognitive 
processes that depend on not only spatial but temporal 
properties.  Recurrent connections save and propagate past 
states of a network to the current context to allow for the 
recognition of patterns with temporal properties.  Therefore 
SRNN allow for the history of the inputs, and the dynamics 
of the system, to affect the pattern recognition. This paper 
investigates how humans construct temporal relations by 
comparing the performance of simple recurrent neural 
network models against the performance of human 
perception and memory of event temporal relations.  In the 
SRNN simulation presented, the networks received events 
with fuzzy beginnings and ends.  We compare the 
performance of the SRNN with human performance in a 
judgment task about event temporal relations.  In the human 
experiment, participants made judgments of complex 
everyday events such as two subevents of stirfry vegetables. 

If humans perceive event temporal properties in a fuzzy, 
analogue world, then the temporal representations may not 
preserve the detailed, accurate properties of the physical 
temporal frames. In the network simulation, the proportions 
of the correct judgments made by SRNN receiving fuzzy 
events should mimic the judgments made by humans 
remembering everyday events. In addition, the error patterns 
of SRNN should exhibit some of the same patterns as the 
human errors.  

SRNN Simulation 

Training 
In the network simulation, we trained a SRNN network to 
categorize event temporal relations.  The network received 
25 discrete time steps as inputs.  There were two inputs to 
the network, representing the certainty of the presence of 
two events, A and B.  The network had 7 outputs, one for 
each of the 7 possible temporal relations, and a number of 
hidden units between the input and output layers.  Networks 
were trained by creating a training set of 1000 examples 
(divided approximately equally between the 7 relations).  
For each given input relation, an output unit was trained to 
become active as soon as it recognizes its target temporal 
relation. 

Figure 3 presents an example of an OVERLAP temporal 
relation used in the training.  Here event A has an objective 
starting time of  t = 5 and objective end time of t = 10, 
whereas event B started at t = 7 and ended at t = 15.  In the 
network simulation uncertainty was added into the input 
representation.  This uncertainty, we believe, better models 
the situation of humans where event comprehension is often 
noisy and uncertain.  Therefore, instead of binary inputs of 0 

 
Figure 2 : Fuzzy event psychological frame. 
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or 1, the event inputs were real valued numbers ranging 
from 0 to 1 inclusive, where 1 indicates certainty that the 
event is occurring, 0 indicates certainty that the event is not 
occurring, and numbers in between indicate more 
intermediate certainty.   When training the network output, 
the unit representing the OVERLAP relation would be 
trained, for the event in Figure 3, to begin responding with a 
1 value at time step 19. 
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Results 
Number of Hidden Units We first determined an 
appropriate number of hidden units to use for the SRNN 
networks in our simulation.   The networks were trained 
with a number hidden units ranging from 20 to 100 in 
increments of 5, 10 networks for each hidden unit 
parameter.  We then used the performance of the 10 
networks on a separate set of test events to determine the 
number of hidden units that will be selected. 

The s-function (Equation 1) was used to generate the real-
valued certainty levels shown in Figure 3.  The s-function 
defines a membership, or certainty curve, over some time 
range x.  In the s-function, β serves as the inflection point, 
where the certainty measure is 0.5 (indicating neutrality in 
the perception of whether the event is occurring or not 
occurring), and α and γ define beginnings and ends of the 
event interval where their certainty ranges from 0 
(absolutely certain that an event is not occurring) to 1 
(absolutely certain that an event is occurring) respectively.  
In our simulation, if Event A had an actual begin time at t = 
5, we used this time step as the inflection point (β = 5 in the 
s-function). We calculated α and γ based on the length of 
the event in such a way that the complete certainty an event 
is occurring only happens at the midpoint of the actual 
event.  Since event A lasted from t = 5 to t = 10, we set γ to 
be at this midpoint, or 7.5.  The α parameter was then set to 
be symmetrical to γ from the inflection point, or 2.5 in this 
case.  The final call to the s-function for the beginning of 
Event A was therefore with the parameters S(x; 2.5, 5.0, 
7.5), which generated the certainty curve for the beginning 
of the Event A shown in Figure 3.   We used a similar 
method to generate the curve for the end of the event, but 
simply reversed the sense of the s-function so it generated a 
decreasing rather than increasing certainty curve over the 
end-point of the event.  The equation for generating the total 
certainty curve is known as the Π-function and is given in 
Equation 2.  

