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Abstract

This dissertation aims to investigate three distinct problems. Firstly, it aims to enhance lung cancer

diagnosis and survival predictions through the implementation of deep learning techniques and CT

imaging. Secondly, it delves into understanding the differences in distortion patterns present in

adversarial images generated by various attack methods. Lastly, it explores the application of the

Minimum Description Length (MDL) principle for optimal threshold determination in microbiome

community detection.

Supervised by Professor Thomas Lee and Professor James Sharpnack, Chapter 2 proposes the

utilization of convolutional neural networks to model the intricate relationship between the risk of

lung cancer and the morphology of the lungs depicted in CT images. Introducing a mini-batched

loss extending the Cox proportional hazards model, this approach accommodates the non-convexity

induced by neural networks, enabling training on large datasets. The combination of mini-batched

loss and binary cross-entropy facilitates the prediction of both lung cancer occurrence and the risk

of mortality. Results from simulations and real data experiments highlight the potential of this

method to advance lung cancer diagnosis and treatment.

Supervised by Professor Thomas Lee, Chapter 3 discusses the application of the MDL principle

in microbiome data analysis, particularly focusing on community detection methods. Addressing

the challenge of subjective threshold selection in correlation-based techniques, MDL is employed to

identify the optimal community structure by minimizing the subjectivity in choosing a cut-off for

correlation strength. The chapter provides a detailed derivation of the MDL principle, discusses

its consistency in threshold selection, and validates its effectiveness through simulations. A real

data experiment involving microbiome data from the Great Lakes offers practical insights into the

application of MDL in a real-world context.

Supervised by Professor Thomas Lee, Professor Yao Li, and Professor Cho-Jui Hsieh, Chapter

4 explores the vulnerability of deep neural networks to adversarial examples. Focusing on three

common attack families – gradient-based, score-based, and decision-based – the research aims to

recognize distinct types of adversarial examples. By identifying the information possessed by at-

tackers, effective defense strategies can be developed. The study demonstrates that adversarial
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images from different attack families can be successfully identified with a simple model. Experi-

ments on CIFAR10 and Tiny ImageNet reveal differences in distortion patterns between various

attack types for both L2 and L∞ norms.
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CHAPTER 1

Overview

This dissertation comprises three distinct studies, each contributing to the advancement of medical

diagnosis, deep learning robustness, and microbiome data analysis.

1.1. Enhancing Lung Cancer Diagnosis and Survival Prediction

Lung cancer is a major cause of cancer-related deaths, and early diagnosis and treatment are crucial

for improving patients’ survival outcomes. Our research introduces a novel approach employing

convolutional neural networks (CNNs) to model the intricate relationship between lung cancer risk

and lung morphology, as revealed in CT images. We apply a mini-batched loss that extends the

Cox proportional hazards model to handle the non-convexity induced by neural networks, which

also enables the training of large data sets. Additionally, we propose to combine mini-batched

loss and binary cross-entropy to predict both lung cancer occurrence and the risk of mortality.

Our simulations and experiments on the National Lung Screening Trial dataset demonstrate the

effectiveness of our approach in improving lung cancer diagnosis and prognosis, showcasing high

AUC and C-index scores.

1.2. Statistically Consistent Microbiome Community Detection

Microbiome data obtained through high-throughput sequencing technologies contains information

about the microbial community composition, diversity, and relative abundance within a given en-

vironment. In this study, we discuss the application of the Minimum Description Length (MDL)

principle in microbiome data analysis, specifically focusing on community detection methods. It

addresses the challenge of subjective threshold selection in correlation-based techniques for micro-

biome community detection. The MDL principle is used to identify the optimal community struc-

ture by minimizing the subjective nature of choosing a cut-off to determine correlation strength.

We provide a detailed derivation of the MDL principle and discuss its consistency in choosing

thresholds for community detection methods. Additionally, the effectiveness of MDL in selecting
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optimal thresholds is validated through simulations. A real data experiment involving microbiome

data from the Great Lakes is also presented to offer practical insights into the application of the

MDL principle in a real-world context.

1.3. Understanding Distortion Patterns of Adversarial Attacks

Deep neural networks have achieved remarkable performance in many areas, including image-related

classification tasks. However, various studies have shown that they are vulnerable to adversarial

examples – images carefully crafted to fool well-trained deep neural networks by introducing im-

perceptible perturbations to the original images. To better understand the inherent characteristics

of adversarial attacks, we study the features of three common attack families: gradient-based,

score-based, and decision-based. Our primary objective is to recognize distinct types of adversarial

examples, as identifying the type of information possessed by the attacker can aid in developing

effective defense strategies. In this study, we demonstrate that with a simple model, adversarial

images from different attack families can be successfully identified. To further investigate the rea-

son behind the observations, we conduct carefully designed experiments to study the perturbation

patterns of different attacks. Experimental results on CIFAR10 and Tiny ImageNet validate the

differences in distortion patterns between various attack types for both L2 and L∞ norm.
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CHAPTER 2

Enhancing Lung Cancer Diagnosis and Survival Prediction

2.1. Introduction

Lung cancer is one of the most common causes of cancer-related deaths for both men and women

worldwide. Early diagnosis and treatment are crucial for improving patients’ survival rates [Alberg

and Samet, 2003,Spiro and Silvestri, 2005]. Survival analysis, a branch of statistics that has

been widely used in public health research, provides valuable insights into the impact of different

conditions on the survival time of patients; e.g., [Ishaq et al., 2021, Lee et al., 2019]. In

the context of lung cancer, early detection through screening methods helps identify the tumor in

its early stage and applying survival analysis to lung cancer patients can aid in early detection

and ultimately improve patients’ survival outcomes. Meanwhile, in recent years, computer-aided

diagnosis has gained significant attention, particularly in medical image data analysis [Chen et al.,

2021,Du et al., 2022,Li et al., 2018,Mielke et al., 2009]. Deep learning techniques have

been increasingly applied to analyze various kinds of medical images due to their effectiveness, for

example, [Hou et al., 2016,Gao et al., 2019,Wang et al., 2019,Ardila et al., 2019,Liu

et al., 2020,Zhang et al., 2020,Zhong et al., 2023].

Despite the promising results obtained by using these techniques, the accessibility of high-quality

medical images poses a challenge in applying these techniques. For example, Hou et al. [Hou et al.,

2016] required whole slide tissue images obtained from invasive procedures, Gao et al. [Gao et al.,

2019] required multiple longitudinal CT images captured over time, and Wang et al. [Wang et al.,

2019] required both demographic information and chest CT images.

In addition, most of these studies focused on patients already diagnosed, neglecting those who

may be prospective candidates undergoing regular CT screening for early detection. Furthermore,

there are few works that have utilized survival analysis, which limits the statistical efficiency of

these methods. Considering the significant impact of early detection on patients’ survival chances

[Blandin Knight et al., 2017], there is an urgent need to develop a new approach that can
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enhance both the early detection and survival prediction for individuals currently diagnosed and

those potentially at risk of lung cancer, while considering the accessibility of the medical image

data.

This study aims to utilize deep learning techniques to analyze the potential lung cancer patients’

survival hazards only based on their most recent CT images. Inspired by DeepSurv [Katzman

et al., 2018], which uses demographic information, and DeepConvSurv [Zhu et al., 2016], which

uses 2D pathological images, we adopt 3D convolutional neural networks (CNNs) to model the

non-linear relationship between the risk of lung cancer and the lungs’ morphology revealed in CT

images. A mini-batched loss involving time-to-event and censoring status is applied for handling

the non-convexity caused by the neural networks and allowing the training of large data sets

at the same time. In addition, we propose to apply the combination of binary cross-entropy

and the mini-batched loss to simultaneously predict whether a potential patient has lung cancer

and the risk of dying from it. The promising empirical properties of the proposed method are

illustrated by simulation experiments and the application to the National Lung Screening Trial

(NLST) dataset [Team, 2011].

Our approach has several distinct features: (i) it relates patients’ survival with 3D medical image

classification; (ii) it considers both existing and potential patients, which helps in the early detection

of the disease; and (iii) it requires only one raw CT scan, eliminating the need for additional

clinical or longitudinal data or human pathologists’ annotation, which makes our approach easy to

implement and more accessible than methods that require extensive data collection.

The rest of this chaper is organized as follows: Section 2.2 introduces related works in computer-

aided diagnosis and basic knowledge about survival data and the Cox proportional hazards model.

Section 2.3 derives the mini-batched loss function of the extended Cox model and introduces the

idea of the two-task method and corresponding metrics. Section 2.4 presents the simulation study of

the mini-batched loss based on the MNIST dataset and the simulation of the two-task method based

on the Nodule-CIFAR dataset. Section 2.5 presents the real data experiment with the two-task

method, which includes CT images from potential lung cancer patients.
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2.2. Background

2.2.1. Related Work. The Cox proportional hazards model [Cox, 1972] was first proposed

to explore the relationship between the survival chance of a patient and a group of explanatory

variables through the concept of hazard rate, see (2.1) below. Later, Breslow [Breslow, 1972]

and Cox [Cox, 1975] discussed the estimation of model parameters, particularly for the baseline

hazard function. Despite it being proposed more than 50 years ago, the Cox model continues to be

one of the most widely used models in medical research for investigating patients’ survival chances.

The use of medical images to aid the diagnosis and treatment of diseases has become increasingly

popular. Much research has been conducted on the use of deep learning techniques to analyze

medical images as a computer-aided diagnosis. For example, Hou et al. [Hou et al., 2016] studied

the feature of whole slide tissue image patches with a CNN. Wang et al. [Wang et al., 2019]

detected lung cancer with CT images and clinical demographics. Ardila et al. [Ardila et al.,

2019] proposed a CNN-based method to predict lung cancer risk. Gao et al. [Gao et al., 2019]

performed research in detecting lung cancer with long short-term models. Liu et al. [Liu et al.,

2020] studied detecting nodules from CT images for lung cancer with adversarial attacks. However,

some of these images or data may not be readily available or collected. These methods required

whole slide tissue images from an invasive procedure [Hou et al., 2016], or longitudinal medical

images captured over time [Gao et al., 2019,Ardila et al., 2019], or demographic information

in addition to medical images [Wang et al., 2019]. For more details, refer to [Cao et al.,

2020, Singh et al., 2020] for a comprehensive review of deep learning techniques applied to

medical images.

While these imaging methods have produced excellent results for the tasks that they were designed

for, they did not establish a correlation with patients’ survival. Katzman et al. [Katzman et al.,

2018], for the first time, developed the DeepSurv model to study the non-linear relationship between

survival hazards and clinical features. It replaced the linear part β⊺x in the Cox proportional

hazards model (2.1) with multi-layer perceptrons f(x). However, this model has a limitation in

that it can only process clinical information. To address this limitation, DeepConvSurv was then

proposed by Zhu et al. to predict patients’ survival directly from the 2D region of interests (ROI)

of pathological images, using CNNs for f(x).
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In this study, we aim to expand previous research by developing a model that classifies lung cancer

occurrence from potential lung cancer patients with only one 3D CT scan and further predicts the

patient’s relative hazards of dying from lung cancer. Our approach integrates 3D CNNs, binary

classification, and the Cox proportional hazards model. By combining these techniques, we aim to

establish a direct correlation between potential patients’ 3D medical images and patients’ survival,

which could have significant implications for early lung cancer diagnosis.

2.2.2. Survival Data. Survival analysis typically considers time-to-event data. Let T ∗ =

min(T,C) be the observed time, where T denotes the event time and C denotes the censored

time. Here, T is the time from the beginning of the observation to an event, usually death, disease

occurrence, or other experience of interest, which can be unobserved if censoring occurs first. The

censored time C is the time after which nothing is observed about the object. In addition to

observing T ∗, we also have the event indicator: δi = 1{Ti≤Ci} that tells us if the i-th observation Ti

is censored or not. In our study, T ∗ is the observed time from the beginning of the study to either

observed death or censoring. If death is observed, T ∗ = T and δ = 1, if censoring is observed,

T ∗ = C and δ = 0. The objective is to model the event distribution of T ,

F (t) = P (T ≤ t) =

∫ t

0
f(u)du,

where the density function f(t) is

f(t) = lim
∆t→0

P (t < T ≤ t+∆t)

∆t
.

In survival analysis, it is common to alternatively study the survival function S(t), or the hazard

function λ(t), or the cumulative hazard function Λ(t), defined respectively as

S(t) = P (T > t) =

∫ ∞

t
f(u)du,

λ(t) = lim
∆t→0

P (t < T ≤ t+∆t|T > t)

∆t
,

and

Λ(t) =

∫ t

0
λ(u)du.
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Their relationships can be expressed as

λ(t) =
f(t)

S(t)
,

and

S(t) = exp (−Λ(t)),

so it’s equivalent to studying either of them. In this study, we focus on the density function f(t)

and the corresponding likelihood function.

Given a set of right-censored samples {T ∗
i , δi}ni=1, the likelihood function L is:

L =

n∏
i=1

f(T ∗
i )

δiS(T ∗
i )

1−δi

=

n∏
i=1

λ(T ∗
i )

δiS(T ∗
i ),

which can be further used for parameter estimation.

2.2.3. Cox Proportional Hazards Model and DeepSurv. The Cox proportional hazards

model is one of the most used models for exploring the relationship between the hazards λ(t|x) and

the explanatory covariates x. In particular, it assumes proportional hazards and linear contribution

of the covariates to the log relative hazards function:

(2.1) λ(t|x) = λ0(t) exp(β
⊺x),

where t represents time, λ0(t) is the baseline hazard function (an infinite dimensional parameter),

x is a set of covariates, and β is the corresponding coefficient that measures the effect of the

covariates. Cox [Cox, 1972,Cox, 1975] proposed to use the partial likelihood for estimating β

with the advantage of circumventing λ0(t). Let R(t) = {i : T ∗
i > t} be the risk set at time t; i.e.,

the set of all individuals who are ”at risk” for failure at time t. The partial likelihood is the product

of the conditional probabilities of the observed individuals being chosen from the risk set to fail:

L(β)partial =
n∏

i=1

[
exp(β⊺xi)∑

j∈R(T ∗
i )

exp(β⊺xj)

]δi
,

where R(T ∗
i ) denotes the set of individuals that are “at risk” for failure at time T ∗

i in the sample.
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The estimate β̂ for β can be obtained by minimizing the averaged negative partial log-likelihood

L(β), which is convex:

L(β) = − 1

n

n∑
i=1

δi

[
β⊺xi − log

∑
j∈R(T ∗

i )

exp(β⊺xj)

]
.

The cumulative baseline hazard function can be estimated with the Breslow estimator:

Λ̂0(t;β) =
∑

j /∈R(t)

∆Λ̂0(T
∗
j )

=
∑

j /∈R(t)

δj∑
k∈R(T ∗

j )

exp(β⊺xk)
.

