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Meaning-Based Guidance of Attention in Scenes as Revealed by 
Meaning Maps

John M. Henderson1,2, Taylor R. Hayes2

1Department of Psychology and University of California, Davis

2Center for Mind and Brain University of California, Davis

Abstract

Real-world scenes comprise a blooming, buzzing confusion of information. To manage this 

complexity, visual attention is guided to important scene regions in real time 1-7. What factors 

guide attention within scenes? A leading theoretical position suggests that visual salience based on 

semantically uninterpreted image features plays the critical causal role in attentional guidance, 

with knowledge and meaning playing a secondary or modulatory role 8-11. Here we propose 

instead that meaning plays the dominant role in guiding human attention through scenes. To test 

this proposal, we developed “meaning maps” that represent the semantic richness of scene regions 

in a format that can be directly compared to image salience. We then contrasted the degree to 

which the spatial distribution of meaning and salience predict viewers’ overt attention within 

scenes. The results showed that both meaning and salience predicted the distribution of attention, 

but that when the relationship between meaning and salience was controlled, only meaning 

accounted for unique variance in attention. This pattern of results was apparent from the very 

earliest time-point in scene viewing. We conclude that meaning is the driving force guiding 

attention through real-world scenes.
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According to image guidance theories, attention is directed to scene regions based on 

semantically uninterpreted image features. On this view, attention is in a fundamental sense 

a reaction to the image properties of the stimulus confronting the viewer, with attention 

“pulled” to visually salient scene regions 12. The most comprehensive theory of this type is 

based on visual salience, in which basic image features such as luminance contrast, color, 
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and edge orientation are used to form a saliency map that provides the basis for attentional 

guidance 8,13,14.

An alternative theoretical perspective is represented by cognitive guidance theories, in which 

attention is directed to scene regions that are semantically informative. This position is 

consistent with strong evidence suggesting that humans are highly sensitive to the 

distribution of meaning in visual scenes from the earliest moments of viewing 7,15-17. On 

this view, attention is primarily controlled by knowledge structures stored in memory that 

represent a scene. These knowledge structures contain information about a scene’s likely 

semantic content and the spatial distribution of that content based on experience with 

general scene concepts and the specific scene instance currently in view 7. On cognitive 

guidance theories, attention is “pushed” to these meaningful scene regions by the cognitive 

system 2-7,18.

The majority of research on attentional guidance in scenes has focused on image salience. 

Little is currently known about how the spatial distribution of meaning across a scene 

influences attentional guidance. The emphasis on image salience is likely due in part to the 

relative ease of quantifying image properties and the relative difficulty of quantifying higher-

level cognitive constructs related to scene meaning 4. To test between image guidance and 

cognitive guidance theories, it is necessary to generate equivalent quantitative predictions 

from both meaning and salience that are in some sense on an equal footing.

Our central goal was to investigate the relative roles of meaning and salience in guiding 

attention through scenes. To capture the spatial distribution of meaning across a scene, we 

developed a method that represents scene meaning as a spatial map (a “meaning map”). A 

meaning map can be taken as a conceptual analog of a saliency map, capturing the 

distribution of semantic properties rather than image properties across a scene. Meaning 

maps can be directly compared to saliency maps and can also be used to predict attentional 

maps in the same manner as has been done with saliency maps 9,13,19,20. With meaning 

maps in hand, we can directly compare the influences of meaning and salience on attentional 

guidance.

Meaning is spatially distributed in a non-uniform manner across a scene. Some scene 

regions are relatively rich in meaning, and others are relatively sparse. Here we generated 

meaning maps for scenes by asking subjects to rate the meaningfulness of scene regions. 

Digital photographs of real-world scenes (Figure 1a) were divided into objectively defined 

and context-free circular overlapping regions at two spatial scales (Figure 1b and 1c). 

Regions were presented independently of the scenes from which they were taken (Figure 1d) 

and rated by naïve raters on Mechanical Turk. We then built smoothed maps for each scene 

based on interpolated ratings over a large number of raters (Figure 1e). (Details are given in 

Methods.)