 

Figure 3:  Example fuzzy event input to SRNN. 
 

 
Figure 4: Network architecture used in relational judgments 

simulation. 
The best single performance occurred with number of 

hidden units set to 60, where an error of .027 is reached. The 
best average performance occurred with 75 hidden units, 
which was the number of units we used to generate the 
performance data for the simulation in the next section. 
 
Relational Judgments A trained Elman SRNN with 75 
hidden units, as shown in Figure 4, performed temporal 
relational judgments. The Elman SRNN feeds back a copy 
of the activation of the hidden units at a previous time step 
in order to achieve its recurrent connectivity.  In the 
simulation using this architecture, the probability of the 
network making correct judgments of event temporal 
relations was .54 (SD = .33) on average.  
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Table 1: Proportion of Network Judgments on Fuzzy Events. 

 Network Judgment 

Events in the World BEFORE MEET OVERLAP START DURING FINISH EQUAL 
BEFORE .738 .262 0 0 0 0 0 
MEET .132 .840 0 .028 0 0 0 
OVERLAP 0 .118 .176 .426 .067 .066 .147 
START .015 .008 .015 .649 .076 .046 .191 
DURING 0 0 .028 .448 .214 .083 .228 
FINISH .013 0 .084 .078 .019 .221 .584 
EQUAL 0 0 0 .033 0 0 .966 
 
Table 1 presents the confusion matrix of the network 
performance on the fuzzy test event set. The test set was a 
new set randomly generated and different from the training 
set used to train the network.  In Table 1, rows represent the 
actual events presented to the network, and columns hold 
data on how the network actually performed.  We report the 
proportion of the actual network judgments for a particular 
event temporal relation.  For example, of the MEET events 
tested, the network correctly made MEET judgments 84% 
of the time.  However, looking across the row, the network 
misjudged 13% of the MEET events as BEFORE events and 
made a further smaller error in judging 3% of the MEET 
events as START events. The network made the correct 
judgments on each of the seven temporal relations above 
chance level (assuming chance = 1 / 7 = .143), with the 
OVERLAP receiving the lowest proportion of correct 
judgments (.176). The network performed better on some 
event temporal relations (e.g., EQUAL) than others 
(OVERLAP). 
 
Discussion The network had the best performance when 
categorizing BEFORE, MEET, and EQUAL events. The 
performance on BEFORE and MEET events are well above 
average at .738 and .840 respectively.  The simulation does 
particularly well on EQUAL event relations achieving a 
.966 accuracy.  The network had the most problems with 
OVERLAP, DURING and FINISH events, doing slightly 
better but still not well on START events.   

The excellent performance on EQUAL events is 
intuitively not surprising.  In an EQUAL relation, both 
events last exactly the same number of time steps and both 
start and end at the same time step.  All these features may 
allow for fairly simple networks to come up with solutions 
to recognize EQUAL. 

BEFORE and MEET appear to be fairly similar. To 
discriminate between the two, the network has to develop 
some recognition of whether a temporal gap occurred 
between the two events or not, and this memory may need 
to be held for many time steps. Of course, the larger the gap, 
the easier it might be to recognize and remember the gap.  
The confusion may increase if the temporal gap between 
events is smaller. Not surprisingly, the network had some 

confusions between BEFORE and MEET at times. Overall, 
the network performed well in judging BEFORE and  

MEET, which suggests that the network could form 
distinct activation patterns for BEFORE and MEET 
respectively.  

The relations with temporal overlap (e.g., DURING, 
OVERLAP) and mixed synchronous/asynchronous end 
points (FINISH, START) seem to be the most difficult for 
the SRNN.  These four relations appear to form a third 
distinct group, and can be easily confused with one another 
by the network. 