The DeepSurv method can be seen as a non-linear version of the Cox model. It replaces the linear

log relative hazards term β⊺x in the Cox model with a non-linear multi-layer perceptron (MLP)

f(x;θ):

λ(t|x) = λ0(t) exp
(
f(x;θ)

)
,

where f(x;θ) is a fully-connected MLP parameterized by θ.

2.3. Methodology

2.3.1. Extended Cox Model with Convolution Neural Network. In this study, we

modeled patients’ hazard function of a certain disease based on 3D medical images. We cannot

directly apply the DeepSurv or DeepConvSurv model because MLP or 2D CNN is deficient for 3D

image data. Therefore, we extended the DeepSurv model by replacing MLP with a 3D convolution

neural network f(x;Θ), which predicted the effects of a patient’s morphological features x on their

hazard rate and parameterized by the weights of the network Θ:

λ(t|x) = λ0(t) exp
(
f(x;Θ)

)
.

2.3.2. Loss Function Derivation. Let

Λ(t) = Λ0(t) exp
(
f(x;Θ)

)
and

S(t) = exp
(
−Λ0(t) exp

(
f(x;Θ)

))
,
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so the full likelihood function is

L(Λ0,Θ) =

n∏
i=1

{[
λ0(T

∗
i ) exp

(
f(xi;Θ)

)]δi
×

exp
(
−Λ0(T

∗
i ) exp

(
f(xi;Θ)

))}
.

Moreover, the negative log-likelihood becomes

L(Λ0,Θ) = − 1

n

n∑
i=1

{
δi

[
f(xi;Θ) + log λ0(T

∗
i )
]

− Λ0(T
∗
i ) exp

(
f(xi;Θ)

)}
,

(2.2)

which depends on both Λ0 and parameters Θ in f .

In practice, the prior knowledge of Λ0 is not available. To overcome this issue, we adopted the

non-parametric Breslow estimator, which treated the baseline as a piece-wise constant between

event failure times:

Λ̂0(t;Θ) =
∑

j /∈R(t)

∆Λ̂0(T
∗
j )

=
∑

j /∈R(t)

δj∑
k∈R(T ∗

j )

exp
(
f(xk;Θ)

) .
Plugged it into the negative log-likelihood Eq.2.2, we derived the partial likelihood without λ0(t):

Lfb(Θ) = − 1

n

∑
i

δi

[
f(xi;Θ)− log

∑
j∈R(T ∗

i )

exp
(
f(xj ;Θ)

)]
.(2.3)

We refer to this as the full-batched loss in this study. In fact, the procedure of getting partial

likelihood of the Cox proportional model can lead us to the equivalent loss function. Given the

model λ(t) = λ0(t) exp
(
f(x;Θ)

)
, the partial likelihood now becomes

(2.4) L(Θ)partial =
n∏

i=1

[
exp
(
f(xi;Θ)

)∑
j∈R(T ∗

i )

exp
(
f(xj ;Θ)

)]δi ,
The full-batched loss function can be obtained by taking the average of the negative log of the

partial likelihood.

9



Even though the full-batched loss is convex in f , due to the non-convexity of the neural network,

the full-batched loss is non-convex. Also, the full-batched loss involves complicated sums over the

risk set, which can be as large as the full data set, making it computationally expensive.

To deal with the non-convexity and make it scalable to large datasets, we modified the full-batched

loss by first subsampling the data and collecting them to a batch Ω, and then restricting the risk

set R(T ∗
i ) only to contain the subsampled data in the current batch:

(2.5) L̃mb(Θ) = − 1

|Ω|
∑
i∈Ω

δi

[
f(xi;Θ)− log

∑
j

exp
(
f(xj ;Θ)

)]

with j ∈ R(T ∗
i ) ∩ Ω. We refer to this expression as the mini-batched loss in this study. If we set

the batch as the full data set, then the mini-batched loss is equivalent to the full-batched loss.

The batch size can be as small as 2. By restricting data to a randomly sampled batch, we avoided

massive calculations. The mini-batched loss is unlike the minibatch gradient descent with i.i.d. data

with respect to the full-batched loss since taking the expectation over random minibatch samples

does not give the averaged negative log-likelihood.

As an aside, we can see that the partial likelihood in (2.4) is the likelihood of observing the

given order of events, which in this case is the order of individuals’ deaths. By evaluating the

partial likelihood, we are in effect ignoring any information of the timing of the events beyond

just their ordering. This objective and the mini-batch gradient descent described above appear in

recommendation system applications where user preferences are expressed via the relative ordering

of click-through events. The resulting method is called listwise ranking in the recommendation

system literature [Cao et al., 2007,Wu et al., 2018].

2.3.3. Two-task Method for Disease Diagnosis and Survival Hazard Prediction.

Lung cancer is one of the most common cancers. Computed Tomography (CT) images, which

include a series of axial image slices that visualize the tissues and nodules within the lung area,

can be extremely useful for diagnosis purposes. When given a patient’s pulmonary CT images, one

objective is to diagnose whether the patient has lung cancer or not, i.e., lung cancer classification.

In addition, we hope to predict the severity of cancer by estimating the patient’s risk of dying from

lung cancer, i.e., survival hazard prediction. Traditionally, to fulfill the two tasks, one option is

to train separate models with different losses, respectively: binary cross entropy for lung cancer

10



classification and mini-batched loss for survival hazard prediction. However, it raises concerns

about divergent predictions, which may result in predicting a case without lung cancer but with a

high risk of mortality of dying from lung cancer.

The link between lung cancer diagnosis and survival prediction is established through the compre-

hensive analysis of imaging studies. Extracted information from CT images, such as the presence

of lung nodules and detailed characteristics (including size, shape, location, and tumor spread), is

not only instrumental in confirming the presence of cancer, but also provides critical details that

inform prognosis, guide treatment decisions, and influence survival predictions for individual pa-

tients. The higher the probability of having lung cancer inferred from CT images, the more likely

it is that the cancer exhibits features associated with an advanced or aggressive nature. These

features contribute to an increased risk of mortality, forming the basis for the correlation between

the probability of having lung cancer and survival prediction. The integration of imaging data into

a holistic approach enhances the precision and personalized nature of lung cancer care.

Recognizing the clinical need to integrate these tasks, we present a novel method capable of simul-

taneously performing lung cancer classification and survival hazard prediction using the same input

– a two-task neural net framework, as illustrated in Fig. 2.1. The output layer, which predicted the

log relative hazards f(x;Θ), was also used for lung cancer classification with sigmoid activation.

This choice is intuitive as the function f represents hazard, implying that a higher hazard is indica-

tive of a higher probability of having lung cancer. Instead of having separate losses, we defined the

loss as the sum of binary cross entropy and the batched loss. Let yi be the indicator of having lung

cancer, xi be the image input to the deep neural network, and f(xi;Θ) be the neural network

output for log relative hazards, P (xi;Θ) = sigmoid(f
(
xi;Θ)

)
is predicted cancer probability:

L(Θ) =− 1

|Ω|
∑
i∈Ω

{
δi

[
f(xi;Θ)− log

∑
j

exp
(
f(xj ;Θ)

)]
+
[
yi logP (xi;Θ) + (1− yi) log

(
1− P (xi;Θ)

)]}
,

(2.6)

with j ∈ R(T ∗
i ) ∩ Ω.

One advantage of this approach is consolidating the goals of cancer classification and survival haz-

ard prediction into a singular model, motivated by the clinical reality that the CT image shows

information that is critical for both cancer diagnosis and survival prediction. Training a unified
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Figure 2.1. Two-task convolution neural network illustration.

model concurrently for both objectives with shared neural net parameters promises a more com-

prehensive understanding and superior predictive performance, while conventional approaches of

training separate models with binary cross entropy for cancer classification and mini-batched loss

for hazard prediction focus exclusively on one aspect. This two-task method provides a holistic

view, bridging the diagnostic and prognostic aspects of lung cancer, and offers a more clinically rel-

evant perspective for personalized patient care decisions. Another advantage lies in the dual losses,

which enable more comprehensive supervision of the neural net’s fit, thereby preventing overfitting

during training.

2.3.4. Evaluation Metrics. For the cancer classification task, we used AUC (area under the

ROC curve) to evaluate the model performance. In the hazard prediction task, we employed the

concordance index (C-index) for evaluation. C-index, introduced by Harrell et al. [Harrell et al.,

1982], is a goodness of fit measure for models that produce risk scores for censored data. In

our context, it estimates the probability that, for any random pair of individuals, the predicted

survival times would exhibit the same ordering as their actual survival times. This is equivalent

to determining whether, for any random pair of patients, the predicted hazard has the reverse

order in comparison to their actual survival times, as patients with higher predicted survival times

correspond to lower predicted hazards. The C-index in our context is defined by the following
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formula:

C =
# concordant pairs

# concordant pairs + # disconcordant pairs

= P{T̂i > T̂j | Ti > Tj , δj = 1}

≈ P{f̂i < f̂j | Ti > Tj , δj = 1}(2.7)

=

∑
i ̸=j 1{f̂i < f̂j}1{Ti > Tj}δj∑

i ̸=j 1{Ti > Tj}δj
,

where approximation (2.7) follows from the argument that a patient with a higher hazard score

should have a shorter survival time.

When C-index = 1, it corresponds to the scenario where the order of the predictions is the same

as that of the true survival times, while C-index = 0.5 represents a random prediction. Typically,

a model with a C-index above 0.7 can be regarded as a good model.

2.4. Simulation Studies

This section reports results from three simulation experiments. Both Simulations A and B focused

on the extended Cox model and its prediction of the log relative hazards function f . Simulation A

was under the setting where there were event cases only, while Simulation B involved both censored

and event cases. Both simulations used the same images from the MNIST dataset and the same

generated survival time, but different censoring statuses. We compared the performance of the

oracle loss, full-batched loss, and mini-batched loss under the settings of Simulations A and B.

Simulation C was designed for the two-task framework, involving both the disease occurrence clas-

sification and the survival hazard prediction with the log relative hazards function. We generated

a new dataset from the CIFAR-10 dataset, called Nodule-CIFAR. We compared the loss function

performance of the combination of binary cross-entropy and full-batched/mini-batched in terms of

AUC and C-index.

2.4.1. Simulations A and B.

2.4.1.1. MNIST Dataset and Time-to-event Data. We used the MNIST image dataset and

generated artificial survival times for digits in our simulations. The MNIST dataset is an image

dataset of handwritten digits from 0 to 9; see [Deng, 2012]. We selected 2 digits from the MNIST

dataset as input images of the neural network with different patterns, w.l.o.g., we selected zeros
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Table 2.1. Convolution Neural Net Architecture for Simulations A & B

Layer Type Number of Kernels Kernel Size Output Size
Convolution 32 5× 5 28× 28× 32
Max Pooling 2× 2, stride = 2 14× 14× 32
Convolution 64 5× 5 14× 14× 64
Max Pooling 2× 2, stride = 2 7× 7× 64

Flatten 3136
Fully Connected 1024
Fully Connected 128
Fully Connected 1

and ones. We generated the survival time for each digit using an exponential distribution with

different constant hazards λj = 1 × exp(ϕj), j = 0, 1, where the baseline hazard λ0(t) was set to

1, and the true log relative hazards was ϕj . In Simulation A, all cases were labeled as events. In

Simulation B, we randomly labeled half of the individuals who lived beyond the median as censored

cases within each digit. The distribution of the test set is shown in Figure 2.2.

2.4.1.2. Architecture. Simulations A and B were trained under the same feed-forward convolu-

tion neural network, which consisted of a stack of convolution and dense layers. The net structure

is listed in Table 2.1.

2.4.1.3. Results of Simulations A and B. We introduced the oracle loss (see equation (2.8) and

(2.9)). It leverages the prior knowledge of the baseline hazard λ0(t) when compared with the full-

batched loss (2.3) and mini-batched loss (2.5), i. In our simulations, w.l.o.g., we set λ0(t) = 1

when generating survival time, so that Λ0(t) = t. Plugging the baseline hazard into the averaged

negative full log-likelihood (2.2) provided us the oracle loss, for which f can be trained:

(2.8) Lorc(Θ) = − 1

n

n∑
i=1

[
δif(xi;Θ)− exp

(
f(xi;Θ)

)
T ∗
i

]
.

Due to the non-convexity of neural network f , we used the stochastic gradient descent (SGD)

method to minimize the non-convex loss function. Correspondingly, the batched version is provided

below.

(2.9) L̃orc(Θ) = − 1

|Ω|
∑
i∈Ω

[
δif(xi;Θ)− exp

(
f(xi;Θ)

)
T ∗
i

]
,

where Ω is the selected batch for a training iteration. We will later refer to this as the oracle loss.
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Figure 2.2. (a): Survival time distributions for the two digits in Simulation A,
without the censoring mechanism; (b): survival time distributions for the two digits
in Simulation B, with the censoring mechanism. The censored cases are labeled in
orange, which overlaps the upper half of the event cases.

We also calculated the true loss as the baseline for benchmark comparisons. When both the baseline

hazard λ0(t) and the log relative hazards ϕj were available, we could directly plug them into the

averaged negative full log-likelihood (2.2), which gave the true loss.
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Table 2.2. Simulations A & B: C-indexes under three losses

Oracle Full-batched Mini-batched
A 0.7268 0.7165 0.7189

B w/ censored (C1) 0.7184 0.7146 0.7166
B w/o censored (C2) 0.6845 0.6770 0.6790

Results of Simulations A and B are reported in Figure 2.3 and Table 2.2. In both simulations, the

oracle loss settled to the true loss, the oracle loss was less than the batched losses, both batched

losses settled to the same value, and the mini-batched loss settled faster than the full-batched loss.

This met our expectations since the oracle loss had access to the base rate. In addition, due to

the extra information, the C-index trained by the oracle loss is expected to be larger, which was

validated in both Simulations A and B, see Table 2.2. In Simulation A, though the C-index curve

fluctuated after loss converges, it achieved a high value for both full batched loss and mini-batched

loss, showing good rank prediction on the hazards when there is no censoring. In Simulation B, two

C-indexes were calculated: C1 involved both censored and event case, while C2 involved event cases

only. Here, C1 exceeds 0.7, which means good rank predictions for pairs across censored and event

groups and pairs within the event group. Moreover, the faster convergence and small difference

between Corc and Cmb indicated the feasibility of mini-batched loss for training parameters without

prior information of λ0(t).

Figure 2.3. Different losses by epoch for (a) Simulation A (b) and Simulation B.

2.4.2. Simulation C: Nodule-CIFAR Simulation with Classification and Hazard

Prediction.
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2.4.2.1. Nodule-CIFAR Dataset. We introduced a new dataset, called Nodule-CIFAR, which

was generated from the CIFAR-10 dataset [Krizhevsky et al., 2009]. Nodule-CIFAR was inspired

by Tumor-CIFAR from Gao et al. [Gao et al., 2019] and simulated benign and malignant nodules

on the CIFAR-10 images. In reality, benign nodules typically exhibit smaller sizes with regular

round shapes and are non-cancerous, while malignant nodules tend to be larger in size and exhibit

irregular shapes. Healthy individuals possess benign nodules, but patients may have both benign

and malignant nodules. To simulate this, we introduced black and white dots onto CIFAR-10 images

to simulate benign nodules, while dummy nodules were represented as white blobs to simulate

malignant nodules.