It has been suggested that meaning and visual salience are likely to be highly correlated 

across scenes 3,18,21,22. Yet to date this correlation has not been empirically tested. If such a 

correlation exists, then attentional effects that have been attributed to visual salience could 

be due to meaning 22-24. Figure 2 presents the correlation of meaning and salience for each 
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scene. On average across the 40 scenes the correlation was 0.80 (SD = 0.08). A one sample 

t-test confirmed that the correlation was significantly greater than zero, t(39) = 60.4, p 
< .0001, 95% CI [0.77, 0.82]. These findings establish that meaning and salience indeed do 

overlap substantially in scenes, as has previously been hypothesized. Meaning and salience 

also each accounted for unique variance (i.e., 36% of the variance was not shared). To 

attribute attentional effects unambiguously to either meaning or salience, the effects of both 

must be considered together.

We can conceive of meaning maps and saliency maps as predictions concerning how 

attention will be guided through scenes. The empirical question is then how well the 

meaning and saliency maps predict observed distributions of attention. To answer this 

question, it is necessary to quantify attention over each scene. Following common practice in 

this literature, we operationalized the distribution of attention as the distribution of eye 

fixations. We had a group of human subjects view each scene for 12 seconds while their eye 

movements were recorded. Attentional maps in the same format as the meaning and saliency 

maps were then generated from the eye movement data to represent where attention was 

directed (see Methods). Figure 3a shows a scene image with eye fixations superimposed, and 

Figure 3b shows the attention map derived from these fixations.

Our next step was to determine how well meaning maps (Figure 3c) and saliency maps 

(Figure 3d) predicted the spatial distribution of attention (Figure 3a) as captured by attention 

maps (Figure 3b). (Please see Supplementary Information for all scenes and their maps.) For 

this analysis, we used a method based on linear correlation to assess the degree to which 

meaning maps and saliency maps accounted for shared and unique variance in the attention 

maps 25.

Figure 4 presents the data for each of the 40 scenes using this approach. Each data point 

shows the R2 value for the prediction maps (meaning and saliency) and the observed 

attention maps for saliency (blue) and meaning (red). Figure 4a shows the squared linear 

correlations. On average across the 40 scenes, meaning accounted for 53% of the variance in 

fixation density (M = 0.53, SD = 0.11) and saliency account for 38% of the variance in 

fixation density (M = 0.38, SD = 0.12). A two-tailed t-test revealed this difference was 

statistically significant, t(78) = 5.63, p < .0001, 95% CI [0.10, 0.20].

To examine the unique variance in attention explained by meaning and salience when 

controlling for their shared variance, we computed squared semi-partial correlations. These 

correlations (Figure 4b) revealed that across the 40 scenes, meaning captured more than 4 

times as much unique variance (M = 0.19, SD = 0.10) as saliency (M = 0.04, SD = 0.04). 

Meaning maps accounted for a significant 19% additional variance in the attention maps 

after controlling for salience, whereas saliency maps accounted for a non-significant 4% 

additional variance after controlling for meaning. A two-tailed t-test confirmed that this 

difference was statistically significant, t(78) = 8.42, p < .0001, 95% CI [0.11, 0.18]. 

Additional analyses indicated that these results held when the scene centers were removed 

from the analysis, suggesting that they were not due to a concentration of attention at the 

centers of the scenes, and they replicated using an aesthetic judgment free-viewing task, 

suggesting that they were not an artifact of the memorization viewing task (please see 
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Supplementary Information). Overall, the results showed that meaning was better able than 

salience to explain the distribution of attention over scenes.

So far, we have examined the roles of meaning and salience over the entire viewing period 

for each scene. However, it has been proposed that attention is initially guided by image 

salience, but that over time, as knowledge representations become available and meaning 

can be acquired from more of the scene, meaning begins to play a greater role 7,26,27.