Remembering Everyday Event Time 
      
   The dynamic mental representations of events may 
include the transitional states between events. For example, 
Freyd (1987) showed that people tend to project the next 
state of an event even if a picture they view does not contain 
that anticipated subsequent state. What tasks in everyday 
life have closer approximation to the fuzziness entailed in 
the simulated event relation judgment task? It is not hard to 
imagine that people routinely need to construct and 
reconstruct something like, “what should I do while I am 
doing this?” or “what should I do next?” The temporal 
properties of everyday events are likely to be fuzzy, for 
example, as a result of the intrinsic fuzzy nature of the 
everyday events and memory retention loss.   

In the current experiment, participants were presented two 
events that were part of a routinely enacted activity and that 
were classified theoretically as having one of Allen’s seven 
temporal relations. Participants read the events in a context, 
where the events occur, such as “imagine someone boarding 
a plane.”, and made judgments on event temporal relations. 
Consider the example stimulus below. 

Context: Imagine someone boarding a plane. 
Events:  She went through airport security screening. 
    Her carry-on bags were X-rayed. 
The two events in the above example have the DURING 

relation. That is, the event of X-raying carry-on bags 
typically occurs during the process of a person going 
through security check. If humans represent the event 
temporal frame in fuzzy regions, the probability of correctly 
judging the event temporal relations would not be high. 
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Table 2: Proportion of human judgments on everyday events. 

 Human Judgment 

Events in the World BEFORE MEET OVERLAP START DURING FINISH EQUAL 
BEFORE .415 .340 .142 .048 .007 .013 .035 
MEET .165 .471 .230 .046 .018 .022 .048 
OVERLAP .092 .254 .370 .097 .017 .013 .158 
START .134 .199 .188 .156 .011 .017 .296 
DURING .129 .167 .245 .085 .033 .028 .314 
FINISH .103 .245 .287 .096 .017 .050 .204 
EQUAL .024 .044 .068 .061 .024 .020 .759 

Method 
Participants There were 68 college students at The 
University of Memphis who participated for course credit. 
 
Materials A sample of events from everyday activities were 
collected. To ensure generality, the events were chosen from 
a wide range of everyday activities that college students 
routinely experience and perform. Three raters were trained 
to understand Allen’s scheme, and made judgments on how 
each two events were related in time separately. The 
materials used in the experiment were the items agreed upon 
by all three judges. There were 8 test items for each of the 7 
temporal relations in Figure 1. Therefore, there were 56 test 
items in total.  

 
Procedure Participants were told that they would make 
judgments concerning the temporal relations of everyday 
events. Participants were shown a diagram similar to Figure 
1, except that the word labels (e.g., BEFORE) were 
stripped. Experimenter did not launch experiment until 
participants understood all 7 relations.  

Pairs of events along with their contexts were presented to 
participants one at a time on the computer screen. The two 
events were listed as two sentences in two rows separately. 
Participants were told that the presentation order of the two 
events was random and did not necessarily correspond to 
the actual order in their daily activities. Participants were 
instructed to read the two events and recall how they 
normally performed the two events in the activity they read 
and reconstructed. They proceeded to the next screen once 
they felt they comprehended the events and reconstructed 
the timing for enacting the events. The two events and the 
seven-choice diagram were presented on the screen. 
Participants made their judgments about the temporal 
relation between the two events at the end of the trial.  

Results  
On average, the proportion of the correct judgments in 
Experiment 2 was .322 (SD = .261). The proportional error 
rates of the seven relations were the following: BEFORE 
(.415), MEET (.471), OVERLAP (.370), START (.156), 

DURING (.033), FINISH (.050), and EQUAL (.759). The 
confusion matrix for the human experiments is shown in 
Table 2.  Table 2 shows that humans clearly had preferences 
toward EQUAL events and that humans frequently mistook 
OVERLAP, START, DURING, and FINISH events as 
EQUAL events. 

Overall the network performance was significantly 
correlated with the human performance (including both 
correct judgments and errors), r = .67, p < .05. Two sets of 
correlational analysis were performed on the correct human 
judgments and correct network judgments. The Spearman 
correlation showed that there were significant correlations 
of the order of human judgments in the experiment with that 
of the network judgments, r = .79, p < .05. The Pearson 
correlations showed that there were one way significant 
correlations between the proportions of correct human 
judgments and the proportions of the network judgments, r 
= .25, p < .05.  