There were 10,000 samples in the training set and 1,000 samples in the testing set. We randomly

assigned images to non-cancerous and cancerous groups with equal probability, so that cancer

prevalence was 50% in both training and test sets. Among the cancerous cases, we randomly

labeled 50% as censored, and the remaining were labeled as events, the events of failure of dying

from cancer. For the non-cancerous cases, they would not die of cancer, so all of them were

labeled as censored. Next, we incorporated simulated nodules, either benign or malignant, onto

CIFAR-10 images based on their assigned group. The non-cancer images yet featuring benign

nodules, displayed numerous small black and white dots distributed across the image to simulate

benign nodules. In contrast, the images in the cancer groups had two additional big white patches

randomly located in the images, mimicking malignant nodules. Within the cancer group, the

censored had relatively smaller white patches compared to the event, because the censored group

had not yet reached a deadly stage. The original image categories from the CIFAR-10 dataset were

irrelevant in this context; the distinctions between cancer and non-cancer were determined by the

presence of simulated white patches. Moreover, within the cancer group, the censoring status was

solely associated with the sizes of the simulated white patches. Figure 2.4 is an example of images

in the Nodule-CIFAR dataset.

Time-to-event data corresponding to Nodule-CIFAR images were generated based on the largest

size of simulated nodules in each image. The recorded time followed an exponential distribution

with a parameter of λ = 1× exp(ϕ), where ϕ ∝ size, the largest size of simulated nodules in each

image. This was consistent with our expectation that the larger the nodule size, the larger the

hazards, and the smaller the survival time.
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Figure 2.4. A Nodule-CIFAR example: Non-cancer cases only have small black
and white dots scattered over the images, simulating benign nodules. In addition
to benign nodules, cancer cases have 2 larger white patches to simulate malignant
nodules.

Figure 2.5 shows the distribution of nodule size and survival time for each group. The non-cancer

group had smaller nodules on average compared to the cancer group. Within the cancer group,

those event cases (eventually died of cancer in simulation) had larger malignant nodules. The time-

to-event for the non-cancer group was larger than the cancer group. Within the cancer group, the

time-to-event of censored cases was larger than the event cases.

2.4.2.2. Architecture. Like Simulations A and B, Simulation C was trained under a feed-forward

convolution neural network, which consisted of a stack of convolution and dense layers. The output

was used for both disease occurrence classification and hazard prediction evaluation. See Table 2.3

for the structure of the neural network.

2.4.2.3. Results of Simulation C. The loss function for the two-task network was the sum of the

binary cross entropy and the full-batched/mini-batched loss. To compare the model performance

trained with different losses under the same network architecture, see Figure 2.6 for the epoch-wise

losses, AUC, and C-index, and Table 2.4 for their stabilized values after the losses converge. As
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Figure 2.5. (a) Nodule size distribution by group. The non-cancer group has
smaller nodules on average when compared with the cancer group. Within the
cancer group, event cases (those who eventually die of cancer in simulation) have
larger malignant nodules. (b) Survival time distribution by group in Nodule-CIFAR.
The time-to-event for the non-cancer group is larger than the cancer group. Within
the cancer group, the time-to-event of censored is larger than that of the event cases.

Table 2.3. Convolution Neural Net Architecture for Simulation C

Layer Type Number of Kernels Kernel Size Output Size
Convolution 32 5× 5 28× 28× 32
Max Pooling 2× 2, stride = 2 14× 14× 32
Convolution 64 5× 5 14× 14× 64
Max Pooling 2× 2, stride = 2 7× 7× 64

Flatten 3136
Fully Connected 100
Fully Connected 10
Fully Connected 1

shown in Figure 2.6a, the one with mini-batched loss (blue) converged much faster than the one with

full-batched loss (red); it reached a minimum after a few epochs and stabilized. Figure 2.6b showed

both losses outperformed the baseline AUC 50% significantly, which was achieved by predicting all

cases as non-cancer, and the model trained with mini-batched loss achieved a slightly higher AUC.
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Table 2.4. Simulation C: AUC and C-index under two losses

Full-batched Mini-batched
AUC 0.770 0.783
C1 0.661 0.677
C2 0.779 0.785

As for the hazard prediction evaluation, we calculated two C-indexes C1 and C2, where C1 was

for all cases (cancer and non-cancer, Figure 2.6c) and C2 was for the cancer group (Figure 2.6d).

Both losses achieved competitive C1 and C2 values, especially within the cancer group, where C1

exceeded 0.75 for both losses. Comparing Figure 2.6c and Figure 2.6d, we noticed the C-index

decreased to around 0.65 when it involved the non-cancer group, which was caused by the trade-off

between the classification and hazard prediction tasks. Overall, the sum of binary cross entropy and

the mini-batched loss performed better in both classification and hazard prediction by achieving

higher stabilized AUC and C-index values within fewer epochs.

2.5. Real Data Experiment

2.5.1. NLST Dataset. The National Lung Screening Trial (NLST) collected medical images

and survival information from potential lung cancer patients during 2002-2009, see [Team, 2011].

It was a randomized controlled trial to determine whether screening for lung cancer with low-dose

helical computed tomography (CT) reduced mortality from lung cancer in high-risk individuals

relative to screening with chest radiography (X-ray). Participants were randomly assigned to two

study arms in equal proportions. One arm received low-dose helical CT, while the other received

single-view chest radiography.

CT images are a set of axial slice images of the human body. They can reveal both normal and

abnormal tissues inside the organs. The abnormal tissues of the lungs are called nodules. Nodules

usually are spherical but may have other shapes. Each sub-type of nodules has a different cancer

probability. Hence, doctors take into consideration all nodules when diagnosing lung diseases with

CT images.

In our experiment, we chose 991 patients who developed cancer during the trial period from a

pool of 15,000 patients who received CT treatment. Subsequently, we collected the most recent

CT images from these 991 patients confirmed to have lung cancer, among whom 427 passed away

due to lung cancer. For the classification task, we similarly gathered the most recent CT images
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(a) Test Loss by Epoch. (b) Test AUC by Epoch.

(c) Test C1-index by Epoch. (d) Test C2-index by Epoch.

Figure 2.6. Result of Simulation C. (a): Test loss by epoch; (b): Test AUC by
epoch; (c): Test C1-index of all cases by epoch; (d): Test C2-index of the cancer
group by epoch. The sum of binary cross-entropy and mini-batched loss performed
better in both classification and hazard prediction by achieving higher stabilized
AUC, C1, and C2 within fewer epochs.

from an equal number of potential patients who did not have lung cancer. Among the total of

1882 patients, those with confirmed lung cancer cases were assigned a label of yi = 1, while all

others were labeled as yi = 0. In addition, those who experienced lung cancer-related mortality

were categorized as events of failure (non-censored) with δi = 1, whereas the rest were considered

censored with δi = 0. Each patient’s most recent CT examination was utilized as the input image

denoted as X. Furthermore, we collected patients’ survival time T ∗ by subtracting their latest

exam date from the date they were last known alive.
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2.5.2. Preprocessing. In terms of preprocessing the CT images from NLST datasets, we

utilized the open-source code [Zuidhof, 2017] to segment the lungs from the CT images and

applied the nodule detection method described in [Liao et al., 2019] to obtain the top 5 suspicious

nodule crops as input. For completeness, we provide a brief summary of their method below.

2.5.2.1. Lung Segmentation. The CT images are a set of cross-sectional images of the body.

Preprocessing for lung segmentation was required before they were ready for the CNN. First, the

CT scans should be resampled to 1× 1× 1mm3 isotropic resolution, then the resampled CT scans

were preprocessed with the following main steps:

i. Mask extraction: The first step was to extract the lungs’ mask by converting the image

to Hounsfield unit (HU) and binarizing the image with the lungs’ HU values. HU is a

standard quantitative scale for describing radiodensity. Each organ has a specific HU

range, and the range remains the same for different people. Here, we used a −320 HU

value as the threshold for the lungs. The largest connected component located in the

center of the image was extracted as the lungs’ mask.

ii. Convex hull computation: The second step was to compute the convex hull of the lungs’

mask. Because some nodules might be connected to the outer lung wall and might not be

covered by the mask obtained in the previous step, a preferred approach was to obtain the

convex hull of the mask. However, it could include other unrelated tissues if one directly

computes the convex hull of the mask. To overcome this issue, we first divided the mask

into left and right lung masks, then computed their respective convex hulls, and lastly

merged them to form the final, whole lungs’ convex hull.

iii. Lung segmentation: We obtained a segmentation of the lungs by first multiplying the CT

image with the mask and then filling the masked region with tissue luminance.

After completing these three steps, 3D segmented lungs can be extracted. An example is shown in

Figure 2.7.

2.5.2.2. Nodule Detection. The sizes of the segmented lung images varied for each patient, which

went against the requirement for identical image sizes in CNNs to work properly. To resolve this,

the segmented images were resampled to the same resolution and fixed slice distance. Although the

size of each cropped image might differ due to varying lung sizes among patients, zero padding was

used if the image size is less than 224× 224× 224× 1; otherwise, the central 224-width cubes were
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Figure 2.7. An example for 3D segmented lungs from CT images.

extracted. An attempt was made to directly input this preprocessed 224-cube into a 3D network

for lung cancer classification and hazard prediction. Still, it was computationally time-consuming,

and the results were unsatisfactory due to the large size of 3D images and potential memory issues.

To address the issue, we followed Liao et al. ’s nodule detection process [Liao et al., 2019]. The

nodule detector took in the 3D segmented lung CT image and output predicted nodule proposals

with their center coordinates, radius, and confidence. The five most suspicious lung proposals were

selected as input X for our network, as Liao et al. determined that k = 5 was sufficient for recall

when different top k proposals with the highest confidence were selected for inference [Liao et al.,

2019]. For each selected proposal, a 96× 96× 96× 1 patch centered on the proposed nodule was

cropped, resulting in an input size of 5×96×96×96×1, where one channel represented the number

of channels.

2.5.3. Network Structure. The top five regions with the highest nodule confidence were

considered for cancer occurrence classification and hazard prediction tasks for each patient. The

network had two phases: feature extraction from each lung crop using convolutional layers, and
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Figure 2.8. Network structure with 2 phases: convolution and integration.

feature combination through the integration, as shown in Figure 2.8. The final output f was

evaluated with AUC and C-index metrics.

2.5.3.1. Convolution Phase. We had three different convolution structures to extract features

from the top five nodule crops: Alex3D, VGG163D, and Res-net18. Each took a nodule proposal

as input and output a 128-D feature. We also adopted the pre-trained cancer classifier from Liao

et al. [Liao et al., 2019] as a performance benchmark.

2.5.3.2. 3D Alex Net. Table 2.5 lists layers in Alex 3D. The network was based on the classic

2D Alex Net architecture with modifications specifically tailored for the NLST dataset.

Table 2.5. 3D Alex Net architecture for lung CT images

Layer Type Number of Kernels Kernel Size Output Size
Convolution 96 3× 3× 3 48× 48× 48× 96
Max Pooling 3× 3× 3 23× 23× 23× 96
Convolution 256 5× 5× 5 23× 23× 23× 256
Max Pooling 3× 3× 3 11× 11× 11× 256
Convolution 384 3× 3× 3 9× 9× 9× 384
Convolution 256 3× 3× 3 9× 9× 9× 256
Max Pooling 3× 3× 3 4× 4× 4× 256

Flatten 16384
Fully Connected 4096
Fully Connected 128

2.5.3.3. 3D VGG16. Table 2.6 lists the layers in 3D VGG16 developed from 2D VGG16 [Si-

monyan and Zisserman, 2014], with modifications specifically tailored for the NLST dataset.
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Table 2.6. 3D VGG Net architecture for lung CT images

Layer Type Number of Kernels Kernel Size Output Size
Convolution 64 3× 3× 3 96× 96× 96× 64
Convolution 64 3× 3× 3 96× 96× 96× 64
Max Pooling 3× 3× 3 48× 48× 48× 64
Convolution 128 3× 3× 3 48× 48× 48× 128
Convolution 128 3× 3× 3 48× 48× 48× 128
Max Pooling 3× 3× 3 24× 24× 24× 128
Convolution 256 3× 3× 3 24× 24× 24× 256
Convolution 256 3× 3× 3 24× 24× 24× 256
Convolution 256 3× 3× 3 24× 24× 24× 256
Max Pooling 3× 3× 3 12× 12× 12× 256
Convolution 512 3× 3× 3 12× 12× 12× 512
Convolution 512 3× 3× 3 12× 12× 12× 512
Convolution 512 3× 3× 3 12× 12× 12× 512
Max Pooling 3× 3× 3 6× 6× 6× 512
Convolution 512 3× 3× 3 6× 6× 6× 512
Convolution 512 3× 3× 3 6× 6× 6× 512
Convolution 512 3× 3× 3 6× 6× 6× 512
Max Pooling 3× 3× 3 3× 3× 3× 512

Flatten 13824
Fully Connected 4096
Fully Connected 4096
Fully Connected 128

Table 2.7. 3D ResNet-18 architecture for lung CT images

Layer Name 3D Resnet-18 Output Size
Conv1 7× 7× 7,64,stride 2 48× 48× 48× 64

Max pooling 3× 3× 3, stride 2 24× 24× 24× 64

Res-block1

[
3× 3× 3, 64
3× 3× 3, 64

]
×2 24× 24× 24× 64

Res-block2

[
3× 3× 3, 128
3× 3× 3, 128

]
×2 12× 12× 12× 128

Res-block3

[
3× 3× 3, 256
3× 3× 3, 256

]
×2 6× 6× 6× 256

Res-block4

[
3× 3× 3, 512
3× 3× 3, 512

]
×2 3× 3× 3× 512

Average-pool 512
Fully Connected 128

2.5.3.4. 3D ResNet-18. Table 2.7 lists the layers in 3D ResNet-18 developed from a 2D residual

network [He et al., 2016]. Downsampling was performed by Res-block2 1, Res-block3 1, and

Res-block4 1 with a stride of 2.
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Figure 2.9. Using pre-trained classifier to get features from top five suspicious
crops

2.5.3.5. Pretrained Cancer Classifier. We adopted the pre-trained cancer classifier from Liao

et al. [Liao et al., 2019] as a performance benchmark. Liao et al. [Liao et al., 2019] proposes

a 3D deep neural network based on U-net for cancer probability reference, which has 2 modules:

a nodule detection module and a cancer classification module. Because of the limited data size,

the classification module (called N-net) integrates the pre-trained detection module as part of the

classifier. We followed Liao et al. ’s process to obtain the features from image patches: For each

selected crop, we fed it to the N-net and obtained the last convolutional layer of the nodule classifier,

whose size is 24×24×24×128. The central 2×2×2 voxels of each proposal feature were extracted

and max-pooled, resulting in a 128-D feature, as shown in Figure 2.9.