To investigate whether the effects of meaning and salience changed over time as each scene 

was viewed, we conducted temporal time-step analyses. Linear correlation and semi-partial 

correlation were conducted as described above, but were based on a series of attention maps 

generated from each sequential eye fixation (1st, 2nd, 3rd, etc.) in each scene. The results are 

shown in Figure 4. For the linear correlations, the relationship was stronger between 

meaning and fixation maps for all time steps (Figure 4c) and was very consistent across the 

40 scenes. Meaning accounted for 33.0%, 33.6%, and 31.9% of the variance in the first 3 

fixations, whereas salience accounted for only 9.7%, 15.9%, and 18.1% of the variance in 

the first 3 fixations, respectively. Two sample two-tailed t-tests were performed for all 38 

time points, and p-values were corrected for multiple comparisons using the false discovery 

rate (FDR) correction (Benjamini & Hochberg, 1995). This procedure confirmed the 

advantage for meaning over salience at all 38 time points (FDR p < 0.05).

When controlling for the correlation among the two prediction maps with semi-partial 

correlations, the advantage for the meaning maps observed in the overall analyses was also 

found to hold across time steps (Figure 4d). The same testing and false discovery rate 

correction revealed that all 38 time points were significantly different (FDR p < 0.05), with 

meaning accounting for 25.9%, 22.4%, and 18.2% of the unique variance in the first 3 

fixations, whereas salience accounted for 2.7%, 4.8%, and 4.2% of the unique variance in 

the first 3 fixations, respectively. In sum, counter to the salience-first hypothesis, we 

observed no crossover of the effects of meaning and salience over time. Instead, in both the 

correlation and semi-partial correlation analyses, we observed an advantage for meaning 

from the very first fixation. Indeed, if anything, there was an even greater advantage for 

meaning in guiding attention over the first few fixations than later in viewing. These results 

indicate that meaning begins guiding attention as soon as a scene appears, consistent with 

past findings that viewing task can also override salience as soon as the first saccade 23,28.

The dominant role of meaning in guiding attention can be accommodated by a theoretical 

perspective that places explanatory primacy on scene semantics. For example, on the 

cognitive relevance model 22,23, the role of a particular object or scene region in guiding 

attention is determined solely by its meaning in the context of the scene and the current 

goals of the viewer, and not by its visual salience. On this view, meaning determines 

attentional priority, with image properties used to provide perceptual objects and regions to 

which attentional priority can be assigned based on knowledge representations. On this 

model, the visual stimulus is used to generate the perceptual objects and other potential 

targets for attention, but the image features themselves provide a flat (that is, unranked) 

landscape of attentional targets, with attentional priority rankings provided by knowledge 

representations 3,22,23. Note that on this view the meaning of all objects and scene regions 
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across the entire scene need not be established during the initial glimpse. Rather, rapidly 

ascertained scene gist 7,29-31 can be used to generate predictions about what objects are 

likely to be informative and where those objects are likely to be found 4. This knowledge 

combined with representations of perceptual objects generated from peripheral visual 

information would be sufficient to guide attention using meaning. In addition, given that 

saccade amplitudes tend to be relatively short in scene viewing (about 3.5 degrees on 

average in the present study), meaning directly acquired from parafoveal scene regions 

during each fixation would often be available to guide the next attentional shift to a 

meaningful region.

In summary, we found that meaning was better able than visual salience to account for the 

guidance of attention through real-world scenes. Furthermore, we found that the influence of 

meaning was apparent both at the very beginning of scene viewing and throughout the 

viewing period. Given the strong correlation between meaning and salience observed here, 

and the fact that only meaning accounted for unique variance in the distribution of attention, 

we conclude that both previous and current results are consistent with a theory in which 

meaning is the dominant force guiding attention through scenes. This conclusion has 

important implications for current theories of attention across diverse disciplines that have 

been influenced by image salience theory, including vision science, cognitive science, visual 

neuroscience, and computer vision.