Discussion  
When humans recalled and reconstructed events based on 
their routine activities, they appear to have remembered 
more details of the transitional temporal properties. For 
example, participants made correct judgments on four out of 
seven event temporal relations significantly above the 
chance level, and made correct judgments on START events 
no lower than chance level (.14). DURING and FINISH 
were the only event temporal relations that rarely got 
constructed.  

Compared with the network simulation, humans’ recall 
and reconstructions of event temporal relations had lower 
proportions of correct judgments on average (with a mean of 
.32 versus .54). Such differences were partly due to the 
extremely low recall of DURING (.033) and FINISH (.050) 
in human judgments. The proportions of correct human 
judgments on BEFORE, MEET and EQUAL events were 
also lower than the proportions of correct network 
judgments. 

 Overall, the network receiving fuzzy input 
representations mimicked human judgments in everyday 
events to a larger extent. The order in which seven temporal 
relations received correct judgments is not the only index. 
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For example, in both cases, OVERLAP, START, DURING, 
and FINISH events were frequently mistaken as EQUAL 
events. In addition, the pattern of confusions between 
BEFORE and MEET were similar as well. There were two 
exceptions worth noting. Unlike the network receiving 
fuzzy events, humans made more correct judgments on 
OVERLAP and more false alarms on OVERLAP events. 
Furthermore, humans did not make as many correct 
judgments and false alarm on START as the network did.  

General Discussion 
The SRNN networks and humans appear to have many of 
the same strengths and weaknesses when performing event 
temporal relation judgment tasks. Some event temporal 
relations are very simple to represent and recognize, 
whereas others are much more difficult. Humans and the 
simulated networks consistently demonstrated three distinct 
preferences in representing event temporal relations and 
tended to mistake difficult temporal relations as one of the 
three preferences. The results suggested that the event 
temporal properties tend to be represented in a fuzzy 
analogue manner and the beginning and the ends of events 
are not crystal clear to observers.  

While BEFORE and MEET were confused with one 
another at times, in general both the networks and humans 
tended to do well in recognizing these and distinguishing 
between the two.  EQUAL appeared to be particularly easy 
as a temporal pattern that can be uniquely captured when it 
occurred, both by the simulations and humans.  Some 
confusions can occur between START and/or FINISH with 
EQUAL, but these appear to reflect the difficulty of 
representing the START/FINISH relation. Events that have 
asynchronous beginning and/or endings appear to be 
particularly difficult for both SRNN networks and humans 
to distinguish between.  These relations, OVERLAP, 
START, FINISH and DURING, are prone to be confused 
with one another and are difficult to recognize with any high 
degree of accuracy.  

The network performances also differed from humans in 
some ways. When humans made judgments on connected, 
everyday events that are part of an activity, humans failed to 
outperform the network. The errors were distributed more 
broadly. The OVERLAP relations received both higher hit 
rate and false alarms when humans judged everyday events, 
whereas the OVERALP relations received poor judgments 
when the network received fuzzy events. This may suggest 
that humans are able to construct a pattern that could 
represent asynchronous events. Such results may be due to 
some differences in the simulated task and the experiment 
described. The everyday events are embedded in an 
overarching event structure. There is possibly vagueness in 
linguistic expressions of everyday events. In future studies, 
it will be necessary to construct simulated events that have 
events embedded in overarching higher order constituents 
(e.g., schema) and systematically investigate the 
representational changes and potential loss of temporal 
properties in constructing the event temporal relations. 

However, the task needs to be sufficiently different from 
some temporal reasoning task. For example, event X occurs 
before event Y, and event Z and event Y occur 
simultaneously. When does event X occur in relation to 
event Z?  

The results reported in this paper suggested that temporal 
representations of events are richer than previously 
assumed. Events can occur one after another, immediately 
follow one another, overlap with one another, and occur 
simultaneously. The event temporal frames are often 
represented in fuzzy regions.  
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