2.5.3.6. Integration Phase. After the convolution phase, the network had five 128D features

for each patient. To obtain a single output from these multiple nodule features, three integration

methods were explored. The best-performing integration method is shown in Table 2.8, and its

graphical representation can be found in Figure 2.10. The features from the top five nodules

were individually input into a fully connected layer with 32 hidden units. The maximum value of

each feature was considered for the final result after concatenating into a single 5D feature, and a

following fully connected layer generated the final output f .

2.5.4. Results. The AUC of the lung cancer occurrence classification and the C-index of the

hazard prediction are listed in Table 2.9 for the pair-wise combination of four convolution methods

and one integration method. The C-index was calculated based on both cancer and non-cancer
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Table 2.8. Integration Phase Structure

Layer Type Output Size
Convolutional Phase Output 128× 5

Fully Connected 32× 5
Max Pool 1× 5

Fully Connected 1

Figure 2.10. Graphical representation of feature integration process.

groups, as the non-cancer group in the NLST data set were individuals who had the potential

risk of developing cancer. Compared to the pre-trained network of [Liao et al., 2019], all three

architectures achieved higher AUC and C-index values, indicating better lung cancer classification

and survival prediction.

Table 2.9. Results of NLST Experiment

AUC C-index
3D Alex 0.674 0.601
3D Res18 0.690 0.601
3D VGG16 0.680 0.608
Pretrained 0.550 0.519

2.6. Discussion

The results of our study suggest that the combination of the binary cross-entropy and mini batched

loss, obtained by extending the Cox model with CNN, holds the potential to improve the diagnosis

and treatment of lung cancer. Our approach demonstrates a high AUC in lung cancer classification

and a high C-index in survival prediction, using CT images from the NLST dataset. One strength of
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our approach is the use of the mini-batched loss, which effectively handles the non-convexity induced

by neural networks and enables the training of large datasets. Additionally, the combination of the

mini-batched loss with binary cross-entropy allows for both lung cancer classification and survival

hazard prediction. Furthermore, this approach has the potential to be generalized with any type

of medical images beyond CT scans. A model can be trained with medical images along with

corresponding survival time information to predict the disease occurrence and risk of mortality.
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CHAPTER 3

Statistically Consistent Microbiome Community Detection

3.1. Introduction

Microbiome data, generated through high-throughput sequencing technologies, serves as a powerful

tool for unraveling the intricacies of microbial communities across diverse environments. Various

community detection methods have been proposed, broadly categorized into correlation-based,

conditional dependence/graphical models, and network-based methods tailored for trans-kingdom

analysis. Among these, correlation-based techniques, which involve grouping samples based on sim-

ilarities in microbial composition, emerge as the most popular. Nevertheless, they have challenges

such as correlation selection in high-dimensional sparse compositional microbiome data and the

subjective threshold’s impact on predicted outputs.

This chapter introduces the Minimum Description Length (MDL) principle, a concept from infor-

mation theory and statistics, to address the challenge of subjective threshold. Using the Sparse

Correlation Network Investigation for Compositional Data (SCNIC) method as an example, we

discuss the consistency of MDL principle in identifying the optimal community structure and we

validate it through simulation. Moreover, we perform simulations to validate its effectiveness in

selecting optimal threshold across both non-sparse and sparse settings.

The structure of this chapter is as follows: Section 3.2 provides background information on micro-

biome data and its community detection methods, while Section 3.3 introduces the MDL principle,

deriving it under a stochastic block model and discussing its consistency and application in choos-

ing thresholds for community detection methods. Section 3.4 presents simulations to illustrate the

consistency and effectiveness of MDL in determining the optimal threshold. Finally, Section 3.5 in-

troduces a real data experiment involving microbiome data from Lake Michigan and Lake Superior,

offering practical insights into the application of the MDL principle in a real-world context.
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3.2. Background

3.2.1. Characteristics of Microbiome Data: High-Dimensional, Sparse, and Com-

positional Nature. Microbiome data, often obtained through high-throughput sequencing tech-

nologies, contains information about the microbiota (community of microorganisms) and their

“theatre of activity” (structural elements, metabolites/signal molecules, and the surrounding en-

vironmental conditions) from diverse habitats [Marchesi and Ravel, 2015,Berg et al., 2020].

Many relevant omic approaches have been proposed for microbiome studies, including metage-

nomics, metatranscriptomics, and metabolomics. Each type of microbiome data provides unique

insights into the structure and function of microbial communities. Researchers often use a combi-

nation of these approaches to gain a comprehensive understanding of the microbiome in different

environments, including the human body, soil, water, and other ecosystems. [Aguiar-Pulido et al.,

2016].

Clustered sequences obtained from high-throughput sequencing technologies, commonly known

as operational taxonomic units or OTUs, serve as a practical representation of microbial taxa

and enable the analysis and characterization of microbial diversity within a sample. Typically,

microbiome data is structured into large matrices, where the columns represent samples and the

rows represent the counts of OTUs. These tables are often referred to as OTU tables.

Microbiome data is often characterized as high-dimensional and sparse due to several inherent

features of microbial communities. Firstly, the high dimensionality arises from the great diversity

of microbial taxa in a given environment. Microbial communities can consist of thousands of

different species, and each species contributes to the overall dimensionality of the dataset. The

sparsity of microbiome data can be attributed to the rarity of many microbial taxa and their

uneven distribution across samples. In a typical microbial community, only a subset of taxa is

abundant, while the majority are present in low abundance or are rare. This results in a large

number of zero counts or low counts for many taxa across the samples, creating a sparse OTU

table where most entries are zero [Weiss et al., 2017].

Furthermore, microbiome data is inherently compositional due to limitations in current sequencing

technologies, which provide information on the relative abundance of microbial taxa within a sample

rather than absolute counts. In other words, the data represents the proportion or percentage of

each taxon relative to the total microbial community in a given sample. This compositional aspect
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is characterized by the fact that the sum of the relative abundances across all taxa in a sample is

constant [Gloor et al., 2017]. Acknowledging this compositionality is crucial for accurate analysis

and interpretation of microbiome data, as traditional statistical methods may yield misleading

results when applied to such datasets [Tsilimigras and Fodor, 2016].

3.2.2. Community Detection for Microbiome Data. Microbes interact with each other

and form intricate structures, the microbial communities (also known as modules, clusters and

groups). The insights gained from microbial communities help to understand their emergence

and progression, with significant implications extending to diverse areas such as ecosystem man-

agement, disease prevention, and biotechnological advancements. Examples include studying soil

bacterial community dynamics in developing ecosystems [Banning et al., 2011], studying the

characteristics of bacterial communities and the crucial shift from oral health to plaque-related

diseases [Sbordone and Bortolaia, 2003], as well as research on advancing drug development

while considering the effects of antibiotics on microbial community structure in the natural envi-

ronment [Caracciolo et al., 2015].

Therefore, community detection becomes essential, which also introduces challenges for the com-

prehensive examination and interpretation of the structure and dynamics of microbial communities

within microbiome data [Faust, 2021]. Consequently, many methods have been proposed, gener-

ally categorized into three categories: correlation-based methods, conditional dependence/graphical

models and network-based methods for trans-kingdom analysis [Matchado et al., 2021]. Among

these, correlation-based techniques are the most popular, which involve grouping samples based

on similarities in microbial composition, as exemplified by [Fang et al., 2015,Faust and Raes,

2016]. One notable advantage of correlation-based techniques lies in their simplicity and inter-

pretability. These methods provide a quantitative measure of the strength and direction of rela-

tionships between microbial taxa, facilitating a clear understanding of the community structure.

Additionally, correlation analyses often serve as a valuable initial step for exploratory analyses,

generating hypotheses about potential ecological interactions within the microbial community.

However, it’s crucial to acknowledge the limitations of correlation-based methods. Firstly, while

theoretically, any similarity metric can be utilized to compute pairwise correlations and detect cor-

relation networks, applying these methods to microbiome data is challenging due to the substantial

size of the microbiome dataset and the even greater complexity of its interactions, along with the
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compositional and sparse nature inherent in microbiome data. Research has indicated considerable

variability in sensitivity and precision among traditional correlation detection strategies in micro-

bial datasets [Weiss et al., 2016]. SparCC (Sparse Correlations for Compositional Data) was

proposed as a solution for estimating correlation values from compositional data, particularly in

the context of microbiome studies [Friedman and Alm, 2012,Watts et al., 2019]. It uses the

log-ratio transformed data to get linear Pearson correlations and helps mitigate issues associated

with compositional data, where changes in the abundance of one taxon inevitably affect the abun-

dance of others. SparCC was shown to be better suited to avoid spurious correlations compared

to Pearson and Spearman correlations [Weiss et al., 2016], and has therefore been adopted by

algorithms such as SCNIC [Shaffer et al., 2023].

In addition, correlation-based methods have another drawback, the subjective nature of choosing

a cut-off to determine correlation strength. This subjective decision can significantly influence

the detected microbial communities. A more stringent cut-off may reveal only the most robust

relationships, while a less stringent one may highlight a broader spectrum of associations. This

subjectivity introduces potential bias, and careful consideration of the sensitivity of results to cut-off

selection is necessary.

3.3. Methodology

3.3.1. MDL expression, MDL Derivation, MDL consistency Proof.

3.3.1.1. What is MDL Principle. The Minimum Description Length (MDL) principle used in

information theory and statistics for model selection is to choose the model that provides the most

concise and efficient representation of the data. It views a model as consisting of two parts: one

part that describes the structure of the model (model complexity), and another part that encodes

the specific data given the model (model fit). When comparing different models, MDL seeks the

model that minimizes the total length of the description, considering both the complexity of the

model and how well it fits the data. In the context of community detection methods applying

to microbiome data, choosing the cut-off correlation threshold that minimize the MDL principle

helps to identify a community structure that balances the complexity of the model and accurate

representation, helping to address the challenge of a subjective cutoff in the analysis.
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3.3.1.2. MDL Derivation. In this section we derive the MDL principle for Stochastic Block

Model (SBM) [Holland et al., 1983]. According to MDL principle, the “best” model is the one

that achieves optimal lossless compression of the data, in other words, it is capable of storing the

data in the hardware memory with the shortest code length. We adopt the “two-part” version of

MDL, where the initial part represents the code length of encoding the model, and the subsequent

part represents the code length of encoding the residuals that are unexplained by the model.

Denoting the code length of z as CL(z), the code length CL(data) of the observed data can be

divided into two parts, the model F and its corresponding residuals ϵ̂, expressed as follows:

CL(data) = CL(F) + CL(ϵ̂|F).

Consider an undirected acyclic graph with N nodes, represented by a binary adjacency matrix A

with dimension N × N . Aij = 1 indicates the presence of an edge connecting node i and node

j, while Aij = 0 indicates disconnection. The graph follows the property of being undirected,

implying Aij = Aji, ∀i, j. Additionally, acyclic property indicates there is no self-loop in the net-

works, meaning Aii = 0,∀i. In this scenario, the presence of edges follows a Bernoulli distribution

independently, that is,

Aij ∼ Bernoulli(Ωij),∀i ̸= j.

Should there be communities among these N nodes, the Stochastic Block Model can be employed

to model Ωij . In this model, the nodes are divided into Q blocks (also referred to as modules,

clusters or communities), where Q is unknown, and the edges between nodes are generated based

on probabilities determined by the community assignments, the linkage probabilities: let c =

(c1, c2, ..., cP ) be the community assignment indicator, where ci ∈ {1, 2, ..., Q}; specifically, ci =

q means that node i is in block q. The linkage probabilities depend solely on the community

assignment is defined as follows:

(3.1) Ωij |(ci = q, cj = l) = πql.

The probability parameter set is represented by π = {πql, 1 ≤ q ≤ l ≤ Q} and total number of

parameters in π is Q(Q+ 1)/2. The entire parameter set of SBM is denoted by ψ = (c,π).
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Given community assignments, estimate the link probabilities π between communities by maximiz-

ing the likelihood of the observed network. However, community assignments can be challenging

to determine under the Stochastic Block Model.

Consider a network following the suggested model 3.1. In this case, F = ψ. Consequently CL(F)

can be expressed as

CL(F) = CL(ψ).

For a specified class assignment c, define nq(c) = #{i|ci = q} as the number of nodes in class q.

Subsequently, the quantity of potential pairs within/between each block can be represented as

(3.2) Nql(c) =


nqnl q ̸= l

nq(nq − 1)/2 q = l

Consider a sequence of networks that can be denoted by a sequence of binary adjacency matrices

{Ak|k = 1, ...,K} of the same fixed N ×N size, the explicit expression of the MDL criterion is

(3.3)

MDL(ψ;A) = (N +1) log2Q+
∑
q≤l

1

2
log2(Nql(c))−

K∑
k=1

∑
i<j

[
Aij log2 Ω̂ij +(1−Aij) log2(1− Ω̂ij)

]
,

where N denotes the number of nodes, Q denotes the number of communities, and Ω̂ij , represented

by Equation 3.1, is obtained as the maximum likelihood estimate (MLE) of linkage probability given

the community assignment. The derivation details of the MDL can be explored further below.

When assuming the observed network follows 3.1, F = ψ. Consequently CL(F) can be expressed

as

CL(F) = CL(ψ).

The parameter set ψ comprises both community assignments c, and the parameters influencing the

link probabilities π. Therefore,

CL(ψ) = CL(c) + CL(π|c).

Encoding an integer I without a known upper bound requires approximately log2 I bits, while with

a known upper bound Iu, it takes approximately log2(Iu) bits [Rissanen, 1998]. For partitioning
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a node set of size N into non-overlapping communities, the code length CL(c) is given by

CL(c) = log2Q+N log2Q,

where the first term encodes the number of communities and the second term encodes the commu-

nity assignment for each node, and Q represents the number of communities.

The code length needed to encode a maximum likelihood estimate of a parameter, derived from n

observations, is shown to be 1
2 log2(n) [Rissanen, 1998]. In this case,

CL(π|c) =
∑
q≤l

1

2
log2(Nql(c)).

Combining the above components, we obtain

CL(F) = (N + 1) log2Q+
∑
q≤l

1

2
log2(Nql(c)).

Next, we compute the latter term CL(ϵ̂|F), determined by the negative log-likelihood of the fitted

model, [Rissanen, 1998]. Under the assumption of SBM that Aij follows a Bernoulli distribution,

we have

CL(ϵ̂|F) = −
K∑
k=1

∑
i<j

[
Aij log2 Ω̂ij + (1−Aij) log2(1− Ω̂ij)

]
,

where Ωij is determined by Equation 3.1 given F .