Method

Meaning Maps

Subjects.—Scene patches were rated by 165 subjects on Amazon Mechanical Turk. 

Subjects were recruited from the United States, had a hit approval rate of 99% and 500 hits 

approved, and were only allowed to participate in the study once. Subjects were paid $0.50 

cents per assignment and all subjects provided informed consent.

Stimuli.—Stimuli consisted of 40 digitized photographs of real-world scenes. Each scene 

was decomposed into a series of partially overlapping and tiled circular patches at two 

spatial scales of 3° and 7° (Figure 1). Simulated recovery of known scene properties (e.g., 

luminance) indicated that the underlying known property could be recovered well (98% 

variance explained) using these 2 spatial scales with patch overlap. The full patch stimulus 

set consisted of 12000 unique 3° patches and 4320 unique 7° patches for a total of 16320 

scene patches.

Procedure.—Each subject rated 300 random scene patches extracted from 40 scenes. 

Subjects were instructed to assess the meaningfulness of each patch based on how 

informative or recognizable they thought it was. Subjects were first given examples of two 

low-meaning and two high-meaning scene patches to make sure they understood the rating 

task. Subjects then rated the meaningfulness of test patches on a 6-point Likert scale (‘very 

low’, ‘low’, ‘somewhat low’, ‘somewhat high’, ‘high’, ‘very high’). Patches were presented 

in random order and without scene context, so ratings were based on context-independent 

judgments. Each unique patch was rated 3 times by 3 independent raters for a total of 48960 

ratings. However, due to the high degree of overlap across patches, each patch contained 
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rating information from 27 independent raters for each 3° patch and 63 independent raters 

for each 7° patch.

Meaning maps were generated from the ratings by averaging, smoothing, and combining 3° 

and 7° maps from the corresponding patch ratings. The ratings for each pixel at each scale 

(3° and 7°) in each scene were averaged, producing an average 3° and 7° rating map for each 

scene. Then, the average 3° and 7° rating maps were smoothed using thin-plate spline 

interpolation (Matlab ‘fit’ using the ‘thinplateinterp’ method). Finally, the smoothed 3° and 

7° maps were combined using a simple average, i.e., (3° map + 7° map)/2. This procedure 

was used to create a meaning map for each scene. The final map was blurred using a 

Gaussian kernel followed by a multiplicative center bias operation which down-weighted the 

activation in the periphery to account for the central fixation bias, the commonly observed 

phenomena in which subjects concentrate their fixations more centrally and rarely fixate the 

outside border of a scene 32. This center bias operation is also commonly applied to saliency 

maps.

Saliency Maps

To investigate the relationship between the generated meaning maps and image-based 

saliency maps, saliency maps for each scene were computed using the Graph-based Visual 

Saliency (GBVS) toolbox with default settings (Harel, Koch, & Perona, NIPS 2006). GBVS 

is a prominent saliency model that combines conspicuity maps of different low-level image 

features. The same center bias operation described for the meaning maps was applied to the 

saliency maps to down-weight the periphery.

Histogram Matching

The meaning and saliency maps were normalized to a common scale using image histrogram 

matching, with the attention map for each scene serving as the reference image for the 

corresponding meaning and saliency maps. Histogram matching of the meaning and saliency 

maps was accomplished using the Matlab function ‘imhistmatch’ in the Image Processing 

Toolbox.

Eyetracking Experiment and Attention Maps

Subjects.—Seventy-nine University of South Carolina undergraduate students with normal 

or corrected-to-normal vision participated in the experiment. All subjects were naive 

concerning the purposes of the experiment and provided informed consent as approved by 

the University of South Carolina Institutional Review Board. In Matlab, the eye movement 

data from each subject was inspected for excessive artifacts caused by blinks or loss of 

calibration due to incidental movement by examining the mean percent of signal across all 

trials. Fourteen subjects with less than 75% signal were removed, leaving 65 subjects that 

were tracked very well (mean signal = 91.74%).