Combining the code length components, the overall code length is

CL(”data”) = CL(F) + CL(ϵ̂|F)

= (N + 1) log2Q+
∑
q≤l

1

2
log2(Nql(c))−

K∑
k=1

∑
i<j

[
Aij log2 Ω̂ij + (1−Aij) log2(1− Ω̂ij)

]
.

This completes the derivation of the MDL principle in Equation 3.3.

3.3.1.3. MDL-based estimate and its consistency. Consider K homogeneous networks with N

nodes, represented by binary adjacency matrix {Ak|k = 1, ...,K} with dimension N ×N . Assume

the same presence of communities among all N nodes for each k, which can be modeled by SBM

presented in the previous section with parameter ψ = (c,π). We introduce some notations and

assumptions first.
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The number of the observed within/between each block is denoted as

Ek,ql(c) =


∑

ci=q

∑
cj=lAk,ij q ̸= l∑

ci=q

∑
cj=lAk,ij/2 q = l

,

then for each 1 ≤ k ≤ K, the log-likelihood function for ψ = (c,π) is

lk((c, π);Ak) =
∑
i<j

[
Ak,ij log2Ωk,ij + (1−Ak,ij) log2(1− Ωk,ij)

]
=
∑
q≤l

[
Ek,ql(c) log2 πql + (Nql(c)− Ek,ql(c)) log2(1− πql)

]
.

Recall that ψ = (c,π), and M is the set of all possible ψ, then the log-likelihood for the K

observations can be written as:

LK(ψ;A) =

K∑
k=1

lk((c, π);Ak).

Then vector ψ = (c,π) can specify a model for this sequence of networks, and the MDL can be

written as

MDL(ψ;A) = (N + 1) log2Q+
∑
q≤l

1

2
log2(Nql(c))− LK(ψ;A).(3.4)

We propose to estimate parameter ψ = (c,π) as the minimizer of observed MDL, which is statis-

tically consistent with the true parameter ψ0 = (c0,π0) when K → ∞.

Assumption 1(v) : For any fixed c, there exists a ϵ > 0 such that,

sup
π∈Π(c)

E | lk ((c,π) ;Ak) |v+ϵ< ∞,

sup
π∈Π(c)

E | l′k ((c,π) ;Ak) |v+ϵ< ∞,

sup
π∈Π(c)

E | l′′k ((c,π) ;Ak) |v+ϵ< ∞.

Note that Assumption 1(1) refer to Assumption 1 with v = 1.

Assumption 2 : For any fixed c,
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sup
π∈Π(c)

| 1

K
LK((c,π;A)− L ((c,π)) | a.s.−−→ 0,

sup
π∈Π(c)

| 1

K
L′
K((c,π;A)− L′ ((c,π)) | a.s.−−→ 0,

sup
π∈Π(c)

| 1

K
L′′
K((c,π;A)− L′′ ((c,π)) | a.s.−−→ 0,

where

L ((c,π)) := E (lk ((c,π) ;Ak)) ,

L′ ((c,π)) := E
(
l′k ((c,π) ;Ak)

)
,

L′′ ((c,π)) := E
(
l′′k ((c,π) ;Ak)

)
.

Definition: We define cb as a bigger model of cs if cbi = cbj leads to csi = csj for any node i and j.

That is, there exists a function g : cbi → csi , ∀i, j ∈ {1, ..., P}.

Under Assumption 1(1) and 2, we have

Theorem 1. Let {Ak|k = 1, ...,K} be the observations specified by parameters ψ0 = (c0,π0). We

propose to estimate the parameter ψ0 by

ψ̂ = arg min
ψ∈M

1

K
MDL(ψ)

where M is the set of all possible values of parameter ψ. For any ψ̂ = (ĉ, π̂), π̂ the MLE given K

observations’ log likelihood LK ((ĉ,π) ;A) with when ĉ denotes the estimated community assignment

and Π (ĉ) denotes the parameter space of π given ĉ, that is,

π̂ = arg max
π∈Π(ĉ)

LK ((ĉ,π) ;A)

Then we have the estimated community assignment ĉ must be bigger than the true community

assignment c0, and there exists a function g : ĉi −→ coi , such that

π̂ql
a.s.−−→ πo

g(q)g(l).

The detailed proof of Theorem 1 is in Appendix A.
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3.3.2. SCNIC with MDL Thresholding. Sparse Correlation Network Investigation for

Compositional Data (SCNIC) is a method designed for analyzing microbial community data, specifi-

cally compositional data generated from high-throughput sequencing technologies such as 16S rRNA

gene sequencing. It first generates correlation with SparCC to identify meaningful correlations while

accounting for the sparse and compositional nature of the microbiome data and avoiding spurious

correlations. In particular, the method detects modules by initially employing complete linkage

hierarchical clustering on correlation coefficients, resulting in a feature tree. Modules are then

defined as subtrees in which the correlations between all pairs of tips exhibit an R-value surpassing

the specified threshold. Consequently, its characteristic is the generation of modules only when all

features demonstrate correlations above a user-defined threshold and different threshold leads to

the identification of different modules.

By aiming to minimize the MDL, which ensures statistically consistent module assignment and

linkage probability estimation, the MDL principle is employed to identify an optimal threshold

for detecting significant co-occurrence relationships within a microbiome network. Among a set of

potential thresholds, the one yielding the lowest MDL is chosen. This selection achieves a balance

between preserving meaningful relationships and mitigating noise, resulting in a network structure

that is more interpretable and reliable.

3.4. Simulation Studies

We conduct two simulations: one to validate the consistency of the MDL principle in determining

the optimal community structure and the other to confirm the effectiveness of MDL in determining

the threshold for community detection structure, utilizing SCNIC as an illustrative example of

community detection methods.

To assess the quality of clustering algorithms, we use Normalized Mutual Information (NMI), a

measure of similarity between two partitions of a set. It takes into account the chance agreement

between the clustering results and ground truth.

Let c = (c1, c2, ..., cn) be the true community assignment of n nodes in a network, ĉ = (ĉ1, ĉ2, ..., ĉn)

be the estimated community assignment obtained from a clustering algorithm. Let H(.) denote

entropy, and I(.)denote mutual information. NMI is calculated using the formula:
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NMI(c, ĉ) =
I(c; ĉ)√

H(c) ·H(ĉ)

where

• H(c) = −
∑n

i=1 P (ci) · log(P (ci)), where P (ci) =
Number of nodes in community ci

n

• H(ĉ) = −
∑n

j=1 P (ĉj) · log(P (ĉj)), where P (ĉj) =
Number of nodes in community ĉj

n

• I(c; ĉ) =
∑n

i=1

∑n
j=1 P (ci, ĉj) · log

(
P (ci,ĉj)

P (ci)·P (ĉj)

)
, where

P (ci, ĉj) =
Number of nodes in both ci and ĉj

n

The NMI score ranges from 0 to 1, where 0 indicates no mutual information and 1 indicates perfect

agreement. Higher NMI values suggest better agreement between the partitions. In the context

of clustering evaluation, normalized mutual information is particularly useful when the number of

clusters in the partitions may vary, as it normalizes the score to account for different clusterings

with different numbers of clusters.

3.4.1. Simulation 1. We generate data using the stochastic block model and assess the con-

sistency of MDL in determining the optimal community structure across varying sample sizes.

The true network data, generated by the stochastic block model, consists of two modules, namely

module 1 and module 2, each with a size of 100. For pairs of nodes within the same module

(either module 1 or module 2), the correlation is set to 0.95 and 0.5, respectively. For pairs of

nodes across module 1 and module 2, the correlation is set to 0.3. We consider sample sizes of

n = 10, 50, 100, 500, 1000, and10000. In each repetition For each specific n, we performed SCNIC

module detection under different correlation thresholds ranging from 0 to 0.8 with increments of

0.02. The threshold that minimized MDL was denoted as r, and the corresponding values of mdlr,

nmir, number of detected modules Qr, and sizes of the largest and second-largest modules, S1r

and S2r, were recorded. This process was repeated 100 times for each sample size to compute the

mean and standard deviation of r, mdlr, nmir, Qr, s1r, and s2r over the 100 repetitions.

The outcomes, illustrated in Figure 3.1, reveal the trends as the sample size n increases. With

increasing sample size, the minimizer of MDL consistently approaches the true threshold of 0.5.

Simultaneously, the minimized MDL experiences a decline, the Normalized Mutual Information

(NMI) metric demonstrates an augmentation, and the number of detected modules converges toward

the actual count. Additionally, we assessed the sizes of the top two detected modules at the
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minimizer, observing that the largest size stabilizes at the true value when n reaches 100, while

the second-largest size converges to the true value as n reaches 1000. In summary, an increase in

sample size results in the stabilization of the minimized MDL, and the minimizer converges towards

the true threshold. This, in turn, contributes to the consistency observed in module detection, as

reflected by the NMI, the number of modules, and the sizes of the top two modules.

3.4.2. Simulation2. This subsection introduces simulations about exploring the application

of the MDL principle in selecting the optimal threshold within the context of SCNIC. Under both

non-sparse and sparse settings, we generated count data and calculated its sample correlation

(Pearson’s correlation for non-sparse count data, SparCC for sparse count data). Subsequently,

SCNIC was applied for community detection at various thresholds, and the differences between the

true community assignment and the predicted community assignment, where MDL is minimized,

were examined.

Non-sparse Setting. Consider SBM settings where there are two, three, and four blocks, each

block of size 100. Generate multivariate normal data as the count data based on the linkage

correlation associated with the specific SBM setting. Calculate its sample correlation of the non-

sparse count data. Apply the SCNIC method for module detection with a sequence of thresholds,

which starts with the minimum value in the corresponding sample correlation matrix. The potential

threshold range begins with the minimum value in the sample correlation and extends to the

maximum threshold where all nodes are allocated into modules. As the threshold increases, the

number of nodes assigned to modules decreases, resulting in an incomplete module assignment.

In Figure 3.2, the top row displays sample correlations under scenarios with two, three, and four

blocks, meanwhile, the bottom row displays the MDL and NMI of the predicted community as-

signment, identified by SCNIC, at various thresholds corresponding to the correlations depicted

above.

The MDL values in these non-sparse settings exhibit a semi-oscillating pattern, characterized by

peaks followed by flat segments and repeating in this manner. The minima occur within the flat

segments, signifying that MDL achieves consistent local minimums across various threshold ranges

during these plateaus. In contrast, the NMI values show an overall contrasting pattern, reaching

maximum values at the points corresponding to the MDL minima. We opt for the rightmost

threshold value within each plateau as the minimizer of the MDL. These particular values signify
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Figure 3.1. The figure showcases six plots each capturing metric and their asso-
ciated means and standard deviations across different sample sizes (n), with error
bars indicating the degree of variability. The first row, from left to right, includes
subplots depicting the minimizer of MDL, the minimized MDL, and the Normalized
Mutual Information (NMI). The second row showcases subplots representing the
number of detected modules, the size of the largest detected module, and the size
of the second-largest detected module. As n increases, the method of minimizing
MDL provides results that align closely with the true values or characteristics of the
data.

the MDL change points, corresponding to critical thresholds. Table 3.1 shows metrics in non-sparse

settings involving two, three, and four blocks, including the sample correlation range within each

block, the corresponding minimizer, the minimized MDL, and the NMI at the minimizer. It is
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noteworthy that these minimizers align with the cut-off or boundary values for blockwise sample

correlations.

Figure 3.2. From left to right, sample correlations under Stochastic Block Model
(SBM) settings with 2, 3, and 4 blocks in the top row, accompanied by the corre-
sponding Minimum Description Length (MDL) and NMI of predicted community
assignments detected by SCNIC at various thresholds in the bottom row.

Sparse Setting. Consider SBM settings involving one sparse block of size 50 along with one

block (size 100), two blocks (each size 50), or three blocks (each size 50). Generate multivariate

normal data in small sample sizes (50, 50, and 30 respectively) as the count data based on the

linkage correlation associated with the specific SBM setting. Calculate its sample correlation with

SparCC for the sparse count data. Apply the SCNIC method for module detection with a sequence

of thresholds, which starts with the minimum value in the corresponding sample correlation matrix.

42



Blocks Blockwise Sample Correlation Range Minimizer MDL NMI

2

[0.855 0.896
] [

0.223 0.379
]

[
0.223 0.379

] [
0.426 0.576

]
 0.42, 0.85 172.35 1.00

3


[
0.867 0.911

] [
0.229 0.357

] [
0.203 0.375

]
[
0.229 0.357

] [
0.623 0.733

] [
0.193 0.385

]
[
0.203 0.375

] [
0.193 0.385

] [
0.415 0.574

]
 0.41, 0.62 402.13 1.00

4



[
0.853 0.904

] [
0.091 0.213

] [
0.084 0.221

] [
0.052 0.197

]
[
0.091 0.213

] [
0.764 0.83

] [
0.061 0.219

] [
0.108 0.261

]
[
0.084 0.221

] [
0.061 0.219

] [
0.639 0.732

] [
0.1 0.278

]
[
0.052 0.197

] [
0.108 0.261

] [
0.1 0.278

] [
0.453 0.592

]

 0.45, 0.63 680.39 1.00

Table 3.1. Simulation Results Under Non-Sparse Settings

In Figure 3.3, the top row displays SparCC correlations under scenarios with two, three, and four

blocks (including the sparse block), the bottom row displays the MDL and NMI of the predicted

community assignment, identified by SCNIC, at various thresholds corresponding to the correlations

depicted above.

The MDL values in these sparse settings exhibit a more irregular oscillating pattern, and not

necessarily there are flat segments. The NMI values show an overall contrasting trend, and it reach

maximum values at the thresholds corresponding to the MDL minimizer.

Table 3.2 shows metrics in sparse settings involving two, three, and four blocks, including the

sample SparCC correlation range within each block, the corresponding minimizer, the minimized

MDL, and the NMI at the minimizer. It is noteworthy that these minimizers align with the cut-off

or boundary values between the non-sparse and sparse blocks.