Apparatus.—Eye movements were recorded with an EyeLink 1000+ tower mount 

eyetracker (spatial resolution 0.01) sampling at 1000 Hz. Subjects sat 90 cm away from a 

21” monitor, so that scenes subtended approximately 33°x25° of visual angle. Head 

movements were minimized using a chin and forehead rest. Although viewing was 
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binocular, eye movements were recorded from the right eye. The experiment was controlled 

with SR Research Experiment Builder software.

Stimuli.—Stimuli consisted of the same 40 digitized photographs of real-world scenes that 

were used to create the meaning and saliency maps.

Procedure.—Subjects were instructed to memorize each scene in preparation for a later 

memory test. The memory test was not administered. Each trial began with fixation on a 

cross at the center of the display for 300 msec. Following central fixation, each scene was 

presented for 12 seconds while eye movements were recorded. Scenes were presented in the 

same order across all 79 subjects.

A 13-point calibration procedure was performed at the start of each session to map eye 

position to screen coordinates. Successful calibration required an average error of less than 

0.49° and a maximum error of less than 0.99°. Fixations and saccades were segmented with 

EyeLink’s standard algorithm using velocity and acceleration thresholds (30/s and 9500°/s).

Eye movement data were imported offline into Matlab using the EDFConverter tool. In 

Matlab, the eye movement data from each participant were inspected for excessive artifacts 

caused by blinks or loss of calibration due to incidental movement by examining the mean 

percent of signal across all trials. The first fixation always located at the center of the display 

as a result of the pretrial fixation period was disgarded.

Attention maps.—Across subjects, for every position (i.e., x,y coordinate pair) within a 

scene, +1 was accumulated for each fixation, producing a fixation frequency matrix. A 

Gaussian low pass filter with circular boundary conditions and a cutoff frequency of −6dB 

was applied to the fixation frequency matrix for each scene to account for foveal acuity and 

eye tracker error.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Generation of meaning maps.
Meaning maps were generated from subject ratings (N = 165) of context-free scene patches 

at two spatial scales. Each (a) real-world scene was decomposed into a series of overlapping 

circular patches at (b) 3° and (c) 7° spatial scales. Blue dots in (b) and (c) denote the center 

of each circular patch that was rated, with example patches of the content captured by the 3° 

and 7° scales shown in the center. Also shown are (d) examples of high and low meaning 

patches. Ratings were combined to produce (e) meaning maps as shown for four example 

scenes.
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Figure 2. Correlation between saliency and meaning maps.
The line plot shows the correlation between the meaning and saliency maps for each scene. 

The scatter box plot on the right shows the corresponding grand correlation mean across N = 

40 scenes (black horizontal line), 95% confidence intervals (colored box), and 1 standard 

deviation (black vertical line). The mean correlation differed significantly from zero, p 
< .0001.
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Figure 3. Attention, meaning, and saliency maps for an example scene.
We obtained (a) eye movements from subjects (N = 65) who viewed each scene, and we 

generated (b) attention maps from those eye movement data. We compared the attention 

maps to the corresponding (c) meaning maps, and (d) saliency maps, from each scene.
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Figure 4. Squared linear correlation and semi-partial correlation by scene and by fixation order.
Shown for each scene are the (a) linear correlation, and (b) semi-partial correlation, between 

fixation density and meaning (red) and fixation density and salience (blue). The scatter box 

plots on the right show the corresponding grand correlation means across N = 40 scenes 

(black horizontal line), 95% confidence intervals (colored box), and 1 standard deviation 

(black vertical line). Both linear and semi-partial correlations for meaning and salience 

differed significantly, p < .0001. Plots also show the (c) squared linear correlation and (d) 

corresponding semi-partial correlation, between fixation density and meaning (red) and 

fixation density and salience (blue), as a function of fixation order across all 40 scenes. Error 

bars represent standard error of the mean. Correlations differed significantly at all fixations, 

FDR p < .05.
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