The above observations suggest a consistent pattern in MDL behavior across different threshold

ranges in both non-sparse and sparse settings. The alignment of MDL minimizers with block cut-off

points suggests its capability to effectively detect the community structure. Therefore, in scenarios

with multiple threshold candidates, selecting the one that minimizes MDL proves to be a valuable

strategy for enhancing the accuracy of community detection.
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Figure 3.3. From left to right, sample SaprCC correlations under sparse Stochastic
Block Model (SBM) settings with 2, 3, and 4 blocks in the top row, accompanied
by the corresponding Minimum Description Length (MDL) and NMI of predicted
community assignments detected by SCNIC at various thresholds in the bottom row

3.5. Real Data Experiment

The Great Lakes dataset, initially featured as part of the Earth Microbiome Project [Thompson

et al., 2017], serves as a valuable resource for understanding microbial patterns in two prominent

lakes: Lake Michigan and Lake Superior. This study delves into the microbial relative abundance

across various depths, ranging from 5 to 3654 meters, encompassing 16 samples from Lake Michigan

and 33 samples from Lake Superior. Acquired through QIITA accession number 1041 [Gonzalez

et al., 2018]). Preprocessing steps includes the demultiplexing and application of quality control

to FASTQ data, the uniform trimming of sequences to the same length of 150, and the selection of
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Blocks Block Correlation Minimizer MDL NMI

2

[−0.056 0.209
] [

−0.200 0.126
]

[
−0.200 0.126

] [
−0.124 0.172

]
 -0.06 4124.61 0.74

3


[
0.311 0.500

] [
−0.548 −0.304

] [
−0.098 0.187

]
[
−0.548 −0.304

] [
0.434 0.707

] [
−0.292 0.112

]
[
−0.098 0.187

] [
−0.292 0.112

] [
−0.116 0.161

]
 0.31 199.47 1.00

4



[
0.317 0.561

] [
−0.243 0.182

] [
−0.49 −0.132

] [
−0.202 0.266

]
[
−0.243 0.182

] [
0.529 0.757

] [
−0.677 −0.247

] [
−0.221 0.225

]
[
−0.490 −0.132

] [
−0.677 −0.247

] [
0.532 0.823

] [
−0.274 0.215

]
[
−0.202 0.266

] [
−0.221 0.225

] [
−0.274 0.215

] [
−0.207 0.211

]

 0.31 336.25 1.00

Table 3.2. Simulation Results Under Sparse Settings

closed-reference Operational Taxonomic Units (OTUs) These steps are done with QIIME2, resulting

in 4149 OTUs.

We begin with a table of 4149 OTUs, and 481 of these remained after removing OTUs not present in

at least 50% of the samples. SCNIC is applied with SparCC and a sequence of thresholds, starting

from -0.90, the minimum correlation value, to the threshold of 0.28, the maximum threshold where

almost all nodes are allocated into modules. The MDL achieves the minimum at a threshold of

0.24. Starting from 0.28, not all nodes are included in the detected modules, which is an incomplete

node assignment, therefore it is not included for considering the optimal threshold.
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(a) (b)

Figure 3.4. This figure displays the SparCC heatmap of the filtered Great Lake
data and the MDL at different thresholds. The minimum MDL is achieved at a
threshold of 0.24.

3.6. Discussion

Simulation 1 results reveal that as the sample size increases, the MDL stabilizes, and the corre-

sponding minimizer converges toward the true threshold. Concurrently, the number of detected

modules, the top 2 module sizes, and NMI approach the true values as the standard deviation

decreases, demonstrating consistency.

In Simulation 2, both in non-sparse and sparse settings, the local minimums correspond to the

actual cut-off correlation in the sample correlation matrix. This provides evidence supporting the

effectiveness of minimizing MDL for selecting the optimal threshold.

In the real data experiment, we achieve the MDL minimum. However, there are limitations. Firstly,

the microbiome sample is of limited size, and the data is sparse and high-dimensional. To address

this, we apply preprocessing steps, filtering out OTUs with at least 50% zeros across samples.

Additionally, we manually select the upper bound of the threshold where most nodes are assigned

to modules. Although an MDL minimizer is found in this case, further insights are needed to

interpret the biological significance.

46



CHAPTER 4

Understanding Distortion Patterns of Adversarial Attacks

4.1. Introduction

Well-trained deep neural networks are capable of achieving outstanding performance in many ar-

eas, including image-related classification tasks [Simonyan and Zisserman, 2014,Krizhevsky

et al., 2017,He et al., 2016]. However, various studies have shown that they may not be fully

reliable and can be fooled by adversarial examples – images that are carefully crafted to fool such

deep neural networks by introducing imperceptible perturbation to the original images [Szegedy

et al., 2013,Goodfellow et al., 2014,Carlini and Wagner, 2017,Chen et al., 2018]. This

raises serious security concerns for the AI community. Many works have been done to study and

defend against adversarial attacks [Zhang et al., 2019,Xie et al., 2017,Meng and Chen,

2017,Sadeghi et al., 2020]. In particular, adversarial detection methods have been proposed to

determine whether an input image is an adversarial example or not [Metzen et al., 2017,Gong

et al., 2017,Li and Li, 2017,Zheng and Hong, 2018,Feinman et al., 2017]. Moreover,

it is helpful for the defender if reverse engineering can be done to reveal more information about

the attacks based on the detected adversarial examples. For example, there are three main attack

families to perform attacks: gradient-based, score-based, and decision-based, which rely on the gra-

dient, predicted score, and predicted label of the victim model, respectively. Based on the detected

adversarial examples, if the defender can tell what type of attack is used, the defender will know

what information has been leaked to the attacker. Consequently, the defender can modify the model

accordingly to prevent further attacks. Some works have been done to study the reverse engineering

of adversarial attacks: Pang et al. [Pang et al., 2020] proposed the query of interest (QOI) esti-

mation model to infer the adversary’s target class by model queries in black-box settings. Goebel

et al. [Goebel et al., 2021] estimated adversarial setup from image sample for gradient-based

attacks FGSM [Goodfellow et al., 2014] and PGD [Madry et al., 2017]. Gong et al. [Gong

et al., 2022] proposed a general formulation of the reverse engineering of deceptions problem that
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can estimate adversarial perturbations and provide the feasibility of inferring the intention of an

adversary.

In this chapter, we first demonstrated that, given an adversarial example, the corresponding at-

tack family can be accurately identified with a simple model. Once we had established this, we

turned our attention to analyzing the specific features of each type of attack to understand the

underlying differences between them better. Section 4.2 covers preliminary information presented

in the chapter. Section 4.3 focuses on our image classifier that accurately identifies attack families

(gradient-based, score-based, or decision-based). In Section 4.4, we provide an extensive analysis

of the features associated with each type of attack.

4.2. Preliminaries

Notations: We consider an image classifier f(·) as the victim model of adversarial attacks. The

input to the classifier is x0 ∈ [0, 1]w,h,c, a c-channel image sample with width w and height h. The

true label associated with x0 is denoted as y, and the adversarial example generated from x0 is

denoted as x∗. We denote f(x0) as the predicted score vector and c(x0) = argmaxi f(x0) as the

predicted label, indicating the ith label has the highest prediction score.

Adversarial Examples: An adversarial example x∗ and the original image x0 are visually in-

distinguishable, but their predicted labels are different. That is, D(x0,x
∗) is very small in some

distance metric D, while c(x∗) ̸= c(x0). Taking Fig.4.1 as an example, humans will recognize that

the two images are of the same horse. However, the image on the right is generated by adding

imperceptible perturbations to the original image on the left, which causes a particular classifier

to classify it as a cat. Existing methods use Lp metrics to evaluate the distance between adversar-

ial and original samples. This study focuses on L2 and L∞, the most commonly used metrics in

adversarial attacks.

Data Sets and Victim Models: We use CIFAR10 [Krizhevsky et al., 2009] image data set

with ten different classes of resolution 32 × 32. Another data set we use is Tiny Imagenet [Deng

et al., 2009], which has 200 classes, and the resolution of the images is 64×64. For CIFAR-10, the

victim model is VGG-16 with batch normalization [Simonyan and Zisserman, 2014], of which

accuracy is 93.34%. For Tiny ImageNet, the victim model architecture is ResNet18 [He et al.,

2016] with 68.64% accuracy.

48



Figure 4.1. An adversarial example generated by Boundary attack: introducing
adversarial perturbations to the horse image causes a classifier to label it as a cat.

Adversarial Attacks: Different attack methods can be classified into two categories according to

their goals: untargeted and targeted. Untargeted attacks are successful as long as the adversarial

example is misclassified. Targeted attacks, instead, are successful only when the adversarial example

is classified into a target class. Take Fig.4.1 as an example; the untargeted attack is successful if the

right-side image is not classified as a horse, while the targeted attack is successful only when it is

predicted as a cat if the target class is a cat. In this study, all experiments are based on untargeted

attacks.

Depending on the information required, existing attack methods can be divided into three cate-

gories: gradient-based, score-based, and decision-based. The gradient-based attack is also known

as a white-box attack, in which all information of the victim model is revealed to the attacker so

that the attackers can calculate gradients. Popular gradient-based attacks are FGSM [Goodfellow

et al., 2014], PGD [Madry et al., 2017] and C&W [Carlini and Wagner, 2017]. If an attacker

only has access to the predicted score of the victim model, it is a score-based attack, also known

as a soft-label black-box setting. Popular score-based attacks include ZOO [Chen et al., 2017],

NES [Ilyas et al., 2018] and Square [Andriushchenko et al., 2020]. In practical scenarios,

the attacker only has access to the predicted labels of the model. Attacks under this setting are

called decision-based attacks. Examples of such attacks include those described in [Li et al., 2022]

and [Zanddizari et al., 2021], as well as popular methods like Boundary [Brendel et al., 2017],

Sign-OPT [Cheng et al., 2019] and HopSkipJump (HSJ) [Chen et al., 2020]. Table 4.1 lists
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six representative attacks under different settings in L2 or L∞ metrics. In this study, we conduct

attack family classification with these attacks and study their perturbation patterns. Adversarial

images are generated based on ART package [Nicolae et al., 2018].

Table 4.1. Representative attacks of different metrics from different families under
L2 and L∞.

L2 L∞
gradient-based C&W PGD
score-based ZOO Square

decision-based Boundary HopSkipJump

Perturbation Visualization: Perturbations are the differences between the adversarial example

and the corresponding original image, showing how the original image is modified. Since pertur-

bations are imperceptible, we amplify the perturbation by 100 times for visualization purposes in

this study.

4.3. Reverse Engineering of Adversarial Attacks

Most current reverse engineering methods focus on analyzing specific attack methods. However, this

section explores the potential for identifying attack families associated with adversarial examples.

Successful detection of attack families (gradient-based, score-based, or decision-based) can be a

useful tool for defenders, as it allows them to understand better the level of information that has

been leaked during attacks so that defenders can properly assess the potential impact of that attack

family.

When an adversarial attack is launched, it exploits weaknesses in the model: gradient-based attacks

take advantage of the model gradients; score-based attacks rely on the predicted scores of the

model; and decision-based attacks rely on the predicted labels. This knowledge can help develop

an effective response to the attack. Overall, by identifying the specific attack families and taking

targeted actions to address the vulnerability exploited by the attack, defenders can improve model

resilience and minimize the damage caused by attacks.

4.3.1. Experiments: Classifying Attack Families. We generate adversarial examples of

each attack family and two metrics (L2 and L∞) using attacks in Table 4.1 with data sets and

victim models mentioned in Section 4.2.
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For the L2 attacks, the perturbation upper bounds are 1.00 and 5.00 on CIFAR10 and Tiny Im-

ageNet, respectively. The perturbation upper bound is 0.03 for different L∞ attacks on both

CIFAR10 and Tiny ImageNet.

With the generated adversarial examples, we perform the following experiments: (1) classifying

attack families in L2 metric; (2) classifying attack families in L∞ metric; and (3) classifying attack

families with adversarial examples of both L2 and L∞ metrics. A classifier with VGG16 architecture

is trained for multi-class classification to identify the attack family based on adversarial examples.

The same architecture is used for both CIFAR10 and Tiny ImageNet in all the following experiments

except in Experiment D, where the task is six-class classification, and the last layer has six neurons

instead of three.

Experiment A: For L2-norm based attacks, we choose C&W (gradient-based), ZOO (score-based),

and Boundary (decision-based) as representatives of each attack family. If all three attacks can

successfully fool the victim model by modifying the same original image under the perturbation

bound, we keep the corresponding adversarial examples and split them into training and test sets

for the attack family classification task. These adversarial examples are called successful adversarial

examples across three attacks.

Experiment B: For L∞-norm based attacks, we choose PGD (gradient-based), Square (score-

based), and HopSkipJump (decision-based) as representative attacks. A similar procedure is applied

as in Experiment A to obtain the training and test sets for the attack family classification task.

Experiment C: Adversarial examples in Experiments A and B are merged into three classes so

that each class contains adversarial examples generated by attacks from the same attack family but

different norm metrics. Similarly, we only keep successful adversarial examples across six attacks.

Gradient-based class includes adversarial examples generated by C&W(L2) and PGD(L∞). Score-

based class includes ZOO(L2) and Square(L∞). Decision-based class includes Boundary(L2) and

HopSkipJump(L∞). The classification task is to do a three-class classification, identifying the

attack family given an adversarial example.

Experiment D: To investigate if there are not just differences between attack families but also

differences between attack methods, this experiment uses the same data as in Experiment C but

performs six-class classification to identify specific attacks, not attack families.
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Table 4.2. Accuracy of attack family classification task (Experiments A, B, C) and
attack method classification task (Experiment D) on CIFAR10 and Tiny ImageNet
without original images.

CIFAR10 Tiny ImageNet
Experiment A 82.74% 81.08%
Experiment B 95.51% 96.96%
Experiment C 85.58% 85.77%
Experiment D 76.30% 73.84%

The first three rows (Experiments A, B, C) in Table 4.2 show the attack family classification

accuracies on CIFAR10 and Tiny ImageNet datasets. The last row (Experiment D) shows the

attack method classification accuracy. The first three experiments achieve high accuracies on

different datasets, which suggests that attack families modify the image in different ways and

machines can learn the pattern based on adversarial examples, although adversarial examples are

indistinguishable from the original images to humans. The testing accuracies are not bad for

Experiment D, which implies that attacks of the same family also have different patterns.

In many real-world scenarios, whether the input has been perturbed or not is often unknown to

the models. We incorporate non-perturbed original images into the classification task to address

this concern. The outcomes of the experiment can be found in Table 4.3. The experimental setup

remains consistent, with the only variation being the inclusion of original images as a distinct

category in the input. Except for Experiment A, all experiments stay at a high accuracy level.

Experiment A experiences a decrease in accuracy due to its utilization of the L2 norm attack, which

considers the cumulative perturbations across all pixels, leading to smaller discrepancy to original

images when a certain threshold of the cumulative sum is applied. On the other hand, the L∞ norm

attack focuses on the maximum perturbed pixel while allowing other pixels to be perturbed as long

as their individual perturbations are below the threshold, leading to more noticeable perturbation

patterns.

Table 4.3. Accuracy of attack family classification task (Experiments A, B, C) on
CIFAR10 and Tiny ImageNet with original images.

CIFAR10 Tiny ImageNet
Experiment A 74.84% 65.45%
Experiment B 92.15% 91.87%
Experiment C 80.65% 89.36%
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4.3.2. Robustness of Attack Family Classification. This section presents evidence for

the robustness of attack family identification, even when they have varying perturbation levels or

involve ensemble attacks.

4.3.2.1. With Various Norm Limits. In this section, we demonstrate that attack family types of

adversarial examples can be accurately identified despite having different perturbation levels. The

CIFAR10 dataset was used for Experiment A and Experiment B to investigate the effect of different

limits on the attack family classification under L2 and L∞ norms. Experiment A of classifying L2

attacks from three different attack families achieved high levels of accuracy across a range of limit

values, including 1.0, 0.8, and 0.6. Similarly, in Experiment B of classifying L∞ attacks from

three different attack families, high levels of accuracy were achieved across a range of limit values

including 0.03, 0.02, and 0.01, see Table 4.4. However, we observed a decrease in accuracy as L2

or L∞ norm limit becomes smaller, which can be attributed to the limited number of successful

adversarial samples across three attacks under smaller limits.

Table 4.4. Accuracy of attack family classification for various L2 and L∞ limits.

L2 Norm Limit 1.0 0.8 0.6
Accuracy 82.74% 81.30% 76.30%

L∞ Norm Limit 0.03 0.02 0.01
Accuracy 95.51% 92.63% 81.57%

4.3.2.2. With Ensemble Attack. Auto attack is an ensemble attack algorithm that includes

four attacks: APGD-CE, APGD-DLR, FAB [Croce and Hein, 2020a], and Square Attack,

where APGD-CE and APGD-CE are two extensions of the PGD attack overcoming failures due

to suboptimal step size and problems of the objective function [Croce and Hein, 2020b]. This

algorithm iterates over the list of attacks until an adversarial example is successfully generated.

Though both gradient and score information are involved, we consider auto attack as a gradient-

based attack for the purpose of the attack family classification task. In our evaluation, we classify

adversarial examples of CIFAR10 generated by Auto-attack(gradient-based), ZOO(Score-based),

and Boundary(decision-based) under L2 norms and achieved an accuracy of 83.40%; under L∞

norms, we evaluated Auto-attack(gradient-based), Square(Score-based), HopSkipJump(decision-

based), and accuracy achieved 97.40%. These results demonstrated that different attack families
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could be effectively classified even when the gradient-based attack involves more than just gradient

information. Besides, the accuracy of the attack family classification remains consistent regardless

of the specific attacks involved.

4.4. Exploring Characteristics of Attack Families

Although adversarial examples from different attack families appear to be indistinguishable, ma-

chines can learn and classify them with some subtle signatures. One question arises: What patterns

does the classification model acquire to recognize the attack family and attack method? Since the

differences in adversarial attacks are embedded in the perturbations, we propose to investigate

the reasons behind the ease of identifying attack families by analyzing the perturbation patterns

exhibited in various attacks. Visualization examples for representative L2 attacks and L∞ attacks

are displayed in Fig. 4.2 and Fig. 4.3. More examples are in the Appendix.

4.4.1. L2 Attacks. Different L2 attacks modify the original images in different ways, resulting

in different perturbation patterns; see Fig. 4.2, each subfigure lists adversarial examples from C&W,

ZOO, and Boundary and corresponding amplified perturbations from left to right. It is obvious that

the perturbations of the three attacks are different. The perturbations of the C&W attack seem

to focus on the location of the object. ZOO introduces large perturbations for some pixels. The

perturbations of the Boundary attack are relatively smaller and all over the place. In the following

sections, we study the characteristics of C&W, ZOO, and Boundary and discuss why they generate

perturbations of different patterns.

4.4.1.1. C&W Attack. C&W attack is one of the strongest gradient-based attacks to date. It can

perform targeted and untargeted attacks with L2 or L∞ metric. Although L∞ norm is feasible, L2

norm is widely used in C&W attacks and can be formulated as the following regularized optimization

problem:

(4.1) x∗ = argmin
x∈[0,1]n

{∥x− x0∥22 + cg(x)}.

The first term ∥x− x0∥22 enforces a slight distortion to the original input x0 and the second term

g(x) is a loss function that measures how successful the attack is. The parameter c > 0 controls

the trade-off between distortion and attack success.
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(a) Horse

(b) Deer

Figure 4.2. Visualization examples for C&W, ZOO, and Boundary are displayed
in each subfigure, sampled from CIFAR10. From left to right, the first row shows
the adversarial image generated by C&W, ZOO, and Boundary, and the second
row shows corresponding amplified perturbations. Though adversarial examples
are indistinguishable, perturbations show different patterns: C&W’s perturbations
focus on the main object; ZOO introduces scattered bright per-pixel perturbations;
Boundary’s perturbations are more uniform across the image.
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(a) Horse

(b) Bird

Figure 4.3. Visualization examples for PGD, Square, and HopSkipJump are dis-
played in each subfigure, sampled from the CIFAR10 data set. From left to right,
the first row shows the adversarial image generated by PGD, Square, and Hop-
SkipJump, and the second row shows corresponding amplified perturbations. PGD
and HSJ have cluttered perturbation patterns, but HSJ is darker due to smaller
perturbations. Square’s perturbations consist of vertical strips covered by square-
shaped regions, though vertical strips may not be obvious since too many squares
cover them.
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Compared to the other two attacks, it seems that the perturbations of C&W concentrate on the

object, see Fig. 4.2. To verify if this observation is true, we draw a bounding box of the horse in

Fig. 4.2 and compute the proportion of L2 perturbations inside the box for all three attacks, see

Fig. 4.4: the proportion of perturbation inside the bounding box for C&W is 96.40%, while for

ZOO and Boundary, the proportions are 69.25% and 79.51% respectively.

Figure 4.4. The proportion of perturbations inside the bounding box for C&W,
ZOO, and Boundary are 96.40%, 69.25%, and 79.51% respectively, from left to right.

To verify if this pattern is true for most cases, we randomly sample five images with success across

three attacks from each class of CIFAR10 and draw bounding boxes for all 50 images per attack to

calculate the proportions of perturbations inside bounding boxes. The proportion is calculated per

sampled image for each attack. Fig. 4.5 shows the histograms of in-box perturbation proportion for

each attack. It is evident that C&W has the most left-skewed distribution, indicating that C&W

focuses on perturbing the main object in the image.
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Figure 4.5. In-box perturbation proportion histograms for C&W, ZOO, and
Boundary. C&W’s distribution is most left-skewed, indicating C&W focuses on
attacking the main object.

Two reasons might explain why C&W attacks the object: 1) C&W has access to the true gradients;

2) C&W method starts attacking from the original image. Gradients w.r.t. the input indicates the

important areas in the input image and usually concentrate on the objects because the victim model

is trained to do object classification. Therefore, it is expected to see C&W focus on modifying the

object. Besides, the initial point of the optimization process is the original image, which excludes

the possibility of unnecessary perturbations outside the object area.

To support the above hypothesis, we compare C&W with its two variants: estimated-gradient C&W

and random-start C&W. Instead of using true gradients, estimated-gradient C&W uses gradients

estimated by Natural Evolution Strategy [Wierstra et al., 2014], which was also used by Ilyas

et al. [Ilyas et al., 2018] to do score-based attack. Random-start C&W starts the attack process

with a random adversarial point instead of the original image. The random adversarial point is a

random noise image that is not classified into the class of the original image. The point is already

misclassified but not close to the original image.

We generate adversarial images with the original C&W and its two variants, then train a VGG16-

based model to classify the three types of adversarial images. The classification accuracy reaches

96.03%, indicating that the three types of adversarial attacks are significantly different. Therefore,

both gradients and random start affect the patterns of the C&W perturbations.

58



Fig. 4.6 lists the adversarial examples and perturbations of C&W, estimated-gradient C&W, and

random-start C&W from left to right. The perturbations of estimated-gradient C&W still roughly

focus on the object area but are less accurate than those of the original C&W. Also, the overall

perturbations are larger: with estimated gradients, it cannot converge to the same level as C&W,

resulting in a larger distortion level. With a random adversarial start, C&W gets noisier in the

background, even though many perturbations are in the object area. In conclusion, C&W’s per-

turbations focusing on the object area come from two factors: starting from original images and

accurate gradients. See more examples in Appendix B.1.

Figure 4.6. From left to right, a cat image is attacked by C&W, estimated-gradient
C&W, and random-start C&W. Even though the perturbations of estimated-
gradient C&W and random-start C&W also roughly focus on the object area, it
is not as obvious as in the perturbations of the original C&W.

4.4.1.2. ZOO Attack. Zeroth Order Optimization Based Attack (ZOO) uses the finite difference

method to approximate the gradients of the loss with respect to the input. The objective function

is the same as that of C&W attack but using coordinate descent with estimated gradient:

(4.2)
∂f

∂xi
≈ f(x+ hei)− f(x− hei)

2h
,
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where h is a small constant, ei is a standard basis vector with a single nonzero entry with value 1

as the i-th element, and i ranges from 1 to the input dimension. That is, ZOO is another variant

of C&W but with estimated gradient and coordinate descent.

From Fig. 4.2, we can see that ZOO’s perturbations are made of a few bright pixels, which is

expected as it uses coordinate descent to optimize each coordinate iteratively. Unlike gradient

descent, that updates all coordinates at once, coordinate descent updates the coordinates by mini-

batch. The nature of coordinate descent can lead to ZOO’s perturbation pattern. To show the

effect of coordinate descent on perturbation patterns, we compare ZOO with the estimated gradient

C&W. The difference between them is the optimization method: ZOO uses coordinate descent while

estimated-gradient C&W uses gradient descent, but both methods need to estimate the gradient.

A VGG16-based binary classifier achieves 97.62% accuracy in classifying the adversarial examples

generated by the two methods, implying that different optimization methods will result in different

perturbation patterns. Fig. 4.7 shows the adversarial examples and amplified perturbations of

ZOO and estimated-gradient C&W. More examples are available in Appendix B.2. Compared to the

estimated-gradient C&W, ZOO has more spread perturbations because of the optimization method.

In Appendix 4.4.1.1, we verified that the estimated gradient makes the perturbations larger and less

accurate by comparing estimated-gradient C&W with the original C&W. This also helps explain

why the perturbations of ZOO are so prominent and scattered. Therefore, coordinate descent and

the estimated gradient together lead to ZOO’s prominent scattered pixel-level perturbation pattern.

4.4.1.3. Boundary Attack. Boundary attack starts with a random adversarial point from a

different class, then seeks to minimize the perturbations by randomly walking on the boundary of

two classes while remaining adversarial. Compared to C&W, the Boundary attack does not start

from the original image and has no access to the gradient information. From Fig. 4.2, we noticed

that the Boundary attack’s perturbations distribute over the entire image compared to C&W and

ZOO. In fact, we verified in Section 4.4.1.1 that starting from an adversarial point instead of the

original image will spread the perturbations, and the gradient information is the key to an accurate

attack on the object. This explanation applies to the perturbation patterns of Boundary attacks

as well. Fig. 4.8 shows adversarial examples and perturbations of C&W, random-start C&W, and

Boundary. Compared to C&W, the other two attacks show noisy and spread perturbations, even
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Figure 4.7. An automobile image is attacked by ZOO(left) and estimated-gradient
C&W(right). The first row contains adversarial examples, and the second row con-
tains amplified perturbations. ZOO’s amplified perturbations are more spread due
to coordinate descent.

though random-start C&W has most perturbations focused on the frog area. More examples are

available in Appendix B.3.

Besides, unlike random-start C&W, Boundary’s updating procedure relies on a random walk instead

of gradients, which draws random perturbation from a proposal distribution at each iteration.

Hence, Boundary’s perturbations are more blurry than the random-start C&W. A VGG16-based

three-class model achieves 88.12% accuracy in classifying the three attacks, indicating that the

differences are obvious and easy to detect. Therefore, both random adversarial start and lack of

gradient information contribute to Boundary’s specific perturbation patterns.

4.4.2. L∞ Attacks.

L∞ attacks in different attack families show different perturbation patterns as well. In this section,

we study the L∞-norm version of PGD (gradient-based), Square (score-based), and HopSkipJump

(decision-based). In our experiments, perturbations are bounded by 0.03. Fig. 4.3 shows adversarial

examples and perturbation patterns of PGD, Square, and HopSkipJump (HSJ). The perturbations

of Square consist of vertical strips covered by square-shaped regions. Both PGD and HSJ have
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Figure 4.8. A frog image is attacked by C&W, random-start C&W and Boundary
in turn. From left to right, the perturbations are getting noisier, and the frog outline
is blurring. It indicates both random start and random walk iteration without
gradient information contribute to Boundary’s noisy perturbations.

clutter perturbation patterns, but the perturbations of HSJ are darker. In the following sections,

we discuss the characteristics of Square first and then compare PGD and HSJ.

4.4.2.1. Square Attack. The Square attack is score-based, but unlike other score-based attacks,

such as ZOO or NES, it does not estimate the gradients when generating adversarial examples.

Instead, it adopts an iterative randomized search scheme: at each iteration, a local square update

is chosen at random locations and projected to the input space, then this update is added to the

current iteration if the objective function improves. This explains the square-shaped regions in

the perturbation pattern. As for initialization, Square uses vertical stripes of width 1, where the

color of each stripe is randomly and uniformly sampled. In some cases, it takes many iterations to

generate a successful adversarial example, so the stripes are nearly covered by squares.

4.4.2.2. PGD and HopSkipJump Attack. Projected-Gradient Descent Attack (PGD) crafts ad-

versarial examples by solving the constraint optimization problem iteratively with projected gradi-

ent descent, widely used with L∞ norm. It can be formulated as

(4.3) x∗ = argmax
∥x−x∗∥∞<ϵ

L(θ,x, y),
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where L is the loss function used to train the victim model, θ is a fixed model parameter, and

(x, y) is the input pair of the original image and label. It uses a multi-step iteration scheme: at

each iteration, take a small step α according to the sign of the gradient and clip the result to the

ϵ-ball of the original input:

(4.4) xt+1 = Πϵ{xt + α · sign
(
∇xL(θ,xt, y)

)
,x0}.

HopSkipJump attack finds optimal adversarial examples by iterative procedure and gradient esti-

mate. Like Boundary, it starts from an adversarial point of a different class. For each iteration,

it first moves towards the boundary of the two classes (true class vs. a wrong class) through bi-

nary search, then updates the step size along the estimated gradient direction through geometric

progression until perturbation is successful, and lastly projects the perturbed sample back to the

boundary again.

Though PGD and HSJ belong to different attack families, both have cluttered perturbations, except

that the perturbations of HSJ are dimmer due to smaller perturbations. Though both methods are

L∞-norm based and bounded by 0.03, HSJ has perturbations of different scales ranging from −0.03

to 0.03, while PGD has more extremely perturbed pixels with a perturbation value of 0.03. From

Fig. 4.9, we can see that the histograms of the perturbations of PGD and HSJ are very different.

The histogram of PGD perturbations is like a bar plot because it updates depending on the sign

of the gradients with a fixed step-size α, which explains the discrete bars in the distribution of

PGD’s perturbations. While HSJ does not use a fixed step size to update, it does not have such

a pattern. We also test if the perturbations of PGD and HSJ focus on the object area. The

same bounding box method in Section 4.4.1.1 is used to calculate the proportion of significant

perturbations inside the box for both attacks. A significant perturbation is defined as a perturbation

whose absolute value is larger than the 90% quantile. In Fig. 4.10, we can see the in-box significant

perturbation proportion histogram. HSJ’s distribution is more left-skewed than PGD’s; the average

in-box significant perturbation proportions of PGD and HSJ are 50.37% and 60.38%, respectively.

Therefore, even though PGD has access to the true gradient information, HSJ has more significant

perturbations in the object area.
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Figure 4.9. Histogram of perturbation values of PGD and HSJ. PGD has a bar-
plot-like perturbation distribution because it uses a fixed step size to update, while
HSJ has a normal-like perturbation distribution.

Figure 4.10. Histogram of In-box significant perturbation proportion of PGD and
HSJ. HSJ’s distribution is more left-skewed than PGD, indicating it has more sig-
nificant perturbations in the object area.

4.5. Concluding Remarks

Our findings demonstrate attack methods from different attack families (gradient-based, score-

based, decision-based) possess different characteristics. Given adversarial examples, the machine

can learn such characteristics to identify which attack family they belong to. Further studies show

that even attacks from the same family can be different. We systematically study the properties of

the perturbation patterns of different attacks and explore where their differences come from. We
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hope that our work can shed light on a deeper understanding of adversarial attacks and help with

the reverse engineering of adversarial attacks.
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APPENDIX A

Appendix for Chapter 3

This appendix provides statistical consistency proof for Theorem 1.

Consider K homogeneous networks with N nodes, represented by binary adjacency matrix {Ak|k =

1, ...,K}. Assume the same presence of communities among all N nodes for each k, which can be

modeled by SBM presented in the previous section with parameter ψ = (c,π), c is community

assignment vector and π is linkage probability.

For a specified class assignment c, define nq(c) = #{i|ci = q} as the number of nodes in class q.

Subsequently, the quantity of potential pairs within/between each block is denoted as

Nql(c) =


nqnl q ̸= l

nq(nq − 1)/2 q = l

,

the number of the observed within/between each block is denoted as

Ek,ql(c) =


∑

ci=q

∑
cj=lAk,ij q ̸= l∑

ci=q

∑
cj=lAk,ij/2 q = l

,

then for each 1 ≤ k ≤ K, the log-likelihood function for ψ = (c,π) is

lk((c, π);Ak) =
∑
i<j

[
Ak,ij log2Ωk,ij + (1−Ak,ij) log2(1− Ωk,ij)

]
=
∑
q≤l

[
Ek,ql(c) log2 πql + (Nql(c)− Ek,ql(c)) log2(1− πql)

]
.

Recall that ψ = (c,π), and M is the set of all possible ψ, then the log-likelihood for the K

observations can be written as:

LK(ψ;A) =

K∑
k=1

lk((c, π);Ak).
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Then vector ψ = (c,π) can specify a model for this sequence of networks, and the MDL can be

written as

MDL(ψ;A) = (N + 1) log2Q+
∑
q≤l

1

2
log2(Nql(c))− LK(ψ;A).(A.1)

From Theorem 1, then the MDL-based estimate is given by

ψ̂ = arg min
ψ∈M

1

K
MDL(ψ)

where M is the set of all possible values of parameter ψ. For any ψ̂ = (ĉ, π̂), π̂ the MLE given K

observations’ log likelihood LK

(
(ĉ,π) ; Â

)
with ĉ denotes the estimated community assignment,

Â denotes the estimated sequence of networks, and Π (ĉ) denotes the parameter space of π given

ĉ, that is,

π̂ = arg max
π∈Π(ĉ)

LK

(
(ĉ,π) ; Â

)
.

Then we have the estimated community assignment ĉ must be bigger than the true community

assignment c0, and there exists a function g : ĉi −→ coi , such that

π̂ql
a.s.−−→ πo

g(q)g(l).

We list the necessary regularity conditions for the conditional log-likelihood function for the stan-

dard properties of maximum likelihood estimation, as well as the proposition and lemma for proof

of Theorem 1.

Assumption 1(v) : For any fixed c, there exists a ϵ > 0 such that,

sup
π∈Π(c)

E | lk ((c,π) ;Ak) |v+ϵ< ∞,

sup
π∈Π(c)

E | l′k ((c,π) ;Ak) |v+ϵ< ∞,

sup
π∈Π(c)

E | l′′k ((c,π) ;Ak) |v+ϵ< ∞.

Note that Assumption 1(1) refer to Assumption 1 with v = 1.
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Assumption 2 : For any fixed c,

sup
π∈Π(c)

| 1

K
LK((c,π;A)− L ((c,π)) | a.s.−−→ 0,

sup
π∈Π(c)

| 1

K
L′
K((c,π;A)− L′ ((c,π)) | a.s.−−→ 0,

sup
π∈Π(c)

| 1

K
L′′
K((c,π;A)− L′′ ((c,π)) | a.s.−−→ 0,

where

L ((c,π)) := E (lk ((c,π) ;Ak)) ,

L′ ((c,π)) := E
(
l′k ((c,π) ;Ak)

)
,

L′′ ((c,π)) := E
(
l′′k ((c,π) ;Ak)

)
.

To lighten notations, we skip some k’s in the following proposition.

Proposition A.0.1. The true model ψo ∈ M satisfies

ψo = arg max
ψ∈M

E (l(ψ;A)) .

Furthermore, ψo is uniquely identifiable, that is, if there exists a π∗ such that l
((
c0,π0

)
;A
)
=

l
((
c0,π∗) ;A) almost everywhere for A, then π∗ = π0. Additionally, suppose there exists another

model ψb = (cb,πb) such that l
((
cb,πb

)
;A
)
= l
((
c0,π0

)
;A
)
almost everywhere, then cb must be

a bigger model of c0. That is, there exists a function g : cbi −→ coi , such that πb
ql

a.s.−−→ πo
g(q)g(l).

Proof. Define πql(c) :=
1

Nql(c)

∑
i ̸=j,ci=q,cj=l π

o
coi ,c

o
j
, where π(c0) = π0 is a special case. Let π∗

be another link probability with c as the community assignment. Then,

E (l((c,π∗);A)) = E

(∑
i<j

(
Aij log

(
π∗
ci,cj

)
+ (1−Aij) log

(
1− π∗

ci,cj

)))
=
∑
q≤l

∑
i ̸=j,ci=q,cj=l

(
πo
coi ,c

o
j
log
(
π∗
ci,cj

)
+ (1− πo

coi ,c
o
j
) log

(
1− π∗

ci,cj

))
=
∑
q≤l

Nql(c)
(
πql(c) log

(
π∗
ql

)
+ (1− πql(c)) log

(
1− π∗

ql

))
.

(A.2)
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Similarly, we have

E (l((c,π(c));A)) =
∑
q≤l

Nql(c)
(
πql(c) log (πql(c)) + (1− πql(c)) log (1− πql(c))

)
(A.3)

Combining above Equation A.2 and A.3, we have

E (l((c,π(c));A))− E (l((c,π∗);A)) =
∑
q≤l

Nql(c)

(
πql(c) log

(
πql(c)

π∗
ql

)
+ (1− πql(c)) log

(
1− πql(c)

1− π∗
ql

))

=
∑
q≤l

Nql(c)DKL

(
πql(c)∥π∗

ql

)
≥ 0,

(A.4)

where DKL

(
πql(c)∥π∗

ql

)
is the Kullback–Leibler divergence of Bernoulli(πql(c)) distribution from

Bernoulli(π∗
ql).

Additionally, according to Lemma 1 in [Han et al., 2015], we have the following result for c does

not underestimate c0:

E
(
l((c0,π(c0));A)

)
− E (l((c,π(c)));A)) ≥ 1

2
δmin

q
nq(c

0),(A.5)

where nq(c
0) denotes the number of nodes assigned to community q under c0 and

δ = min
q,l

max
r

σ
(
πo
qr

)
+ σ (πo

lr)− 2σ

(
πo
qr + π

o
lr

2

)
,

with σ(x) := x log(x) + (1− x) log(1− x).

Derived from A.4 and A.5, we have

E (l ((co,πo) ;A))− E (l ((c,π) ;A)) ≥ 1

2
δmin

q
nq(c

0)

□

Lemma 1. Suppose the true community assignment vector c0 is specified for the K observations,

then

π̂K − πo = O

(√
log log(K)

K

)
a.s.
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When a specific community assignment c is bigger than the ture c, which means there exists a

function g : ĉi −→ coi , then

π̂K,ql − πo
g(q)g(l) = O

(√
log log(K)

K

)
a.s.

Proof. Please refer to Lemma 2 in [Davis and Yau, 2013] for the detailed proof. □

Now we are ready for the proof of Theorem 1.

Proof. Let ψ̂ = (ĉ, π̂) be the estimate of the community assignment and linkage probability

for the K observations. Since M is a finite set, without loss of generality, we can assume that ĉ

converges to c∗. Similarly, Π = Π (ĉ) is compact for any ĉ, we assume that π̂ converges to π∗. For

a sufficiently large K,

1

K
MDL(ψ̂;A) = hK − 1

K
LK((ĉ, π̂);A)

= hK − L((c∗,π∗);A),

where hK is deterministic with order O (log(K)/K).

If ψ∗ underestimates ψ0, then according to Proposition A.0.1, we have

(A.6) E (l ((co,πo) ;A))− E (l ((c∗,π∗) ;A)) > 0

According to definitions in Assumption 2, it is equivalent to

(A.7) L(ψ0;A)− L(ψ∗;A) > 0.

Then for sufficiently large K,

1

K
MDL(ψ̂;A) = hK − 1

K
LK(ψ̂;A)

= hK − L(ψ∗;A)

> hK − L(ψ0;A)

=
1

K
MDL(ψ0;A)

≥ 1

K
MDL(ψ̂;A),

(A.8)
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which is a contradiction, therefore ψ∗ must be a bigger model of ψ0.

Furthermore, according to Lemma 2, we have the consistency result of π̂, which completes the

proof of Theorem 1. □
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APPENDIX B

Appendix for Chapter 4

This supplementary material provides more illustrative examples and details of those classifica-

tion experiments. As mentioned in Section 4.4, Fig.B.1 provides extra adversarial examples and

corresponding perturbation patterns for C&W, ZOO, and Boundary, and Fig. B.2 provides extra

adversarial examples and corresponding perturbation patterns for PGD, Square, and HopSkipJump.

B.1. Supplementary Examples and Experiment in Section 4.4.1.1

In Section 4.4.1.1, we proposed that the plausible reasons for C&W attacking the main object

are true gradients and starting the attack process from the original image. To verify the idea,

we generate adversarial images based on two variants of C&W: the estimated-gradient C&W uses

estimated gradients from NES instead of the true gradients, and random-start C&W generates

adversarial images starting from a random adversarial image instead of the original image. More

examples are displayed in Fig. B.3.

Select those images that have been successfully attacked by all three attacks and split them into

training and test sets of size 1764 and 756, respectively. Train a VGG16-based classifier to evaluate

whether there’s a difference among them. Accuracy reaches 96.03%. Table B.1 records the con-

fusion matrix of this classification task; we can see that both variants can be easily distinguished

from C&W. This result further explains that the true gradients and original start affect C&W’s

performance.

Table B.1. Confusion Matrix for C&W, estimated-gradient C&W and random-
start C&W

Predicted
C&W estimated-gradient C&W random-start C&W

A
c
tu

a
l C&W 247 0 5

estimated-gradient C&W 2 249 1
random-start C&W 22 0 230
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(a) Horse (b) Deer

(c) Bird (d) Frog

(e) Airplane (f) Truck

Figure B.1. Visualization examples for C&W, ZOO, and Boundary are displayed
in each subfigure, sampled from CIFAR10. From left to right, the first row shows
the adversarial image generated by C&W, ZOO, and Boundary, and the second
row shows corresponding amplified perturbations. Though adversarial examples
are indistinguishable, perturbations show different patterns: C&W’s perturbations
focus on the main object; ZOO introduces scattered bright per-pixel perturbations;
Boundary’s perturbations are more uniform across the image.
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(a) Horse (b) Bird

(c) Dog (d) Airplane

(e) Ship (f) Automobile

Figure B.2. Visualization examples for PGD, Square, and HopSkipJump are dis-
played in each subfigure, sampled from the CIFAR10 data set. From left to right,
the first row shows the adversarial image generated by PGD, Square, and Hop-
SkipJump, and the second row shows corresponding amplified perturbations. PGD
and HSJ have cluttered perturbation patterns, but HSJ is darker due to smaller
perturbations. Square’s perturbations consist of vertical strips covered by square-
shaped regions, though vertical strips may not be obvious since it’s covered by too
many squares.
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(a) Cat (b) Bird

(c) Horse (d) Deer

(e) Automobile (f) Truck

Figure B.3. Each subfigure displays adversarial images and perturbations of
C&W, estimated-gradient C&W, random-start C&W from left to right, sampled
from CIFAR10 dataset.

B.2. Supplementary Examples and Experiment in Section 4.4.1.2

ZOO is another variant of C&W with estimated gradients and coordinate descent. In Sec-

tion 4.4.1.2, to evaluate the optimization method’s effect on perturbation patterns, we compare

ZOO with estimated-gradient C&W; more examples are displayed in Fig. B.4.
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(a) Automobile (b) Ship

(c) Bird (d) Cat

(e) Dog (f) Horse

Figure B.4. Additional visualization examples for ZOO and estimated-gradient
C&W are displayed in each subfigure from left to right, sampled from the CIFAR10
dataset.

Select those images that have been successfully attacked by ZOO and estimated-gradient C&W

and split them into training and test sets of size 2013 and 863, respectively. Table B.2 records the

confusion matrix of the classification result. The two attacks are separated by a highly accurate

classifier, which shows an obvious effect when using different optimization methods.
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Table B.2. Confusion Matrix for ZOO and estimated-gradient C&W

Predicted
ZOO estimated-gradient C&W

A
c
tu

a
l

ZOO 825 38
estimated-gradient C&W 3 860

B.3. Supplementary Examples and Experiment in Section 4.4.1.3

Boundary attack starts with a random adversarial image and uses a random walk for each update.

In Section 4.4.1.3, we study the effect of random start and lack of gradient information by comparing

C&W, random-start C&W, and Boundary; more examples are displayed in Fig. B.5.

Select those images that have been successfully attacked by all three attacks and split them into

training and test sets of size 3645 and 1566, respectively. Table B.3 records the confusion matrix.

The three attacks can be classified by a high accuracy machine, indicating an obvious pattern among

the attacks. This classification result proves that Boundary’s blurry perturbations are caused by

random start and random walk without gradient information.

Table B.3. Confusion Matrix for C&W, random-start C&W and Boundary

Predicted
C&W random-start C&W Boundary

A
c
tu

a
l C&W 477 5 40

random-start C&W 13 500 19
Boundary 115 4 403
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(a) Automobile (b) Ship

(c) Truck (d) Airplane

(e) Frog (f) Truck

Figure B.5. Additional visualization examples for C&W, random-start C&W, and
Boundary are displayed in each subfigure from left to right, sampled from the CI-
FAR10 dataset.
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